xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision 5bf5ca772c6de2d53344a78cf461447cc322ccea)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008-2015 Nathan Whitehorn
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * Manages physical address maps.
34  *
35  * Since the information managed by this module is also stored by the
36  * logical address mapping module, this module may throw away valid virtual
37  * to physical mappings at almost any time.  However, invalidations of
38  * mappings must be done as requested.
39  *
40  * In order to cope with hardware architectures which make virtual to
41  * physical map invalidates expensive, this module may delay invalidate
42  * reduced protection operations until such time as they are actually
43  * necessary.  This module is given full information as to which processors
44  * are currently using which maps, and to when physical maps must be made
45  * correct.
46  */
47 
48 #include "opt_compat.h"
49 #include "opt_kstack_pages.h"
50 
51 #include <sys/param.h>
52 #include <sys/kernel.h>
53 #include <sys/conf.h>
54 #include <sys/queue.h>
55 #include <sys/cpuset.h>
56 #include <sys/kerneldump.h>
57 #include <sys/ktr.h>
58 #include <sys/lock.h>
59 #include <sys/msgbuf.h>
60 #include <sys/malloc.h>
61 #include <sys/mutex.h>
62 #include <sys/proc.h>
63 #include <sys/rwlock.h>
64 #include <sys/sched.h>
65 #include <sys/sysctl.h>
66 #include <sys/systm.h>
67 #include <sys/vmmeter.h>
68 #include <sys/smp.h>
69 
70 #include <sys/kdb.h>
71 
72 #include <dev/ofw/openfirm.h>
73 
74 #include <vm/vm.h>
75 #include <vm/vm_param.h>
76 #include <vm/vm_kern.h>
77 #include <vm/vm_page.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_extern.h>
81 #include <vm/vm_pageout.h>
82 #include <vm/uma.h>
83 
84 #include <machine/_inttypes.h>
85 #include <machine/cpu.h>
86 #include <machine/platform.h>
87 #include <machine/frame.h>
88 #include <machine/md_var.h>
89 #include <machine/psl.h>
90 #include <machine/bat.h>
91 #include <machine/hid.h>
92 #include <machine/pte.h>
93 #include <machine/sr.h>
94 #include <machine/trap.h>
95 #include <machine/mmuvar.h>
96 
97 #include "mmu_oea64.h"
98 #include "mmu_if.h"
99 #include "moea64_if.h"
100 
101 void moea64_release_vsid(uint64_t vsid);
102 uintptr_t moea64_get_unique_vsid(void);
103 
104 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
105 #define ENABLE_TRANS(msr)	mtmsr(msr)
106 
107 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
108 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
109 #define	VSID_HASH_MASK		0x0000007fffffffffULL
110 
111 /*
112  * Locking semantics:
113  *
114  * There are two locks of interest: the page locks and the pmap locks, which
115  * protect their individual PVO lists and are locked in that order. The contents
116  * of all PVO entries are protected by the locks of their respective pmaps.
117  * The pmap of any PVO is guaranteed not to change so long as the PVO is linked
118  * into any list.
119  *
120  */
121 
122 #define PV_LOCK_COUNT	PA_LOCK_COUNT*3
123 static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
124 
125 #define PV_LOCKPTR(pa)	((struct mtx *)(&pv_lock[pa_index(pa) % PV_LOCK_COUNT]))
126 #define PV_LOCK(pa)		mtx_lock(PV_LOCKPTR(pa))
127 #define PV_UNLOCK(pa)		mtx_unlock(PV_LOCKPTR(pa))
128 #define PV_LOCKASSERT(pa) 	mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
129 #define PV_PAGE_LOCK(m)		PV_LOCK(VM_PAGE_TO_PHYS(m))
130 #define PV_PAGE_UNLOCK(m)	PV_UNLOCK(VM_PAGE_TO_PHYS(m))
131 #define PV_PAGE_LOCKASSERT(m)	PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
132 
133 struct ofw_map {
134 	cell_t	om_va;
135 	cell_t	om_len;
136 	uint64_t om_pa;
137 	cell_t	om_mode;
138 };
139 
140 extern unsigned char _etext[];
141 extern unsigned char _end[];
142 
143 extern void *slbtrap, *slbtrapend;
144 
145 /*
146  * Map of physical memory regions.
147  */
148 static struct	mem_region *regions;
149 static struct	mem_region *pregions;
150 static u_int	phys_avail_count;
151 static int	regions_sz, pregions_sz;
152 
153 extern void bs_remap_earlyboot(void);
154 
155 /*
156  * Lock for the SLB tables.
157  */
158 struct mtx	moea64_slb_mutex;
159 
160 /*
161  * PTEG data.
162  */
163 u_int		moea64_pteg_count;
164 u_int		moea64_pteg_mask;
165 
166 /*
167  * PVO data.
168  */
169 
170 uma_zone_t	moea64_pvo_zone; /* zone for pvo entries */
171 
172 static struct	pvo_entry *moea64_bpvo_pool;
173 static int	moea64_bpvo_pool_index = 0;
174 static int	moea64_bpvo_pool_size = 327680;
175 TUNABLE_INT("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
176 SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
177     &moea64_bpvo_pool_index, 0, "");
178 
179 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
180 #ifdef __powerpc64__
181 #define	NVSIDS		(NPMAPS * 16)
182 #define VSID_HASHMASK	0xffffffffUL
183 #else
184 #define NVSIDS		NPMAPS
185 #define VSID_HASHMASK	0xfffffUL
186 #endif
187 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
188 
189 static boolean_t moea64_initialized = FALSE;
190 
191 /*
192  * Statistics.
193  */
194 u_int	moea64_pte_valid = 0;
195 u_int	moea64_pte_overflow = 0;
196 u_int	moea64_pvo_entries = 0;
197 u_int	moea64_pvo_enter_calls = 0;
198 u_int	moea64_pvo_remove_calls = 0;
199 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
200     &moea64_pte_valid, 0, "");
201 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
202     &moea64_pte_overflow, 0, "");
203 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
204     &moea64_pvo_entries, 0, "");
205 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
206     &moea64_pvo_enter_calls, 0, "");
207 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
208     &moea64_pvo_remove_calls, 0, "");
209 
210 vm_offset_t	moea64_scratchpage_va[2];
211 struct pvo_entry *moea64_scratchpage_pvo[2];
212 struct	mtx	moea64_scratchpage_mtx;
213 
214 uint64_t 	moea64_large_page_mask = 0;
215 uint64_t	moea64_large_page_size = 0;
216 int		moea64_large_page_shift = 0;
217 
218 /*
219  * PVO calls.
220  */
221 static int	moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo,
222 		    struct pvo_head *pvo_head);
223 static void	moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo);
224 static void	moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo);
225 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
226 
227 /*
228  * Utility routines.
229  */
230 static boolean_t	moea64_query_bit(mmu_t, vm_page_t, uint64_t);
231 static u_int		moea64_clear_bit(mmu_t, vm_page_t, uint64_t);
232 static void		moea64_kremove(mmu_t, vm_offset_t);
233 static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
234 			    vm_paddr_t pa, vm_size_t sz);
235 static void		moea64_pmap_init_qpages(void);
236 
237 /*
238  * Kernel MMU interface
239  */
240 void moea64_clear_modify(mmu_t, vm_page_t);
241 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
242 void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
243     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
244 int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
245     u_int flags, int8_t psind);
246 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
247     vm_prot_t);
248 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
249 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
250 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
251 void moea64_init(mmu_t);
252 boolean_t moea64_is_modified(mmu_t, vm_page_t);
253 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
254 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
255 int moea64_ts_referenced(mmu_t, vm_page_t);
256 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
257 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
258 void moea64_page_init(mmu_t, vm_page_t);
259 int moea64_page_wired_mappings(mmu_t, vm_page_t);
260 void moea64_pinit(mmu_t, pmap_t);
261 void moea64_pinit0(mmu_t, pmap_t);
262 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
263 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
264 void moea64_qremove(mmu_t, vm_offset_t, int);
265 void moea64_release(mmu_t, pmap_t);
266 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
267 void moea64_remove_pages(mmu_t, pmap_t);
268 void moea64_remove_all(mmu_t, vm_page_t);
269 void moea64_remove_write(mmu_t, vm_page_t);
270 void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
271 void moea64_zero_page(mmu_t, vm_page_t);
272 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
273 void moea64_activate(mmu_t, struct thread *);
274 void moea64_deactivate(mmu_t, struct thread *);
275 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
276 void *moea64_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
277 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
278 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
279 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
280 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t ma);
281 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
282 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
283 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
284 void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz,
285     void **va);
286 void moea64_scan_init(mmu_t mmu);
287 vm_offset_t moea64_quick_enter_page(mmu_t mmu, vm_page_t m);
288 void moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr);
289 static int moea64_map_user_ptr(mmu_t mmu, pmap_t pm,
290     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
291 static int moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr,
292     int *is_user, vm_offset_t *decoded_addr);
293 
294 
295 static mmu_method_t moea64_methods[] = {
296 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
297 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
298 	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
299 	MMUMETHOD(mmu_enter,		moea64_enter),
300 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
301 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
302 	MMUMETHOD(mmu_extract,		moea64_extract),
303 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
304 	MMUMETHOD(mmu_init,		moea64_init),
305 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
306 	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
307 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
308 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
309 	MMUMETHOD(mmu_map,     		moea64_map),
310 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
311 	MMUMETHOD(mmu_page_init,	moea64_page_init),
312 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
313 	MMUMETHOD(mmu_pinit,		moea64_pinit),
314 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
315 	MMUMETHOD(mmu_protect,		moea64_protect),
316 	MMUMETHOD(mmu_qenter,		moea64_qenter),
317 	MMUMETHOD(mmu_qremove,		moea64_qremove),
318 	MMUMETHOD(mmu_release,		moea64_release),
319 	MMUMETHOD(mmu_remove,		moea64_remove),
320 	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
321 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
322 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
323 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
324 	MMUMETHOD(mmu_unwire,		moea64_unwire),
325 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
326 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
327 	MMUMETHOD(mmu_activate,		moea64_activate),
328 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
329 	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
330 	MMUMETHOD(mmu_quick_enter_page, moea64_quick_enter_page),
331 	MMUMETHOD(mmu_quick_remove_page, moea64_quick_remove_page),
332 
333 	/* Internal interfaces */
334 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
335 	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
336 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
337 	MMUMETHOD(mmu_kextract,		moea64_kextract),
338 	MMUMETHOD(mmu_kenter,		moea64_kenter),
339 	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
340 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
341 	MMUMETHOD(mmu_scan_init,	moea64_scan_init),
342 	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
343 	MMUMETHOD(mmu_map_user_ptr,	moea64_map_user_ptr),
344 	MMUMETHOD(mmu_decode_kernel_ptr, moea64_decode_kernel_ptr),
345 
346 	{ 0, 0 }
347 };
348 
349 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
350 
351 static struct pvo_head *
352 vm_page_to_pvoh(vm_page_t m)
353 {
354 
355 	mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
356 	return (&m->md.mdpg_pvoh);
357 }
358 
359 static struct pvo_entry *
360 alloc_pvo_entry(int bootstrap)
361 {
362 	struct pvo_entry *pvo;
363 
364 	if (!moea64_initialized || bootstrap) {
365 		if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
366 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
367 			      moea64_bpvo_pool_index, moea64_bpvo_pool_size,
368 			      moea64_bpvo_pool_size * sizeof(struct pvo_entry));
369 		}
370 		pvo = &moea64_bpvo_pool[
371 		    atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
372 		bzero(pvo, sizeof(*pvo));
373 		pvo->pvo_vaddr = PVO_BOOTSTRAP;
374 	} else {
375 		pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT);
376 		bzero(pvo, sizeof(*pvo));
377 	}
378 
379 	return (pvo);
380 }
381 
382 
383 static void
384 init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
385 {
386 	uint64_t vsid;
387 	uint64_t hash;
388 	int shift;
389 
390 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
391 
392 	pvo->pvo_pmap = pmap;
393 	va &= ~ADDR_POFF;
394 	pvo->pvo_vaddr |= va;
395 	vsid = va_to_vsid(pmap, va);
396 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
397 	    | (vsid << 16);
398 
399 	shift = (pvo->pvo_vaddr & PVO_LARGE) ? moea64_large_page_shift :
400 	    ADDR_PIDX_SHFT;
401 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
402 	pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
403 }
404 
405 static void
406 free_pvo_entry(struct pvo_entry *pvo)
407 {
408 
409 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
410 		uma_zfree(moea64_pvo_zone, pvo);
411 }
412 
413 void
414 moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
415 {
416 
417 	lpte->pte_hi = (pvo->pvo_vpn >> (ADDR_API_SHFT64 - ADDR_PIDX_SHFT)) &
418 	    LPTE_AVPN_MASK;
419 	lpte->pte_hi |= LPTE_VALID;
420 
421 	if (pvo->pvo_vaddr & PVO_LARGE)
422 		lpte->pte_hi |= LPTE_BIG;
423 	if (pvo->pvo_vaddr & PVO_WIRED)
424 		lpte->pte_hi |= LPTE_WIRED;
425 	if (pvo->pvo_vaddr & PVO_HID)
426 		lpte->pte_hi |= LPTE_HID;
427 
428 	lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
429 	if (pvo->pvo_pte.prot & VM_PROT_WRITE)
430 		lpte->pte_lo |= LPTE_BW;
431 	else
432 		lpte->pte_lo |= LPTE_BR;
433 
434 	if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
435 		lpte->pte_lo |= LPTE_NOEXEC;
436 }
437 
438 static __inline uint64_t
439 moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
440 {
441 	uint64_t pte_lo;
442 	int i;
443 
444 	if (ma != VM_MEMATTR_DEFAULT) {
445 		switch (ma) {
446 		case VM_MEMATTR_UNCACHEABLE:
447 			return (LPTE_I | LPTE_G);
448 		case VM_MEMATTR_CACHEABLE:
449 			return (LPTE_M);
450 		case VM_MEMATTR_WRITE_COMBINING:
451 		case VM_MEMATTR_WRITE_BACK:
452 		case VM_MEMATTR_PREFETCHABLE:
453 			return (LPTE_I);
454 		case VM_MEMATTR_WRITE_THROUGH:
455 			return (LPTE_W | LPTE_M);
456 		}
457 	}
458 
459 	/*
460 	 * Assume the page is cache inhibited and access is guarded unless
461 	 * it's in our available memory array.
462 	 */
463 	pte_lo = LPTE_I | LPTE_G;
464 	for (i = 0; i < pregions_sz; i++) {
465 		if ((pa >= pregions[i].mr_start) &&
466 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
467 			pte_lo &= ~(LPTE_I | LPTE_G);
468 			pte_lo |= LPTE_M;
469 			break;
470 		}
471 	}
472 
473 	return pte_lo;
474 }
475 
476 /*
477  * Quick sort callout for comparing memory regions.
478  */
479 static int	om_cmp(const void *a, const void *b);
480 
481 static int
482 om_cmp(const void *a, const void *b)
483 {
484 	const struct	ofw_map *mapa;
485 	const struct	ofw_map *mapb;
486 
487 	mapa = a;
488 	mapb = b;
489 	if (mapa->om_pa < mapb->om_pa)
490 		return (-1);
491 	else if (mapa->om_pa > mapb->om_pa)
492 		return (1);
493 	else
494 		return (0);
495 }
496 
497 static void
498 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
499 {
500 	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
501 	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
502 	struct pvo_entry *pvo;
503 	register_t	msr;
504 	vm_offset_t	off;
505 	vm_paddr_t	pa_base;
506 	int		i, j;
507 
508 	bzero(translations, sz);
509 	OF_getencprop(OF_finddevice("/"), "#address-cells", &acells,
510 	    sizeof(acells));
511 	if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1)
512 		panic("moea64_bootstrap: can't get ofw translations");
513 
514 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
515 	sz /= sizeof(cell_t);
516 	for (i = 0, j = 0; i < sz; j++) {
517 		translations[j].om_va = trans_cells[i++];
518 		translations[j].om_len = trans_cells[i++];
519 		translations[j].om_pa = trans_cells[i++];
520 		if (acells == 2) {
521 			translations[j].om_pa <<= 32;
522 			translations[j].om_pa |= trans_cells[i++];
523 		}
524 		translations[j].om_mode = trans_cells[i++];
525 	}
526 	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
527 	    i, sz));
528 
529 	sz = j;
530 	qsort(translations, sz, sizeof (*translations), om_cmp);
531 
532 	for (i = 0; i < sz; i++) {
533 		pa_base = translations[i].om_pa;
534 	      #ifndef __powerpc64__
535 		if ((translations[i].om_pa >> 32) != 0)
536 			panic("OFW translations above 32-bit boundary!");
537 	      #endif
538 
539 		if (pa_base % PAGE_SIZE)
540 			panic("OFW translation not page-aligned (phys)!");
541 		if (translations[i].om_va % PAGE_SIZE)
542 			panic("OFW translation not page-aligned (virt)!");
543 
544 		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
545 		    pa_base, translations[i].om_va, translations[i].om_len);
546 
547 		/* Now enter the pages for this mapping */
548 
549 		DISABLE_TRANS(msr);
550 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
551 			/* If this address is direct-mapped, skip remapping */
552 			if (hw_direct_map &&
553 			    translations[i].om_va == PHYS_TO_DMAP(pa_base) &&
554 			    moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT) 			    == LPTE_M)
555 				continue;
556 
557 			PMAP_LOCK(kernel_pmap);
558 			pvo = moea64_pvo_find_va(kernel_pmap,
559 			    translations[i].om_va + off);
560 			PMAP_UNLOCK(kernel_pmap);
561 			if (pvo != NULL)
562 				continue;
563 
564 			moea64_kenter(mmup, translations[i].om_va + off,
565 			    pa_base + off);
566 		}
567 		ENABLE_TRANS(msr);
568 	}
569 }
570 
571 #ifdef __powerpc64__
572 static void
573 moea64_probe_large_page(void)
574 {
575 	uint16_t pvr = mfpvr() >> 16;
576 
577 	switch (pvr) {
578 	case IBM970:
579 	case IBM970FX:
580 	case IBM970MP:
581 		powerpc_sync(); isync();
582 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
583 		powerpc_sync(); isync();
584 
585 		/* FALLTHROUGH */
586 	default:
587 		if (moea64_large_page_size == 0) {
588 			moea64_large_page_size = 0x1000000; /* 16 MB */
589 			moea64_large_page_shift = 24;
590 		}
591 	}
592 
593 	moea64_large_page_mask = moea64_large_page_size - 1;
594 }
595 
596 static void
597 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
598 {
599 	struct slb *cache;
600 	struct slb entry;
601 	uint64_t esid, slbe;
602 	uint64_t i;
603 
604 	cache = PCPU_GET(aim.slb);
605 	esid = va >> ADDR_SR_SHFT;
606 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
607 
608 	for (i = 0; i < 64; i++) {
609 		if (cache[i].slbe == (slbe | i))
610 			return;
611 	}
612 
613 	entry.slbe = slbe;
614 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
615 	if (large)
616 		entry.slbv |= SLBV_L;
617 
618 	slb_insert_kernel(entry.slbe, entry.slbv);
619 }
620 #endif
621 
622 static void
623 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
624     vm_offset_t kernelend)
625 {
626 	struct pvo_entry *pvo;
627 	register_t msr;
628 	vm_paddr_t pa;
629 	vm_offset_t size, off;
630 	uint64_t pte_lo;
631 	int i;
632 
633 	if (moea64_large_page_size == 0)
634 		hw_direct_map = 0;
635 
636 	DISABLE_TRANS(msr);
637 	if (hw_direct_map) {
638 		PMAP_LOCK(kernel_pmap);
639 		for (i = 0; i < pregions_sz; i++) {
640 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
641 		     pregions[i].mr_size; pa += moea64_large_page_size) {
642 			pte_lo = LPTE_M;
643 
644 			pvo = alloc_pvo_entry(1 /* bootstrap */);
645 			pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
646 			init_pvo_entry(pvo, kernel_pmap, PHYS_TO_DMAP(pa));
647 
648 			/*
649 			 * Set memory access as guarded if prefetch within
650 			 * the page could exit the available physmem area.
651 			 */
652 			if (pa & moea64_large_page_mask) {
653 				pa &= moea64_large_page_mask;
654 				pte_lo |= LPTE_G;
655 			}
656 			if (pa + moea64_large_page_size >
657 			    pregions[i].mr_start + pregions[i].mr_size)
658 				pte_lo |= LPTE_G;
659 
660 			pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
661 			    VM_PROT_EXECUTE;
662 			pvo->pvo_pte.pa = pa | pte_lo;
663 			moea64_pvo_enter(mmup, pvo, NULL);
664 		  }
665 		}
666 		PMAP_UNLOCK(kernel_pmap);
667 	} else {
668 		size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
669 		off = (vm_offset_t)(moea64_bpvo_pool);
670 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
671 		moea64_kenter(mmup, pa, pa);
672 
673 		/*
674 		 * Map certain important things, like ourselves.
675 		 *
676 		 * NOTE: We do not map the exception vector space. That code is
677 		 * used only in real mode, and leaving it unmapped allows us to
678 		 * catch NULL pointer deferences, instead of making NULL a valid
679 		 * address.
680 		 */
681 
682 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
683 		    pa += PAGE_SIZE)
684 			moea64_kenter(mmup, pa, pa);
685 	}
686 	ENABLE_TRANS(msr);
687 
688 	/*
689 	 * Allow user to override unmapped_buf_allowed for testing.
690 	 * XXXKIB Only direct map implementation was tested.
691 	 */
692 	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
693 	    &unmapped_buf_allowed))
694 		unmapped_buf_allowed = hw_direct_map;
695 }
696 
697 void
698 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
699 {
700 	int		i, j;
701 	vm_size_t	physsz, hwphyssz;
702 
703 #ifndef __powerpc64__
704 	/* We don't have a direct map since there is no BAT */
705 	hw_direct_map = 0;
706 
707 	/* Make sure battable is zero, since we have no BAT */
708 	for (i = 0; i < 16; i++) {
709 		battable[i].batu = 0;
710 		battable[i].batl = 0;
711 	}
712 #else
713 	moea64_probe_large_page();
714 
715 	/* Use a direct map if we have large page support */
716 	if (moea64_large_page_size > 0)
717 		hw_direct_map = 1;
718 	else
719 		hw_direct_map = 0;
720 
721 	/* Install trap handlers for SLBs */
722 	bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap);
723 	bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap);
724 	__syncicache((void *)EXC_DSE, 0x80);
725 	__syncicache((void *)EXC_ISE, 0x80);
726 #endif
727 
728 	/* Get physical memory regions from firmware */
729 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
730 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
731 
732 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
733 		panic("moea64_bootstrap: phys_avail too small");
734 
735 	phys_avail_count = 0;
736 	physsz = 0;
737 	hwphyssz = 0;
738 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
739 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
740 		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
741 		    regions[i].mr_start, regions[i].mr_start +
742 		    regions[i].mr_size, regions[i].mr_size);
743 		if (hwphyssz != 0 &&
744 		    (physsz + regions[i].mr_size) >= hwphyssz) {
745 			if (physsz < hwphyssz) {
746 				phys_avail[j] = regions[i].mr_start;
747 				phys_avail[j + 1] = regions[i].mr_start +
748 				    hwphyssz - physsz;
749 				physsz = hwphyssz;
750 				phys_avail_count++;
751 			}
752 			break;
753 		}
754 		phys_avail[j] = regions[i].mr_start;
755 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
756 		phys_avail_count++;
757 		physsz += regions[i].mr_size;
758 	}
759 
760 	/* Check for overlap with the kernel and exception vectors */
761 	for (j = 0; j < 2*phys_avail_count; j+=2) {
762 		if (phys_avail[j] < EXC_LAST)
763 			phys_avail[j] += EXC_LAST;
764 
765 		if (kernelstart >= phys_avail[j] &&
766 		    kernelstart < phys_avail[j+1]) {
767 			if (kernelend < phys_avail[j+1]) {
768 				phys_avail[2*phys_avail_count] =
769 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
770 				phys_avail[2*phys_avail_count + 1] =
771 				    phys_avail[j+1];
772 				phys_avail_count++;
773 			}
774 
775 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
776 		}
777 
778 		if (kernelend >= phys_avail[j] &&
779 		    kernelend < phys_avail[j+1]) {
780 			if (kernelstart > phys_avail[j]) {
781 				phys_avail[2*phys_avail_count] = phys_avail[j];
782 				phys_avail[2*phys_avail_count + 1] =
783 				    kernelstart & ~PAGE_MASK;
784 				phys_avail_count++;
785 			}
786 
787 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
788 		}
789 	}
790 
791 	physmem = btoc(physsz);
792 
793 #ifdef PTEGCOUNT
794 	moea64_pteg_count = PTEGCOUNT;
795 #else
796 	moea64_pteg_count = 0x1000;
797 
798 	while (moea64_pteg_count < physmem)
799 		moea64_pteg_count <<= 1;
800 
801 	moea64_pteg_count >>= 1;
802 #endif /* PTEGCOUNT */
803 }
804 
805 void
806 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
807 {
808 	int		i;
809 
810 	/*
811 	 * Set PTEG mask
812 	 */
813 	moea64_pteg_mask = moea64_pteg_count - 1;
814 
815 	/*
816 	 * Initialize SLB table lock and page locks
817 	 */
818 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
819 	for (i = 0; i < PV_LOCK_COUNT; i++)
820 		mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
821 
822 	/*
823 	 * Initialise the bootstrap pvo pool.
824 	 */
825 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
826 		moea64_bpvo_pool_size*sizeof(struct pvo_entry), 0);
827 	moea64_bpvo_pool_index = 0;
828 
829 	/*
830 	 * Make sure kernel vsid is allocated as well as VSID 0.
831 	 */
832 	#ifndef __powerpc64__
833 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
834 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
835 	moea64_vsid_bitmap[0] |= 1;
836 	#endif
837 
838 	/*
839 	 * Initialize the kernel pmap (which is statically allocated).
840 	 */
841 	#ifdef __powerpc64__
842 	for (i = 0; i < 64; i++) {
843 		pcpup->pc_aim.slb[i].slbv = 0;
844 		pcpup->pc_aim.slb[i].slbe = 0;
845 	}
846 	#else
847 	for (i = 0; i < 16; i++)
848 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
849 	#endif
850 
851 	kernel_pmap->pmap_phys = kernel_pmap;
852 	CPU_FILL(&kernel_pmap->pm_active);
853 	RB_INIT(&kernel_pmap->pmap_pvo);
854 
855 	PMAP_LOCK_INIT(kernel_pmap);
856 
857 	/*
858 	 * Now map in all the other buffers we allocated earlier
859 	 */
860 
861 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
862 }
863 
864 void
865 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
866 {
867 	ihandle_t	mmui;
868 	phandle_t	chosen;
869 	phandle_t	mmu;
870 	ssize_t		sz;
871 	int		i;
872 	vm_offset_t	pa, va;
873 	void		*dpcpu;
874 
875 	/*
876 	 * Set up the Open Firmware pmap and add its mappings if not in real
877 	 * mode.
878 	 */
879 
880 	chosen = OF_finddevice("/chosen");
881 	if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) {
882 		mmu = OF_instance_to_package(mmui);
883 		if (mmu == -1 ||
884 		    (sz = OF_getproplen(mmu, "translations")) == -1)
885 			sz = 0;
886 		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
887 			panic("moea64_bootstrap: too many ofw translations");
888 
889 		if (sz > 0)
890 			moea64_add_ofw_mappings(mmup, mmu, sz);
891 	}
892 
893 	/*
894 	 * Calculate the last available physical address.
895 	 */
896 	Maxmem = 0;
897 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
898 		Maxmem = max(Maxmem, powerpc_btop(phys_avail[i + 1]));
899 
900 	/*
901 	 * Initialize MMU and remap early physical mappings
902 	 */
903 	MMU_CPU_BOOTSTRAP(mmup,0);
904 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
905 	pmap_bootstrapped++;
906 	bs_remap_earlyboot();
907 
908 	/*
909 	 * Set the start and end of kva.
910 	 */
911 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
912 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
913 
914 	/*
915 	 * Map the entire KVA range into the SLB. We must not fault there.
916 	 */
917 	#ifdef __powerpc64__
918 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
919 		moea64_bootstrap_slb_prefault(va, 0);
920 	#endif
921 
922 	/*
923 	 * Figure out how far we can extend virtual_end into segment 16
924 	 * without running into existing mappings. Segment 16 is guaranteed
925 	 * to contain neither RAM nor devices (at least on Apple hardware),
926 	 * but will generally contain some OFW mappings we should not
927 	 * step on.
928 	 */
929 
930 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
931 	PMAP_LOCK(kernel_pmap);
932 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
933 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
934 		virtual_end += PAGE_SIZE;
935 	PMAP_UNLOCK(kernel_pmap);
936 	#endif
937 
938 	/*
939 	 * Allocate a kernel stack with a guard page for thread0 and map it
940 	 * into the kernel page map.
941 	 */
942 	pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
943 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
944 	virtual_avail = va + kstack_pages * PAGE_SIZE;
945 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
946 	thread0.td_kstack = va;
947 	thread0.td_kstack_pages = kstack_pages;
948 	for (i = 0; i < kstack_pages; i++) {
949 		moea64_kenter(mmup, va, pa);
950 		pa += PAGE_SIZE;
951 		va += PAGE_SIZE;
952 	}
953 
954 	/*
955 	 * Allocate virtual address space for the message buffer.
956 	 */
957 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
958 	msgbufp = (struct msgbuf *)virtual_avail;
959 	va = virtual_avail;
960 	virtual_avail += round_page(msgbufsize);
961 	while (va < virtual_avail) {
962 		moea64_kenter(mmup, va, pa);
963 		pa += PAGE_SIZE;
964 		va += PAGE_SIZE;
965 	}
966 
967 	/*
968 	 * Allocate virtual address space for the dynamic percpu area.
969 	 */
970 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
971 	dpcpu = (void *)virtual_avail;
972 	va = virtual_avail;
973 	virtual_avail += DPCPU_SIZE;
974 	while (va < virtual_avail) {
975 		moea64_kenter(mmup, va, pa);
976 		pa += PAGE_SIZE;
977 		va += PAGE_SIZE;
978 	}
979 	dpcpu_init(dpcpu, curcpu);
980 
981 	/*
982 	 * Allocate some things for page zeroing. We put this directly
983 	 * in the page table and use MOEA64_PTE_REPLACE to avoid any
984 	 * of the PVO book-keeping or other parts of the VM system
985 	 * from even knowing that this hack exists.
986 	 */
987 
988 	if (!hw_direct_map) {
989 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
990 		    MTX_DEF);
991 		for (i = 0; i < 2; i++) {
992 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
993 			virtual_end -= PAGE_SIZE;
994 
995 			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
996 
997 			PMAP_LOCK(kernel_pmap);
998 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
999 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
1000 			PMAP_UNLOCK(kernel_pmap);
1001 		}
1002 	}
1003 }
1004 
1005 static void
1006 moea64_pmap_init_qpages(void)
1007 {
1008 	struct pcpu *pc;
1009 	int i;
1010 
1011 	if (hw_direct_map)
1012 		return;
1013 
1014 	CPU_FOREACH(i) {
1015 		pc = pcpu_find(i);
1016 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1017 		if (pc->pc_qmap_addr == 0)
1018 			panic("pmap_init_qpages: unable to allocate KVA");
1019 		PMAP_LOCK(kernel_pmap);
1020 		pc->pc_aim.qmap_pvo =
1021 		    moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr);
1022 		PMAP_UNLOCK(kernel_pmap);
1023 		mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF);
1024 	}
1025 }
1026 
1027 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL);
1028 
1029 /*
1030  * Activate a user pmap.  This mostly involves setting some non-CPU
1031  * state.
1032  */
1033 void
1034 moea64_activate(mmu_t mmu, struct thread *td)
1035 {
1036 	pmap_t	pm;
1037 
1038 	pm = &td->td_proc->p_vmspace->vm_pmap;
1039 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1040 
1041 	#ifdef __powerpc64__
1042 	PCPU_SET(aim.userslb, pm->pm_slb);
1043 	__asm __volatile("slbmte %0, %1; isync" ::
1044 	    "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
1045 	#else
1046 	PCPU_SET(curpmap, pm->pmap_phys);
1047 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1048 	#endif
1049 }
1050 
1051 void
1052 moea64_deactivate(mmu_t mmu, struct thread *td)
1053 {
1054 	pmap_t	pm;
1055 
1056 	__asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
1057 
1058 	pm = &td->td_proc->p_vmspace->vm_pmap;
1059 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1060 	#ifdef __powerpc64__
1061 	PCPU_SET(aim.userslb, NULL);
1062 	#else
1063 	PCPU_SET(curpmap, NULL);
1064 	#endif
1065 }
1066 
1067 void
1068 moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1069 {
1070 	struct	pvo_entry key, *pvo;
1071 	vm_page_t m;
1072 	int64_t	refchg;
1073 
1074 	key.pvo_vaddr = sva;
1075 	PMAP_LOCK(pm);
1076 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1077 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1078 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1079 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1080 			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1081 			    pvo);
1082 		pvo->pvo_vaddr &= ~PVO_WIRED;
1083 		refchg = MOEA64_PTE_REPLACE(mmu, pvo, 0 /* No invalidation */);
1084 		if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1085 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1086 			if (refchg < 0)
1087 				refchg = LPTE_CHG;
1088 			m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1089 
1090 			refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
1091 			if (refchg & LPTE_CHG)
1092 				vm_page_dirty(m);
1093 			if (refchg & LPTE_REF)
1094 				vm_page_aflag_set(m, PGA_REFERENCED);
1095 		}
1096 		pm->pm_stats.wired_count--;
1097 	}
1098 	PMAP_UNLOCK(pm);
1099 }
1100 
1101 /*
1102  * This goes through and sets the physical address of our
1103  * special scratch PTE to the PA we want to zero or copy. Because
1104  * of locking issues (this can get called in pvo_enter() by
1105  * the UMA allocator), we can't use most other utility functions here
1106  */
1107 
1108 static __inline
1109 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_paddr_t pa) {
1110 
1111 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1112 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1113 
1114 	moea64_scratchpage_pvo[which]->pvo_pte.pa =
1115 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1116 	MOEA64_PTE_REPLACE(mmup, moea64_scratchpage_pvo[which],
1117 	    MOEA64_PTE_INVALIDATE);
1118 	isync();
1119 }
1120 
1121 void
1122 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1123 {
1124 	vm_offset_t	dst;
1125 	vm_offset_t	src;
1126 
1127 	dst = VM_PAGE_TO_PHYS(mdst);
1128 	src = VM_PAGE_TO_PHYS(msrc);
1129 
1130 	if (hw_direct_map) {
1131 		bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst),
1132 		    PAGE_SIZE);
1133 	} else {
1134 		mtx_lock(&moea64_scratchpage_mtx);
1135 
1136 		moea64_set_scratchpage_pa(mmu, 0, src);
1137 		moea64_set_scratchpage_pa(mmu, 1, dst);
1138 
1139 		bcopy((void *)moea64_scratchpage_va[0],
1140 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1141 
1142 		mtx_unlock(&moea64_scratchpage_mtx);
1143 	}
1144 }
1145 
1146 static inline void
1147 moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1148     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1149 {
1150 	void *a_cp, *b_cp;
1151 	vm_offset_t a_pg_offset, b_pg_offset;
1152 	int cnt;
1153 
1154 	while (xfersize > 0) {
1155 		a_pg_offset = a_offset & PAGE_MASK;
1156 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1157 		a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1158 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
1159 		    a_pg_offset;
1160 		b_pg_offset = b_offset & PAGE_MASK;
1161 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1162 		b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1163 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
1164 		    b_pg_offset;
1165 		bcopy(a_cp, b_cp, cnt);
1166 		a_offset += cnt;
1167 		b_offset += cnt;
1168 		xfersize -= cnt;
1169 	}
1170 }
1171 
1172 static inline void
1173 moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1174     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1175 {
1176 	void *a_cp, *b_cp;
1177 	vm_offset_t a_pg_offset, b_pg_offset;
1178 	int cnt;
1179 
1180 	mtx_lock(&moea64_scratchpage_mtx);
1181 	while (xfersize > 0) {
1182 		a_pg_offset = a_offset & PAGE_MASK;
1183 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1184 		moea64_set_scratchpage_pa(mmu, 0,
1185 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1186 		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1187 		b_pg_offset = b_offset & PAGE_MASK;
1188 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1189 		moea64_set_scratchpage_pa(mmu, 1,
1190 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1191 		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1192 		bcopy(a_cp, b_cp, cnt);
1193 		a_offset += cnt;
1194 		b_offset += cnt;
1195 		xfersize -= cnt;
1196 	}
1197 	mtx_unlock(&moea64_scratchpage_mtx);
1198 }
1199 
1200 void
1201 moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1202     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1203 {
1204 
1205 	if (hw_direct_map) {
1206 		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1207 		    xfersize);
1208 	} else {
1209 		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1210 		    xfersize);
1211 	}
1212 }
1213 
1214 void
1215 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1216 {
1217 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1218 
1219 	if (size + off > PAGE_SIZE)
1220 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1221 
1222 	if (hw_direct_map) {
1223 		bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size);
1224 	} else {
1225 		mtx_lock(&moea64_scratchpage_mtx);
1226 		moea64_set_scratchpage_pa(mmu, 0, pa);
1227 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1228 		mtx_unlock(&moea64_scratchpage_mtx);
1229 	}
1230 }
1231 
1232 /*
1233  * Zero a page of physical memory by temporarily mapping it
1234  */
1235 void
1236 moea64_zero_page(mmu_t mmu, vm_page_t m)
1237 {
1238 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1239 	vm_offset_t va, off;
1240 
1241 	if (!hw_direct_map) {
1242 		mtx_lock(&moea64_scratchpage_mtx);
1243 
1244 		moea64_set_scratchpage_pa(mmu, 0, pa);
1245 		va = moea64_scratchpage_va[0];
1246 	} else {
1247 		va = PHYS_TO_DMAP(pa);
1248 	}
1249 
1250 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1251 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1252 
1253 	if (!hw_direct_map)
1254 		mtx_unlock(&moea64_scratchpage_mtx);
1255 }
1256 
1257 vm_offset_t
1258 moea64_quick_enter_page(mmu_t mmu, vm_page_t m)
1259 {
1260 	struct pvo_entry *pvo;
1261 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1262 
1263 	if (hw_direct_map)
1264 		return (PHYS_TO_DMAP(pa));
1265 
1266 	/*
1267  	 * MOEA64_PTE_REPLACE does some locking, so we can't just grab
1268 	 * a critical section and access the PCPU data like on i386.
1269 	 * Instead, pin the thread and grab the PCPU lock to prevent
1270 	 * a preempting thread from using the same PCPU data.
1271 	 */
1272 	sched_pin();
1273 
1274 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED);
1275 	pvo = PCPU_GET(aim.qmap_pvo);
1276 
1277 	mtx_lock(PCPU_PTR(aim.qmap_lock));
1278 	pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) |
1279 	    (uint64_t)pa;
1280 	MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_INVALIDATE);
1281 	isync();
1282 
1283 	return (PCPU_GET(qmap_addr));
1284 }
1285 
1286 void
1287 moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr)
1288 {
1289 	if (hw_direct_map)
1290 		return;
1291 
1292 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED);
1293 	KASSERT(PCPU_GET(qmap_addr) == addr,
1294 	    ("moea64_quick_remove_page: invalid address"));
1295 	mtx_unlock(PCPU_PTR(aim.qmap_lock));
1296 	sched_unpin();
1297 }
1298 
1299 /*
1300  * Map the given physical page at the specified virtual address in the
1301  * target pmap with the protection requested.  If specified the page
1302  * will be wired down.
1303  */
1304 
1305 int
1306 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1307     vm_prot_t prot, u_int flags, int8_t psind)
1308 {
1309 	struct		pvo_entry *pvo, *oldpvo;
1310 	struct		pvo_head *pvo_head;
1311 	uint64_t	pte_lo;
1312 	int		error;
1313 
1314 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1315 		VM_OBJECT_ASSERT_LOCKED(m->object);
1316 
1317 	pvo = alloc_pvo_entry(0);
1318 	pvo->pvo_pmap = NULL; /* to be filled in later */
1319 	pvo->pvo_pte.prot = prot;
1320 
1321 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1322 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | pte_lo;
1323 
1324 	if ((flags & PMAP_ENTER_WIRED) != 0)
1325 		pvo->pvo_vaddr |= PVO_WIRED;
1326 
1327 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1328 		pvo_head = NULL;
1329 	} else {
1330 		pvo_head = &m->md.mdpg_pvoh;
1331 		pvo->pvo_vaddr |= PVO_MANAGED;
1332 	}
1333 
1334 	for (;;) {
1335 		PV_PAGE_LOCK(m);
1336 		PMAP_LOCK(pmap);
1337 		if (pvo->pvo_pmap == NULL)
1338 			init_pvo_entry(pvo, pmap, va);
1339 		if (prot & VM_PROT_WRITE)
1340 			if (pmap_bootstrapped &&
1341 			    (m->oflags & VPO_UNMANAGED) == 0)
1342 				vm_page_aflag_set(m, PGA_WRITEABLE);
1343 
1344 		oldpvo = moea64_pvo_find_va(pmap, va);
1345 		if (oldpvo != NULL) {
1346 			if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
1347 			    oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
1348 			    oldpvo->pvo_pte.prot == prot) {
1349 				/* Identical mapping already exists */
1350 				error = 0;
1351 
1352 				/* If not in page table, reinsert it */
1353 				if (MOEA64_PTE_SYNCH(mmu, oldpvo) < 0) {
1354 					moea64_pte_overflow--;
1355 					MOEA64_PTE_INSERT(mmu, oldpvo);
1356 				}
1357 
1358 				/* Then just clean up and go home */
1359 				PV_PAGE_UNLOCK(m);
1360 				PMAP_UNLOCK(pmap);
1361 				free_pvo_entry(pvo);
1362 				break;
1363 			}
1364 
1365 			/* Otherwise, need to kill it first */
1366 			KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
1367 			    "mapping does not match new mapping"));
1368 			moea64_pvo_remove_from_pmap(mmu, oldpvo);
1369 		}
1370 		error = moea64_pvo_enter(mmu, pvo, pvo_head);
1371 		PV_PAGE_UNLOCK(m);
1372 		PMAP_UNLOCK(pmap);
1373 
1374 		/* Free any dead pages */
1375 		if (oldpvo != NULL) {
1376 			PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1377 			moea64_pvo_remove_from_page(mmu, oldpvo);
1378 			PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1379 			free_pvo_entry(oldpvo);
1380 		}
1381 
1382 		if (error != ENOMEM)
1383 			break;
1384 		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1385 			return (KERN_RESOURCE_SHORTAGE);
1386 		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1387 		vm_wait(NULL);
1388 	}
1389 
1390 	/*
1391 	 * Flush the page from the instruction cache if this page is
1392 	 * mapped executable and cacheable.
1393 	 */
1394 	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1395 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1396 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1397 		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1398 	}
1399 	return (KERN_SUCCESS);
1400 }
1401 
1402 static void
1403 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1404     vm_size_t sz)
1405 {
1406 
1407 	/*
1408 	 * This is much trickier than on older systems because
1409 	 * we can't sync the icache on physical addresses directly
1410 	 * without a direct map. Instead we check a couple of cases
1411 	 * where the memory is already mapped in and, failing that,
1412 	 * use the same trick we use for page zeroing to create
1413 	 * a temporary mapping for this physical address.
1414 	 */
1415 
1416 	if (!pmap_bootstrapped) {
1417 		/*
1418 		 * If PMAP is not bootstrapped, we are likely to be
1419 		 * in real mode.
1420 		 */
1421 		__syncicache((void *)(uintptr_t)pa, sz);
1422 	} else if (pmap == kernel_pmap) {
1423 		__syncicache((void *)va, sz);
1424 	} else if (hw_direct_map) {
1425 		__syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz);
1426 	} else {
1427 		/* Use the scratch page to set up a temp mapping */
1428 
1429 		mtx_lock(&moea64_scratchpage_mtx);
1430 
1431 		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1432 		__syncicache((void *)(moea64_scratchpage_va[1] +
1433 		    (va & ADDR_POFF)), sz);
1434 
1435 		mtx_unlock(&moea64_scratchpage_mtx);
1436 	}
1437 }
1438 
1439 /*
1440  * Maps a sequence of resident pages belonging to the same object.
1441  * The sequence begins with the given page m_start.  This page is
1442  * mapped at the given virtual address start.  Each subsequent page is
1443  * mapped at a virtual address that is offset from start by the same
1444  * amount as the page is offset from m_start within the object.  The
1445  * last page in the sequence is the page with the largest offset from
1446  * m_start that can be mapped at a virtual address less than the given
1447  * virtual address end.  Not every virtual page between start and end
1448  * is mapped; only those for which a resident page exists with the
1449  * corresponding offset from m_start are mapped.
1450  */
1451 void
1452 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1453     vm_page_t m_start, vm_prot_t prot)
1454 {
1455 	vm_page_t m;
1456 	vm_pindex_t diff, psize;
1457 
1458 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1459 
1460 	psize = atop(end - start);
1461 	m = m_start;
1462 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1463 		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1464 		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0);
1465 		m = TAILQ_NEXT(m, listq);
1466 	}
1467 }
1468 
1469 void
1470 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1471     vm_prot_t prot)
1472 {
1473 
1474 	moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1475 	    PMAP_ENTER_NOSLEEP, 0);
1476 }
1477 
1478 vm_paddr_t
1479 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1480 {
1481 	struct	pvo_entry *pvo;
1482 	vm_paddr_t pa;
1483 
1484 	PMAP_LOCK(pm);
1485 	pvo = moea64_pvo_find_va(pm, va);
1486 	if (pvo == NULL)
1487 		pa = 0;
1488 	else
1489 		pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1490 	PMAP_UNLOCK(pm);
1491 
1492 	return (pa);
1493 }
1494 
1495 /*
1496  * Atomically extract and hold the physical page with the given
1497  * pmap and virtual address pair if that mapping permits the given
1498  * protection.
1499  */
1500 vm_page_t
1501 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1502 {
1503 	struct	pvo_entry *pvo;
1504 	vm_page_t m;
1505         vm_paddr_t pa;
1506 
1507 	m = NULL;
1508 	pa = 0;
1509 	PMAP_LOCK(pmap);
1510 retry:
1511 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1512 	if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
1513 		if (vm_page_pa_tryrelock(pmap,
1514 		    pvo->pvo_pte.pa & LPTE_RPGN, &pa))
1515 			goto retry;
1516 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1517 		vm_page_hold(m);
1518 	}
1519 	PA_UNLOCK_COND(pa);
1520 	PMAP_UNLOCK(pmap);
1521 	return (m);
1522 }
1523 
1524 static mmu_t installed_mmu;
1525 
1526 static void *
1527 moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
1528     uint8_t *flags, int wait)
1529 {
1530 	struct pvo_entry *pvo;
1531         vm_offset_t va;
1532         vm_page_t m;
1533         int needed_lock;
1534 
1535 	/*
1536 	 * This entire routine is a horrible hack to avoid bothering kmem
1537 	 * for new KVA addresses. Because this can get called from inside
1538 	 * kmem allocation routines, calling kmem for a new address here
1539 	 * can lead to multiply locking non-recursive mutexes.
1540 	 */
1541 
1542 	*flags = UMA_SLAB_PRIV;
1543 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1544 
1545 	m = vm_page_alloc_domain(NULL, 0, domain,
1546 	    malloc2vm_flags(wait) | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
1547 	if (m == NULL)
1548 		return (NULL);
1549 
1550 	va = VM_PAGE_TO_PHYS(m);
1551 
1552 	pvo = alloc_pvo_entry(1 /* bootstrap */);
1553 
1554 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
1555 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
1556 
1557 	if (needed_lock)
1558 		PMAP_LOCK(kernel_pmap);
1559 
1560 	init_pvo_entry(pvo, kernel_pmap, va);
1561 	pvo->pvo_vaddr |= PVO_WIRED;
1562 
1563 	moea64_pvo_enter(installed_mmu, pvo, NULL);
1564 
1565 	if (needed_lock)
1566 		PMAP_UNLOCK(kernel_pmap);
1567 
1568 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1569                 bzero((void *)va, PAGE_SIZE);
1570 
1571 	return (void *)va;
1572 }
1573 
1574 extern int elf32_nxstack;
1575 
1576 void
1577 moea64_init(mmu_t mmu)
1578 {
1579 
1580 	CTR0(KTR_PMAP, "moea64_init");
1581 
1582 	moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1583 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1584 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1585 
1586 	if (!hw_direct_map) {
1587 		installed_mmu = mmu;
1588 		uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc);
1589 	}
1590 
1591 #ifdef COMPAT_FREEBSD32
1592 	elf32_nxstack = 1;
1593 #endif
1594 
1595 	moea64_initialized = TRUE;
1596 }
1597 
1598 boolean_t
1599 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1600 {
1601 
1602 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1603 	    ("moea64_is_referenced: page %p is not managed", m));
1604 
1605 	return (moea64_query_bit(mmu, m, LPTE_REF));
1606 }
1607 
1608 boolean_t
1609 moea64_is_modified(mmu_t mmu, vm_page_t m)
1610 {
1611 
1612 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1613 	    ("moea64_is_modified: page %p is not managed", m));
1614 
1615 	/*
1616 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1617 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1618 	 * is clear, no PTEs can have LPTE_CHG set.
1619 	 */
1620 	VM_OBJECT_ASSERT_LOCKED(m->object);
1621 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1622 		return (FALSE);
1623 	return (moea64_query_bit(mmu, m, LPTE_CHG));
1624 }
1625 
1626 boolean_t
1627 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1628 {
1629 	struct pvo_entry *pvo;
1630 	boolean_t rv = TRUE;
1631 
1632 	PMAP_LOCK(pmap);
1633 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1634 	if (pvo != NULL)
1635 		rv = FALSE;
1636 	PMAP_UNLOCK(pmap);
1637 	return (rv);
1638 }
1639 
1640 void
1641 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1642 {
1643 
1644 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1645 	    ("moea64_clear_modify: page %p is not managed", m));
1646 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1647 	KASSERT(!vm_page_xbusied(m),
1648 	    ("moea64_clear_modify: page %p is exclusive busied", m));
1649 
1650 	/*
1651 	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1652 	 * set.  If the object containing the page is locked and the page is
1653 	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1654 	 */
1655 	if ((m->aflags & PGA_WRITEABLE) == 0)
1656 		return;
1657 	moea64_clear_bit(mmu, m, LPTE_CHG);
1658 }
1659 
1660 /*
1661  * Clear the write and modified bits in each of the given page's mappings.
1662  */
1663 void
1664 moea64_remove_write(mmu_t mmu, vm_page_t m)
1665 {
1666 	struct	pvo_entry *pvo;
1667 	int64_t	refchg, ret;
1668 	pmap_t	pmap;
1669 
1670 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1671 	    ("moea64_remove_write: page %p is not managed", m));
1672 
1673 	/*
1674 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1675 	 * set by another thread while the object is locked.  Thus,
1676 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1677 	 */
1678 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1679 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1680 		return;
1681 	powerpc_sync();
1682 	PV_PAGE_LOCK(m);
1683 	refchg = 0;
1684 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1685 		pmap = pvo->pvo_pmap;
1686 		PMAP_LOCK(pmap);
1687 		if (!(pvo->pvo_vaddr & PVO_DEAD) &&
1688 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1689 			pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
1690 			ret = MOEA64_PTE_REPLACE(mmu, pvo,
1691 			    MOEA64_PTE_PROT_UPDATE);
1692 			if (ret < 0)
1693 				ret = LPTE_CHG;
1694 			refchg |= ret;
1695 			if (pvo->pvo_pmap == kernel_pmap)
1696 				isync();
1697 		}
1698 		PMAP_UNLOCK(pmap);
1699 	}
1700 	if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
1701 		vm_page_dirty(m);
1702 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1703 	PV_PAGE_UNLOCK(m);
1704 }
1705 
1706 /*
1707  *	moea64_ts_referenced:
1708  *
1709  *	Return a count of reference bits for a page, clearing those bits.
1710  *	It is not necessary for every reference bit to be cleared, but it
1711  *	is necessary that 0 only be returned when there are truly no
1712  *	reference bits set.
1713  *
1714  *	XXX: The exact number of bits to check and clear is a matter that
1715  *	should be tested and standardized at some point in the future for
1716  *	optimal aging of shared pages.
1717  */
1718 int
1719 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1720 {
1721 
1722 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1723 	    ("moea64_ts_referenced: page %p is not managed", m));
1724 	return (moea64_clear_bit(mmu, m, LPTE_REF));
1725 }
1726 
1727 /*
1728  * Modify the WIMG settings of all mappings for a page.
1729  */
1730 void
1731 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1732 {
1733 	struct	pvo_entry *pvo;
1734 	int64_t	refchg;
1735 	pmap_t	pmap;
1736 	uint64_t lo;
1737 
1738 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1739 		m->md.mdpg_cache_attrs = ma;
1740 		return;
1741 	}
1742 
1743 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1744 
1745 	PV_PAGE_LOCK(m);
1746 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1747 		pmap = pvo->pvo_pmap;
1748 		PMAP_LOCK(pmap);
1749 		if (!(pvo->pvo_vaddr & PVO_DEAD)) {
1750 			pvo->pvo_pte.pa &= ~LPTE_WIMG;
1751 			pvo->pvo_pte.pa |= lo;
1752 			refchg = MOEA64_PTE_REPLACE(mmu, pvo,
1753 			    MOEA64_PTE_INVALIDATE);
1754 			if (refchg < 0)
1755 				refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
1756 				    LPTE_CHG : 0;
1757 			if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1758 			    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1759 				refchg |=
1760 				    atomic_readandclear_32(&m->md.mdpg_attrs);
1761 				if (refchg & LPTE_CHG)
1762 					vm_page_dirty(m);
1763 				if (refchg & LPTE_REF)
1764 					vm_page_aflag_set(m, PGA_REFERENCED);
1765 			}
1766 			if (pvo->pvo_pmap == kernel_pmap)
1767 				isync();
1768 		}
1769 		PMAP_UNLOCK(pmap);
1770 	}
1771 	m->md.mdpg_cache_attrs = ma;
1772 	PV_PAGE_UNLOCK(m);
1773 }
1774 
1775 /*
1776  * Map a wired page into kernel virtual address space.
1777  */
1778 void
1779 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1780 {
1781 	int		error;
1782 	struct pvo_entry *pvo, *oldpvo;
1783 
1784 	pvo = alloc_pvo_entry(0);
1785 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
1786 	pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
1787 	pvo->pvo_vaddr |= PVO_WIRED;
1788 
1789 	PMAP_LOCK(kernel_pmap);
1790 	oldpvo = moea64_pvo_find_va(kernel_pmap, va);
1791 	if (oldpvo != NULL)
1792 		moea64_pvo_remove_from_pmap(mmu, oldpvo);
1793 	init_pvo_entry(pvo, kernel_pmap, va);
1794 	error = moea64_pvo_enter(mmu, pvo, NULL);
1795 	PMAP_UNLOCK(kernel_pmap);
1796 
1797 	/* Free any dead pages */
1798 	if (oldpvo != NULL) {
1799 		PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1800 		moea64_pvo_remove_from_page(mmu, oldpvo);
1801 		PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1802 		free_pvo_entry(oldpvo);
1803 	}
1804 
1805 	if (error != 0 && error != ENOENT)
1806 		panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va,
1807 		    (uintmax_t)pa, error);
1808 }
1809 
1810 void
1811 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1812 {
1813 
1814 	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1815 }
1816 
1817 /*
1818  * Extract the physical page address associated with the given kernel virtual
1819  * address.
1820  */
1821 vm_paddr_t
1822 moea64_kextract(mmu_t mmu, vm_offset_t va)
1823 {
1824 	struct		pvo_entry *pvo;
1825 	vm_paddr_t pa;
1826 
1827 	/*
1828 	 * Shortcut the direct-mapped case when applicable.  We never put
1829 	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1830 	 */
1831 	if (va < VM_MIN_KERNEL_ADDRESS)
1832 		return (va);
1833 
1834 	PMAP_LOCK(kernel_pmap);
1835 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1836 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1837 	    va));
1838 	pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1839 	PMAP_UNLOCK(kernel_pmap);
1840 	return (pa);
1841 }
1842 
1843 /*
1844  * Remove a wired page from kernel virtual address space.
1845  */
1846 void
1847 moea64_kremove(mmu_t mmu, vm_offset_t va)
1848 {
1849 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1850 }
1851 
1852 /*
1853  * Provide a kernel pointer corresponding to a given userland pointer.
1854  * The returned pointer is valid until the next time this function is
1855  * called in this thread. This is used internally in copyin/copyout.
1856  */
1857 static int
1858 moea64_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr,
1859     void **kaddr, size_t ulen, size_t *klen)
1860 {
1861 	size_t l;
1862 #ifdef __powerpc64__
1863 	struct slb *slb;
1864 #endif
1865 	register_t slbv;
1866 
1867 	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
1868 	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
1869 	if (l > ulen)
1870 		l = ulen;
1871 	if (klen)
1872 		*klen = l;
1873 	else if (l != ulen)
1874 		return (EFAULT);
1875 
1876 #ifdef __powerpc64__
1877 	/* Try lockless look-up first */
1878 	slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr);
1879 
1880 	if (slb == NULL) {
1881 		/* If it isn't there, we need to pre-fault the VSID */
1882 		PMAP_LOCK(pm);
1883 		slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT;
1884 		PMAP_UNLOCK(pm);
1885 	} else {
1886 		slbv = slb->slbv;
1887 	}
1888 
1889 	/* Mark segment no-execute */
1890 	slbv |= SLBV_N;
1891 #else
1892 	slbv = va_to_vsid(pm, (vm_offset_t)uaddr);
1893 
1894 	/* Mark segment no-execute */
1895 	slbv |= SR_N;
1896 #endif
1897 
1898 	/* If we have already set this VSID, we can just return */
1899 	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv)
1900 		return (0);
1901 
1902 	__asm __volatile("isync");
1903 	curthread->td_pcb->pcb_cpu.aim.usr_segm =
1904 	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
1905 	curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv;
1906 #ifdef __powerpc64__
1907 	__asm __volatile ("slbie %0; slbmte %1, %2; isync" ::
1908 	    "r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE));
1909 #else
1910 	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv));
1911 #endif
1912 
1913 	return (0);
1914 }
1915 
1916 /*
1917  * Figure out where a given kernel pointer (usually in a fault) points
1918  * to from the VM's perspective, potentially remapping into userland's
1919  * address space.
1920  */
1921 static int
1922 moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, int *is_user,
1923     vm_offset_t *decoded_addr)
1924 {
1925 	vm_offset_t user_sr;
1926 
1927 	if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
1928 		user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
1929 		addr &= ADDR_PIDX | ADDR_POFF;
1930 		addr |= user_sr << ADDR_SR_SHFT;
1931 		*decoded_addr = addr;
1932 		*is_user = 1;
1933 	} else {
1934 		*decoded_addr = addr;
1935 		*is_user = 0;
1936 	}
1937 
1938 	return (0);
1939 }
1940 
1941 /*
1942  * Map a range of physical addresses into kernel virtual address space.
1943  *
1944  * The value passed in *virt is a suggested virtual address for the mapping.
1945  * Architectures which can support a direct-mapped physical to virtual region
1946  * can return the appropriate address within that region, leaving '*virt'
1947  * unchanged.  Other architectures should map the pages starting at '*virt' and
1948  * update '*virt' with the first usable address after the mapped region.
1949  */
1950 vm_offset_t
1951 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1952     vm_paddr_t pa_end, int prot)
1953 {
1954 	vm_offset_t	sva, va;
1955 
1956 	if (hw_direct_map) {
1957 		/*
1958 		 * Check if every page in the region is covered by the direct
1959 		 * map. The direct map covers all of physical memory. Use
1960 		 * moea64_calc_wimg() as a shortcut to see if the page is in
1961 		 * physical memory as a way to see if the direct map covers it.
1962 		 */
1963 		for (va = pa_start; va < pa_end; va += PAGE_SIZE)
1964 			if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
1965 				break;
1966 		if (va == pa_end)
1967 			return (PHYS_TO_DMAP(pa_start));
1968 	}
1969 	sva = *virt;
1970 	va = sva;
1971 	/* XXX respect prot argument */
1972 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1973 		moea64_kenter(mmu, va, pa_start);
1974 	*virt = va;
1975 
1976 	return (sva);
1977 }
1978 
1979 /*
1980  * Returns true if the pmap's pv is one of the first
1981  * 16 pvs linked to from this page.  This count may
1982  * be changed upwards or downwards in the future; it
1983  * is only necessary that true be returned for a small
1984  * subset of pmaps for proper page aging.
1985  */
1986 boolean_t
1987 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1988 {
1989         int loops;
1990 	struct pvo_entry *pvo;
1991 	boolean_t rv;
1992 
1993 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1994 	    ("moea64_page_exists_quick: page %p is not managed", m));
1995 	loops = 0;
1996 	rv = FALSE;
1997 	PV_PAGE_LOCK(m);
1998 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1999 		if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
2000 			rv = TRUE;
2001 			break;
2002 		}
2003 		if (++loops >= 16)
2004 			break;
2005 	}
2006 	PV_PAGE_UNLOCK(m);
2007 	return (rv);
2008 }
2009 
2010 void
2011 moea64_page_init(mmu_t mmu __unused, vm_page_t m)
2012 {
2013 
2014 	m->md.mdpg_attrs = 0;
2015 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
2016 	LIST_INIT(&m->md.mdpg_pvoh);
2017 }
2018 
2019 /*
2020  * Return the number of managed mappings to the given physical page
2021  * that are wired.
2022  */
2023 int
2024 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
2025 {
2026 	struct pvo_entry *pvo;
2027 	int count;
2028 
2029 	count = 0;
2030 	if ((m->oflags & VPO_UNMANAGED) != 0)
2031 		return (count);
2032 	PV_PAGE_LOCK(m);
2033 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
2034 		if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
2035 			count++;
2036 	PV_PAGE_UNLOCK(m);
2037 	return (count);
2038 }
2039 
2040 static uintptr_t	moea64_vsidcontext;
2041 
2042 uintptr_t
2043 moea64_get_unique_vsid(void) {
2044 	u_int entropy;
2045 	register_t hash;
2046 	uint32_t mask;
2047 	int i;
2048 
2049 	entropy = 0;
2050 	__asm __volatile("mftb %0" : "=r"(entropy));
2051 
2052 	mtx_lock(&moea64_slb_mutex);
2053 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
2054 		u_int	n;
2055 
2056 		/*
2057 		 * Create a new value by mutiplying by a prime and adding in
2058 		 * entropy from the timebase register.  This is to make the
2059 		 * VSID more random so that the PT hash function collides
2060 		 * less often.  (Note that the prime casues gcc to do shifts
2061 		 * instead of a multiply.)
2062 		 */
2063 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
2064 		hash = moea64_vsidcontext & (NVSIDS - 1);
2065 		if (hash == 0)		/* 0 is special, avoid it */
2066 			continue;
2067 		n = hash >> 5;
2068 		mask = 1 << (hash & (VSID_NBPW - 1));
2069 		hash = (moea64_vsidcontext & VSID_HASHMASK);
2070 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
2071 			/* anything free in this bucket? */
2072 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
2073 				entropy = (moea64_vsidcontext >> 20);
2074 				continue;
2075 			}
2076 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
2077 			mask = 1 << i;
2078 			hash &= rounddown2(VSID_HASHMASK, VSID_NBPW);
2079 			hash |= i;
2080 		}
2081 		if (hash == VSID_VRMA)	/* also special, avoid this too */
2082 			continue;
2083 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
2084 		    ("Allocating in-use VSID %#zx\n", hash));
2085 		moea64_vsid_bitmap[n] |= mask;
2086 		mtx_unlock(&moea64_slb_mutex);
2087 		return (hash);
2088 	}
2089 
2090 	mtx_unlock(&moea64_slb_mutex);
2091 	panic("%s: out of segments",__func__);
2092 }
2093 
2094 #ifdef __powerpc64__
2095 void
2096 moea64_pinit(mmu_t mmu, pmap_t pmap)
2097 {
2098 
2099 	RB_INIT(&pmap->pmap_pvo);
2100 
2101 	pmap->pm_slb_tree_root = slb_alloc_tree();
2102 	pmap->pm_slb = slb_alloc_user_cache();
2103 	pmap->pm_slb_len = 0;
2104 }
2105 #else
2106 void
2107 moea64_pinit(mmu_t mmu, pmap_t pmap)
2108 {
2109 	int	i;
2110 	uint32_t hash;
2111 
2112 	RB_INIT(&pmap->pmap_pvo);
2113 
2114 	if (pmap_bootstrapped)
2115 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
2116 		    (vm_offset_t)pmap);
2117 	else
2118 		pmap->pmap_phys = pmap;
2119 
2120 	/*
2121 	 * Allocate some segment registers for this pmap.
2122 	 */
2123 	hash = moea64_get_unique_vsid();
2124 
2125 	for (i = 0; i < 16; i++)
2126 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
2127 
2128 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
2129 }
2130 #endif
2131 
2132 /*
2133  * Initialize the pmap associated with process 0.
2134  */
2135 void
2136 moea64_pinit0(mmu_t mmu, pmap_t pm)
2137 {
2138 
2139 	PMAP_LOCK_INIT(pm);
2140 	moea64_pinit(mmu, pm);
2141 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2142 }
2143 
2144 /*
2145  * Set the physical protection on the specified range of this map as requested.
2146  */
2147 static void
2148 moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
2149 {
2150 	struct vm_page *pg;
2151 	vm_prot_t oldprot;
2152 	int32_t refchg;
2153 
2154 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2155 
2156 	/*
2157 	 * Change the protection of the page.
2158 	 */
2159 	oldprot = pvo->pvo_pte.prot;
2160 	pvo->pvo_pte.prot = prot;
2161 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2162 
2163 	/*
2164 	 * If the PVO is in the page table, update mapping
2165 	 */
2166 	refchg = MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_PROT_UPDATE);
2167 	if (refchg < 0)
2168 		refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
2169 
2170 	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
2171 	    (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2172 		if ((pg->oflags & VPO_UNMANAGED) == 0)
2173 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
2174 		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
2175 		    pvo->pvo_pte.pa & LPTE_RPGN, PAGE_SIZE);
2176 	}
2177 
2178 	/*
2179 	 * Update vm about the REF/CHG bits if the page is managed and we have
2180 	 * removed write access.
2181 	 */
2182 	if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
2183 	    (oldprot & VM_PROT_WRITE)) {
2184 		refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2185 		if (refchg & LPTE_CHG)
2186 			vm_page_dirty(pg);
2187 		if (refchg & LPTE_REF)
2188 			vm_page_aflag_set(pg, PGA_REFERENCED);
2189 	}
2190 }
2191 
2192 void
2193 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2194     vm_prot_t prot)
2195 {
2196 	struct	pvo_entry *pvo, *tpvo, key;
2197 
2198 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2199 	    sva, eva, prot);
2200 
2201 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2202 	    ("moea64_protect: non current pmap"));
2203 
2204 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2205 		moea64_remove(mmu, pm, sva, eva);
2206 		return;
2207 	}
2208 
2209 	PMAP_LOCK(pm);
2210 	key.pvo_vaddr = sva;
2211 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2212 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2213 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2214 		moea64_pvo_protect(mmu, pm, pvo, prot);
2215 	}
2216 	PMAP_UNLOCK(pm);
2217 }
2218 
2219 /*
2220  * Map a list of wired pages into kernel virtual address space.  This is
2221  * intended for temporary mappings which do not need page modification or
2222  * references recorded.  Existing mappings in the region are overwritten.
2223  */
2224 void
2225 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2226 {
2227 	while (count-- > 0) {
2228 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2229 		va += PAGE_SIZE;
2230 		m++;
2231 	}
2232 }
2233 
2234 /*
2235  * Remove page mappings from kernel virtual address space.  Intended for
2236  * temporary mappings entered by moea64_qenter.
2237  */
2238 void
2239 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2240 {
2241 	while (count-- > 0) {
2242 		moea64_kremove(mmu, va);
2243 		va += PAGE_SIZE;
2244 	}
2245 }
2246 
2247 void
2248 moea64_release_vsid(uint64_t vsid)
2249 {
2250 	int idx, mask;
2251 
2252 	mtx_lock(&moea64_slb_mutex);
2253 	idx = vsid & (NVSIDS-1);
2254 	mask = 1 << (idx % VSID_NBPW);
2255 	idx /= VSID_NBPW;
2256 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2257 	    ("Freeing unallocated VSID %#jx", vsid));
2258 	moea64_vsid_bitmap[idx] &= ~mask;
2259 	mtx_unlock(&moea64_slb_mutex);
2260 }
2261 
2262 
2263 void
2264 moea64_release(mmu_t mmu, pmap_t pmap)
2265 {
2266 
2267 	/*
2268 	 * Free segment registers' VSIDs
2269 	 */
2270     #ifdef __powerpc64__
2271 	slb_free_tree(pmap);
2272 	slb_free_user_cache(pmap->pm_slb);
2273     #else
2274 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2275 
2276 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2277     #endif
2278 }
2279 
2280 /*
2281  * Remove all pages mapped by the specified pmap
2282  */
2283 void
2284 moea64_remove_pages(mmu_t mmu, pmap_t pm)
2285 {
2286 	struct pvo_entry *pvo, *tpvo;
2287 	struct pvo_tree tofree;
2288 
2289 	RB_INIT(&tofree);
2290 
2291 	PMAP_LOCK(pm);
2292 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2293 		if (pvo->pvo_vaddr & PVO_WIRED)
2294 			continue;
2295 
2296 		/*
2297 		 * For locking reasons, remove this from the page table and
2298 		 * pmap, but save delinking from the vm_page for a second
2299 		 * pass
2300 		 */
2301 		moea64_pvo_remove_from_pmap(mmu, pvo);
2302 		RB_INSERT(pvo_tree, &tofree, pvo);
2303 	}
2304 	PMAP_UNLOCK(pm);
2305 
2306 	RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) {
2307 		PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2308 		moea64_pvo_remove_from_page(mmu, pvo);
2309 		PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2310 		RB_REMOVE(pvo_tree, &tofree, pvo);
2311 		free_pvo_entry(pvo);
2312 	}
2313 }
2314 
2315 /*
2316  * Remove the given range of addresses from the specified map.
2317  */
2318 void
2319 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2320 {
2321 	struct  pvo_entry *pvo, *tpvo, key;
2322 	struct pvo_tree tofree;
2323 
2324 	/*
2325 	 * Perform an unsynchronized read.  This is, however, safe.
2326 	 */
2327 	if (pm->pm_stats.resident_count == 0)
2328 		return;
2329 
2330 	key.pvo_vaddr = sva;
2331 
2332 	RB_INIT(&tofree);
2333 
2334 	PMAP_LOCK(pm);
2335 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2336 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2337 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2338 
2339 		/*
2340 		 * For locking reasons, remove this from the page table and
2341 		 * pmap, but save delinking from the vm_page for a second
2342 		 * pass
2343 		 */
2344 		moea64_pvo_remove_from_pmap(mmu, pvo);
2345 		RB_INSERT(pvo_tree, &tofree, pvo);
2346 	}
2347 	PMAP_UNLOCK(pm);
2348 
2349 	RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) {
2350 		PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2351 		moea64_pvo_remove_from_page(mmu, pvo);
2352 		PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2353 		RB_REMOVE(pvo_tree, &tofree, pvo);
2354 		free_pvo_entry(pvo);
2355 	}
2356 }
2357 
2358 /*
2359  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2360  * will reflect changes in pte's back to the vm_page.
2361  */
2362 void
2363 moea64_remove_all(mmu_t mmu, vm_page_t m)
2364 {
2365 	struct	pvo_entry *pvo, *next_pvo;
2366 	struct	pvo_head freequeue;
2367 	int	wasdead;
2368 	pmap_t	pmap;
2369 
2370 	LIST_INIT(&freequeue);
2371 
2372 	PV_PAGE_LOCK(m);
2373 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2374 		pmap = pvo->pvo_pmap;
2375 		PMAP_LOCK(pmap);
2376 		wasdead = (pvo->pvo_vaddr & PVO_DEAD);
2377 		if (!wasdead)
2378 			moea64_pvo_remove_from_pmap(mmu, pvo);
2379 		moea64_pvo_remove_from_page(mmu, pvo);
2380 		if (!wasdead)
2381 			LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
2382 		PMAP_UNLOCK(pmap);
2383 
2384 	}
2385 	KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
2386 	KASSERT(!(m->aflags & PGA_WRITEABLE), ("Page still writable"));
2387 	PV_PAGE_UNLOCK(m);
2388 
2389 	/* Clean up UMA allocations */
2390 	LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
2391 		free_pvo_entry(pvo);
2392 }
2393 
2394 /*
2395  * Allocate a physical page of memory directly from the phys_avail map.
2396  * Can only be called from moea64_bootstrap before avail start and end are
2397  * calculated.
2398  */
2399 vm_offset_t
2400 moea64_bootstrap_alloc(vm_size_t size, u_int align)
2401 {
2402 	vm_offset_t	s, e;
2403 	int		i, j;
2404 
2405 	size = round_page(size);
2406 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2407 		if (align != 0)
2408 			s = roundup2(phys_avail[i], align);
2409 		else
2410 			s = phys_avail[i];
2411 		e = s + size;
2412 
2413 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2414 			continue;
2415 
2416 		if (s + size > platform_real_maxaddr())
2417 			continue;
2418 
2419 		if (s == phys_avail[i]) {
2420 			phys_avail[i] += size;
2421 		} else if (e == phys_avail[i + 1]) {
2422 			phys_avail[i + 1] -= size;
2423 		} else {
2424 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2425 				phys_avail[j] = phys_avail[j - 2];
2426 				phys_avail[j + 1] = phys_avail[j - 1];
2427 			}
2428 
2429 			phys_avail[i + 3] = phys_avail[i + 1];
2430 			phys_avail[i + 1] = s;
2431 			phys_avail[i + 2] = e;
2432 			phys_avail_count++;
2433 		}
2434 
2435 		return (s);
2436 	}
2437 	panic("moea64_bootstrap_alloc: could not allocate memory");
2438 }
2439 
2440 static int
2441 moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo, struct pvo_head *pvo_head)
2442 {
2443 	int first, err;
2444 
2445 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2446 	KASSERT(moea64_pvo_find_va(pvo->pvo_pmap, PVO_VADDR(pvo)) == NULL,
2447 	    ("Existing mapping for VA %#jx", (uintmax_t)PVO_VADDR(pvo)));
2448 
2449 	moea64_pvo_enter_calls++;
2450 
2451 	/*
2452 	 * Add to pmap list
2453 	 */
2454 	RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2455 
2456 	/*
2457 	 * Remember if the list was empty and therefore will be the first
2458 	 * item.
2459 	 */
2460 	if (pvo_head != NULL) {
2461 		if (LIST_FIRST(pvo_head) == NULL)
2462 			first = 1;
2463 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2464 	}
2465 
2466 	if (pvo->pvo_vaddr & PVO_WIRED)
2467 		pvo->pvo_pmap->pm_stats.wired_count++;
2468 	pvo->pvo_pmap->pm_stats.resident_count++;
2469 
2470 	/*
2471 	 * Insert it into the hardware page table
2472 	 */
2473 	err = MOEA64_PTE_INSERT(mmu, pvo);
2474 	if (err != 0) {
2475 		panic("moea64_pvo_enter: overflow");
2476 	}
2477 
2478 	moea64_pvo_entries++;
2479 
2480 	if (pvo->pvo_pmap == kernel_pmap)
2481 		isync();
2482 
2483 #ifdef __powerpc64__
2484 	/*
2485 	 * Make sure all our bootstrap mappings are in the SLB as soon
2486 	 * as virtual memory is switched on.
2487 	 */
2488 	if (!pmap_bootstrapped)
2489 		moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
2490 		    pvo->pvo_vaddr & PVO_LARGE);
2491 #endif
2492 
2493 	return (first ? ENOENT : 0);
2494 }
2495 
2496 static void
2497 moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo)
2498 {
2499 	struct	vm_page *pg;
2500 	int32_t refchg;
2501 
2502 	KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
2503 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2504 	KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
2505 
2506 	/*
2507 	 * If there is an active pte entry, we need to deactivate it
2508 	 */
2509 	refchg = MOEA64_PTE_UNSET(mmu, pvo);
2510 	if (refchg < 0) {
2511 		/*
2512 		 * If it was evicted from the page table, be pessimistic and
2513 		 * dirty the page.
2514 		 */
2515 		if (pvo->pvo_pte.prot & VM_PROT_WRITE)
2516 			refchg = LPTE_CHG;
2517 		else
2518 			refchg = 0;
2519 	}
2520 
2521 	/*
2522 	 * Update our statistics.
2523 	 */
2524 	pvo->pvo_pmap->pm_stats.resident_count--;
2525 	if (pvo->pvo_vaddr & PVO_WIRED)
2526 		pvo->pvo_pmap->pm_stats.wired_count--;
2527 
2528 	/*
2529 	 * Remove this PVO from the pmap list.
2530 	 */
2531 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2532 
2533 	/*
2534 	 * Mark this for the next sweep
2535 	 */
2536 	pvo->pvo_vaddr |= PVO_DEAD;
2537 
2538 	/* Send RC bits to VM */
2539 	if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2540 	    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2541 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2542 		if (pg != NULL) {
2543 			refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2544 			if (refchg & LPTE_CHG)
2545 				vm_page_dirty(pg);
2546 			if (refchg & LPTE_REF)
2547 				vm_page_aflag_set(pg, PGA_REFERENCED);
2548 		}
2549 	}
2550 }
2551 
2552 static void
2553 moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo)
2554 {
2555 	struct	vm_page *pg;
2556 
2557 	KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
2558 
2559 	/* Use NULL pmaps as a sentinel for races in page deletion */
2560 	if (pvo->pvo_pmap == NULL)
2561 		return;
2562 	pvo->pvo_pmap = NULL;
2563 
2564 	/*
2565 	 * Update vm about page writeability/executability if managed
2566 	 */
2567 	PV_LOCKASSERT(pvo->pvo_pte.pa & LPTE_RPGN);
2568 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2569 
2570 	if ((pvo->pvo_vaddr & PVO_MANAGED) && pg != NULL) {
2571 		LIST_REMOVE(pvo, pvo_vlink);
2572 		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2573 			vm_page_aflag_clear(pg, PGA_WRITEABLE | PGA_EXECUTABLE);
2574 	}
2575 
2576 	moea64_pvo_entries--;
2577 	moea64_pvo_remove_calls++;
2578 }
2579 
2580 static struct pvo_entry *
2581 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2582 {
2583 	struct pvo_entry key;
2584 
2585 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2586 
2587 	key.pvo_vaddr = va & ~ADDR_POFF;
2588 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2589 }
2590 
2591 static boolean_t
2592 moea64_query_bit(mmu_t mmu, vm_page_t m, uint64_t ptebit)
2593 {
2594 	struct	pvo_entry *pvo;
2595 	int64_t ret;
2596 	boolean_t rv;
2597 
2598 	/*
2599 	 * See if this bit is stored in the page already.
2600 	 */
2601 	if (m->md.mdpg_attrs & ptebit)
2602 		return (TRUE);
2603 
2604 	/*
2605 	 * Examine each PTE.  Sync so that any pending REF/CHG bits are
2606 	 * flushed to the PTEs.
2607 	 */
2608 	rv = FALSE;
2609 	powerpc_sync();
2610 	PV_PAGE_LOCK(m);
2611 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2612 		ret = 0;
2613 
2614 		/*
2615 		 * See if this pvo has a valid PTE.  if so, fetch the
2616 		 * REF/CHG bits from the valid PTE.  If the appropriate
2617 		 * ptebit is set, return success.
2618 		 */
2619 		PMAP_LOCK(pvo->pvo_pmap);
2620 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2621 			ret = MOEA64_PTE_SYNCH(mmu, pvo);
2622 		PMAP_UNLOCK(pvo->pvo_pmap);
2623 
2624 		if (ret > 0) {
2625 			atomic_set_32(&m->md.mdpg_attrs,
2626 			    ret & (LPTE_CHG | LPTE_REF));
2627 			if (ret & ptebit) {
2628 				rv = TRUE;
2629 				break;
2630 			}
2631 		}
2632 	}
2633 	PV_PAGE_UNLOCK(m);
2634 
2635 	return (rv);
2636 }
2637 
2638 static u_int
2639 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2640 {
2641 	u_int	count;
2642 	struct	pvo_entry *pvo;
2643 	int64_t ret;
2644 
2645 	/*
2646 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2647 	 * we can reset the right ones).
2648 	 */
2649 	powerpc_sync();
2650 
2651 	/*
2652 	 * For each pvo entry, clear the pte's ptebit.
2653 	 */
2654 	count = 0;
2655 	PV_PAGE_LOCK(m);
2656 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2657 		ret = 0;
2658 
2659 		PMAP_LOCK(pvo->pvo_pmap);
2660 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2661 			ret = MOEA64_PTE_CLEAR(mmu, pvo, ptebit);
2662 		PMAP_UNLOCK(pvo->pvo_pmap);
2663 
2664 		if (ret > 0 && (ret & ptebit))
2665 			count++;
2666 	}
2667 	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
2668 	PV_PAGE_UNLOCK(m);
2669 
2670 	return (count);
2671 }
2672 
2673 boolean_t
2674 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2675 {
2676 	struct pvo_entry *pvo, key;
2677 	vm_offset_t ppa;
2678 	int error = 0;
2679 
2680 	PMAP_LOCK(kernel_pmap);
2681 	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2682 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2683 	    ppa < pa + size; ppa += PAGE_SIZE,
2684 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2685 		if (pvo == NULL || (pvo->pvo_pte.pa & LPTE_RPGN) != ppa) {
2686 			error = EFAULT;
2687 			break;
2688 		}
2689 	}
2690 	PMAP_UNLOCK(kernel_pmap);
2691 
2692 	return (error);
2693 }
2694 
2695 /*
2696  * Map a set of physical memory pages into the kernel virtual
2697  * address space. Return a pointer to where it is mapped. This
2698  * routine is intended to be used for mapping device memory,
2699  * NOT real memory.
2700  */
2701 void *
2702 moea64_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2703 {
2704 	vm_offset_t va, tmpva, ppa, offset;
2705 
2706 	ppa = trunc_page(pa);
2707 	offset = pa & PAGE_MASK;
2708 	size = roundup2(offset + size, PAGE_SIZE);
2709 
2710 	va = kva_alloc(size);
2711 
2712 	if (!va)
2713 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2714 
2715 	for (tmpva = va; size > 0;) {
2716 		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2717 		size -= PAGE_SIZE;
2718 		tmpva += PAGE_SIZE;
2719 		ppa += PAGE_SIZE;
2720 	}
2721 
2722 	return ((void *)(va + offset));
2723 }
2724 
2725 void *
2726 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2727 {
2728 
2729 	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2730 }
2731 
2732 void
2733 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2734 {
2735 	vm_offset_t base, offset;
2736 
2737 	base = trunc_page(va);
2738 	offset = va & PAGE_MASK;
2739 	size = roundup2(offset + size, PAGE_SIZE);
2740 
2741 	kva_free(base, size);
2742 }
2743 
2744 void
2745 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2746 {
2747 	struct pvo_entry *pvo;
2748 	vm_offset_t lim;
2749 	vm_paddr_t pa;
2750 	vm_size_t len;
2751 
2752 	PMAP_LOCK(pm);
2753 	while (sz > 0) {
2754 		lim = round_page(va);
2755 		len = MIN(lim - va, sz);
2756 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2757 		if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
2758 			pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va & ADDR_POFF);
2759 			moea64_syncicache(mmu, pm, va, pa, len);
2760 		}
2761 		va += len;
2762 		sz -= len;
2763 	}
2764 	PMAP_UNLOCK(pm);
2765 }
2766 
2767 void
2768 moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2769 {
2770 
2771 	*va = (void *)(uintptr_t)pa;
2772 }
2773 
2774 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2775 
2776 void
2777 moea64_scan_init(mmu_t mmu)
2778 {
2779 	struct pvo_entry *pvo;
2780 	vm_offset_t va;
2781 	int i;
2782 
2783 	if (!do_minidump) {
2784 		/* Initialize phys. segments for dumpsys(). */
2785 		memset(&dump_map, 0, sizeof(dump_map));
2786 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2787 		for (i = 0; i < pregions_sz; i++) {
2788 			dump_map[i].pa_start = pregions[i].mr_start;
2789 			dump_map[i].pa_size = pregions[i].mr_size;
2790 		}
2791 		return;
2792 	}
2793 
2794 	/* Virtual segments for minidumps: */
2795 	memset(&dump_map, 0, sizeof(dump_map));
2796 
2797 	/* 1st: kernel .data and .bss. */
2798 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2799 	dump_map[0].pa_size = round_page((uintptr_t)_end) -
2800 	    dump_map[0].pa_start;
2801 
2802 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2803 	dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr;
2804 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2805 
2806 	/* 3rd: kernel VM. */
2807 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2808 	/* Find start of next chunk (from va). */
2809 	while (va < virtual_end) {
2810 		/* Don't dump the buffer cache. */
2811 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2812 			va = kmi.buffer_eva;
2813 			continue;
2814 		}
2815 		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2816 		if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2817 			break;
2818 		va += PAGE_SIZE;
2819 	}
2820 	if (va < virtual_end) {
2821 		dump_map[2].pa_start = va;
2822 		va += PAGE_SIZE;
2823 		/* Find last page in chunk. */
2824 		while (va < virtual_end) {
2825 			/* Don't run into the buffer cache. */
2826 			if (va == kmi.buffer_sva)
2827 				break;
2828 			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2829 			if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2830 				break;
2831 			va += PAGE_SIZE;
2832 		}
2833 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2834 	}
2835 }
2836 
2837