xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision 7e37c475fa08713cfdd04020cfbd532fe9f124f6)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008-2015 Nathan Whitehorn
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * Manages physical address maps.
34  *
35  * Since the information managed by this module is also stored by the
36  * logical address mapping module, this module may throw away valid virtual
37  * to physical mappings at almost any time.  However, invalidations of
38  * mappings must be done as requested.
39  *
40  * In order to cope with hardware architectures which make virtual to
41  * physical map invalidates expensive, this module may delay invalidate
42  * reduced protection operations until such time as they are actually
43  * necessary.  This module is given full information as to which processors
44  * are currently using which maps, and to when physical maps must be made
45  * correct.
46  */
47 
48 #include "opt_kstack_pages.h"
49 
50 #include <sys/param.h>
51 #include <sys/kernel.h>
52 #include <sys/conf.h>
53 #include <sys/queue.h>
54 #include <sys/cpuset.h>
55 #include <sys/kerneldump.h>
56 #include <sys/ktr.h>
57 #include <sys/lock.h>
58 #include <sys/msgbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/mutex.h>
61 #include <sys/proc.h>
62 #include <sys/rwlock.h>
63 #include <sys/sched.h>
64 #include <sys/sysctl.h>
65 #include <sys/systm.h>
66 #include <sys/vmmeter.h>
67 #include <sys/smp.h>
68 
69 #include <sys/kdb.h>
70 
71 #include <dev/ofw/openfirm.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_param.h>
75 #include <vm/vm_kern.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_map.h>
78 #include <vm/vm_object.h>
79 #include <vm/vm_extern.h>
80 #include <vm/vm_pageout.h>
81 #include <vm/uma.h>
82 
83 #include <machine/_inttypes.h>
84 #include <machine/cpu.h>
85 #include <machine/platform.h>
86 #include <machine/frame.h>
87 #include <machine/md_var.h>
88 #include <machine/psl.h>
89 #include <machine/bat.h>
90 #include <machine/hid.h>
91 #include <machine/pte.h>
92 #include <machine/sr.h>
93 #include <machine/trap.h>
94 #include <machine/mmuvar.h>
95 
96 #include "mmu_oea64.h"
97 #include "mmu_if.h"
98 #include "moea64_if.h"
99 
100 void moea64_release_vsid(uint64_t vsid);
101 uintptr_t moea64_get_unique_vsid(void);
102 
103 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
104 #define ENABLE_TRANS(msr)	mtmsr(msr)
105 
106 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
107 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
108 #define	VSID_HASH_MASK		0x0000007fffffffffULL
109 
110 /*
111  * Locking semantics:
112  *
113  * There are two locks of interest: the page locks and the pmap locks, which
114  * protect their individual PVO lists and are locked in that order. The contents
115  * of all PVO entries are protected by the locks of their respective pmaps.
116  * The pmap of any PVO is guaranteed not to change so long as the PVO is linked
117  * into any list.
118  *
119  */
120 
121 #define PV_LOCK_PER_DOM	PA_LOCK_COUNT*3
122 #define PV_LOCK_COUNT	PV_LOCK_PER_DOM*MAXMEMDOM
123 static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
124 
125 /*
126  * Cheap NUMA-izing of the pv locks, to reduce contention across domains.
127  * NUMA domains on POWER9 appear to be indexed as sparse memory spaces, with the
128  * index at (N << 45).
129  */
130 #ifdef __powerpc64__
131 #define PV_LOCK_IDX(pa)	(pa_index(pa) % PV_LOCK_PER_DOM + \
132 			(((pa) >> 45) % MAXMEMDOM) * PV_LOCK_PER_DOM)
133 #else
134 #define PV_LOCK_IDX(pa)	(pa_index(pa) % PV_LOCK_COUNT)
135 #endif
136 #define PV_LOCKPTR(pa)	((struct mtx *)(&pv_lock[PV_LOCK_IDX(pa)]))
137 #define PV_LOCK(pa)		mtx_lock(PV_LOCKPTR(pa))
138 #define PV_UNLOCK(pa)		mtx_unlock(PV_LOCKPTR(pa))
139 #define PV_LOCKASSERT(pa) 	mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
140 #define PV_PAGE_LOCK(m)		PV_LOCK(VM_PAGE_TO_PHYS(m))
141 #define PV_PAGE_UNLOCK(m)	PV_UNLOCK(VM_PAGE_TO_PHYS(m))
142 #define PV_PAGE_LOCKASSERT(m)	PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
143 
144 struct ofw_map {
145 	cell_t	om_va;
146 	cell_t	om_len;
147 	uint64_t om_pa;
148 	cell_t	om_mode;
149 };
150 
151 extern unsigned char _etext[];
152 extern unsigned char _end[];
153 
154 extern void *slbtrap, *slbtrapend;
155 
156 /*
157  * Map of physical memory regions.
158  */
159 static struct	mem_region *regions;
160 static struct	mem_region *pregions;
161 static struct	numa_mem_region *numa_pregions;
162 static u_int	phys_avail_count;
163 static int	regions_sz, pregions_sz, numapregions_sz;
164 
165 extern void bs_remap_earlyboot(void);
166 
167 /*
168  * Lock for the SLB tables.
169  */
170 struct mtx	moea64_slb_mutex;
171 
172 /*
173  * PTEG data.
174  */
175 u_long		moea64_pteg_count;
176 u_long		moea64_pteg_mask;
177 
178 /*
179  * PVO data.
180  */
181 
182 uma_zone_t	moea64_pvo_zone; /* zone for pvo entries */
183 
184 static struct	pvo_entry *moea64_bpvo_pool;
185 static int	moea64_bpvo_pool_index = 0;
186 static int	moea64_bpvo_pool_size = 327680;
187 TUNABLE_INT("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
188 SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
189     &moea64_bpvo_pool_index, 0, "");
190 
191 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
192 #ifdef __powerpc64__
193 #define	NVSIDS		(NPMAPS * 16)
194 #define VSID_HASHMASK	0xffffffffUL
195 #else
196 #define NVSIDS		NPMAPS
197 #define VSID_HASHMASK	0xfffffUL
198 #endif
199 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
200 
201 static boolean_t moea64_initialized = FALSE;
202 
203 /*
204  * Statistics.
205  */
206 u_int	moea64_pte_valid = 0;
207 u_int	moea64_pte_overflow = 0;
208 u_int	moea64_pvo_entries = 0;
209 u_int	moea64_pvo_enter_calls = 0;
210 u_int	moea64_pvo_remove_calls = 0;
211 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
212     &moea64_pte_valid, 0, "");
213 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
214     &moea64_pte_overflow, 0, "");
215 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
216     &moea64_pvo_entries, 0, "");
217 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
218     &moea64_pvo_enter_calls, 0, "");
219 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
220     &moea64_pvo_remove_calls, 0, "");
221 
222 vm_offset_t	moea64_scratchpage_va[2];
223 struct pvo_entry *moea64_scratchpage_pvo[2];
224 struct	mtx	moea64_scratchpage_mtx;
225 
226 uint64_t 	moea64_large_page_mask = 0;
227 uint64_t	moea64_large_page_size = 0;
228 int		moea64_large_page_shift = 0;
229 
230 /*
231  * PVO calls.
232  */
233 static int	moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo,
234 		    struct pvo_head *pvo_head, struct pvo_entry **oldpvo);
235 static void	moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo);
236 static void	moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo);
237 static void	moea64_pvo_remove_from_page_locked(mmu_t mmu,
238 		    struct pvo_entry *pvo, vm_page_t m);
239 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
240 
241 /*
242  * Utility routines.
243  */
244 static boolean_t	moea64_query_bit(mmu_t, vm_page_t, uint64_t);
245 static u_int		moea64_clear_bit(mmu_t, vm_page_t, uint64_t);
246 static void		moea64_kremove(mmu_t, vm_offset_t);
247 static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
248 			    vm_paddr_t pa, vm_size_t sz);
249 static void		moea64_pmap_init_qpages(void);
250 
251 /*
252  * Kernel MMU interface
253  */
254 void moea64_clear_modify(mmu_t, vm_page_t);
255 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
256 void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
257     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
258 int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
259     u_int flags, int8_t psind);
260 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
261     vm_prot_t);
262 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
263 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
264 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
265 void moea64_init(mmu_t);
266 boolean_t moea64_is_modified(mmu_t, vm_page_t);
267 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
268 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
269 int moea64_ts_referenced(mmu_t, vm_page_t);
270 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
271 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
272 void moea64_page_init(mmu_t, vm_page_t);
273 int moea64_page_wired_mappings(mmu_t, vm_page_t);
274 void moea64_pinit(mmu_t, pmap_t);
275 void moea64_pinit0(mmu_t, pmap_t);
276 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
277 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
278 void moea64_qremove(mmu_t, vm_offset_t, int);
279 void moea64_release(mmu_t, pmap_t);
280 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
281 void moea64_remove_pages(mmu_t, pmap_t);
282 void moea64_remove_all(mmu_t, vm_page_t);
283 void moea64_remove_write(mmu_t, vm_page_t);
284 void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
285 void moea64_zero_page(mmu_t, vm_page_t);
286 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
287 void moea64_activate(mmu_t, struct thread *);
288 void moea64_deactivate(mmu_t, struct thread *);
289 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
290 void *moea64_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
291 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
292 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
293 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
294 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t ma);
295 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
296 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
297 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
298 void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz,
299     void **va);
300 void moea64_scan_init(mmu_t mmu);
301 vm_offset_t moea64_quick_enter_page(mmu_t mmu, vm_page_t m);
302 void moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr);
303 static int moea64_map_user_ptr(mmu_t mmu, pmap_t pm,
304     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
305 static int moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr,
306     int *is_user, vm_offset_t *decoded_addr);
307 
308 
309 static mmu_method_t moea64_methods[] = {
310 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
311 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
312 	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
313 	MMUMETHOD(mmu_enter,		moea64_enter),
314 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
315 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
316 	MMUMETHOD(mmu_extract,		moea64_extract),
317 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
318 	MMUMETHOD(mmu_init,		moea64_init),
319 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
320 	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
321 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
322 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
323 	MMUMETHOD(mmu_map,     		moea64_map),
324 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
325 	MMUMETHOD(mmu_page_init,	moea64_page_init),
326 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
327 	MMUMETHOD(mmu_pinit,		moea64_pinit),
328 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
329 	MMUMETHOD(mmu_protect,		moea64_protect),
330 	MMUMETHOD(mmu_qenter,		moea64_qenter),
331 	MMUMETHOD(mmu_qremove,		moea64_qremove),
332 	MMUMETHOD(mmu_release,		moea64_release),
333 	MMUMETHOD(mmu_remove,		moea64_remove),
334 	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
335 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
336 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
337 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
338 	MMUMETHOD(mmu_unwire,		moea64_unwire),
339 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
340 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
341 	MMUMETHOD(mmu_activate,		moea64_activate),
342 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
343 	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
344 	MMUMETHOD(mmu_quick_enter_page, moea64_quick_enter_page),
345 	MMUMETHOD(mmu_quick_remove_page, moea64_quick_remove_page),
346 
347 	/* Internal interfaces */
348 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
349 	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
350 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
351 	MMUMETHOD(mmu_kextract,		moea64_kextract),
352 	MMUMETHOD(mmu_kenter,		moea64_kenter),
353 	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
354 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
355 	MMUMETHOD(mmu_scan_init,	moea64_scan_init),
356 	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
357 	MMUMETHOD(mmu_map_user_ptr,	moea64_map_user_ptr),
358 	MMUMETHOD(mmu_decode_kernel_ptr, moea64_decode_kernel_ptr),
359 
360 	{ 0, 0 }
361 };
362 
363 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
364 
365 static struct pvo_head *
366 vm_page_to_pvoh(vm_page_t m)
367 {
368 
369 	mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
370 	return (&m->md.mdpg_pvoh);
371 }
372 
373 static struct pvo_entry *
374 alloc_pvo_entry(int bootstrap)
375 {
376 	struct pvo_entry *pvo;
377 
378 	if (!moea64_initialized || bootstrap) {
379 		if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
380 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
381 			      moea64_bpvo_pool_index, moea64_bpvo_pool_size,
382 			      moea64_bpvo_pool_size * sizeof(struct pvo_entry));
383 		}
384 		pvo = &moea64_bpvo_pool[
385 		    atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
386 		bzero(pvo, sizeof(*pvo));
387 		pvo->pvo_vaddr = PVO_BOOTSTRAP;
388 	} else {
389 		pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT);
390 		bzero(pvo, sizeof(*pvo));
391 	}
392 
393 	return (pvo);
394 }
395 
396 
397 static void
398 init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
399 {
400 	uint64_t vsid;
401 	uint64_t hash;
402 	int shift;
403 
404 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
405 
406 	pvo->pvo_pmap = pmap;
407 	va &= ~ADDR_POFF;
408 	pvo->pvo_vaddr |= va;
409 	vsid = va_to_vsid(pmap, va);
410 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
411 	    | (vsid << 16);
412 
413 	shift = (pvo->pvo_vaddr & PVO_LARGE) ? moea64_large_page_shift :
414 	    ADDR_PIDX_SHFT;
415 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
416 	pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
417 }
418 
419 static void
420 free_pvo_entry(struct pvo_entry *pvo)
421 {
422 
423 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
424 		uma_zfree(moea64_pvo_zone, pvo);
425 }
426 
427 void
428 moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
429 {
430 
431 	lpte->pte_hi = (pvo->pvo_vpn >> (ADDR_API_SHFT64 - ADDR_PIDX_SHFT)) &
432 	    LPTE_AVPN_MASK;
433 	lpte->pte_hi |= LPTE_VALID;
434 
435 	if (pvo->pvo_vaddr & PVO_LARGE)
436 		lpte->pte_hi |= LPTE_BIG;
437 	if (pvo->pvo_vaddr & PVO_WIRED)
438 		lpte->pte_hi |= LPTE_WIRED;
439 	if (pvo->pvo_vaddr & PVO_HID)
440 		lpte->pte_hi |= LPTE_HID;
441 
442 	lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
443 	if (pvo->pvo_pte.prot & VM_PROT_WRITE)
444 		lpte->pte_lo |= LPTE_BW;
445 	else
446 		lpte->pte_lo |= LPTE_BR;
447 
448 	if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
449 		lpte->pte_lo |= LPTE_NOEXEC;
450 }
451 
452 static __inline uint64_t
453 moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
454 {
455 	uint64_t pte_lo;
456 	int i;
457 
458 	if (ma != VM_MEMATTR_DEFAULT) {
459 		switch (ma) {
460 		case VM_MEMATTR_UNCACHEABLE:
461 			return (LPTE_I | LPTE_G);
462 		case VM_MEMATTR_CACHEABLE:
463 			return (LPTE_M);
464 		case VM_MEMATTR_WRITE_COMBINING:
465 		case VM_MEMATTR_WRITE_BACK:
466 		case VM_MEMATTR_PREFETCHABLE:
467 			return (LPTE_I);
468 		case VM_MEMATTR_WRITE_THROUGH:
469 			return (LPTE_W | LPTE_M);
470 		}
471 	}
472 
473 	/*
474 	 * Assume the page is cache inhibited and access is guarded unless
475 	 * it's in our available memory array.
476 	 */
477 	pte_lo = LPTE_I | LPTE_G;
478 	for (i = 0; i < pregions_sz; i++) {
479 		if ((pa >= pregions[i].mr_start) &&
480 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
481 			pte_lo &= ~(LPTE_I | LPTE_G);
482 			pte_lo |= LPTE_M;
483 			break;
484 		}
485 	}
486 
487 	return pte_lo;
488 }
489 
490 /*
491  * Quick sort callout for comparing memory regions.
492  */
493 static int	om_cmp(const void *a, const void *b);
494 
495 static int
496 om_cmp(const void *a, const void *b)
497 {
498 	const struct	ofw_map *mapa;
499 	const struct	ofw_map *mapb;
500 
501 	mapa = a;
502 	mapb = b;
503 	if (mapa->om_pa < mapb->om_pa)
504 		return (-1);
505 	else if (mapa->om_pa > mapb->om_pa)
506 		return (1);
507 	else
508 		return (0);
509 }
510 
511 static void
512 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
513 {
514 	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
515 	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
516 	struct pvo_entry *pvo;
517 	register_t	msr;
518 	vm_offset_t	off;
519 	vm_paddr_t	pa_base;
520 	int		i, j;
521 
522 	bzero(translations, sz);
523 	OF_getencprop(OF_finddevice("/"), "#address-cells", &acells,
524 	    sizeof(acells));
525 	if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1)
526 		panic("moea64_bootstrap: can't get ofw translations");
527 
528 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
529 	sz /= sizeof(cell_t);
530 	for (i = 0, j = 0; i < sz; j++) {
531 		translations[j].om_va = trans_cells[i++];
532 		translations[j].om_len = trans_cells[i++];
533 		translations[j].om_pa = trans_cells[i++];
534 		if (acells == 2) {
535 			translations[j].om_pa <<= 32;
536 			translations[j].om_pa |= trans_cells[i++];
537 		}
538 		translations[j].om_mode = trans_cells[i++];
539 	}
540 	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
541 	    i, sz));
542 
543 	sz = j;
544 	qsort(translations, sz, sizeof (*translations), om_cmp);
545 
546 	for (i = 0; i < sz; i++) {
547 		pa_base = translations[i].om_pa;
548 	      #ifndef __powerpc64__
549 		if ((translations[i].om_pa >> 32) != 0)
550 			panic("OFW translations above 32-bit boundary!");
551 	      #endif
552 
553 		if (pa_base % PAGE_SIZE)
554 			panic("OFW translation not page-aligned (phys)!");
555 		if (translations[i].om_va % PAGE_SIZE)
556 			panic("OFW translation not page-aligned (virt)!");
557 
558 		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
559 		    pa_base, translations[i].om_va, translations[i].om_len);
560 
561 		/* Now enter the pages for this mapping */
562 
563 		DISABLE_TRANS(msr);
564 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
565 			/* If this address is direct-mapped, skip remapping */
566 			if (hw_direct_map &&
567 			    translations[i].om_va == PHYS_TO_DMAP(pa_base) &&
568 			    moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT)
569  			    == LPTE_M)
570 				continue;
571 
572 			PMAP_LOCK(kernel_pmap);
573 			pvo = moea64_pvo_find_va(kernel_pmap,
574 			    translations[i].om_va + off);
575 			PMAP_UNLOCK(kernel_pmap);
576 			if (pvo != NULL)
577 				continue;
578 
579 			moea64_kenter(mmup, translations[i].om_va + off,
580 			    pa_base + off);
581 		}
582 		ENABLE_TRANS(msr);
583 	}
584 }
585 
586 #ifdef __powerpc64__
587 static void
588 moea64_probe_large_page(void)
589 {
590 	uint16_t pvr = mfpvr() >> 16;
591 
592 	switch (pvr) {
593 	case IBM970:
594 	case IBM970FX:
595 	case IBM970MP:
596 		powerpc_sync(); isync();
597 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
598 		powerpc_sync(); isync();
599 
600 		/* FALLTHROUGH */
601 	default:
602 		if (moea64_large_page_size == 0) {
603 			moea64_large_page_size = 0x1000000; /* 16 MB */
604 			moea64_large_page_shift = 24;
605 		}
606 	}
607 
608 	moea64_large_page_mask = moea64_large_page_size - 1;
609 }
610 
611 static void
612 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
613 {
614 	struct slb *cache;
615 	struct slb entry;
616 	uint64_t esid, slbe;
617 	uint64_t i;
618 
619 	cache = PCPU_GET(aim.slb);
620 	esid = va >> ADDR_SR_SHFT;
621 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
622 
623 	for (i = 0; i < 64; i++) {
624 		if (cache[i].slbe == (slbe | i))
625 			return;
626 	}
627 
628 	entry.slbe = slbe;
629 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
630 	if (large)
631 		entry.slbv |= SLBV_L;
632 
633 	slb_insert_kernel(entry.slbe, entry.slbv);
634 }
635 #endif
636 
637 static void
638 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
639     vm_offset_t kernelend)
640 {
641 	struct pvo_entry *pvo;
642 	register_t msr;
643 	vm_paddr_t pa, pkernelstart, pkernelend;
644 	vm_offset_t size, off;
645 	uint64_t pte_lo;
646 	int i;
647 
648 	if (moea64_large_page_size == 0)
649 		hw_direct_map = 0;
650 
651 	DISABLE_TRANS(msr);
652 	if (hw_direct_map) {
653 		PMAP_LOCK(kernel_pmap);
654 		for (i = 0; i < pregions_sz; i++) {
655 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
656 		     pregions[i].mr_size; pa += moea64_large_page_size) {
657 			pte_lo = LPTE_M;
658 
659 			pvo = alloc_pvo_entry(1 /* bootstrap */);
660 			pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
661 			init_pvo_entry(pvo, kernel_pmap, PHYS_TO_DMAP(pa));
662 
663 			/*
664 			 * Set memory access as guarded if prefetch within
665 			 * the page could exit the available physmem area.
666 			 */
667 			if (pa & moea64_large_page_mask) {
668 				pa &= moea64_large_page_mask;
669 				pte_lo |= LPTE_G;
670 			}
671 			if (pa + moea64_large_page_size >
672 			    pregions[i].mr_start + pregions[i].mr_size)
673 				pte_lo |= LPTE_G;
674 
675 			pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
676 			    VM_PROT_EXECUTE;
677 			pvo->pvo_pte.pa = pa | pte_lo;
678 			moea64_pvo_enter(mmup, pvo, NULL, NULL);
679 		  }
680 		}
681 		PMAP_UNLOCK(kernel_pmap);
682 	}
683 
684 	/*
685 	 * Make sure the kernel and BPVO pool stay mapped on systems either
686 	 * without a direct map or on which the kernel is not already executing
687 	 * out of the direct-mapped region.
688 	 */
689 	if (kernelstart < DMAP_BASE_ADDRESS) {
690 		/*
691 		 * For pre-dmap execution, we need to use identity mapping
692 		 * because we will be operating with the mmu on but in the
693 		 * wrong address configuration until we __restartkernel().
694 		 */
695 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
696 		    pa += PAGE_SIZE)
697 			moea64_kenter(mmup, pa, pa);
698 	} else if (!hw_direct_map) {
699 		pkernelstart = kernelstart & ~DMAP_BASE_ADDRESS;
700 		pkernelend = kernelend & ~DMAP_BASE_ADDRESS;
701 		for (pa = pkernelstart & ~PAGE_MASK; pa < pkernelend;
702 		    pa += PAGE_SIZE)
703 			moea64_kenter(mmup, pa | DMAP_BASE_ADDRESS, pa);
704 	}
705 
706 	if (!hw_direct_map) {
707 		size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
708 		off = (vm_offset_t)(moea64_bpvo_pool);
709 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
710 			moea64_kenter(mmup, pa, pa);
711 
712 		/* Map exception vectors */
713 		for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE)
714 			moea64_kenter(mmup, pa | DMAP_BASE_ADDRESS, pa);
715 	}
716 	ENABLE_TRANS(msr);
717 
718 	/*
719 	 * Allow user to override unmapped_buf_allowed for testing.
720 	 * XXXKIB Only direct map implementation was tested.
721 	 */
722 	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
723 	    &unmapped_buf_allowed))
724 		unmapped_buf_allowed = hw_direct_map;
725 }
726 
727 /* Quick sort callout for comparing physical addresses. */
728 static int
729 pa_cmp(const void *a, const void *b)
730 {
731 	const vm_paddr_t *pa = a, *pb = b;
732 
733 	if (*pa < *pb)
734 		return (-1);
735 	else if (*pa > *pb)
736 		return (1);
737 	else
738 		return (0);
739 }
740 
741 void
742 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
743 {
744 	int		i, j;
745 	vm_size_t	physsz, hwphyssz;
746 	vm_paddr_t	kernelphysstart, kernelphysend;
747 	int		rm_pavail;
748 
749 #ifndef __powerpc64__
750 	/* We don't have a direct map since there is no BAT */
751 	hw_direct_map = 0;
752 
753 	/* Make sure battable is zero, since we have no BAT */
754 	for (i = 0; i < 16; i++) {
755 		battable[i].batu = 0;
756 		battable[i].batl = 0;
757 	}
758 #else
759 	moea64_probe_large_page();
760 
761 	/* Use a direct map if we have large page support */
762 	if (moea64_large_page_size > 0)
763 		hw_direct_map = 1;
764 	else
765 		hw_direct_map = 0;
766 
767 	/* Install trap handlers for SLBs */
768 	bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap);
769 	bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap);
770 	__syncicache((void *)EXC_DSE, 0x80);
771 	__syncicache((void *)EXC_ISE, 0x80);
772 #endif
773 
774 	kernelphysstart = kernelstart & ~DMAP_BASE_ADDRESS;
775 	kernelphysend = kernelend & ~DMAP_BASE_ADDRESS;
776 
777 	/* Get physical memory regions from firmware */
778 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
779 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
780 
781 	if (nitems(phys_avail) < regions_sz)
782 		panic("moea64_bootstrap: phys_avail too small");
783 
784 	phys_avail_count = 0;
785 	physsz = 0;
786 	hwphyssz = 0;
787 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
788 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
789 		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
790 		    regions[i].mr_start, regions[i].mr_start +
791 		    regions[i].mr_size, regions[i].mr_size);
792 		if (hwphyssz != 0 &&
793 		    (physsz + regions[i].mr_size) >= hwphyssz) {
794 			if (physsz < hwphyssz) {
795 				phys_avail[j] = regions[i].mr_start;
796 				phys_avail[j + 1] = regions[i].mr_start +
797 				    hwphyssz - physsz;
798 				physsz = hwphyssz;
799 				phys_avail_count++;
800 			}
801 			break;
802 		}
803 		phys_avail[j] = regions[i].mr_start;
804 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
805 		phys_avail_count++;
806 		physsz += regions[i].mr_size;
807 	}
808 
809 	/* Check for overlap with the kernel and exception vectors */
810 	rm_pavail = 0;
811 	for (j = 0; j < 2*phys_avail_count; j+=2) {
812 		if (phys_avail[j] < EXC_LAST)
813 			phys_avail[j] += EXC_LAST;
814 
815 		if (phys_avail[j] >= kernelphysstart &&
816 		    phys_avail[j+1] <= kernelphysend) {
817 			phys_avail[j] = phys_avail[j+1] = ~0;
818 			rm_pavail++;
819 			continue;
820 		}
821 
822 		if (kernelphysstart >= phys_avail[j] &&
823 		    kernelphysstart < phys_avail[j+1]) {
824 			if (kernelphysend < phys_avail[j+1]) {
825 				phys_avail[2*phys_avail_count] =
826 				    (kernelphysend & ~PAGE_MASK) + PAGE_SIZE;
827 				phys_avail[2*phys_avail_count + 1] =
828 				    phys_avail[j+1];
829 				phys_avail_count++;
830 			}
831 
832 			phys_avail[j+1] = kernelphysstart & ~PAGE_MASK;
833 		}
834 
835 		if (kernelphysend >= phys_avail[j] &&
836 		    kernelphysend < phys_avail[j+1]) {
837 			if (kernelphysstart > phys_avail[j]) {
838 				phys_avail[2*phys_avail_count] = phys_avail[j];
839 				phys_avail[2*phys_avail_count + 1] =
840 				    kernelphysstart & ~PAGE_MASK;
841 				phys_avail_count++;
842 			}
843 
844 			phys_avail[j] = (kernelphysend & ~PAGE_MASK) +
845 			    PAGE_SIZE;
846 		}
847 	}
848 
849 	/* Remove physical available regions marked for removal (~0) */
850 	if (rm_pavail) {
851 		qsort(phys_avail, 2*phys_avail_count, sizeof(phys_avail[0]),
852 			pa_cmp);
853 		phys_avail_count -= rm_pavail;
854 		for (i = 2*phys_avail_count;
855 		     i < 2*(phys_avail_count + rm_pavail); i+=2)
856 			phys_avail[i] = phys_avail[i+1] = 0;
857 	}
858 
859 	physmem = btoc(physsz);
860 
861 #ifdef PTEGCOUNT
862 	moea64_pteg_count = PTEGCOUNT;
863 #else
864 	moea64_pteg_count = 0x1000;
865 
866 	while (moea64_pteg_count < physmem)
867 		moea64_pteg_count <<= 1;
868 
869 	moea64_pteg_count >>= 1;
870 #endif /* PTEGCOUNT */
871 }
872 
873 void
874 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
875 {
876 	int		i;
877 
878 	/*
879 	 * Set PTEG mask
880 	 */
881 	moea64_pteg_mask = moea64_pteg_count - 1;
882 
883 	/*
884 	 * Initialize SLB table lock and page locks
885 	 */
886 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
887 	for (i = 0; i < PV_LOCK_COUNT; i++)
888 		mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
889 
890 	/*
891 	 * Initialise the bootstrap pvo pool.
892 	 */
893 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
894 		moea64_bpvo_pool_size*sizeof(struct pvo_entry), PAGE_SIZE);
895 	moea64_bpvo_pool_index = 0;
896 
897 	/* Place at address usable through the direct map */
898 	if (hw_direct_map)
899 		moea64_bpvo_pool = (struct pvo_entry *)
900 		    PHYS_TO_DMAP((uintptr_t)moea64_bpvo_pool);
901 
902 	/*
903 	 * Make sure kernel vsid is allocated as well as VSID 0.
904 	 */
905 	#ifndef __powerpc64__
906 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
907 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
908 	moea64_vsid_bitmap[0] |= 1;
909 	#endif
910 
911 	/*
912 	 * Initialize the kernel pmap (which is statically allocated).
913 	 */
914 	#ifdef __powerpc64__
915 	for (i = 0; i < 64; i++) {
916 		pcpup->pc_aim.slb[i].slbv = 0;
917 		pcpup->pc_aim.slb[i].slbe = 0;
918 	}
919 	#else
920 	for (i = 0; i < 16; i++)
921 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
922 	#endif
923 
924 	kernel_pmap->pmap_phys = kernel_pmap;
925 	CPU_FILL(&kernel_pmap->pm_active);
926 	RB_INIT(&kernel_pmap->pmap_pvo);
927 
928 	PMAP_LOCK_INIT(kernel_pmap);
929 
930 	/*
931 	 * Now map in all the other buffers we allocated earlier
932 	 */
933 
934 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
935 }
936 
937 void
938 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
939 {
940 	ihandle_t	mmui;
941 	phandle_t	chosen;
942 	phandle_t	mmu;
943 	ssize_t		sz;
944 	int		i;
945 	vm_offset_t	pa, va;
946 	void		*dpcpu;
947 
948 	/*
949 	 * Set up the Open Firmware pmap and add its mappings if not in real
950 	 * mode.
951 	 */
952 
953 	chosen = OF_finddevice("/chosen");
954 	if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) {
955 		mmu = OF_instance_to_package(mmui);
956 		if (mmu == -1 ||
957 		    (sz = OF_getproplen(mmu, "translations")) == -1)
958 			sz = 0;
959 		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
960 			panic("moea64_bootstrap: too many ofw translations");
961 
962 		if (sz > 0)
963 			moea64_add_ofw_mappings(mmup, mmu, sz);
964 	}
965 
966 	/*
967 	 * Calculate the last available physical address.
968 	 */
969 	Maxmem = 0;
970 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
971 		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
972 
973 	/*
974 	 * Initialize MMU.
975 	 */
976 	MMU_CPU_BOOTSTRAP(mmup,0);
977 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
978 	pmap_bootstrapped++;
979 
980 	/*
981 	 * Set the start and end of kva.
982 	 */
983 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
984 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
985 
986 	/*
987 	 * Map the entire KVA range into the SLB. We must not fault there.
988 	 */
989 	#ifdef __powerpc64__
990 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
991 		moea64_bootstrap_slb_prefault(va, 0);
992 	#endif
993 
994 	/*
995 	 * Remap any early IO mappings (console framebuffer, etc.)
996 	 */
997 	bs_remap_earlyboot();
998 
999 	/*
1000 	 * Figure out how far we can extend virtual_end into segment 16
1001 	 * without running into existing mappings. Segment 16 is guaranteed
1002 	 * to contain neither RAM nor devices (at least on Apple hardware),
1003 	 * but will generally contain some OFW mappings we should not
1004 	 * step on.
1005 	 */
1006 
1007 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
1008 	PMAP_LOCK(kernel_pmap);
1009 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
1010 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
1011 		virtual_end += PAGE_SIZE;
1012 	PMAP_UNLOCK(kernel_pmap);
1013 	#endif
1014 
1015 	/*
1016 	 * Allocate a kernel stack with a guard page for thread0 and map it
1017 	 * into the kernel page map.
1018 	 */
1019 	pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
1020 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1021 	virtual_avail = va + kstack_pages * PAGE_SIZE;
1022 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
1023 	thread0.td_kstack = va;
1024 	thread0.td_kstack_pages = kstack_pages;
1025 	for (i = 0; i < kstack_pages; i++) {
1026 		moea64_kenter(mmup, va, pa);
1027 		pa += PAGE_SIZE;
1028 		va += PAGE_SIZE;
1029 	}
1030 
1031 	/*
1032 	 * Allocate virtual address space for the message buffer.
1033 	 */
1034 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
1035 	msgbufp = (struct msgbuf *)virtual_avail;
1036 	va = virtual_avail;
1037 	virtual_avail += round_page(msgbufsize);
1038 	while (va < virtual_avail) {
1039 		moea64_kenter(mmup, va, pa);
1040 		pa += PAGE_SIZE;
1041 		va += PAGE_SIZE;
1042 	}
1043 
1044 	/*
1045 	 * Allocate virtual address space for the dynamic percpu area.
1046 	 */
1047 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
1048 	dpcpu = (void *)virtual_avail;
1049 	va = virtual_avail;
1050 	virtual_avail += DPCPU_SIZE;
1051 	while (va < virtual_avail) {
1052 		moea64_kenter(mmup, va, pa);
1053 		pa += PAGE_SIZE;
1054 		va += PAGE_SIZE;
1055 	}
1056 	dpcpu_init(dpcpu, curcpu);
1057 
1058 	/*
1059 	 * Allocate some things for page zeroing. We put this directly
1060 	 * in the page table and use MOEA64_PTE_REPLACE to avoid any
1061 	 * of the PVO book-keeping or other parts of the VM system
1062 	 * from even knowing that this hack exists.
1063 	 */
1064 
1065 	if (!hw_direct_map) {
1066 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
1067 		    MTX_DEF);
1068 		for (i = 0; i < 2; i++) {
1069 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
1070 			virtual_end -= PAGE_SIZE;
1071 
1072 			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
1073 
1074 			PMAP_LOCK(kernel_pmap);
1075 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
1076 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
1077 			PMAP_UNLOCK(kernel_pmap);
1078 		}
1079 	}
1080 
1081 	numa_mem_regions(&numa_pregions, &numapregions_sz);
1082 }
1083 
1084 static void
1085 moea64_pmap_init_qpages(void)
1086 {
1087 	struct pcpu *pc;
1088 	int i;
1089 
1090 	if (hw_direct_map)
1091 		return;
1092 
1093 	CPU_FOREACH(i) {
1094 		pc = pcpu_find(i);
1095 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1096 		if (pc->pc_qmap_addr == 0)
1097 			panic("pmap_init_qpages: unable to allocate KVA");
1098 		PMAP_LOCK(kernel_pmap);
1099 		pc->pc_aim.qmap_pvo =
1100 		    moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr);
1101 		PMAP_UNLOCK(kernel_pmap);
1102 		mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF);
1103 	}
1104 }
1105 
1106 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL);
1107 
1108 /*
1109  * Activate a user pmap.  This mostly involves setting some non-CPU
1110  * state.
1111  */
1112 void
1113 moea64_activate(mmu_t mmu, struct thread *td)
1114 {
1115 	pmap_t	pm;
1116 
1117 	pm = &td->td_proc->p_vmspace->vm_pmap;
1118 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1119 
1120 	#ifdef __powerpc64__
1121 	PCPU_SET(aim.userslb, pm->pm_slb);
1122 	__asm __volatile("slbmte %0, %1; isync" ::
1123 	    "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
1124 	#else
1125 	PCPU_SET(curpmap, pm->pmap_phys);
1126 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1127 	#endif
1128 }
1129 
1130 void
1131 moea64_deactivate(mmu_t mmu, struct thread *td)
1132 {
1133 	pmap_t	pm;
1134 
1135 	__asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
1136 
1137 	pm = &td->td_proc->p_vmspace->vm_pmap;
1138 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1139 	#ifdef __powerpc64__
1140 	PCPU_SET(aim.userslb, NULL);
1141 	#else
1142 	PCPU_SET(curpmap, NULL);
1143 	#endif
1144 }
1145 
1146 void
1147 moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1148 {
1149 	struct	pvo_entry key, *pvo;
1150 	vm_page_t m;
1151 	int64_t	refchg;
1152 
1153 	key.pvo_vaddr = sva;
1154 	PMAP_LOCK(pm);
1155 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1156 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1157 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1158 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1159 			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1160 			    pvo);
1161 		pvo->pvo_vaddr &= ~PVO_WIRED;
1162 		refchg = MOEA64_PTE_REPLACE(mmu, pvo, 0 /* No invalidation */);
1163 		if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1164 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1165 			if (refchg < 0)
1166 				refchg = LPTE_CHG;
1167 			m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1168 
1169 			refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
1170 			if (refchg & LPTE_CHG)
1171 				vm_page_dirty(m);
1172 			if (refchg & LPTE_REF)
1173 				vm_page_aflag_set(m, PGA_REFERENCED);
1174 		}
1175 		pm->pm_stats.wired_count--;
1176 	}
1177 	PMAP_UNLOCK(pm);
1178 }
1179 
1180 /*
1181  * This goes through and sets the physical address of our
1182  * special scratch PTE to the PA we want to zero or copy. Because
1183  * of locking issues (this can get called in pvo_enter() by
1184  * the UMA allocator), we can't use most other utility functions here
1185  */
1186 
1187 static __inline
1188 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_paddr_t pa)
1189 {
1190 	struct pvo_entry *pvo;
1191 
1192 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1193 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1194 
1195 	pvo = moea64_scratchpage_pvo[which];
1196 	PMAP_LOCK(pvo->pvo_pmap);
1197 	pvo->pvo_pte.pa =
1198 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1199 	MOEA64_PTE_REPLACE(mmup, pvo, MOEA64_PTE_INVALIDATE);
1200 	PMAP_UNLOCK(pvo->pvo_pmap);
1201 	isync();
1202 }
1203 
1204 void
1205 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1206 {
1207 	vm_offset_t	dst;
1208 	vm_offset_t	src;
1209 
1210 	dst = VM_PAGE_TO_PHYS(mdst);
1211 	src = VM_PAGE_TO_PHYS(msrc);
1212 
1213 	if (hw_direct_map) {
1214 		bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst),
1215 		    PAGE_SIZE);
1216 	} else {
1217 		mtx_lock(&moea64_scratchpage_mtx);
1218 
1219 		moea64_set_scratchpage_pa(mmu, 0, src);
1220 		moea64_set_scratchpage_pa(mmu, 1, dst);
1221 
1222 		bcopy((void *)moea64_scratchpage_va[0],
1223 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1224 
1225 		mtx_unlock(&moea64_scratchpage_mtx);
1226 	}
1227 }
1228 
1229 static inline void
1230 moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1231     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1232 {
1233 	void *a_cp, *b_cp;
1234 	vm_offset_t a_pg_offset, b_pg_offset;
1235 	int cnt;
1236 
1237 	while (xfersize > 0) {
1238 		a_pg_offset = a_offset & PAGE_MASK;
1239 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1240 		a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1241 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
1242 		    a_pg_offset;
1243 		b_pg_offset = b_offset & PAGE_MASK;
1244 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1245 		b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1246 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
1247 		    b_pg_offset;
1248 		bcopy(a_cp, b_cp, cnt);
1249 		a_offset += cnt;
1250 		b_offset += cnt;
1251 		xfersize -= cnt;
1252 	}
1253 }
1254 
1255 static inline void
1256 moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1257     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1258 {
1259 	void *a_cp, *b_cp;
1260 	vm_offset_t a_pg_offset, b_pg_offset;
1261 	int cnt;
1262 
1263 	mtx_lock(&moea64_scratchpage_mtx);
1264 	while (xfersize > 0) {
1265 		a_pg_offset = a_offset & PAGE_MASK;
1266 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1267 		moea64_set_scratchpage_pa(mmu, 0,
1268 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1269 		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1270 		b_pg_offset = b_offset & PAGE_MASK;
1271 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1272 		moea64_set_scratchpage_pa(mmu, 1,
1273 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1274 		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1275 		bcopy(a_cp, b_cp, cnt);
1276 		a_offset += cnt;
1277 		b_offset += cnt;
1278 		xfersize -= cnt;
1279 	}
1280 	mtx_unlock(&moea64_scratchpage_mtx);
1281 }
1282 
1283 void
1284 moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1285     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1286 {
1287 
1288 	if (hw_direct_map) {
1289 		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1290 		    xfersize);
1291 	} else {
1292 		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1293 		    xfersize);
1294 	}
1295 }
1296 
1297 void
1298 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1299 {
1300 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1301 
1302 	if (size + off > PAGE_SIZE)
1303 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1304 
1305 	if (hw_direct_map) {
1306 		bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size);
1307 	} else {
1308 		mtx_lock(&moea64_scratchpage_mtx);
1309 		moea64_set_scratchpage_pa(mmu, 0, pa);
1310 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1311 		mtx_unlock(&moea64_scratchpage_mtx);
1312 	}
1313 }
1314 
1315 /*
1316  * Zero a page of physical memory by temporarily mapping it
1317  */
1318 void
1319 moea64_zero_page(mmu_t mmu, vm_page_t m)
1320 {
1321 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1322 	vm_offset_t va, off;
1323 
1324 	if (!hw_direct_map) {
1325 		mtx_lock(&moea64_scratchpage_mtx);
1326 
1327 		moea64_set_scratchpage_pa(mmu, 0, pa);
1328 		va = moea64_scratchpage_va[0];
1329 	} else {
1330 		va = PHYS_TO_DMAP(pa);
1331 	}
1332 
1333 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1334 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1335 
1336 	if (!hw_direct_map)
1337 		mtx_unlock(&moea64_scratchpage_mtx);
1338 }
1339 
1340 vm_offset_t
1341 moea64_quick_enter_page(mmu_t mmu, vm_page_t m)
1342 {
1343 	struct pvo_entry *pvo;
1344 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1345 
1346 	if (hw_direct_map)
1347 		return (PHYS_TO_DMAP(pa));
1348 
1349 	/*
1350  	 * MOEA64_PTE_REPLACE does some locking, so we can't just grab
1351 	 * a critical section and access the PCPU data like on i386.
1352 	 * Instead, pin the thread and grab the PCPU lock to prevent
1353 	 * a preempting thread from using the same PCPU data.
1354 	 */
1355 	sched_pin();
1356 
1357 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED);
1358 	pvo = PCPU_GET(aim.qmap_pvo);
1359 
1360 	mtx_lock(PCPU_PTR(aim.qmap_lock));
1361 	pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) |
1362 	    (uint64_t)pa;
1363 	MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_INVALIDATE);
1364 	isync();
1365 
1366 	return (PCPU_GET(qmap_addr));
1367 }
1368 
1369 void
1370 moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr)
1371 {
1372 	if (hw_direct_map)
1373 		return;
1374 
1375 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED);
1376 	KASSERT(PCPU_GET(qmap_addr) == addr,
1377 	    ("moea64_quick_remove_page: invalid address"));
1378 	mtx_unlock(PCPU_PTR(aim.qmap_lock));
1379 	sched_unpin();
1380 }
1381 
1382 /*
1383  * Map the given physical page at the specified virtual address in the
1384  * target pmap with the protection requested.  If specified the page
1385  * will be wired down.
1386  */
1387 
1388 int
1389 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1390     vm_prot_t prot, u_int flags, int8_t psind)
1391 {
1392 	struct		pvo_entry *pvo, *oldpvo;
1393 	struct		pvo_head *pvo_head;
1394 	uint64_t	pte_lo;
1395 	int		error;
1396 
1397 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1398 		VM_OBJECT_ASSERT_LOCKED(m->object);
1399 
1400 	pvo = alloc_pvo_entry(0);
1401 	pvo->pvo_pmap = NULL; /* to be filled in later */
1402 	pvo->pvo_pte.prot = prot;
1403 
1404 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1405 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | pte_lo;
1406 
1407 	if ((flags & PMAP_ENTER_WIRED) != 0)
1408 		pvo->pvo_vaddr |= PVO_WIRED;
1409 
1410 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1411 		pvo_head = NULL;
1412 	} else {
1413 		pvo_head = &m->md.mdpg_pvoh;
1414 		pvo->pvo_vaddr |= PVO_MANAGED;
1415 	}
1416 
1417 	for (;;) {
1418 		PV_PAGE_LOCK(m);
1419 		PMAP_LOCK(pmap);
1420 		if (pvo->pvo_pmap == NULL)
1421 			init_pvo_entry(pvo, pmap, va);
1422 		if (prot & VM_PROT_WRITE)
1423 			if (pmap_bootstrapped &&
1424 			    (m->oflags & VPO_UNMANAGED) == 0)
1425 				vm_page_aflag_set(m, PGA_WRITEABLE);
1426 
1427 		error = moea64_pvo_enter(mmu, pvo, pvo_head, &oldpvo);
1428 		if (error == EEXIST) {
1429 			if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
1430 			    oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
1431 			    oldpvo->pvo_pte.prot == prot) {
1432 				/* Identical mapping already exists */
1433 				error = 0;
1434 
1435 				/* If not in page table, reinsert it */
1436 				if (MOEA64_PTE_SYNCH(mmu, oldpvo) < 0) {
1437 					moea64_pte_overflow--;
1438 					MOEA64_PTE_INSERT(mmu, oldpvo);
1439 				}
1440 
1441 				/* Then just clean up and go home */
1442 				PV_PAGE_UNLOCK(m);
1443 				PMAP_UNLOCK(pmap);
1444 				free_pvo_entry(pvo);
1445 				break;
1446 			}
1447 
1448 			/* Otherwise, need to kill it first */
1449 			KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
1450 			    "mapping does not match new mapping"));
1451 			moea64_pvo_remove_from_pmap(mmu, oldpvo);
1452 			error = moea64_pvo_enter(mmu, pvo, pvo_head, NULL);
1453 		}
1454 		PV_PAGE_UNLOCK(m);
1455 		PMAP_UNLOCK(pmap);
1456 
1457 		/* Free any dead pages */
1458 		if (oldpvo != NULL) {
1459 			moea64_pvo_remove_from_page(mmu, oldpvo);
1460 			free_pvo_entry(oldpvo);
1461 		}
1462 
1463 		if (error != ENOMEM)
1464 			break;
1465 		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1466 			return (KERN_RESOURCE_SHORTAGE);
1467 		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1468 		vm_wait(NULL);
1469 	}
1470 
1471 	/*
1472 	 * Flush the page from the instruction cache if this page is
1473 	 * mapped executable and cacheable.
1474 	 */
1475 	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1476 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1477 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1478 		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1479 	}
1480 	return (KERN_SUCCESS);
1481 }
1482 
1483 static void
1484 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1485     vm_size_t sz)
1486 {
1487 
1488 	/*
1489 	 * This is much trickier than on older systems because
1490 	 * we can't sync the icache on physical addresses directly
1491 	 * without a direct map. Instead we check a couple of cases
1492 	 * where the memory is already mapped in and, failing that,
1493 	 * use the same trick we use for page zeroing to create
1494 	 * a temporary mapping for this physical address.
1495 	 */
1496 
1497 	if (!pmap_bootstrapped) {
1498 		/*
1499 		 * If PMAP is not bootstrapped, we are likely to be
1500 		 * in real mode.
1501 		 */
1502 		__syncicache((void *)(uintptr_t)pa, sz);
1503 	} else if (pmap == kernel_pmap) {
1504 		__syncicache((void *)va, sz);
1505 	} else if (hw_direct_map) {
1506 		__syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz);
1507 	} else {
1508 		/* Use the scratch page to set up a temp mapping */
1509 
1510 		mtx_lock(&moea64_scratchpage_mtx);
1511 
1512 		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1513 		__syncicache((void *)(moea64_scratchpage_va[1] +
1514 		    (va & ADDR_POFF)), sz);
1515 
1516 		mtx_unlock(&moea64_scratchpage_mtx);
1517 	}
1518 }
1519 
1520 /*
1521  * Maps a sequence of resident pages belonging to the same object.
1522  * The sequence begins with the given page m_start.  This page is
1523  * mapped at the given virtual address start.  Each subsequent page is
1524  * mapped at a virtual address that is offset from start by the same
1525  * amount as the page is offset from m_start within the object.  The
1526  * last page in the sequence is the page with the largest offset from
1527  * m_start that can be mapped at a virtual address less than the given
1528  * virtual address end.  Not every virtual page between start and end
1529  * is mapped; only those for which a resident page exists with the
1530  * corresponding offset from m_start are mapped.
1531  */
1532 void
1533 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1534     vm_page_t m_start, vm_prot_t prot)
1535 {
1536 	vm_page_t m;
1537 	vm_pindex_t diff, psize;
1538 
1539 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1540 
1541 	psize = atop(end - start);
1542 	m = m_start;
1543 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1544 		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1545 		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0);
1546 		m = TAILQ_NEXT(m, listq);
1547 	}
1548 }
1549 
1550 void
1551 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1552     vm_prot_t prot)
1553 {
1554 
1555 	moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1556 	    PMAP_ENTER_NOSLEEP, 0);
1557 }
1558 
1559 vm_paddr_t
1560 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1561 {
1562 	struct	pvo_entry *pvo;
1563 	vm_paddr_t pa;
1564 
1565 	PMAP_LOCK(pm);
1566 	pvo = moea64_pvo_find_va(pm, va);
1567 	if (pvo == NULL)
1568 		pa = 0;
1569 	else
1570 		pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1571 	PMAP_UNLOCK(pm);
1572 
1573 	return (pa);
1574 }
1575 
1576 /*
1577  * Atomically extract and hold the physical page with the given
1578  * pmap and virtual address pair if that mapping permits the given
1579  * protection.
1580  */
1581 vm_page_t
1582 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1583 {
1584 	struct	pvo_entry *pvo;
1585 	vm_page_t m;
1586         vm_paddr_t pa;
1587 
1588 	m = NULL;
1589 	pa = 0;
1590 	PMAP_LOCK(pmap);
1591 retry:
1592 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1593 	if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
1594 		if (vm_page_pa_tryrelock(pmap,
1595 		    pvo->pvo_pte.pa & LPTE_RPGN, &pa))
1596 			goto retry;
1597 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1598 		vm_page_wire(m);
1599 	}
1600 	PA_UNLOCK_COND(pa);
1601 	PMAP_UNLOCK(pmap);
1602 	return (m);
1603 }
1604 
1605 static mmu_t installed_mmu;
1606 
1607 static void *
1608 moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
1609     uint8_t *flags, int wait)
1610 {
1611 	struct pvo_entry *pvo;
1612         vm_offset_t va;
1613         vm_page_t m;
1614         int needed_lock;
1615 
1616 	/*
1617 	 * This entire routine is a horrible hack to avoid bothering kmem
1618 	 * for new KVA addresses. Because this can get called from inside
1619 	 * kmem allocation routines, calling kmem for a new address here
1620 	 * can lead to multiply locking non-recursive mutexes.
1621 	 */
1622 
1623 	*flags = UMA_SLAB_PRIV;
1624 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1625 
1626 	m = vm_page_alloc_domain(NULL, 0, domain,
1627 	    malloc2vm_flags(wait) | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
1628 	if (m == NULL)
1629 		return (NULL);
1630 
1631 	va = VM_PAGE_TO_PHYS(m);
1632 
1633 	pvo = alloc_pvo_entry(1 /* bootstrap */);
1634 
1635 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
1636 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
1637 
1638 	if (needed_lock)
1639 		PMAP_LOCK(kernel_pmap);
1640 
1641 	init_pvo_entry(pvo, kernel_pmap, va);
1642 	pvo->pvo_vaddr |= PVO_WIRED;
1643 
1644 	moea64_pvo_enter(installed_mmu, pvo, NULL, NULL);
1645 
1646 	if (needed_lock)
1647 		PMAP_UNLOCK(kernel_pmap);
1648 
1649 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1650                 bzero((void *)va, PAGE_SIZE);
1651 
1652 	return (void *)va;
1653 }
1654 
1655 extern int elf32_nxstack;
1656 
1657 void
1658 moea64_init(mmu_t mmu)
1659 {
1660 
1661 	CTR0(KTR_PMAP, "moea64_init");
1662 
1663 	moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1664 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1665 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1666 
1667 	if (!hw_direct_map) {
1668 		installed_mmu = mmu;
1669 		uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc);
1670 	}
1671 
1672 #ifdef COMPAT_FREEBSD32
1673 	elf32_nxstack = 1;
1674 #endif
1675 
1676 	moea64_initialized = TRUE;
1677 }
1678 
1679 boolean_t
1680 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1681 {
1682 
1683 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1684 	    ("moea64_is_referenced: page %p is not managed", m));
1685 
1686 	return (moea64_query_bit(mmu, m, LPTE_REF));
1687 }
1688 
1689 boolean_t
1690 moea64_is_modified(mmu_t mmu, vm_page_t m)
1691 {
1692 
1693 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1694 	    ("moea64_is_modified: page %p is not managed", m));
1695 
1696 	/*
1697 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1698 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1699 	 * is clear, no PTEs can have LPTE_CHG set.
1700 	 */
1701 	VM_OBJECT_ASSERT_LOCKED(m->object);
1702 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1703 		return (FALSE);
1704 	return (moea64_query_bit(mmu, m, LPTE_CHG));
1705 }
1706 
1707 boolean_t
1708 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1709 {
1710 	struct pvo_entry *pvo;
1711 	boolean_t rv = TRUE;
1712 
1713 	PMAP_LOCK(pmap);
1714 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1715 	if (pvo != NULL)
1716 		rv = FALSE;
1717 	PMAP_UNLOCK(pmap);
1718 	return (rv);
1719 }
1720 
1721 void
1722 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1723 {
1724 
1725 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1726 	    ("moea64_clear_modify: page %p is not managed", m));
1727 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1728 	KASSERT(!vm_page_xbusied(m),
1729 	    ("moea64_clear_modify: page %p is exclusive busied", m));
1730 
1731 	/*
1732 	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1733 	 * set.  If the object containing the page is locked and the page is
1734 	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1735 	 */
1736 	if ((m->aflags & PGA_WRITEABLE) == 0)
1737 		return;
1738 	moea64_clear_bit(mmu, m, LPTE_CHG);
1739 }
1740 
1741 /*
1742  * Clear the write and modified bits in each of the given page's mappings.
1743  */
1744 void
1745 moea64_remove_write(mmu_t mmu, vm_page_t m)
1746 {
1747 	struct	pvo_entry *pvo;
1748 	int64_t	refchg, ret;
1749 	pmap_t	pmap;
1750 
1751 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1752 	    ("moea64_remove_write: page %p is not managed", m));
1753 
1754 	/*
1755 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1756 	 * set by another thread while the object is locked.  Thus,
1757 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1758 	 */
1759 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1760 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1761 		return;
1762 	powerpc_sync();
1763 	PV_PAGE_LOCK(m);
1764 	refchg = 0;
1765 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1766 		pmap = pvo->pvo_pmap;
1767 		PMAP_LOCK(pmap);
1768 		if (!(pvo->pvo_vaddr & PVO_DEAD) &&
1769 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1770 			pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
1771 			ret = MOEA64_PTE_REPLACE(mmu, pvo,
1772 			    MOEA64_PTE_PROT_UPDATE);
1773 			if (ret < 0)
1774 				ret = LPTE_CHG;
1775 			refchg |= ret;
1776 			if (pvo->pvo_pmap == kernel_pmap)
1777 				isync();
1778 		}
1779 		PMAP_UNLOCK(pmap);
1780 	}
1781 	if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
1782 		vm_page_dirty(m);
1783 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1784 	PV_PAGE_UNLOCK(m);
1785 }
1786 
1787 /*
1788  *	moea64_ts_referenced:
1789  *
1790  *	Return a count of reference bits for a page, clearing those bits.
1791  *	It is not necessary for every reference bit to be cleared, but it
1792  *	is necessary that 0 only be returned when there are truly no
1793  *	reference bits set.
1794  *
1795  *	XXX: The exact number of bits to check and clear is a matter that
1796  *	should be tested and standardized at some point in the future for
1797  *	optimal aging of shared pages.
1798  */
1799 int
1800 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1801 {
1802 
1803 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1804 	    ("moea64_ts_referenced: page %p is not managed", m));
1805 	return (moea64_clear_bit(mmu, m, LPTE_REF));
1806 }
1807 
1808 /*
1809  * Modify the WIMG settings of all mappings for a page.
1810  */
1811 void
1812 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1813 {
1814 	struct	pvo_entry *pvo;
1815 	int64_t	refchg;
1816 	pmap_t	pmap;
1817 	uint64_t lo;
1818 
1819 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1820 		m->md.mdpg_cache_attrs = ma;
1821 		return;
1822 	}
1823 
1824 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1825 
1826 	PV_PAGE_LOCK(m);
1827 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1828 		pmap = pvo->pvo_pmap;
1829 		PMAP_LOCK(pmap);
1830 		if (!(pvo->pvo_vaddr & PVO_DEAD)) {
1831 			pvo->pvo_pte.pa &= ~LPTE_WIMG;
1832 			pvo->pvo_pte.pa |= lo;
1833 			refchg = MOEA64_PTE_REPLACE(mmu, pvo,
1834 			    MOEA64_PTE_INVALIDATE);
1835 			if (refchg < 0)
1836 				refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
1837 				    LPTE_CHG : 0;
1838 			if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1839 			    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1840 				refchg |=
1841 				    atomic_readandclear_32(&m->md.mdpg_attrs);
1842 				if (refchg & LPTE_CHG)
1843 					vm_page_dirty(m);
1844 				if (refchg & LPTE_REF)
1845 					vm_page_aflag_set(m, PGA_REFERENCED);
1846 			}
1847 			if (pvo->pvo_pmap == kernel_pmap)
1848 				isync();
1849 		}
1850 		PMAP_UNLOCK(pmap);
1851 	}
1852 	m->md.mdpg_cache_attrs = ma;
1853 	PV_PAGE_UNLOCK(m);
1854 }
1855 
1856 /*
1857  * Map a wired page into kernel virtual address space.
1858  */
1859 void
1860 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1861 {
1862 	int		error;
1863 	struct pvo_entry *pvo, *oldpvo;
1864 
1865 	pvo = alloc_pvo_entry(0);
1866 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
1867 	pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
1868 	pvo->pvo_vaddr |= PVO_WIRED;
1869 
1870 	PMAP_LOCK(kernel_pmap);
1871 	oldpvo = moea64_pvo_find_va(kernel_pmap, va);
1872 	if (oldpvo != NULL)
1873 		moea64_pvo_remove_from_pmap(mmu, oldpvo);
1874 	init_pvo_entry(pvo, kernel_pmap, va);
1875 	error = moea64_pvo_enter(mmu, pvo, NULL, NULL);
1876 	PMAP_UNLOCK(kernel_pmap);
1877 
1878 	/* Free any dead pages */
1879 	if (oldpvo != NULL) {
1880 		moea64_pvo_remove_from_page(mmu, oldpvo);
1881 		free_pvo_entry(oldpvo);
1882 	}
1883 
1884 	if (error != 0 && error != ENOENT)
1885 		panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va,
1886 		    (uintmax_t)pa, error);
1887 }
1888 
1889 void
1890 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1891 {
1892 
1893 	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1894 }
1895 
1896 /*
1897  * Extract the physical page address associated with the given kernel virtual
1898  * address.
1899  */
1900 vm_paddr_t
1901 moea64_kextract(mmu_t mmu, vm_offset_t va)
1902 {
1903 	struct		pvo_entry *pvo;
1904 	vm_paddr_t pa;
1905 
1906 	/*
1907 	 * Shortcut the direct-mapped case when applicable.  We never put
1908 	 * anything but 1:1 (or 62-bit aliased) mappings below
1909 	 * VM_MIN_KERNEL_ADDRESS.
1910 	 */
1911 	if (va < VM_MIN_KERNEL_ADDRESS)
1912 		return (va & ~DMAP_BASE_ADDRESS);
1913 
1914 	PMAP_LOCK(kernel_pmap);
1915 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1916 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1917 	    va));
1918 	pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1919 	PMAP_UNLOCK(kernel_pmap);
1920 	return (pa);
1921 }
1922 
1923 /*
1924  * Remove a wired page from kernel virtual address space.
1925  */
1926 void
1927 moea64_kremove(mmu_t mmu, vm_offset_t va)
1928 {
1929 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1930 }
1931 
1932 /*
1933  * Provide a kernel pointer corresponding to a given userland pointer.
1934  * The returned pointer is valid until the next time this function is
1935  * called in this thread. This is used internally in copyin/copyout.
1936  */
1937 static int
1938 moea64_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr,
1939     void **kaddr, size_t ulen, size_t *klen)
1940 {
1941 	size_t l;
1942 #ifdef __powerpc64__
1943 	struct slb *slb;
1944 #endif
1945 	register_t slbv;
1946 
1947 	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
1948 	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
1949 	if (l > ulen)
1950 		l = ulen;
1951 	if (klen)
1952 		*klen = l;
1953 	else if (l != ulen)
1954 		return (EFAULT);
1955 
1956 #ifdef __powerpc64__
1957 	/* Try lockless look-up first */
1958 	slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr);
1959 
1960 	if (slb == NULL) {
1961 		/* If it isn't there, we need to pre-fault the VSID */
1962 		PMAP_LOCK(pm);
1963 		slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT;
1964 		PMAP_UNLOCK(pm);
1965 	} else {
1966 		slbv = slb->slbv;
1967 	}
1968 
1969 	/* Mark segment no-execute */
1970 	slbv |= SLBV_N;
1971 #else
1972 	slbv = va_to_vsid(pm, (vm_offset_t)uaddr);
1973 
1974 	/* Mark segment no-execute */
1975 	slbv |= SR_N;
1976 #endif
1977 
1978 	/* If we have already set this VSID, we can just return */
1979 	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv)
1980 		return (0);
1981 
1982 	__asm __volatile("isync");
1983 	curthread->td_pcb->pcb_cpu.aim.usr_segm =
1984 	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
1985 	curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv;
1986 #ifdef __powerpc64__
1987 	__asm __volatile ("slbie %0; slbmte %1, %2; isync" ::
1988 	    "r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE));
1989 #else
1990 	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv));
1991 #endif
1992 
1993 	return (0);
1994 }
1995 
1996 /*
1997  * Figure out where a given kernel pointer (usually in a fault) points
1998  * to from the VM's perspective, potentially remapping into userland's
1999  * address space.
2000  */
2001 static int
2002 moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, int *is_user,
2003     vm_offset_t *decoded_addr)
2004 {
2005 	vm_offset_t user_sr;
2006 
2007 	if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
2008 		user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
2009 		addr &= ADDR_PIDX | ADDR_POFF;
2010 		addr |= user_sr << ADDR_SR_SHFT;
2011 		*decoded_addr = addr;
2012 		*is_user = 1;
2013 	} else {
2014 		*decoded_addr = addr;
2015 		*is_user = 0;
2016 	}
2017 
2018 	return (0);
2019 }
2020 
2021 /*
2022  * Map a range of physical addresses into kernel virtual address space.
2023  *
2024  * The value passed in *virt is a suggested virtual address for the mapping.
2025  * Architectures which can support a direct-mapped physical to virtual region
2026  * can return the appropriate address within that region, leaving '*virt'
2027  * unchanged.  Other architectures should map the pages starting at '*virt' and
2028  * update '*virt' with the first usable address after the mapped region.
2029  */
2030 vm_offset_t
2031 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
2032     vm_paddr_t pa_end, int prot)
2033 {
2034 	vm_offset_t	sva, va;
2035 
2036 	if (hw_direct_map) {
2037 		/*
2038 		 * Check if every page in the region is covered by the direct
2039 		 * map. The direct map covers all of physical memory. Use
2040 		 * moea64_calc_wimg() as a shortcut to see if the page is in
2041 		 * physical memory as a way to see if the direct map covers it.
2042 		 */
2043 		for (va = pa_start; va < pa_end; va += PAGE_SIZE)
2044 			if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
2045 				break;
2046 		if (va == pa_end)
2047 			return (PHYS_TO_DMAP(pa_start));
2048 	}
2049 	sva = *virt;
2050 	va = sva;
2051 	/* XXX respect prot argument */
2052 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
2053 		moea64_kenter(mmu, va, pa_start);
2054 	*virt = va;
2055 
2056 	return (sva);
2057 }
2058 
2059 /*
2060  * Returns true if the pmap's pv is one of the first
2061  * 16 pvs linked to from this page.  This count may
2062  * be changed upwards or downwards in the future; it
2063  * is only necessary that true be returned for a small
2064  * subset of pmaps for proper page aging.
2065  */
2066 boolean_t
2067 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2068 {
2069         int loops;
2070 	struct pvo_entry *pvo;
2071 	boolean_t rv;
2072 
2073 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2074 	    ("moea64_page_exists_quick: page %p is not managed", m));
2075 	loops = 0;
2076 	rv = FALSE;
2077 	PV_PAGE_LOCK(m);
2078 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2079 		if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
2080 			rv = TRUE;
2081 			break;
2082 		}
2083 		if (++loops >= 16)
2084 			break;
2085 	}
2086 	PV_PAGE_UNLOCK(m);
2087 	return (rv);
2088 }
2089 
2090 void
2091 moea64_page_init(mmu_t mmu __unused, vm_page_t m)
2092 {
2093 
2094 	m->md.mdpg_attrs = 0;
2095 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
2096 	LIST_INIT(&m->md.mdpg_pvoh);
2097 }
2098 
2099 /*
2100  * Return the number of managed mappings to the given physical page
2101  * that are wired.
2102  */
2103 int
2104 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
2105 {
2106 	struct pvo_entry *pvo;
2107 	int count;
2108 
2109 	count = 0;
2110 	if ((m->oflags & VPO_UNMANAGED) != 0)
2111 		return (count);
2112 	PV_PAGE_LOCK(m);
2113 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
2114 		if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
2115 			count++;
2116 	PV_PAGE_UNLOCK(m);
2117 	return (count);
2118 }
2119 
2120 static uintptr_t	moea64_vsidcontext;
2121 
2122 uintptr_t
2123 moea64_get_unique_vsid(void) {
2124 	u_int entropy;
2125 	register_t hash;
2126 	uint32_t mask;
2127 	int i;
2128 
2129 	entropy = 0;
2130 	__asm __volatile("mftb %0" : "=r"(entropy));
2131 
2132 	mtx_lock(&moea64_slb_mutex);
2133 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
2134 		u_int	n;
2135 
2136 		/*
2137 		 * Create a new value by mutiplying by a prime and adding in
2138 		 * entropy from the timebase register.  This is to make the
2139 		 * VSID more random so that the PT hash function collides
2140 		 * less often.  (Note that the prime casues gcc to do shifts
2141 		 * instead of a multiply.)
2142 		 */
2143 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
2144 		hash = moea64_vsidcontext & (NVSIDS - 1);
2145 		if (hash == 0)		/* 0 is special, avoid it */
2146 			continue;
2147 		n = hash >> 5;
2148 		mask = 1 << (hash & (VSID_NBPW - 1));
2149 		hash = (moea64_vsidcontext & VSID_HASHMASK);
2150 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
2151 			/* anything free in this bucket? */
2152 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
2153 				entropy = (moea64_vsidcontext >> 20);
2154 				continue;
2155 			}
2156 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
2157 			mask = 1 << i;
2158 			hash &= rounddown2(VSID_HASHMASK, VSID_NBPW);
2159 			hash |= i;
2160 		}
2161 		if (hash == VSID_VRMA)	/* also special, avoid this too */
2162 			continue;
2163 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
2164 		    ("Allocating in-use VSID %#zx\n", hash));
2165 		moea64_vsid_bitmap[n] |= mask;
2166 		mtx_unlock(&moea64_slb_mutex);
2167 		return (hash);
2168 	}
2169 
2170 	mtx_unlock(&moea64_slb_mutex);
2171 	panic("%s: out of segments",__func__);
2172 }
2173 
2174 #ifdef __powerpc64__
2175 void
2176 moea64_pinit(mmu_t mmu, pmap_t pmap)
2177 {
2178 
2179 	RB_INIT(&pmap->pmap_pvo);
2180 
2181 	pmap->pm_slb_tree_root = slb_alloc_tree();
2182 	pmap->pm_slb = slb_alloc_user_cache();
2183 	pmap->pm_slb_len = 0;
2184 }
2185 #else
2186 void
2187 moea64_pinit(mmu_t mmu, pmap_t pmap)
2188 {
2189 	int	i;
2190 	uint32_t hash;
2191 
2192 	RB_INIT(&pmap->pmap_pvo);
2193 
2194 	if (pmap_bootstrapped)
2195 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
2196 		    (vm_offset_t)pmap);
2197 	else
2198 		pmap->pmap_phys = pmap;
2199 
2200 	/*
2201 	 * Allocate some segment registers for this pmap.
2202 	 */
2203 	hash = moea64_get_unique_vsid();
2204 
2205 	for (i = 0; i < 16; i++)
2206 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
2207 
2208 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
2209 }
2210 #endif
2211 
2212 /*
2213  * Initialize the pmap associated with process 0.
2214  */
2215 void
2216 moea64_pinit0(mmu_t mmu, pmap_t pm)
2217 {
2218 
2219 	PMAP_LOCK_INIT(pm);
2220 	moea64_pinit(mmu, pm);
2221 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2222 }
2223 
2224 /*
2225  * Set the physical protection on the specified range of this map as requested.
2226  */
2227 static void
2228 moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
2229 {
2230 	struct vm_page *pg;
2231 	vm_prot_t oldprot;
2232 	int32_t refchg;
2233 
2234 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2235 
2236 	/*
2237 	 * Change the protection of the page.
2238 	 */
2239 	oldprot = pvo->pvo_pte.prot;
2240 	pvo->pvo_pte.prot = prot;
2241 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2242 
2243 	/*
2244 	 * If the PVO is in the page table, update mapping
2245 	 */
2246 	refchg = MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_PROT_UPDATE);
2247 	if (refchg < 0)
2248 		refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
2249 
2250 	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
2251 	    (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2252 		if ((pg->oflags & VPO_UNMANAGED) == 0)
2253 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
2254 		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
2255 		    pvo->pvo_pte.pa & LPTE_RPGN, PAGE_SIZE);
2256 	}
2257 
2258 	/*
2259 	 * Update vm about the REF/CHG bits if the page is managed and we have
2260 	 * removed write access.
2261 	 */
2262 	if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
2263 	    (oldprot & VM_PROT_WRITE)) {
2264 		refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2265 		if (refchg & LPTE_CHG)
2266 			vm_page_dirty(pg);
2267 		if (refchg & LPTE_REF)
2268 			vm_page_aflag_set(pg, PGA_REFERENCED);
2269 	}
2270 }
2271 
2272 void
2273 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2274     vm_prot_t prot)
2275 {
2276 	struct	pvo_entry *pvo, *tpvo, key;
2277 
2278 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2279 	    sva, eva, prot);
2280 
2281 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2282 	    ("moea64_protect: non current pmap"));
2283 
2284 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2285 		moea64_remove(mmu, pm, sva, eva);
2286 		return;
2287 	}
2288 
2289 	PMAP_LOCK(pm);
2290 	key.pvo_vaddr = sva;
2291 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2292 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2293 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2294 		moea64_pvo_protect(mmu, pm, pvo, prot);
2295 	}
2296 	PMAP_UNLOCK(pm);
2297 }
2298 
2299 /*
2300  * Map a list of wired pages into kernel virtual address space.  This is
2301  * intended for temporary mappings which do not need page modification or
2302  * references recorded.  Existing mappings in the region are overwritten.
2303  */
2304 void
2305 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2306 {
2307 	while (count-- > 0) {
2308 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2309 		va += PAGE_SIZE;
2310 		m++;
2311 	}
2312 }
2313 
2314 /*
2315  * Remove page mappings from kernel virtual address space.  Intended for
2316  * temporary mappings entered by moea64_qenter.
2317  */
2318 void
2319 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2320 {
2321 	while (count-- > 0) {
2322 		moea64_kremove(mmu, va);
2323 		va += PAGE_SIZE;
2324 	}
2325 }
2326 
2327 void
2328 moea64_release_vsid(uint64_t vsid)
2329 {
2330 	int idx, mask;
2331 
2332 	mtx_lock(&moea64_slb_mutex);
2333 	idx = vsid & (NVSIDS-1);
2334 	mask = 1 << (idx % VSID_NBPW);
2335 	idx /= VSID_NBPW;
2336 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2337 	    ("Freeing unallocated VSID %#jx", vsid));
2338 	moea64_vsid_bitmap[idx] &= ~mask;
2339 	mtx_unlock(&moea64_slb_mutex);
2340 }
2341 
2342 
2343 void
2344 moea64_release(mmu_t mmu, pmap_t pmap)
2345 {
2346 
2347 	/*
2348 	 * Free segment registers' VSIDs
2349 	 */
2350     #ifdef __powerpc64__
2351 	slb_free_tree(pmap);
2352 	slb_free_user_cache(pmap->pm_slb);
2353     #else
2354 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2355 
2356 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2357     #endif
2358 }
2359 
2360 /*
2361  * Remove all pages mapped by the specified pmap
2362  */
2363 void
2364 moea64_remove_pages(mmu_t mmu, pmap_t pm)
2365 {
2366 	struct pvo_entry *pvo, *tpvo;
2367 	struct pvo_tree tofree;
2368 
2369 	RB_INIT(&tofree);
2370 
2371 	PMAP_LOCK(pm);
2372 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2373 		if (pvo->pvo_vaddr & PVO_WIRED)
2374 			continue;
2375 
2376 		/*
2377 		 * For locking reasons, remove this from the page table and
2378 		 * pmap, but save delinking from the vm_page for a second
2379 		 * pass
2380 		 */
2381 		moea64_pvo_remove_from_pmap(mmu, pvo);
2382 		RB_INSERT(pvo_tree, &tofree, pvo);
2383 	}
2384 	PMAP_UNLOCK(pm);
2385 
2386 	RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) {
2387 		moea64_pvo_remove_from_page(mmu, pvo);
2388 		RB_REMOVE(pvo_tree, &tofree, pvo);
2389 		free_pvo_entry(pvo);
2390 	}
2391 }
2392 
2393 /*
2394  * Remove the given range of addresses from the specified map.
2395  */
2396 void
2397 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2398 {
2399 	struct  pvo_entry *pvo, *tpvo, key;
2400 	struct pvo_tree tofree;
2401 
2402 	/*
2403 	 * Perform an unsynchronized read.  This is, however, safe.
2404 	 */
2405 	if (pm->pm_stats.resident_count == 0)
2406 		return;
2407 
2408 	key.pvo_vaddr = sva;
2409 
2410 	RB_INIT(&tofree);
2411 
2412 	PMAP_LOCK(pm);
2413 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2414 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2415 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2416 
2417 		/*
2418 		 * For locking reasons, remove this from the page table and
2419 		 * pmap, but save delinking from the vm_page for a second
2420 		 * pass
2421 		 */
2422 		moea64_pvo_remove_from_pmap(mmu, pvo);
2423 		RB_INSERT(pvo_tree, &tofree, pvo);
2424 	}
2425 	PMAP_UNLOCK(pm);
2426 
2427 	RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) {
2428 		moea64_pvo_remove_from_page(mmu, pvo);
2429 		RB_REMOVE(pvo_tree, &tofree, pvo);
2430 		free_pvo_entry(pvo);
2431 	}
2432 }
2433 
2434 /*
2435  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2436  * will reflect changes in pte's back to the vm_page.
2437  */
2438 void
2439 moea64_remove_all(mmu_t mmu, vm_page_t m)
2440 {
2441 	struct	pvo_entry *pvo, *next_pvo;
2442 	struct	pvo_head freequeue;
2443 	int	wasdead;
2444 	pmap_t	pmap;
2445 
2446 	LIST_INIT(&freequeue);
2447 
2448 	PV_PAGE_LOCK(m);
2449 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2450 		pmap = pvo->pvo_pmap;
2451 		PMAP_LOCK(pmap);
2452 		wasdead = (pvo->pvo_vaddr & PVO_DEAD);
2453 		if (!wasdead)
2454 			moea64_pvo_remove_from_pmap(mmu, pvo);
2455 		moea64_pvo_remove_from_page_locked(mmu, pvo, m);
2456 		if (!wasdead)
2457 			LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
2458 		PMAP_UNLOCK(pmap);
2459 
2460 	}
2461 	KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
2462 	KASSERT(!(m->aflags & PGA_WRITEABLE), ("Page still writable"));
2463 	PV_PAGE_UNLOCK(m);
2464 
2465 	/* Clean up UMA allocations */
2466 	LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
2467 		free_pvo_entry(pvo);
2468 }
2469 
2470 /*
2471  * Allocate a physical page of memory directly from the phys_avail map.
2472  * Can only be called from moea64_bootstrap before avail start and end are
2473  * calculated.
2474  */
2475 vm_offset_t
2476 moea64_bootstrap_alloc(vm_size_t size, vm_size_t align)
2477 {
2478 	vm_offset_t	s, e;
2479 	int		i, j;
2480 
2481 	size = round_page(size);
2482 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2483 		if (align != 0)
2484 			s = roundup2(phys_avail[i], align);
2485 		else
2486 			s = phys_avail[i];
2487 		e = s + size;
2488 
2489 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2490 			continue;
2491 
2492 		if (s + size > platform_real_maxaddr())
2493 			continue;
2494 
2495 		if (s == phys_avail[i]) {
2496 			phys_avail[i] += size;
2497 		} else if (e == phys_avail[i + 1]) {
2498 			phys_avail[i + 1] -= size;
2499 		} else {
2500 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2501 				phys_avail[j] = phys_avail[j - 2];
2502 				phys_avail[j + 1] = phys_avail[j - 1];
2503 			}
2504 
2505 			phys_avail[i + 3] = phys_avail[i + 1];
2506 			phys_avail[i + 1] = s;
2507 			phys_avail[i + 2] = e;
2508 			phys_avail_count++;
2509 		}
2510 
2511 		return (s);
2512 	}
2513 	panic("moea64_bootstrap_alloc: could not allocate memory");
2514 }
2515 
2516 static int
2517 moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo, struct pvo_head *pvo_head,
2518     struct pvo_entry **oldpvop)
2519 {
2520 	int first, err;
2521 	struct pvo_entry *old_pvo;
2522 
2523 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2524 	KASSERT(moea64_pvo_find_va(pvo->pvo_pmap, PVO_VADDR(pvo)) == NULL,
2525 	    ("Existing mapping for VA %#jx", (uintmax_t)PVO_VADDR(pvo)));
2526 
2527 	moea64_pvo_enter_calls++;
2528 
2529 	/*
2530 	 * Add to pmap list
2531 	 */
2532 	old_pvo = RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2533 
2534 	if (old_pvo != NULL) {
2535 		if (oldpvop != NULL)
2536 			*oldpvop = old_pvo;
2537 		return (EEXIST);
2538 	}
2539 
2540 	/*
2541 	 * Remember if the list was empty and therefore will be the first
2542 	 * item.
2543 	 */
2544 	if (pvo_head != NULL) {
2545 		if (LIST_FIRST(pvo_head) == NULL)
2546 			first = 1;
2547 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2548 	}
2549 
2550 	if (pvo->pvo_vaddr & PVO_WIRED)
2551 		pvo->pvo_pmap->pm_stats.wired_count++;
2552 	pvo->pvo_pmap->pm_stats.resident_count++;
2553 
2554 	/*
2555 	 * Insert it into the hardware page table
2556 	 */
2557 	err = MOEA64_PTE_INSERT(mmu, pvo);
2558 	if (err != 0) {
2559 		panic("moea64_pvo_enter: overflow");
2560 	}
2561 
2562 	moea64_pvo_entries++;
2563 
2564 	if (pvo->pvo_pmap == kernel_pmap)
2565 		isync();
2566 
2567 #ifdef __powerpc64__
2568 	/*
2569 	 * Make sure all our bootstrap mappings are in the SLB as soon
2570 	 * as virtual memory is switched on.
2571 	 */
2572 	if (!pmap_bootstrapped)
2573 		moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
2574 		    pvo->pvo_vaddr & PVO_LARGE);
2575 #endif
2576 
2577 	return (first ? ENOENT : 0);
2578 }
2579 
2580 static void
2581 moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo)
2582 {
2583 	struct	vm_page *pg;
2584 	int32_t refchg;
2585 
2586 	KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
2587 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2588 	KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
2589 
2590 	/*
2591 	 * If there is an active pte entry, we need to deactivate it
2592 	 */
2593 	refchg = MOEA64_PTE_UNSET(mmu, pvo);
2594 	if (refchg < 0) {
2595 		/*
2596 		 * If it was evicted from the page table, be pessimistic and
2597 		 * dirty the page.
2598 		 */
2599 		if (pvo->pvo_pte.prot & VM_PROT_WRITE)
2600 			refchg = LPTE_CHG;
2601 		else
2602 			refchg = 0;
2603 	}
2604 
2605 	/*
2606 	 * Update our statistics.
2607 	 */
2608 	pvo->pvo_pmap->pm_stats.resident_count--;
2609 	if (pvo->pvo_vaddr & PVO_WIRED)
2610 		pvo->pvo_pmap->pm_stats.wired_count--;
2611 
2612 	/*
2613 	 * Remove this PVO from the pmap list.
2614 	 */
2615 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2616 
2617 	/*
2618 	 * Mark this for the next sweep
2619 	 */
2620 	pvo->pvo_vaddr |= PVO_DEAD;
2621 
2622 	/* Send RC bits to VM */
2623 	if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2624 	    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2625 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2626 		if (pg != NULL) {
2627 			refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2628 			if (refchg & LPTE_CHG)
2629 				vm_page_dirty(pg);
2630 			if (refchg & LPTE_REF)
2631 				vm_page_aflag_set(pg, PGA_REFERENCED);
2632 		}
2633 	}
2634 }
2635 
2636 static inline void
2637 moea64_pvo_remove_from_page_locked(mmu_t mmu, struct pvo_entry *pvo,
2638     vm_page_t m)
2639 {
2640 
2641 	KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
2642 
2643 	/* Use NULL pmaps as a sentinel for races in page deletion */
2644 	if (pvo->pvo_pmap == NULL)
2645 		return;
2646 	pvo->pvo_pmap = NULL;
2647 
2648 	/*
2649 	 * Update vm about page writeability/executability if managed
2650 	 */
2651 	PV_LOCKASSERT(pvo->pvo_pte.pa & LPTE_RPGN);
2652 	if (pvo->pvo_vaddr & PVO_MANAGED) {
2653 		if (m != NULL) {
2654 			LIST_REMOVE(pvo, pvo_vlink);
2655 			if (LIST_EMPTY(vm_page_to_pvoh(m)))
2656 				vm_page_aflag_clear(m,
2657 				    PGA_WRITEABLE | PGA_EXECUTABLE);
2658 		}
2659 	}
2660 
2661 	moea64_pvo_entries--;
2662 	moea64_pvo_remove_calls++;
2663 }
2664 
2665 static void
2666 moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo)
2667 {
2668 	vm_page_t pg = NULL;
2669 
2670 	if (pvo->pvo_vaddr & PVO_MANAGED)
2671 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2672 
2673 	PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2674 	moea64_pvo_remove_from_page_locked(mmu, pvo, pg);
2675 	PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2676 }
2677 
2678 static struct pvo_entry *
2679 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2680 {
2681 	struct pvo_entry key;
2682 
2683 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2684 
2685 	key.pvo_vaddr = va & ~ADDR_POFF;
2686 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2687 }
2688 
2689 static boolean_t
2690 moea64_query_bit(mmu_t mmu, vm_page_t m, uint64_t ptebit)
2691 {
2692 	struct	pvo_entry *pvo;
2693 	int64_t ret;
2694 	boolean_t rv;
2695 
2696 	/*
2697 	 * See if this bit is stored in the page already.
2698 	 */
2699 	if (m->md.mdpg_attrs & ptebit)
2700 		return (TRUE);
2701 
2702 	/*
2703 	 * Examine each PTE.  Sync so that any pending REF/CHG bits are
2704 	 * flushed to the PTEs.
2705 	 */
2706 	rv = FALSE;
2707 	powerpc_sync();
2708 	PV_PAGE_LOCK(m);
2709 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2710 		ret = 0;
2711 
2712 		/*
2713 		 * See if this pvo has a valid PTE.  if so, fetch the
2714 		 * REF/CHG bits from the valid PTE.  If the appropriate
2715 		 * ptebit is set, return success.
2716 		 */
2717 		PMAP_LOCK(pvo->pvo_pmap);
2718 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2719 			ret = MOEA64_PTE_SYNCH(mmu, pvo);
2720 		PMAP_UNLOCK(pvo->pvo_pmap);
2721 
2722 		if (ret > 0) {
2723 			atomic_set_32(&m->md.mdpg_attrs,
2724 			    ret & (LPTE_CHG | LPTE_REF));
2725 			if (ret & ptebit) {
2726 				rv = TRUE;
2727 				break;
2728 			}
2729 		}
2730 	}
2731 	PV_PAGE_UNLOCK(m);
2732 
2733 	return (rv);
2734 }
2735 
2736 static u_int
2737 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2738 {
2739 	u_int	count;
2740 	struct	pvo_entry *pvo;
2741 	int64_t ret;
2742 
2743 	/*
2744 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2745 	 * we can reset the right ones).
2746 	 */
2747 	powerpc_sync();
2748 
2749 	/*
2750 	 * For each pvo entry, clear the pte's ptebit.
2751 	 */
2752 	count = 0;
2753 	PV_PAGE_LOCK(m);
2754 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2755 		ret = 0;
2756 
2757 		PMAP_LOCK(pvo->pvo_pmap);
2758 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2759 			ret = MOEA64_PTE_CLEAR(mmu, pvo, ptebit);
2760 		PMAP_UNLOCK(pvo->pvo_pmap);
2761 
2762 		if (ret > 0 && (ret & ptebit))
2763 			count++;
2764 	}
2765 	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
2766 	PV_PAGE_UNLOCK(m);
2767 
2768 	return (count);
2769 }
2770 
2771 boolean_t
2772 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2773 {
2774 	struct pvo_entry *pvo, key;
2775 	vm_offset_t ppa;
2776 	int error = 0;
2777 
2778 	if (hw_direct_map && mem_valid(pa, size) == 0)
2779 		return (0);
2780 
2781 	PMAP_LOCK(kernel_pmap);
2782 	ppa = pa & ~ADDR_POFF;
2783 	key.pvo_vaddr = DMAP_BASE_ADDRESS + ppa;
2784 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2785 	    ppa < pa + size; ppa += PAGE_SIZE,
2786 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2787 		if (pvo == NULL || (pvo->pvo_pte.pa & LPTE_RPGN) != ppa) {
2788 			error = EFAULT;
2789 			break;
2790 		}
2791 	}
2792 	PMAP_UNLOCK(kernel_pmap);
2793 
2794 	return (error);
2795 }
2796 
2797 /*
2798  * Map a set of physical memory pages into the kernel virtual
2799  * address space. Return a pointer to where it is mapped. This
2800  * routine is intended to be used for mapping device memory,
2801  * NOT real memory.
2802  */
2803 void *
2804 moea64_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2805 {
2806 	vm_offset_t va, tmpva, ppa, offset;
2807 
2808 	ppa = trunc_page(pa);
2809 	offset = pa & PAGE_MASK;
2810 	size = roundup2(offset + size, PAGE_SIZE);
2811 
2812 	va = kva_alloc(size);
2813 
2814 	if (!va)
2815 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2816 
2817 	for (tmpva = va; size > 0;) {
2818 		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2819 		size -= PAGE_SIZE;
2820 		tmpva += PAGE_SIZE;
2821 		ppa += PAGE_SIZE;
2822 	}
2823 
2824 	return ((void *)(va + offset));
2825 }
2826 
2827 void *
2828 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2829 {
2830 
2831 	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2832 }
2833 
2834 void
2835 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2836 {
2837 	vm_offset_t base, offset;
2838 
2839 	base = trunc_page(va);
2840 	offset = va & PAGE_MASK;
2841 	size = roundup2(offset + size, PAGE_SIZE);
2842 
2843 	kva_free(base, size);
2844 }
2845 
2846 void
2847 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2848 {
2849 	struct pvo_entry *pvo;
2850 	vm_offset_t lim;
2851 	vm_paddr_t pa;
2852 	vm_size_t len;
2853 
2854 	if (__predict_false(pm == NULL))
2855 		pm = &curthread->td_proc->p_vmspace->vm_pmap;
2856 
2857 	PMAP_LOCK(pm);
2858 	while (sz > 0) {
2859 		lim = round_page(va+1);
2860 		len = MIN(lim - va, sz);
2861 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2862 		if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
2863 			pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va & ADDR_POFF);
2864 			moea64_syncicache(mmu, pm, va, pa, len);
2865 		}
2866 		va += len;
2867 		sz -= len;
2868 	}
2869 	PMAP_UNLOCK(pm);
2870 }
2871 
2872 void
2873 moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2874 {
2875 
2876 	*va = (void *)(uintptr_t)pa;
2877 }
2878 
2879 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2880 
2881 void
2882 moea64_scan_init(mmu_t mmu)
2883 {
2884 	struct pvo_entry *pvo;
2885 	vm_offset_t va;
2886 	int i;
2887 
2888 	if (!do_minidump) {
2889 		/* Initialize phys. segments for dumpsys(). */
2890 		memset(&dump_map, 0, sizeof(dump_map));
2891 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2892 		for (i = 0; i < pregions_sz; i++) {
2893 			dump_map[i].pa_start = pregions[i].mr_start;
2894 			dump_map[i].pa_size = pregions[i].mr_size;
2895 		}
2896 		return;
2897 	}
2898 
2899 	/* Virtual segments for minidumps: */
2900 	memset(&dump_map, 0, sizeof(dump_map));
2901 
2902 	/* 1st: kernel .data and .bss. */
2903 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2904 	dump_map[0].pa_size = round_page((uintptr_t)_end) -
2905 	    dump_map[0].pa_start;
2906 
2907 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2908 	dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr;
2909 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2910 
2911 	/* 3rd: kernel VM. */
2912 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2913 	/* Find start of next chunk (from va). */
2914 	while (va < virtual_end) {
2915 		/* Don't dump the buffer cache. */
2916 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2917 			va = kmi.buffer_eva;
2918 			continue;
2919 		}
2920 		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2921 		if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2922 			break;
2923 		va += PAGE_SIZE;
2924 	}
2925 	if (va < virtual_end) {
2926 		dump_map[2].pa_start = va;
2927 		va += PAGE_SIZE;
2928 		/* Find last page in chunk. */
2929 		while (va < virtual_end) {
2930 			/* Don't run into the buffer cache. */
2931 			if (va == kmi.buffer_sva)
2932 				break;
2933 			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2934 			if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD))
2935 				break;
2936 			va += PAGE_SIZE;
2937 		}
2938 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2939 	}
2940 }
2941 
2942