xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision 732a02b4e77866604a120a275c082bb6221bd2ff)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008-2015 Nathan Whitehorn
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * Manages physical address maps.
34  *
35  * Since the information managed by this module is also stored by the
36  * logical address mapping module, this module may throw away valid virtual
37  * to physical mappings at almost any time.  However, invalidations of
38  * mappings must be done as requested.
39  *
40  * In order to cope with hardware architectures which make virtual to
41  * physical map invalidates expensive, this module may delay invalidate
42  * reduced protection operations until such time as they are actually
43  * necessary.  This module is given full information as to which processors
44  * are currently using which maps, and to when physical maps must be made
45  * correct.
46  */
47 
48 #include "opt_kstack_pages.h"
49 
50 #include <sys/param.h>
51 #include <sys/kernel.h>
52 #include <sys/conf.h>
53 #include <sys/queue.h>
54 #include <sys/cpuset.h>
55 #include <sys/kerneldump.h>
56 #include <sys/ktr.h>
57 #include <sys/lock.h>
58 #include <sys/msgbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/mutex.h>
61 #include <sys/proc.h>
62 #include <sys/rwlock.h>
63 #include <sys/sched.h>
64 #include <sys/sysctl.h>
65 #include <sys/systm.h>
66 #include <sys/vmmeter.h>
67 #include <sys/smp.h>
68 #include <sys/reboot.h>
69 
70 #include <sys/kdb.h>
71 
72 #include <dev/ofw/openfirm.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_param.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_phys.h>
79 #include <vm/vm_map.h>
80 #include <vm/vm_object.h>
81 #include <vm/vm_extern.h>
82 #include <vm/vm_pageout.h>
83 #include <vm/uma.h>
84 
85 #include <machine/_inttypes.h>
86 #include <machine/cpu.h>
87 #include <machine/platform.h>
88 #include <machine/frame.h>
89 #include <machine/md_var.h>
90 #include <machine/psl.h>
91 #include <machine/bat.h>
92 #include <machine/hid.h>
93 #include <machine/pte.h>
94 #include <machine/sr.h>
95 #include <machine/trap.h>
96 #include <machine/mmuvar.h>
97 
98 #include "mmu_oea64.h"
99 #include "mmu_if.h"
100 #include "moea64_if.h"
101 
102 void moea64_release_vsid(uint64_t vsid);
103 uintptr_t moea64_get_unique_vsid(void);
104 
105 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
106 #define ENABLE_TRANS(msr)	mtmsr(msr)
107 
108 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
109 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
110 #define	VSID_HASH_MASK		0x0000007fffffffffULL
111 
112 /*
113  * Locking semantics:
114  *
115  * There are two locks of interest: the page locks and the pmap locks, which
116  * protect their individual PVO lists and are locked in that order. The contents
117  * of all PVO entries are protected by the locks of their respective pmaps.
118  * The pmap of any PVO is guaranteed not to change so long as the PVO is linked
119  * into any list.
120  *
121  */
122 
123 #define PV_LOCK_PER_DOM	(PA_LOCK_COUNT * 3)
124 #define PV_LOCK_COUNT	(PV_LOCK_PER_DOM * MAXMEMDOM)
125 static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
126 
127 /*
128  * Cheap NUMA-izing of the pv locks, to reduce contention across domains.
129  * NUMA domains on POWER9 appear to be indexed as sparse memory spaces, with the
130  * index at (N << 45).
131  */
132 #ifdef __powerpc64__
133 #define PV_LOCK_IDX(pa)	(pa_index(pa) % PV_LOCK_PER_DOM + \
134 			(((pa) >> 45) % MAXMEMDOM) * PV_LOCK_PER_DOM)
135 #else
136 #define PV_LOCK_IDX(pa)	(pa_index(pa) % PV_LOCK_COUNT)
137 #endif
138 #define PV_LOCKPTR(pa)	((struct mtx *)(&pv_lock[PV_LOCK_IDX(pa)]))
139 #define PV_LOCK(pa)		mtx_lock(PV_LOCKPTR(pa))
140 #define PV_UNLOCK(pa)		mtx_unlock(PV_LOCKPTR(pa))
141 #define PV_LOCKASSERT(pa) 	mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
142 #define PV_PAGE_LOCK(m)		PV_LOCK(VM_PAGE_TO_PHYS(m))
143 #define PV_PAGE_UNLOCK(m)	PV_UNLOCK(VM_PAGE_TO_PHYS(m))
144 #define PV_PAGE_LOCKASSERT(m)	PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
145 
146 struct ofw_map {
147 	cell_t	om_va;
148 	cell_t	om_len;
149 	uint64_t om_pa;
150 	cell_t	om_mode;
151 };
152 
153 extern unsigned char _etext[];
154 extern unsigned char _end[];
155 
156 extern void *slbtrap, *slbtrapend;
157 
158 /*
159  * Map of physical memory regions.
160  */
161 static struct	mem_region *regions;
162 static struct	mem_region *pregions;
163 static struct	numa_mem_region *numa_pregions;
164 static u_int	phys_avail_count;
165 static int	regions_sz, pregions_sz, numapregions_sz;
166 
167 extern void bs_remap_earlyboot(void);
168 
169 /*
170  * Lock for the SLB tables.
171  */
172 struct mtx	moea64_slb_mutex;
173 
174 /*
175  * PTEG data.
176  */
177 u_long		moea64_pteg_count;
178 u_long		moea64_pteg_mask;
179 
180 /*
181  * PVO data.
182  */
183 
184 uma_zone_t	moea64_pvo_zone; /* zone for pvo entries */
185 
186 static struct	pvo_entry *moea64_bpvo_pool;
187 static int	moea64_bpvo_pool_index = 0;
188 static int	moea64_bpvo_pool_size = 0;
189 SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
190     &moea64_bpvo_pool_index, 0, "");
191 
192 #define	BPVO_POOL_SIZE	327680 /* Sensible historical default value */
193 #define	BPVO_POOL_EXPANSION_FACTOR	3
194 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
195 #ifdef __powerpc64__
196 #define	NVSIDS		(NPMAPS * 16)
197 #define VSID_HASHMASK	0xffffffffUL
198 #else
199 #define NVSIDS		NPMAPS
200 #define VSID_HASHMASK	0xfffffUL
201 #endif
202 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
203 
204 static boolean_t moea64_initialized = FALSE;
205 
206 #ifdef MOEA64_STATS
207 /*
208  * Statistics.
209  */
210 u_int	moea64_pte_valid = 0;
211 u_int	moea64_pte_overflow = 0;
212 u_int	moea64_pvo_entries = 0;
213 u_int	moea64_pvo_enter_calls = 0;
214 u_int	moea64_pvo_remove_calls = 0;
215 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
216     &moea64_pte_valid, 0, "");
217 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
218     &moea64_pte_overflow, 0, "");
219 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
220     &moea64_pvo_entries, 0, "");
221 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
222     &moea64_pvo_enter_calls, 0, "");
223 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
224     &moea64_pvo_remove_calls, 0, "");
225 #endif
226 
227 vm_offset_t	moea64_scratchpage_va[2];
228 struct pvo_entry *moea64_scratchpage_pvo[2];
229 struct	mtx	moea64_scratchpage_mtx;
230 
231 uint64_t 	moea64_large_page_mask = 0;
232 uint64_t	moea64_large_page_size = 0;
233 int		moea64_large_page_shift = 0;
234 
235 /*
236  * PVO calls.
237  */
238 static int	moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo,
239 		    struct pvo_head *pvo_head, struct pvo_entry **oldpvo);
240 static void	moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo);
241 static void	moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo);
242 static void	moea64_pvo_remove_from_page_locked(mmu_t mmu,
243 		    struct pvo_entry *pvo, vm_page_t m);
244 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
245 
246 /*
247  * Utility routines.
248  */
249 static boolean_t	moea64_query_bit(mmu_t, vm_page_t, uint64_t);
250 static u_int		moea64_clear_bit(mmu_t, vm_page_t, uint64_t);
251 static void		moea64_kremove(mmu_t, vm_offset_t);
252 static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
253 			    vm_paddr_t pa, vm_size_t sz);
254 static void		moea64_pmap_init_qpages(void);
255 
256 /*
257  * Kernel MMU interface
258  */
259 void moea64_clear_modify(mmu_t, vm_page_t);
260 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
261 void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
262     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
263 int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
264     u_int flags, int8_t psind);
265 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
266     vm_prot_t);
267 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
268 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
269 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
270 void moea64_init(mmu_t);
271 boolean_t moea64_is_modified(mmu_t, vm_page_t);
272 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
273 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
274 int moea64_ts_referenced(mmu_t, vm_page_t);
275 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
276 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
277 void moea64_page_init(mmu_t, vm_page_t);
278 int moea64_page_wired_mappings(mmu_t, vm_page_t);
279 void moea64_pinit(mmu_t, pmap_t);
280 void moea64_pinit0(mmu_t, pmap_t);
281 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
282 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
283 void moea64_qremove(mmu_t, vm_offset_t, int);
284 void moea64_release(mmu_t, pmap_t);
285 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
286 void moea64_remove_pages(mmu_t, pmap_t);
287 void moea64_remove_all(mmu_t, vm_page_t);
288 void moea64_remove_write(mmu_t, vm_page_t);
289 void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
290 void moea64_zero_page(mmu_t, vm_page_t);
291 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
292 void moea64_activate(mmu_t, struct thread *);
293 void moea64_deactivate(mmu_t, struct thread *);
294 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
295 void *moea64_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
296 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
297 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
298 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
299 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t ma);
300 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
301 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
302 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
303 void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz,
304     void **va);
305 void moea64_scan_init(mmu_t mmu);
306 vm_offset_t moea64_quick_enter_page(mmu_t mmu, vm_page_t m);
307 void moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr);
308 static int moea64_map_user_ptr(mmu_t mmu, pmap_t pm,
309     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
310 static int moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr,
311     int *is_user, vm_offset_t *decoded_addr);
312 static size_t moea64_scan_pmap(mmu_t mmu);
313 static void *moea64_dump_pmap_init(mmu_t mmu, unsigned blkpgs);
314 #ifdef __powerpc64__
315 static void moea64_page_array_startup(mmu_t, long);
316 #endif
317 
318 
319 static mmu_method_t moea64_methods[] = {
320 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
321 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
322 	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
323 	MMUMETHOD(mmu_enter,		moea64_enter),
324 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
325 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
326 	MMUMETHOD(mmu_extract,		moea64_extract),
327 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
328 	MMUMETHOD(mmu_init,		moea64_init),
329 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
330 	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
331 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
332 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
333 	MMUMETHOD(mmu_map,     		moea64_map),
334 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
335 	MMUMETHOD(mmu_page_init,	moea64_page_init),
336 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
337 	MMUMETHOD(mmu_pinit,		moea64_pinit),
338 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
339 	MMUMETHOD(mmu_protect,		moea64_protect),
340 	MMUMETHOD(mmu_qenter,		moea64_qenter),
341 	MMUMETHOD(mmu_qremove,		moea64_qremove),
342 	MMUMETHOD(mmu_release,		moea64_release),
343 	MMUMETHOD(mmu_remove,		moea64_remove),
344 	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
345 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
346 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
347 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
348 	MMUMETHOD(mmu_unwire,		moea64_unwire),
349 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
350 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
351 	MMUMETHOD(mmu_activate,		moea64_activate),
352 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
353 	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
354 	MMUMETHOD(mmu_quick_enter_page, moea64_quick_enter_page),
355 	MMUMETHOD(mmu_quick_remove_page, moea64_quick_remove_page),
356 #ifdef __powerpc64__
357 	MMUMETHOD(mmu_page_array_startup,	moea64_page_array_startup),
358 #endif
359 
360 	/* Internal interfaces */
361 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
362 	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
363 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
364 	MMUMETHOD(mmu_kextract,		moea64_kextract),
365 	MMUMETHOD(mmu_kenter,		moea64_kenter),
366 	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
367 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
368 	MMUMETHOD(mmu_scan_init,	moea64_scan_init),
369 	MMUMETHOD(mmu_scan_pmap,	moea64_scan_pmap),
370 	MMUMETHOD(mmu_dump_pmap_init,   moea64_dump_pmap_init),
371 	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
372 	MMUMETHOD(mmu_map_user_ptr,	moea64_map_user_ptr),
373 	MMUMETHOD(mmu_decode_kernel_ptr, moea64_decode_kernel_ptr),
374 
375 	{ 0, 0 }
376 };
377 
378 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
379 
380 static struct pvo_head *
381 vm_page_to_pvoh(vm_page_t m)
382 {
383 
384 	mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
385 	return (&m->md.mdpg_pvoh);
386 }
387 
388 static struct pvo_entry *
389 alloc_pvo_entry(int bootstrap)
390 {
391 	struct pvo_entry *pvo;
392 
393 	if (!moea64_initialized || bootstrap) {
394 		if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
395 			panic("%s: bpvo pool exhausted, index=%d, size=%d, bytes=%zd."
396 			    "Try setting machdep.moea64_bpvo_pool_size tunable",
397 			    __func__, moea64_bpvo_pool_index,
398 			    moea64_bpvo_pool_size,
399 			    moea64_bpvo_pool_size * sizeof(struct pvo_entry));
400 		}
401 		pvo = &moea64_bpvo_pool[
402 		    atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
403 		bzero(pvo, sizeof(*pvo));
404 		pvo->pvo_vaddr = PVO_BOOTSTRAP;
405 	} else
406 		pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT | M_ZERO);
407 
408 	return (pvo);
409 }
410 
411 
412 static void
413 init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
414 {
415 	uint64_t vsid;
416 	uint64_t hash;
417 	int shift;
418 
419 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
420 
421 	pvo->pvo_pmap = pmap;
422 	va &= ~ADDR_POFF;
423 	pvo->pvo_vaddr |= va;
424 	vsid = va_to_vsid(pmap, va);
425 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
426 	    | (vsid << 16);
427 
428 	shift = (pvo->pvo_vaddr & PVO_LARGE) ? moea64_large_page_shift :
429 	    ADDR_PIDX_SHFT;
430 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
431 	pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
432 }
433 
434 static void
435 free_pvo_entry(struct pvo_entry *pvo)
436 {
437 
438 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
439 		uma_zfree(moea64_pvo_zone, pvo);
440 }
441 
442 void
443 moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
444 {
445 
446 	lpte->pte_hi = moea64_pte_vpn_from_pvo_vpn(pvo);
447 	lpte->pte_hi |= LPTE_VALID;
448 
449 	if (pvo->pvo_vaddr & PVO_LARGE)
450 		lpte->pte_hi |= LPTE_BIG;
451 	if (pvo->pvo_vaddr & PVO_WIRED)
452 		lpte->pte_hi |= LPTE_WIRED;
453 	if (pvo->pvo_vaddr & PVO_HID)
454 		lpte->pte_hi |= LPTE_HID;
455 
456 	lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
457 	if (pvo->pvo_pte.prot & VM_PROT_WRITE)
458 		lpte->pte_lo |= LPTE_BW;
459 	else
460 		lpte->pte_lo |= LPTE_BR;
461 
462 	if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
463 		lpte->pte_lo |= LPTE_NOEXEC;
464 }
465 
466 static __inline uint64_t
467 moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
468 {
469 	uint64_t pte_lo;
470 	int i;
471 
472 	if (ma != VM_MEMATTR_DEFAULT) {
473 		switch (ma) {
474 		case VM_MEMATTR_UNCACHEABLE:
475 			return (LPTE_I | LPTE_G);
476 		case VM_MEMATTR_CACHEABLE:
477 			return (LPTE_M);
478 		case VM_MEMATTR_WRITE_COMBINING:
479 		case VM_MEMATTR_WRITE_BACK:
480 		case VM_MEMATTR_PREFETCHABLE:
481 			return (LPTE_I);
482 		case VM_MEMATTR_WRITE_THROUGH:
483 			return (LPTE_W | LPTE_M);
484 		}
485 	}
486 
487 	/*
488 	 * Assume the page is cache inhibited and access is guarded unless
489 	 * it's in our available memory array.
490 	 */
491 	pte_lo = LPTE_I | LPTE_G;
492 	for (i = 0; i < pregions_sz; i++) {
493 		if ((pa >= pregions[i].mr_start) &&
494 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
495 			pte_lo &= ~(LPTE_I | LPTE_G);
496 			pte_lo |= LPTE_M;
497 			break;
498 		}
499 	}
500 
501 	return pte_lo;
502 }
503 
504 /*
505  * Quick sort callout for comparing memory regions.
506  */
507 static int	om_cmp(const void *a, const void *b);
508 
509 static int
510 om_cmp(const void *a, const void *b)
511 {
512 	const struct	ofw_map *mapa;
513 	const struct	ofw_map *mapb;
514 
515 	mapa = a;
516 	mapb = b;
517 	if (mapa->om_pa < mapb->om_pa)
518 		return (-1);
519 	else if (mapa->om_pa > mapb->om_pa)
520 		return (1);
521 	else
522 		return (0);
523 }
524 
525 static void
526 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
527 {
528 	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
529 	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
530 	struct pvo_entry *pvo;
531 	register_t	msr;
532 	vm_offset_t	off;
533 	vm_paddr_t	pa_base;
534 	int		i, j;
535 
536 	bzero(translations, sz);
537 	OF_getencprop(OF_finddevice("/"), "#address-cells", &acells,
538 	    sizeof(acells));
539 	if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1)
540 		panic("moea64_bootstrap: can't get ofw translations");
541 
542 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
543 	sz /= sizeof(cell_t);
544 	for (i = 0, j = 0; i < sz; j++) {
545 		translations[j].om_va = trans_cells[i++];
546 		translations[j].om_len = trans_cells[i++];
547 		translations[j].om_pa = trans_cells[i++];
548 		if (acells == 2) {
549 			translations[j].om_pa <<= 32;
550 			translations[j].om_pa |= trans_cells[i++];
551 		}
552 		translations[j].om_mode = trans_cells[i++];
553 	}
554 	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
555 	    i, sz));
556 
557 	sz = j;
558 	qsort(translations, sz, sizeof (*translations), om_cmp);
559 
560 	for (i = 0; i < sz; i++) {
561 		pa_base = translations[i].om_pa;
562 	      #ifndef __powerpc64__
563 		if ((translations[i].om_pa >> 32) != 0)
564 			panic("OFW translations above 32-bit boundary!");
565 	      #endif
566 
567 		if (pa_base % PAGE_SIZE)
568 			panic("OFW translation not page-aligned (phys)!");
569 		if (translations[i].om_va % PAGE_SIZE)
570 			panic("OFW translation not page-aligned (virt)!");
571 
572 		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
573 		    pa_base, translations[i].om_va, translations[i].om_len);
574 
575 		/* Now enter the pages for this mapping */
576 
577 		DISABLE_TRANS(msr);
578 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
579 			/* If this address is direct-mapped, skip remapping */
580 			if (hw_direct_map &&
581 			    translations[i].om_va == PHYS_TO_DMAP(pa_base) &&
582 			    moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT)
583  			    == LPTE_M)
584 				continue;
585 
586 			PMAP_LOCK(kernel_pmap);
587 			pvo = moea64_pvo_find_va(kernel_pmap,
588 			    translations[i].om_va + off);
589 			PMAP_UNLOCK(kernel_pmap);
590 			if (pvo != NULL)
591 				continue;
592 
593 			moea64_kenter(mmup, translations[i].om_va + off,
594 			    pa_base + off);
595 		}
596 		ENABLE_TRANS(msr);
597 	}
598 }
599 
600 #ifdef __powerpc64__
601 static void
602 moea64_probe_large_page(void)
603 {
604 	uint16_t pvr = mfpvr() >> 16;
605 
606 	switch (pvr) {
607 	case IBM970:
608 	case IBM970FX:
609 	case IBM970MP:
610 		powerpc_sync(); isync();
611 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
612 		powerpc_sync(); isync();
613 
614 		/* FALLTHROUGH */
615 	default:
616 		if (moea64_large_page_size == 0) {
617 			moea64_large_page_size = 0x1000000; /* 16 MB */
618 			moea64_large_page_shift = 24;
619 		}
620 	}
621 
622 	moea64_large_page_mask = moea64_large_page_size - 1;
623 }
624 
625 static void
626 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
627 {
628 	struct slb *cache;
629 	struct slb entry;
630 	uint64_t esid, slbe;
631 	uint64_t i;
632 
633 	cache = PCPU_GET(aim.slb);
634 	esid = va >> ADDR_SR_SHFT;
635 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
636 
637 	for (i = 0; i < 64; i++) {
638 		if (cache[i].slbe == (slbe | i))
639 			return;
640 	}
641 
642 	entry.slbe = slbe;
643 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
644 	if (large)
645 		entry.slbv |= SLBV_L;
646 
647 	slb_insert_kernel(entry.slbe, entry.slbv);
648 }
649 #endif
650 
651 static int
652 moea64_kenter_large(mmu_t mmup, vm_offset_t va, vm_paddr_t pa, uint64_t attr, int bootstrap)
653 {
654 	struct pvo_entry *pvo;
655 	uint64_t pte_lo;
656 	int error;
657 
658 	pte_lo = LPTE_M;
659 	pte_lo |= attr;
660 
661 	pvo = alloc_pvo_entry(bootstrap);
662 	pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
663 	init_pvo_entry(pvo, kernel_pmap, va);
664 
665 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
666 	    VM_PROT_EXECUTE;
667 	pvo->pvo_pte.pa = pa | pte_lo;
668 	error = moea64_pvo_enter(mmup, pvo, NULL, NULL);
669 	if (error != 0)
670 		panic("Error %d inserting large page\n", error);
671 	return (0);
672 }
673 
674 static void
675 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
676     vm_offset_t kernelend)
677 {
678 	register_t msr;
679 	vm_paddr_t pa, pkernelstart, pkernelend;
680 	vm_offset_t size, off;
681 	uint64_t pte_lo;
682 	int i;
683 
684 	if (moea64_large_page_size == 0)
685 		hw_direct_map = 0;
686 
687 	DISABLE_TRANS(msr);
688 	if (hw_direct_map) {
689 		PMAP_LOCK(kernel_pmap);
690 		for (i = 0; i < pregions_sz; i++) {
691 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
692 		     pregions[i].mr_size; pa += moea64_large_page_size) {
693 			pte_lo = LPTE_M;
694 			if (pa & moea64_large_page_mask) {
695 				pa &= moea64_large_page_mask;
696 				pte_lo |= LPTE_G;
697 			}
698 			if (pa + moea64_large_page_size >
699 			    pregions[i].mr_start + pregions[i].mr_size)
700 				pte_lo |= LPTE_G;
701 
702 			moea64_kenter_large(mmup, PHYS_TO_DMAP(pa), pa, pte_lo, 1);
703 		  }
704 		}
705 		PMAP_UNLOCK(kernel_pmap);
706 	}
707 
708 	/*
709 	 * Make sure the kernel and BPVO pool stay mapped on systems either
710 	 * without a direct map or on which the kernel is not already executing
711 	 * out of the direct-mapped region.
712 	 */
713 	if (kernelstart < DMAP_BASE_ADDRESS) {
714 		/*
715 		 * For pre-dmap execution, we need to use identity mapping
716 		 * because we will be operating with the mmu on but in the
717 		 * wrong address configuration until we __restartkernel().
718 		 */
719 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
720 		    pa += PAGE_SIZE)
721 			moea64_kenter(mmup, pa, pa);
722 	} else if (!hw_direct_map) {
723 		pkernelstart = kernelstart & ~DMAP_BASE_ADDRESS;
724 		pkernelend = kernelend & ~DMAP_BASE_ADDRESS;
725 		for (pa = pkernelstart & ~PAGE_MASK; pa < pkernelend;
726 		    pa += PAGE_SIZE)
727 			moea64_kenter(mmup, pa | DMAP_BASE_ADDRESS, pa);
728 	}
729 
730 	if (!hw_direct_map) {
731 		size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
732 		off = (vm_offset_t)(moea64_bpvo_pool);
733 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
734 			moea64_kenter(mmup, pa, pa);
735 
736 		/* Map exception vectors */
737 		for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE)
738 			moea64_kenter(mmup, pa | DMAP_BASE_ADDRESS, pa);
739 	}
740 	ENABLE_TRANS(msr);
741 
742 	/*
743 	 * Allow user to override unmapped_buf_allowed for testing.
744 	 * XXXKIB Only direct map implementation was tested.
745 	 */
746 	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
747 	    &unmapped_buf_allowed))
748 		unmapped_buf_allowed = hw_direct_map;
749 }
750 
751 /* Quick sort callout for comparing physical addresses. */
752 static int
753 pa_cmp(const void *a, const void *b)
754 {
755 	const vm_paddr_t *pa = a, *pb = b;
756 
757 	if (*pa < *pb)
758 		return (-1);
759 	else if (*pa > *pb)
760 		return (1);
761 	else
762 		return (0);
763 }
764 
765 void
766 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
767 {
768 	int		i, j;
769 	vm_size_t	physsz, hwphyssz;
770 	vm_paddr_t	kernelphysstart, kernelphysend;
771 	int		rm_pavail;
772 
773 #ifndef __powerpc64__
774 	/* We don't have a direct map since there is no BAT */
775 	hw_direct_map = 0;
776 
777 	/* Make sure battable is zero, since we have no BAT */
778 	for (i = 0; i < 16; i++) {
779 		battable[i].batu = 0;
780 		battable[i].batl = 0;
781 	}
782 #else
783 	moea64_probe_large_page();
784 
785 	/* Use a direct map if we have large page support */
786 	if (moea64_large_page_size > 0)
787 		hw_direct_map = 1;
788 	else
789 		hw_direct_map = 0;
790 
791 	/* Install trap handlers for SLBs */
792 	bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap);
793 	bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap);
794 	__syncicache((void *)EXC_DSE, 0x80);
795 	__syncicache((void *)EXC_ISE, 0x80);
796 #endif
797 
798 	kernelphysstart = kernelstart & ~DMAP_BASE_ADDRESS;
799 	kernelphysend = kernelend & ~DMAP_BASE_ADDRESS;
800 
801 	/* Get physical memory regions from firmware */
802 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
803 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
804 
805 	if (PHYS_AVAIL_ENTRIES < regions_sz)
806 		panic("moea64_bootstrap: phys_avail too small");
807 
808 	phys_avail_count = 0;
809 	physsz = 0;
810 	hwphyssz = 0;
811 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
812 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
813 		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
814 		    regions[i].mr_start, regions[i].mr_start +
815 		    regions[i].mr_size, regions[i].mr_size);
816 		if (hwphyssz != 0 &&
817 		    (physsz + regions[i].mr_size) >= hwphyssz) {
818 			if (physsz < hwphyssz) {
819 				phys_avail[j] = regions[i].mr_start;
820 				phys_avail[j + 1] = regions[i].mr_start +
821 				    hwphyssz - physsz;
822 				physsz = hwphyssz;
823 				phys_avail_count++;
824 				dump_avail[j] = phys_avail[j];
825 				dump_avail[j + 1] = phys_avail[j + 1];
826 			}
827 			break;
828 		}
829 		phys_avail[j] = regions[i].mr_start;
830 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
831 		phys_avail_count++;
832 		physsz += regions[i].mr_size;
833 		dump_avail[j] = phys_avail[j];
834 		dump_avail[j + 1] = phys_avail[j + 1];
835 	}
836 
837 	/* Check for overlap with the kernel and exception vectors */
838 	rm_pavail = 0;
839 	for (j = 0; j < 2*phys_avail_count; j+=2) {
840 		if (phys_avail[j] < EXC_LAST)
841 			phys_avail[j] += EXC_LAST;
842 
843 		if (phys_avail[j] >= kernelphysstart &&
844 		    phys_avail[j+1] <= kernelphysend) {
845 			phys_avail[j] = phys_avail[j+1] = ~0;
846 			rm_pavail++;
847 			continue;
848 		}
849 
850 		if (kernelphysstart >= phys_avail[j] &&
851 		    kernelphysstart < phys_avail[j+1]) {
852 			if (kernelphysend < phys_avail[j+1]) {
853 				phys_avail[2*phys_avail_count] =
854 				    (kernelphysend & ~PAGE_MASK) + PAGE_SIZE;
855 				phys_avail[2*phys_avail_count + 1] =
856 				    phys_avail[j+1];
857 				phys_avail_count++;
858 			}
859 
860 			phys_avail[j+1] = kernelphysstart & ~PAGE_MASK;
861 		}
862 
863 		if (kernelphysend >= phys_avail[j] &&
864 		    kernelphysend < phys_avail[j+1]) {
865 			if (kernelphysstart > phys_avail[j]) {
866 				phys_avail[2*phys_avail_count] = phys_avail[j];
867 				phys_avail[2*phys_avail_count + 1] =
868 				    kernelphysstart & ~PAGE_MASK;
869 				phys_avail_count++;
870 			}
871 
872 			phys_avail[j] = (kernelphysend & ~PAGE_MASK) +
873 			    PAGE_SIZE;
874 		}
875 	}
876 
877 	/* Remove physical available regions marked for removal (~0) */
878 	if (rm_pavail) {
879 		qsort(phys_avail, 2*phys_avail_count, sizeof(phys_avail[0]),
880 			pa_cmp);
881 		phys_avail_count -= rm_pavail;
882 		for (i = 2*phys_avail_count;
883 		     i < 2*(phys_avail_count + rm_pavail); i+=2)
884 			phys_avail[i] = phys_avail[i+1] = 0;
885 	}
886 
887 	physmem = btoc(physsz);
888 
889 #ifdef PTEGCOUNT
890 	moea64_pteg_count = PTEGCOUNT;
891 #else
892 	moea64_pteg_count = 0x1000;
893 
894 	while (moea64_pteg_count < physmem)
895 		moea64_pteg_count <<= 1;
896 
897 	moea64_pteg_count >>= 1;
898 #endif /* PTEGCOUNT */
899 }
900 
901 void
902 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
903 {
904 	int		i;
905 
906 	/*
907 	 * Set PTEG mask
908 	 */
909 	moea64_pteg_mask = moea64_pteg_count - 1;
910 
911 	/*
912 	 * Initialize SLB table lock and page locks
913 	 */
914 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
915 	for (i = 0; i < PV_LOCK_COUNT; i++)
916 		mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
917 
918 	/*
919 	 * Initialise the bootstrap pvo pool.
920 	 */
921 	TUNABLE_INT_FETCH("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
922 	if (moea64_bpvo_pool_size == 0) {
923 		if (!hw_direct_map)
924 			moea64_bpvo_pool_size = ((ptoa((uintmax_t)physmem) * sizeof(struct vm_page)) /
925 			    (PAGE_SIZE * PAGE_SIZE)) * BPVO_POOL_EXPANSION_FACTOR;
926 		else
927 			moea64_bpvo_pool_size = BPVO_POOL_SIZE;
928 	}
929 
930 	if (boothowto & RB_VERBOSE) {
931 		printf("mmu_oea64: bpvo pool entries = %d, bpvo pool size = %zu MB\n",
932 		    moea64_bpvo_pool_size,
933 		    moea64_bpvo_pool_size*sizeof(struct pvo_entry) / 1048576);
934 	}
935 
936 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
937 		moea64_bpvo_pool_size*sizeof(struct pvo_entry), PAGE_SIZE);
938 	moea64_bpvo_pool_index = 0;
939 
940 	/* Place at address usable through the direct map */
941 	if (hw_direct_map)
942 		moea64_bpvo_pool = (struct pvo_entry *)
943 		    PHYS_TO_DMAP((uintptr_t)moea64_bpvo_pool);
944 
945 	/*
946 	 * Make sure kernel vsid is allocated as well as VSID 0.
947 	 */
948 	#ifndef __powerpc64__
949 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
950 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
951 	moea64_vsid_bitmap[0] |= 1;
952 	#endif
953 
954 	/*
955 	 * Initialize the kernel pmap (which is statically allocated).
956 	 */
957 	#ifdef __powerpc64__
958 	for (i = 0; i < 64; i++) {
959 		pcpup->pc_aim.slb[i].slbv = 0;
960 		pcpup->pc_aim.slb[i].slbe = 0;
961 	}
962 	#else
963 	for (i = 0; i < 16; i++)
964 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
965 	#endif
966 
967 	kernel_pmap->pmap_phys = kernel_pmap;
968 	CPU_FILL(&kernel_pmap->pm_active);
969 	RB_INIT(&kernel_pmap->pmap_pvo);
970 
971 	PMAP_LOCK_INIT(kernel_pmap);
972 
973 	/*
974 	 * Now map in all the other buffers we allocated earlier
975 	 */
976 
977 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
978 }
979 
980 void
981 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
982 {
983 	ihandle_t	mmui;
984 	phandle_t	chosen;
985 	phandle_t	mmu;
986 	ssize_t		sz;
987 	int		i;
988 	vm_offset_t	pa, va;
989 	void		*dpcpu;
990 
991 	/*
992 	 * Set up the Open Firmware pmap and add its mappings if not in real
993 	 * mode.
994 	 */
995 
996 	chosen = OF_finddevice("/chosen");
997 	if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) {
998 		mmu = OF_instance_to_package(mmui);
999 		if (mmu == -1 ||
1000 		    (sz = OF_getproplen(mmu, "translations")) == -1)
1001 			sz = 0;
1002 		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
1003 			panic("moea64_bootstrap: too many ofw translations");
1004 
1005 		if (sz > 0)
1006 			moea64_add_ofw_mappings(mmup, mmu, sz);
1007 	}
1008 
1009 	/*
1010 	 * Calculate the last available physical address.
1011 	 */
1012 	Maxmem = 0;
1013 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1014 		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
1015 
1016 	/*
1017 	 * Initialize MMU.
1018 	 */
1019 	MMU_CPU_BOOTSTRAP(mmup,0);
1020 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
1021 	pmap_bootstrapped++;
1022 
1023 	/*
1024 	 * Set the start and end of kva.
1025 	 */
1026 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
1027 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
1028 
1029 	/*
1030 	 * Map the entire KVA range into the SLB. We must not fault there.
1031 	 */
1032 	#ifdef __powerpc64__
1033 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
1034 		moea64_bootstrap_slb_prefault(va, 0);
1035 	#endif
1036 
1037 	/*
1038 	 * Remap any early IO mappings (console framebuffer, etc.)
1039 	 */
1040 	bs_remap_earlyboot();
1041 
1042 	/*
1043 	 * Figure out how far we can extend virtual_end into segment 16
1044 	 * without running into existing mappings. Segment 16 is guaranteed
1045 	 * to contain neither RAM nor devices (at least on Apple hardware),
1046 	 * but will generally contain some OFW mappings we should not
1047 	 * step on.
1048 	 */
1049 
1050 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
1051 	PMAP_LOCK(kernel_pmap);
1052 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
1053 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
1054 		virtual_end += PAGE_SIZE;
1055 	PMAP_UNLOCK(kernel_pmap);
1056 	#endif
1057 
1058 	/*
1059 	 * Allocate a kernel stack with a guard page for thread0 and map it
1060 	 * into the kernel page map.
1061 	 */
1062 	pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
1063 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1064 	virtual_avail = va + kstack_pages * PAGE_SIZE;
1065 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
1066 	thread0.td_kstack = va;
1067 	thread0.td_kstack_pages = kstack_pages;
1068 	for (i = 0; i < kstack_pages; i++) {
1069 		moea64_kenter(mmup, va, pa);
1070 		pa += PAGE_SIZE;
1071 		va += PAGE_SIZE;
1072 	}
1073 
1074 	/*
1075 	 * Allocate virtual address space for the message buffer.
1076 	 */
1077 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
1078 	msgbufp = (struct msgbuf *)virtual_avail;
1079 	va = virtual_avail;
1080 	virtual_avail += round_page(msgbufsize);
1081 	while (va < virtual_avail) {
1082 		moea64_kenter(mmup, va, pa);
1083 		pa += PAGE_SIZE;
1084 		va += PAGE_SIZE;
1085 	}
1086 
1087 	/*
1088 	 * Allocate virtual address space for the dynamic percpu area.
1089 	 */
1090 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
1091 	dpcpu = (void *)virtual_avail;
1092 	va = virtual_avail;
1093 	virtual_avail += DPCPU_SIZE;
1094 	while (va < virtual_avail) {
1095 		moea64_kenter(mmup, va, pa);
1096 		pa += PAGE_SIZE;
1097 		va += PAGE_SIZE;
1098 	}
1099 	dpcpu_init(dpcpu, curcpu);
1100 
1101 	crashdumpmap = (caddr_t)virtual_avail;
1102 	virtual_avail += MAXDUMPPGS * PAGE_SIZE;
1103 
1104 	/*
1105 	 * Allocate some things for page zeroing. We put this directly
1106 	 * in the page table and use MOEA64_PTE_REPLACE to avoid any
1107 	 * of the PVO book-keeping or other parts of the VM system
1108 	 * from even knowing that this hack exists.
1109 	 */
1110 
1111 	if (!hw_direct_map) {
1112 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
1113 		    MTX_DEF);
1114 		for (i = 0; i < 2; i++) {
1115 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
1116 			virtual_end -= PAGE_SIZE;
1117 
1118 			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
1119 
1120 			PMAP_LOCK(kernel_pmap);
1121 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
1122 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
1123 			PMAP_UNLOCK(kernel_pmap);
1124 		}
1125 	}
1126 
1127 	numa_mem_regions(&numa_pregions, &numapregions_sz);
1128 }
1129 
1130 static void
1131 moea64_pmap_init_qpages(void)
1132 {
1133 	struct pcpu *pc;
1134 	int i;
1135 
1136 	if (hw_direct_map)
1137 		return;
1138 
1139 	CPU_FOREACH(i) {
1140 		pc = pcpu_find(i);
1141 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1142 		if (pc->pc_qmap_addr == 0)
1143 			panic("pmap_init_qpages: unable to allocate KVA");
1144 		PMAP_LOCK(kernel_pmap);
1145 		pc->pc_aim.qmap_pvo =
1146 		    moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr);
1147 		PMAP_UNLOCK(kernel_pmap);
1148 		mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF);
1149 	}
1150 }
1151 
1152 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL);
1153 
1154 /*
1155  * Activate a user pmap.  This mostly involves setting some non-CPU
1156  * state.
1157  */
1158 void
1159 moea64_activate(mmu_t mmu, struct thread *td)
1160 {
1161 	pmap_t	pm;
1162 
1163 	pm = &td->td_proc->p_vmspace->vm_pmap;
1164 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1165 
1166 	#ifdef __powerpc64__
1167 	PCPU_SET(aim.userslb, pm->pm_slb);
1168 	__asm __volatile("slbmte %0, %1; isync" ::
1169 	    "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
1170 	#else
1171 	PCPU_SET(curpmap, pm->pmap_phys);
1172 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1173 	#endif
1174 }
1175 
1176 void
1177 moea64_deactivate(mmu_t mmu, struct thread *td)
1178 {
1179 	pmap_t	pm;
1180 
1181 	__asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
1182 
1183 	pm = &td->td_proc->p_vmspace->vm_pmap;
1184 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1185 	#ifdef __powerpc64__
1186 	PCPU_SET(aim.userslb, NULL);
1187 	#else
1188 	PCPU_SET(curpmap, NULL);
1189 	#endif
1190 }
1191 
1192 void
1193 moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1194 {
1195 	struct	pvo_entry key, *pvo;
1196 	vm_page_t m;
1197 	int64_t	refchg;
1198 
1199 	key.pvo_vaddr = sva;
1200 	PMAP_LOCK(pm);
1201 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1202 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1203 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1204 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1205 			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1206 			    pvo);
1207 		pvo->pvo_vaddr &= ~PVO_WIRED;
1208 		refchg = MOEA64_PTE_REPLACE(mmu, pvo, 0 /* No invalidation */);
1209 		if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1210 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1211 			if (refchg < 0)
1212 				refchg = LPTE_CHG;
1213 			m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1214 
1215 			refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
1216 			if (refchg & LPTE_CHG)
1217 				vm_page_dirty(m);
1218 			if (refchg & LPTE_REF)
1219 				vm_page_aflag_set(m, PGA_REFERENCED);
1220 		}
1221 		pm->pm_stats.wired_count--;
1222 	}
1223 	PMAP_UNLOCK(pm);
1224 }
1225 
1226 /*
1227  * This goes through and sets the physical address of our
1228  * special scratch PTE to the PA we want to zero or copy. Because
1229  * of locking issues (this can get called in pvo_enter() by
1230  * the UMA allocator), we can't use most other utility functions here
1231  */
1232 
1233 static __inline
1234 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_paddr_t pa)
1235 {
1236 	struct pvo_entry *pvo;
1237 
1238 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1239 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1240 
1241 	pvo = moea64_scratchpage_pvo[which];
1242 	PMAP_LOCK(pvo->pvo_pmap);
1243 	pvo->pvo_pte.pa =
1244 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1245 	MOEA64_PTE_REPLACE(mmup, pvo, MOEA64_PTE_INVALIDATE);
1246 	PMAP_UNLOCK(pvo->pvo_pmap);
1247 	isync();
1248 }
1249 
1250 void
1251 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1252 {
1253 	vm_offset_t	dst;
1254 	vm_offset_t	src;
1255 
1256 	dst = VM_PAGE_TO_PHYS(mdst);
1257 	src = VM_PAGE_TO_PHYS(msrc);
1258 
1259 	if (hw_direct_map) {
1260 		bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst),
1261 		    PAGE_SIZE);
1262 	} else {
1263 		mtx_lock(&moea64_scratchpage_mtx);
1264 
1265 		moea64_set_scratchpage_pa(mmu, 0, src);
1266 		moea64_set_scratchpage_pa(mmu, 1, dst);
1267 
1268 		bcopy((void *)moea64_scratchpage_va[0],
1269 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1270 
1271 		mtx_unlock(&moea64_scratchpage_mtx);
1272 	}
1273 }
1274 
1275 static inline void
1276 moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1277     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1278 {
1279 	void *a_cp, *b_cp;
1280 	vm_offset_t a_pg_offset, b_pg_offset;
1281 	int cnt;
1282 
1283 	while (xfersize > 0) {
1284 		a_pg_offset = a_offset & PAGE_MASK;
1285 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1286 		a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1287 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
1288 		    a_pg_offset;
1289 		b_pg_offset = b_offset & PAGE_MASK;
1290 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1291 		b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1292 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
1293 		    b_pg_offset;
1294 		bcopy(a_cp, b_cp, cnt);
1295 		a_offset += cnt;
1296 		b_offset += cnt;
1297 		xfersize -= cnt;
1298 	}
1299 }
1300 
1301 static inline void
1302 moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1303     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1304 {
1305 	void *a_cp, *b_cp;
1306 	vm_offset_t a_pg_offset, b_pg_offset;
1307 	int cnt;
1308 
1309 	mtx_lock(&moea64_scratchpage_mtx);
1310 	while (xfersize > 0) {
1311 		a_pg_offset = a_offset & PAGE_MASK;
1312 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1313 		moea64_set_scratchpage_pa(mmu, 0,
1314 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1315 		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1316 		b_pg_offset = b_offset & PAGE_MASK;
1317 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1318 		moea64_set_scratchpage_pa(mmu, 1,
1319 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1320 		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1321 		bcopy(a_cp, b_cp, cnt);
1322 		a_offset += cnt;
1323 		b_offset += cnt;
1324 		xfersize -= cnt;
1325 	}
1326 	mtx_unlock(&moea64_scratchpage_mtx);
1327 }
1328 
1329 void
1330 moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1331     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1332 {
1333 
1334 	if (hw_direct_map) {
1335 		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1336 		    xfersize);
1337 	} else {
1338 		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1339 		    xfersize);
1340 	}
1341 }
1342 
1343 void
1344 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1345 {
1346 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1347 
1348 	if (size + off > PAGE_SIZE)
1349 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1350 
1351 	if (hw_direct_map) {
1352 		bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size);
1353 	} else {
1354 		mtx_lock(&moea64_scratchpage_mtx);
1355 		moea64_set_scratchpage_pa(mmu, 0, pa);
1356 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1357 		mtx_unlock(&moea64_scratchpage_mtx);
1358 	}
1359 }
1360 
1361 /*
1362  * Zero a page of physical memory by temporarily mapping it
1363  */
1364 void
1365 moea64_zero_page(mmu_t mmu, vm_page_t m)
1366 {
1367 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1368 	vm_offset_t va, off;
1369 
1370 	if (!hw_direct_map) {
1371 		mtx_lock(&moea64_scratchpage_mtx);
1372 
1373 		moea64_set_scratchpage_pa(mmu, 0, pa);
1374 		va = moea64_scratchpage_va[0];
1375 	} else {
1376 		va = PHYS_TO_DMAP(pa);
1377 	}
1378 
1379 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1380 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1381 
1382 	if (!hw_direct_map)
1383 		mtx_unlock(&moea64_scratchpage_mtx);
1384 }
1385 
1386 vm_offset_t
1387 moea64_quick_enter_page(mmu_t mmu, vm_page_t m)
1388 {
1389 	struct pvo_entry *pvo;
1390 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1391 
1392 	if (hw_direct_map)
1393 		return (PHYS_TO_DMAP(pa));
1394 
1395 	/*
1396  	 * MOEA64_PTE_REPLACE does some locking, so we can't just grab
1397 	 * a critical section and access the PCPU data like on i386.
1398 	 * Instead, pin the thread and grab the PCPU lock to prevent
1399 	 * a preempting thread from using the same PCPU data.
1400 	 */
1401 	sched_pin();
1402 
1403 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED);
1404 	pvo = PCPU_GET(aim.qmap_pvo);
1405 
1406 	mtx_lock(PCPU_PTR(aim.qmap_lock));
1407 	pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) |
1408 	    (uint64_t)pa;
1409 	MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_INVALIDATE);
1410 	isync();
1411 
1412 	return (PCPU_GET(qmap_addr));
1413 }
1414 
1415 void
1416 moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr)
1417 {
1418 	if (hw_direct_map)
1419 		return;
1420 
1421 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED);
1422 	KASSERT(PCPU_GET(qmap_addr) == addr,
1423 	    ("moea64_quick_remove_page: invalid address"));
1424 	mtx_unlock(PCPU_PTR(aim.qmap_lock));
1425 	sched_unpin();
1426 }
1427 
1428 /*
1429  * Map the given physical page at the specified virtual address in the
1430  * target pmap with the protection requested.  If specified the page
1431  * will be wired down.
1432  */
1433 
1434 int
1435 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1436     vm_prot_t prot, u_int flags, int8_t psind)
1437 {
1438 	struct		pvo_entry *pvo, *oldpvo;
1439 	struct		pvo_head *pvo_head;
1440 	uint64_t	pte_lo;
1441 	int		error;
1442 
1443 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1444 		if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1445 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1446 		else
1447 			VM_OBJECT_ASSERT_LOCKED(m->object);
1448 	}
1449 
1450 	pvo = alloc_pvo_entry(0);
1451 	if (pvo == NULL)
1452 		return (KERN_RESOURCE_SHORTAGE);
1453 	pvo->pvo_pmap = NULL; /* to be filled in later */
1454 	pvo->pvo_pte.prot = prot;
1455 
1456 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1457 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | pte_lo;
1458 
1459 	if ((flags & PMAP_ENTER_WIRED) != 0)
1460 		pvo->pvo_vaddr |= PVO_WIRED;
1461 
1462 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1463 		pvo_head = NULL;
1464 	} else {
1465 		pvo_head = &m->md.mdpg_pvoh;
1466 		pvo->pvo_vaddr |= PVO_MANAGED;
1467 	}
1468 
1469 	PV_PAGE_LOCK(m);
1470 	PMAP_LOCK(pmap);
1471 	if (pvo->pvo_pmap == NULL)
1472 		init_pvo_entry(pvo, pmap, va);
1473 	if (prot & VM_PROT_WRITE)
1474 		if (pmap_bootstrapped &&
1475 		    (m->oflags & VPO_UNMANAGED) == 0)
1476 			vm_page_aflag_set(m, PGA_WRITEABLE);
1477 
1478 	error = moea64_pvo_enter(mmu, pvo, pvo_head, &oldpvo);
1479 	if (error == EEXIST) {
1480 		if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
1481 		    oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
1482 		    oldpvo->pvo_pte.prot == prot) {
1483 			/* Identical mapping already exists */
1484 			error = 0;
1485 
1486 			/* If not in page table, reinsert it */
1487 			if (MOEA64_PTE_SYNCH(mmu, oldpvo) < 0) {
1488 				STAT_MOEA64(moea64_pte_overflow--);
1489 				MOEA64_PTE_INSERT(mmu, oldpvo);
1490 			}
1491 
1492 			/* Then just clean up and go home */
1493 			PV_PAGE_UNLOCK(m);
1494 			PMAP_UNLOCK(pmap);
1495 			free_pvo_entry(pvo);
1496 			goto out;
1497 		} else {
1498 			/* Otherwise, need to kill it first */
1499 			KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
1500 			    "mapping does not match new mapping"));
1501 			moea64_pvo_remove_from_pmap(mmu, oldpvo);
1502 			moea64_pvo_enter(mmu, pvo, pvo_head, NULL);
1503 		}
1504 	}
1505 	PMAP_UNLOCK(pmap);
1506 	PV_PAGE_UNLOCK(m);
1507 
1508 	/* Free any dead pages */
1509 	if (error == EEXIST) {
1510 		moea64_pvo_remove_from_page(mmu, oldpvo);
1511 		free_pvo_entry(oldpvo);
1512 	}
1513 
1514 out:
1515 	/*
1516 	 * Flush the page from the instruction cache if this page is
1517 	 * mapped executable and cacheable.
1518 	 */
1519 	if (pmap != kernel_pmap && (m->a.flags & PGA_EXECUTABLE) == 0 &&
1520 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1521 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1522 		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1523 	}
1524 	return (KERN_SUCCESS);
1525 }
1526 
1527 static void
1528 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1529     vm_size_t sz)
1530 {
1531 
1532 	/*
1533 	 * This is much trickier than on older systems because
1534 	 * we can't sync the icache on physical addresses directly
1535 	 * without a direct map. Instead we check a couple of cases
1536 	 * where the memory is already mapped in and, failing that,
1537 	 * use the same trick we use for page zeroing to create
1538 	 * a temporary mapping for this physical address.
1539 	 */
1540 
1541 	if (!pmap_bootstrapped) {
1542 		/*
1543 		 * If PMAP is not bootstrapped, we are likely to be
1544 		 * in real mode.
1545 		 */
1546 		__syncicache((void *)(uintptr_t)pa, sz);
1547 	} else if (pmap == kernel_pmap) {
1548 		__syncicache((void *)va, sz);
1549 	} else if (hw_direct_map) {
1550 		__syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz);
1551 	} else {
1552 		/* Use the scratch page to set up a temp mapping */
1553 
1554 		mtx_lock(&moea64_scratchpage_mtx);
1555 
1556 		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1557 		__syncicache((void *)(moea64_scratchpage_va[1] +
1558 		    (va & ADDR_POFF)), sz);
1559 
1560 		mtx_unlock(&moea64_scratchpage_mtx);
1561 	}
1562 }
1563 
1564 /*
1565  * Maps a sequence of resident pages belonging to the same object.
1566  * The sequence begins with the given page m_start.  This page is
1567  * mapped at the given virtual address start.  Each subsequent page is
1568  * mapped at a virtual address that is offset from start by the same
1569  * amount as the page is offset from m_start within the object.  The
1570  * last page in the sequence is the page with the largest offset from
1571  * m_start that can be mapped at a virtual address less than the given
1572  * virtual address end.  Not every virtual page between start and end
1573  * is mapped; only those for which a resident page exists with the
1574  * corresponding offset from m_start are mapped.
1575  */
1576 void
1577 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1578     vm_page_t m_start, vm_prot_t prot)
1579 {
1580 	vm_page_t m;
1581 	vm_pindex_t diff, psize;
1582 
1583 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1584 
1585 	psize = atop(end - start);
1586 	m = m_start;
1587 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1588 		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1589 		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP |
1590 		    PMAP_ENTER_QUICK_LOCKED, 0);
1591 		m = TAILQ_NEXT(m, listq);
1592 	}
1593 }
1594 
1595 void
1596 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1597     vm_prot_t prot)
1598 {
1599 
1600 	moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1601 	    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0);
1602 }
1603 
1604 vm_paddr_t
1605 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1606 {
1607 	struct	pvo_entry *pvo;
1608 	vm_paddr_t pa;
1609 
1610 	PMAP_LOCK(pm);
1611 	pvo = moea64_pvo_find_va(pm, va);
1612 	if (pvo == NULL)
1613 		pa = 0;
1614 	else
1615 		pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1616 	PMAP_UNLOCK(pm);
1617 
1618 	return (pa);
1619 }
1620 
1621 /*
1622  * Atomically extract and hold the physical page with the given
1623  * pmap and virtual address pair if that mapping permits the given
1624  * protection.
1625  */
1626 vm_page_t
1627 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1628 {
1629 	struct	pvo_entry *pvo;
1630 	vm_page_t m;
1631 
1632 	m = NULL;
1633 	PMAP_LOCK(pmap);
1634 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1635 	if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
1636 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1637 		if (!vm_page_wire_mapped(m))
1638 			m = NULL;
1639 	}
1640 	PMAP_UNLOCK(pmap);
1641 	return (m);
1642 }
1643 
1644 static mmu_t installed_mmu;
1645 
1646 static void *
1647 moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
1648     uint8_t *flags, int wait)
1649 {
1650 	struct pvo_entry *pvo;
1651         vm_offset_t va;
1652         vm_page_t m;
1653         int needed_lock;
1654 
1655 	/*
1656 	 * This entire routine is a horrible hack to avoid bothering kmem
1657 	 * for new KVA addresses. Because this can get called from inside
1658 	 * kmem allocation routines, calling kmem for a new address here
1659 	 * can lead to multiply locking non-recursive mutexes.
1660 	 */
1661 
1662 	*flags = UMA_SLAB_PRIV;
1663 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1664 
1665 	m = vm_page_alloc_domain(NULL, 0, domain,
1666 	    malloc2vm_flags(wait) | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
1667 	if (m == NULL)
1668 		return (NULL);
1669 
1670 	va = VM_PAGE_TO_PHYS(m);
1671 
1672 	pvo = alloc_pvo_entry(1 /* bootstrap */);
1673 
1674 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
1675 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
1676 
1677 	if (needed_lock)
1678 		PMAP_LOCK(kernel_pmap);
1679 
1680 	init_pvo_entry(pvo, kernel_pmap, va);
1681 	pvo->pvo_vaddr |= PVO_WIRED;
1682 
1683 	moea64_pvo_enter(installed_mmu, pvo, NULL, NULL);
1684 
1685 	if (needed_lock)
1686 		PMAP_UNLOCK(kernel_pmap);
1687 
1688 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1689                 bzero((void *)va, PAGE_SIZE);
1690 
1691 	return (void *)va;
1692 }
1693 
1694 extern int elf32_nxstack;
1695 
1696 void
1697 moea64_init(mmu_t mmu)
1698 {
1699 
1700 	CTR0(KTR_PMAP, "moea64_init");
1701 
1702 	moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1703 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1704 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1705 
1706 	if (!hw_direct_map) {
1707 		installed_mmu = mmu;
1708 		uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc);
1709 	}
1710 
1711 #ifdef COMPAT_FREEBSD32
1712 	elf32_nxstack = 1;
1713 #endif
1714 
1715 	moea64_initialized = TRUE;
1716 }
1717 
1718 boolean_t
1719 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1720 {
1721 
1722 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1723 	    ("moea64_is_referenced: page %p is not managed", m));
1724 
1725 	return (moea64_query_bit(mmu, m, LPTE_REF));
1726 }
1727 
1728 boolean_t
1729 moea64_is_modified(mmu_t mmu, vm_page_t m)
1730 {
1731 
1732 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1733 	    ("moea64_is_modified: page %p is not managed", m));
1734 
1735 	/*
1736 	 * If the page is not busied then this check is racy.
1737 	 */
1738 	if (!pmap_page_is_write_mapped(m))
1739 		return (FALSE);
1740 
1741 	return (moea64_query_bit(mmu, m, LPTE_CHG));
1742 }
1743 
1744 boolean_t
1745 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1746 {
1747 	struct pvo_entry *pvo;
1748 	boolean_t rv = TRUE;
1749 
1750 	PMAP_LOCK(pmap);
1751 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1752 	if (pvo != NULL)
1753 		rv = FALSE;
1754 	PMAP_UNLOCK(pmap);
1755 	return (rv);
1756 }
1757 
1758 void
1759 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1760 {
1761 
1762 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1763 	    ("moea64_clear_modify: page %p is not managed", m));
1764 	vm_page_assert_busied(m);
1765 
1766 	if (!pmap_page_is_write_mapped(m))
1767 		return;
1768 	moea64_clear_bit(mmu, m, LPTE_CHG);
1769 }
1770 
1771 /*
1772  * Clear the write and modified bits in each of the given page's mappings.
1773  */
1774 void
1775 moea64_remove_write(mmu_t mmu, vm_page_t m)
1776 {
1777 	struct	pvo_entry *pvo;
1778 	int64_t	refchg, ret;
1779 	pmap_t	pmap;
1780 
1781 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1782 	    ("moea64_remove_write: page %p is not managed", m));
1783 	vm_page_assert_busied(m);
1784 
1785 	if (!pmap_page_is_write_mapped(m))
1786 		return
1787 
1788 	powerpc_sync();
1789 	PV_PAGE_LOCK(m);
1790 	refchg = 0;
1791 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1792 		pmap = pvo->pvo_pmap;
1793 		PMAP_LOCK(pmap);
1794 		if (!(pvo->pvo_vaddr & PVO_DEAD) &&
1795 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1796 			pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
1797 			ret = MOEA64_PTE_REPLACE(mmu, pvo,
1798 			    MOEA64_PTE_PROT_UPDATE);
1799 			if (ret < 0)
1800 				ret = LPTE_CHG;
1801 			refchg |= ret;
1802 			if (pvo->pvo_pmap == kernel_pmap)
1803 				isync();
1804 		}
1805 		PMAP_UNLOCK(pmap);
1806 	}
1807 	if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
1808 		vm_page_dirty(m);
1809 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1810 	PV_PAGE_UNLOCK(m);
1811 }
1812 
1813 /*
1814  *	moea64_ts_referenced:
1815  *
1816  *	Return a count of reference bits for a page, clearing those bits.
1817  *	It is not necessary for every reference bit to be cleared, but it
1818  *	is necessary that 0 only be returned when there are truly no
1819  *	reference bits set.
1820  *
1821  *	XXX: The exact number of bits to check and clear is a matter that
1822  *	should be tested and standardized at some point in the future for
1823  *	optimal aging of shared pages.
1824  */
1825 int
1826 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1827 {
1828 
1829 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1830 	    ("moea64_ts_referenced: page %p is not managed", m));
1831 	return (moea64_clear_bit(mmu, m, LPTE_REF));
1832 }
1833 
1834 /*
1835  * Modify the WIMG settings of all mappings for a page.
1836  */
1837 void
1838 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1839 {
1840 	struct	pvo_entry *pvo;
1841 	int64_t	refchg;
1842 	pmap_t	pmap;
1843 	uint64_t lo;
1844 
1845 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1846 		m->md.mdpg_cache_attrs = ma;
1847 		return;
1848 	}
1849 
1850 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1851 
1852 	PV_PAGE_LOCK(m);
1853 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1854 		pmap = pvo->pvo_pmap;
1855 		PMAP_LOCK(pmap);
1856 		if (!(pvo->pvo_vaddr & PVO_DEAD)) {
1857 			pvo->pvo_pte.pa &= ~LPTE_WIMG;
1858 			pvo->pvo_pte.pa |= lo;
1859 			refchg = MOEA64_PTE_REPLACE(mmu, pvo,
1860 			    MOEA64_PTE_INVALIDATE);
1861 			if (refchg < 0)
1862 				refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
1863 				    LPTE_CHG : 0;
1864 			if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1865 			    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1866 				refchg |=
1867 				    atomic_readandclear_32(&m->md.mdpg_attrs);
1868 				if (refchg & LPTE_CHG)
1869 					vm_page_dirty(m);
1870 				if (refchg & LPTE_REF)
1871 					vm_page_aflag_set(m, PGA_REFERENCED);
1872 			}
1873 			if (pvo->pvo_pmap == kernel_pmap)
1874 				isync();
1875 		}
1876 		PMAP_UNLOCK(pmap);
1877 	}
1878 	m->md.mdpg_cache_attrs = ma;
1879 	PV_PAGE_UNLOCK(m);
1880 }
1881 
1882 /*
1883  * Map a wired page into kernel virtual address space.
1884  */
1885 void
1886 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1887 {
1888 	int		error;
1889 	struct pvo_entry *pvo, *oldpvo;
1890 
1891 	do {
1892 		pvo = alloc_pvo_entry(0);
1893 		if (pvo == NULL)
1894 			vm_wait(NULL);
1895 	} while (pvo == NULL);
1896 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
1897 	pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
1898 	pvo->pvo_vaddr |= PVO_WIRED;
1899 
1900 	PMAP_LOCK(kernel_pmap);
1901 	oldpvo = moea64_pvo_find_va(kernel_pmap, va);
1902 	if (oldpvo != NULL)
1903 		moea64_pvo_remove_from_pmap(mmu, oldpvo);
1904 	init_pvo_entry(pvo, kernel_pmap, va);
1905 	error = moea64_pvo_enter(mmu, pvo, NULL, NULL);
1906 	PMAP_UNLOCK(kernel_pmap);
1907 
1908 	/* Free any dead pages */
1909 	if (oldpvo != NULL) {
1910 		moea64_pvo_remove_from_page(mmu, oldpvo);
1911 		free_pvo_entry(oldpvo);
1912 	}
1913 
1914 	if (error != 0)
1915 		panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va,
1916 		    (uintmax_t)pa, error);
1917 }
1918 
1919 void
1920 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1921 {
1922 
1923 	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1924 }
1925 
1926 /*
1927  * Extract the physical page address associated with the given kernel virtual
1928  * address.
1929  */
1930 vm_paddr_t
1931 moea64_kextract(mmu_t mmu, vm_offset_t va)
1932 {
1933 	struct		pvo_entry *pvo;
1934 	vm_paddr_t pa;
1935 
1936 	/*
1937 	 * Shortcut the direct-mapped case when applicable.  We never put
1938 	 * anything but 1:1 (or 62-bit aliased) mappings below
1939 	 * VM_MIN_KERNEL_ADDRESS.
1940 	 */
1941 	if (va < VM_MIN_KERNEL_ADDRESS)
1942 		return (va & ~DMAP_BASE_ADDRESS);
1943 
1944 	PMAP_LOCK(kernel_pmap);
1945 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1946 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1947 	    va));
1948 	pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1949 	PMAP_UNLOCK(kernel_pmap);
1950 	return (pa);
1951 }
1952 
1953 /*
1954  * Remove a wired page from kernel virtual address space.
1955  */
1956 void
1957 moea64_kremove(mmu_t mmu, vm_offset_t va)
1958 {
1959 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1960 }
1961 
1962 /*
1963  * Provide a kernel pointer corresponding to a given userland pointer.
1964  * The returned pointer is valid until the next time this function is
1965  * called in this thread. This is used internally in copyin/copyout.
1966  */
1967 static int
1968 moea64_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr,
1969     void **kaddr, size_t ulen, size_t *klen)
1970 {
1971 	size_t l;
1972 #ifdef __powerpc64__
1973 	struct slb *slb;
1974 #endif
1975 	register_t slbv;
1976 
1977 	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
1978 	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
1979 	if (l > ulen)
1980 		l = ulen;
1981 	if (klen)
1982 		*klen = l;
1983 	else if (l != ulen)
1984 		return (EFAULT);
1985 
1986 #ifdef __powerpc64__
1987 	/* Try lockless look-up first */
1988 	slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr);
1989 
1990 	if (slb == NULL) {
1991 		/* If it isn't there, we need to pre-fault the VSID */
1992 		PMAP_LOCK(pm);
1993 		slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT;
1994 		PMAP_UNLOCK(pm);
1995 	} else {
1996 		slbv = slb->slbv;
1997 	}
1998 
1999 	/* Mark segment no-execute */
2000 	slbv |= SLBV_N;
2001 #else
2002 	slbv = va_to_vsid(pm, (vm_offset_t)uaddr);
2003 
2004 	/* Mark segment no-execute */
2005 	slbv |= SR_N;
2006 #endif
2007 
2008 	/* If we have already set this VSID, we can just return */
2009 	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv)
2010 		return (0);
2011 
2012 	__asm __volatile("isync");
2013 	curthread->td_pcb->pcb_cpu.aim.usr_segm =
2014 	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
2015 	curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv;
2016 #ifdef __powerpc64__
2017 	__asm __volatile ("slbie %0; slbmte %1, %2; isync" ::
2018 	    "r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE));
2019 #else
2020 	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv));
2021 #endif
2022 
2023 	return (0);
2024 }
2025 
2026 /*
2027  * Figure out where a given kernel pointer (usually in a fault) points
2028  * to from the VM's perspective, potentially remapping into userland's
2029  * address space.
2030  */
2031 static int
2032 moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, int *is_user,
2033     vm_offset_t *decoded_addr)
2034 {
2035 	vm_offset_t user_sr;
2036 
2037 	if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
2038 		user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
2039 		addr &= ADDR_PIDX | ADDR_POFF;
2040 		addr |= user_sr << ADDR_SR_SHFT;
2041 		*decoded_addr = addr;
2042 		*is_user = 1;
2043 	} else {
2044 		*decoded_addr = addr;
2045 		*is_user = 0;
2046 	}
2047 
2048 	return (0);
2049 }
2050 
2051 /*
2052  * Map a range of physical addresses into kernel virtual address space.
2053  *
2054  * The value passed in *virt is a suggested virtual address for the mapping.
2055  * Architectures which can support a direct-mapped physical to virtual region
2056  * can return the appropriate address within that region, leaving '*virt'
2057  * unchanged.  Other architectures should map the pages starting at '*virt' and
2058  * update '*virt' with the first usable address after the mapped region.
2059  */
2060 vm_offset_t
2061 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
2062     vm_paddr_t pa_end, int prot)
2063 {
2064 	vm_offset_t	sva, va;
2065 
2066 	if (hw_direct_map) {
2067 		/*
2068 		 * Check if every page in the region is covered by the direct
2069 		 * map. The direct map covers all of physical memory. Use
2070 		 * moea64_calc_wimg() as a shortcut to see if the page is in
2071 		 * physical memory as a way to see if the direct map covers it.
2072 		 */
2073 		for (va = pa_start; va < pa_end; va += PAGE_SIZE)
2074 			if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
2075 				break;
2076 		if (va == pa_end)
2077 			return (PHYS_TO_DMAP(pa_start));
2078 	}
2079 	sva = *virt;
2080 	va = sva;
2081 	/* XXX respect prot argument */
2082 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
2083 		moea64_kenter(mmu, va, pa_start);
2084 	*virt = va;
2085 
2086 	return (sva);
2087 }
2088 
2089 /*
2090  * Returns true if the pmap's pv is one of the first
2091  * 16 pvs linked to from this page.  This count may
2092  * be changed upwards or downwards in the future; it
2093  * is only necessary that true be returned for a small
2094  * subset of pmaps for proper page aging.
2095  */
2096 boolean_t
2097 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2098 {
2099         int loops;
2100 	struct pvo_entry *pvo;
2101 	boolean_t rv;
2102 
2103 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2104 	    ("moea64_page_exists_quick: page %p is not managed", m));
2105 	loops = 0;
2106 	rv = FALSE;
2107 	PV_PAGE_LOCK(m);
2108 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2109 		if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
2110 			rv = TRUE;
2111 			break;
2112 		}
2113 		if (++loops >= 16)
2114 			break;
2115 	}
2116 	PV_PAGE_UNLOCK(m);
2117 	return (rv);
2118 }
2119 
2120 void
2121 moea64_page_init(mmu_t mmu __unused, vm_page_t m)
2122 {
2123 
2124 	m->md.mdpg_attrs = 0;
2125 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
2126 	LIST_INIT(&m->md.mdpg_pvoh);
2127 }
2128 
2129 /*
2130  * Return the number of managed mappings to the given physical page
2131  * that are wired.
2132  */
2133 int
2134 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
2135 {
2136 	struct pvo_entry *pvo;
2137 	int count;
2138 
2139 	count = 0;
2140 	if ((m->oflags & VPO_UNMANAGED) != 0)
2141 		return (count);
2142 	PV_PAGE_LOCK(m);
2143 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
2144 		if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
2145 			count++;
2146 	PV_PAGE_UNLOCK(m);
2147 	return (count);
2148 }
2149 
2150 static uintptr_t	moea64_vsidcontext;
2151 
2152 uintptr_t
2153 moea64_get_unique_vsid(void) {
2154 	u_int entropy;
2155 	register_t hash;
2156 	uint32_t mask;
2157 	int i;
2158 
2159 	entropy = 0;
2160 	__asm __volatile("mftb %0" : "=r"(entropy));
2161 
2162 	mtx_lock(&moea64_slb_mutex);
2163 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
2164 		u_int	n;
2165 
2166 		/*
2167 		 * Create a new value by mutiplying by a prime and adding in
2168 		 * entropy from the timebase register.  This is to make the
2169 		 * VSID more random so that the PT hash function collides
2170 		 * less often.  (Note that the prime casues gcc to do shifts
2171 		 * instead of a multiply.)
2172 		 */
2173 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
2174 		hash = moea64_vsidcontext & (NVSIDS - 1);
2175 		if (hash == 0)		/* 0 is special, avoid it */
2176 			continue;
2177 		n = hash >> 5;
2178 		mask = 1 << (hash & (VSID_NBPW - 1));
2179 		hash = (moea64_vsidcontext & VSID_HASHMASK);
2180 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
2181 			/* anything free in this bucket? */
2182 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
2183 				entropy = (moea64_vsidcontext >> 20);
2184 				continue;
2185 			}
2186 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
2187 			mask = 1 << i;
2188 			hash &= rounddown2(VSID_HASHMASK, VSID_NBPW);
2189 			hash |= i;
2190 		}
2191 		if (hash == VSID_VRMA)	/* also special, avoid this too */
2192 			continue;
2193 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
2194 		    ("Allocating in-use VSID %#zx\n", hash));
2195 		moea64_vsid_bitmap[n] |= mask;
2196 		mtx_unlock(&moea64_slb_mutex);
2197 		return (hash);
2198 	}
2199 
2200 	mtx_unlock(&moea64_slb_mutex);
2201 	panic("%s: out of segments",__func__);
2202 }
2203 
2204 #ifdef __powerpc64__
2205 void
2206 moea64_pinit(mmu_t mmu, pmap_t pmap)
2207 {
2208 
2209 	RB_INIT(&pmap->pmap_pvo);
2210 
2211 	pmap->pm_slb_tree_root = slb_alloc_tree();
2212 	pmap->pm_slb = slb_alloc_user_cache();
2213 	pmap->pm_slb_len = 0;
2214 }
2215 #else
2216 void
2217 moea64_pinit(mmu_t mmu, pmap_t pmap)
2218 {
2219 	int	i;
2220 	uint32_t hash;
2221 
2222 	RB_INIT(&pmap->pmap_pvo);
2223 
2224 	if (pmap_bootstrapped)
2225 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
2226 		    (vm_offset_t)pmap);
2227 	else
2228 		pmap->pmap_phys = pmap;
2229 
2230 	/*
2231 	 * Allocate some segment registers for this pmap.
2232 	 */
2233 	hash = moea64_get_unique_vsid();
2234 
2235 	for (i = 0; i < 16; i++)
2236 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
2237 
2238 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
2239 }
2240 #endif
2241 
2242 /*
2243  * Initialize the pmap associated with process 0.
2244  */
2245 void
2246 moea64_pinit0(mmu_t mmu, pmap_t pm)
2247 {
2248 
2249 	PMAP_LOCK_INIT(pm);
2250 	moea64_pinit(mmu, pm);
2251 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2252 }
2253 
2254 /*
2255  * Set the physical protection on the specified range of this map as requested.
2256  */
2257 static void
2258 moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
2259 {
2260 	struct vm_page *pg;
2261 	vm_prot_t oldprot;
2262 	int32_t refchg;
2263 
2264 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2265 
2266 	/*
2267 	 * Change the protection of the page.
2268 	 */
2269 	oldprot = pvo->pvo_pte.prot;
2270 	pvo->pvo_pte.prot = prot;
2271 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2272 
2273 	/*
2274 	 * If the PVO is in the page table, update mapping
2275 	 */
2276 	refchg = MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_PROT_UPDATE);
2277 	if (refchg < 0)
2278 		refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
2279 
2280 	if (pm != kernel_pmap && pg != NULL &&
2281 	    (pg->a.flags & PGA_EXECUTABLE) == 0 &&
2282 	    (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2283 		if ((pg->oflags & VPO_UNMANAGED) == 0)
2284 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
2285 		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
2286 		    pvo->pvo_pte.pa & LPTE_RPGN, PAGE_SIZE);
2287 	}
2288 
2289 	/*
2290 	 * Update vm about the REF/CHG bits if the page is managed and we have
2291 	 * removed write access.
2292 	 */
2293 	if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
2294 	    (oldprot & VM_PROT_WRITE)) {
2295 		refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2296 		if (refchg & LPTE_CHG)
2297 			vm_page_dirty(pg);
2298 		if (refchg & LPTE_REF)
2299 			vm_page_aflag_set(pg, PGA_REFERENCED);
2300 	}
2301 }
2302 
2303 void
2304 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2305     vm_prot_t prot)
2306 {
2307 	struct	pvo_entry *pvo, *tpvo, key;
2308 
2309 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2310 	    sva, eva, prot);
2311 
2312 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2313 	    ("moea64_protect: non current pmap"));
2314 
2315 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2316 		moea64_remove(mmu, pm, sva, eva);
2317 		return;
2318 	}
2319 
2320 	PMAP_LOCK(pm);
2321 	key.pvo_vaddr = sva;
2322 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2323 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2324 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2325 		moea64_pvo_protect(mmu, pm, pvo, prot);
2326 	}
2327 	PMAP_UNLOCK(pm);
2328 }
2329 
2330 /*
2331  * Map a list of wired pages into kernel virtual address space.  This is
2332  * intended for temporary mappings which do not need page modification or
2333  * references recorded.  Existing mappings in the region are overwritten.
2334  */
2335 void
2336 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2337 {
2338 	while (count-- > 0) {
2339 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2340 		va += PAGE_SIZE;
2341 		m++;
2342 	}
2343 }
2344 
2345 /*
2346  * Remove page mappings from kernel virtual address space.  Intended for
2347  * temporary mappings entered by moea64_qenter.
2348  */
2349 void
2350 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2351 {
2352 	while (count-- > 0) {
2353 		moea64_kremove(mmu, va);
2354 		va += PAGE_SIZE;
2355 	}
2356 }
2357 
2358 void
2359 moea64_release_vsid(uint64_t vsid)
2360 {
2361 	int idx, mask;
2362 
2363 	mtx_lock(&moea64_slb_mutex);
2364 	idx = vsid & (NVSIDS-1);
2365 	mask = 1 << (idx % VSID_NBPW);
2366 	idx /= VSID_NBPW;
2367 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2368 	    ("Freeing unallocated VSID %#jx", vsid));
2369 	moea64_vsid_bitmap[idx] &= ~mask;
2370 	mtx_unlock(&moea64_slb_mutex);
2371 }
2372 
2373 
2374 void
2375 moea64_release(mmu_t mmu, pmap_t pmap)
2376 {
2377 
2378 	/*
2379 	 * Free segment registers' VSIDs
2380 	 */
2381     #ifdef __powerpc64__
2382 	slb_free_tree(pmap);
2383 	slb_free_user_cache(pmap->pm_slb);
2384     #else
2385 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2386 
2387 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2388     #endif
2389 }
2390 
2391 /*
2392  * Remove all pages mapped by the specified pmap
2393  */
2394 void
2395 moea64_remove_pages(mmu_t mmu, pmap_t pm)
2396 {
2397 	struct pvo_entry *pvo, *tpvo;
2398 	struct pvo_dlist tofree;
2399 
2400 	SLIST_INIT(&tofree);
2401 
2402 	PMAP_LOCK(pm);
2403 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2404 		if (pvo->pvo_vaddr & PVO_WIRED)
2405 			continue;
2406 
2407 		/*
2408 		 * For locking reasons, remove this from the page table and
2409 		 * pmap, but save delinking from the vm_page for a second
2410 		 * pass
2411 		 */
2412 		moea64_pvo_remove_from_pmap(mmu, pvo);
2413 		SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink);
2414 	}
2415 	PMAP_UNLOCK(pm);
2416 
2417 	while (!SLIST_EMPTY(&tofree)) {
2418 		pvo = SLIST_FIRST(&tofree);
2419 		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2420 		moea64_pvo_remove_from_page(mmu, pvo);
2421 		free_pvo_entry(pvo);
2422 	}
2423 }
2424 
2425 /*
2426  * Remove the given range of addresses from the specified map.
2427  */
2428 void
2429 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2430 {
2431 	struct  pvo_entry *pvo, *tpvo, key;
2432 	struct pvo_dlist tofree;
2433 
2434 	/*
2435 	 * Perform an unsynchronized read.  This is, however, safe.
2436 	 */
2437 	if (pm->pm_stats.resident_count == 0)
2438 		return;
2439 
2440 	key.pvo_vaddr = sva;
2441 
2442 	SLIST_INIT(&tofree);
2443 
2444 	PMAP_LOCK(pm);
2445 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2446 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2447 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2448 
2449 		/*
2450 		 * For locking reasons, remove this from the page table and
2451 		 * pmap, but save delinking from the vm_page for a second
2452 		 * pass
2453 		 */
2454 		moea64_pvo_remove_from_pmap(mmu, pvo);
2455 		SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink);
2456 	}
2457 	PMAP_UNLOCK(pm);
2458 
2459 	while (!SLIST_EMPTY(&tofree)) {
2460 		pvo = SLIST_FIRST(&tofree);
2461 		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2462 		moea64_pvo_remove_from_page(mmu, pvo);
2463 		free_pvo_entry(pvo);
2464 	}
2465 }
2466 
2467 /*
2468  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2469  * will reflect changes in pte's back to the vm_page.
2470  */
2471 void
2472 moea64_remove_all(mmu_t mmu, vm_page_t m)
2473 {
2474 	struct	pvo_entry *pvo, *next_pvo;
2475 	struct	pvo_head freequeue;
2476 	int	wasdead;
2477 	pmap_t	pmap;
2478 
2479 	LIST_INIT(&freequeue);
2480 
2481 	PV_PAGE_LOCK(m);
2482 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2483 		pmap = pvo->pvo_pmap;
2484 		PMAP_LOCK(pmap);
2485 		wasdead = (pvo->pvo_vaddr & PVO_DEAD);
2486 		if (!wasdead)
2487 			moea64_pvo_remove_from_pmap(mmu, pvo);
2488 		moea64_pvo_remove_from_page_locked(mmu, pvo, m);
2489 		if (!wasdead)
2490 			LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
2491 		PMAP_UNLOCK(pmap);
2492 
2493 	}
2494 	KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
2495 	KASSERT((m->a.flags & PGA_WRITEABLE) == 0, ("Page still writable"));
2496 	PV_PAGE_UNLOCK(m);
2497 
2498 	/* Clean up UMA allocations */
2499 	LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
2500 		free_pvo_entry(pvo);
2501 }
2502 
2503 /*
2504  * Allocate a physical page of memory directly from the phys_avail map.
2505  * Can only be called from moea64_bootstrap before avail start and end are
2506  * calculated.
2507  */
2508 vm_offset_t
2509 moea64_bootstrap_alloc(vm_size_t size, vm_size_t align)
2510 {
2511 	vm_offset_t	s, e;
2512 	int		i, j;
2513 
2514 	size = round_page(size);
2515 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2516 		if (align != 0)
2517 			s = roundup2(phys_avail[i], align);
2518 		else
2519 			s = phys_avail[i];
2520 		e = s + size;
2521 
2522 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2523 			continue;
2524 
2525 		if (s + size > platform_real_maxaddr())
2526 			continue;
2527 
2528 		if (s == phys_avail[i]) {
2529 			phys_avail[i] += size;
2530 		} else if (e == phys_avail[i + 1]) {
2531 			phys_avail[i + 1] -= size;
2532 		} else {
2533 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2534 				phys_avail[j] = phys_avail[j - 2];
2535 				phys_avail[j + 1] = phys_avail[j - 1];
2536 			}
2537 
2538 			phys_avail[i + 3] = phys_avail[i + 1];
2539 			phys_avail[i + 1] = s;
2540 			phys_avail[i + 2] = e;
2541 			phys_avail_count++;
2542 		}
2543 
2544 		return (s);
2545 	}
2546 	panic("moea64_bootstrap_alloc: could not allocate memory");
2547 }
2548 
2549 static int
2550 moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo, struct pvo_head *pvo_head,
2551     struct pvo_entry **oldpvop)
2552 {
2553 	struct pvo_entry *old_pvo;
2554 	int err;
2555 
2556 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2557 
2558 	STAT_MOEA64(moea64_pvo_enter_calls++);
2559 
2560 	/*
2561 	 * Add to pmap list
2562 	 */
2563 	old_pvo = RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2564 
2565 	if (old_pvo != NULL) {
2566 		if (oldpvop != NULL)
2567 			*oldpvop = old_pvo;
2568 		return (EEXIST);
2569 	}
2570 
2571 	if (pvo_head != NULL) {
2572 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2573 	}
2574 
2575 	if (pvo->pvo_vaddr & PVO_WIRED)
2576 		pvo->pvo_pmap->pm_stats.wired_count++;
2577 	pvo->pvo_pmap->pm_stats.resident_count++;
2578 
2579 	/*
2580 	 * Insert it into the hardware page table
2581 	 */
2582 	err = MOEA64_PTE_INSERT(mmu, pvo);
2583 	if (err != 0) {
2584 		panic("moea64_pvo_enter: overflow");
2585 	}
2586 
2587 	STAT_MOEA64(moea64_pvo_entries++);
2588 
2589 	if (pvo->pvo_pmap == kernel_pmap)
2590 		isync();
2591 
2592 #ifdef __powerpc64__
2593 	/*
2594 	 * Make sure all our bootstrap mappings are in the SLB as soon
2595 	 * as virtual memory is switched on.
2596 	 */
2597 	if (!pmap_bootstrapped)
2598 		moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
2599 		    pvo->pvo_vaddr & PVO_LARGE);
2600 #endif
2601 
2602 	return (0);
2603 }
2604 
2605 static void
2606 moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo)
2607 {
2608 	struct	vm_page *pg;
2609 	int32_t refchg;
2610 
2611 	KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
2612 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2613 	KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
2614 
2615 	/*
2616 	 * If there is an active pte entry, we need to deactivate it
2617 	 */
2618 	refchg = MOEA64_PTE_UNSET(mmu, pvo);
2619 	if (refchg < 0) {
2620 		/*
2621 		 * If it was evicted from the page table, be pessimistic and
2622 		 * dirty the page.
2623 		 */
2624 		if (pvo->pvo_pte.prot & VM_PROT_WRITE)
2625 			refchg = LPTE_CHG;
2626 		else
2627 			refchg = 0;
2628 	}
2629 
2630 	/*
2631 	 * Update our statistics.
2632 	 */
2633 	pvo->pvo_pmap->pm_stats.resident_count--;
2634 	if (pvo->pvo_vaddr & PVO_WIRED)
2635 		pvo->pvo_pmap->pm_stats.wired_count--;
2636 
2637 	/*
2638 	 * Remove this PVO from the pmap list.
2639 	 */
2640 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2641 
2642 	/*
2643 	 * Mark this for the next sweep
2644 	 */
2645 	pvo->pvo_vaddr |= PVO_DEAD;
2646 
2647 	/* Send RC bits to VM */
2648 	if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2649 	    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2650 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2651 		if (pg != NULL) {
2652 			refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2653 			if (refchg & LPTE_CHG)
2654 				vm_page_dirty(pg);
2655 			if (refchg & LPTE_REF)
2656 				vm_page_aflag_set(pg, PGA_REFERENCED);
2657 		}
2658 	}
2659 }
2660 
2661 static inline void
2662 moea64_pvo_remove_from_page_locked(mmu_t mmu, struct pvo_entry *pvo,
2663     vm_page_t m)
2664 {
2665 
2666 	KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
2667 
2668 	/* Use NULL pmaps as a sentinel for races in page deletion */
2669 	if (pvo->pvo_pmap == NULL)
2670 		return;
2671 	pvo->pvo_pmap = NULL;
2672 
2673 	/*
2674 	 * Update vm about page writeability/executability if managed
2675 	 */
2676 	PV_LOCKASSERT(pvo->pvo_pte.pa & LPTE_RPGN);
2677 	if (pvo->pvo_vaddr & PVO_MANAGED) {
2678 		if (m != NULL) {
2679 			LIST_REMOVE(pvo, pvo_vlink);
2680 			if (LIST_EMPTY(vm_page_to_pvoh(m)))
2681 				vm_page_aflag_clear(m,
2682 				    PGA_WRITEABLE | PGA_EXECUTABLE);
2683 		}
2684 	}
2685 
2686 	STAT_MOEA64(moea64_pvo_entries--);
2687 	STAT_MOEA64(moea64_pvo_remove_calls++);
2688 }
2689 
2690 static void
2691 moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo)
2692 {
2693 	vm_page_t pg = NULL;
2694 
2695 	if (pvo->pvo_vaddr & PVO_MANAGED)
2696 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2697 
2698 	PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2699 	moea64_pvo_remove_from_page_locked(mmu, pvo, pg);
2700 	PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2701 }
2702 
2703 static struct pvo_entry *
2704 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2705 {
2706 	struct pvo_entry key;
2707 
2708 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2709 
2710 	key.pvo_vaddr = va & ~ADDR_POFF;
2711 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2712 }
2713 
2714 static boolean_t
2715 moea64_query_bit(mmu_t mmu, vm_page_t m, uint64_t ptebit)
2716 {
2717 	struct	pvo_entry *pvo;
2718 	int64_t ret;
2719 	boolean_t rv;
2720 
2721 	/*
2722 	 * See if this bit is stored in the page already.
2723 	 */
2724 	if (m->md.mdpg_attrs & ptebit)
2725 		return (TRUE);
2726 
2727 	/*
2728 	 * Examine each PTE.  Sync so that any pending REF/CHG bits are
2729 	 * flushed to the PTEs.
2730 	 */
2731 	rv = FALSE;
2732 	powerpc_sync();
2733 	PV_PAGE_LOCK(m);
2734 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2735 		ret = 0;
2736 
2737 		/*
2738 		 * See if this pvo has a valid PTE.  if so, fetch the
2739 		 * REF/CHG bits from the valid PTE.  If the appropriate
2740 		 * ptebit is set, return success.
2741 		 */
2742 		PMAP_LOCK(pvo->pvo_pmap);
2743 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2744 			ret = MOEA64_PTE_SYNCH(mmu, pvo);
2745 		PMAP_UNLOCK(pvo->pvo_pmap);
2746 
2747 		if (ret > 0) {
2748 			atomic_set_32(&m->md.mdpg_attrs,
2749 			    ret & (LPTE_CHG | LPTE_REF));
2750 			if (ret & ptebit) {
2751 				rv = TRUE;
2752 				break;
2753 			}
2754 		}
2755 	}
2756 	PV_PAGE_UNLOCK(m);
2757 
2758 	return (rv);
2759 }
2760 
2761 static u_int
2762 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2763 {
2764 	u_int	count;
2765 	struct	pvo_entry *pvo;
2766 	int64_t ret;
2767 
2768 	/*
2769 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2770 	 * we can reset the right ones).
2771 	 */
2772 	powerpc_sync();
2773 
2774 	/*
2775 	 * For each pvo entry, clear the pte's ptebit.
2776 	 */
2777 	count = 0;
2778 	PV_PAGE_LOCK(m);
2779 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2780 		ret = 0;
2781 
2782 		PMAP_LOCK(pvo->pvo_pmap);
2783 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2784 			ret = MOEA64_PTE_CLEAR(mmu, pvo, ptebit);
2785 		PMAP_UNLOCK(pvo->pvo_pmap);
2786 
2787 		if (ret > 0 && (ret & ptebit))
2788 			count++;
2789 	}
2790 	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
2791 	PV_PAGE_UNLOCK(m);
2792 
2793 	return (count);
2794 }
2795 
2796 boolean_t
2797 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2798 {
2799 	struct pvo_entry *pvo, key;
2800 	vm_offset_t ppa;
2801 	int error = 0;
2802 
2803 	if (hw_direct_map && mem_valid(pa, size) == 0)
2804 		return (0);
2805 
2806 	PMAP_LOCK(kernel_pmap);
2807 	ppa = pa & ~ADDR_POFF;
2808 	key.pvo_vaddr = DMAP_BASE_ADDRESS + ppa;
2809 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2810 	    ppa < pa + size; ppa += PAGE_SIZE,
2811 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2812 		if (pvo == NULL || (pvo->pvo_pte.pa & LPTE_RPGN) != ppa) {
2813 			error = EFAULT;
2814 			break;
2815 		}
2816 	}
2817 	PMAP_UNLOCK(kernel_pmap);
2818 
2819 	return (error);
2820 }
2821 
2822 /*
2823  * Map a set of physical memory pages into the kernel virtual
2824  * address space. Return a pointer to where it is mapped. This
2825  * routine is intended to be used for mapping device memory,
2826  * NOT real memory.
2827  */
2828 void *
2829 moea64_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2830 {
2831 	vm_offset_t va, tmpva, ppa, offset;
2832 
2833 	ppa = trunc_page(pa);
2834 	offset = pa & PAGE_MASK;
2835 	size = roundup2(offset + size, PAGE_SIZE);
2836 
2837 	va = kva_alloc(size);
2838 
2839 	if (!va)
2840 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2841 
2842 	for (tmpva = va; size > 0;) {
2843 		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2844 		size -= PAGE_SIZE;
2845 		tmpva += PAGE_SIZE;
2846 		ppa += PAGE_SIZE;
2847 	}
2848 
2849 	return ((void *)(va + offset));
2850 }
2851 
2852 void *
2853 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2854 {
2855 
2856 	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2857 }
2858 
2859 void
2860 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2861 {
2862 	vm_offset_t base, offset;
2863 
2864 	base = trunc_page(va);
2865 	offset = va & PAGE_MASK;
2866 	size = roundup2(offset + size, PAGE_SIZE);
2867 
2868 	kva_free(base, size);
2869 }
2870 
2871 void
2872 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2873 {
2874 	struct pvo_entry *pvo;
2875 	vm_offset_t lim;
2876 	vm_paddr_t pa;
2877 	vm_size_t len;
2878 
2879 	if (__predict_false(pm == NULL))
2880 		pm = &curthread->td_proc->p_vmspace->vm_pmap;
2881 
2882 	PMAP_LOCK(pm);
2883 	while (sz > 0) {
2884 		lim = round_page(va+1);
2885 		len = MIN(lim - va, sz);
2886 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2887 		if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
2888 			pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va & ADDR_POFF);
2889 			moea64_syncicache(mmu, pm, va, pa, len);
2890 		}
2891 		va += len;
2892 		sz -= len;
2893 	}
2894 	PMAP_UNLOCK(pm);
2895 }
2896 
2897 void
2898 moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2899 {
2900 
2901 	*va = (void *)(uintptr_t)pa;
2902 }
2903 
2904 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2905 
2906 void
2907 moea64_scan_init(mmu_t mmu)
2908 {
2909 	struct pvo_entry *pvo;
2910 	vm_offset_t va;
2911 	int i;
2912 
2913 	if (!do_minidump) {
2914 		/* Initialize phys. segments for dumpsys(). */
2915 		memset(&dump_map, 0, sizeof(dump_map));
2916 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2917 		for (i = 0; i < pregions_sz; i++) {
2918 			dump_map[i].pa_start = pregions[i].mr_start;
2919 			dump_map[i].pa_size = pregions[i].mr_size;
2920 		}
2921 		return;
2922 	}
2923 
2924 	/* Virtual segments for minidumps: */
2925 	memset(&dump_map, 0, sizeof(dump_map));
2926 
2927 	/* 1st: kernel .data and .bss. */
2928 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2929 	dump_map[0].pa_size = round_page((uintptr_t)_end) -
2930 	    dump_map[0].pa_start;
2931 
2932 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2933 	dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr;
2934 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2935 
2936 	/* 3rd: kernel VM. */
2937 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2938 	/* Find start of next chunk (from va). */
2939 	while (va < virtual_end) {
2940 		/* Don't dump the buffer cache. */
2941 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2942 			va = kmi.buffer_eva;
2943 			continue;
2944 		}
2945 		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2946 		if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2947 			break;
2948 		va += PAGE_SIZE;
2949 	}
2950 	if (va < virtual_end) {
2951 		dump_map[2].pa_start = va;
2952 		va += PAGE_SIZE;
2953 		/* Find last page in chunk. */
2954 		while (va < virtual_end) {
2955 			/* Don't run into the buffer cache. */
2956 			if (va == kmi.buffer_sva)
2957 				break;
2958 			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2959 			if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD))
2960 				break;
2961 			va += PAGE_SIZE;
2962 		}
2963 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2964 	}
2965 }
2966 
2967 #ifdef __powerpc64__
2968 
2969 static size_t
2970 moea64_scan_pmap(mmu_t mmu)
2971 {
2972 	struct pvo_entry *pvo;
2973 	vm_paddr_t pa, pa_end;
2974 	vm_offset_t va, pgva, kstart, kend, kstart_lp, kend_lp;
2975 	uint64_t lpsize;
2976 
2977 	lpsize = moea64_large_page_size;
2978 	kstart = trunc_page((vm_offset_t)_etext);
2979 	kend = round_page((vm_offset_t)_end);
2980 	kstart_lp = kstart & ~moea64_large_page_mask;
2981 	kend_lp = (kend + moea64_large_page_mask) & ~moea64_large_page_mask;
2982 
2983 	CTR4(KTR_PMAP, "moea64_scan_pmap: kstart=0x%016lx, kend=0x%016lx, "
2984 	    "kstart_lp=0x%016lx, kend_lp=0x%016lx",
2985 	    kstart, kend, kstart_lp, kend_lp);
2986 
2987 	PMAP_LOCK(kernel_pmap);
2988 	RB_FOREACH(pvo, pvo_tree, &kernel_pmap->pmap_pvo) {
2989 		va = pvo->pvo_vaddr;
2990 
2991 		if (va & PVO_DEAD)
2992 			continue;
2993 
2994 		/* Skip DMAP (except kernel area) */
2995 		if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS) {
2996 			if (va & PVO_LARGE) {
2997 				pgva = va & ~moea64_large_page_mask;
2998 				if (pgva < kstart_lp || pgva >= kend_lp)
2999 					continue;
3000 			} else {
3001 				pgva = trunc_page(va);
3002 				if (pgva < kstart || pgva >= kend)
3003 					continue;
3004 			}
3005 		}
3006 
3007 		pa = pvo->pvo_pte.pa & LPTE_RPGN;
3008 
3009 		if (va & PVO_LARGE) {
3010 			pa_end = pa + lpsize;
3011 			for (; pa < pa_end; pa += PAGE_SIZE) {
3012 				if (is_dumpable(pa))
3013 					dump_add_page(pa);
3014 			}
3015 		} else {
3016 			if (is_dumpable(pa))
3017 				dump_add_page(pa);
3018 		}
3019 	}
3020 	PMAP_UNLOCK(kernel_pmap);
3021 
3022 	return (sizeof(struct lpte) * moea64_pteg_count * 8);
3023 }
3024 
3025 static struct dump_context dump_ctx;
3026 
3027 static void *
3028 moea64_dump_pmap_init(mmu_t mmu, unsigned blkpgs)
3029 {
3030 	dump_ctx.ptex = 0;
3031 	dump_ctx.ptex_end = moea64_pteg_count * 8;
3032 	dump_ctx.blksz = blkpgs * PAGE_SIZE;
3033 	return (&dump_ctx);
3034 }
3035 
3036 #else
3037 
3038 static size_t
3039 moea64_scan_pmap(mmu_t mmu)
3040 {
3041 	return (0);
3042 }
3043 
3044 static void *
3045 moea64_dump_pmap_init(mmu_t mmu, unsigned blkpgs)
3046 {
3047 	return (NULL);
3048 }
3049 
3050 #endif
3051 
3052 #ifdef __powerpc64__
3053 static void
3054 moea64_map_range(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_size_t npages)
3055 {
3056 
3057 	for (; npages > 0; --npages) {
3058 		if (moea64_large_page_size != 0 &&
3059 		    (pa & moea64_large_page_mask) == 0 &&
3060 		    (va & moea64_large_page_mask) == 0 &&
3061 		    npages >= (moea64_large_page_size >> PAGE_SHIFT)) {
3062 			PMAP_LOCK(kernel_pmap);
3063 			moea64_kenter_large(mmu, va, pa, 0, 0);
3064 			PMAP_UNLOCK(kernel_pmap);
3065 			pa += moea64_large_page_size;
3066 			va += moea64_large_page_size;
3067 			npages -= (moea64_large_page_size >> PAGE_SHIFT) - 1;
3068 		} else {
3069 			moea64_kenter(mmu, va, pa);
3070 			pa += PAGE_SIZE;
3071 			va += PAGE_SIZE;
3072 		}
3073 	}
3074 }
3075 
3076 static void
3077 moea64_page_array_startup(mmu_t mmu, long pages)
3078 {
3079 	long dom_pages[MAXMEMDOM];
3080 	vm_paddr_t pa;
3081 	vm_offset_t va, vm_page_base;
3082 	vm_size_t needed, size;
3083 	long page;
3084 	int domain;
3085 	int i;
3086 
3087 	vm_page_base = 0xd000000000000000ULL;
3088 
3089 	/* Short-circuit single-domain systems. */
3090 	if (vm_ndomains == 1) {
3091 		size = round_page(pages * sizeof(struct vm_page));
3092 		pa = vm_phys_early_alloc(0, size);
3093 		vm_page_base = moea64_map(mmu, &vm_page_base,
3094 		    pa, pa + size, VM_PROT_READ | VM_PROT_WRITE);
3095 		vm_page_array_size = pages;
3096 		vm_page_array = (vm_page_t)vm_page_base;
3097 		return;
3098 	}
3099 
3100 	page = 0;
3101 	for (i = 0; i < MAXMEMDOM; i++)
3102 		dom_pages[i] = 0;
3103 
3104 	/* Now get the number of pages required per domain. */
3105 	for (i = 0; i < vm_phys_nsegs; i++) {
3106 		domain = vm_phys_segs[i].domain;
3107 		KASSERT(domain < MAXMEMDOM,
3108 		    ("Invalid vm_phys_segs NUMA domain %d!\n", domain));
3109 		/* Get size of vm_page_array needed for this segment. */
3110 		size = btoc(vm_phys_segs[i].end - vm_phys_segs[i].start);
3111 		dom_pages[domain] += size;
3112 	}
3113 
3114 	for (i = 0; phys_avail[i + 1] != 0; i+= 2) {
3115 		domain = _vm_phys_domain(phys_avail[i]);
3116 		KASSERT(domain < MAXMEMDOM,
3117 		    ("Invalid phys_avail NUMA domain %d!\n", domain));
3118 		size = btoc(phys_avail[i + 1] - phys_avail[i]);
3119 		dom_pages[domain] += size;
3120 	}
3121 
3122 	/*
3123 	 * Map in chunks that can get us all 16MB pages.  There will be some
3124 	 * overlap between domains, but that's acceptable for now.
3125 	 */
3126 	vm_page_array_size = 0;
3127 	va = vm_page_base;
3128 	for (i = 0; i < MAXMEMDOM && vm_page_array_size < pages; i++) {
3129 		if (dom_pages[i] == 0)
3130 			continue;
3131 		size = ulmin(pages - vm_page_array_size, dom_pages[i]);
3132 		size = round_page(size * sizeof(struct vm_page));
3133 		needed = size;
3134 		size = roundup2(size, moea64_large_page_size);
3135 		pa = vm_phys_early_alloc(i, size);
3136 		vm_page_array_size += size / sizeof(struct vm_page);
3137 		moea64_map_range(mmu, va, pa, size >> PAGE_SHIFT);
3138 		/* Scoot up domain 0, to reduce the domain page overlap. */
3139 		if (i == 0)
3140 			vm_page_base += size - needed;
3141 		va += size;
3142 	}
3143 	vm_page_array = (vm_page_t)vm_page_base;
3144 	vm_page_array_size = pages;
3145 }
3146 #endif
3147