1 /*- 2 * Copyright (c) 2001 The NetBSD Foundation, Inc. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to The NetBSD Foundation 6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the NetBSD 19 * Foundation, Inc. and its contributors. 20 * 4. Neither the name of The NetBSD Foundation nor the names of its 21 * contributors may be used to endorse or promote products derived 22 * from this software without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 * POSSIBILITY OF SUCH DAMAGE. 35 */ 36 /*- 37 * Copyright (C) 1995, 1996 Wolfgang Solfrank. 38 * Copyright (C) 1995, 1996 TooLs GmbH. 39 * All rights reserved. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. All advertising materials mentioning features or use of this software 50 * must display the following acknowledgement: 51 * This product includes software developed by TooLs GmbH. 52 * 4. The name of TooLs GmbH may not be used to endorse or promote products 53 * derived from this software without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 65 * 66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $ 67 */ 68 /*- 69 * Copyright (C) 2001 Benno Rice. 70 * All rights reserved. 71 * 72 * Redistribution and use in source and binary forms, with or without 73 * modification, are permitted provided that the following conditions 74 * are met: 75 * 1. Redistributions of source code must retain the above copyright 76 * notice, this list of conditions and the following disclaimer. 77 * 2. Redistributions in binary form must reproduce the above copyright 78 * notice, this list of conditions and the following disclaimer in the 79 * documentation and/or other materials provided with the distribution. 80 * 81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR 82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 91 */ 92 93 #include <sys/cdefs.h> 94 __FBSDID("$FreeBSD$"); 95 96 /* 97 * Manages physical address maps. 98 * 99 * Since the information managed by this module is also stored by the 100 * logical address mapping module, this module may throw away valid virtual 101 * to physical mappings at almost any time. However, invalidations of 102 * mappings must be done as requested. 103 * 104 * In order to cope with hardware architectures which make virtual to 105 * physical map invalidates expensive, this module may delay invalidate 106 * reduced protection operations until such time as they are actually 107 * necessary. This module is given full information as to which processors 108 * are currently using which maps, and to when physical maps must be made 109 * correct. 110 */ 111 112 #include "opt_compat.h" 113 #include "opt_kstack_pages.h" 114 115 #include <sys/param.h> 116 #include <sys/kernel.h> 117 #include <sys/queue.h> 118 #include <sys/cpuset.h> 119 #include <sys/ktr.h> 120 #include <sys/lock.h> 121 #include <sys/msgbuf.h> 122 #include <sys/mutex.h> 123 #include <sys/proc.h> 124 #include <sys/rwlock.h> 125 #include <sys/sched.h> 126 #include <sys/sysctl.h> 127 #include <sys/systm.h> 128 #include <sys/vmmeter.h> 129 130 #include <sys/kdb.h> 131 132 #include <dev/ofw/openfirm.h> 133 134 #include <vm/vm.h> 135 #include <vm/vm_param.h> 136 #include <vm/vm_kern.h> 137 #include <vm/vm_page.h> 138 #include <vm/vm_map.h> 139 #include <vm/vm_object.h> 140 #include <vm/vm_extern.h> 141 #include <vm/vm_pageout.h> 142 #include <vm/vm_pager.h> 143 #include <vm/uma.h> 144 145 #include <machine/_inttypes.h> 146 #include <machine/cpu.h> 147 #include <machine/platform.h> 148 #include <machine/frame.h> 149 #include <machine/md_var.h> 150 #include <machine/psl.h> 151 #include <machine/bat.h> 152 #include <machine/hid.h> 153 #include <machine/pte.h> 154 #include <machine/sr.h> 155 #include <machine/trap.h> 156 #include <machine/mmuvar.h> 157 158 #include "mmu_oea64.h" 159 #include "mmu_if.h" 160 #include "moea64_if.h" 161 162 void moea64_release_vsid(uint64_t vsid); 163 uintptr_t moea64_get_unique_vsid(void); 164 165 #define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR) 166 #define ENABLE_TRANS(msr) mtmsr(msr) 167 168 #define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4)) 169 #define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff) 170 #define VSID_HASH_MASK 0x0000007fffffffffULL 171 172 /* 173 * Locking semantics: 174 * -- Read lock: if no modifications are being made to either the PVO lists 175 * or page table or if any modifications being made result in internal 176 * changes (e.g. wiring, protection) such that the existence of the PVOs 177 * is unchanged and they remain associated with the same pmap (in which 178 * case the changes should be protected by the pmap lock) 179 * -- Write lock: required if PTEs/PVOs are being inserted or removed. 180 */ 181 182 #define LOCK_TABLE_RD() rw_rlock(&moea64_table_lock) 183 #define UNLOCK_TABLE_RD() rw_runlock(&moea64_table_lock) 184 #define LOCK_TABLE_WR() rw_wlock(&moea64_table_lock) 185 #define UNLOCK_TABLE_WR() rw_wunlock(&moea64_table_lock) 186 187 struct ofw_map { 188 cell_t om_va; 189 cell_t om_len; 190 cell_t om_pa_hi; 191 cell_t om_pa_lo; 192 cell_t om_mode; 193 }; 194 195 /* 196 * Map of physical memory regions. 197 */ 198 static struct mem_region *regions; 199 static struct mem_region *pregions; 200 static u_int phys_avail_count; 201 static int regions_sz, pregions_sz; 202 203 extern void bs_remap_earlyboot(void); 204 205 /* 206 * Lock for the pteg and pvo tables. 207 */ 208 struct rwlock moea64_table_lock; 209 struct mtx moea64_slb_mutex; 210 211 /* 212 * PTEG data. 213 */ 214 u_int moea64_pteg_count; 215 u_int moea64_pteg_mask; 216 217 /* 218 * PVO data. 219 */ 220 struct pvo_head *moea64_pvo_table; /* pvo entries by pteg index */ 221 222 uma_zone_t moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */ 223 uma_zone_t moea64_mpvo_zone; /* zone for pvo entries for managed pages */ 224 225 #define BPVO_POOL_SIZE 327680 226 static struct pvo_entry *moea64_bpvo_pool; 227 static int moea64_bpvo_pool_index = 0; 228 229 #define VSID_NBPW (sizeof(u_int32_t) * 8) 230 #ifdef __powerpc64__ 231 #define NVSIDS (NPMAPS * 16) 232 #define VSID_HASHMASK 0xffffffffUL 233 #else 234 #define NVSIDS NPMAPS 235 #define VSID_HASHMASK 0xfffffUL 236 #endif 237 static u_int moea64_vsid_bitmap[NVSIDS / VSID_NBPW]; 238 239 static boolean_t moea64_initialized = FALSE; 240 241 /* 242 * Statistics. 243 */ 244 u_int moea64_pte_valid = 0; 245 u_int moea64_pte_overflow = 0; 246 u_int moea64_pvo_entries = 0; 247 u_int moea64_pvo_enter_calls = 0; 248 u_int moea64_pvo_remove_calls = 0; 249 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD, 250 &moea64_pte_valid, 0, ""); 251 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD, 252 &moea64_pte_overflow, 0, ""); 253 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD, 254 &moea64_pvo_entries, 0, ""); 255 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD, 256 &moea64_pvo_enter_calls, 0, ""); 257 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD, 258 &moea64_pvo_remove_calls, 0, ""); 259 260 vm_offset_t moea64_scratchpage_va[2]; 261 struct pvo_entry *moea64_scratchpage_pvo[2]; 262 uintptr_t moea64_scratchpage_pte[2]; 263 struct mtx moea64_scratchpage_mtx; 264 265 uint64_t moea64_large_page_mask = 0; 266 int moea64_large_page_size = 0; 267 int moea64_large_page_shift = 0; 268 269 /* 270 * PVO calls. 271 */ 272 static int moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *, 273 vm_offset_t, vm_offset_t, uint64_t, int); 274 static void moea64_pvo_remove(mmu_t, struct pvo_entry *); 275 static struct pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t); 276 277 /* 278 * Utility routines. 279 */ 280 static boolean_t moea64_query_bit(mmu_t, vm_page_t, u_int64_t); 281 static u_int moea64_clear_bit(mmu_t, vm_page_t, u_int64_t); 282 static void moea64_kremove(mmu_t, vm_offset_t); 283 static void moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va, 284 vm_offset_t pa, vm_size_t sz); 285 286 /* 287 * Kernel MMU interface 288 */ 289 void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t); 290 void moea64_clear_modify(mmu_t, vm_page_t); 291 void moea64_clear_reference(mmu_t, vm_page_t); 292 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t); 293 void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t); 294 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t, 295 vm_prot_t); 296 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t); 297 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t); 298 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t); 299 void moea64_init(mmu_t); 300 boolean_t moea64_is_modified(mmu_t, vm_page_t); 301 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t); 302 boolean_t moea64_is_referenced(mmu_t, vm_page_t); 303 int moea64_ts_referenced(mmu_t, vm_page_t); 304 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int); 305 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t); 306 int moea64_page_wired_mappings(mmu_t, vm_page_t); 307 void moea64_pinit(mmu_t, pmap_t); 308 void moea64_pinit0(mmu_t, pmap_t); 309 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t); 310 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int); 311 void moea64_qremove(mmu_t, vm_offset_t, int); 312 void moea64_release(mmu_t, pmap_t); 313 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t); 314 void moea64_remove_pages(mmu_t, pmap_t); 315 void moea64_remove_all(mmu_t, vm_page_t); 316 void moea64_remove_write(mmu_t, vm_page_t); 317 void moea64_zero_page(mmu_t, vm_page_t); 318 void moea64_zero_page_area(mmu_t, vm_page_t, int, int); 319 void moea64_zero_page_idle(mmu_t, vm_page_t); 320 void moea64_activate(mmu_t, struct thread *); 321 void moea64_deactivate(mmu_t, struct thread *); 322 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t); 323 void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t); 324 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t); 325 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t); 326 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma); 327 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma); 328 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t); 329 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t); 330 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t); 331 332 static mmu_method_t moea64_methods[] = { 333 MMUMETHOD(mmu_change_wiring, moea64_change_wiring), 334 MMUMETHOD(mmu_clear_modify, moea64_clear_modify), 335 MMUMETHOD(mmu_clear_reference, moea64_clear_reference), 336 MMUMETHOD(mmu_copy_page, moea64_copy_page), 337 MMUMETHOD(mmu_enter, moea64_enter), 338 MMUMETHOD(mmu_enter_object, moea64_enter_object), 339 MMUMETHOD(mmu_enter_quick, moea64_enter_quick), 340 MMUMETHOD(mmu_extract, moea64_extract), 341 MMUMETHOD(mmu_extract_and_hold, moea64_extract_and_hold), 342 MMUMETHOD(mmu_init, moea64_init), 343 MMUMETHOD(mmu_is_modified, moea64_is_modified), 344 MMUMETHOD(mmu_is_prefaultable, moea64_is_prefaultable), 345 MMUMETHOD(mmu_is_referenced, moea64_is_referenced), 346 MMUMETHOD(mmu_ts_referenced, moea64_ts_referenced), 347 MMUMETHOD(mmu_map, moea64_map), 348 MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick), 349 MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings), 350 MMUMETHOD(mmu_pinit, moea64_pinit), 351 MMUMETHOD(mmu_pinit0, moea64_pinit0), 352 MMUMETHOD(mmu_protect, moea64_protect), 353 MMUMETHOD(mmu_qenter, moea64_qenter), 354 MMUMETHOD(mmu_qremove, moea64_qremove), 355 MMUMETHOD(mmu_release, moea64_release), 356 MMUMETHOD(mmu_remove, moea64_remove), 357 MMUMETHOD(mmu_remove_pages, moea64_remove_pages), 358 MMUMETHOD(mmu_remove_all, moea64_remove_all), 359 MMUMETHOD(mmu_remove_write, moea64_remove_write), 360 MMUMETHOD(mmu_sync_icache, moea64_sync_icache), 361 MMUMETHOD(mmu_zero_page, moea64_zero_page), 362 MMUMETHOD(mmu_zero_page_area, moea64_zero_page_area), 363 MMUMETHOD(mmu_zero_page_idle, moea64_zero_page_idle), 364 MMUMETHOD(mmu_activate, moea64_activate), 365 MMUMETHOD(mmu_deactivate, moea64_deactivate), 366 MMUMETHOD(mmu_page_set_memattr, moea64_page_set_memattr), 367 368 /* Internal interfaces */ 369 MMUMETHOD(mmu_mapdev, moea64_mapdev), 370 MMUMETHOD(mmu_mapdev_attr, moea64_mapdev_attr), 371 MMUMETHOD(mmu_unmapdev, moea64_unmapdev), 372 MMUMETHOD(mmu_kextract, moea64_kextract), 373 MMUMETHOD(mmu_kenter, moea64_kenter), 374 MMUMETHOD(mmu_kenter_attr, moea64_kenter_attr), 375 MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped), 376 377 { 0, 0 } 378 }; 379 380 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0); 381 382 static __inline u_int 383 va_to_pteg(uint64_t vsid, vm_offset_t addr, int large) 384 { 385 uint64_t hash; 386 int shift; 387 388 shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT; 389 hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >> 390 shift); 391 return (hash & moea64_pteg_mask); 392 } 393 394 static __inline struct pvo_head * 395 vm_page_to_pvoh(vm_page_t m) 396 { 397 398 return (&m->md.mdpg_pvoh); 399 } 400 401 static __inline void 402 moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va, 403 uint64_t pte_lo, int flags) 404 { 405 406 /* 407 * Construct a PTE. Default to IMB initially. Valid bit only gets 408 * set when the real pte is set in memory. 409 * 410 * Note: Don't set the valid bit for correct operation of tlb update. 411 */ 412 pt->pte_hi = (vsid << LPTE_VSID_SHIFT) | 413 (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API); 414 415 if (flags & PVO_LARGE) 416 pt->pte_hi |= LPTE_BIG; 417 418 pt->pte_lo = pte_lo; 419 } 420 421 static __inline uint64_t 422 moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma) 423 { 424 uint64_t pte_lo; 425 int i; 426 427 if (ma != VM_MEMATTR_DEFAULT) { 428 switch (ma) { 429 case VM_MEMATTR_UNCACHEABLE: 430 return (LPTE_I | LPTE_G); 431 case VM_MEMATTR_WRITE_COMBINING: 432 case VM_MEMATTR_WRITE_BACK: 433 case VM_MEMATTR_PREFETCHABLE: 434 return (LPTE_I); 435 case VM_MEMATTR_WRITE_THROUGH: 436 return (LPTE_W | LPTE_M); 437 } 438 } 439 440 /* 441 * Assume the page is cache inhibited and access is guarded unless 442 * it's in our available memory array. 443 */ 444 pte_lo = LPTE_I | LPTE_G; 445 for (i = 0; i < pregions_sz; i++) { 446 if ((pa >= pregions[i].mr_start) && 447 (pa < (pregions[i].mr_start + pregions[i].mr_size))) { 448 pte_lo &= ~(LPTE_I | LPTE_G); 449 pte_lo |= LPTE_M; 450 break; 451 } 452 } 453 454 return pte_lo; 455 } 456 457 /* 458 * Quick sort callout for comparing memory regions. 459 */ 460 static int om_cmp(const void *a, const void *b); 461 462 static int 463 om_cmp(const void *a, const void *b) 464 { 465 const struct ofw_map *mapa; 466 const struct ofw_map *mapb; 467 468 mapa = a; 469 mapb = b; 470 if (mapa->om_pa_hi < mapb->om_pa_hi) 471 return (-1); 472 else if (mapa->om_pa_hi > mapb->om_pa_hi) 473 return (1); 474 else if (mapa->om_pa_lo < mapb->om_pa_lo) 475 return (-1); 476 else if (mapa->om_pa_lo > mapb->om_pa_lo) 477 return (1); 478 else 479 return (0); 480 } 481 482 static void 483 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz) 484 { 485 struct ofw_map translations[sz/sizeof(struct ofw_map)]; 486 register_t msr; 487 vm_offset_t off; 488 vm_paddr_t pa_base; 489 int i; 490 491 bzero(translations, sz); 492 if (OF_getprop(mmu, "translations", translations, sz) == -1) 493 panic("moea64_bootstrap: can't get ofw translations"); 494 495 CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations"); 496 sz /= sizeof(*translations); 497 qsort(translations, sz, sizeof (*translations), om_cmp); 498 499 for (i = 0; i < sz; i++) { 500 CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x", 501 (uint32_t)(translations[i].om_pa_lo), translations[i].om_va, 502 translations[i].om_len); 503 504 if (translations[i].om_pa_lo % PAGE_SIZE) 505 panic("OFW translation not page-aligned!"); 506 507 pa_base = translations[i].om_pa_lo; 508 509 #ifdef __powerpc64__ 510 pa_base += (vm_offset_t)translations[i].om_pa_hi << 32; 511 #else 512 if (translations[i].om_pa_hi) 513 panic("OFW translations above 32-bit boundary!"); 514 #endif 515 516 /* Now enter the pages for this mapping */ 517 518 DISABLE_TRANS(msr); 519 for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) { 520 if (moea64_pvo_find_va(kernel_pmap, 521 translations[i].om_va + off) != NULL) 522 continue; 523 524 moea64_kenter(mmup, translations[i].om_va + off, 525 pa_base + off); 526 } 527 ENABLE_TRANS(msr); 528 } 529 } 530 531 #ifdef __powerpc64__ 532 static void 533 moea64_probe_large_page(void) 534 { 535 uint16_t pvr = mfpvr() >> 16; 536 537 switch (pvr) { 538 case IBM970: 539 case IBM970FX: 540 case IBM970MP: 541 powerpc_sync(); isync(); 542 mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG); 543 powerpc_sync(); isync(); 544 545 /* FALLTHROUGH */ 546 case IBMCELLBE: 547 moea64_large_page_size = 0x1000000; /* 16 MB */ 548 moea64_large_page_shift = 24; 549 break; 550 default: 551 moea64_large_page_size = 0; 552 } 553 554 moea64_large_page_mask = moea64_large_page_size - 1; 555 } 556 557 static void 558 moea64_bootstrap_slb_prefault(vm_offset_t va, int large) 559 { 560 struct slb *cache; 561 struct slb entry; 562 uint64_t esid, slbe; 563 uint64_t i; 564 565 cache = PCPU_GET(slb); 566 esid = va >> ADDR_SR_SHFT; 567 slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID; 568 569 for (i = 0; i < 64; i++) { 570 if (cache[i].slbe == (slbe | i)) 571 return; 572 } 573 574 entry.slbe = slbe; 575 entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT; 576 if (large) 577 entry.slbv |= SLBV_L; 578 579 slb_insert_kernel(entry.slbe, entry.slbv); 580 } 581 #endif 582 583 static void 584 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart, 585 vm_offset_t kernelend) 586 { 587 register_t msr; 588 vm_paddr_t pa; 589 vm_offset_t size, off; 590 uint64_t pte_lo; 591 int i; 592 593 if (moea64_large_page_size == 0) 594 hw_direct_map = 0; 595 596 DISABLE_TRANS(msr); 597 if (hw_direct_map) { 598 LOCK_TABLE_WR(); 599 PMAP_LOCK(kernel_pmap); 600 for (i = 0; i < pregions_sz; i++) { 601 for (pa = pregions[i].mr_start; pa < pregions[i].mr_start + 602 pregions[i].mr_size; pa += moea64_large_page_size) { 603 pte_lo = LPTE_M; 604 605 /* 606 * Set memory access as guarded if prefetch within 607 * the page could exit the available physmem area. 608 */ 609 if (pa & moea64_large_page_mask) { 610 pa &= moea64_large_page_mask; 611 pte_lo |= LPTE_G; 612 } 613 if (pa + moea64_large_page_size > 614 pregions[i].mr_start + pregions[i].mr_size) 615 pte_lo |= LPTE_G; 616 617 moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone, 618 NULL, pa, pa, pte_lo, 619 PVO_WIRED | PVO_LARGE); 620 } 621 } 622 PMAP_UNLOCK(kernel_pmap); 623 UNLOCK_TABLE_WR(); 624 } else { 625 size = sizeof(struct pvo_head) * moea64_pteg_count; 626 off = (vm_offset_t)(moea64_pvo_table); 627 for (pa = off; pa < off + size; pa += PAGE_SIZE) 628 moea64_kenter(mmup, pa, pa); 629 size = BPVO_POOL_SIZE*sizeof(struct pvo_entry); 630 off = (vm_offset_t)(moea64_bpvo_pool); 631 for (pa = off; pa < off + size; pa += PAGE_SIZE) 632 moea64_kenter(mmup, pa, pa); 633 634 /* 635 * Map certain important things, like ourselves. 636 * 637 * NOTE: We do not map the exception vector space. That code is 638 * used only in real mode, and leaving it unmapped allows us to 639 * catch NULL pointer deferences, instead of making NULL a valid 640 * address. 641 */ 642 643 for (pa = kernelstart & ~PAGE_MASK; pa < kernelend; 644 pa += PAGE_SIZE) 645 moea64_kenter(mmup, pa, pa); 646 } 647 ENABLE_TRANS(msr); 648 } 649 650 void 651 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) 652 { 653 int i, j; 654 vm_size_t physsz, hwphyssz; 655 656 #ifndef __powerpc64__ 657 /* We don't have a direct map since there is no BAT */ 658 hw_direct_map = 0; 659 660 /* Make sure battable is zero, since we have no BAT */ 661 for (i = 0; i < 16; i++) { 662 battable[i].batu = 0; 663 battable[i].batl = 0; 664 } 665 #else 666 moea64_probe_large_page(); 667 668 /* Use a direct map if we have large page support */ 669 if (moea64_large_page_size > 0) 670 hw_direct_map = 1; 671 else 672 hw_direct_map = 0; 673 #endif 674 675 /* Get physical memory regions from firmware */ 676 mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); 677 CTR0(KTR_PMAP, "moea64_bootstrap: physical memory"); 678 679 if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz) 680 panic("moea64_bootstrap: phys_avail too small"); 681 682 phys_avail_count = 0; 683 physsz = 0; 684 hwphyssz = 0; 685 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); 686 for (i = 0, j = 0; i < regions_sz; i++, j += 2) { 687 CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start, 688 regions[i].mr_start + regions[i].mr_size, 689 regions[i].mr_size); 690 if (hwphyssz != 0 && 691 (physsz + regions[i].mr_size) >= hwphyssz) { 692 if (physsz < hwphyssz) { 693 phys_avail[j] = regions[i].mr_start; 694 phys_avail[j + 1] = regions[i].mr_start + 695 hwphyssz - physsz; 696 physsz = hwphyssz; 697 phys_avail_count++; 698 } 699 break; 700 } 701 phys_avail[j] = regions[i].mr_start; 702 phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size; 703 phys_avail_count++; 704 physsz += regions[i].mr_size; 705 } 706 707 /* Check for overlap with the kernel and exception vectors */ 708 for (j = 0; j < 2*phys_avail_count; j+=2) { 709 if (phys_avail[j] < EXC_LAST) 710 phys_avail[j] += EXC_LAST; 711 712 if (kernelstart >= phys_avail[j] && 713 kernelstart < phys_avail[j+1]) { 714 if (kernelend < phys_avail[j+1]) { 715 phys_avail[2*phys_avail_count] = 716 (kernelend & ~PAGE_MASK) + PAGE_SIZE; 717 phys_avail[2*phys_avail_count + 1] = 718 phys_avail[j+1]; 719 phys_avail_count++; 720 } 721 722 phys_avail[j+1] = kernelstart & ~PAGE_MASK; 723 } 724 725 if (kernelend >= phys_avail[j] && 726 kernelend < phys_avail[j+1]) { 727 if (kernelstart > phys_avail[j]) { 728 phys_avail[2*phys_avail_count] = phys_avail[j]; 729 phys_avail[2*phys_avail_count + 1] = 730 kernelstart & ~PAGE_MASK; 731 phys_avail_count++; 732 } 733 734 phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE; 735 } 736 } 737 738 physmem = btoc(physsz); 739 740 #ifdef PTEGCOUNT 741 moea64_pteg_count = PTEGCOUNT; 742 #else 743 moea64_pteg_count = 0x1000; 744 745 while (moea64_pteg_count < physmem) 746 moea64_pteg_count <<= 1; 747 748 moea64_pteg_count >>= 1; 749 #endif /* PTEGCOUNT */ 750 } 751 752 void 753 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) 754 { 755 vm_size_t size; 756 register_t msr; 757 int i; 758 759 /* 760 * Set PTEG mask 761 */ 762 moea64_pteg_mask = moea64_pteg_count - 1; 763 764 /* 765 * Allocate pv/overflow lists. 766 */ 767 size = sizeof(struct pvo_head) * moea64_pteg_count; 768 769 moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size, 770 PAGE_SIZE); 771 CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table); 772 773 DISABLE_TRANS(msr); 774 for (i = 0; i < moea64_pteg_count; i++) 775 LIST_INIT(&moea64_pvo_table[i]); 776 ENABLE_TRANS(msr); 777 778 /* 779 * Initialize the lock that synchronizes access to the pteg and pvo 780 * tables. 781 */ 782 rw_init_flags(&moea64_table_lock, "pmap tables", RW_RECURSE); 783 mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF); 784 785 /* 786 * Initialise the unmanaged pvo pool. 787 */ 788 moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc( 789 BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0); 790 moea64_bpvo_pool_index = 0; 791 792 /* 793 * Make sure kernel vsid is allocated as well as VSID 0. 794 */ 795 #ifndef __powerpc64__ 796 moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW] 797 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW); 798 moea64_vsid_bitmap[0] |= 1; 799 #endif 800 801 /* 802 * Initialize the kernel pmap (which is statically allocated). 803 */ 804 #ifdef __powerpc64__ 805 for (i = 0; i < 64; i++) { 806 pcpup->pc_slb[i].slbv = 0; 807 pcpup->pc_slb[i].slbe = 0; 808 } 809 #else 810 for (i = 0; i < 16; i++) 811 kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i; 812 #endif 813 814 kernel_pmap->pmap_phys = kernel_pmap; 815 CPU_FILL(&kernel_pmap->pm_active); 816 RB_INIT(&kernel_pmap->pmap_pvo); 817 818 PMAP_LOCK_INIT(kernel_pmap); 819 820 /* 821 * Now map in all the other buffers we allocated earlier 822 */ 823 824 moea64_setup_direct_map(mmup, kernelstart, kernelend); 825 } 826 827 void 828 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) 829 { 830 ihandle_t mmui; 831 phandle_t chosen; 832 phandle_t mmu; 833 size_t sz; 834 int i; 835 vm_offset_t pa, va; 836 void *dpcpu; 837 838 /* 839 * Set up the Open Firmware pmap and add its mappings if not in real 840 * mode. 841 */ 842 843 chosen = OF_finddevice("/chosen"); 844 if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) { 845 mmu = OF_instance_to_package(mmui); 846 if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1) 847 sz = 0; 848 if (sz > 6144 /* tmpstksz - 2 KB headroom */) 849 panic("moea64_bootstrap: too many ofw translations"); 850 851 if (sz > 0) 852 moea64_add_ofw_mappings(mmup, mmu, sz); 853 } 854 855 /* 856 * Calculate the last available physical address. 857 */ 858 for (i = 0; phys_avail[i + 2] != 0; i += 2) 859 ; 860 Maxmem = powerpc_btop(phys_avail[i + 1]); 861 862 /* 863 * Initialize MMU and remap early physical mappings 864 */ 865 MMU_CPU_BOOTSTRAP(mmup,0); 866 mtmsr(mfmsr() | PSL_DR | PSL_IR); 867 pmap_bootstrapped++; 868 bs_remap_earlyboot(); 869 870 /* 871 * Set the start and end of kva. 872 */ 873 virtual_avail = VM_MIN_KERNEL_ADDRESS; 874 virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS; 875 876 /* 877 * Map the entire KVA range into the SLB. We must not fault there. 878 */ 879 #ifdef __powerpc64__ 880 for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH) 881 moea64_bootstrap_slb_prefault(va, 0); 882 #endif 883 884 /* 885 * Figure out how far we can extend virtual_end into segment 16 886 * without running into existing mappings. Segment 16 is guaranteed 887 * to contain neither RAM nor devices (at least on Apple hardware), 888 * but will generally contain some OFW mappings we should not 889 * step on. 890 */ 891 892 #ifndef __powerpc64__ /* KVA is in high memory on PPC64 */ 893 PMAP_LOCK(kernel_pmap); 894 while (virtual_end < VM_MAX_KERNEL_ADDRESS && 895 moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL) 896 virtual_end += PAGE_SIZE; 897 PMAP_UNLOCK(kernel_pmap); 898 #endif 899 900 /* 901 * Allocate a kernel stack with a guard page for thread0 and map it 902 * into the kernel page map. 903 */ 904 pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE); 905 va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; 906 virtual_avail = va + KSTACK_PAGES * PAGE_SIZE; 907 CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va); 908 thread0.td_kstack = va; 909 thread0.td_kstack_pages = KSTACK_PAGES; 910 for (i = 0; i < KSTACK_PAGES; i++) { 911 moea64_kenter(mmup, va, pa); 912 pa += PAGE_SIZE; 913 va += PAGE_SIZE; 914 } 915 916 /* 917 * Allocate virtual address space for the message buffer. 918 */ 919 pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE); 920 msgbufp = (struct msgbuf *)virtual_avail; 921 va = virtual_avail; 922 virtual_avail += round_page(msgbufsize); 923 while (va < virtual_avail) { 924 moea64_kenter(mmup, va, pa); 925 pa += PAGE_SIZE; 926 va += PAGE_SIZE; 927 } 928 929 /* 930 * Allocate virtual address space for the dynamic percpu area. 931 */ 932 pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE); 933 dpcpu = (void *)virtual_avail; 934 va = virtual_avail; 935 virtual_avail += DPCPU_SIZE; 936 while (va < virtual_avail) { 937 moea64_kenter(mmup, va, pa); 938 pa += PAGE_SIZE; 939 va += PAGE_SIZE; 940 } 941 dpcpu_init(dpcpu, 0); 942 943 /* 944 * Allocate some things for page zeroing. We put this directly 945 * in the page table, marked with LPTE_LOCKED, to avoid any 946 * of the PVO book-keeping or other parts of the VM system 947 * from even knowing that this hack exists. 948 */ 949 950 if (!hw_direct_map) { 951 mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL, 952 MTX_DEF); 953 for (i = 0; i < 2; i++) { 954 moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE; 955 virtual_end -= PAGE_SIZE; 956 957 moea64_kenter(mmup, moea64_scratchpage_va[i], 0); 958 959 moea64_scratchpage_pvo[i] = moea64_pvo_find_va( 960 kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]); 961 LOCK_TABLE_RD(); 962 moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE( 963 mmup, moea64_scratchpage_pvo[i]); 964 moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi 965 |= LPTE_LOCKED; 966 MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i], 967 &moea64_scratchpage_pvo[i]->pvo_pte.lpte, 968 moea64_scratchpage_pvo[i]->pvo_vpn); 969 UNLOCK_TABLE_RD(); 970 } 971 } 972 } 973 974 /* 975 * Activate a user pmap. The pmap must be activated before its address 976 * space can be accessed in any way. 977 */ 978 void 979 moea64_activate(mmu_t mmu, struct thread *td) 980 { 981 pmap_t pm; 982 983 pm = &td->td_proc->p_vmspace->vm_pmap; 984 CPU_SET(PCPU_GET(cpuid), &pm->pm_active); 985 986 #ifdef __powerpc64__ 987 PCPU_SET(userslb, pm->pm_slb); 988 #else 989 PCPU_SET(curpmap, pm->pmap_phys); 990 #endif 991 } 992 993 void 994 moea64_deactivate(mmu_t mmu, struct thread *td) 995 { 996 pmap_t pm; 997 998 pm = &td->td_proc->p_vmspace->vm_pmap; 999 CPU_CLR(PCPU_GET(cpuid), &pm->pm_active); 1000 #ifdef __powerpc64__ 1001 PCPU_SET(userslb, NULL); 1002 #else 1003 PCPU_SET(curpmap, NULL); 1004 #endif 1005 } 1006 1007 void 1008 moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired) 1009 { 1010 struct pvo_entry *pvo; 1011 uintptr_t pt; 1012 uint64_t vsid; 1013 int i, ptegidx; 1014 1015 LOCK_TABLE_WR(); 1016 PMAP_LOCK(pm); 1017 pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF); 1018 1019 if (pvo != NULL) { 1020 pt = MOEA64_PVO_TO_PTE(mmu, pvo); 1021 1022 if (wired) { 1023 if ((pvo->pvo_vaddr & PVO_WIRED) == 0) 1024 pm->pm_stats.wired_count++; 1025 pvo->pvo_vaddr |= PVO_WIRED; 1026 pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED; 1027 } else { 1028 if ((pvo->pvo_vaddr & PVO_WIRED) != 0) 1029 pm->pm_stats.wired_count--; 1030 pvo->pvo_vaddr &= ~PVO_WIRED; 1031 pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED; 1032 } 1033 1034 if (pt != -1) { 1035 /* Update wiring flag in page table. */ 1036 MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte, 1037 pvo->pvo_vpn); 1038 } else if (wired) { 1039 /* 1040 * If we are wiring the page, and it wasn't in the 1041 * page table before, add it. 1042 */ 1043 vsid = PVO_VSID(pvo); 1044 ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo), 1045 pvo->pvo_vaddr & PVO_LARGE); 1046 1047 i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte); 1048 1049 if (i >= 0) { 1050 PVO_PTEGIDX_CLR(pvo); 1051 PVO_PTEGIDX_SET(pvo, i); 1052 } 1053 } 1054 1055 } 1056 UNLOCK_TABLE_WR(); 1057 PMAP_UNLOCK(pm); 1058 } 1059 1060 /* 1061 * This goes through and sets the physical address of our 1062 * special scratch PTE to the PA we want to zero or copy. Because 1063 * of locking issues (this can get called in pvo_enter() by 1064 * the UMA allocator), we can't use most other utility functions here 1065 */ 1066 1067 static __inline 1068 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) { 1069 1070 KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!")); 1071 mtx_assert(&moea64_scratchpage_mtx, MA_OWNED); 1072 1073 moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &= 1074 ~(LPTE_WIMG | LPTE_RPGN); 1075 moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |= 1076 moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa; 1077 MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which], 1078 &moea64_scratchpage_pvo[which]->pvo_pte.lpte, 1079 moea64_scratchpage_pvo[which]->pvo_vpn); 1080 isync(); 1081 } 1082 1083 void 1084 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst) 1085 { 1086 vm_offset_t dst; 1087 vm_offset_t src; 1088 1089 dst = VM_PAGE_TO_PHYS(mdst); 1090 src = VM_PAGE_TO_PHYS(msrc); 1091 1092 if (hw_direct_map) { 1093 bcopy((void *)src, (void *)dst, PAGE_SIZE); 1094 } else { 1095 mtx_lock(&moea64_scratchpage_mtx); 1096 1097 moea64_set_scratchpage_pa(mmu, 0, src); 1098 moea64_set_scratchpage_pa(mmu, 1, dst); 1099 1100 bcopy((void *)moea64_scratchpage_va[0], 1101 (void *)moea64_scratchpage_va[1], PAGE_SIZE); 1102 1103 mtx_unlock(&moea64_scratchpage_mtx); 1104 } 1105 } 1106 1107 void 1108 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) 1109 { 1110 vm_offset_t pa = VM_PAGE_TO_PHYS(m); 1111 1112 if (size + off > PAGE_SIZE) 1113 panic("moea64_zero_page: size + off > PAGE_SIZE"); 1114 1115 if (hw_direct_map) { 1116 bzero((caddr_t)pa + off, size); 1117 } else { 1118 mtx_lock(&moea64_scratchpage_mtx); 1119 moea64_set_scratchpage_pa(mmu, 0, pa); 1120 bzero((caddr_t)moea64_scratchpage_va[0] + off, size); 1121 mtx_unlock(&moea64_scratchpage_mtx); 1122 } 1123 } 1124 1125 /* 1126 * Zero a page of physical memory by temporarily mapping it 1127 */ 1128 void 1129 moea64_zero_page(mmu_t mmu, vm_page_t m) 1130 { 1131 vm_offset_t pa = VM_PAGE_TO_PHYS(m); 1132 vm_offset_t va, off; 1133 1134 if (!hw_direct_map) { 1135 mtx_lock(&moea64_scratchpage_mtx); 1136 1137 moea64_set_scratchpage_pa(mmu, 0, pa); 1138 va = moea64_scratchpage_va[0]; 1139 } else { 1140 va = pa; 1141 } 1142 1143 for (off = 0; off < PAGE_SIZE; off += cacheline_size) 1144 __asm __volatile("dcbz 0,%0" :: "r"(va + off)); 1145 1146 if (!hw_direct_map) 1147 mtx_unlock(&moea64_scratchpage_mtx); 1148 } 1149 1150 void 1151 moea64_zero_page_idle(mmu_t mmu, vm_page_t m) 1152 { 1153 1154 moea64_zero_page(mmu, m); 1155 } 1156 1157 /* 1158 * Map the given physical page at the specified virtual address in the 1159 * target pmap with the protection requested. If specified the page 1160 * will be wired down. 1161 */ 1162 1163 void 1164 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1165 vm_prot_t prot, boolean_t wired) 1166 { 1167 struct pvo_head *pvo_head; 1168 uma_zone_t zone; 1169 vm_page_t pg; 1170 uint64_t pte_lo; 1171 u_int pvo_flags; 1172 int error; 1173 1174 if (!moea64_initialized) { 1175 pvo_head = NULL; 1176 pg = NULL; 1177 zone = moea64_upvo_zone; 1178 pvo_flags = 0; 1179 } else { 1180 pvo_head = vm_page_to_pvoh(m); 1181 pg = m; 1182 zone = moea64_mpvo_zone; 1183 pvo_flags = PVO_MANAGED; 1184 } 1185 1186 KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 || 1187 VM_OBJECT_LOCKED(m->object), 1188 ("moea64_enter: page %p is not busy", m)); 1189 1190 /* XXX change the pvo head for fake pages */ 1191 if ((m->oflags & VPO_UNMANAGED) != 0) { 1192 pvo_flags &= ~PVO_MANAGED; 1193 pvo_head = NULL; 1194 zone = moea64_upvo_zone; 1195 } 1196 1197 pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m)); 1198 1199 if (prot & VM_PROT_WRITE) { 1200 pte_lo |= LPTE_BW; 1201 if (pmap_bootstrapped && 1202 (m->oflags & VPO_UNMANAGED) == 0) 1203 vm_page_aflag_set(m, PGA_WRITEABLE); 1204 } else 1205 pte_lo |= LPTE_BR; 1206 1207 if ((prot & VM_PROT_EXECUTE) == 0) 1208 pte_lo |= LPTE_NOEXEC; 1209 1210 if (wired) 1211 pvo_flags |= PVO_WIRED; 1212 1213 LOCK_TABLE_WR(); 1214 PMAP_LOCK(pmap); 1215 error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va, 1216 VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags); 1217 PMAP_UNLOCK(pmap); 1218 UNLOCK_TABLE_WR(); 1219 1220 /* 1221 * Flush the page from the instruction cache if this page is 1222 * mapped executable and cacheable. 1223 */ 1224 if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) && 1225 (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { 1226 vm_page_aflag_set(m, PGA_EXECUTABLE); 1227 moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE); 1228 } 1229 } 1230 1231 static void 1232 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa, 1233 vm_size_t sz) 1234 { 1235 1236 /* 1237 * This is much trickier than on older systems because 1238 * we can't sync the icache on physical addresses directly 1239 * without a direct map. Instead we check a couple of cases 1240 * where the memory is already mapped in and, failing that, 1241 * use the same trick we use for page zeroing to create 1242 * a temporary mapping for this physical address. 1243 */ 1244 1245 if (!pmap_bootstrapped) { 1246 /* 1247 * If PMAP is not bootstrapped, we are likely to be 1248 * in real mode. 1249 */ 1250 __syncicache((void *)pa, sz); 1251 } else if (pmap == kernel_pmap) { 1252 __syncicache((void *)va, sz); 1253 } else if (hw_direct_map) { 1254 __syncicache((void *)pa, sz); 1255 } else { 1256 /* Use the scratch page to set up a temp mapping */ 1257 1258 mtx_lock(&moea64_scratchpage_mtx); 1259 1260 moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF); 1261 __syncicache((void *)(moea64_scratchpage_va[1] + 1262 (va & ADDR_POFF)), sz); 1263 1264 mtx_unlock(&moea64_scratchpage_mtx); 1265 } 1266 } 1267 1268 /* 1269 * Maps a sequence of resident pages belonging to the same object. 1270 * The sequence begins with the given page m_start. This page is 1271 * mapped at the given virtual address start. Each subsequent page is 1272 * mapped at a virtual address that is offset from start by the same 1273 * amount as the page is offset from m_start within the object. The 1274 * last page in the sequence is the page with the largest offset from 1275 * m_start that can be mapped at a virtual address less than the given 1276 * virtual address end. Not every virtual page between start and end 1277 * is mapped; only those for which a resident page exists with the 1278 * corresponding offset from m_start are mapped. 1279 */ 1280 void 1281 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end, 1282 vm_page_t m_start, vm_prot_t prot) 1283 { 1284 vm_page_t m; 1285 vm_pindex_t diff, psize; 1286 1287 psize = atop(end - start); 1288 m = m_start; 1289 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { 1290 moea64_enter(mmu, pm, start + ptoa(diff), m, prot & 1291 (VM_PROT_READ | VM_PROT_EXECUTE), FALSE); 1292 m = TAILQ_NEXT(m, listq); 1293 } 1294 } 1295 1296 void 1297 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m, 1298 vm_prot_t prot) 1299 { 1300 1301 moea64_enter(mmu, pm, va, m, 1302 prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE); 1303 } 1304 1305 vm_paddr_t 1306 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va) 1307 { 1308 struct pvo_entry *pvo; 1309 vm_paddr_t pa; 1310 1311 PMAP_LOCK(pm); 1312 pvo = moea64_pvo_find_va(pm, va); 1313 if (pvo == NULL) 1314 pa = 0; 1315 else 1316 pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | 1317 (va - PVO_VADDR(pvo)); 1318 PMAP_UNLOCK(pm); 1319 return (pa); 1320 } 1321 1322 /* 1323 * Atomically extract and hold the physical page with the given 1324 * pmap and virtual address pair if that mapping permits the given 1325 * protection. 1326 */ 1327 vm_page_t 1328 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot) 1329 { 1330 struct pvo_entry *pvo; 1331 vm_page_t m; 1332 vm_paddr_t pa; 1333 1334 m = NULL; 1335 pa = 0; 1336 PMAP_LOCK(pmap); 1337 retry: 1338 pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF); 1339 if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) && 1340 ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW || 1341 (prot & VM_PROT_WRITE) == 0)) { 1342 if (vm_page_pa_tryrelock(pmap, 1343 pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa)) 1344 goto retry; 1345 m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN); 1346 vm_page_hold(m); 1347 } 1348 PA_UNLOCK_COND(pa); 1349 PMAP_UNLOCK(pmap); 1350 return (m); 1351 } 1352 1353 static mmu_t installed_mmu; 1354 1355 static void * 1356 moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait) 1357 { 1358 /* 1359 * This entire routine is a horrible hack to avoid bothering kmem 1360 * for new KVA addresses. Because this can get called from inside 1361 * kmem allocation routines, calling kmem for a new address here 1362 * can lead to multiply locking non-recursive mutexes. 1363 */ 1364 vm_offset_t va; 1365 1366 vm_page_t m; 1367 int pflags, needed_lock; 1368 1369 *flags = UMA_SLAB_PRIV; 1370 needed_lock = !PMAP_LOCKED(kernel_pmap); 1371 1372 if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT) 1373 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; 1374 else 1375 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED; 1376 if (wait & M_ZERO) 1377 pflags |= VM_ALLOC_ZERO; 1378 1379 for (;;) { 1380 m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ); 1381 if (m == NULL) { 1382 if (wait & M_NOWAIT) 1383 return (NULL); 1384 VM_WAIT; 1385 } else 1386 break; 1387 } 1388 1389 va = VM_PAGE_TO_PHYS(m); 1390 1391 LOCK_TABLE_WR(); 1392 if (needed_lock) 1393 PMAP_LOCK(kernel_pmap); 1394 1395 moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone, 1396 NULL, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP); 1397 1398 if (needed_lock) 1399 PMAP_UNLOCK(kernel_pmap); 1400 UNLOCK_TABLE_WR(); 1401 1402 if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0) 1403 bzero((void *)va, PAGE_SIZE); 1404 1405 return (void *)va; 1406 } 1407 1408 extern int elf32_nxstack; 1409 1410 void 1411 moea64_init(mmu_t mmu) 1412 { 1413 1414 CTR0(KTR_PMAP, "moea64_init"); 1415 1416 moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry), 1417 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1418 UMA_ZONE_VM | UMA_ZONE_NOFREE); 1419 moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry), 1420 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1421 UMA_ZONE_VM | UMA_ZONE_NOFREE); 1422 1423 if (!hw_direct_map) { 1424 installed_mmu = mmu; 1425 uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc); 1426 uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc); 1427 } 1428 1429 #ifdef COMPAT_FREEBSD32 1430 elf32_nxstack = 1; 1431 #endif 1432 1433 moea64_initialized = TRUE; 1434 } 1435 1436 boolean_t 1437 moea64_is_referenced(mmu_t mmu, vm_page_t m) 1438 { 1439 1440 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1441 ("moea64_is_referenced: page %p is not managed", m)); 1442 return (moea64_query_bit(mmu, m, PTE_REF)); 1443 } 1444 1445 boolean_t 1446 moea64_is_modified(mmu_t mmu, vm_page_t m) 1447 { 1448 1449 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1450 ("moea64_is_modified: page %p is not managed", m)); 1451 1452 /* 1453 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be 1454 * concurrently set while the object is locked. Thus, if PGA_WRITEABLE 1455 * is clear, no PTEs can have LPTE_CHG set. 1456 */ 1457 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1458 if ((m->oflags & VPO_BUSY) == 0 && 1459 (m->aflags & PGA_WRITEABLE) == 0) 1460 return (FALSE); 1461 return (moea64_query_bit(mmu, m, LPTE_CHG)); 1462 } 1463 1464 boolean_t 1465 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va) 1466 { 1467 struct pvo_entry *pvo; 1468 boolean_t rv; 1469 1470 PMAP_LOCK(pmap); 1471 pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF); 1472 rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0; 1473 PMAP_UNLOCK(pmap); 1474 return (rv); 1475 } 1476 1477 void 1478 moea64_clear_reference(mmu_t mmu, vm_page_t m) 1479 { 1480 1481 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1482 ("moea64_clear_reference: page %p is not managed", m)); 1483 moea64_clear_bit(mmu, m, LPTE_REF); 1484 } 1485 1486 void 1487 moea64_clear_modify(mmu_t mmu, vm_page_t m) 1488 { 1489 1490 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1491 ("moea64_clear_modify: page %p is not managed", m)); 1492 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1493 KASSERT((m->oflags & VPO_BUSY) == 0, 1494 ("moea64_clear_modify: page %p is busy", m)); 1495 1496 /* 1497 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG 1498 * set. If the object containing the page is locked and the page is 1499 * not VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set. 1500 */ 1501 if ((m->aflags & PGA_WRITEABLE) == 0) 1502 return; 1503 moea64_clear_bit(mmu, m, LPTE_CHG); 1504 } 1505 1506 /* 1507 * Clear the write and modified bits in each of the given page's mappings. 1508 */ 1509 void 1510 moea64_remove_write(mmu_t mmu, vm_page_t m) 1511 { 1512 struct pvo_entry *pvo; 1513 uintptr_t pt; 1514 pmap_t pmap; 1515 uint64_t lo = 0; 1516 1517 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1518 ("moea64_remove_write: page %p is not managed", m)); 1519 1520 /* 1521 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by 1522 * another thread while the object is locked. Thus, if PGA_WRITEABLE 1523 * is clear, no page table entries need updating. 1524 */ 1525 VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED); 1526 if ((m->oflags & VPO_BUSY) == 0 && 1527 (m->aflags & PGA_WRITEABLE) == 0) 1528 return; 1529 powerpc_sync(); 1530 LOCK_TABLE_RD(); 1531 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 1532 pmap = pvo->pvo_pmap; 1533 PMAP_LOCK(pmap); 1534 if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) { 1535 pt = MOEA64_PVO_TO_PTE(mmu, pvo); 1536 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP; 1537 pvo->pvo_pte.lpte.pte_lo |= LPTE_BR; 1538 if (pt != -1) { 1539 MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte); 1540 lo |= pvo->pvo_pte.lpte.pte_lo; 1541 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG; 1542 MOEA64_PTE_CHANGE(mmu, pt, 1543 &pvo->pvo_pte.lpte, pvo->pvo_vpn); 1544 if (pvo->pvo_pmap == kernel_pmap) 1545 isync(); 1546 } 1547 } 1548 if ((lo & LPTE_CHG) != 0) 1549 vm_page_dirty(m); 1550 PMAP_UNLOCK(pmap); 1551 } 1552 UNLOCK_TABLE_RD(); 1553 vm_page_aflag_clear(m, PGA_WRITEABLE); 1554 } 1555 1556 /* 1557 * moea64_ts_referenced: 1558 * 1559 * Return a count of reference bits for a page, clearing those bits. 1560 * It is not necessary for every reference bit to be cleared, but it 1561 * is necessary that 0 only be returned when there are truly no 1562 * reference bits set. 1563 * 1564 * XXX: The exact number of bits to check and clear is a matter that 1565 * should be tested and standardized at some point in the future for 1566 * optimal aging of shared pages. 1567 */ 1568 int 1569 moea64_ts_referenced(mmu_t mmu, vm_page_t m) 1570 { 1571 1572 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1573 ("moea64_ts_referenced: page %p is not managed", m)); 1574 return (moea64_clear_bit(mmu, m, LPTE_REF)); 1575 } 1576 1577 /* 1578 * Modify the WIMG settings of all mappings for a page. 1579 */ 1580 void 1581 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma) 1582 { 1583 struct pvo_entry *pvo; 1584 struct pvo_head *pvo_head; 1585 uintptr_t pt; 1586 pmap_t pmap; 1587 uint64_t lo; 1588 1589 if ((m->oflags & VPO_UNMANAGED) != 0) { 1590 m->md.mdpg_cache_attrs = ma; 1591 return; 1592 } 1593 1594 pvo_head = vm_page_to_pvoh(m); 1595 lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma); 1596 LOCK_TABLE_RD(); 1597 LIST_FOREACH(pvo, pvo_head, pvo_vlink) { 1598 pmap = pvo->pvo_pmap; 1599 PMAP_LOCK(pmap); 1600 pt = MOEA64_PVO_TO_PTE(mmu, pvo); 1601 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG; 1602 pvo->pvo_pte.lpte.pte_lo |= lo; 1603 if (pt != -1) { 1604 MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte, 1605 pvo->pvo_vpn); 1606 if (pvo->pvo_pmap == kernel_pmap) 1607 isync(); 1608 } 1609 PMAP_UNLOCK(pmap); 1610 } 1611 UNLOCK_TABLE_RD(); 1612 m->md.mdpg_cache_attrs = ma; 1613 } 1614 1615 /* 1616 * Map a wired page into kernel virtual address space. 1617 */ 1618 void 1619 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma) 1620 { 1621 uint64_t pte_lo; 1622 int error; 1623 1624 pte_lo = moea64_calc_wimg(pa, ma); 1625 1626 LOCK_TABLE_WR(); 1627 PMAP_LOCK(kernel_pmap); 1628 error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone, 1629 NULL, va, pa, pte_lo, PVO_WIRED); 1630 PMAP_UNLOCK(kernel_pmap); 1631 UNLOCK_TABLE_WR(); 1632 1633 if (error != 0 && error != ENOENT) 1634 panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va, 1635 pa, error); 1636 } 1637 1638 void 1639 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa) 1640 { 1641 1642 moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT); 1643 } 1644 1645 /* 1646 * Extract the physical page address associated with the given kernel virtual 1647 * address. 1648 */ 1649 vm_paddr_t 1650 moea64_kextract(mmu_t mmu, vm_offset_t va) 1651 { 1652 struct pvo_entry *pvo; 1653 vm_paddr_t pa; 1654 1655 /* 1656 * Shortcut the direct-mapped case when applicable. We never put 1657 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS. 1658 */ 1659 if (va < VM_MIN_KERNEL_ADDRESS) 1660 return (va); 1661 1662 PMAP_LOCK(kernel_pmap); 1663 pvo = moea64_pvo_find_va(kernel_pmap, va); 1664 KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR, 1665 va)); 1666 pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo)); 1667 PMAP_UNLOCK(kernel_pmap); 1668 return (pa); 1669 } 1670 1671 /* 1672 * Remove a wired page from kernel virtual address space. 1673 */ 1674 void 1675 moea64_kremove(mmu_t mmu, vm_offset_t va) 1676 { 1677 moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE); 1678 } 1679 1680 /* 1681 * Map a range of physical addresses into kernel virtual address space. 1682 * 1683 * The value passed in *virt is a suggested virtual address for the mapping. 1684 * Architectures which can support a direct-mapped physical to virtual region 1685 * can return the appropriate address within that region, leaving '*virt' 1686 * unchanged. We cannot and therefore do not; *virt is updated with the 1687 * first usable address after the mapped region. 1688 */ 1689 vm_offset_t 1690 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start, 1691 vm_paddr_t pa_end, int prot) 1692 { 1693 vm_offset_t sva, va; 1694 1695 sva = *virt; 1696 va = sva; 1697 for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE) 1698 moea64_kenter(mmu, va, pa_start); 1699 *virt = va; 1700 1701 return (sva); 1702 } 1703 1704 /* 1705 * Returns true if the pmap's pv is one of the first 1706 * 16 pvs linked to from this page. This count may 1707 * be changed upwards or downwards in the future; it 1708 * is only necessary that true be returned for a small 1709 * subset of pmaps for proper page aging. 1710 */ 1711 boolean_t 1712 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m) 1713 { 1714 int loops; 1715 struct pvo_entry *pvo; 1716 boolean_t rv; 1717 1718 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1719 ("moea64_page_exists_quick: page %p is not managed", m)); 1720 loops = 0; 1721 rv = FALSE; 1722 LOCK_TABLE_RD(); 1723 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 1724 if (pvo->pvo_pmap == pmap) { 1725 rv = TRUE; 1726 break; 1727 } 1728 if (++loops >= 16) 1729 break; 1730 } 1731 UNLOCK_TABLE_RD(); 1732 return (rv); 1733 } 1734 1735 /* 1736 * Return the number of managed mappings to the given physical page 1737 * that are wired. 1738 */ 1739 int 1740 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m) 1741 { 1742 struct pvo_entry *pvo; 1743 int count; 1744 1745 count = 0; 1746 if ((m->oflags & VPO_UNMANAGED) != 0) 1747 return (count); 1748 LOCK_TABLE_RD(); 1749 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) 1750 if ((pvo->pvo_vaddr & PVO_WIRED) != 0) 1751 count++; 1752 UNLOCK_TABLE_RD(); 1753 return (count); 1754 } 1755 1756 static uintptr_t moea64_vsidcontext; 1757 1758 uintptr_t 1759 moea64_get_unique_vsid(void) { 1760 u_int entropy; 1761 register_t hash; 1762 uint32_t mask; 1763 int i; 1764 1765 entropy = 0; 1766 __asm __volatile("mftb %0" : "=r"(entropy)); 1767 1768 mtx_lock(&moea64_slb_mutex); 1769 for (i = 0; i < NVSIDS; i += VSID_NBPW) { 1770 u_int n; 1771 1772 /* 1773 * Create a new value by mutiplying by a prime and adding in 1774 * entropy from the timebase register. This is to make the 1775 * VSID more random so that the PT hash function collides 1776 * less often. (Note that the prime casues gcc to do shifts 1777 * instead of a multiply.) 1778 */ 1779 moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy; 1780 hash = moea64_vsidcontext & (NVSIDS - 1); 1781 if (hash == 0) /* 0 is special, avoid it */ 1782 continue; 1783 n = hash >> 5; 1784 mask = 1 << (hash & (VSID_NBPW - 1)); 1785 hash = (moea64_vsidcontext & VSID_HASHMASK); 1786 if (moea64_vsid_bitmap[n] & mask) { /* collision? */ 1787 /* anything free in this bucket? */ 1788 if (moea64_vsid_bitmap[n] == 0xffffffff) { 1789 entropy = (moea64_vsidcontext >> 20); 1790 continue; 1791 } 1792 i = ffs(~moea64_vsid_bitmap[n]) - 1; 1793 mask = 1 << i; 1794 hash &= VSID_HASHMASK & ~(VSID_NBPW - 1); 1795 hash |= i; 1796 } 1797 KASSERT(!(moea64_vsid_bitmap[n] & mask), 1798 ("Allocating in-use VSID %#zx\n", hash)); 1799 moea64_vsid_bitmap[n] |= mask; 1800 mtx_unlock(&moea64_slb_mutex); 1801 return (hash); 1802 } 1803 1804 mtx_unlock(&moea64_slb_mutex); 1805 panic("%s: out of segments",__func__); 1806 } 1807 1808 #ifdef __powerpc64__ 1809 void 1810 moea64_pinit(mmu_t mmu, pmap_t pmap) 1811 { 1812 PMAP_LOCK_INIT(pmap); 1813 RB_INIT(&pmap->pmap_pvo); 1814 1815 pmap->pm_slb_tree_root = slb_alloc_tree(); 1816 pmap->pm_slb = slb_alloc_user_cache(); 1817 pmap->pm_slb_len = 0; 1818 } 1819 #else 1820 void 1821 moea64_pinit(mmu_t mmu, pmap_t pmap) 1822 { 1823 int i; 1824 uint32_t hash; 1825 1826 PMAP_LOCK_INIT(pmap); 1827 RB_INIT(&pmap->pmap_pvo); 1828 1829 if (pmap_bootstrapped) 1830 pmap->pmap_phys = (pmap_t)moea64_kextract(mmu, 1831 (vm_offset_t)pmap); 1832 else 1833 pmap->pmap_phys = pmap; 1834 1835 /* 1836 * Allocate some segment registers for this pmap. 1837 */ 1838 hash = moea64_get_unique_vsid(); 1839 1840 for (i = 0; i < 16; i++) 1841 pmap->pm_sr[i] = VSID_MAKE(i, hash); 1842 1843 KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0")); 1844 } 1845 #endif 1846 1847 /* 1848 * Initialize the pmap associated with process 0. 1849 */ 1850 void 1851 moea64_pinit0(mmu_t mmu, pmap_t pm) 1852 { 1853 moea64_pinit(mmu, pm); 1854 bzero(&pm->pm_stats, sizeof(pm->pm_stats)); 1855 } 1856 1857 /* 1858 * Set the physical protection on the specified range of this map as requested. 1859 */ 1860 static void 1861 moea64_pvo_protect(mmu_t mmu, pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot) 1862 { 1863 uintptr_t pt; 1864 struct vm_page *pg; 1865 uint64_t oldlo; 1866 1867 PMAP_LOCK_ASSERT(pm, MA_OWNED); 1868 1869 /* 1870 * Grab the PTE pointer before we diddle with the cached PTE 1871 * copy. 1872 */ 1873 pt = MOEA64_PVO_TO_PTE(mmu, pvo); 1874 1875 /* 1876 * Change the protection of the page. 1877 */ 1878 oldlo = pvo->pvo_pte.lpte.pte_lo; 1879 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP; 1880 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC; 1881 if ((prot & VM_PROT_EXECUTE) == 0) 1882 pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC; 1883 if (prot & VM_PROT_WRITE) 1884 pvo->pvo_pte.lpte.pte_lo |= LPTE_BW; 1885 else 1886 pvo->pvo_pte.lpte.pte_lo |= LPTE_BR; 1887 1888 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN); 1889 1890 /* 1891 * If the PVO is in the page table, update that pte as well. 1892 */ 1893 if (pt != -1) 1894 MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte, 1895 pvo->pvo_vpn); 1896 if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) && 1897 (pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { 1898 if ((pg->oflags & VPO_UNMANAGED) == 0) 1899 vm_page_aflag_set(pg, PGA_EXECUTABLE); 1900 moea64_syncicache(mmu, pm, PVO_VADDR(pvo), 1901 pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, PAGE_SIZE); 1902 } 1903 1904 /* 1905 * Update vm about the REF/CHG bits if the page is managed and we have 1906 * removed write access. 1907 */ 1908 if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && 1909 (oldlo & LPTE_PP) != LPTE_BR && !(prot && VM_PROT_WRITE)) { 1910 if (pg != NULL) { 1911 if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG) 1912 vm_page_dirty(pg); 1913 if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF) 1914 vm_page_aflag_set(pg, PGA_REFERENCED); 1915 } 1916 } 1917 } 1918 1919 void 1920 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva, 1921 vm_prot_t prot) 1922 { 1923 struct pvo_entry *pvo, *tpvo, key; 1924 1925 CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, 1926 sva, eva, prot); 1927 1928 KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap, 1929 ("moea64_protect: non current pmap")); 1930 1931 if ((prot & VM_PROT_READ) == VM_PROT_NONE) { 1932 moea64_remove(mmu, pm, sva, eva); 1933 return; 1934 } 1935 1936 LOCK_TABLE_RD(); 1937 PMAP_LOCK(pm); 1938 key.pvo_vaddr = sva; 1939 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 1940 pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { 1941 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); 1942 moea64_pvo_protect(mmu, pm, pvo, prot); 1943 } 1944 UNLOCK_TABLE_RD(); 1945 PMAP_UNLOCK(pm); 1946 } 1947 1948 /* 1949 * Map a list of wired pages into kernel virtual address space. This is 1950 * intended for temporary mappings which do not need page modification or 1951 * references recorded. Existing mappings in the region are overwritten. 1952 */ 1953 void 1954 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count) 1955 { 1956 while (count-- > 0) { 1957 moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m)); 1958 va += PAGE_SIZE; 1959 m++; 1960 } 1961 } 1962 1963 /* 1964 * Remove page mappings from kernel virtual address space. Intended for 1965 * temporary mappings entered by moea64_qenter. 1966 */ 1967 void 1968 moea64_qremove(mmu_t mmu, vm_offset_t va, int count) 1969 { 1970 while (count-- > 0) { 1971 moea64_kremove(mmu, va); 1972 va += PAGE_SIZE; 1973 } 1974 } 1975 1976 void 1977 moea64_release_vsid(uint64_t vsid) 1978 { 1979 int idx, mask; 1980 1981 mtx_lock(&moea64_slb_mutex); 1982 idx = vsid & (NVSIDS-1); 1983 mask = 1 << (idx % VSID_NBPW); 1984 idx /= VSID_NBPW; 1985 KASSERT(moea64_vsid_bitmap[idx] & mask, 1986 ("Freeing unallocated VSID %#jx", vsid)); 1987 moea64_vsid_bitmap[idx] &= ~mask; 1988 mtx_unlock(&moea64_slb_mutex); 1989 } 1990 1991 1992 void 1993 moea64_release(mmu_t mmu, pmap_t pmap) 1994 { 1995 1996 /* 1997 * Free segment registers' VSIDs 1998 */ 1999 #ifdef __powerpc64__ 2000 slb_free_tree(pmap); 2001 slb_free_user_cache(pmap->pm_slb); 2002 #else 2003 KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0")); 2004 2005 moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0])); 2006 #endif 2007 2008 PMAP_LOCK_DESTROY(pmap); 2009 } 2010 2011 /* 2012 * Remove all pages mapped by the specified pmap 2013 */ 2014 void 2015 moea64_remove_pages(mmu_t mmu, pmap_t pm) 2016 { 2017 struct pvo_entry *pvo, *tpvo; 2018 2019 LOCK_TABLE_WR(); 2020 PMAP_LOCK(pm); 2021 RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) { 2022 if (!(pvo->pvo_vaddr & PVO_WIRED)) 2023 moea64_pvo_remove(mmu, pvo); 2024 } 2025 UNLOCK_TABLE_WR(); 2026 PMAP_UNLOCK(pm); 2027 } 2028 2029 /* 2030 * Remove the given range of addresses from the specified map. 2031 */ 2032 void 2033 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva) 2034 { 2035 struct pvo_entry *pvo, *tpvo, key; 2036 2037 /* 2038 * Perform an unsynchronized read. This is, however, safe. 2039 */ 2040 if (pm->pm_stats.resident_count == 0) 2041 return; 2042 2043 LOCK_TABLE_WR(); 2044 PMAP_LOCK(pm); 2045 key.pvo_vaddr = sva; 2046 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 2047 pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { 2048 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); 2049 moea64_pvo_remove(mmu, pvo); 2050 } 2051 UNLOCK_TABLE_WR(); 2052 PMAP_UNLOCK(pm); 2053 } 2054 2055 /* 2056 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove() 2057 * will reflect changes in pte's back to the vm_page. 2058 */ 2059 void 2060 moea64_remove_all(mmu_t mmu, vm_page_t m) 2061 { 2062 struct pvo_entry *pvo, *next_pvo; 2063 pmap_t pmap; 2064 2065 LOCK_TABLE_WR(); 2066 LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) { 2067 pmap = pvo->pvo_pmap; 2068 PMAP_LOCK(pmap); 2069 moea64_pvo_remove(mmu, pvo); 2070 PMAP_UNLOCK(pmap); 2071 } 2072 UNLOCK_TABLE_WR(); 2073 if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m)) 2074 vm_page_dirty(m); 2075 vm_page_aflag_clear(m, PGA_WRITEABLE); 2076 vm_page_aflag_clear(m, PGA_EXECUTABLE); 2077 } 2078 2079 /* 2080 * Allocate a physical page of memory directly from the phys_avail map. 2081 * Can only be called from moea64_bootstrap before avail start and end are 2082 * calculated. 2083 */ 2084 vm_offset_t 2085 moea64_bootstrap_alloc(vm_size_t size, u_int align) 2086 { 2087 vm_offset_t s, e; 2088 int i, j; 2089 2090 size = round_page(size); 2091 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 2092 if (align != 0) 2093 s = (phys_avail[i] + align - 1) & ~(align - 1); 2094 else 2095 s = phys_avail[i]; 2096 e = s + size; 2097 2098 if (s < phys_avail[i] || e > phys_avail[i + 1]) 2099 continue; 2100 2101 if (s + size > platform_real_maxaddr()) 2102 continue; 2103 2104 if (s == phys_avail[i]) { 2105 phys_avail[i] += size; 2106 } else if (e == phys_avail[i + 1]) { 2107 phys_avail[i + 1] -= size; 2108 } else { 2109 for (j = phys_avail_count * 2; j > i; j -= 2) { 2110 phys_avail[j] = phys_avail[j - 2]; 2111 phys_avail[j + 1] = phys_avail[j - 1]; 2112 } 2113 2114 phys_avail[i + 3] = phys_avail[i + 1]; 2115 phys_avail[i + 1] = s; 2116 phys_avail[i + 2] = e; 2117 phys_avail_count++; 2118 } 2119 2120 return (s); 2121 } 2122 panic("moea64_bootstrap_alloc: could not allocate memory"); 2123 } 2124 2125 static int 2126 moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone, 2127 struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa, 2128 uint64_t pte_lo, int flags) 2129 { 2130 struct pvo_entry *pvo; 2131 uint64_t vsid; 2132 int first; 2133 u_int ptegidx; 2134 int i; 2135 int bootstrap; 2136 2137 /* 2138 * One nasty thing that can happen here is that the UMA calls to 2139 * allocate new PVOs need to map more memory, which calls pvo_enter(), 2140 * which calls UMA... 2141 * 2142 * We break the loop by detecting recursion and allocating out of 2143 * the bootstrap pool. 2144 */ 2145 2146 first = 0; 2147 bootstrap = (flags & PVO_BOOTSTRAP); 2148 2149 if (!moea64_initialized) 2150 bootstrap = 1; 2151 2152 PMAP_LOCK_ASSERT(pm, MA_OWNED); 2153 rw_assert(&moea64_table_lock, RA_WLOCKED); 2154 2155 /* 2156 * Compute the PTE Group index. 2157 */ 2158 va &= ~ADDR_POFF; 2159 vsid = va_to_vsid(pm, va); 2160 ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE); 2161 2162 /* 2163 * Remove any existing mapping for this page. Reuse the pvo entry if 2164 * there is a mapping. 2165 */ 2166 moea64_pvo_enter_calls++; 2167 2168 LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) { 2169 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) { 2170 if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa && 2171 (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP)) 2172 == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) { 2173 if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) { 2174 /* Re-insert if spilled */ 2175 i = MOEA64_PTE_INSERT(mmu, ptegidx, 2176 &pvo->pvo_pte.lpte); 2177 if (i >= 0) 2178 PVO_PTEGIDX_SET(pvo, i); 2179 moea64_pte_overflow--; 2180 } 2181 return (0); 2182 } 2183 moea64_pvo_remove(mmu, pvo); 2184 break; 2185 } 2186 } 2187 2188 /* 2189 * If we aren't overwriting a mapping, try to allocate. 2190 */ 2191 if (bootstrap) { 2192 if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) { 2193 panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd", 2194 moea64_bpvo_pool_index, BPVO_POOL_SIZE, 2195 BPVO_POOL_SIZE * sizeof(struct pvo_entry)); 2196 } 2197 pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index]; 2198 moea64_bpvo_pool_index++; 2199 bootstrap = 1; 2200 } else { 2201 pvo = uma_zalloc(zone, M_NOWAIT); 2202 } 2203 2204 if (pvo == NULL) 2205 return (ENOMEM); 2206 2207 moea64_pvo_entries++; 2208 pvo->pvo_vaddr = va; 2209 pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT) 2210 | (vsid << 16); 2211 pvo->pvo_pmap = pm; 2212 LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink); 2213 pvo->pvo_vaddr &= ~ADDR_POFF; 2214 2215 if (flags & PVO_WIRED) 2216 pvo->pvo_vaddr |= PVO_WIRED; 2217 if (pvo_head != NULL) 2218 pvo->pvo_vaddr |= PVO_MANAGED; 2219 if (bootstrap) 2220 pvo->pvo_vaddr |= PVO_BOOTSTRAP; 2221 if (flags & PVO_LARGE) 2222 pvo->pvo_vaddr |= PVO_LARGE; 2223 2224 moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va, 2225 (uint64_t)(pa) | pte_lo, flags); 2226 2227 /* 2228 * Add to pmap list 2229 */ 2230 RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo); 2231 2232 /* 2233 * Remember if the list was empty and therefore will be the first 2234 * item. 2235 */ 2236 if (pvo_head != NULL) { 2237 if (LIST_FIRST(pvo_head) == NULL) 2238 first = 1; 2239 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink); 2240 } 2241 2242 if (pvo->pvo_vaddr & PVO_WIRED) { 2243 pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED; 2244 pm->pm_stats.wired_count++; 2245 } 2246 pm->pm_stats.resident_count++; 2247 2248 /* 2249 * We hope this succeeds but it isn't required. 2250 */ 2251 i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte); 2252 if (i >= 0) { 2253 PVO_PTEGIDX_SET(pvo, i); 2254 } else { 2255 panic("moea64_pvo_enter: overflow"); 2256 moea64_pte_overflow++; 2257 } 2258 2259 if (pm == kernel_pmap) 2260 isync(); 2261 2262 #ifdef __powerpc64__ 2263 /* 2264 * Make sure all our bootstrap mappings are in the SLB as soon 2265 * as virtual memory is switched on. 2266 */ 2267 if (!pmap_bootstrapped) 2268 moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE); 2269 #endif 2270 2271 return (first ? ENOENT : 0); 2272 } 2273 2274 static void 2275 moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo) 2276 { 2277 struct vm_page *pg; 2278 uintptr_t pt; 2279 2280 PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); 2281 rw_assert(&moea64_table_lock, RA_WLOCKED); 2282 2283 /* 2284 * If there is an active pte entry, we need to deactivate it (and 2285 * save the ref & cfg bits). 2286 */ 2287 pt = MOEA64_PVO_TO_PTE(mmu, pvo); 2288 if (pt != -1) { 2289 MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn); 2290 PVO_PTEGIDX_CLR(pvo); 2291 } else { 2292 moea64_pte_overflow--; 2293 } 2294 2295 /* 2296 * Update our statistics. 2297 */ 2298 pvo->pvo_pmap->pm_stats.resident_count--; 2299 if (pvo->pvo_vaddr & PVO_WIRED) 2300 pvo->pvo_pmap->pm_stats.wired_count--; 2301 2302 /* 2303 * Remove this PVO from the pmap list. 2304 */ 2305 RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo); 2306 2307 /* 2308 * Remove this from the overflow list and return it to the pool 2309 * if we aren't going to reuse it. 2310 */ 2311 LIST_REMOVE(pvo, pvo_olink); 2312 2313 /* 2314 * Update vm about the REF/CHG bits if the page is managed. 2315 */ 2316 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN); 2317 2318 if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && pg != NULL) { 2319 LIST_REMOVE(pvo, pvo_vlink); 2320 if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) { 2321 if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG) 2322 vm_page_dirty(pg); 2323 if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF) 2324 vm_page_aflag_set(pg, PGA_REFERENCED); 2325 if (LIST_EMPTY(vm_page_to_pvoh(pg))) 2326 vm_page_aflag_clear(pg, PGA_WRITEABLE); 2327 } 2328 if (LIST_EMPTY(vm_page_to_pvoh(pg))) 2329 vm_page_aflag_clear(pg, PGA_EXECUTABLE); 2330 } 2331 2332 moea64_pvo_entries--; 2333 moea64_pvo_remove_calls++; 2334 2335 if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP)) 2336 uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone : 2337 moea64_upvo_zone, pvo); 2338 } 2339 2340 static struct pvo_entry * 2341 moea64_pvo_find_va(pmap_t pm, vm_offset_t va) 2342 { 2343 struct pvo_entry key; 2344 2345 key.pvo_vaddr = va & ~ADDR_POFF; 2346 return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key)); 2347 } 2348 2349 static boolean_t 2350 moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit) 2351 { 2352 struct pvo_entry *pvo; 2353 uintptr_t pt; 2354 2355 LOCK_TABLE_RD(); 2356 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2357 /* 2358 * See if we saved the bit off. If so, return success. 2359 */ 2360 if (pvo->pvo_pte.lpte.pte_lo & ptebit) { 2361 UNLOCK_TABLE_RD(); 2362 return (TRUE); 2363 } 2364 } 2365 2366 /* 2367 * No luck, now go through the hard part of looking at the PTEs 2368 * themselves. Sync so that any pending REF/CHG bits are flushed to 2369 * the PTEs. 2370 */ 2371 powerpc_sync(); 2372 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2373 2374 /* 2375 * See if this pvo has a valid PTE. if so, fetch the 2376 * REF/CHG bits from the valid PTE. If the appropriate 2377 * ptebit is set, return success. 2378 */ 2379 PMAP_LOCK(pvo->pvo_pmap); 2380 pt = MOEA64_PVO_TO_PTE(mmu, pvo); 2381 if (pt != -1) { 2382 MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte); 2383 if (pvo->pvo_pte.lpte.pte_lo & ptebit) { 2384 PMAP_UNLOCK(pvo->pvo_pmap); 2385 UNLOCK_TABLE_RD(); 2386 return (TRUE); 2387 } 2388 } 2389 PMAP_UNLOCK(pvo->pvo_pmap); 2390 } 2391 2392 UNLOCK_TABLE_RD(); 2393 return (FALSE); 2394 } 2395 2396 static u_int 2397 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit) 2398 { 2399 u_int count; 2400 struct pvo_entry *pvo; 2401 uintptr_t pt; 2402 2403 /* 2404 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so 2405 * we can reset the right ones). note that since the pvo entries and 2406 * list heads are accessed via BAT0 and are never placed in the page 2407 * table, we don't have to worry about further accesses setting the 2408 * REF/CHG bits. 2409 */ 2410 powerpc_sync(); 2411 2412 /* 2413 * For each pvo entry, clear the pvo's ptebit. If this pvo has a 2414 * valid pte clear the ptebit from the valid pte. 2415 */ 2416 count = 0; 2417 LOCK_TABLE_RD(); 2418 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2419 PMAP_LOCK(pvo->pvo_pmap); 2420 pt = MOEA64_PVO_TO_PTE(mmu, pvo); 2421 if (pt != -1) { 2422 MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte); 2423 if (pvo->pvo_pte.lpte.pte_lo & ptebit) { 2424 count++; 2425 MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte, 2426 pvo->pvo_vpn, ptebit); 2427 } 2428 } 2429 pvo->pvo_pte.lpte.pte_lo &= ~ptebit; 2430 PMAP_UNLOCK(pvo->pvo_pmap); 2431 } 2432 2433 UNLOCK_TABLE_RD(); 2434 return (count); 2435 } 2436 2437 boolean_t 2438 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 2439 { 2440 struct pvo_entry *pvo, key; 2441 vm_offset_t ppa; 2442 int error = 0; 2443 2444 PMAP_LOCK(kernel_pmap); 2445 key.pvo_vaddr = ppa = pa & ~ADDR_POFF; 2446 for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key); 2447 ppa < pa + size; ppa += PAGE_SIZE, 2448 pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) { 2449 if (pvo == NULL || 2450 (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) { 2451 error = EFAULT; 2452 break; 2453 } 2454 } 2455 PMAP_UNLOCK(kernel_pmap); 2456 2457 return (error); 2458 } 2459 2460 /* 2461 * Map a set of physical memory pages into the kernel virtual 2462 * address space. Return a pointer to where it is mapped. This 2463 * routine is intended to be used for mapping device memory, 2464 * NOT real memory. 2465 */ 2466 void * 2467 moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma) 2468 { 2469 vm_offset_t va, tmpva, ppa, offset; 2470 2471 ppa = trunc_page(pa); 2472 offset = pa & PAGE_MASK; 2473 size = roundup2(offset + size, PAGE_SIZE); 2474 2475 va = kmem_alloc_nofault(kernel_map, size); 2476 2477 if (!va) 2478 panic("moea64_mapdev: Couldn't alloc kernel virtual memory"); 2479 2480 for (tmpva = va; size > 0;) { 2481 moea64_kenter_attr(mmu, tmpva, ppa, ma); 2482 size -= PAGE_SIZE; 2483 tmpva += PAGE_SIZE; 2484 ppa += PAGE_SIZE; 2485 } 2486 2487 return ((void *)(va + offset)); 2488 } 2489 2490 void * 2491 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 2492 { 2493 2494 return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT); 2495 } 2496 2497 void 2498 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size) 2499 { 2500 vm_offset_t base, offset; 2501 2502 base = trunc_page(va); 2503 offset = va & PAGE_MASK; 2504 size = roundup2(offset + size, PAGE_SIZE); 2505 2506 kmem_free(kernel_map, base, size); 2507 } 2508 2509 void 2510 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz) 2511 { 2512 struct pvo_entry *pvo; 2513 vm_offset_t lim; 2514 vm_paddr_t pa; 2515 vm_size_t len; 2516 2517 PMAP_LOCK(pm); 2518 while (sz > 0) { 2519 lim = round_page(va); 2520 len = MIN(lim - va, sz); 2521 pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF); 2522 if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) { 2523 pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | 2524 (va & ADDR_POFF); 2525 moea64_syncicache(mmu, pm, va, pa, len); 2526 } 2527 va += len; 2528 sz -= len; 2529 } 2530 PMAP_UNLOCK(pm); 2531 } 2532