1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2008-2015 Nathan Whitehorn 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 /* 31 * Manages physical address maps. 32 * 33 * Since the information managed by this module is also stored by the 34 * logical address mapping module, this module may throw away valid virtual 35 * to physical mappings at almost any time. However, invalidations of 36 * mappings must be done as requested. 37 * 38 * In order to cope with hardware architectures which make virtual to 39 * physical map invalidates expensive, this module may delay invalidate 40 * reduced protection operations until such time as they are actually 41 * necessary. This module is given full information as to which processors 42 * are currently using which maps, and to when physical maps must be made 43 * correct. 44 */ 45 46 #include "opt_kstack_pages.h" 47 48 #include <sys/param.h> 49 #include <sys/kernel.h> 50 #include <sys/conf.h> 51 #include <sys/queue.h> 52 #include <sys/cpuset.h> 53 #include <sys/kerneldump.h> 54 #include <sys/ktr.h> 55 #include <sys/lock.h> 56 #include <sys/msgbuf.h> 57 #include <sys/malloc.h> 58 #include <sys/mman.h> 59 #include <sys/mutex.h> 60 #include <sys/proc.h> 61 #include <sys/rwlock.h> 62 #include <sys/sched.h> 63 #include <sys/sysctl.h> 64 #include <sys/systm.h> 65 #include <sys/vmmeter.h> 66 #include <sys/smp.h> 67 #include <sys/reboot.h> 68 69 #include <sys/kdb.h> 70 71 #include <dev/ofw/openfirm.h> 72 73 #include <vm/vm.h> 74 #include <vm/pmap.h> 75 #include <vm/vm_param.h> 76 #include <vm/vm_kern.h> 77 #include <vm/vm_page.h> 78 #include <vm/vm_phys.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/vm_extern.h> 82 #include <vm/vm_pageout.h> 83 #include <vm/vm_dumpset.h> 84 #include <vm/vm_reserv.h> 85 #include <vm/uma.h> 86 87 #include <machine/_inttypes.h> 88 #include <machine/cpu.h> 89 #include <machine/ifunc.h> 90 #include <machine/platform.h> 91 #include <machine/frame.h> 92 #include <machine/md_var.h> 93 #include <machine/psl.h> 94 #include <machine/bat.h> 95 #include <machine/hid.h> 96 #include <machine/pte.h> 97 #include <machine/sr.h> 98 #include <machine/trap.h> 99 #include <machine/mmuvar.h> 100 101 #include "mmu_oea64.h" 102 103 void moea64_release_vsid(uint64_t vsid); 104 uintptr_t moea64_get_unique_vsid(void); 105 106 #define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR) 107 #define ENABLE_TRANS(msr) mtmsr(msr) 108 109 #define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4)) 110 #define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff) 111 #define VSID_HASH_MASK 0x0000007fffffffffULL 112 113 /* 114 * Locking semantics: 115 * 116 * There are two locks of interest: the page locks and the pmap locks, which 117 * protect their individual PVO lists and are locked in that order. The contents 118 * of all PVO entries are protected by the locks of their respective pmaps. 119 * The pmap of any PVO is guaranteed not to change so long as the PVO is linked 120 * into any list. 121 * 122 */ 123 124 #define PV_LOCK_COUNT PA_LOCK_COUNT 125 static struct mtx_padalign pv_lock[PV_LOCK_COUNT]; 126 127 /* 128 * Cheap NUMA-izing of the pv locks, to reduce contention across domains. 129 * NUMA domains on POWER9 appear to be indexed as sparse memory spaces, with the 130 * index at (N << 45). 131 */ 132 #ifdef __powerpc64__ 133 #define PV_LOCK_IDX(pa) ((pa_index(pa) * (((pa) >> 45) + 1)) % PV_LOCK_COUNT) 134 #else 135 #define PV_LOCK_IDX(pa) (pa_index(pa) % PV_LOCK_COUNT) 136 #endif 137 #define PV_LOCKPTR(pa) ((struct mtx *)(&pv_lock[PV_LOCK_IDX(pa)])) 138 #define PV_LOCK(pa) mtx_lock(PV_LOCKPTR(pa)) 139 #define PV_UNLOCK(pa) mtx_unlock(PV_LOCKPTR(pa)) 140 #define PV_LOCKASSERT(pa) mtx_assert(PV_LOCKPTR(pa), MA_OWNED) 141 #define PV_PAGE_LOCK(m) PV_LOCK(VM_PAGE_TO_PHYS(m)) 142 #define PV_PAGE_UNLOCK(m) PV_UNLOCK(VM_PAGE_TO_PHYS(m)) 143 #define PV_PAGE_LOCKASSERT(m) PV_LOCKASSERT(VM_PAGE_TO_PHYS(m)) 144 145 /* Superpage PV lock */ 146 147 #define PV_LOCK_SIZE (1<<PDRSHIFT) 148 149 static __always_inline void 150 moea64_sp_pv_lock(vm_paddr_t pa) 151 { 152 vm_paddr_t pa_end; 153 154 /* Note: breaking when pa_end is reached to avoid overflows */ 155 pa_end = pa + (HPT_SP_SIZE - PV_LOCK_SIZE); 156 for (;;) { 157 mtx_lock_flags(PV_LOCKPTR(pa), MTX_DUPOK); 158 if (pa == pa_end) 159 break; 160 pa += PV_LOCK_SIZE; 161 } 162 } 163 164 static __always_inline void 165 moea64_sp_pv_unlock(vm_paddr_t pa) 166 { 167 vm_paddr_t pa_end; 168 169 /* Note: breaking when pa_end is reached to avoid overflows */ 170 pa_end = pa; 171 pa += HPT_SP_SIZE - PV_LOCK_SIZE; 172 for (;;) { 173 mtx_unlock_flags(PV_LOCKPTR(pa), MTX_DUPOK); 174 if (pa == pa_end) 175 break; 176 pa -= PV_LOCK_SIZE; 177 } 178 } 179 180 #define SP_PV_LOCK_ALIGNED(pa) moea64_sp_pv_lock(pa) 181 #define SP_PV_UNLOCK_ALIGNED(pa) moea64_sp_pv_unlock(pa) 182 #define SP_PV_LOCK(pa) moea64_sp_pv_lock((pa) & ~HPT_SP_MASK) 183 #define SP_PV_UNLOCK(pa) moea64_sp_pv_unlock((pa) & ~HPT_SP_MASK) 184 #define SP_PV_PAGE_LOCK(m) SP_PV_LOCK(VM_PAGE_TO_PHYS(m)) 185 #define SP_PV_PAGE_UNLOCK(m) SP_PV_UNLOCK(VM_PAGE_TO_PHYS(m)) 186 187 struct ofw_map { 188 cell_t om_va; 189 cell_t om_len; 190 uint64_t om_pa; 191 cell_t om_mode; 192 }; 193 194 extern unsigned char _etext[]; 195 extern unsigned char _end[]; 196 197 extern void *slbtrap, *slbtrapend; 198 199 /* 200 * Map of physical memory regions. 201 */ 202 static struct mem_region *regions; 203 static struct mem_region *pregions; 204 static struct numa_mem_region *numa_pregions; 205 static u_int phys_avail_count; 206 static int regions_sz, pregions_sz, numapregions_sz; 207 208 extern void bs_remap_earlyboot(void); 209 210 /* 211 * Lock for the SLB tables. 212 */ 213 struct mtx moea64_slb_mutex; 214 215 /* 216 * PTEG data. 217 */ 218 u_long moea64_pteg_count; 219 u_long moea64_pteg_mask; 220 221 /* 222 * PVO data. 223 */ 224 225 uma_zone_t moea64_pvo_zone; /* zone for pvo entries */ 226 227 static struct pvo_entry *moea64_bpvo_pool; 228 static int moea64_bpvo_pool_index = 0; 229 static int moea64_bpvo_pool_size = 0; 230 SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD, 231 &moea64_bpvo_pool_index, 0, ""); 232 233 #define BPVO_POOL_SIZE 327680 /* Sensible historical default value */ 234 #define BPVO_POOL_EXPANSION_FACTOR 3 235 #define VSID_NBPW (sizeof(u_int32_t) * 8) 236 #ifdef __powerpc64__ 237 #define NVSIDS (NPMAPS * 16) 238 #define VSID_HASHMASK 0xffffffffUL 239 #else 240 #define NVSIDS NPMAPS 241 #define VSID_HASHMASK 0xfffffUL 242 #endif 243 static u_int moea64_vsid_bitmap[NVSIDS / VSID_NBPW]; 244 245 static bool moea64_initialized = false; 246 247 #ifdef MOEA64_STATS 248 /* 249 * Statistics. 250 */ 251 u_int moea64_pte_valid = 0; 252 u_int moea64_pte_overflow = 0; 253 u_int moea64_pvo_entries = 0; 254 u_int moea64_pvo_enter_calls = 0; 255 u_int moea64_pvo_remove_calls = 0; 256 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD, 257 &moea64_pte_valid, 0, ""); 258 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD, 259 &moea64_pte_overflow, 0, ""); 260 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD, 261 &moea64_pvo_entries, 0, ""); 262 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD, 263 &moea64_pvo_enter_calls, 0, ""); 264 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD, 265 &moea64_pvo_remove_calls, 0, ""); 266 #endif 267 268 vm_offset_t moea64_scratchpage_va[2]; 269 struct pvo_entry *moea64_scratchpage_pvo[2]; 270 struct mtx moea64_scratchpage_mtx; 271 272 uint64_t moea64_large_page_mask = 0; 273 uint64_t moea64_large_page_size = 0; 274 int moea64_large_page_shift = 0; 275 bool moea64_has_lp_4k_16m = false; 276 277 /* 278 * PVO calls. 279 */ 280 static int moea64_pvo_enter(struct pvo_entry *pvo, 281 struct pvo_head *pvo_head, struct pvo_entry **oldpvo); 282 static void moea64_pvo_remove_from_pmap(struct pvo_entry *pvo); 283 static void moea64_pvo_remove_from_page(struct pvo_entry *pvo); 284 static void moea64_pvo_remove_from_page_locked( 285 struct pvo_entry *pvo, vm_page_t m); 286 static struct pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t); 287 288 /* 289 * Utility routines. 290 */ 291 static bool moea64_query_bit(vm_page_t, uint64_t); 292 static u_int moea64_clear_bit(vm_page_t, uint64_t); 293 static void moea64_kremove(vm_offset_t); 294 static void moea64_syncicache(pmap_t pmap, vm_offset_t va, 295 vm_paddr_t pa, vm_size_t sz); 296 static void moea64_pmap_init_qpages(void); 297 static void moea64_remove_locked(pmap_t, vm_offset_t, 298 vm_offset_t, struct pvo_dlist *); 299 300 /* 301 * Superpages data and routines. 302 */ 303 304 /* 305 * PVO flags (in vaddr) that must match for promotion to succeed. 306 * Note that protection bits are checked separately, as they reside in 307 * another field. 308 */ 309 #define PVO_FLAGS_PROMOTE (PVO_WIRED | PVO_MANAGED | PVO_PTEGIDX_VALID) 310 311 #define PVO_IS_SP(pvo) (((pvo)->pvo_vaddr & PVO_LARGE) && \ 312 (pvo)->pvo_pmap != kernel_pmap) 313 314 /* Get physical address from PVO. */ 315 #define PVO_PADDR(pvo) moea64_pvo_paddr(pvo) 316 317 /* MD page flag indicating that the page is a superpage. */ 318 #define MDPG_ATTR_SP 0x40000000 319 320 SYSCTL_DECL(_vm_pmap); 321 322 static SYSCTL_NODE(_vm_pmap, OID_AUTO, sp, CTLFLAG_RD, 0, 323 "SP page mapping counters"); 324 325 static u_long sp_demotions; 326 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, demotions, CTLFLAG_RD, 327 &sp_demotions, 0, "SP page demotions"); 328 329 static u_long sp_mappings; 330 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, mappings, CTLFLAG_RD, 331 &sp_mappings, 0, "SP page mappings"); 332 333 static u_long sp_p_failures; 334 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_failures, CTLFLAG_RD, 335 &sp_p_failures, 0, "SP page promotion failures"); 336 337 static u_long sp_p_fail_pa; 338 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_pa, CTLFLAG_RD, 339 &sp_p_fail_pa, 0, "SP page promotion failure: PAs don't match"); 340 341 static u_long sp_p_fail_flags; 342 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_flags, CTLFLAG_RD, 343 &sp_p_fail_flags, 0, "SP page promotion failure: page flags don't match"); 344 345 static u_long sp_p_fail_prot; 346 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_prot, CTLFLAG_RD, 347 &sp_p_fail_prot, 0, 348 "SP page promotion failure: page protections don't match"); 349 350 static u_long sp_p_fail_wimg; 351 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_wimg, CTLFLAG_RD, 352 &sp_p_fail_wimg, 0, "SP page promotion failure: WIMG bits don't match"); 353 354 static u_long sp_promotions; 355 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, promotions, CTLFLAG_RD, 356 &sp_promotions, 0, "SP page promotions"); 357 358 static bool moea64_ps_enabled(pmap_t); 359 static void moea64_align_superpage(vm_object_t, vm_ooffset_t, 360 vm_offset_t *, vm_size_t); 361 362 static int moea64_sp_enter(pmap_t pmap, vm_offset_t va, 363 vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind); 364 static struct pvo_entry *moea64_sp_remove(struct pvo_entry *sp, 365 struct pvo_dlist *tofree); 366 367 static void moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m); 368 static void moea64_sp_demote_aligned(struct pvo_entry *sp); 369 static void moea64_sp_demote(struct pvo_entry *pvo); 370 371 static struct pvo_entry *moea64_sp_unwire(struct pvo_entry *sp); 372 static struct pvo_entry *moea64_sp_protect(struct pvo_entry *sp, 373 vm_prot_t prot); 374 375 static int64_t moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit); 376 static int64_t moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m, 377 uint64_t ptebit); 378 379 static __inline bool moea64_sp_pvo_in_range(struct pvo_entry *pvo, 380 vm_offset_t sva, vm_offset_t eva); 381 382 /* 383 * Kernel MMU interface 384 */ 385 void moea64_clear_modify(vm_page_t); 386 void moea64_copy_page(vm_page_t, vm_page_t); 387 void moea64_copy_page_dmap(vm_page_t, vm_page_t); 388 void moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset, 389 vm_page_t *mb, vm_offset_t b_offset, int xfersize); 390 void moea64_copy_pages_dmap(vm_page_t *ma, vm_offset_t a_offset, 391 vm_page_t *mb, vm_offset_t b_offset, int xfersize); 392 int moea64_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, 393 u_int flags, int8_t psind); 394 void moea64_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t, 395 vm_prot_t); 396 void moea64_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t); 397 vm_paddr_t moea64_extract(pmap_t, vm_offset_t); 398 vm_page_t moea64_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t); 399 void moea64_init(void); 400 bool moea64_is_modified(vm_page_t); 401 bool moea64_is_prefaultable(pmap_t, vm_offset_t); 402 bool moea64_is_referenced(vm_page_t); 403 int moea64_ts_referenced(vm_page_t); 404 vm_offset_t moea64_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int); 405 bool moea64_page_exists_quick(pmap_t, vm_page_t); 406 void moea64_page_init(vm_page_t); 407 int moea64_page_wired_mappings(vm_page_t); 408 int moea64_pinit(pmap_t); 409 void moea64_pinit0(pmap_t); 410 void moea64_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t); 411 void moea64_qenter(vm_offset_t, vm_page_t *, int); 412 void moea64_qremove(vm_offset_t, int); 413 void moea64_release(pmap_t); 414 void moea64_remove(pmap_t, vm_offset_t, vm_offset_t); 415 void moea64_remove_pages(pmap_t); 416 void moea64_remove_all(vm_page_t); 417 void moea64_remove_write(vm_page_t); 418 void moea64_unwire(pmap_t, vm_offset_t, vm_offset_t); 419 void moea64_zero_page(vm_page_t); 420 void moea64_zero_page_dmap(vm_page_t); 421 void moea64_zero_page_area(vm_page_t, int, int); 422 void moea64_activate(struct thread *); 423 void moea64_deactivate(struct thread *); 424 void *moea64_mapdev(vm_paddr_t, vm_size_t); 425 void *moea64_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t); 426 void moea64_unmapdev(void *, vm_size_t); 427 vm_paddr_t moea64_kextract(vm_offset_t); 428 void moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma); 429 void moea64_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma); 430 void moea64_kenter(vm_offset_t, vm_paddr_t); 431 int moea64_dev_direct_mapped(vm_paddr_t, vm_size_t); 432 static void moea64_sync_icache(pmap_t, vm_offset_t, vm_size_t); 433 void moea64_dumpsys_map(vm_paddr_t pa, size_t sz, 434 void **va); 435 void moea64_scan_init(void); 436 vm_offset_t moea64_quick_enter_page(vm_page_t m); 437 vm_offset_t moea64_quick_enter_page_dmap(vm_page_t m); 438 void moea64_quick_remove_page(vm_offset_t addr); 439 bool moea64_page_is_mapped(vm_page_t m); 440 static int moea64_map_user_ptr(pmap_t pm, 441 volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen); 442 static int moea64_decode_kernel_ptr(vm_offset_t addr, 443 int *is_user, vm_offset_t *decoded_addr); 444 static size_t moea64_scan_pmap(struct bitset *dump_bitset); 445 static void *moea64_dump_pmap_init(unsigned blkpgs); 446 #ifdef __powerpc64__ 447 static void moea64_page_array_startup(long); 448 #endif 449 static int moea64_mincore(pmap_t, vm_offset_t, vm_paddr_t *); 450 451 static struct pmap_funcs moea64_methods = { 452 .clear_modify = moea64_clear_modify, 453 .copy_page = moea64_copy_page, 454 .copy_pages = moea64_copy_pages, 455 .enter = moea64_enter, 456 .enter_object = moea64_enter_object, 457 .enter_quick = moea64_enter_quick, 458 .extract = moea64_extract, 459 .extract_and_hold = moea64_extract_and_hold, 460 .init = moea64_init, 461 .is_modified = moea64_is_modified, 462 .is_prefaultable = moea64_is_prefaultable, 463 .is_referenced = moea64_is_referenced, 464 .ts_referenced = moea64_ts_referenced, 465 .map = moea64_map, 466 .mincore = moea64_mincore, 467 .page_exists_quick = moea64_page_exists_quick, 468 .page_init = moea64_page_init, 469 .page_wired_mappings = moea64_page_wired_mappings, 470 .pinit = moea64_pinit, 471 .pinit0 = moea64_pinit0, 472 .protect = moea64_protect, 473 .qenter = moea64_qenter, 474 .qremove = moea64_qremove, 475 .release = moea64_release, 476 .remove = moea64_remove, 477 .remove_pages = moea64_remove_pages, 478 .remove_all = moea64_remove_all, 479 .remove_write = moea64_remove_write, 480 .sync_icache = moea64_sync_icache, 481 .unwire = moea64_unwire, 482 .zero_page = moea64_zero_page, 483 .zero_page_area = moea64_zero_page_area, 484 .activate = moea64_activate, 485 .deactivate = moea64_deactivate, 486 .page_set_memattr = moea64_page_set_memattr, 487 .quick_enter_page = moea64_quick_enter_page, 488 .quick_remove_page = moea64_quick_remove_page, 489 .page_is_mapped = moea64_page_is_mapped, 490 #ifdef __powerpc64__ 491 .page_array_startup = moea64_page_array_startup, 492 #endif 493 .ps_enabled = moea64_ps_enabled, 494 .align_superpage = moea64_align_superpage, 495 496 /* Internal interfaces */ 497 .mapdev = moea64_mapdev, 498 .mapdev_attr = moea64_mapdev_attr, 499 .unmapdev = moea64_unmapdev, 500 .kextract = moea64_kextract, 501 .kenter = moea64_kenter, 502 .kenter_attr = moea64_kenter_attr, 503 .dev_direct_mapped = moea64_dev_direct_mapped, 504 .dumpsys_pa_init = moea64_scan_init, 505 .dumpsys_scan_pmap = moea64_scan_pmap, 506 .dumpsys_dump_pmap_init = moea64_dump_pmap_init, 507 .dumpsys_map_chunk = moea64_dumpsys_map, 508 .map_user_ptr = moea64_map_user_ptr, 509 .decode_kernel_ptr = moea64_decode_kernel_ptr, 510 }; 511 512 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods); 513 514 /* 515 * Get physical address from PVO. 516 * 517 * For superpages, the lower bits are not stored on pvo_pte.pa and must be 518 * obtained from VA. 519 */ 520 static __always_inline vm_paddr_t 521 moea64_pvo_paddr(struct pvo_entry *pvo) 522 { 523 vm_paddr_t pa; 524 525 pa = (pvo)->pvo_pte.pa & LPTE_RPGN; 526 527 if (PVO_IS_SP(pvo)) { 528 pa &= ~HPT_SP_MASK; /* This is needed to clear LPTE_LP bits. */ 529 pa |= PVO_VADDR(pvo) & HPT_SP_MASK; 530 } 531 return (pa); 532 } 533 534 static struct pvo_head * 535 vm_page_to_pvoh(vm_page_t m) 536 { 537 538 mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED); 539 return (&m->md.mdpg_pvoh); 540 } 541 542 static struct pvo_entry * 543 alloc_pvo_entry(int bootstrap) 544 { 545 struct pvo_entry *pvo; 546 547 if (!moea64_initialized || bootstrap) { 548 if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) { 549 panic("%s: bpvo pool exhausted, index=%d, size=%d, bytes=%zd." 550 "Try setting machdep.moea64_bpvo_pool_size tunable", 551 __func__, moea64_bpvo_pool_index, 552 moea64_bpvo_pool_size, 553 moea64_bpvo_pool_size * sizeof(struct pvo_entry)); 554 } 555 pvo = &moea64_bpvo_pool[ 556 atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)]; 557 bzero(pvo, sizeof(*pvo)); 558 pvo->pvo_vaddr = PVO_BOOTSTRAP; 559 } else 560 pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT | M_ZERO); 561 562 return (pvo); 563 } 564 565 static void 566 init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va) 567 { 568 uint64_t vsid; 569 uint64_t hash; 570 int shift; 571 572 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 573 574 pvo->pvo_pmap = pmap; 575 va &= ~ADDR_POFF; 576 pvo->pvo_vaddr |= va; 577 vsid = va_to_vsid(pmap, va); 578 pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT) 579 | (vsid << 16); 580 581 if (pmap == kernel_pmap && (pvo->pvo_vaddr & PVO_LARGE) != 0) 582 shift = moea64_large_page_shift; 583 else 584 shift = ADDR_PIDX_SHFT; 585 hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift); 586 pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3; 587 } 588 589 static void 590 free_pvo_entry(struct pvo_entry *pvo) 591 { 592 593 if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP)) 594 uma_zfree(moea64_pvo_zone, pvo); 595 } 596 597 void 598 moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte) 599 { 600 601 lpte->pte_hi = moea64_pte_vpn_from_pvo_vpn(pvo); 602 lpte->pte_hi |= LPTE_VALID; 603 604 if (pvo->pvo_vaddr & PVO_LARGE) 605 lpte->pte_hi |= LPTE_BIG; 606 if (pvo->pvo_vaddr & PVO_WIRED) 607 lpte->pte_hi |= LPTE_WIRED; 608 if (pvo->pvo_vaddr & PVO_HID) 609 lpte->pte_hi |= LPTE_HID; 610 611 lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */ 612 if (pvo->pvo_pte.prot & VM_PROT_WRITE) 613 lpte->pte_lo |= LPTE_BW; 614 else 615 lpte->pte_lo |= LPTE_BR; 616 617 if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE)) 618 lpte->pte_lo |= LPTE_NOEXEC; 619 } 620 621 static __inline uint64_t 622 moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma) 623 { 624 uint64_t pte_lo; 625 int i; 626 627 if (ma != VM_MEMATTR_DEFAULT) { 628 switch (ma) { 629 case VM_MEMATTR_UNCACHEABLE: 630 return (LPTE_I | LPTE_G); 631 case VM_MEMATTR_CACHEABLE: 632 return (LPTE_M); 633 case VM_MEMATTR_WRITE_COMBINING: 634 case VM_MEMATTR_WRITE_BACK: 635 case VM_MEMATTR_PREFETCHABLE: 636 return (LPTE_I); 637 case VM_MEMATTR_WRITE_THROUGH: 638 return (LPTE_W | LPTE_M); 639 } 640 } 641 642 /* 643 * Assume the page is cache inhibited and access is guarded unless 644 * it's in our available memory array. 645 */ 646 pte_lo = LPTE_I | LPTE_G; 647 for (i = 0; i < pregions_sz; i++) { 648 if ((pa >= pregions[i].mr_start) && 649 (pa < (pregions[i].mr_start + pregions[i].mr_size))) { 650 pte_lo &= ~(LPTE_I | LPTE_G); 651 pte_lo |= LPTE_M; 652 break; 653 } 654 } 655 656 return pte_lo; 657 } 658 659 /* 660 * Quick sort callout for comparing memory regions. 661 */ 662 static int om_cmp(const void *a, const void *b); 663 664 static int 665 om_cmp(const void *a, const void *b) 666 { 667 const struct ofw_map *mapa; 668 const struct ofw_map *mapb; 669 670 mapa = a; 671 mapb = b; 672 if (mapa->om_pa < mapb->om_pa) 673 return (-1); 674 else if (mapa->om_pa > mapb->om_pa) 675 return (1); 676 else 677 return (0); 678 } 679 680 static void 681 moea64_add_ofw_mappings(phandle_t mmu, size_t sz) 682 { 683 struct ofw_map translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */ 684 pcell_t acells, trans_cells[sz/sizeof(cell_t)]; 685 struct pvo_entry *pvo; 686 register_t msr; 687 vm_offset_t off; 688 vm_paddr_t pa_base; 689 int i, j; 690 691 bzero(translations, sz); 692 OF_getencprop(OF_finddevice("/"), "#address-cells", &acells, 693 sizeof(acells)); 694 if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1) 695 panic("moea64_bootstrap: can't get ofw translations"); 696 697 CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations"); 698 sz /= sizeof(cell_t); 699 for (i = 0, j = 0; i < sz; j++) { 700 translations[j].om_va = trans_cells[i++]; 701 translations[j].om_len = trans_cells[i++]; 702 translations[j].om_pa = trans_cells[i++]; 703 if (acells == 2) { 704 translations[j].om_pa <<= 32; 705 translations[j].om_pa |= trans_cells[i++]; 706 } 707 translations[j].om_mode = trans_cells[i++]; 708 } 709 KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)", 710 i, sz)); 711 712 sz = j; 713 qsort(translations, sz, sizeof (*translations), om_cmp); 714 715 for (i = 0; i < sz; i++) { 716 pa_base = translations[i].om_pa; 717 #ifndef __powerpc64__ 718 if ((translations[i].om_pa >> 32) != 0) 719 panic("OFW translations above 32-bit boundary!"); 720 #endif 721 722 if (pa_base % PAGE_SIZE) 723 panic("OFW translation not page-aligned (phys)!"); 724 if (translations[i].om_va % PAGE_SIZE) 725 panic("OFW translation not page-aligned (virt)!"); 726 727 CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x", 728 pa_base, translations[i].om_va, translations[i].om_len); 729 730 /* Now enter the pages for this mapping */ 731 732 DISABLE_TRANS(msr); 733 for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) { 734 /* If this address is direct-mapped, skip remapping */ 735 if (hw_direct_map && 736 translations[i].om_va == PHYS_TO_DMAP(pa_base) && 737 moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT) 738 == LPTE_M) 739 continue; 740 741 PMAP_LOCK(kernel_pmap); 742 pvo = moea64_pvo_find_va(kernel_pmap, 743 translations[i].om_va + off); 744 PMAP_UNLOCK(kernel_pmap); 745 if (pvo != NULL) 746 continue; 747 748 moea64_kenter(translations[i].om_va + off, 749 pa_base + off); 750 } 751 ENABLE_TRANS(msr); 752 } 753 } 754 755 #ifdef __powerpc64__ 756 static void 757 moea64_probe_large_page(void) 758 { 759 uint16_t pvr = mfpvr() >> 16; 760 761 switch (pvr) { 762 case IBM970: 763 case IBM970FX: 764 case IBM970MP: 765 powerpc_sync(); isync(); 766 mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG); 767 powerpc_sync(); isync(); 768 769 /* FALLTHROUGH */ 770 default: 771 if (moea64_large_page_size == 0) { 772 moea64_large_page_size = 0x1000000; /* 16 MB */ 773 moea64_large_page_shift = 24; 774 } 775 } 776 777 moea64_large_page_mask = moea64_large_page_size - 1; 778 } 779 780 static void 781 moea64_bootstrap_slb_prefault(vm_offset_t va, int large) 782 { 783 struct slb *cache; 784 struct slb entry; 785 uint64_t esid, slbe; 786 uint64_t i; 787 788 cache = PCPU_GET(aim.slb); 789 esid = va >> ADDR_SR_SHFT; 790 slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID; 791 792 for (i = 0; i < 64; i++) { 793 if (cache[i].slbe == (slbe | i)) 794 return; 795 } 796 797 entry.slbe = slbe; 798 entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT; 799 if (large) 800 entry.slbv |= SLBV_L; 801 802 slb_insert_kernel(entry.slbe, entry.slbv); 803 } 804 #endif 805 806 static int 807 moea64_kenter_large(vm_offset_t va, vm_paddr_t pa, uint64_t attr, int bootstrap) 808 { 809 struct pvo_entry *pvo; 810 uint64_t pte_lo; 811 int error; 812 813 pte_lo = LPTE_M; 814 pte_lo |= attr; 815 816 pvo = alloc_pvo_entry(bootstrap); 817 pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE; 818 init_pvo_entry(pvo, kernel_pmap, va); 819 820 pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | 821 VM_PROT_EXECUTE; 822 pvo->pvo_pte.pa = pa | pte_lo; 823 error = moea64_pvo_enter(pvo, NULL, NULL); 824 if (error != 0) 825 panic("Error %d inserting large page\n", error); 826 return (0); 827 } 828 829 static void 830 moea64_setup_direct_map(vm_offset_t kernelstart, 831 vm_offset_t kernelend) 832 { 833 register_t msr; 834 vm_paddr_t pa, pkernelstart, pkernelend; 835 vm_offset_t size, off; 836 uint64_t pte_lo; 837 int i; 838 839 if (moea64_large_page_size == 0) 840 hw_direct_map = 0; 841 842 DISABLE_TRANS(msr); 843 if (hw_direct_map) { 844 PMAP_LOCK(kernel_pmap); 845 for (i = 0; i < pregions_sz; i++) { 846 for (pa = pregions[i].mr_start; pa < pregions[i].mr_start + 847 pregions[i].mr_size; pa += moea64_large_page_size) { 848 pte_lo = LPTE_M; 849 if (pa & moea64_large_page_mask) { 850 pa &= moea64_large_page_mask; 851 pte_lo |= LPTE_G; 852 } 853 if (pa + moea64_large_page_size > 854 pregions[i].mr_start + pregions[i].mr_size) 855 pte_lo |= LPTE_G; 856 857 moea64_kenter_large(PHYS_TO_DMAP(pa), pa, pte_lo, 1); 858 } 859 } 860 PMAP_UNLOCK(kernel_pmap); 861 } 862 863 /* 864 * Make sure the kernel and BPVO pool stay mapped on systems either 865 * without a direct map or on which the kernel is not already executing 866 * out of the direct-mapped region. 867 */ 868 if (kernelstart < DMAP_BASE_ADDRESS) { 869 /* 870 * For pre-dmap execution, we need to use identity mapping 871 * because we will be operating with the mmu on but in the 872 * wrong address configuration until we __restartkernel(). 873 */ 874 for (pa = kernelstart & ~PAGE_MASK; pa < kernelend; 875 pa += PAGE_SIZE) 876 moea64_kenter(pa, pa); 877 } else if (!hw_direct_map) { 878 pkernelstart = kernelstart & ~DMAP_BASE_ADDRESS; 879 pkernelend = kernelend & ~DMAP_BASE_ADDRESS; 880 for (pa = pkernelstart & ~PAGE_MASK; pa < pkernelend; 881 pa += PAGE_SIZE) 882 moea64_kenter(pa | DMAP_BASE_ADDRESS, pa); 883 } 884 885 if (!hw_direct_map) { 886 size = moea64_bpvo_pool_size*sizeof(struct pvo_entry); 887 off = (vm_offset_t)(moea64_bpvo_pool); 888 for (pa = off; pa < off + size; pa += PAGE_SIZE) 889 moea64_kenter(pa, pa); 890 891 /* Map exception vectors */ 892 for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE) 893 moea64_kenter(pa | DMAP_BASE_ADDRESS, pa); 894 } 895 ENABLE_TRANS(msr); 896 897 /* 898 * Allow user to override unmapped_buf_allowed for testing. 899 * XXXKIB Only direct map implementation was tested. 900 */ 901 if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed", 902 &unmapped_buf_allowed)) 903 unmapped_buf_allowed = hw_direct_map; 904 } 905 906 /* Quick sort callout for comparing physical addresses. */ 907 static int 908 pa_cmp(const void *a, const void *b) 909 { 910 const vm_paddr_t *pa = a, *pb = b; 911 912 if (*pa < *pb) 913 return (-1); 914 else if (*pa > *pb) 915 return (1); 916 else 917 return (0); 918 } 919 920 void 921 moea64_early_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend) 922 { 923 int i, j; 924 vm_size_t physsz, hwphyssz; 925 vm_paddr_t kernelphysstart, kernelphysend; 926 int rm_pavail; 927 928 /* Level 0 reservations consist of 4096 pages (16MB superpage). */ 929 vm_level_0_order = 12; 930 931 #ifndef __powerpc64__ 932 /* We don't have a direct map since there is no BAT */ 933 hw_direct_map = 0; 934 935 /* Make sure battable is zero, since we have no BAT */ 936 for (i = 0; i < 16; i++) { 937 battable[i].batu = 0; 938 battable[i].batl = 0; 939 } 940 #else 941 /* Install trap handlers for SLBs */ 942 bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap); 943 bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap); 944 __syncicache((void *)EXC_DSE, 0x80); 945 __syncicache((void *)EXC_ISE, 0x80); 946 #endif 947 948 kernelphysstart = kernelstart & ~DMAP_BASE_ADDRESS; 949 kernelphysend = kernelend & ~DMAP_BASE_ADDRESS; 950 951 /* Get physical memory regions from firmware */ 952 mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); 953 CTR0(KTR_PMAP, "moea64_bootstrap: physical memory"); 954 955 if (PHYS_AVAIL_ENTRIES < regions_sz) 956 panic("moea64_bootstrap: phys_avail too small"); 957 958 phys_avail_count = 0; 959 physsz = 0; 960 hwphyssz = 0; 961 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); 962 for (i = 0, j = 0; i < regions_sz; i++, j += 2) { 963 CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)", 964 regions[i].mr_start, regions[i].mr_start + 965 regions[i].mr_size, regions[i].mr_size); 966 if (hwphyssz != 0 && 967 (physsz + regions[i].mr_size) >= hwphyssz) { 968 if (physsz < hwphyssz) { 969 phys_avail[j] = regions[i].mr_start; 970 phys_avail[j + 1] = regions[i].mr_start + 971 hwphyssz - physsz; 972 physsz = hwphyssz; 973 phys_avail_count++; 974 dump_avail[j] = phys_avail[j]; 975 dump_avail[j + 1] = phys_avail[j + 1]; 976 } 977 break; 978 } 979 phys_avail[j] = regions[i].mr_start; 980 phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size; 981 phys_avail_count++; 982 physsz += regions[i].mr_size; 983 dump_avail[j] = phys_avail[j]; 984 dump_avail[j + 1] = phys_avail[j + 1]; 985 } 986 987 /* Check for overlap with the kernel and exception vectors */ 988 rm_pavail = 0; 989 for (j = 0; j < 2*phys_avail_count; j+=2) { 990 if (phys_avail[j] < EXC_LAST) 991 phys_avail[j] += EXC_LAST; 992 993 if (phys_avail[j] >= kernelphysstart && 994 phys_avail[j+1] <= kernelphysend) { 995 phys_avail[j] = phys_avail[j+1] = ~0; 996 rm_pavail++; 997 continue; 998 } 999 1000 if (kernelphysstart >= phys_avail[j] && 1001 kernelphysstart < phys_avail[j+1]) { 1002 if (kernelphysend < phys_avail[j+1]) { 1003 phys_avail[2*phys_avail_count] = 1004 (kernelphysend & ~PAGE_MASK) + PAGE_SIZE; 1005 phys_avail[2*phys_avail_count + 1] = 1006 phys_avail[j+1]; 1007 phys_avail_count++; 1008 } 1009 1010 phys_avail[j+1] = kernelphysstart & ~PAGE_MASK; 1011 } 1012 1013 if (kernelphysend >= phys_avail[j] && 1014 kernelphysend < phys_avail[j+1]) { 1015 if (kernelphysstart > phys_avail[j]) { 1016 phys_avail[2*phys_avail_count] = phys_avail[j]; 1017 phys_avail[2*phys_avail_count + 1] = 1018 kernelphysstart & ~PAGE_MASK; 1019 phys_avail_count++; 1020 } 1021 1022 phys_avail[j] = (kernelphysend & ~PAGE_MASK) + 1023 PAGE_SIZE; 1024 } 1025 } 1026 1027 /* Remove physical available regions marked for removal (~0) */ 1028 if (rm_pavail) { 1029 qsort(phys_avail, 2*phys_avail_count, sizeof(phys_avail[0]), 1030 pa_cmp); 1031 phys_avail_count -= rm_pavail; 1032 for (i = 2*phys_avail_count; 1033 i < 2*(phys_avail_count + rm_pavail); i+=2) 1034 phys_avail[i] = phys_avail[i+1] = 0; 1035 } 1036 1037 physmem = btoc(physsz); 1038 1039 #ifdef PTEGCOUNT 1040 moea64_pteg_count = PTEGCOUNT; 1041 #else 1042 moea64_pteg_count = 0x1000; 1043 1044 while (moea64_pteg_count < physmem) 1045 moea64_pteg_count <<= 1; 1046 1047 moea64_pteg_count >>= 1; 1048 #endif /* PTEGCOUNT */ 1049 } 1050 1051 void 1052 moea64_mid_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend) 1053 { 1054 int i; 1055 1056 /* 1057 * Set PTEG mask 1058 */ 1059 moea64_pteg_mask = moea64_pteg_count - 1; 1060 1061 /* 1062 * Initialize SLB table lock and page locks 1063 */ 1064 mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF); 1065 for (i = 0; i < PV_LOCK_COUNT; i++) 1066 mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF); 1067 1068 /* 1069 * Initialise the bootstrap pvo pool. 1070 */ 1071 TUNABLE_INT_FETCH("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size); 1072 if (moea64_bpvo_pool_size == 0) { 1073 if (!hw_direct_map) 1074 moea64_bpvo_pool_size = ((ptoa((uintmax_t)physmem) * sizeof(struct vm_page)) / 1075 (PAGE_SIZE * PAGE_SIZE)) * BPVO_POOL_EXPANSION_FACTOR; 1076 else 1077 moea64_bpvo_pool_size = BPVO_POOL_SIZE; 1078 } 1079 1080 if (boothowto & RB_VERBOSE) { 1081 printf("mmu_oea64: bpvo pool entries = %d, bpvo pool size = %zu MB\n", 1082 moea64_bpvo_pool_size, 1083 moea64_bpvo_pool_size*sizeof(struct pvo_entry) / 1048576); 1084 } 1085 1086 moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc( 1087 moea64_bpvo_pool_size*sizeof(struct pvo_entry), PAGE_SIZE); 1088 moea64_bpvo_pool_index = 0; 1089 1090 /* Place at address usable through the direct map */ 1091 if (hw_direct_map) 1092 moea64_bpvo_pool = (struct pvo_entry *) 1093 PHYS_TO_DMAP((uintptr_t)moea64_bpvo_pool); 1094 1095 /* 1096 * Make sure kernel vsid is allocated as well as VSID 0. 1097 */ 1098 #ifndef __powerpc64__ 1099 moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW] 1100 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW); 1101 moea64_vsid_bitmap[0] |= 1; 1102 #endif 1103 1104 /* 1105 * Initialize the kernel pmap (which is statically allocated). 1106 */ 1107 #ifdef __powerpc64__ 1108 for (i = 0; i < 64; i++) { 1109 pcpup->pc_aim.slb[i].slbv = 0; 1110 pcpup->pc_aim.slb[i].slbe = 0; 1111 } 1112 #else 1113 for (i = 0; i < 16; i++) 1114 kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i; 1115 #endif 1116 1117 kernel_pmap->pmap_phys = kernel_pmap; 1118 CPU_FILL(&kernel_pmap->pm_active); 1119 RB_INIT(&kernel_pmap->pmap_pvo); 1120 1121 PMAP_LOCK_INIT(kernel_pmap); 1122 1123 /* 1124 * Now map in all the other buffers we allocated earlier 1125 */ 1126 1127 moea64_setup_direct_map(kernelstart, kernelend); 1128 } 1129 1130 void 1131 moea64_late_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend) 1132 { 1133 ihandle_t mmui; 1134 phandle_t chosen; 1135 phandle_t mmu; 1136 ssize_t sz; 1137 int i; 1138 vm_offset_t pa, va; 1139 void *dpcpu; 1140 1141 /* 1142 * Set up the Open Firmware pmap and add its mappings if not in real 1143 * mode. 1144 */ 1145 1146 chosen = OF_finddevice("/chosen"); 1147 if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) { 1148 mmu = OF_instance_to_package(mmui); 1149 if (mmu == -1 || 1150 (sz = OF_getproplen(mmu, "translations")) == -1) 1151 sz = 0; 1152 if (sz > 6144 /* tmpstksz - 2 KB headroom */) 1153 panic("moea64_bootstrap: too many ofw translations"); 1154 1155 if (sz > 0) 1156 moea64_add_ofw_mappings(mmu, sz); 1157 } 1158 1159 /* 1160 * Calculate the last available physical address. 1161 */ 1162 Maxmem = 0; 1163 for (i = 0; phys_avail[i + 1] != 0; i += 2) 1164 Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1])); 1165 1166 /* 1167 * Initialize MMU. 1168 */ 1169 pmap_cpu_bootstrap(0); 1170 mtmsr(mfmsr() | PSL_DR | PSL_IR); 1171 pmap_bootstrapped++; 1172 1173 /* 1174 * Set the start and end of kva. 1175 */ 1176 virtual_avail = VM_MIN_KERNEL_ADDRESS; 1177 virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS; 1178 1179 /* 1180 * Map the entire KVA range into the SLB. We must not fault there. 1181 */ 1182 #ifdef __powerpc64__ 1183 for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH) 1184 moea64_bootstrap_slb_prefault(va, 0); 1185 #endif 1186 1187 /* 1188 * Remap any early IO mappings (console framebuffer, etc.) 1189 */ 1190 bs_remap_earlyboot(); 1191 1192 /* 1193 * Figure out how far we can extend virtual_end into segment 16 1194 * without running into existing mappings. Segment 16 is guaranteed 1195 * to contain neither RAM nor devices (at least on Apple hardware), 1196 * but will generally contain some OFW mappings we should not 1197 * step on. 1198 */ 1199 1200 #ifndef __powerpc64__ /* KVA is in high memory on PPC64 */ 1201 PMAP_LOCK(kernel_pmap); 1202 while (virtual_end < VM_MAX_KERNEL_ADDRESS && 1203 moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL) 1204 virtual_end += PAGE_SIZE; 1205 PMAP_UNLOCK(kernel_pmap); 1206 #endif 1207 1208 /* 1209 * Allocate a kernel stack with a guard page for thread0 and map it 1210 * into the kernel page map. 1211 */ 1212 pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE); 1213 va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; 1214 virtual_avail = va + kstack_pages * PAGE_SIZE; 1215 CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va); 1216 thread0.td_kstack = va; 1217 thread0.td_kstack_pages = kstack_pages; 1218 for (i = 0; i < kstack_pages; i++) { 1219 moea64_kenter(va, pa); 1220 pa += PAGE_SIZE; 1221 va += PAGE_SIZE; 1222 } 1223 1224 /* 1225 * Allocate virtual address space for the message buffer. 1226 */ 1227 pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE); 1228 msgbufp = (struct msgbuf *)virtual_avail; 1229 va = virtual_avail; 1230 virtual_avail += round_page(msgbufsize); 1231 while (va < virtual_avail) { 1232 moea64_kenter(va, pa); 1233 pa += PAGE_SIZE; 1234 va += PAGE_SIZE; 1235 } 1236 1237 /* 1238 * Allocate virtual address space for the dynamic percpu area. 1239 */ 1240 pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE); 1241 dpcpu = (void *)virtual_avail; 1242 va = virtual_avail; 1243 virtual_avail += DPCPU_SIZE; 1244 while (va < virtual_avail) { 1245 moea64_kenter(va, pa); 1246 pa += PAGE_SIZE; 1247 va += PAGE_SIZE; 1248 } 1249 dpcpu_init(dpcpu, curcpu); 1250 1251 crashdumpmap = (caddr_t)virtual_avail; 1252 virtual_avail += MAXDUMPPGS * PAGE_SIZE; 1253 1254 /* 1255 * Allocate some things for page zeroing. We put this directly 1256 * in the page table and use MOEA64_PTE_REPLACE to avoid any 1257 * of the PVO book-keeping or other parts of the VM system 1258 * from even knowing that this hack exists. 1259 */ 1260 1261 if (!hw_direct_map) { 1262 mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL, 1263 MTX_DEF); 1264 for (i = 0; i < 2; i++) { 1265 moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE; 1266 virtual_end -= PAGE_SIZE; 1267 1268 moea64_kenter(moea64_scratchpage_va[i], 0); 1269 1270 PMAP_LOCK(kernel_pmap); 1271 moea64_scratchpage_pvo[i] = moea64_pvo_find_va( 1272 kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]); 1273 PMAP_UNLOCK(kernel_pmap); 1274 } 1275 } 1276 1277 numa_mem_regions(&numa_pregions, &numapregions_sz); 1278 } 1279 1280 static void 1281 moea64_pmap_init_qpages(void) 1282 { 1283 struct pcpu *pc; 1284 int i; 1285 1286 if (hw_direct_map) 1287 return; 1288 1289 CPU_FOREACH(i) { 1290 pc = pcpu_find(i); 1291 pc->pc_qmap_addr = kva_alloc(PAGE_SIZE); 1292 if (pc->pc_qmap_addr == 0) 1293 panic("pmap_init_qpages: unable to allocate KVA"); 1294 PMAP_LOCK(kernel_pmap); 1295 pc->pc_aim.qmap_pvo = 1296 moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr); 1297 PMAP_UNLOCK(kernel_pmap); 1298 mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF); 1299 } 1300 } 1301 1302 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL); 1303 1304 /* 1305 * Activate a user pmap. This mostly involves setting some non-CPU 1306 * state. 1307 */ 1308 void 1309 moea64_activate(struct thread *td) 1310 { 1311 pmap_t pm; 1312 1313 pm = &td->td_proc->p_vmspace->vm_pmap; 1314 CPU_SET(PCPU_GET(cpuid), &pm->pm_active); 1315 1316 #ifdef __powerpc64__ 1317 PCPU_SET(aim.userslb, pm->pm_slb); 1318 __asm __volatile("slbmte %0, %1; isync" :: 1319 "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE)); 1320 #else 1321 PCPU_SET(curpmap, pm->pmap_phys); 1322 mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid); 1323 #endif 1324 } 1325 1326 void 1327 moea64_deactivate(struct thread *td) 1328 { 1329 pmap_t pm; 1330 1331 __asm __volatile("isync; slbie %0" :: "r"(USER_ADDR)); 1332 1333 pm = &td->td_proc->p_vmspace->vm_pmap; 1334 CPU_CLR(PCPU_GET(cpuid), &pm->pm_active); 1335 #ifdef __powerpc64__ 1336 PCPU_SET(aim.userslb, NULL); 1337 #else 1338 PCPU_SET(curpmap, NULL); 1339 #endif 1340 } 1341 1342 void 1343 moea64_unwire(pmap_t pm, vm_offset_t sva, vm_offset_t eva) 1344 { 1345 struct pvo_entry key, *pvo; 1346 vm_page_t m; 1347 int64_t refchg; 1348 1349 key.pvo_vaddr = sva; 1350 PMAP_LOCK(pm); 1351 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 1352 pvo != NULL && PVO_VADDR(pvo) < eva; 1353 pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) { 1354 if (PVO_IS_SP(pvo)) { 1355 if (moea64_sp_pvo_in_range(pvo, sva, eva)) { 1356 pvo = moea64_sp_unwire(pvo); 1357 continue; 1358 } else { 1359 CTR1(KTR_PMAP, "%s: demote before unwire", 1360 __func__); 1361 moea64_sp_demote(pvo); 1362 } 1363 } 1364 1365 if ((pvo->pvo_vaddr & PVO_WIRED) == 0) 1366 panic("moea64_unwire: pvo %p is missing PVO_WIRED", 1367 pvo); 1368 pvo->pvo_vaddr &= ~PVO_WIRED; 1369 refchg = moea64_pte_replace(pvo, 0 /* No invalidation */); 1370 if ((pvo->pvo_vaddr & PVO_MANAGED) && 1371 (pvo->pvo_pte.prot & VM_PROT_WRITE)) { 1372 if (refchg < 0) 1373 refchg = LPTE_CHG; 1374 m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo)); 1375 1376 refchg |= atomic_readandclear_32(&m->md.mdpg_attrs); 1377 if (refchg & LPTE_CHG) 1378 vm_page_dirty(m); 1379 if (refchg & LPTE_REF) 1380 vm_page_aflag_set(m, PGA_REFERENCED); 1381 } 1382 pm->pm_stats.wired_count--; 1383 } 1384 PMAP_UNLOCK(pm); 1385 } 1386 1387 static int 1388 moea64_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap) 1389 { 1390 struct pvo_entry *pvo; 1391 vm_paddr_t pa; 1392 vm_page_t m; 1393 int val; 1394 bool managed; 1395 1396 PMAP_LOCK(pmap); 1397 1398 pvo = moea64_pvo_find_va(pmap, addr); 1399 if (pvo != NULL) { 1400 pa = PVO_PADDR(pvo); 1401 m = PHYS_TO_VM_PAGE(pa); 1402 managed = (pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED; 1403 if (PVO_IS_SP(pvo)) 1404 val = MINCORE_INCORE | MINCORE_PSIND(1); 1405 else 1406 val = MINCORE_INCORE; 1407 } else { 1408 PMAP_UNLOCK(pmap); 1409 return (0); 1410 } 1411 1412 PMAP_UNLOCK(pmap); 1413 1414 if (m == NULL) 1415 return (0); 1416 1417 if (managed) { 1418 if (moea64_is_modified(m)) 1419 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER; 1420 1421 if (moea64_is_referenced(m)) 1422 val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER; 1423 } 1424 1425 if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) != 1426 (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && 1427 managed) { 1428 *pap = pa; 1429 } 1430 1431 return (val); 1432 } 1433 1434 /* 1435 * This goes through and sets the physical address of our 1436 * special scratch PTE to the PA we want to zero or copy. Because 1437 * of locking issues (this can get called in pvo_enter() by 1438 * the UMA allocator), we can't use most other utility functions here 1439 */ 1440 1441 static __inline 1442 void moea64_set_scratchpage_pa(int which, vm_paddr_t pa) 1443 { 1444 struct pvo_entry *pvo; 1445 1446 KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!")); 1447 mtx_assert(&moea64_scratchpage_mtx, MA_OWNED); 1448 1449 pvo = moea64_scratchpage_pvo[which]; 1450 PMAP_LOCK(pvo->pvo_pmap); 1451 pvo->pvo_pte.pa = 1452 moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa; 1453 moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE); 1454 PMAP_UNLOCK(pvo->pvo_pmap); 1455 isync(); 1456 } 1457 1458 void 1459 moea64_copy_page(vm_page_t msrc, vm_page_t mdst) 1460 { 1461 mtx_lock(&moea64_scratchpage_mtx); 1462 1463 moea64_set_scratchpage_pa(0, VM_PAGE_TO_PHYS(msrc)); 1464 moea64_set_scratchpage_pa(1, VM_PAGE_TO_PHYS(mdst)); 1465 1466 bcopy((void *)moea64_scratchpage_va[0], 1467 (void *)moea64_scratchpage_va[1], PAGE_SIZE); 1468 1469 mtx_unlock(&moea64_scratchpage_mtx); 1470 } 1471 1472 void 1473 moea64_copy_page_dmap(vm_page_t msrc, vm_page_t mdst) 1474 { 1475 vm_offset_t dst; 1476 vm_offset_t src; 1477 1478 dst = VM_PAGE_TO_PHYS(mdst); 1479 src = VM_PAGE_TO_PHYS(msrc); 1480 1481 bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst), 1482 PAGE_SIZE); 1483 } 1484 1485 inline void 1486 moea64_copy_pages_dmap(vm_page_t *ma, vm_offset_t a_offset, 1487 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 1488 { 1489 void *a_cp, *b_cp; 1490 vm_offset_t a_pg_offset, b_pg_offset; 1491 int cnt; 1492 1493 while (xfersize > 0) { 1494 a_pg_offset = a_offset & PAGE_MASK; 1495 cnt = min(xfersize, PAGE_SIZE - a_pg_offset); 1496 a_cp = (char *)(uintptr_t)PHYS_TO_DMAP( 1497 VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) + 1498 a_pg_offset; 1499 b_pg_offset = b_offset & PAGE_MASK; 1500 cnt = min(cnt, PAGE_SIZE - b_pg_offset); 1501 b_cp = (char *)(uintptr_t)PHYS_TO_DMAP( 1502 VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) + 1503 b_pg_offset; 1504 bcopy(a_cp, b_cp, cnt); 1505 a_offset += cnt; 1506 b_offset += cnt; 1507 xfersize -= cnt; 1508 } 1509 } 1510 1511 void 1512 moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset, 1513 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 1514 { 1515 void *a_cp, *b_cp; 1516 vm_offset_t a_pg_offset, b_pg_offset; 1517 int cnt; 1518 1519 mtx_lock(&moea64_scratchpage_mtx); 1520 while (xfersize > 0) { 1521 a_pg_offset = a_offset & PAGE_MASK; 1522 cnt = min(xfersize, PAGE_SIZE - a_pg_offset); 1523 moea64_set_scratchpage_pa(0, 1524 VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])); 1525 a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset; 1526 b_pg_offset = b_offset & PAGE_MASK; 1527 cnt = min(cnt, PAGE_SIZE - b_pg_offset); 1528 moea64_set_scratchpage_pa(1, 1529 VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])); 1530 b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset; 1531 bcopy(a_cp, b_cp, cnt); 1532 a_offset += cnt; 1533 b_offset += cnt; 1534 xfersize -= cnt; 1535 } 1536 mtx_unlock(&moea64_scratchpage_mtx); 1537 } 1538 1539 void 1540 moea64_zero_page_area(vm_page_t m, int off, int size) 1541 { 1542 vm_paddr_t pa = VM_PAGE_TO_PHYS(m); 1543 1544 if (size + off > PAGE_SIZE) 1545 panic("moea64_zero_page: size + off > PAGE_SIZE"); 1546 1547 if (hw_direct_map) { 1548 bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size); 1549 } else { 1550 mtx_lock(&moea64_scratchpage_mtx); 1551 moea64_set_scratchpage_pa(0, pa); 1552 bzero((caddr_t)moea64_scratchpage_va[0] + off, size); 1553 mtx_unlock(&moea64_scratchpage_mtx); 1554 } 1555 } 1556 1557 /* 1558 * Zero a page of physical memory by temporarily mapping it 1559 */ 1560 void 1561 moea64_zero_page(vm_page_t m) 1562 { 1563 vm_paddr_t pa = VM_PAGE_TO_PHYS(m); 1564 vm_offset_t va, off; 1565 1566 mtx_lock(&moea64_scratchpage_mtx); 1567 1568 moea64_set_scratchpage_pa(0, pa); 1569 va = moea64_scratchpage_va[0]; 1570 1571 for (off = 0; off < PAGE_SIZE; off += cacheline_size) 1572 __asm __volatile("dcbz 0,%0" :: "r"(va + off)); 1573 1574 mtx_unlock(&moea64_scratchpage_mtx); 1575 } 1576 1577 void 1578 moea64_zero_page_dmap(vm_page_t m) 1579 { 1580 vm_paddr_t pa = VM_PAGE_TO_PHYS(m); 1581 vm_offset_t va, off; 1582 1583 va = PHYS_TO_DMAP(pa); 1584 for (off = 0; off < PAGE_SIZE; off += cacheline_size) 1585 __asm __volatile("dcbz 0,%0" :: "r"(va + off)); 1586 } 1587 1588 vm_offset_t 1589 moea64_quick_enter_page(vm_page_t m) 1590 { 1591 struct pvo_entry *pvo; 1592 vm_paddr_t pa = VM_PAGE_TO_PHYS(m); 1593 1594 /* 1595 * MOEA64_PTE_REPLACE does some locking, so we can't just grab 1596 * a critical section and access the PCPU data like on i386. 1597 * Instead, pin the thread and grab the PCPU lock to prevent 1598 * a preempting thread from using the same PCPU data. 1599 */ 1600 sched_pin(); 1601 1602 mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED); 1603 pvo = PCPU_GET(aim.qmap_pvo); 1604 1605 mtx_lock(PCPU_PTR(aim.qmap_lock)); 1606 pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) | 1607 (uint64_t)pa; 1608 moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE); 1609 isync(); 1610 1611 return (PCPU_GET(qmap_addr)); 1612 } 1613 1614 vm_offset_t 1615 moea64_quick_enter_page_dmap(vm_page_t m) 1616 { 1617 1618 return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m))); 1619 } 1620 1621 void 1622 moea64_quick_remove_page(vm_offset_t addr) 1623 { 1624 1625 mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED); 1626 KASSERT(PCPU_GET(qmap_addr) == addr, 1627 ("moea64_quick_remove_page: invalid address")); 1628 mtx_unlock(PCPU_PTR(aim.qmap_lock)); 1629 sched_unpin(); 1630 } 1631 1632 bool 1633 moea64_page_is_mapped(vm_page_t m) 1634 { 1635 return (!LIST_EMPTY(&(m)->md.mdpg_pvoh)); 1636 } 1637 1638 /* 1639 * Map the given physical page at the specified virtual address in the 1640 * target pmap with the protection requested. If specified the page 1641 * will be wired down. 1642 */ 1643 1644 int 1645 moea64_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, 1646 vm_prot_t prot, u_int flags, int8_t psind) 1647 { 1648 struct pvo_entry *pvo, *oldpvo, *tpvo; 1649 struct pvo_head *pvo_head; 1650 uint64_t pte_lo; 1651 int error; 1652 vm_paddr_t pa; 1653 1654 if ((m->oflags & VPO_UNMANAGED) == 0) { 1655 if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0) 1656 VM_PAGE_OBJECT_BUSY_ASSERT(m); 1657 else 1658 VM_OBJECT_ASSERT_LOCKED(m->object); 1659 } 1660 1661 if (psind > 0) 1662 return (moea64_sp_enter(pmap, va, m, prot, flags, psind)); 1663 1664 pvo = alloc_pvo_entry(0); 1665 if (pvo == NULL) 1666 return (KERN_RESOURCE_SHORTAGE); 1667 pvo->pvo_pmap = NULL; /* to be filled in later */ 1668 pvo->pvo_pte.prot = prot; 1669 1670 pa = VM_PAGE_TO_PHYS(m); 1671 pte_lo = moea64_calc_wimg(pa, pmap_page_get_memattr(m)); 1672 pvo->pvo_pte.pa = pa | pte_lo; 1673 1674 if ((flags & PMAP_ENTER_WIRED) != 0) 1675 pvo->pvo_vaddr |= PVO_WIRED; 1676 1677 if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) { 1678 pvo_head = NULL; 1679 } else { 1680 pvo_head = &m->md.mdpg_pvoh; 1681 pvo->pvo_vaddr |= PVO_MANAGED; 1682 } 1683 1684 PV_LOCK(pa); 1685 PMAP_LOCK(pmap); 1686 if (pvo->pvo_pmap == NULL) 1687 init_pvo_entry(pvo, pmap, va); 1688 1689 if (moea64_ps_enabled(pmap) && 1690 (tpvo = moea64_pvo_find_va(pmap, va & ~HPT_SP_MASK)) != NULL && 1691 PVO_IS_SP(tpvo)) { 1692 /* Demote SP before entering a regular page */ 1693 CTR2(KTR_PMAP, "%s: demote before enter: va=%#jx", 1694 __func__, (uintmax_t)va); 1695 moea64_sp_demote_aligned(tpvo); 1696 } 1697 1698 if (prot & VM_PROT_WRITE) 1699 if (pmap_bootstrapped && 1700 (m->oflags & VPO_UNMANAGED) == 0) 1701 vm_page_aflag_set(m, PGA_WRITEABLE); 1702 1703 error = moea64_pvo_enter(pvo, pvo_head, &oldpvo); 1704 if (error == EEXIST) { 1705 if (oldpvo->pvo_vaddr == pvo->pvo_vaddr && 1706 oldpvo->pvo_pte.pa == pvo->pvo_pte.pa && 1707 oldpvo->pvo_pte.prot == prot) { 1708 /* Identical mapping already exists */ 1709 error = 0; 1710 1711 /* If not in page table, reinsert it */ 1712 if (moea64_pte_synch(oldpvo) < 0) { 1713 STAT_MOEA64(moea64_pte_overflow--); 1714 moea64_pte_insert(oldpvo); 1715 } 1716 1717 /* Then just clean up and go home */ 1718 PMAP_UNLOCK(pmap); 1719 PV_UNLOCK(pa); 1720 free_pvo_entry(pvo); 1721 pvo = NULL; 1722 goto out; 1723 } else { 1724 /* Otherwise, need to kill it first */ 1725 KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old " 1726 "mapping does not match new mapping")); 1727 moea64_pvo_remove_from_pmap(oldpvo); 1728 moea64_pvo_enter(pvo, pvo_head, NULL); 1729 } 1730 } 1731 PMAP_UNLOCK(pmap); 1732 PV_UNLOCK(pa); 1733 1734 /* Free any dead pages */ 1735 if (error == EEXIST) { 1736 moea64_pvo_remove_from_page(oldpvo); 1737 free_pvo_entry(oldpvo); 1738 } 1739 1740 out: 1741 /* 1742 * Flush the page from the instruction cache if this page is 1743 * mapped executable and cacheable. 1744 */ 1745 if (pmap != kernel_pmap && (m->a.flags & PGA_EXECUTABLE) == 0 && 1746 (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { 1747 vm_page_aflag_set(m, PGA_EXECUTABLE); 1748 moea64_syncicache(pmap, va, pa, PAGE_SIZE); 1749 } 1750 1751 #if VM_NRESERVLEVEL > 0 1752 /* 1753 * Try to promote pages. 1754 * 1755 * If the VA of the entered page is not aligned with its PA, 1756 * don't try page promotion as it is not possible. 1757 * This reduces the number of promotion failures dramatically. 1758 */ 1759 if (moea64_ps_enabled(pmap) && pmap != kernel_pmap && pvo != NULL && 1760 (pvo->pvo_vaddr & PVO_MANAGED) != 0 && 1761 (va & HPT_SP_MASK) == (pa & HPT_SP_MASK) && 1762 (m->flags & PG_FICTITIOUS) == 0 && 1763 vm_reserv_level_iffullpop(m) == 0) 1764 moea64_sp_promote(pmap, va, m); 1765 #endif 1766 1767 return (KERN_SUCCESS); 1768 } 1769 1770 static void 1771 moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_paddr_t pa, 1772 vm_size_t sz) 1773 { 1774 1775 /* 1776 * This is much trickier than on older systems because 1777 * we can't sync the icache on physical addresses directly 1778 * without a direct map. Instead we check a couple of cases 1779 * where the memory is already mapped in and, failing that, 1780 * use the same trick we use for page zeroing to create 1781 * a temporary mapping for this physical address. 1782 */ 1783 1784 if (!pmap_bootstrapped) { 1785 /* 1786 * If PMAP is not bootstrapped, we are likely to be 1787 * in real mode. 1788 */ 1789 __syncicache((void *)(uintptr_t)pa, sz); 1790 } else if (pmap == kernel_pmap) { 1791 __syncicache((void *)va, sz); 1792 } else if (hw_direct_map) { 1793 __syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz); 1794 } else { 1795 /* Use the scratch page to set up a temp mapping */ 1796 1797 mtx_lock(&moea64_scratchpage_mtx); 1798 1799 moea64_set_scratchpage_pa(1, pa & ~ADDR_POFF); 1800 __syncicache((void *)(moea64_scratchpage_va[1] + 1801 (va & ADDR_POFF)), sz); 1802 1803 mtx_unlock(&moea64_scratchpage_mtx); 1804 } 1805 } 1806 1807 /* 1808 * Maps a sequence of resident pages belonging to the same object. 1809 * The sequence begins with the given page m_start. This page is 1810 * mapped at the given virtual address start. Each subsequent page is 1811 * mapped at a virtual address that is offset from start by the same 1812 * amount as the page is offset from m_start within the object. The 1813 * last page in the sequence is the page with the largest offset from 1814 * m_start that can be mapped at a virtual address less than the given 1815 * virtual address end. Not every virtual page between start and end 1816 * is mapped; only those for which a resident page exists with the 1817 * corresponding offset from m_start are mapped. 1818 */ 1819 void 1820 moea64_enter_object(pmap_t pm, vm_offset_t start, vm_offset_t end, 1821 vm_page_t m_start, vm_prot_t prot) 1822 { 1823 vm_page_t m; 1824 vm_pindex_t diff, psize; 1825 vm_offset_t va; 1826 int8_t psind; 1827 1828 VM_OBJECT_ASSERT_LOCKED(m_start->object); 1829 1830 psize = atop(end - start); 1831 m = m_start; 1832 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { 1833 va = start + ptoa(diff); 1834 if ((va & HPT_SP_MASK) == 0 && va + HPT_SP_SIZE <= end && 1835 m->psind == 1 && moea64_ps_enabled(pm)) 1836 psind = 1; 1837 else 1838 psind = 0; 1839 moea64_enter(pm, va, m, prot & 1840 (VM_PROT_READ | VM_PROT_EXECUTE), 1841 PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, psind); 1842 if (psind == 1) 1843 m = &m[HPT_SP_SIZE / PAGE_SIZE - 1]; 1844 m = TAILQ_NEXT(m, listq); 1845 } 1846 } 1847 1848 void 1849 moea64_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m, 1850 vm_prot_t prot) 1851 { 1852 1853 moea64_enter(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), 1854 PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0); 1855 } 1856 1857 vm_paddr_t 1858 moea64_extract(pmap_t pm, vm_offset_t va) 1859 { 1860 struct pvo_entry *pvo; 1861 vm_paddr_t pa; 1862 1863 PMAP_LOCK(pm); 1864 pvo = moea64_pvo_find_va(pm, va); 1865 if (pvo == NULL) 1866 pa = 0; 1867 else 1868 pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo)); 1869 PMAP_UNLOCK(pm); 1870 1871 return (pa); 1872 } 1873 1874 /* 1875 * Atomically extract and hold the physical page with the given 1876 * pmap and virtual address pair if that mapping permits the given 1877 * protection. 1878 */ 1879 vm_page_t 1880 moea64_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot) 1881 { 1882 struct pvo_entry *pvo; 1883 vm_page_t m; 1884 1885 m = NULL; 1886 PMAP_LOCK(pmap); 1887 pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF); 1888 if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) { 1889 m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo)); 1890 if (!vm_page_wire_mapped(m)) 1891 m = NULL; 1892 } 1893 PMAP_UNLOCK(pmap); 1894 return (m); 1895 } 1896 1897 static void * 1898 moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, 1899 uint8_t *flags, int wait) 1900 { 1901 struct pvo_entry *pvo; 1902 vm_offset_t va; 1903 vm_page_t m; 1904 int needed_lock; 1905 1906 /* 1907 * This entire routine is a horrible hack to avoid bothering kmem 1908 * for new KVA addresses. Because this can get called from inside 1909 * kmem allocation routines, calling kmem for a new address here 1910 * can lead to multiply locking non-recursive mutexes. 1911 */ 1912 1913 *flags = UMA_SLAB_PRIV; 1914 needed_lock = !PMAP_LOCKED(kernel_pmap); 1915 1916 m = vm_page_alloc_noobj_domain(domain, malloc2vm_flags(wait) | 1917 VM_ALLOC_WIRED); 1918 if (m == NULL) 1919 return (NULL); 1920 1921 va = VM_PAGE_TO_PHYS(m); 1922 1923 pvo = alloc_pvo_entry(1 /* bootstrap */); 1924 1925 pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE; 1926 pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M; 1927 1928 if (needed_lock) 1929 PMAP_LOCK(kernel_pmap); 1930 1931 init_pvo_entry(pvo, kernel_pmap, va); 1932 pvo->pvo_vaddr |= PVO_WIRED; 1933 1934 moea64_pvo_enter(pvo, NULL, NULL); 1935 1936 if (needed_lock) 1937 PMAP_UNLOCK(kernel_pmap); 1938 1939 return (void *)va; 1940 } 1941 1942 extern int elf32_nxstack; 1943 1944 void 1945 moea64_init(void) 1946 { 1947 1948 CTR0(KTR_PMAP, "moea64_init"); 1949 1950 moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry), 1951 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1952 UMA_ZONE_VM | UMA_ZONE_NOFREE); 1953 1954 /* 1955 * Are large page mappings enabled? 1956 * 1957 * While HPT superpages are not better tested, leave it disabled by 1958 * default. 1959 */ 1960 superpages_enabled = 0; 1961 TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled); 1962 if (superpages_enabled) { 1963 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0, 1964 ("moea64_init: can't assign to pagesizes[1]")); 1965 1966 if (moea64_large_page_size == 0) { 1967 printf("mmu_oea64: HW does not support large pages. " 1968 "Disabling superpages...\n"); 1969 superpages_enabled = 0; 1970 } else if (!moea64_has_lp_4k_16m) { 1971 printf("mmu_oea64: " 1972 "HW does not support mixed 4KB/16MB page sizes. " 1973 "Disabling superpages...\n"); 1974 superpages_enabled = 0; 1975 } else 1976 pagesizes[1] = HPT_SP_SIZE; 1977 } 1978 1979 if (!hw_direct_map) { 1980 uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc); 1981 } 1982 1983 #ifdef COMPAT_FREEBSD32 1984 elf32_nxstack = 1; 1985 #endif 1986 1987 moea64_initialized = true; 1988 } 1989 1990 bool 1991 moea64_is_referenced(vm_page_t m) 1992 { 1993 1994 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1995 ("moea64_is_referenced: page %p is not managed", m)); 1996 1997 return (moea64_query_bit(m, LPTE_REF)); 1998 } 1999 2000 bool 2001 moea64_is_modified(vm_page_t m) 2002 { 2003 2004 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2005 ("moea64_is_modified: page %p is not managed", m)); 2006 2007 /* 2008 * If the page is not busied then this check is racy. 2009 */ 2010 if (!pmap_page_is_write_mapped(m)) 2011 return (false); 2012 2013 return (moea64_query_bit(m, LPTE_CHG)); 2014 } 2015 2016 bool 2017 moea64_is_prefaultable(pmap_t pmap, vm_offset_t va) 2018 { 2019 struct pvo_entry *pvo; 2020 bool rv = true; 2021 2022 PMAP_LOCK(pmap); 2023 pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF); 2024 if (pvo != NULL) 2025 rv = false; 2026 PMAP_UNLOCK(pmap); 2027 return (rv); 2028 } 2029 2030 void 2031 moea64_clear_modify(vm_page_t m) 2032 { 2033 2034 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2035 ("moea64_clear_modify: page %p is not managed", m)); 2036 vm_page_assert_busied(m); 2037 2038 if (!pmap_page_is_write_mapped(m)) 2039 return; 2040 moea64_clear_bit(m, LPTE_CHG); 2041 } 2042 2043 /* 2044 * Clear the write and modified bits in each of the given page's mappings. 2045 */ 2046 void 2047 moea64_remove_write(vm_page_t m) 2048 { 2049 struct pvo_entry *pvo; 2050 int64_t refchg, ret; 2051 pmap_t pmap; 2052 2053 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2054 ("moea64_remove_write: page %p is not managed", m)); 2055 vm_page_assert_busied(m); 2056 2057 if (!pmap_page_is_write_mapped(m)) 2058 return; 2059 2060 powerpc_sync(); 2061 PV_PAGE_LOCK(m); 2062 refchg = 0; 2063 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2064 pmap = pvo->pvo_pmap; 2065 PMAP_LOCK(pmap); 2066 if (!(pvo->pvo_vaddr & PVO_DEAD) && 2067 (pvo->pvo_pte.prot & VM_PROT_WRITE)) { 2068 if (PVO_IS_SP(pvo)) { 2069 CTR1(KTR_PMAP, "%s: demote before remwr", 2070 __func__); 2071 moea64_sp_demote(pvo); 2072 } 2073 pvo->pvo_pte.prot &= ~VM_PROT_WRITE; 2074 ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE); 2075 if (ret < 0) 2076 ret = LPTE_CHG; 2077 refchg |= ret; 2078 if (pvo->pvo_pmap == kernel_pmap) 2079 isync(); 2080 } 2081 PMAP_UNLOCK(pmap); 2082 } 2083 if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG) 2084 vm_page_dirty(m); 2085 vm_page_aflag_clear(m, PGA_WRITEABLE); 2086 PV_PAGE_UNLOCK(m); 2087 } 2088 2089 /* 2090 * moea64_ts_referenced: 2091 * 2092 * Return a count of reference bits for a page, clearing those bits. 2093 * It is not necessary for every reference bit to be cleared, but it 2094 * is necessary that 0 only be returned when there are truly no 2095 * reference bits set. 2096 * 2097 * XXX: The exact number of bits to check and clear is a matter that 2098 * should be tested and standardized at some point in the future for 2099 * optimal aging of shared pages. 2100 */ 2101 int 2102 moea64_ts_referenced(vm_page_t m) 2103 { 2104 2105 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2106 ("moea64_ts_referenced: page %p is not managed", m)); 2107 return (moea64_clear_bit(m, LPTE_REF)); 2108 } 2109 2110 /* 2111 * Modify the WIMG settings of all mappings for a page. 2112 */ 2113 void 2114 moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma) 2115 { 2116 struct pvo_entry *pvo; 2117 int64_t refchg; 2118 pmap_t pmap; 2119 uint64_t lo; 2120 2121 CTR3(KTR_PMAP, "%s: pa=%#jx, ma=%#x", 2122 __func__, (uintmax_t)VM_PAGE_TO_PHYS(m), ma); 2123 2124 if ((m->oflags & VPO_UNMANAGED) != 0) { 2125 m->md.mdpg_cache_attrs = ma; 2126 return; 2127 } 2128 2129 lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma); 2130 2131 PV_PAGE_LOCK(m); 2132 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2133 pmap = pvo->pvo_pmap; 2134 PMAP_LOCK(pmap); 2135 if (!(pvo->pvo_vaddr & PVO_DEAD)) { 2136 if (PVO_IS_SP(pvo)) { 2137 CTR1(KTR_PMAP, 2138 "%s: demote before set_memattr", __func__); 2139 moea64_sp_demote(pvo); 2140 } 2141 pvo->pvo_pte.pa &= ~LPTE_WIMG; 2142 pvo->pvo_pte.pa |= lo; 2143 refchg = moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE); 2144 if (refchg < 0) 2145 refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ? 2146 LPTE_CHG : 0; 2147 if ((pvo->pvo_vaddr & PVO_MANAGED) && 2148 (pvo->pvo_pte.prot & VM_PROT_WRITE)) { 2149 refchg |= 2150 atomic_readandclear_32(&m->md.mdpg_attrs); 2151 if (refchg & LPTE_CHG) 2152 vm_page_dirty(m); 2153 if (refchg & LPTE_REF) 2154 vm_page_aflag_set(m, PGA_REFERENCED); 2155 } 2156 if (pvo->pvo_pmap == kernel_pmap) 2157 isync(); 2158 } 2159 PMAP_UNLOCK(pmap); 2160 } 2161 m->md.mdpg_cache_attrs = ma; 2162 PV_PAGE_UNLOCK(m); 2163 } 2164 2165 /* 2166 * Map a wired page into kernel virtual address space. 2167 */ 2168 void 2169 moea64_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma) 2170 { 2171 int error; 2172 struct pvo_entry *pvo, *oldpvo; 2173 2174 do { 2175 pvo = alloc_pvo_entry(0); 2176 if (pvo == NULL) 2177 vm_wait(NULL); 2178 } while (pvo == NULL); 2179 pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 2180 pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma); 2181 pvo->pvo_vaddr |= PVO_WIRED; 2182 2183 PMAP_LOCK(kernel_pmap); 2184 oldpvo = moea64_pvo_find_va(kernel_pmap, va); 2185 if (oldpvo != NULL) 2186 moea64_pvo_remove_from_pmap(oldpvo); 2187 init_pvo_entry(pvo, kernel_pmap, va); 2188 error = moea64_pvo_enter(pvo, NULL, NULL); 2189 PMAP_UNLOCK(kernel_pmap); 2190 2191 /* Free any dead pages */ 2192 if (oldpvo != NULL) { 2193 moea64_pvo_remove_from_page(oldpvo); 2194 free_pvo_entry(oldpvo); 2195 } 2196 2197 if (error != 0) 2198 panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va, 2199 (uintmax_t)pa, error); 2200 } 2201 2202 void 2203 moea64_kenter(vm_offset_t va, vm_paddr_t pa) 2204 { 2205 2206 moea64_kenter_attr(va, pa, VM_MEMATTR_DEFAULT); 2207 } 2208 2209 /* 2210 * Extract the physical page address associated with the given kernel virtual 2211 * address. 2212 */ 2213 vm_paddr_t 2214 moea64_kextract(vm_offset_t va) 2215 { 2216 struct pvo_entry *pvo; 2217 vm_paddr_t pa; 2218 2219 /* 2220 * Shortcut the direct-mapped case when applicable. We never put 2221 * anything but 1:1 (or 62-bit aliased) mappings below 2222 * VM_MIN_KERNEL_ADDRESS. 2223 */ 2224 if (va < VM_MIN_KERNEL_ADDRESS) 2225 return (va & ~DMAP_BASE_ADDRESS); 2226 2227 PMAP_LOCK(kernel_pmap); 2228 pvo = moea64_pvo_find_va(kernel_pmap, va); 2229 KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR, 2230 va)); 2231 pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo)); 2232 PMAP_UNLOCK(kernel_pmap); 2233 return (pa); 2234 } 2235 2236 /* 2237 * Remove a wired page from kernel virtual address space. 2238 */ 2239 void 2240 moea64_kremove(vm_offset_t va) 2241 { 2242 moea64_remove(kernel_pmap, va, va + PAGE_SIZE); 2243 } 2244 2245 /* 2246 * Provide a kernel pointer corresponding to a given userland pointer. 2247 * The returned pointer is valid until the next time this function is 2248 * called in this thread. This is used internally in copyin/copyout. 2249 */ 2250 static int 2251 moea64_map_user_ptr(pmap_t pm, volatile const void *uaddr, 2252 void **kaddr, size_t ulen, size_t *klen) 2253 { 2254 size_t l; 2255 #ifdef __powerpc64__ 2256 struct slb *slb; 2257 #endif 2258 register_t slbv; 2259 2260 *kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK); 2261 l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr); 2262 if (l > ulen) 2263 l = ulen; 2264 if (klen) 2265 *klen = l; 2266 else if (l != ulen) 2267 return (EFAULT); 2268 2269 #ifdef __powerpc64__ 2270 /* Try lockless look-up first */ 2271 slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr); 2272 2273 if (slb == NULL) { 2274 /* If it isn't there, we need to pre-fault the VSID */ 2275 PMAP_LOCK(pm); 2276 slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT; 2277 PMAP_UNLOCK(pm); 2278 } else { 2279 slbv = slb->slbv; 2280 } 2281 2282 /* Mark segment no-execute */ 2283 slbv |= SLBV_N; 2284 #else 2285 slbv = va_to_vsid(pm, (vm_offset_t)uaddr); 2286 2287 /* Mark segment no-execute */ 2288 slbv |= SR_N; 2289 #endif 2290 2291 /* If we have already set this VSID, we can just return */ 2292 if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv) 2293 return (0); 2294 2295 __asm __volatile("isync"); 2296 curthread->td_pcb->pcb_cpu.aim.usr_segm = 2297 (uintptr_t)uaddr >> ADDR_SR_SHFT; 2298 curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv; 2299 #ifdef __powerpc64__ 2300 __asm __volatile ("slbie %0; slbmte %1, %2; isync" :: 2301 "r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE)); 2302 #else 2303 __asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv)); 2304 #endif 2305 2306 return (0); 2307 } 2308 2309 /* 2310 * Figure out where a given kernel pointer (usually in a fault) points 2311 * to from the VM's perspective, potentially remapping into userland's 2312 * address space. 2313 */ 2314 static int 2315 moea64_decode_kernel_ptr(vm_offset_t addr, int *is_user, 2316 vm_offset_t *decoded_addr) 2317 { 2318 vm_offset_t user_sr; 2319 2320 if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) { 2321 user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm; 2322 addr &= ADDR_PIDX | ADDR_POFF; 2323 addr |= user_sr << ADDR_SR_SHFT; 2324 *decoded_addr = addr; 2325 *is_user = 1; 2326 } else { 2327 *decoded_addr = addr; 2328 *is_user = 0; 2329 } 2330 2331 return (0); 2332 } 2333 2334 /* 2335 * Map a range of physical addresses into kernel virtual address space. 2336 * 2337 * The value passed in *virt is a suggested virtual address for the mapping. 2338 * Architectures which can support a direct-mapped physical to virtual region 2339 * can return the appropriate address within that region, leaving '*virt' 2340 * unchanged. Other architectures should map the pages starting at '*virt' and 2341 * update '*virt' with the first usable address after the mapped region. 2342 */ 2343 vm_offset_t 2344 moea64_map(vm_offset_t *virt, vm_paddr_t pa_start, 2345 vm_paddr_t pa_end, int prot) 2346 { 2347 vm_offset_t sva, va; 2348 2349 if (hw_direct_map) { 2350 /* 2351 * Check if every page in the region is covered by the direct 2352 * map. The direct map covers all of physical memory. Use 2353 * moea64_calc_wimg() as a shortcut to see if the page is in 2354 * physical memory as a way to see if the direct map covers it. 2355 */ 2356 for (va = pa_start; va < pa_end; va += PAGE_SIZE) 2357 if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M) 2358 break; 2359 if (va == pa_end) 2360 return (PHYS_TO_DMAP(pa_start)); 2361 } 2362 sva = *virt; 2363 va = sva; 2364 /* XXX respect prot argument */ 2365 for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE) 2366 moea64_kenter(va, pa_start); 2367 *virt = va; 2368 2369 return (sva); 2370 } 2371 2372 /* 2373 * Returns true if the pmap's pv is one of the first 2374 * 16 pvs linked to from this page. This count may 2375 * be changed upwards or downwards in the future; it 2376 * is only necessary that true be returned for a small 2377 * subset of pmaps for proper page aging. 2378 */ 2379 bool 2380 moea64_page_exists_quick(pmap_t pmap, vm_page_t m) 2381 { 2382 int loops; 2383 struct pvo_entry *pvo; 2384 bool rv; 2385 2386 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2387 ("moea64_page_exists_quick: page %p is not managed", m)); 2388 loops = 0; 2389 rv = false; 2390 PV_PAGE_LOCK(m); 2391 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2392 if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) { 2393 rv = true; 2394 break; 2395 } 2396 if (++loops >= 16) 2397 break; 2398 } 2399 PV_PAGE_UNLOCK(m); 2400 return (rv); 2401 } 2402 2403 void 2404 moea64_page_init(vm_page_t m) 2405 { 2406 2407 m->md.mdpg_attrs = 0; 2408 m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT; 2409 LIST_INIT(&m->md.mdpg_pvoh); 2410 } 2411 2412 /* 2413 * Return the number of managed mappings to the given physical page 2414 * that are wired. 2415 */ 2416 int 2417 moea64_page_wired_mappings(vm_page_t m) 2418 { 2419 struct pvo_entry *pvo; 2420 int count; 2421 2422 count = 0; 2423 if ((m->oflags & VPO_UNMANAGED) != 0) 2424 return (count); 2425 PV_PAGE_LOCK(m); 2426 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) 2427 if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED) 2428 count++; 2429 PV_PAGE_UNLOCK(m); 2430 return (count); 2431 } 2432 2433 static uintptr_t moea64_vsidcontext; 2434 2435 uintptr_t 2436 moea64_get_unique_vsid(void) { 2437 u_int entropy; 2438 register_t hash; 2439 uint32_t mask; 2440 int i; 2441 2442 entropy = 0; 2443 __asm __volatile("mftb %0" : "=r"(entropy)); 2444 2445 mtx_lock(&moea64_slb_mutex); 2446 for (i = 0; i < NVSIDS; i += VSID_NBPW) { 2447 u_int n; 2448 2449 /* 2450 * Create a new value by multiplying by a prime and adding in 2451 * entropy from the timebase register. This is to make the 2452 * VSID more random so that the PT hash function collides 2453 * less often. (Note that the prime casues gcc to do shifts 2454 * instead of a multiply.) 2455 */ 2456 moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy; 2457 hash = moea64_vsidcontext & (NVSIDS - 1); 2458 if (hash == 0) /* 0 is special, avoid it */ 2459 continue; 2460 n = hash >> 5; 2461 mask = 1 << (hash & (VSID_NBPW - 1)); 2462 hash = (moea64_vsidcontext & VSID_HASHMASK); 2463 if (moea64_vsid_bitmap[n] & mask) { /* collision? */ 2464 /* anything free in this bucket? */ 2465 if (moea64_vsid_bitmap[n] == 0xffffffff) { 2466 entropy = (moea64_vsidcontext >> 20); 2467 continue; 2468 } 2469 i = ffs(~moea64_vsid_bitmap[n]) - 1; 2470 mask = 1 << i; 2471 hash &= rounddown2(VSID_HASHMASK, VSID_NBPW); 2472 hash |= i; 2473 } 2474 if (hash == VSID_VRMA) /* also special, avoid this too */ 2475 continue; 2476 KASSERT(!(moea64_vsid_bitmap[n] & mask), 2477 ("Allocating in-use VSID %#zx\n", hash)); 2478 moea64_vsid_bitmap[n] |= mask; 2479 mtx_unlock(&moea64_slb_mutex); 2480 return (hash); 2481 } 2482 2483 mtx_unlock(&moea64_slb_mutex); 2484 panic("%s: out of segments",__func__); 2485 } 2486 2487 #ifdef __powerpc64__ 2488 int 2489 moea64_pinit(pmap_t pmap) 2490 { 2491 2492 RB_INIT(&pmap->pmap_pvo); 2493 2494 pmap->pm_slb_tree_root = slb_alloc_tree(); 2495 pmap->pm_slb = slb_alloc_user_cache(); 2496 pmap->pm_slb_len = 0; 2497 2498 return (1); 2499 } 2500 #else 2501 int 2502 moea64_pinit(pmap_t pmap) 2503 { 2504 int i; 2505 uint32_t hash; 2506 2507 RB_INIT(&pmap->pmap_pvo); 2508 2509 if (pmap_bootstrapped) 2510 pmap->pmap_phys = (pmap_t)moea64_kextract((vm_offset_t)pmap); 2511 else 2512 pmap->pmap_phys = pmap; 2513 2514 /* 2515 * Allocate some segment registers for this pmap. 2516 */ 2517 hash = moea64_get_unique_vsid(); 2518 2519 for (i = 0; i < 16; i++) 2520 pmap->pm_sr[i] = VSID_MAKE(i, hash); 2521 2522 KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0")); 2523 2524 return (1); 2525 } 2526 #endif 2527 2528 /* 2529 * Initialize the pmap associated with process 0. 2530 */ 2531 void 2532 moea64_pinit0(pmap_t pm) 2533 { 2534 2535 PMAP_LOCK_INIT(pm); 2536 moea64_pinit(pm); 2537 bzero(&pm->pm_stats, sizeof(pm->pm_stats)); 2538 } 2539 2540 /* 2541 * Set the physical protection on the specified range of this map as requested. 2542 */ 2543 static void 2544 moea64_pvo_protect( pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot) 2545 { 2546 struct vm_page *pg; 2547 vm_prot_t oldprot; 2548 int32_t refchg; 2549 2550 PMAP_LOCK_ASSERT(pm, MA_OWNED); 2551 2552 /* 2553 * Change the protection of the page. 2554 */ 2555 oldprot = pvo->pvo_pte.prot; 2556 pvo->pvo_pte.prot = prot; 2557 pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo)); 2558 2559 /* 2560 * If the PVO is in the page table, update mapping 2561 */ 2562 refchg = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE); 2563 if (refchg < 0) 2564 refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0; 2565 2566 if (pm != kernel_pmap && pg != NULL && 2567 (pg->a.flags & PGA_EXECUTABLE) == 0 && 2568 (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { 2569 if ((pg->oflags & VPO_UNMANAGED) == 0) 2570 vm_page_aflag_set(pg, PGA_EXECUTABLE); 2571 moea64_syncicache(pm, PVO_VADDR(pvo), 2572 PVO_PADDR(pvo), PAGE_SIZE); 2573 } 2574 2575 /* 2576 * Update vm about the REF/CHG bits if the page is managed and we have 2577 * removed write access. 2578 */ 2579 if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) && 2580 (oldprot & VM_PROT_WRITE)) { 2581 refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs); 2582 if (refchg & LPTE_CHG) 2583 vm_page_dirty(pg); 2584 if (refchg & LPTE_REF) 2585 vm_page_aflag_set(pg, PGA_REFERENCED); 2586 } 2587 } 2588 2589 void 2590 moea64_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, 2591 vm_prot_t prot) 2592 { 2593 struct pvo_entry *pvo, key; 2594 2595 CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, 2596 sva, eva, prot); 2597 2598 KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap, 2599 ("moea64_protect: non current pmap")); 2600 2601 if ((prot & VM_PROT_READ) == VM_PROT_NONE) { 2602 moea64_remove(pm, sva, eva); 2603 return; 2604 } 2605 2606 PMAP_LOCK(pm); 2607 key.pvo_vaddr = sva; 2608 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 2609 pvo != NULL && PVO_VADDR(pvo) < eva; 2610 pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) { 2611 if (PVO_IS_SP(pvo)) { 2612 if (moea64_sp_pvo_in_range(pvo, sva, eva)) { 2613 pvo = moea64_sp_protect(pvo, prot); 2614 continue; 2615 } else { 2616 CTR1(KTR_PMAP, "%s: demote before protect", 2617 __func__); 2618 moea64_sp_demote(pvo); 2619 } 2620 } 2621 moea64_pvo_protect(pm, pvo, prot); 2622 } 2623 PMAP_UNLOCK(pm); 2624 } 2625 2626 /* 2627 * Map a list of wired pages into kernel virtual address space. This is 2628 * intended for temporary mappings which do not need page modification or 2629 * references recorded. Existing mappings in the region are overwritten. 2630 */ 2631 void 2632 moea64_qenter(vm_offset_t va, vm_page_t *m, int count) 2633 { 2634 while (count-- > 0) { 2635 moea64_kenter(va, VM_PAGE_TO_PHYS(*m)); 2636 va += PAGE_SIZE; 2637 m++; 2638 } 2639 } 2640 2641 /* 2642 * Remove page mappings from kernel virtual address space. Intended for 2643 * temporary mappings entered by moea64_qenter. 2644 */ 2645 void 2646 moea64_qremove(vm_offset_t va, int count) 2647 { 2648 while (count-- > 0) { 2649 moea64_kremove(va); 2650 va += PAGE_SIZE; 2651 } 2652 } 2653 2654 void 2655 moea64_release_vsid(uint64_t vsid) 2656 { 2657 int idx, mask; 2658 2659 mtx_lock(&moea64_slb_mutex); 2660 idx = vsid & (NVSIDS-1); 2661 mask = 1 << (idx % VSID_NBPW); 2662 idx /= VSID_NBPW; 2663 KASSERT(moea64_vsid_bitmap[idx] & mask, 2664 ("Freeing unallocated VSID %#jx", vsid)); 2665 moea64_vsid_bitmap[idx] &= ~mask; 2666 mtx_unlock(&moea64_slb_mutex); 2667 } 2668 2669 void 2670 moea64_release(pmap_t pmap) 2671 { 2672 2673 /* 2674 * Free segment registers' VSIDs 2675 */ 2676 #ifdef __powerpc64__ 2677 slb_free_tree(pmap); 2678 slb_free_user_cache(pmap->pm_slb); 2679 #else 2680 KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0")); 2681 2682 moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0])); 2683 #endif 2684 } 2685 2686 /* 2687 * Remove all pages mapped by the specified pmap 2688 */ 2689 void 2690 moea64_remove_pages(pmap_t pm) 2691 { 2692 struct pvo_entry *pvo, *tpvo; 2693 struct pvo_dlist tofree; 2694 2695 SLIST_INIT(&tofree); 2696 2697 PMAP_LOCK(pm); 2698 RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) { 2699 if (pvo->pvo_vaddr & PVO_WIRED) 2700 continue; 2701 2702 /* 2703 * For locking reasons, remove this from the page table and 2704 * pmap, but save delinking from the vm_page for a second 2705 * pass 2706 */ 2707 moea64_pvo_remove_from_pmap(pvo); 2708 SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink); 2709 } 2710 PMAP_UNLOCK(pm); 2711 2712 while (!SLIST_EMPTY(&tofree)) { 2713 pvo = SLIST_FIRST(&tofree); 2714 SLIST_REMOVE_HEAD(&tofree, pvo_dlink); 2715 moea64_pvo_remove_from_page(pvo); 2716 free_pvo_entry(pvo); 2717 } 2718 } 2719 2720 static void 2721 moea64_remove_locked(pmap_t pm, vm_offset_t sva, vm_offset_t eva, 2722 struct pvo_dlist *tofree) 2723 { 2724 struct pvo_entry *pvo, *tpvo, key; 2725 2726 PMAP_LOCK_ASSERT(pm, MA_OWNED); 2727 2728 key.pvo_vaddr = sva; 2729 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 2730 pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { 2731 if (PVO_IS_SP(pvo)) { 2732 if (moea64_sp_pvo_in_range(pvo, sva, eva)) { 2733 tpvo = moea64_sp_remove(pvo, tofree); 2734 continue; 2735 } else { 2736 CTR1(KTR_PMAP, "%s: demote before remove", 2737 __func__); 2738 moea64_sp_demote(pvo); 2739 } 2740 } 2741 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); 2742 2743 /* 2744 * For locking reasons, remove this from the page table and 2745 * pmap, but save delinking from the vm_page for a second 2746 * pass 2747 */ 2748 moea64_pvo_remove_from_pmap(pvo); 2749 SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink); 2750 } 2751 } 2752 2753 /* 2754 * Remove the given range of addresses from the specified map. 2755 */ 2756 void 2757 moea64_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva) 2758 { 2759 struct pvo_entry *pvo; 2760 struct pvo_dlist tofree; 2761 2762 /* 2763 * Perform an unsynchronized read. This is, however, safe. 2764 */ 2765 if (pm->pm_stats.resident_count == 0) 2766 return; 2767 2768 SLIST_INIT(&tofree); 2769 PMAP_LOCK(pm); 2770 moea64_remove_locked(pm, sva, eva, &tofree); 2771 PMAP_UNLOCK(pm); 2772 2773 while (!SLIST_EMPTY(&tofree)) { 2774 pvo = SLIST_FIRST(&tofree); 2775 SLIST_REMOVE_HEAD(&tofree, pvo_dlink); 2776 moea64_pvo_remove_from_page(pvo); 2777 free_pvo_entry(pvo); 2778 } 2779 } 2780 2781 /* 2782 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove() 2783 * will reflect changes in pte's back to the vm_page. 2784 */ 2785 void 2786 moea64_remove_all(vm_page_t m) 2787 { 2788 struct pvo_entry *pvo, *next_pvo; 2789 struct pvo_head freequeue; 2790 int wasdead; 2791 pmap_t pmap; 2792 2793 LIST_INIT(&freequeue); 2794 2795 PV_PAGE_LOCK(m); 2796 LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) { 2797 pmap = pvo->pvo_pmap; 2798 PMAP_LOCK(pmap); 2799 wasdead = (pvo->pvo_vaddr & PVO_DEAD); 2800 if (!wasdead) { 2801 if (PVO_IS_SP(pvo)) { 2802 CTR1(KTR_PMAP, "%s: demote before remove_all", 2803 __func__); 2804 moea64_sp_demote(pvo); 2805 } 2806 moea64_pvo_remove_from_pmap(pvo); 2807 } 2808 moea64_pvo_remove_from_page_locked(pvo, m); 2809 if (!wasdead) 2810 LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink); 2811 PMAP_UNLOCK(pmap); 2812 2813 } 2814 KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings")); 2815 KASSERT((m->a.flags & PGA_WRITEABLE) == 0, ("Page still writable")); 2816 PV_PAGE_UNLOCK(m); 2817 2818 /* Clean up UMA allocations */ 2819 LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo) 2820 free_pvo_entry(pvo); 2821 } 2822 2823 /* 2824 * Allocate a physical page of memory directly from the phys_avail map. 2825 * Can only be called from moea64_bootstrap before avail start and end are 2826 * calculated. 2827 */ 2828 vm_offset_t 2829 moea64_bootstrap_alloc(vm_size_t size, vm_size_t align) 2830 { 2831 vm_offset_t s, e; 2832 int i, j; 2833 2834 size = round_page(size); 2835 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 2836 if (align != 0) 2837 s = roundup2(phys_avail[i], align); 2838 else 2839 s = phys_avail[i]; 2840 e = s + size; 2841 2842 if (s < phys_avail[i] || e > phys_avail[i + 1]) 2843 continue; 2844 2845 if (s + size > platform_real_maxaddr()) 2846 continue; 2847 2848 if (s == phys_avail[i]) { 2849 phys_avail[i] += size; 2850 } else if (e == phys_avail[i + 1]) { 2851 phys_avail[i + 1] -= size; 2852 } else { 2853 for (j = phys_avail_count * 2; j > i; j -= 2) { 2854 phys_avail[j] = phys_avail[j - 2]; 2855 phys_avail[j + 1] = phys_avail[j - 1]; 2856 } 2857 2858 phys_avail[i + 3] = phys_avail[i + 1]; 2859 phys_avail[i + 1] = s; 2860 phys_avail[i + 2] = e; 2861 phys_avail_count++; 2862 } 2863 2864 return (s); 2865 } 2866 panic("moea64_bootstrap_alloc: could not allocate memory"); 2867 } 2868 2869 static int 2870 moea64_pvo_enter(struct pvo_entry *pvo, struct pvo_head *pvo_head, 2871 struct pvo_entry **oldpvop) 2872 { 2873 struct pvo_entry *old_pvo; 2874 int err; 2875 2876 PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); 2877 2878 STAT_MOEA64(moea64_pvo_enter_calls++); 2879 2880 /* 2881 * Add to pmap list 2882 */ 2883 old_pvo = RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo); 2884 2885 if (old_pvo != NULL) { 2886 if (oldpvop != NULL) 2887 *oldpvop = old_pvo; 2888 return (EEXIST); 2889 } 2890 2891 if (pvo_head != NULL) { 2892 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink); 2893 } 2894 2895 if (pvo->pvo_vaddr & PVO_WIRED) 2896 pvo->pvo_pmap->pm_stats.wired_count++; 2897 pvo->pvo_pmap->pm_stats.resident_count++; 2898 2899 /* 2900 * Insert it into the hardware page table 2901 */ 2902 err = moea64_pte_insert(pvo); 2903 if (err != 0) { 2904 panic("moea64_pvo_enter: overflow"); 2905 } 2906 2907 STAT_MOEA64(moea64_pvo_entries++); 2908 2909 if (pvo->pvo_pmap == kernel_pmap) 2910 isync(); 2911 2912 #ifdef __powerpc64__ 2913 /* 2914 * Make sure all our bootstrap mappings are in the SLB as soon 2915 * as virtual memory is switched on. 2916 */ 2917 if (!pmap_bootstrapped) 2918 moea64_bootstrap_slb_prefault(PVO_VADDR(pvo), 2919 pvo->pvo_vaddr & PVO_LARGE); 2920 #endif 2921 2922 return (0); 2923 } 2924 2925 static void 2926 moea64_pvo_remove_from_pmap(struct pvo_entry *pvo) 2927 { 2928 struct vm_page *pg; 2929 int32_t refchg; 2930 2931 KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap")); 2932 PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); 2933 KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO")); 2934 2935 /* 2936 * If there is an active pte entry, we need to deactivate it 2937 */ 2938 refchg = moea64_pte_unset(pvo); 2939 if (refchg < 0) { 2940 /* 2941 * If it was evicted from the page table, be pessimistic and 2942 * dirty the page. 2943 */ 2944 if (pvo->pvo_pte.prot & VM_PROT_WRITE) 2945 refchg = LPTE_CHG; 2946 else 2947 refchg = 0; 2948 } 2949 2950 /* 2951 * Update our statistics. 2952 */ 2953 pvo->pvo_pmap->pm_stats.resident_count--; 2954 if (pvo->pvo_vaddr & PVO_WIRED) 2955 pvo->pvo_pmap->pm_stats.wired_count--; 2956 2957 /* 2958 * Remove this PVO from the pmap list. 2959 */ 2960 RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo); 2961 2962 /* 2963 * Mark this for the next sweep 2964 */ 2965 pvo->pvo_vaddr |= PVO_DEAD; 2966 2967 /* Send RC bits to VM */ 2968 if ((pvo->pvo_vaddr & PVO_MANAGED) && 2969 (pvo->pvo_pte.prot & VM_PROT_WRITE)) { 2970 pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo)); 2971 if (pg != NULL) { 2972 refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs); 2973 if (refchg & LPTE_CHG) 2974 vm_page_dirty(pg); 2975 if (refchg & LPTE_REF) 2976 vm_page_aflag_set(pg, PGA_REFERENCED); 2977 } 2978 } 2979 } 2980 2981 static inline void 2982 moea64_pvo_remove_from_page_locked(struct pvo_entry *pvo, 2983 vm_page_t m) 2984 { 2985 2986 KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page")); 2987 2988 /* Use NULL pmaps as a sentinel for races in page deletion */ 2989 if (pvo->pvo_pmap == NULL) 2990 return; 2991 pvo->pvo_pmap = NULL; 2992 2993 /* 2994 * Update vm about page writeability/executability if managed 2995 */ 2996 PV_LOCKASSERT(PVO_PADDR(pvo)); 2997 if (pvo->pvo_vaddr & PVO_MANAGED) { 2998 if (m != NULL) { 2999 LIST_REMOVE(pvo, pvo_vlink); 3000 if (LIST_EMPTY(vm_page_to_pvoh(m))) 3001 vm_page_aflag_clear(m, 3002 PGA_WRITEABLE | PGA_EXECUTABLE); 3003 } 3004 } 3005 3006 STAT_MOEA64(moea64_pvo_entries--); 3007 STAT_MOEA64(moea64_pvo_remove_calls++); 3008 } 3009 3010 static void 3011 moea64_pvo_remove_from_page(struct pvo_entry *pvo) 3012 { 3013 vm_page_t pg = NULL; 3014 3015 if (pvo->pvo_vaddr & PVO_MANAGED) 3016 pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo)); 3017 3018 PV_LOCK(PVO_PADDR(pvo)); 3019 moea64_pvo_remove_from_page_locked(pvo, pg); 3020 PV_UNLOCK(PVO_PADDR(pvo)); 3021 } 3022 3023 static struct pvo_entry * 3024 moea64_pvo_find_va(pmap_t pm, vm_offset_t va) 3025 { 3026 struct pvo_entry key; 3027 3028 PMAP_LOCK_ASSERT(pm, MA_OWNED); 3029 3030 key.pvo_vaddr = va & ~ADDR_POFF; 3031 return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key)); 3032 } 3033 3034 static bool 3035 moea64_query_bit(vm_page_t m, uint64_t ptebit) 3036 { 3037 struct pvo_entry *pvo; 3038 int64_t ret; 3039 bool rv; 3040 vm_page_t sp; 3041 3042 /* 3043 * See if this bit is stored in the page already. 3044 * 3045 * For superpages, the bit is stored in the first vm page. 3046 */ 3047 if ((m->md.mdpg_attrs & ptebit) != 0 || 3048 ((sp = PHYS_TO_VM_PAGE(VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK)) != NULL && 3049 (sp->md.mdpg_attrs & (ptebit | MDPG_ATTR_SP)) == 3050 (ptebit | MDPG_ATTR_SP))) 3051 return (true); 3052 3053 /* 3054 * Examine each PTE. Sync so that any pending REF/CHG bits are 3055 * flushed to the PTEs. 3056 */ 3057 rv = false; 3058 powerpc_sync(); 3059 PV_PAGE_LOCK(m); 3060 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 3061 if (PVO_IS_SP(pvo)) { 3062 ret = moea64_sp_query(pvo, ptebit); 3063 /* 3064 * If SP was not demoted, check its REF/CHG bits here. 3065 */ 3066 if (ret != -1) { 3067 if ((ret & ptebit) != 0) { 3068 rv = true; 3069 break; 3070 } 3071 continue; 3072 } 3073 /* else, fallthrough */ 3074 } 3075 3076 ret = 0; 3077 3078 /* 3079 * See if this pvo has a valid PTE. if so, fetch the 3080 * REF/CHG bits from the valid PTE. If the appropriate 3081 * ptebit is set, return success. 3082 */ 3083 PMAP_LOCK(pvo->pvo_pmap); 3084 if (!(pvo->pvo_vaddr & PVO_DEAD)) 3085 ret = moea64_pte_synch(pvo); 3086 PMAP_UNLOCK(pvo->pvo_pmap); 3087 3088 if (ret > 0) { 3089 atomic_set_32(&m->md.mdpg_attrs, 3090 ret & (LPTE_CHG | LPTE_REF)); 3091 if (ret & ptebit) { 3092 rv = true; 3093 break; 3094 } 3095 } 3096 } 3097 PV_PAGE_UNLOCK(m); 3098 3099 return (rv); 3100 } 3101 3102 static u_int 3103 moea64_clear_bit(vm_page_t m, u_int64_t ptebit) 3104 { 3105 u_int count; 3106 struct pvo_entry *pvo; 3107 int64_t ret; 3108 3109 /* 3110 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so 3111 * we can reset the right ones). 3112 */ 3113 powerpc_sync(); 3114 3115 /* 3116 * For each pvo entry, clear the pte's ptebit. 3117 */ 3118 count = 0; 3119 PV_PAGE_LOCK(m); 3120 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 3121 if (PVO_IS_SP(pvo)) { 3122 if ((ret = moea64_sp_clear(pvo, m, ptebit)) != -1) { 3123 count += ret; 3124 continue; 3125 } 3126 } 3127 ret = 0; 3128 3129 PMAP_LOCK(pvo->pvo_pmap); 3130 if (!(pvo->pvo_vaddr & PVO_DEAD)) 3131 ret = moea64_pte_clear(pvo, ptebit); 3132 PMAP_UNLOCK(pvo->pvo_pmap); 3133 3134 if (ret > 0 && (ret & ptebit)) 3135 count++; 3136 } 3137 atomic_clear_32(&m->md.mdpg_attrs, ptebit); 3138 PV_PAGE_UNLOCK(m); 3139 3140 return (count); 3141 } 3142 3143 int 3144 moea64_dev_direct_mapped(vm_paddr_t pa, vm_size_t size) 3145 { 3146 struct pvo_entry *pvo, key; 3147 vm_offset_t ppa; 3148 int error = 0; 3149 3150 if (hw_direct_map && mem_valid(pa, size) == 0) 3151 return (0); 3152 3153 PMAP_LOCK(kernel_pmap); 3154 ppa = pa & ~ADDR_POFF; 3155 key.pvo_vaddr = DMAP_BASE_ADDRESS + ppa; 3156 for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key); 3157 ppa < pa + size; ppa += PAGE_SIZE, 3158 pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) { 3159 if (pvo == NULL || PVO_PADDR(pvo) != ppa) { 3160 error = EFAULT; 3161 break; 3162 } 3163 } 3164 PMAP_UNLOCK(kernel_pmap); 3165 3166 return (error); 3167 } 3168 3169 /* 3170 * Map a set of physical memory pages into the kernel virtual 3171 * address space. Return a pointer to where it is mapped. This 3172 * routine is intended to be used for mapping device memory, 3173 * NOT real memory. 3174 */ 3175 void * 3176 moea64_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma) 3177 { 3178 vm_offset_t va, tmpva, ppa, offset; 3179 3180 ppa = trunc_page(pa); 3181 offset = pa & PAGE_MASK; 3182 size = roundup2(offset + size, PAGE_SIZE); 3183 3184 va = kva_alloc(size); 3185 3186 if (!va) 3187 panic("moea64_mapdev: Couldn't alloc kernel virtual memory"); 3188 3189 for (tmpva = va; size > 0;) { 3190 moea64_kenter_attr(tmpva, ppa, ma); 3191 size -= PAGE_SIZE; 3192 tmpva += PAGE_SIZE; 3193 ppa += PAGE_SIZE; 3194 } 3195 3196 return ((void *)(va + offset)); 3197 } 3198 3199 void * 3200 moea64_mapdev(vm_paddr_t pa, vm_size_t size) 3201 { 3202 3203 return moea64_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT); 3204 } 3205 3206 void 3207 moea64_unmapdev(void *p, vm_size_t size) 3208 { 3209 vm_offset_t base, offset, va; 3210 3211 va = (vm_offset_t)p; 3212 base = trunc_page(va); 3213 offset = va & PAGE_MASK; 3214 size = roundup2(offset + size, PAGE_SIZE); 3215 3216 moea64_qremove(base, atop(size)); 3217 kva_free(base, size); 3218 } 3219 3220 void 3221 moea64_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz) 3222 { 3223 struct pvo_entry *pvo; 3224 vm_offset_t lim; 3225 vm_paddr_t pa; 3226 vm_size_t len; 3227 3228 if (__predict_false(pm == NULL)) 3229 pm = &curthread->td_proc->p_vmspace->vm_pmap; 3230 3231 PMAP_LOCK(pm); 3232 while (sz > 0) { 3233 lim = round_page(va+1); 3234 len = MIN(lim - va, sz); 3235 pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF); 3236 if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) { 3237 pa = PVO_PADDR(pvo) | (va & ADDR_POFF); 3238 moea64_syncicache(pm, va, pa, len); 3239 } 3240 va += len; 3241 sz -= len; 3242 } 3243 PMAP_UNLOCK(pm); 3244 } 3245 3246 void 3247 moea64_dumpsys_map(vm_paddr_t pa, size_t sz, void **va) 3248 { 3249 3250 *va = (void *)(uintptr_t)pa; 3251 } 3252 3253 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1]; 3254 3255 void 3256 moea64_scan_init(void) 3257 { 3258 struct pvo_entry *pvo; 3259 vm_offset_t va; 3260 int i; 3261 3262 if (!do_minidump) { 3263 /* Initialize phys. segments for dumpsys(). */ 3264 memset(&dump_map, 0, sizeof(dump_map)); 3265 mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); 3266 for (i = 0; i < pregions_sz; i++) { 3267 dump_map[i].pa_start = pregions[i].mr_start; 3268 dump_map[i].pa_size = pregions[i].mr_size; 3269 } 3270 return; 3271 } 3272 3273 /* Virtual segments for minidumps: */ 3274 memset(&dump_map, 0, sizeof(dump_map)); 3275 3276 /* 1st: kernel .data and .bss. */ 3277 dump_map[0].pa_start = trunc_page((uintptr_t)_etext); 3278 dump_map[0].pa_size = round_page((uintptr_t)_end) - 3279 dump_map[0].pa_start; 3280 3281 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ 3282 dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr; 3283 dump_map[1].pa_size = round_page(msgbufp->msg_size); 3284 3285 /* 3rd: kernel VM. */ 3286 va = dump_map[1].pa_start + dump_map[1].pa_size; 3287 /* Find start of next chunk (from va). */ 3288 while (va < virtual_end) { 3289 /* Don't dump the buffer cache. */ 3290 if (va >= kmi.buffer_sva && va < kmi.buffer_eva) { 3291 va = kmi.buffer_eva; 3292 continue; 3293 } 3294 pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF); 3295 if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD)) 3296 break; 3297 va += PAGE_SIZE; 3298 } 3299 if (va < virtual_end) { 3300 dump_map[2].pa_start = va; 3301 va += PAGE_SIZE; 3302 /* Find last page in chunk. */ 3303 while (va < virtual_end) { 3304 /* Don't run into the buffer cache. */ 3305 if (va == kmi.buffer_sva) 3306 break; 3307 pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF); 3308 if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD)) 3309 break; 3310 va += PAGE_SIZE; 3311 } 3312 dump_map[2].pa_size = va - dump_map[2].pa_start; 3313 } 3314 } 3315 3316 #ifdef __powerpc64__ 3317 3318 static size_t 3319 moea64_scan_pmap(struct bitset *dump_bitset) 3320 { 3321 struct pvo_entry *pvo; 3322 vm_paddr_t pa, pa_end; 3323 vm_offset_t va, pgva, kstart, kend, kstart_lp, kend_lp; 3324 uint64_t lpsize; 3325 3326 lpsize = moea64_large_page_size; 3327 kstart = trunc_page((vm_offset_t)_etext); 3328 kend = round_page((vm_offset_t)_end); 3329 kstart_lp = kstart & ~moea64_large_page_mask; 3330 kend_lp = (kend + moea64_large_page_mask) & ~moea64_large_page_mask; 3331 3332 CTR4(KTR_PMAP, "moea64_scan_pmap: kstart=0x%016lx, kend=0x%016lx, " 3333 "kstart_lp=0x%016lx, kend_lp=0x%016lx", 3334 kstart, kend, kstart_lp, kend_lp); 3335 3336 PMAP_LOCK(kernel_pmap); 3337 RB_FOREACH(pvo, pvo_tree, &kernel_pmap->pmap_pvo) { 3338 va = pvo->pvo_vaddr; 3339 3340 if (va & PVO_DEAD) 3341 continue; 3342 3343 /* Skip DMAP (except kernel area) */ 3344 if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS) { 3345 if (va & PVO_LARGE) { 3346 pgva = va & ~moea64_large_page_mask; 3347 if (pgva < kstart_lp || pgva >= kend_lp) 3348 continue; 3349 } else { 3350 pgva = trunc_page(va); 3351 if (pgva < kstart || pgva >= kend) 3352 continue; 3353 } 3354 } 3355 3356 pa = PVO_PADDR(pvo); 3357 3358 if (va & PVO_LARGE) { 3359 pa_end = pa + lpsize; 3360 for (; pa < pa_end; pa += PAGE_SIZE) { 3361 if (vm_phys_is_dumpable(pa)) 3362 vm_page_dump_add(dump_bitset, pa); 3363 } 3364 } else { 3365 if (vm_phys_is_dumpable(pa)) 3366 vm_page_dump_add(dump_bitset, pa); 3367 } 3368 } 3369 PMAP_UNLOCK(kernel_pmap); 3370 3371 return (sizeof(struct lpte) * moea64_pteg_count * 8); 3372 } 3373 3374 static struct dump_context dump_ctx; 3375 3376 static void * 3377 moea64_dump_pmap_init(unsigned blkpgs) 3378 { 3379 dump_ctx.ptex = 0; 3380 dump_ctx.ptex_end = moea64_pteg_count * 8; 3381 dump_ctx.blksz = blkpgs * PAGE_SIZE; 3382 return (&dump_ctx); 3383 } 3384 3385 #else 3386 3387 static size_t 3388 moea64_scan_pmap(struct bitset *dump_bitset __unused) 3389 { 3390 return (0); 3391 } 3392 3393 static void * 3394 moea64_dump_pmap_init(unsigned blkpgs) 3395 { 3396 return (NULL); 3397 } 3398 3399 #endif 3400 3401 #ifdef __powerpc64__ 3402 static void 3403 moea64_map_range(vm_offset_t va, vm_paddr_t pa, vm_size_t npages) 3404 { 3405 3406 for (; npages > 0; --npages) { 3407 if (moea64_large_page_size != 0 && 3408 (pa & moea64_large_page_mask) == 0 && 3409 (va & moea64_large_page_mask) == 0 && 3410 npages >= (moea64_large_page_size >> PAGE_SHIFT)) { 3411 PMAP_LOCK(kernel_pmap); 3412 moea64_kenter_large(va, pa, 0, 0); 3413 PMAP_UNLOCK(kernel_pmap); 3414 pa += moea64_large_page_size; 3415 va += moea64_large_page_size; 3416 npages -= (moea64_large_page_size >> PAGE_SHIFT) - 1; 3417 } else { 3418 moea64_kenter(va, pa); 3419 pa += PAGE_SIZE; 3420 va += PAGE_SIZE; 3421 } 3422 } 3423 } 3424 3425 static void 3426 moea64_page_array_startup(long pages) 3427 { 3428 long dom_pages[MAXMEMDOM]; 3429 vm_paddr_t pa; 3430 vm_offset_t va, vm_page_base; 3431 vm_size_t needed, size; 3432 int domain; 3433 int i; 3434 3435 vm_page_base = 0xd000000000000000ULL; 3436 3437 /* Short-circuit single-domain systems. */ 3438 if (vm_ndomains == 1) { 3439 size = round_page(pages * sizeof(struct vm_page)); 3440 pa = vm_phys_early_alloc(0, size); 3441 vm_page_base = moea64_map(&vm_page_base, 3442 pa, pa + size, VM_PROT_READ | VM_PROT_WRITE); 3443 vm_page_array_size = pages; 3444 vm_page_array = (vm_page_t)vm_page_base; 3445 return; 3446 } 3447 3448 for (i = 0; i < MAXMEMDOM; i++) 3449 dom_pages[i] = 0; 3450 3451 /* Now get the number of pages required per domain. */ 3452 for (i = 0; i < vm_phys_nsegs; i++) { 3453 domain = vm_phys_segs[i].domain; 3454 KASSERT(domain < MAXMEMDOM, 3455 ("Invalid vm_phys_segs NUMA domain %d!\n", domain)); 3456 /* Get size of vm_page_array needed for this segment. */ 3457 size = btoc(vm_phys_segs[i].end - vm_phys_segs[i].start); 3458 dom_pages[domain] += size; 3459 } 3460 3461 for (i = 0; phys_avail[i + 1] != 0; i+= 2) { 3462 domain = vm_phys_domain(phys_avail[i]); 3463 KASSERT(domain < MAXMEMDOM, 3464 ("Invalid phys_avail NUMA domain %d!\n", domain)); 3465 size = btoc(phys_avail[i + 1] - phys_avail[i]); 3466 dom_pages[domain] += size; 3467 } 3468 3469 /* 3470 * Map in chunks that can get us all 16MB pages. There will be some 3471 * overlap between domains, but that's acceptable for now. 3472 */ 3473 vm_page_array_size = 0; 3474 va = vm_page_base; 3475 for (i = 0; i < MAXMEMDOM && vm_page_array_size < pages; i++) { 3476 if (dom_pages[i] == 0) 3477 continue; 3478 size = ulmin(pages - vm_page_array_size, dom_pages[i]); 3479 size = round_page(size * sizeof(struct vm_page)); 3480 needed = size; 3481 size = roundup2(size, moea64_large_page_size); 3482 pa = vm_phys_early_alloc(i, size); 3483 vm_page_array_size += size / sizeof(struct vm_page); 3484 moea64_map_range(va, pa, size >> PAGE_SHIFT); 3485 /* Scoot up domain 0, to reduce the domain page overlap. */ 3486 if (i == 0) 3487 vm_page_base += size - needed; 3488 va += size; 3489 } 3490 vm_page_array = (vm_page_t)vm_page_base; 3491 vm_page_array_size = pages; 3492 } 3493 #endif 3494 3495 static int64_t 3496 moea64_null_method(void) 3497 { 3498 return (0); 3499 } 3500 3501 static int64_t moea64_pte_replace_default(struct pvo_entry *pvo, int flags) 3502 { 3503 int64_t refchg; 3504 3505 refchg = moea64_pte_unset(pvo); 3506 moea64_pte_insert(pvo); 3507 3508 return (refchg); 3509 } 3510 3511 struct moea64_funcs *moea64_ops; 3512 3513 #define DEFINE_OEA64_IFUNC(ret, func, args, def) \ 3514 DEFINE_IFUNC(, ret, moea64_##func, args) { \ 3515 moea64_##func##_t f; \ 3516 if (moea64_ops == NULL) \ 3517 return ((moea64_##func##_t)def); \ 3518 f = moea64_ops->func; \ 3519 return (f != NULL ? f : (moea64_##func##_t)def);\ 3520 } 3521 3522 void 3523 moea64_install(void) 3524 { 3525 #ifdef __powerpc64__ 3526 if (hw_direct_map == -1) { 3527 moea64_probe_large_page(); 3528 3529 /* Use a direct map if we have large page support */ 3530 if (moea64_large_page_size > 0) 3531 hw_direct_map = 1; 3532 else 3533 hw_direct_map = 0; 3534 } 3535 #endif 3536 3537 /* 3538 * Default to non-DMAP, and switch over to DMAP functions once we know 3539 * we have DMAP. 3540 */ 3541 if (hw_direct_map) { 3542 moea64_methods.quick_enter_page = moea64_quick_enter_page_dmap; 3543 moea64_methods.quick_remove_page = NULL; 3544 moea64_methods.copy_page = moea64_copy_page_dmap; 3545 moea64_methods.zero_page = moea64_zero_page_dmap; 3546 moea64_methods.copy_pages = moea64_copy_pages_dmap; 3547 } 3548 } 3549 3550 DEFINE_OEA64_IFUNC(int64_t, pte_replace, (struct pvo_entry *, int), 3551 moea64_pte_replace_default) 3552 DEFINE_OEA64_IFUNC(int64_t, pte_insert, (struct pvo_entry *), moea64_null_method) 3553 DEFINE_OEA64_IFUNC(int64_t, pte_unset, (struct pvo_entry *), moea64_null_method) 3554 DEFINE_OEA64_IFUNC(int64_t, pte_clear, (struct pvo_entry *, uint64_t), 3555 moea64_null_method) 3556 DEFINE_OEA64_IFUNC(int64_t, pte_synch, (struct pvo_entry *), moea64_null_method) 3557 DEFINE_OEA64_IFUNC(int64_t, pte_insert_sp, (struct pvo_entry *), moea64_null_method) 3558 DEFINE_OEA64_IFUNC(int64_t, pte_unset_sp, (struct pvo_entry *), moea64_null_method) 3559 DEFINE_OEA64_IFUNC(int64_t, pte_replace_sp, (struct pvo_entry *), moea64_null_method) 3560 3561 /* Superpage functions */ 3562 3563 /* MMU interface */ 3564 3565 static bool 3566 moea64_ps_enabled(pmap_t pmap) 3567 { 3568 return (superpages_enabled); 3569 } 3570 3571 static void 3572 moea64_align_superpage(vm_object_t object, vm_ooffset_t offset, 3573 vm_offset_t *addr, vm_size_t size) 3574 { 3575 vm_offset_t sp_offset; 3576 3577 if (size < HPT_SP_SIZE) 3578 return; 3579 3580 CTR4(KTR_PMAP, "%s: offs=%#jx, addr=%p, size=%#jx", 3581 __func__, (uintmax_t)offset, addr, (uintmax_t)size); 3582 3583 if (object != NULL && (object->flags & OBJ_COLORED) != 0) 3584 offset += ptoa(object->pg_color); 3585 sp_offset = offset & HPT_SP_MASK; 3586 if (size - ((HPT_SP_SIZE - sp_offset) & HPT_SP_MASK) < HPT_SP_SIZE || 3587 (*addr & HPT_SP_MASK) == sp_offset) 3588 return; 3589 if ((*addr & HPT_SP_MASK) < sp_offset) 3590 *addr = (*addr & ~HPT_SP_MASK) + sp_offset; 3591 else 3592 *addr = ((*addr + HPT_SP_MASK) & ~HPT_SP_MASK) + sp_offset; 3593 } 3594 3595 /* Helpers */ 3596 3597 static __inline void 3598 moea64_pvo_cleanup(struct pvo_dlist *tofree) 3599 { 3600 struct pvo_entry *pvo; 3601 3602 /* clean up */ 3603 while (!SLIST_EMPTY(tofree)) { 3604 pvo = SLIST_FIRST(tofree); 3605 SLIST_REMOVE_HEAD(tofree, pvo_dlink); 3606 if (pvo->pvo_vaddr & PVO_DEAD) 3607 moea64_pvo_remove_from_page(pvo); 3608 free_pvo_entry(pvo); 3609 } 3610 } 3611 3612 static __inline uint16_t 3613 pvo_to_vmpage_flags(struct pvo_entry *pvo) 3614 { 3615 uint16_t flags; 3616 3617 flags = 0; 3618 if ((pvo->pvo_pte.prot & VM_PROT_WRITE) != 0) 3619 flags |= PGA_WRITEABLE; 3620 if ((pvo->pvo_pte.prot & VM_PROT_EXECUTE) != 0) 3621 flags |= PGA_EXECUTABLE; 3622 3623 return (flags); 3624 } 3625 3626 /* 3627 * Check if the given pvo and its superpage are in sva-eva range. 3628 */ 3629 static __inline bool 3630 moea64_sp_pvo_in_range(struct pvo_entry *pvo, vm_offset_t sva, vm_offset_t eva) 3631 { 3632 vm_offset_t spva; 3633 3634 spva = PVO_VADDR(pvo) & ~HPT_SP_MASK; 3635 if (spva >= sva && spva + HPT_SP_SIZE <= eva) { 3636 /* 3637 * Because this function is intended to be called from loops 3638 * that iterate over ordered pvo entries, if the condition 3639 * above is true then the pvo must be the first of its 3640 * superpage. 3641 */ 3642 KASSERT(PVO_VADDR(pvo) == spva, 3643 ("%s: unexpected unaligned superpage pvo", __func__)); 3644 return (true); 3645 } 3646 return (false); 3647 } 3648 3649 /* 3650 * Update vm about the REF/CHG bits if the superpage is managed and 3651 * has (or had) write access. 3652 */ 3653 static void 3654 moea64_sp_refchg_process(struct pvo_entry *sp, vm_page_t m, 3655 int64_t sp_refchg, vm_prot_t prot) 3656 { 3657 vm_page_t m_end; 3658 int64_t refchg; 3659 3660 if ((sp->pvo_vaddr & PVO_MANAGED) != 0 && (prot & VM_PROT_WRITE) != 0) { 3661 for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++) { 3662 refchg = sp_refchg | 3663 atomic_readandclear_32(&m->md.mdpg_attrs); 3664 if (refchg & LPTE_CHG) 3665 vm_page_dirty(m); 3666 if (refchg & LPTE_REF) 3667 vm_page_aflag_set(m, PGA_REFERENCED); 3668 } 3669 } 3670 } 3671 3672 /* Superpage ops */ 3673 3674 static int 3675 moea64_sp_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, 3676 vm_prot_t prot, u_int flags, int8_t psind) 3677 { 3678 struct pvo_entry *pvo, **pvos; 3679 struct pvo_head *pvo_head; 3680 vm_offset_t sva; 3681 vm_page_t sm; 3682 vm_paddr_t pa, spa; 3683 bool sync; 3684 struct pvo_dlist tofree; 3685 int error __diagused, i; 3686 uint16_t aflags; 3687 3688 KASSERT((va & HPT_SP_MASK) == 0, ("%s: va %#jx unaligned", 3689 __func__, (uintmax_t)va)); 3690 KASSERT(psind == 1, ("%s: invalid psind: %d", __func__, psind)); 3691 KASSERT(m->psind == 1, ("%s: invalid m->psind: %d", 3692 __func__, m->psind)); 3693 KASSERT(pmap != kernel_pmap, 3694 ("%s: function called with kernel pmap", __func__)); 3695 3696 CTR5(KTR_PMAP, "%s: va=%#jx, pa=%#jx, prot=%#x, flags=%#x, psind=1", 3697 __func__, (uintmax_t)va, (uintmax_t)VM_PAGE_TO_PHYS(m), 3698 prot, flags); 3699 3700 SLIST_INIT(&tofree); 3701 3702 sva = va; 3703 sm = m; 3704 spa = pa = VM_PAGE_TO_PHYS(sm); 3705 3706 /* Try to allocate all PVOs first, to make failure handling easier. */ 3707 pvos = malloc(HPT_SP_PAGES * sizeof(struct pvo_entry *), M_TEMP, 3708 M_NOWAIT); 3709 if (pvos == NULL) { 3710 CTR1(KTR_PMAP, "%s: failed to alloc pvo array", __func__); 3711 return (KERN_RESOURCE_SHORTAGE); 3712 } 3713 3714 for (i = 0; i < HPT_SP_PAGES; i++) { 3715 pvos[i] = alloc_pvo_entry(0); 3716 if (pvos[i] == NULL) { 3717 CTR1(KTR_PMAP, "%s: failed to alloc pvo", __func__); 3718 for (i = i - 1; i >= 0; i--) 3719 free_pvo_entry(pvos[i]); 3720 free(pvos, M_TEMP); 3721 return (KERN_RESOURCE_SHORTAGE); 3722 } 3723 } 3724 3725 SP_PV_LOCK_ALIGNED(spa); 3726 PMAP_LOCK(pmap); 3727 3728 /* Note: moea64_remove_locked() also clears cached REF/CHG bits. */ 3729 moea64_remove_locked(pmap, va, va + HPT_SP_SIZE, &tofree); 3730 3731 /* Enter pages */ 3732 for (i = 0; i < HPT_SP_PAGES; 3733 i++, va += PAGE_SIZE, pa += PAGE_SIZE, m++) { 3734 pvo = pvos[i]; 3735 3736 pvo->pvo_pte.prot = prot; 3737 pvo->pvo_pte.pa = (pa & ~HPT_SP_MASK) | LPTE_LP_4K_16M | 3738 moea64_calc_wimg(pa, pmap_page_get_memattr(m)); 3739 3740 if ((flags & PMAP_ENTER_WIRED) != 0) 3741 pvo->pvo_vaddr |= PVO_WIRED; 3742 pvo->pvo_vaddr |= PVO_LARGE; 3743 3744 if ((m->oflags & VPO_UNMANAGED) != 0) 3745 pvo_head = NULL; 3746 else { 3747 pvo_head = &m->md.mdpg_pvoh; 3748 pvo->pvo_vaddr |= PVO_MANAGED; 3749 } 3750 3751 init_pvo_entry(pvo, pmap, va); 3752 3753 error = moea64_pvo_enter(pvo, pvo_head, NULL); 3754 /* 3755 * All superpage PVOs were previously removed, so no errors 3756 * should occur while inserting the new ones. 3757 */ 3758 KASSERT(error == 0, ("%s: unexpected error " 3759 "when inserting superpage PVO: %d", 3760 __func__, error)); 3761 } 3762 3763 PMAP_UNLOCK(pmap); 3764 SP_PV_UNLOCK_ALIGNED(spa); 3765 3766 sync = (sm->a.flags & PGA_EXECUTABLE) == 0; 3767 /* Note: moea64_pvo_cleanup() also clears page prot. flags. */ 3768 moea64_pvo_cleanup(&tofree); 3769 pvo = pvos[0]; 3770 3771 /* Set vm page flags */ 3772 aflags = pvo_to_vmpage_flags(pvo); 3773 if (aflags != 0) 3774 for (m = sm; m < &sm[HPT_SP_PAGES]; m++) 3775 vm_page_aflag_set(m, aflags); 3776 3777 /* 3778 * Flush the page from the instruction cache if this page is 3779 * mapped executable and cacheable. 3780 */ 3781 if (sync && (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) 3782 moea64_syncicache(pmap, sva, spa, HPT_SP_SIZE); 3783 3784 atomic_add_long(&sp_mappings, 1); 3785 CTR3(KTR_PMAP, "%s: SP success for va %#jx in pmap %p", 3786 __func__, (uintmax_t)sva, pmap); 3787 3788 free(pvos, M_TEMP); 3789 return (KERN_SUCCESS); 3790 } 3791 3792 static void 3793 moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m) 3794 { 3795 struct pvo_entry *first, *pvo; 3796 vm_paddr_t pa, pa_end; 3797 vm_offset_t sva, va_end; 3798 int64_t sp_refchg; 3799 3800 /* This CTR may generate a lot of output. */ 3801 /* CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)va); */ 3802 3803 va &= ~HPT_SP_MASK; 3804 sva = va; 3805 /* Get superpage */ 3806 pa = VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK; 3807 m = PHYS_TO_VM_PAGE(pa); 3808 3809 PMAP_LOCK(pmap); 3810 3811 /* 3812 * Check if all pages meet promotion criteria. 3813 * 3814 * XXX In some cases the loop below may be executed for each or most 3815 * of the entered pages of a superpage, which can be expensive 3816 * (although it was not profiled) and need some optimization. 3817 * 3818 * Some cases where this seems to happen are: 3819 * - When a superpage is first entered read-only and later becomes 3820 * read-write. 3821 * - When some of the superpage's virtual addresses map to previously 3822 * wired/cached pages while others map to pages allocated from a 3823 * different physical address range. A common scenario where this 3824 * happens is when mmap'ing a file that is already present in FS 3825 * block cache and doesn't fill a superpage. 3826 */ 3827 first = pvo = moea64_pvo_find_va(pmap, sva); 3828 for (pa_end = pa + HPT_SP_SIZE; 3829 pa < pa_end; pa += PAGE_SIZE, va += PAGE_SIZE) { 3830 if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD) != 0) { 3831 CTR3(KTR_PMAP, 3832 "%s: NULL or dead PVO: pmap=%p, va=%#jx", 3833 __func__, pmap, (uintmax_t)va); 3834 goto error; 3835 } 3836 if (PVO_PADDR(pvo) != pa) { 3837 CTR5(KTR_PMAP, "%s: PAs don't match: " 3838 "pmap=%p, va=%#jx, pvo_pa=%#jx, exp_pa=%#jx", 3839 __func__, pmap, (uintmax_t)va, 3840 (uintmax_t)PVO_PADDR(pvo), (uintmax_t)pa); 3841 atomic_add_long(&sp_p_fail_pa, 1); 3842 goto error; 3843 } 3844 if ((first->pvo_vaddr & PVO_FLAGS_PROMOTE) != 3845 (pvo->pvo_vaddr & PVO_FLAGS_PROMOTE)) { 3846 CTR5(KTR_PMAP, "%s: PVO flags don't match: " 3847 "pmap=%p, va=%#jx, pvo_flags=%#jx, exp_flags=%#jx", 3848 __func__, pmap, (uintmax_t)va, 3849 (uintmax_t)(pvo->pvo_vaddr & PVO_FLAGS_PROMOTE), 3850 (uintmax_t)(first->pvo_vaddr & PVO_FLAGS_PROMOTE)); 3851 atomic_add_long(&sp_p_fail_flags, 1); 3852 goto error; 3853 } 3854 if (first->pvo_pte.prot != pvo->pvo_pte.prot) { 3855 CTR5(KTR_PMAP, "%s: PVO protections don't match: " 3856 "pmap=%p, va=%#jx, pvo_prot=%#x, exp_prot=%#x", 3857 __func__, pmap, (uintmax_t)va, 3858 pvo->pvo_pte.prot, first->pvo_pte.prot); 3859 atomic_add_long(&sp_p_fail_prot, 1); 3860 goto error; 3861 } 3862 if ((first->pvo_pte.pa & LPTE_WIMG) != 3863 (pvo->pvo_pte.pa & LPTE_WIMG)) { 3864 CTR5(KTR_PMAP, "%s: WIMG bits don't match: " 3865 "pmap=%p, va=%#jx, pvo_wimg=%#jx, exp_wimg=%#jx", 3866 __func__, pmap, (uintmax_t)va, 3867 (uintmax_t)(pvo->pvo_pte.pa & LPTE_WIMG), 3868 (uintmax_t)(first->pvo_pte.pa & LPTE_WIMG)); 3869 atomic_add_long(&sp_p_fail_wimg, 1); 3870 goto error; 3871 } 3872 3873 pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo); 3874 } 3875 3876 /* All OK, promote. */ 3877 3878 /* 3879 * Handle superpage REF/CHG bits. If REF or CHG is set in 3880 * any page, then it must be set in the superpage. 3881 * 3882 * Instead of querying each page, we take advantage of two facts: 3883 * 1- If a page is being promoted, it was referenced. 3884 * 2- If promoted pages are writable, they were modified. 3885 */ 3886 sp_refchg = LPTE_REF | 3887 ((first->pvo_pte.prot & VM_PROT_WRITE) != 0 ? LPTE_CHG : 0); 3888 3889 /* Promote pages */ 3890 3891 for (pvo = first, va_end = PVO_VADDR(pvo) + HPT_SP_SIZE; 3892 pvo != NULL && PVO_VADDR(pvo) < va_end; 3893 pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) { 3894 pvo->pvo_pte.pa &= ADDR_POFF | ~HPT_SP_MASK; 3895 pvo->pvo_pte.pa |= LPTE_LP_4K_16M; 3896 pvo->pvo_vaddr |= PVO_LARGE; 3897 } 3898 moea64_pte_replace_sp(first); 3899 3900 /* Send REF/CHG bits to VM */ 3901 moea64_sp_refchg_process(first, m, sp_refchg, first->pvo_pte.prot); 3902 3903 /* Use first page to cache REF/CHG bits */ 3904 atomic_set_32(&m->md.mdpg_attrs, sp_refchg | MDPG_ATTR_SP); 3905 3906 PMAP_UNLOCK(pmap); 3907 3908 atomic_add_long(&sp_mappings, 1); 3909 atomic_add_long(&sp_promotions, 1); 3910 CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p", 3911 __func__, (uintmax_t)sva, pmap); 3912 return; 3913 3914 error: 3915 atomic_add_long(&sp_p_failures, 1); 3916 PMAP_UNLOCK(pmap); 3917 } 3918 3919 static void 3920 moea64_sp_demote_aligned(struct pvo_entry *sp) 3921 { 3922 struct pvo_entry *pvo; 3923 vm_offset_t va, va_end; 3924 vm_paddr_t pa; 3925 vm_page_t m; 3926 pmap_t pmap __diagused; 3927 int64_t refchg; 3928 3929 CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp)); 3930 3931 pmap = sp->pvo_pmap; 3932 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 3933 3934 pvo = sp; 3935 3936 /* Demote pages */ 3937 3938 va = PVO_VADDR(pvo); 3939 pa = PVO_PADDR(pvo); 3940 m = PHYS_TO_VM_PAGE(pa); 3941 3942 for (pvo = sp, va_end = va + HPT_SP_SIZE; 3943 pvo != NULL && PVO_VADDR(pvo) < va_end; 3944 pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo), 3945 va += PAGE_SIZE, pa += PAGE_SIZE) { 3946 KASSERT(pvo && PVO_VADDR(pvo) == va, 3947 ("%s: missing PVO for va %#jx", __func__, (uintmax_t)va)); 3948 3949 pvo->pvo_vaddr &= ~PVO_LARGE; 3950 pvo->pvo_pte.pa &= ~LPTE_RPGN; 3951 pvo->pvo_pte.pa |= pa; 3952 3953 } 3954 refchg = moea64_pte_replace_sp(sp); 3955 3956 /* 3957 * Clear SP flag 3958 * 3959 * XXX It is possible that another pmap has this page mapped as 3960 * part of a superpage, but as the SP flag is used only for 3961 * caching SP REF/CHG bits, that will be queried if not set 3962 * in cache, it should be ok to clear it here. 3963 */ 3964 atomic_clear_32(&m->md.mdpg_attrs, MDPG_ATTR_SP); 3965 3966 /* 3967 * Handle superpage REF/CHG bits. A bit set in the superpage 3968 * means all pages should consider it set. 3969 */ 3970 moea64_sp_refchg_process(sp, m, refchg, sp->pvo_pte.prot); 3971 3972 atomic_add_long(&sp_demotions, 1); 3973 CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p", 3974 __func__, (uintmax_t)PVO_VADDR(sp), pmap); 3975 } 3976 3977 static void 3978 moea64_sp_demote(struct pvo_entry *pvo) 3979 { 3980 PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); 3981 3982 if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) { 3983 pvo = moea64_pvo_find_va(pvo->pvo_pmap, 3984 PVO_VADDR(pvo) & ~HPT_SP_MASK); 3985 KASSERT(pvo != NULL, ("%s: missing PVO for va %#jx", 3986 __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK))); 3987 } 3988 moea64_sp_demote_aligned(pvo); 3989 } 3990 3991 static struct pvo_entry * 3992 moea64_sp_unwire(struct pvo_entry *sp) 3993 { 3994 struct pvo_entry *pvo, *prev; 3995 vm_offset_t eva; 3996 pmap_t pm; 3997 int64_t ret, refchg; 3998 3999 CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp)); 4000 4001 pm = sp->pvo_pmap; 4002 PMAP_LOCK_ASSERT(pm, MA_OWNED); 4003 4004 eva = PVO_VADDR(sp) + HPT_SP_SIZE; 4005 refchg = 0; 4006 for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; 4007 prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) { 4008 if ((pvo->pvo_vaddr & PVO_WIRED) == 0) 4009 panic("%s: pvo %p is missing PVO_WIRED", 4010 __func__, pvo); 4011 pvo->pvo_vaddr &= ~PVO_WIRED; 4012 4013 ret = moea64_pte_replace(pvo, 0 /* No invalidation */); 4014 if (ret < 0) 4015 refchg |= LPTE_CHG; 4016 else 4017 refchg |= ret; 4018 4019 pm->pm_stats.wired_count--; 4020 } 4021 4022 /* Send REF/CHG bits to VM */ 4023 moea64_sp_refchg_process(sp, PHYS_TO_VM_PAGE(PVO_PADDR(sp)), 4024 refchg, sp->pvo_pte.prot); 4025 4026 return (prev); 4027 } 4028 4029 static struct pvo_entry * 4030 moea64_sp_protect(struct pvo_entry *sp, vm_prot_t prot) 4031 { 4032 struct pvo_entry *pvo, *prev; 4033 vm_offset_t eva; 4034 pmap_t pm; 4035 vm_page_t m, m_end; 4036 int64_t ret, refchg; 4037 vm_prot_t oldprot; 4038 4039 CTR3(KTR_PMAP, "%s: va=%#jx, prot=%x", 4040 __func__, (uintmax_t)PVO_VADDR(sp), prot); 4041 4042 pm = sp->pvo_pmap; 4043 PMAP_LOCK_ASSERT(pm, MA_OWNED); 4044 4045 oldprot = sp->pvo_pte.prot; 4046 m = PHYS_TO_VM_PAGE(PVO_PADDR(sp)); 4047 KASSERT(m != NULL, ("%s: missing vm page for pa %#jx", 4048 __func__, (uintmax_t)PVO_PADDR(sp))); 4049 eva = PVO_VADDR(sp) + HPT_SP_SIZE; 4050 refchg = 0; 4051 4052 for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; 4053 prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) { 4054 pvo->pvo_pte.prot = prot; 4055 /* 4056 * If the PVO is in the page table, update mapping 4057 */ 4058 ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE); 4059 if (ret < 0) 4060 refchg |= LPTE_CHG; 4061 else 4062 refchg |= ret; 4063 } 4064 4065 /* Send REF/CHG bits to VM */ 4066 moea64_sp_refchg_process(sp, m, refchg, oldprot); 4067 4068 /* Handle pages that became executable */ 4069 if ((m->a.flags & PGA_EXECUTABLE) == 0 && 4070 (sp->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { 4071 if ((m->oflags & VPO_UNMANAGED) == 0) 4072 for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++) 4073 vm_page_aflag_set(m, PGA_EXECUTABLE); 4074 moea64_syncicache(pm, PVO_VADDR(sp), PVO_PADDR(sp), 4075 HPT_SP_SIZE); 4076 } 4077 4078 return (prev); 4079 } 4080 4081 static struct pvo_entry * 4082 moea64_sp_remove(struct pvo_entry *sp, struct pvo_dlist *tofree) 4083 { 4084 struct pvo_entry *pvo, *tpvo; 4085 vm_offset_t eva; 4086 pmap_t pm __diagused; 4087 4088 CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp)); 4089 4090 pm = sp->pvo_pmap; 4091 PMAP_LOCK_ASSERT(pm, MA_OWNED); 4092 4093 eva = PVO_VADDR(sp) + HPT_SP_SIZE; 4094 for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { 4095 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); 4096 4097 /* 4098 * For locking reasons, remove this from the page table and 4099 * pmap, but save delinking from the vm_page for a second 4100 * pass 4101 */ 4102 moea64_pvo_remove_from_pmap(pvo); 4103 SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink); 4104 } 4105 4106 /* 4107 * Clear SP bit 4108 * 4109 * XXX See comment in moea64_sp_demote_aligned() for why it's 4110 * ok to always clear the SP bit on remove/demote. 4111 */ 4112 atomic_clear_32(&PHYS_TO_VM_PAGE(PVO_PADDR(sp))->md.mdpg_attrs, 4113 MDPG_ATTR_SP); 4114 4115 return (tpvo); 4116 } 4117 4118 static int64_t 4119 moea64_sp_query_locked(struct pvo_entry *pvo, uint64_t ptebit) 4120 { 4121 int64_t refchg, ret; 4122 vm_offset_t eva; 4123 vm_page_t m; 4124 pmap_t pmap; 4125 struct pvo_entry *sp; 4126 4127 pmap = pvo->pvo_pmap; 4128 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 4129 4130 /* Get first SP PVO */ 4131 if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) { 4132 sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK); 4133 KASSERT(sp != NULL, ("%s: missing PVO for va %#jx", 4134 __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK))); 4135 } else 4136 sp = pvo; 4137 eva = PVO_VADDR(sp) + HPT_SP_SIZE; 4138 4139 refchg = 0; 4140 for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; 4141 pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) { 4142 ret = moea64_pte_synch(pvo); 4143 if (ret > 0) { 4144 refchg |= ret & (LPTE_CHG | LPTE_REF); 4145 if ((refchg & ptebit) != 0) 4146 break; 4147 } 4148 } 4149 4150 /* Save results */ 4151 if (refchg != 0) { 4152 m = PHYS_TO_VM_PAGE(PVO_PADDR(sp)); 4153 atomic_set_32(&m->md.mdpg_attrs, refchg | MDPG_ATTR_SP); 4154 } 4155 4156 return (refchg); 4157 } 4158 4159 static int64_t 4160 moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit) 4161 { 4162 int64_t refchg; 4163 pmap_t pmap; 4164 4165 pmap = pvo->pvo_pmap; 4166 PMAP_LOCK(pmap); 4167 4168 /* 4169 * Check if SP was demoted/removed before pmap lock was acquired. 4170 */ 4171 if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) { 4172 CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx", 4173 __func__, (uintmax_t)PVO_PADDR(pvo)); 4174 PMAP_UNLOCK(pmap); 4175 return (-1); 4176 } 4177 4178 refchg = moea64_sp_query_locked(pvo, ptebit); 4179 PMAP_UNLOCK(pmap); 4180 4181 CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx", 4182 __func__, (uintmax_t)PVO_VADDR(pvo), 4183 (uintmax_t)PVO_PADDR(pvo), (uintmax_t)refchg); 4184 4185 return (refchg); 4186 } 4187 4188 static int64_t 4189 moea64_sp_pvo_clear(struct pvo_entry *pvo, uint64_t ptebit) 4190 { 4191 int64_t refchg, ret; 4192 pmap_t pmap; 4193 struct pvo_entry *sp; 4194 vm_offset_t eva; 4195 vm_page_t m; 4196 4197 pmap = pvo->pvo_pmap; 4198 PMAP_LOCK(pmap); 4199 4200 /* 4201 * Check if SP was demoted/removed before pmap lock was acquired. 4202 */ 4203 if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) { 4204 CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx", 4205 __func__, (uintmax_t)PVO_PADDR(pvo)); 4206 PMAP_UNLOCK(pmap); 4207 return (-1); 4208 } 4209 4210 /* Get first SP PVO */ 4211 if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) { 4212 sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK); 4213 KASSERT(sp != NULL, ("%s: missing PVO for va %#jx", 4214 __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK))); 4215 } else 4216 sp = pvo; 4217 eva = PVO_VADDR(sp) + HPT_SP_SIZE; 4218 4219 refchg = 0; 4220 for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; 4221 pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) { 4222 ret = moea64_pte_clear(pvo, ptebit); 4223 if (ret > 0) 4224 refchg |= ret & (LPTE_CHG | LPTE_REF); 4225 } 4226 4227 m = PHYS_TO_VM_PAGE(PVO_PADDR(sp)); 4228 atomic_clear_32(&m->md.mdpg_attrs, ptebit); 4229 PMAP_UNLOCK(pmap); 4230 4231 CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx", 4232 __func__, (uintmax_t)PVO_VADDR(sp), 4233 (uintmax_t)PVO_PADDR(sp), (uintmax_t)refchg); 4234 4235 return (refchg); 4236 } 4237 4238 static int64_t 4239 moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m, uint64_t ptebit) 4240 { 4241 int64_t count, ret; 4242 pmap_t pmap; 4243 4244 count = 0; 4245 pmap = pvo->pvo_pmap; 4246 4247 /* 4248 * Since this reference bit is shared by 4096 4KB pages, it 4249 * should not be cleared every time it is tested. Apply a 4250 * simple "hash" function on the physical page number, the 4251 * virtual superpage number, and the pmap address to select 4252 * one 4KB page out of the 4096 on which testing the 4253 * reference bit will result in clearing that reference bit. 4254 * This function is designed to avoid the selection of the 4255 * same 4KB page for every 16MB page mapping. 4256 * 4257 * Always leave the reference bit of a wired mapping set, as 4258 * the current state of its reference bit won't affect page 4259 * replacement. 4260 */ 4261 if (ptebit == LPTE_REF && (((VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) ^ 4262 (PVO_VADDR(pvo) >> HPT_SP_SHIFT) ^ (uintptr_t)pmap) & 4263 (HPT_SP_PAGES - 1)) == 0 && (pvo->pvo_vaddr & PVO_WIRED) == 0) { 4264 if ((ret = moea64_sp_pvo_clear(pvo, ptebit)) == -1) 4265 return (-1); 4266 4267 if ((ret & ptebit) != 0) 4268 count++; 4269 4270 /* 4271 * If this page was not selected by the hash function, then assume 4272 * its REF bit was set. 4273 */ 4274 } else if (ptebit == LPTE_REF) { 4275 count++; 4276 4277 /* 4278 * To clear the CHG bit of a single SP page, first it must be demoted. 4279 * But if no CHG bit is set, no bit clear and thus no SP demotion is 4280 * needed. 4281 */ 4282 } else { 4283 CTR4(KTR_PMAP, "%s: ptebit=%#jx, va=%#jx, pa=%#jx", 4284 __func__, (uintmax_t)ptebit, (uintmax_t)PVO_VADDR(pvo), 4285 (uintmax_t)PVO_PADDR(pvo)); 4286 4287 PMAP_LOCK(pmap); 4288 4289 /* 4290 * Make sure SP wasn't demoted/removed before pmap lock 4291 * was acquired. 4292 */ 4293 if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) { 4294 CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx", 4295 __func__, (uintmax_t)PVO_PADDR(pvo)); 4296 PMAP_UNLOCK(pmap); 4297 return (-1); 4298 } 4299 4300 ret = moea64_sp_query_locked(pvo, ptebit); 4301 if ((ret & ptebit) != 0) 4302 count++; 4303 else { 4304 PMAP_UNLOCK(pmap); 4305 return (0); 4306 } 4307 4308 moea64_sp_demote(pvo); 4309 moea64_pte_clear(pvo, ptebit); 4310 4311 /* 4312 * Write protect the mapping to a single page so that a 4313 * subsequent write access may repromote. 4314 */ 4315 if ((pvo->pvo_vaddr & PVO_WIRED) == 0) 4316 moea64_pvo_protect(pmap, pvo, 4317 pvo->pvo_pte.prot & ~VM_PROT_WRITE); 4318 4319 PMAP_UNLOCK(pmap); 4320 } 4321 4322 return (count); 4323 } 4324