xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision 545ddfbe7d4fe8adfb862903b24eac1d5896c1ef)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27  * POSSIBILITY OF SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
31  * Copyright (C) 1995, 1996 TooLs GmbH.
32  * All rights reserved.
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. All advertising materials mentioning features or use of this software
43  *    must display the following acknowledgement:
44  *	This product includes software developed by TooLs GmbH.
45  * 4. The name of TooLs GmbH may not be used to endorse or promote products
46  *    derived from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
49  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
50  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
51  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
53  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
54  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
55  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
56  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
57  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
58  *
59  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
60  */
61 /*-
62  * Copyright (C) 2001 Benno Rice.
63  * All rights reserved.
64  *
65  * Redistribution and use in source and binary forms, with or without
66  * modification, are permitted provided that the following conditions
67  * are met:
68  * 1. Redistributions of source code must retain the above copyright
69  *    notice, this list of conditions and the following disclaimer.
70  * 2. Redistributions in binary form must reproduce the above copyright
71  *    notice, this list of conditions and the following disclaimer in the
72  *    documentation and/or other materials provided with the distribution.
73  *
74  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
75  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
76  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
77  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
78  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
79  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
80  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
81  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
82  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
83  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
84  */
85 
86 #include <sys/cdefs.h>
87 __FBSDID("$FreeBSD$");
88 
89 /*
90  * Manages physical address maps.
91  *
92  * Since the information managed by this module is also stored by the
93  * logical address mapping module, this module may throw away valid virtual
94  * to physical mappings at almost any time.  However, invalidations of
95  * mappings must be done as requested.
96  *
97  * In order to cope with hardware architectures which make virtual to
98  * physical map invalidates expensive, this module may delay invalidate
99  * reduced protection operations until such time as they are actually
100  * necessary.  This module is given full information as to which processors
101  * are currently using which maps, and to when physical maps must be made
102  * correct.
103  */
104 
105 #include "opt_compat.h"
106 #include "opt_kstack_pages.h"
107 
108 #include <sys/param.h>
109 #include <sys/kernel.h>
110 #include <sys/conf.h>
111 #include <sys/queue.h>
112 #include <sys/cpuset.h>
113 #include <sys/kerneldump.h>
114 #include <sys/ktr.h>
115 #include <sys/lock.h>
116 #include <sys/msgbuf.h>
117 #include <sys/malloc.h>
118 #include <sys/mutex.h>
119 #include <sys/proc.h>
120 #include <sys/rwlock.h>
121 #include <sys/sched.h>
122 #include <sys/sysctl.h>
123 #include <sys/systm.h>
124 #include <sys/vmmeter.h>
125 
126 #include <sys/kdb.h>
127 
128 #include <dev/ofw/openfirm.h>
129 
130 #include <vm/vm.h>
131 #include <vm/vm_param.h>
132 #include <vm/vm_kern.h>
133 #include <vm/vm_page.h>
134 #include <vm/vm_map.h>
135 #include <vm/vm_object.h>
136 #include <vm/vm_extern.h>
137 #include <vm/vm_pageout.h>
138 #include <vm/uma.h>
139 
140 #include <machine/_inttypes.h>
141 #include <machine/cpu.h>
142 #include <machine/platform.h>
143 #include <machine/frame.h>
144 #include <machine/md_var.h>
145 #include <machine/psl.h>
146 #include <machine/bat.h>
147 #include <machine/hid.h>
148 #include <machine/pte.h>
149 #include <machine/sr.h>
150 #include <machine/trap.h>
151 #include <machine/mmuvar.h>
152 
153 #include "mmu_oea64.h"
154 #include "mmu_if.h"
155 #include "moea64_if.h"
156 
157 void moea64_release_vsid(uint64_t vsid);
158 uintptr_t moea64_get_unique_vsid(void);
159 
160 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
161 #define ENABLE_TRANS(msr)	mtmsr(msr)
162 
163 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
164 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
165 #define	VSID_HASH_MASK		0x0000007fffffffffULL
166 
167 /*
168  * Locking semantics:
169  * -- Read lock: if no modifications are being made to either the PVO lists
170  *    or page table or if any modifications being made result in internal
171  *    changes (e.g. wiring, protection) such that the existence of the PVOs
172  *    is unchanged and they remain associated with the same pmap (in which
173  *    case the changes should be protected by the pmap lock)
174  * -- Write lock: required if PTEs/PVOs are being inserted or removed.
175  */
176 
177 #define LOCK_TABLE_RD() rw_rlock(&moea64_table_lock)
178 #define UNLOCK_TABLE_RD() rw_runlock(&moea64_table_lock)
179 #define LOCK_TABLE_WR() rw_wlock(&moea64_table_lock)
180 #define UNLOCK_TABLE_WR() rw_wunlock(&moea64_table_lock)
181 
182 struct ofw_map {
183 	cell_t	om_va;
184 	cell_t	om_len;
185 	uint64_t om_pa;
186 	cell_t	om_mode;
187 };
188 
189 extern unsigned char _etext[];
190 extern unsigned char _end[];
191 
192 extern int ofw_real_mode;
193 
194 /*
195  * Map of physical memory regions.
196  */
197 static struct	mem_region *regions;
198 static struct	mem_region *pregions;
199 static u_int	phys_avail_count;
200 static int	regions_sz, pregions_sz;
201 
202 extern void bs_remap_earlyboot(void);
203 
204 /*
205  * Lock for the pteg and pvo tables.
206  */
207 struct rwlock	moea64_table_lock;
208 struct mtx	moea64_slb_mutex;
209 
210 /*
211  * PTEG data.
212  */
213 u_int		moea64_pteg_count;
214 u_int		moea64_pteg_mask;
215 
216 /*
217  * PVO data.
218  */
219 struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
220 
221 uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
222 uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
223 
224 #define	BPVO_POOL_SIZE	327680
225 static struct	pvo_entry *moea64_bpvo_pool;
226 static int	moea64_bpvo_pool_index = 0;
227 SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
228     &moea64_bpvo_pool_index, 0, "");
229 
230 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
231 #ifdef __powerpc64__
232 #define	NVSIDS		(NPMAPS * 16)
233 #define VSID_HASHMASK	0xffffffffUL
234 #else
235 #define NVSIDS		NPMAPS
236 #define VSID_HASHMASK	0xfffffUL
237 #endif
238 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
239 
240 static boolean_t moea64_initialized = FALSE;
241 
242 /*
243  * Statistics.
244  */
245 u_int	moea64_pte_valid = 0;
246 u_int	moea64_pte_overflow = 0;
247 u_int	moea64_pvo_entries = 0;
248 u_int	moea64_pvo_enter_calls = 0;
249 u_int	moea64_pvo_remove_calls = 0;
250 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
251     &moea64_pte_valid, 0, "");
252 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
253     &moea64_pte_overflow, 0, "");
254 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
255     &moea64_pvo_entries, 0, "");
256 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
257     &moea64_pvo_enter_calls, 0, "");
258 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
259     &moea64_pvo_remove_calls, 0, "");
260 
261 vm_offset_t	moea64_scratchpage_va[2];
262 struct pvo_entry *moea64_scratchpage_pvo[2];
263 uintptr_t	moea64_scratchpage_pte[2];
264 struct	mtx	moea64_scratchpage_mtx;
265 
266 uint64_t 	moea64_large_page_mask = 0;
267 uint64_t	moea64_large_page_size = 0;
268 int		moea64_large_page_shift = 0;
269 
270 /*
271  * PVO calls.
272  */
273 static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
274 		    vm_offset_t, vm_offset_t, uint64_t, int, int8_t);
275 static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
276 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
277 
278 /*
279  * Utility routines.
280  */
281 static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
282 static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
283 static void		moea64_kremove(mmu_t, vm_offset_t);
284 static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
285 			    vm_offset_t pa, vm_size_t sz);
286 
287 /*
288  * Kernel MMU interface
289  */
290 void moea64_clear_modify(mmu_t, vm_page_t);
291 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
292 void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
293     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
294 int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
295     u_int flags, int8_t psind);
296 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
297     vm_prot_t);
298 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
299 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
300 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
301 void moea64_init(mmu_t);
302 boolean_t moea64_is_modified(mmu_t, vm_page_t);
303 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
304 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
305 int moea64_ts_referenced(mmu_t, vm_page_t);
306 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
307 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
308 int moea64_page_wired_mappings(mmu_t, vm_page_t);
309 void moea64_pinit(mmu_t, pmap_t);
310 void moea64_pinit0(mmu_t, pmap_t);
311 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
312 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
313 void moea64_qremove(mmu_t, vm_offset_t, int);
314 void moea64_release(mmu_t, pmap_t);
315 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
316 void moea64_remove_pages(mmu_t, pmap_t);
317 void moea64_remove_all(mmu_t, vm_page_t);
318 void moea64_remove_write(mmu_t, vm_page_t);
319 void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
320 void moea64_zero_page(mmu_t, vm_page_t);
321 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
322 void moea64_zero_page_idle(mmu_t, vm_page_t);
323 void moea64_activate(mmu_t, struct thread *);
324 void moea64_deactivate(mmu_t, struct thread *);
325 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
326 void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
327 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
328 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
329 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
330 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
331 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
332 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
333 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
334 void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz,
335     void **va);
336 void moea64_scan_init(mmu_t mmu);
337 
338 static mmu_method_t moea64_methods[] = {
339 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
340 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
341 	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
342 	MMUMETHOD(mmu_enter,		moea64_enter),
343 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
344 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
345 	MMUMETHOD(mmu_extract,		moea64_extract),
346 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
347 	MMUMETHOD(mmu_init,		moea64_init),
348 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
349 	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
350 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
351 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
352 	MMUMETHOD(mmu_map,     		moea64_map),
353 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
354 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
355 	MMUMETHOD(mmu_pinit,		moea64_pinit),
356 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
357 	MMUMETHOD(mmu_protect,		moea64_protect),
358 	MMUMETHOD(mmu_qenter,		moea64_qenter),
359 	MMUMETHOD(mmu_qremove,		moea64_qremove),
360 	MMUMETHOD(mmu_release,		moea64_release),
361 	MMUMETHOD(mmu_remove,		moea64_remove),
362 	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
363 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
364 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
365 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
366 	MMUMETHOD(mmu_unwire,		moea64_unwire),
367 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
368 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
369 	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
370 	MMUMETHOD(mmu_activate,		moea64_activate),
371 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
372 	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
373 
374 	/* Internal interfaces */
375 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
376 	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
377 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
378 	MMUMETHOD(mmu_kextract,		moea64_kextract),
379 	MMUMETHOD(mmu_kenter,		moea64_kenter),
380 	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
381 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
382 	MMUMETHOD(mmu_scan_init,	moea64_scan_init),
383 	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
384 
385 	{ 0, 0 }
386 };
387 
388 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
389 
390 static __inline u_int
391 va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
392 {
393 	uint64_t hash;
394 	int shift;
395 
396 	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
397 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
398 	    shift);
399 	return (hash & moea64_pteg_mask);
400 }
401 
402 static __inline struct pvo_head *
403 vm_page_to_pvoh(vm_page_t m)
404 {
405 
406 	return (&m->md.mdpg_pvoh);
407 }
408 
409 static __inline void
410 moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
411     uint64_t pte_lo, int flags)
412 {
413 
414 	/*
415 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
416 	 * set when the real pte is set in memory.
417 	 *
418 	 * Note: Don't set the valid bit for correct operation of tlb update.
419 	 */
420 	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
421 	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
422 
423 	if (flags & PVO_LARGE)
424 		pt->pte_hi |= LPTE_BIG;
425 
426 	pt->pte_lo = pte_lo;
427 }
428 
429 static __inline uint64_t
430 moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
431 {
432 	uint64_t pte_lo;
433 	int i;
434 
435 	if (ma != VM_MEMATTR_DEFAULT) {
436 		switch (ma) {
437 		case VM_MEMATTR_UNCACHEABLE:
438 			return (LPTE_I | LPTE_G);
439 		case VM_MEMATTR_WRITE_COMBINING:
440 		case VM_MEMATTR_WRITE_BACK:
441 		case VM_MEMATTR_PREFETCHABLE:
442 			return (LPTE_I);
443 		case VM_MEMATTR_WRITE_THROUGH:
444 			return (LPTE_W | LPTE_M);
445 		}
446 	}
447 
448 	/*
449 	 * Assume the page is cache inhibited and access is guarded unless
450 	 * it's in our available memory array.
451 	 */
452 	pte_lo = LPTE_I | LPTE_G;
453 	for (i = 0; i < pregions_sz; i++) {
454 		if ((pa >= pregions[i].mr_start) &&
455 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
456 			pte_lo &= ~(LPTE_I | LPTE_G);
457 			pte_lo |= LPTE_M;
458 			break;
459 		}
460 	}
461 
462 	return pte_lo;
463 }
464 
465 /*
466  * Quick sort callout for comparing memory regions.
467  */
468 static int	om_cmp(const void *a, const void *b);
469 
470 static int
471 om_cmp(const void *a, const void *b)
472 {
473 	const struct	ofw_map *mapa;
474 	const struct	ofw_map *mapb;
475 
476 	mapa = a;
477 	mapb = b;
478 	if (mapa->om_pa < mapb->om_pa)
479 		return (-1);
480 	else if (mapa->om_pa > mapb->om_pa)
481 		return (1);
482 	else
483 		return (0);
484 }
485 
486 static void
487 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
488 {
489 	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
490 	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
491 	register_t	msr;
492 	vm_offset_t	off;
493 	vm_paddr_t	pa_base;
494 	int		i, j;
495 
496 	bzero(translations, sz);
497 	OF_getprop(OF_finddevice("/"), "#address-cells", &acells,
498 	    sizeof(acells));
499 	if (OF_getprop(mmu, "translations", trans_cells, sz) == -1)
500 		panic("moea64_bootstrap: can't get ofw translations");
501 
502 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
503 	sz /= sizeof(cell_t);
504 	for (i = 0, j = 0; i < sz; j++) {
505 		translations[j].om_va = trans_cells[i++];
506 		translations[j].om_len = trans_cells[i++];
507 		translations[j].om_pa = trans_cells[i++];
508 		if (acells == 2) {
509 			translations[j].om_pa <<= 32;
510 			translations[j].om_pa |= trans_cells[i++];
511 		}
512 		translations[j].om_mode = trans_cells[i++];
513 	}
514 	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
515 	    i, sz));
516 
517 	sz = j;
518 	qsort(translations, sz, sizeof (*translations), om_cmp);
519 
520 	for (i = 0; i < sz; i++) {
521 		pa_base = translations[i].om_pa;
522 	      #ifndef __powerpc64__
523 		if ((translations[i].om_pa >> 32) != 0)
524 			panic("OFW translations above 32-bit boundary!");
525 	      #endif
526 
527 		if (pa_base % PAGE_SIZE)
528 			panic("OFW translation not page-aligned (phys)!");
529 		if (translations[i].om_va % PAGE_SIZE)
530 			panic("OFW translation not page-aligned (virt)!");
531 
532 		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
533 		    pa_base, translations[i].om_va, translations[i].om_len);
534 
535 		/* Now enter the pages for this mapping */
536 
537 		DISABLE_TRANS(msr);
538 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
539 			/* If this address is direct-mapped, skip remapping */
540 			if (hw_direct_map && translations[i].om_va == pa_base &&
541 			    moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT) 			    == LPTE_M)
542 				continue;
543 
544 			if (moea64_pvo_find_va(kernel_pmap,
545 			    translations[i].om_va + off) != NULL)
546 				continue;
547 
548 			moea64_kenter(mmup, translations[i].om_va + off,
549 			    pa_base + off);
550 		}
551 		ENABLE_TRANS(msr);
552 	}
553 }
554 
555 #ifdef __powerpc64__
556 static void
557 moea64_probe_large_page(void)
558 {
559 	uint16_t pvr = mfpvr() >> 16;
560 
561 	switch (pvr) {
562 	case IBM970:
563 	case IBM970FX:
564 	case IBM970MP:
565 		powerpc_sync(); isync();
566 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
567 		powerpc_sync(); isync();
568 
569 		/* FALLTHROUGH */
570 	default:
571 		moea64_large_page_size = 0x1000000; /* 16 MB */
572 		moea64_large_page_shift = 24;
573 	}
574 
575 	moea64_large_page_mask = moea64_large_page_size - 1;
576 }
577 
578 static void
579 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
580 {
581 	struct slb *cache;
582 	struct slb entry;
583 	uint64_t esid, slbe;
584 	uint64_t i;
585 
586 	cache = PCPU_GET(slb);
587 	esid = va >> ADDR_SR_SHFT;
588 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
589 
590 	for (i = 0; i < 64; i++) {
591 		if (cache[i].slbe == (slbe | i))
592 			return;
593 	}
594 
595 	entry.slbe = slbe;
596 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
597 	if (large)
598 		entry.slbv |= SLBV_L;
599 
600 	slb_insert_kernel(entry.slbe, entry.slbv);
601 }
602 #endif
603 
604 static void
605 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
606     vm_offset_t kernelend)
607 {
608 	register_t msr;
609 	vm_paddr_t pa;
610 	vm_offset_t size, off;
611 	uint64_t pte_lo;
612 	int i;
613 
614 	if (moea64_large_page_size == 0)
615 		hw_direct_map = 0;
616 
617 	DISABLE_TRANS(msr);
618 	if (hw_direct_map) {
619 		LOCK_TABLE_WR();
620 		PMAP_LOCK(kernel_pmap);
621 		for (i = 0; i < pregions_sz; i++) {
622 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
623 		     pregions[i].mr_size; pa += moea64_large_page_size) {
624 			pte_lo = LPTE_M;
625 
626 			/*
627 			 * Set memory access as guarded if prefetch within
628 			 * the page could exit the available physmem area.
629 			 */
630 			if (pa & moea64_large_page_mask) {
631 				pa &= moea64_large_page_mask;
632 				pte_lo |= LPTE_G;
633 			}
634 			if (pa + moea64_large_page_size >
635 			    pregions[i].mr_start + pregions[i].mr_size)
636 				pte_lo |= LPTE_G;
637 
638 			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
639 				    NULL, pa, pa, pte_lo,
640 				    PVO_WIRED | PVO_LARGE, 0);
641 		  }
642 		}
643 		PMAP_UNLOCK(kernel_pmap);
644 		UNLOCK_TABLE_WR();
645 	} else {
646 		size = sizeof(struct pvo_head) * moea64_pteg_count;
647 		off = (vm_offset_t)(moea64_pvo_table);
648 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
649 			moea64_kenter(mmup, pa, pa);
650 		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
651 		off = (vm_offset_t)(moea64_bpvo_pool);
652 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
653 		moea64_kenter(mmup, pa, pa);
654 
655 		/*
656 		 * Map certain important things, like ourselves.
657 		 *
658 		 * NOTE: We do not map the exception vector space. That code is
659 		 * used only in real mode, and leaving it unmapped allows us to
660 		 * catch NULL pointer deferences, instead of making NULL a valid
661 		 * address.
662 		 */
663 
664 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
665 		    pa += PAGE_SIZE)
666 			moea64_kenter(mmup, pa, pa);
667 	}
668 	ENABLE_TRANS(msr);
669 
670 	/*
671 	 * Allow user to override unmapped_buf_allowed for testing.
672 	 * XXXKIB Only direct map implementation was tested.
673 	 */
674 	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
675 	    &unmapped_buf_allowed))
676 		unmapped_buf_allowed = hw_direct_map;
677 }
678 
679 void
680 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
681 {
682 	int		i, j;
683 	vm_size_t	physsz, hwphyssz;
684 
685 #ifndef __powerpc64__
686 	/* We don't have a direct map since there is no BAT */
687 	hw_direct_map = 0;
688 
689 	/* Make sure battable is zero, since we have no BAT */
690 	for (i = 0; i < 16; i++) {
691 		battable[i].batu = 0;
692 		battable[i].batl = 0;
693 	}
694 #else
695 	moea64_probe_large_page();
696 
697 	/* Use a direct map if we have large page support */
698 	if (moea64_large_page_size > 0)
699 		hw_direct_map = 1;
700 	else
701 		hw_direct_map = 0;
702 #endif
703 
704 	/* Get physical memory regions from firmware */
705 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
706 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
707 
708 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
709 		panic("moea64_bootstrap: phys_avail too small");
710 
711 	phys_avail_count = 0;
712 	physsz = 0;
713 	hwphyssz = 0;
714 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
715 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
716 		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
717 		    regions[i].mr_start, regions[i].mr_start +
718 		    regions[i].mr_size, regions[i].mr_size);
719 		if (hwphyssz != 0 &&
720 		    (physsz + regions[i].mr_size) >= hwphyssz) {
721 			if (physsz < hwphyssz) {
722 				phys_avail[j] = regions[i].mr_start;
723 				phys_avail[j + 1] = regions[i].mr_start +
724 				    hwphyssz - physsz;
725 				physsz = hwphyssz;
726 				phys_avail_count++;
727 			}
728 			break;
729 		}
730 		phys_avail[j] = regions[i].mr_start;
731 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
732 		phys_avail_count++;
733 		physsz += regions[i].mr_size;
734 	}
735 
736 	/* Check for overlap with the kernel and exception vectors */
737 	for (j = 0; j < 2*phys_avail_count; j+=2) {
738 		if (phys_avail[j] < EXC_LAST)
739 			phys_avail[j] += EXC_LAST;
740 
741 		if (kernelstart >= phys_avail[j] &&
742 		    kernelstart < phys_avail[j+1]) {
743 			if (kernelend < phys_avail[j+1]) {
744 				phys_avail[2*phys_avail_count] =
745 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
746 				phys_avail[2*phys_avail_count + 1] =
747 				    phys_avail[j+1];
748 				phys_avail_count++;
749 			}
750 
751 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
752 		}
753 
754 		if (kernelend >= phys_avail[j] &&
755 		    kernelend < phys_avail[j+1]) {
756 			if (kernelstart > phys_avail[j]) {
757 				phys_avail[2*phys_avail_count] = phys_avail[j];
758 				phys_avail[2*phys_avail_count + 1] =
759 				    kernelstart & ~PAGE_MASK;
760 				phys_avail_count++;
761 			}
762 
763 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
764 		}
765 	}
766 
767 	physmem = btoc(physsz);
768 
769 #ifdef PTEGCOUNT
770 	moea64_pteg_count = PTEGCOUNT;
771 #else
772 	moea64_pteg_count = 0x1000;
773 
774 	while (moea64_pteg_count < physmem)
775 		moea64_pteg_count <<= 1;
776 
777 	moea64_pteg_count >>= 1;
778 #endif /* PTEGCOUNT */
779 }
780 
781 void
782 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
783 {
784 	vm_size_t	size;
785 	register_t	msr;
786 	int		i;
787 
788 	/*
789 	 * Set PTEG mask
790 	 */
791 	moea64_pteg_mask = moea64_pteg_count - 1;
792 
793 	/*
794 	 * Allocate pv/overflow lists.
795 	 */
796 	size = sizeof(struct pvo_head) * moea64_pteg_count;
797 
798 	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
799 	    PAGE_SIZE);
800 	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
801 
802 	DISABLE_TRANS(msr);
803 	for (i = 0; i < moea64_pteg_count; i++)
804 		LIST_INIT(&moea64_pvo_table[i]);
805 	ENABLE_TRANS(msr);
806 
807 	/*
808 	 * Initialize the lock that synchronizes access to the pteg and pvo
809 	 * tables.
810 	 */
811 	rw_init_flags(&moea64_table_lock, "pmap tables", RW_RECURSE);
812 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
813 
814 	/*
815 	 * Initialise the unmanaged pvo pool.
816 	 */
817 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
818 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
819 	moea64_bpvo_pool_index = 0;
820 
821 	/*
822 	 * Make sure kernel vsid is allocated as well as VSID 0.
823 	 */
824 	#ifndef __powerpc64__
825 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
826 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
827 	moea64_vsid_bitmap[0] |= 1;
828 	#endif
829 
830 	/*
831 	 * Initialize the kernel pmap (which is statically allocated).
832 	 */
833 	#ifdef __powerpc64__
834 	for (i = 0; i < 64; i++) {
835 		pcpup->pc_slb[i].slbv = 0;
836 		pcpup->pc_slb[i].slbe = 0;
837 	}
838 	#else
839 	for (i = 0; i < 16; i++)
840 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
841 	#endif
842 
843 	kernel_pmap->pmap_phys = kernel_pmap;
844 	CPU_FILL(&kernel_pmap->pm_active);
845 	RB_INIT(&kernel_pmap->pmap_pvo);
846 
847 	PMAP_LOCK_INIT(kernel_pmap);
848 
849 	/*
850 	 * Now map in all the other buffers we allocated earlier
851 	 */
852 
853 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
854 }
855 
856 void
857 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
858 {
859 	ihandle_t	mmui;
860 	phandle_t	chosen;
861 	phandle_t	mmu;
862 	ssize_t		sz;
863 	int		i;
864 	vm_offset_t	pa, va;
865 	void		*dpcpu;
866 
867 	/*
868 	 * Set up the Open Firmware pmap and add its mappings if not in real
869 	 * mode.
870 	 */
871 
872 	chosen = OF_finddevice("/chosen");
873 	if (!ofw_real_mode && chosen != -1 &&
874 	    OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
875 		mmu = OF_instance_to_package(mmui);
876 		if (mmu == -1 ||
877 		    (sz = OF_getproplen(mmu, "translations")) == -1)
878 			sz = 0;
879 		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
880 			panic("moea64_bootstrap: too many ofw translations");
881 
882 		if (sz > 0)
883 			moea64_add_ofw_mappings(mmup, mmu, sz);
884 	}
885 
886 	/*
887 	 * Calculate the last available physical address.
888 	 */
889 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
890 		;
891 	Maxmem = powerpc_btop(phys_avail[i + 1]);
892 
893 	/*
894 	 * Initialize MMU and remap early physical mappings
895 	 */
896 	MMU_CPU_BOOTSTRAP(mmup,0);
897 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
898 	pmap_bootstrapped++;
899 	bs_remap_earlyboot();
900 
901 	/*
902 	 * Set the start and end of kva.
903 	 */
904 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
905 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
906 
907 	/*
908 	 * Map the entire KVA range into the SLB. We must not fault there.
909 	 */
910 	#ifdef __powerpc64__
911 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
912 		moea64_bootstrap_slb_prefault(va, 0);
913 	#endif
914 
915 	/*
916 	 * Figure out how far we can extend virtual_end into segment 16
917 	 * without running into existing mappings. Segment 16 is guaranteed
918 	 * to contain neither RAM nor devices (at least on Apple hardware),
919 	 * but will generally contain some OFW mappings we should not
920 	 * step on.
921 	 */
922 
923 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
924 	PMAP_LOCK(kernel_pmap);
925 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
926 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
927 		virtual_end += PAGE_SIZE;
928 	PMAP_UNLOCK(kernel_pmap);
929 	#endif
930 
931 	/*
932 	 * Allocate a kernel stack with a guard page for thread0 and map it
933 	 * into the kernel page map.
934 	 */
935 	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
936 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
937 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
938 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
939 	thread0.td_kstack = va;
940 	thread0.td_kstack_pages = KSTACK_PAGES;
941 	for (i = 0; i < KSTACK_PAGES; i++) {
942 		moea64_kenter(mmup, va, pa);
943 		pa += PAGE_SIZE;
944 		va += PAGE_SIZE;
945 	}
946 
947 	/*
948 	 * Allocate virtual address space for the message buffer.
949 	 */
950 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
951 	msgbufp = (struct msgbuf *)virtual_avail;
952 	va = virtual_avail;
953 	virtual_avail += round_page(msgbufsize);
954 	while (va < virtual_avail) {
955 		moea64_kenter(mmup, va, pa);
956 		pa += PAGE_SIZE;
957 		va += PAGE_SIZE;
958 	}
959 
960 	/*
961 	 * Allocate virtual address space for the dynamic percpu area.
962 	 */
963 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
964 	dpcpu = (void *)virtual_avail;
965 	va = virtual_avail;
966 	virtual_avail += DPCPU_SIZE;
967 	while (va < virtual_avail) {
968 		moea64_kenter(mmup, va, pa);
969 		pa += PAGE_SIZE;
970 		va += PAGE_SIZE;
971 	}
972 	dpcpu_init(dpcpu, 0);
973 
974 	/*
975 	 * Allocate some things for page zeroing. We put this directly
976 	 * in the page table, marked with LPTE_LOCKED, to avoid any
977 	 * of the PVO book-keeping or other parts of the VM system
978 	 * from even knowing that this hack exists.
979 	 */
980 
981 	if (!hw_direct_map) {
982 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
983 		    MTX_DEF);
984 		for (i = 0; i < 2; i++) {
985 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
986 			virtual_end -= PAGE_SIZE;
987 
988 			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
989 
990 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
991 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
992 			LOCK_TABLE_RD();
993 			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
994 			    mmup, moea64_scratchpage_pvo[i]);
995 			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
996 			    |= LPTE_LOCKED;
997 			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
998 			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
999 			    moea64_scratchpage_pvo[i]->pvo_vpn);
1000 			UNLOCK_TABLE_RD();
1001 		}
1002 	}
1003 }
1004 
1005 /*
1006  * Activate a user pmap.  The pmap must be activated before its address
1007  * space can be accessed in any way.
1008  */
1009 void
1010 moea64_activate(mmu_t mmu, struct thread *td)
1011 {
1012 	pmap_t	pm;
1013 
1014 	pm = &td->td_proc->p_vmspace->vm_pmap;
1015 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1016 
1017 	#ifdef __powerpc64__
1018 	PCPU_SET(userslb, pm->pm_slb);
1019 	#else
1020 	PCPU_SET(curpmap, pm->pmap_phys);
1021 	#endif
1022 }
1023 
1024 void
1025 moea64_deactivate(mmu_t mmu, struct thread *td)
1026 {
1027 	pmap_t	pm;
1028 
1029 	pm = &td->td_proc->p_vmspace->vm_pmap;
1030 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1031 	#ifdef __powerpc64__
1032 	PCPU_SET(userslb, NULL);
1033 	#else
1034 	PCPU_SET(curpmap, NULL);
1035 	#endif
1036 }
1037 
1038 void
1039 moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1040 {
1041 	struct	pvo_entry key, *pvo;
1042 	uintptr_t pt;
1043 
1044 	LOCK_TABLE_RD();
1045 	PMAP_LOCK(pm);
1046 	key.pvo_vaddr = sva;
1047 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1048 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1049 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1050 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1051 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1052 			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1053 			    pvo);
1054 		pvo->pvo_vaddr &= ~PVO_WIRED;
1055 		if ((pvo->pvo_pte.lpte.pte_hi & LPTE_WIRED) == 0)
1056 			panic("moea64_unwire: pte %p is missing LPTE_WIRED",
1057 			    &pvo->pvo_pte.lpte);
1058 		pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1059 		if (pt != -1) {
1060 			/*
1061 			 * The PTE's wired attribute is not a hardware
1062 			 * feature, so there is no need to invalidate any TLB
1063 			 * entries.
1064 			 */
1065 			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1066 			    pvo->pvo_vpn);
1067 		}
1068 		pm->pm_stats.wired_count--;
1069 	}
1070 	UNLOCK_TABLE_RD();
1071 	PMAP_UNLOCK(pm);
1072 }
1073 
1074 /*
1075  * This goes through and sets the physical address of our
1076  * special scratch PTE to the PA we want to zero or copy. Because
1077  * of locking issues (this can get called in pvo_enter() by
1078  * the UMA allocator), we can't use most other utility functions here
1079  */
1080 
1081 static __inline
1082 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1083 
1084 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1085 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1086 
1087 	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1088 	    ~(LPTE_WIMG | LPTE_RPGN);
1089 	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1090 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1091 	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1092 	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1093 	    moea64_scratchpage_pvo[which]->pvo_vpn);
1094 	isync();
1095 }
1096 
1097 void
1098 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1099 {
1100 	vm_offset_t	dst;
1101 	vm_offset_t	src;
1102 
1103 	dst = VM_PAGE_TO_PHYS(mdst);
1104 	src = VM_PAGE_TO_PHYS(msrc);
1105 
1106 	if (hw_direct_map) {
1107 		bcopy((void *)src, (void *)dst, PAGE_SIZE);
1108 	} else {
1109 		mtx_lock(&moea64_scratchpage_mtx);
1110 
1111 		moea64_set_scratchpage_pa(mmu, 0, src);
1112 		moea64_set_scratchpage_pa(mmu, 1, dst);
1113 
1114 		bcopy((void *)moea64_scratchpage_va[0],
1115 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1116 
1117 		mtx_unlock(&moea64_scratchpage_mtx);
1118 	}
1119 }
1120 
1121 static inline void
1122 moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1123     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1124 {
1125 	void *a_cp, *b_cp;
1126 	vm_offset_t a_pg_offset, b_pg_offset;
1127 	int cnt;
1128 
1129 	while (xfersize > 0) {
1130 		a_pg_offset = a_offset & PAGE_MASK;
1131 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1132 		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1133 		    a_pg_offset;
1134 		b_pg_offset = b_offset & PAGE_MASK;
1135 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1136 		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1137 		    b_pg_offset;
1138 		bcopy(a_cp, b_cp, cnt);
1139 		a_offset += cnt;
1140 		b_offset += cnt;
1141 		xfersize -= cnt;
1142 	}
1143 }
1144 
1145 static inline void
1146 moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1147     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1148 {
1149 	void *a_cp, *b_cp;
1150 	vm_offset_t a_pg_offset, b_pg_offset;
1151 	int cnt;
1152 
1153 	mtx_lock(&moea64_scratchpage_mtx);
1154 	while (xfersize > 0) {
1155 		a_pg_offset = a_offset & PAGE_MASK;
1156 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1157 		moea64_set_scratchpage_pa(mmu, 0,
1158 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1159 		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1160 		b_pg_offset = b_offset & PAGE_MASK;
1161 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1162 		moea64_set_scratchpage_pa(mmu, 1,
1163 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1164 		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1165 		bcopy(a_cp, b_cp, cnt);
1166 		a_offset += cnt;
1167 		b_offset += cnt;
1168 		xfersize -= cnt;
1169 	}
1170 	mtx_unlock(&moea64_scratchpage_mtx);
1171 }
1172 
1173 void
1174 moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1175     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1176 {
1177 
1178 	if (hw_direct_map) {
1179 		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1180 		    xfersize);
1181 	} else {
1182 		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1183 		    xfersize);
1184 	}
1185 }
1186 
1187 void
1188 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1189 {
1190 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1191 
1192 	if (size + off > PAGE_SIZE)
1193 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1194 
1195 	if (hw_direct_map) {
1196 		bzero((caddr_t)pa + off, size);
1197 	} else {
1198 		mtx_lock(&moea64_scratchpage_mtx);
1199 		moea64_set_scratchpage_pa(mmu, 0, pa);
1200 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1201 		mtx_unlock(&moea64_scratchpage_mtx);
1202 	}
1203 }
1204 
1205 /*
1206  * Zero a page of physical memory by temporarily mapping it
1207  */
1208 void
1209 moea64_zero_page(mmu_t mmu, vm_page_t m)
1210 {
1211 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1212 	vm_offset_t va, off;
1213 
1214 	if (!hw_direct_map) {
1215 		mtx_lock(&moea64_scratchpage_mtx);
1216 
1217 		moea64_set_scratchpage_pa(mmu, 0, pa);
1218 		va = moea64_scratchpage_va[0];
1219 	} else {
1220 		va = pa;
1221 	}
1222 
1223 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1224 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1225 
1226 	if (!hw_direct_map)
1227 		mtx_unlock(&moea64_scratchpage_mtx);
1228 }
1229 
1230 void
1231 moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1232 {
1233 
1234 	moea64_zero_page(mmu, m);
1235 }
1236 
1237 /*
1238  * Map the given physical page at the specified virtual address in the
1239  * target pmap with the protection requested.  If specified the page
1240  * will be wired down.
1241  */
1242 
1243 int
1244 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1245     vm_prot_t prot, u_int flags, int8_t psind)
1246 {
1247 	struct		pvo_head *pvo_head;
1248 	uma_zone_t	zone;
1249 	uint64_t	pte_lo;
1250 	u_int		pvo_flags;
1251 	int		error;
1252 
1253 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1254 		VM_OBJECT_ASSERT_LOCKED(m->object);
1255 
1256 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1257 		pvo_head = NULL;
1258 		zone = moea64_upvo_zone;
1259 		pvo_flags = 0;
1260 	} else {
1261 		pvo_head = vm_page_to_pvoh(m);
1262 		zone = moea64_mpvo_zone;
1263 		pvo_flags = PVO_MANAGED;
1264 	}
1265 
1266 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1267 
1268 	if (prot & VM_PROT_WRITE) {
1269 		pte_lo |= LPTE_BW;
1270 		if (pmap_bootstrapped &&
1271 		    (m->oflags & VPO_UNMANAGED) == 0)
1272 			vm_page_aflag_set(m, PGA_WRITEABLE);
1273 	} else
1274 		pte_lo |= LPTE_BR;
1275 
1276 	if ((prot & VM_PROT_EXECUTE) == 0)
1277 		pte_lo |= LPTE_NOEXEC;
1278 
1279 	if ((flags & PMAP_ENTER_WIRED) != 0)
1280 		pvo_flags |= PVO_WIRED;
1281 
1282 	for (;;) {
1283 		LOCK_TABLE_WR();
1284 		PMAP_LOCK(pmap);
1285 		error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1286 		    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags, psind);
1287 		PMAP_UNLOCK(pmap);
1288 		UNLOCK_TABLE_WR();
1289 		if (error != ENOMEM)
1290 			break;
1291 		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1292 			return (KERN_RESOURCE_SHORTAGE);
1293 		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1294 		VM_WAIT;
1295 	}
1296 
1297 	/*
1298 	 * Flush the page from the instruction cache if this page is
1299 	 * mapped executable and cacheable.
1300 	 */
1301 	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1302 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1303 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1304 		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1305 	}
1306 	return (KERN_SUCCESS);
1307 }
1308 
1309 static void
1310 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1311     vm_size_t sz)
1312 {
1313 
1314 	/*
1315 	 * This is much trickier than on older systems because
1316 	 * we can't sync the icache on physical addresses directly
1317 	 * without a direct map. Instead we check a couple of cases
1318 	 * where the memory is already mapped in and, failing that,
1319 	 * use the same trick we use for page zeroing to create
1320 	 * a temporary mapping for this physical address.
1321 	 */
1322 
1323 	if (!pmap_bootstrapped) {
1324 		/*
1325 		 * If PMAP is not bootstrapped, we are likely to be
1326 		 * in real mode.
1327 		 */
1328 		__syncicache((void *)pa, sz);
1329 	} else if (pmap == kernel_pmap) {
1330 		__syncicache((void *)va, sz);
1331 	} else if (hw_direct_map) {
1332 		__syncicache((void *)pa, sz);
1333 	} else {
1334 		/* Use the scratch page to set up a temp mapping */
1335 
1336 		mtx_lock(&moea64_scratchpage_mtx);
1337 
1338 		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1339 		__syncicache((void *)(moea64_scratchpage_va[1] +
1340 		    (va & ADDR_POFF)), sz);
1341 
1342 		mtx_unlock(&moea64_scratchpage_mtx);
1343 	}
1344 }
1345 
1346 /*
1347  * Maps a sequence of resident pages belonging to the same object.
1348  * The sequence begins with the given page m_start.  This page is
1349  * mapped at the given virtual address start.  Each subsequent page is
1350  * mapped at a virtual address that is offset from start by the same
1351  * amount as the page is offset from m_start within the object.  The
1352  * last page in the sequence is the page with the largest offset from
1353  * m_start that can be mapped at a virtual address less than the given
1354  * virtual address end.  Not every virtual page between start and end
1355  * is mapped; only those for which a resident page exists with the
1356  * corresponding offset from m_start are mapped.
1357  */
1358 void
1359 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1360     vm_page_t m_start, vm_prot_t prot)
1361 {
1362 	vm_page_t m;
1363 	vm_pindex_t diff, psize;
1364 
1365 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1366 
1367 	psize = atop(end - start);
1368 	m = m_start;
1369 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1370 		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1371 		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0);
1372 		m = TAILQ_NEXT(m, listq);
1373 	}
1374 }
1375 
1376 void
1377 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1378     vm_prot_t prot)
1379 {
1380 
1381 	moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1382 	    PMAP_ENTER_NOSLEEP, 0);
1383 }
1384 
1385 vm_paddr_t
1386 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1387 {
1388 	struct	pvo_entry *pvo;
1389 	vm_paddr_t pa;
1390 
1391 	PMAP_LOCK(pm);
1392 	pvo = moea64_pvo_find_va(pm, va);
1393 	if (pvo == NULL)
1394 		pa = 0;
1395 	else
1396 		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1397 		    (va - PVO_VADDR(pvo));
1398 	PMAP_UNLOCK(pm);
1399 	return (pa);
1400 }
1401 
1402 /*
1403  * Atomically extract and hold the physical page with the given
1404  * pmap and virtual address pair if that mapping permits the given
1405  * protection.
1406  */
1407 vm_page_t
1408 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1409 {
1410 	struct	pvo_entry *pvo;
1411 	vm_page_t m;
1412         vm_paddr_t pa;
1413 
1414 	m = NULL;
1415 	pa = 0;
1416 	PMAP_LOCK(pmap);
1417 retry:
1418 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1419 	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1420 	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1421 	     (prot & VM_PROT_WRITE) == 0)) {
1422 		if (vm_page_pa_tryrelock(pmap,
1423 			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1424 			goto retry;
1425 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1426 		vm_page_hold(m);
1427 	}
1428 	PA_UNLOCK_COND(pa);
1429 	PMAP_UNLOCK(pmap);
1430 	return (m);
1431 }
1432 
1433 static mmu_t installed_mmu;
1434 
1435 static void *
1436 moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1437 {
1438 	/*
1439 	 * This entire routine is a horrible hack to avoid bothering kmem
1440 	 * for new KVA addresses. Because this can get called from inside
1441 	 * kmem allocation routines, calling kmem for a new address here
1442 	 * can lead to multiply locking non-recursive mutexes.
1443 	 */
1444         vm_offset_t va;
1445 
1446         vm_page_t m;
1447         int pflags, needed_lock;
1448 
1449 	*flags = UMA_SLAB_PRIV;
1450 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1451 	pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
1452 
1453         for (;;) {
1454                 m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1455                 if (m == NULL) {
1456                         if (wait & M_NOWAIT)
1457                                 return (NULL);
1458                         VM_WAIT;
1459                 } else
1460                         break;
1461         }
1462 
1463 	va = VM_PAGE_TO_PHYS(m);
1464 
1465 	LOCK_TABLE_WR();
1466 	if (needed_lock)
1467 		PMAP_LOCK(kernel_pmap);
1468 
1469 	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1470 	    NULL, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP,
1471 	    0);
1472 
1473 	if (needed_lock)
1474 		PMAP_UNLOCK(kernel_pmap);
1475 	UNLOCK_TABLE_WR();
1476 
1477 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1478                 bzero((void *)va, PAGE_SIZE);
1479 
1480 	return (void *)va;
1481 }
1482 
1483 extern int elf32_nxstack;
1484 
1485 void
1486 moea64_init(mmu_t mmu)
1487 {
1488 
1489 	CTR0(KTR_PMAP, "moea64_init");
1490 
1491 	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1492 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1493 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1494 	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1495 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1496 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1497 
1498 	if (!hw_direct_map) {
1499 		installed_mmu = mmu;
1500 		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1501 		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1502 	}
1503 
1504 #ifdef COMPAT_FREEBSD32
1505 	elf32_nxstack = 1;
1506 #endif
1507 
1508 	moea64_initialized = TRUE;
1509 }
1510 
1511 boolean_t
1512 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1513 {
1514 
1515 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1516 	    ("moea64_is_referenced: page %p is not managed", m));
1517 	return (moea64_query_bit(mmu, m, PTE_REF));
1518 }
1519 
1520 boolean_t
1521 moea64_is_modified(mmu_t mmu, vm_page_t m)
1522 {
1523 
1524 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1525 	    ("moea64_is_modified: page %p is not managed", m));
1526 
1527 	/*
1528 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1529 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1530 	 * is clear, no PTEs can have LPTE_CHG set.
1531 	 */
1532 	VM_OBJECT_ASSERT_LOCKED(m->object);
1533 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1534 		return (FALSE);
1535 	return (moea64_query_bit(mmu, m, LPTE_CHG));
1536 }
1537 
1538 boolean_t
1539 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1540 {
1541 	struct pvo_entry *pvo;
1542 	boolean_t rv;
1543 
1544 	PMAP_LOCK(pmap);
1545 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1546 	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1547 	PMAP_UNLOCK(pmap);
1548 	return (rv);
1549 }
1550 
1551 void
1552 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1553 {
1554 
1555 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1556 	    ("moea64_clear_modify: page %p is not managed", m));
1557 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1558 	KASSERT(!vm_page_xbusied(m),
1559 	    ("moea64_clear_modify: page %p is exclusive busied", m));
1560 
1561 	/*
1562 	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1563 	 * set.  If the object containing the page is locked and the page is
1564 	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1565 	 */
1566 	if ((m->aflags & PGA_WRITEABLE) == 0)
1567 		return;
1568 	moea64_clear_bit(mmu, m, LPTE_CHG);
1569 }
1570 
1571 /*
1572  * Clear the write and modified bits in each of the given page's mappings.
1573  */
1574 void
1575 moea64_remove_write(mmu_t mmu, vm_page_t m)
1576 {
1577 	struct	pvo_entry *pvo;
1578 	uintptr_t pt;
1579 	pmap_t	pmap;
1580 	uint64_t lo = 0;
1581 
1582 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1583 	    ("moea64_remove_write: page %p is not managed", m));
1584 
1585 	/*
1586 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1587 	 * set by another thread while the object is locked.  Thus,
1588 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1589 	 */
1590 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1591 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1592 		return;
1593 	powerpc_sync();
1594 	LOCK_TABLE_RD();
1595 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1596 		pmap = pvo->pvo_pmap;
1597 		PMAP_LOCK(pmap);
1598 		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1599 			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1600 			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1601 			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1602 			if (pt != -1) {
1603 				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1604 				lo |= pvo->pvo_pte.lpte.pte_lo;
1605 				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1606 				MOEA64_PTE_CHANGE(mmu, pt,
1607 				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1608 				if (pvo->pvo_pmap == kernel_pmap)
1609 					isync();
1610 			}
1611 		}
1612 		if ((lo & LPTE_CHG) != 0)
1613 			vm_page_dirty(m);
1614 		PMAP_UNLOCK(pmap);
1615 	}
1616 	UNLOCK_TABLE_RD();
1617 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1618 }
1619 
1620 /*
1621  *	moea64_ts_referenced:
1622  *
1623  *	Return a count of reference bits for a page, clearing those bits.
1624  *	It is not necessary for every reference bit to be cleared, but it
1625  *	is necessary that 0 only be returned when there are truly no
1626  *	reference bits set.
1627  *
1628  *	XXX: The exact number of bits to check and clear is a matter that
1629  *	should be tested and standardized at some point in the future for
1630  *	optimal aging of shared pages.
1631  */
1632 int
1633 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1634 {
1635 
1636 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1637 	    ("moea64_ts_referenced: page %p is not managed", m));
1638 	return (moea64_clear_bit(mmu, m, LPTE_REF));
1639 }
1640 
1641 /*
1642  * Modify the WIMG settings of all mappings for a page.
1643  */
1644 void
1645 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1646 {
1647 	struct	pvo_entry *pvo;
1648 	struct  pvo_head *pvo_head;
1649 	uintptr_t pt;
1650 	pmap_t	pmap;
1651 	uint64_t lo;
1652 
1653 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1654 		m->md.mdpg_cache_attrs = ma;
1655 		return;
1656 	}
1657 
1658 	pvo_head = vm_page_to_pvoh(m);
1659 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1660 	LOCK_TABLE_RD();
1661 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1662 		pmap = pvo->pvo_pmap;
1663 		PMAP_LOCK(pmap);
1664 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1665 		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1666 		pvo->pvo_pte.lpte.pte_lo |= lo;
1667 		if (pt != -1) {
1668 			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1669 			    pvo->pvo_vpn);
1670 			if (pvo->pvo_pmap == kernel_pmap)
1671 				isync();
1672 		}
1673 		PMAP_UNLOCK(pmap);
1674 	}
1675 	UNLOCK_TABLE_RD();
1676 	m->md.mdpg_cache_attrs = ma;
1677 }
1678 
1679 /*
1680  * Map a wired page into kernel virtual address space.
1681  */
1682 void
1683 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1684 {
1685 	uint64_t	pte_lo;
1686 	int		error;
1687 
1688 	pte_lo = moea64_calc_wimg(pa, ma);
1689 
1690 	LOCK_TABLE_WR();
1691 	PMAP_LOCK(kernel_pmap);
1692 	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1693 	    NULL, va, pa, pte_lo, PVO_WIRED, 0);
1694 	PMAP_UNLOCK(kernel_pmap);
1695 	UNLOCK_TABLE_WR();
1696 
1697 	if (error != 0 && error != ENOENT)
1698 		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1699 		    pa, error);
1700 }
1701 
1702 void
1703 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1704 {
1705 
1706 	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1707 }
1708 
1709 /*
1710  * Extract the physical page address associated with the given kernel virtual
1711  * address.
1712  */
1713 vm_paddr_t
1714 moea64_kextract(mmu_t mmu, vm_offset_t va)
1715 {
1716 	struct		pvo_entry *pvo;
1717 	vm_paddr_t pa;
1718 
1719 	/*
1720 	 * Shortcut the direct-mapped case when applicable.  We never put
1721 	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1722 	 */
1723 	if (va < VM_MIN_KERNEL_ADDRESS)
1724 		return (va);
1725 
1726 	PMAP_LOCK(kernel_pmap);
1727 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1728 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1729 	    va));
1730 	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1731 	PMAP_UNLOCK(kernel_pmap);
1732 	return (pa);
1733 }
1734 
1735 /*
1736  * Remove a wired page from kernel virtual address space.
1737  */
1738 void
1739 moea64_kremove(mmu_t mmu, vm_offset_t va)
1740 {
1741 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1742 }
1743 
1744 /*
1745  * Map a range of physical addresses into kernel virtual address space.
1746  *
1747  * The value passed in *virt is a suggested virtual address for the mapping.
1748  * Architectures which can support a direct-mapped physical to virtual region
1749  * can return the appropriate address within that region, leaving '*virt'
1750  * unchanged.  We cannot and therefore do not; *virt is updated with the
1751  * first usable address after the mapped region.
1752  */
1753 vm_offset_t
1754 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1755     vm_paddr_t pa_end, int prot)
1756 {
1757 	vm_offset_t	sva, va;
1758 
1759 	sva = *virt;
1760 	va = sva;
1761 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1762 		moea64_kenter(mmu, va, pa_start);
1763 	*virt = va;
1764 
1765 	return (sva);
1766 }
1767 
1768 /*
1769  * Returns true if the pmap's pv is one of the first
1770  * 16 pvs linked to from this page.  This count may
1771  * be changed upwards or downwards in the future; it
1772  * is only necessary that true be returned for a small
1773  * subset of pmaps for proper page aging.
1774  */
1775 boolean_t
1776 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1777 {
1778         int loops;
1779 	struct pvo_entry *pvo;
1780 	boolean_t rv;
1781 
1782 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1783 	    ("moea64_page_exists_quick: page %p is not managed", m));
1784 	loops = 0;
1785 	rv = FALSE;
1786 	LOCK_TABLE_RD();
1787 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1788 		if (pvo->pvo_pmap == pmap) {
1789 			rv = TRUE;
1790 			break;
1791 		}
1792 		if (++loops >= 16)
1793 			break;
1794 	}
1795 	UNLOCK_TABLE_RD();
1796 	return (rv);
1797 }
1798 
1799 /*
1800  * Return the number of managed mappings to the given physical page
1801  * that are wired.
1802  */
1803 int
1804 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1805 {
1806 	struct pvo_entry *pvo;
1807 	int count;
1808 
1809 	count = 0;
1810 	if ((m->oflags & VPO_UNMANAGED) != 0)
1811 		return (count);
1812 	LOCK_TABLE_RD();
1813 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1814 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1815 			count++;
1816 	UNLOCK_TABLE_RD();
1817 	return (count);
1818 }
1819 
1820 static uintptr_t	moea64_vsidcontext;
1821 
1822 uintptr_t
1823 moea64_get_unique_vsid(void) {
1824 	u_int entropy;
1825 	register_t hash;
1826 	uint32_t mask;
1827 	int i;
1828 
1829 	entropy = 0;
1830 	__asm __volatile("mftb %0" : "=r"(entropy));
1831 
1832 	mtx_lock(&moea64_slb_mutex);
1833 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1834 		u_int	n;
1835 
1836 		/*
1837 		 * Create a new value by mutiplying by a prime and adding in
1838 		 * entropy from the timebase register.  This is to make the
1839 		 * VSID more random so that the PT hash function collides
1840 		 * less often.  (Note that the prime casues gcc to do shifts
1841 		 * instead of a multiply.)
1842 		 */
1843 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1844 		hash = moea64_vsidcontext & (NVSIDS - 1);
1845 		if (hash == 0)		/* 0 is special, avoid it */
1846 			continue;
1847 		n = hash >> 5;
1848 		mask = 1 << (hash & (VSID_NBPW - 1));
1849 		hash = (moea64_vsidcontext & VSID_HASHMASK);
1850 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1851 			/* anything free in this bucket? */
1852 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1853 				entropy = (moea64_vsidcontext >> 20);
1854 				continue;
1855 			}
1856 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1857 			mask = 1 << i;
1858 			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1859 			hash |= i;
1860 		}
1861 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1862 		    ("Allocating in-use VSID %#zx\n", hash));
1863 		moea64_vsid_bitmap[n] |= mask;
1864 		mtx_unlock(&moea64_slb_mutex);
1865 		return (hash);
1866 	}
1867 
1868 	mtx_unlock(&moea64_slb_mutex);
1869 	panic("%s: out of segments",__func__);
1870 }
1871 
1872 #ifdef __powerpc64__
1873 void
1874 moea64_pinit(mmu_t mmu, pmap_t pmap)
1875 {
1876 
1877 	RB_INIT(&pmap->pmap_pvo);
1878 
1879 	pmap->pm_slb_tree_root = slb_alloc_tree();
1880 	pmap->pm_slb = slb_alloc_user_cache();
1881 	pmap->pm_slb_len = 0;
1882 }
1883 #else
1884 void
1885 moea64_pinit(mmu_t mmu, pmap_t pmap)
1886 {
1887 	int	i;
1888 	uint32_t hash;
1889 
1890 	RB_INIT(&pmap->pmap_pvo);
1891 
1892 	if (pmap_bootstrapped)
1893 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1894 		    (vm_offset_t)pmap);
1895 	else
1896 		pmap->pmap_phys = pmap;
1897 
1898 	/*
1899 	 * Allocate some segment registers for this pmap.
1900 	 */
1901 	hash = moea64_get_unique_vsid();
1902 
1903 	for (i = 0; i < 16; i++)
1904 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1905 
1906 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1907 }
1908 #endif
1909 
1910 /*
1911  * Initialize the pmap associated with process 0.
1912  */
1913 void
1914 moea64_pinit0(mmu_t mmu, pmap_t pm)
1915 {
1916 
1917 	PMAP_LOCK_INIT(pm);
1918 	moea64_pinit(mmu, pm);
1919 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1920 }
1921 
1922 /*
1923  * Set the physical protection on the specified range of this map as requested.
1924  */
1925 static void
1926 moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1927 {
1928 	uintptr_t pt;
1929 	struct	vm_page *pg;
1930 	uint64_t oldlo;
1931 
1932 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
1933 
1934 	/*
1935 	 * Grab the PTE pointer before we diddle with the cached PTE
1936 	 * copy.
1937 	 */
1938 	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1939 
1940 	/*
1941 	 * Change the protection of the page.
1942 	 */
1943 	oldlo = pvo->pvo_pte.lpte.pte_lo;
1944 	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1945 	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1946 	if ((prot & VM_PROT_EXECUTE) == 0)
1947 		pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1948 	if (prot & VM_PROT_WRITE)
1949 		pvo->pvo_pte.lpte.pte_lo |= LPTE_BW;
1950 	else
1951 		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1952 
1953 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1954 
1955 	/*
1956 	 * If the PVO is in the page table, update that pte as well.
1957 	 */
1958 	if (pt != -1)
1959 		MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1960 		    pvo->pvo_vpn);
1961 	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
1962 	    (pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1963 		if ((pg->oflags & VPO_UNMANAGED) == 0)
1964 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
1965 		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1966 		    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, PAGE_SIZE);
1967 	}
1968 
1969 	/*
1970 	 * Update vm about the REF/CHG bits if the page is managed and we have
1971 	 * removed write access.
1972 	 */
1973 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED &&
1974 	    (oldlo & LPTE_PP) != LPTE_BR && !(prot & VM_PROT_WRITE)) {
1975 		if (pg != NULL) {
1976 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
1977 				vm_page_dirty(pg);
1978 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
1979 				vm_page_aflag_set(pg, PGA_REFERENCED);
1980 		}
1981 	}
1982 }
1983 
1984 void
1985 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1986     vm_prot_t prot)
1987 {
1988 	struct	pvo_entry *pvo, *tpvo, key;
1989 
1990 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
1991 	    sva, eva, prot);
1992 
1993 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1994 	    ("moea64_protect: non current pmap"));
1995 
1996 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1997 		moea64_remove(mmu, pm, sva, eva);
1998 		return;
1999 	}
2000 
2001 	LOCK_TABLE_RD();
2002 	PMAP_LOCK(pm);
2003 	key.pvo_vaddr = sva;
2004 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2005 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2006 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2007 		moea64_pvo_protect(mmu, pm, pvo, prot);
2008 	}
2009 	UNLOCK_TABLE_RD();
2010 	PMAP_UNLOCK(pm);
2011 }
2012 
2013 /*
2014  * Map a list of wired pages into kernel virtual address space.  This is
2015  * intended for temporary mappings which do not need page modification or
2016  * references recorded.  Existing mappings in the region are overwritten.
2017  */
2018 void
2019 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2020 {
2021 	while (count-- > 0) {
2022 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2023 		va += PAGE_SIZE;
2024 		m++;
2025 	}
2026 }
2027 
2028 /*
2029  * Remove page mappings from kernel virtual address space.  Intended for
2030  * temporary mappings entered by moea64_qenter.
2031  */
2032 void
2033 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2034 {
2035 	while (count-- > 0) {
2036 		moea64_kremove(mmu, va);
2037 		va += PAGE_SIZE;
2038 	}
2039 }
2040 
2041 void
2042 moea64_release_vsid(uint64_t vsid)
2043 {
2044 	int idx, mask;
2045 
2046 	mtx_lock(&moea64_slb_mutex);
2047 	idx = vsid & (NVSIDS-1);
2048 	mask = 1 << (idx % VSID_NBPW);
2049 	idx /= VSID_NBPW;
2050 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2051 	    ("Freeing unallocated VSID %#jx", vsid));
2052 	moea64_vsid_bitmap[idx] &= ~mask;
2053 	mtx_unlock(&moea64_slb_mutex);
2054 }
2055 
2056 
2057 void
2058 moea64_release(mmu_t mmu, pmap_t pmap)
2059 {
2060 
2061 	/*
2062 	 * Free segment registers' VSIDs
2063 	 */
2064     #ifdef __powerpc64__
2065 	slb_free_tree(pmap);
2066 	slb_free_user_cache(pmap->pm_slb);
2067     #else
2068 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2069 
2070 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2071     #endif
2072 }
2073 
2074 /*
2075  * Remove all pages mapped by the specified pmap
2076  */
2077 void
2078 moea64_remove_pages(mmu_t mmu, pmap_t pm)
2079 {
2080 	struct	pvo_entry *pvo, *tpvo;
2081 
2082 	LOCK_TABLE_WR();
2083 	PMAP_LOCK(pm);
2084 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2085 		if (!(pvo->pvo_vaddr & PVO_WIRED))
2086 			moea64_pvo_remove(mmu, pvo);
2087 	}
2088 	UNLOCK_TABLE_WR();
2089 	PMAP_UNLOCK(pm);
2090 }
2091 
2092 /*
2093  * Remove the given range of addresses from the specified map.
2094  */
2095 void
2096 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2097 {
2098 	struct	pvo_entry *pvo, *tpvo, key;
2099 
2100 	/*
2101 	 * Perform an unsynchronized read.  This is, however, safe.
2102 	 */
2103 	if (pm->pm_stats.resident_count == 0)
2104 		return;
2105 
2106 	LOCK_TABLE_WR();
2107 	PMAP_LOCK(pm);
2108 	key.pvo_vaddr = sva;
2109 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2110 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2111 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2112 		moea64_pvo_remove(mmu, pvo);
2113 	}
2114 	UNLOCK_TABLE_WR();
2115 	PMAP_UNLOCK(pm);
2116 }
2117 
2118 /*
2119  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2120  * will reflect changes in pte's back to the vm_page.
2121  */
2122 void
2123 moea64_remove_all(mmu_t mmu, vm_page_t m)
2124 {
2125 	struct	pvo_entry *pvo, *next_pvo;
2126 	pmap_t	pmap;
2127 
2128 	LOCK_TABLE_WR();
2129 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2130 		pmap = pvo->pvo_pmap;
2131 		PMAP_LOCK(pmap);
2132 		moea64_pvo_remove(mmu, pvo);
2133 		PMAP_UNLOCK(pmap);
2134 	}
2135 	UNLOCK_TABLE_WR();
2136 	if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m))
2137 		vm_page_dirty(m);
2138 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2139 	vm_page_aflag_clear(m, PGA_EXECUTABLE);
2140 }
2141 
2142 /*
2143  * Allocate a physical page of memory directly from the phys_avail map.
2144  * Can only be called from moea64_bootstrap before avail start and end are
2145  * calculated.
2146  */
2147 vm_offset_t
2148 moea64_bootstrap_alloc(vm_size_t size, u_int align)
2149 {
2150 	vm_offset_t	s, e;
2151 	int		i, j;
2152 
2153 	size = round_page(size);
2154 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2155 		if (align != 0)
2156 			s = (phys_avail[i] + align - 1) & ~(align - 1);
2157 		else
2158 			s = phys_avail[i];
2159 		e = s + size;
2160 
2161 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2162 			continue;
2163 
2164 		if (s + size > platform_real_maxaddr())
2165 			continue;
2166 
2167 		if (s == phys_avail[i]) {
2168 			phys_avail[i] += size;
2169 		} else if (e == phys_avail[i + 1]) {
2170 			phys_avail[i + 1] -= size;
2171 		} else {
2172 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2173 				phys_avail[j] = phys_avail[j - 2];
2174 				phys_avail[j + 1] = phys_avail[j - 1];
2175 			}
2176 
2177 			phys_avail[i + 3] = phys_avail[i + 1];
2178 			phys_avail[i + 1] = s;
2179 			phys_avail[i + 2] = e;
2180 			phys_avail_count++;
2181 		}
2182 
2183 		return (s);
2184 	}
2185 	panic("moea64_bootstrap_alloc: could not allocate memory");
2186 }
2187 
2188 static int
2189 moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2190     struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2191     uint64_t pte_lo, int flags, int8_t psind __unused)
2192 {
2193 	struct	 pvo_entry *pvo;
2194 	uintptr_t pt;
2195 	uint64_t vsid;
2196 	int	 first;
2197 	u_int	 ptegidx;
2198 	int	 i;
2199 	int      bootstrap;
2200 
2201 	/*
2202 	 * One nasty thing that can happen here is that the UMA calls to
2203 	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2204 	 * which calls UMA...
2205 	 *
2206 	 * We break the loop by detecting recursion and allocating out of
2207 	 * the bootstrap pool.
2208 	 */
2209 
2210 	first = 0;
2211 	bootstrap = (flags & PVO_BOOTSTRAP);
2212 
2213 	if (!moea64_initialized)
2214 		bootstrap = 1;
2215 
2216 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2217 	rw_assert(&moea64_table_lock, RA_WLOCKED);
2218 
2219 	/*
2220 	 * Compute the PTE Group index.
2221 	 */
2222 	va &= ~ADDR_POFF;
2223 	vsid = va_to_vsid(pm, va);
2224 	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2225 
2226 	/*
2227 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2228 	 * there is a mapping.
2229 	 */
2230 	moea64_pvo_enter_calls++;
2231 
2232 	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2233 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2234 			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2235 			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2236 			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2237 				/*
2238 				 * The physical page and protection are not
2239 				 * changing.  Instead, this may be a request
2240 				 * to change the mapping's wired attribute.
2241 				 */
2242 				pt = -1;
2243 				if ((flags & PVO_WIRED) != 0 &&
2244 				    (pvo->pvo_vaddr & PVO_WIRED) == 0) {
2245 					pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2246 					pvo->pvo_vaddr |= PVO_WIRED;
2247 					pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2248 					pm->pm_stats.wired_count++;
2249 				} else if ((flags & PVO_WIRED) == 0 &&
2250 				    (pvo->pvo_vaddr & PVO_WIRED) != 0) {
2251 					pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2252 					pvo->pvo_vaddr &= ~PVO_WIRED;
2253 					pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
2254 					pm->pm_stats.wired_count--;
2255 				}
2256 			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2257 					KASSERT(pt == -1,
2258 					    ("moea64_pvo_enter: valid pt"));
2259 					/* Re-insert if spilled */
2260 					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2261 					    &pvo->pvo_pte.lpte);
2262 					if (i >= 0)
2263 						PVO_PTEGIDX_SET(pvo, i);
2264 					moea64_pte_overflow--;
2265 				} else if (pt != -1) {
2266 					/*
2267 					 * The PTE's wired attribute is not a
2268 					 * hardware feature, so there is no
2269 					 * need to invalidate any TLB entries.
2270 					 */
2271 					MOEA64_PTE_CHANGE(mmu, pt,
2272 					    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2273 				}
2274 				return (0);
2275 			}
2276 			moea64_pvo_remove(mmu, pvo);
2277 			break;
2278 		}
2279 	}
2280 
2281 	/*
2282 	 * If we aren't overwriting a mapping, try to allocate.
2283 	 */
2284 	if (bootstrap) {
2285 		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2286 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2287 			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2288 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2289 		}
2290 		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2291 		moea64_bpvo_pool_index++;
2292 		bootstrap = 1;
2293 	} else {
2294 		pvo = uma_zalloc(zone, M_NOWAIT);
2295 	}
2296 
2297 	if (pvo == NULL)
2298 		return (ENOMEM);
2299 
2300 	moea64_pvo_entries++;
2301 	pvo->pvo_vaddr = va;
2302 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2303 	    | (vsid << 16);
2304 	pvo->pvo_pmap = pm;
2305 	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2306 	pvo->pvo_vaddr &= ~ADDR_POFF;
2307 
2308 	if (flags & PVO_WIRED)
2309 		pvo->pvo_vaddr |= PVO_WIRED;
2310 	if (pvo_head != NULL)
2311 		pvo->pvo_vaddr |= PVO_MANAGED;
2312 	if (bootstrap)
2313 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2314 	if (flags & PVO_LARGE)
2315 		pvo->pvo_vaddr |= PVO_LARGE;
2316 
2317 	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2318 	    (uint64_t)(pa) | pte_lo, flags);
2319 
2320 	/*
2321 	 * Add to pmap list
2322 	 */
2323 	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2324 
2325 	/*
2326 	 * Remember if the list was empty and therefore will be the first
2327 	 * item.
2328 	 */
2329 	if (pvo_head != NULL) {
2330 		if (LIST_FIRST(pvo_head) == NULL)
2331 			first = 1;
2332 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2333 	}
2334 
2335 	if (pvo->pvo_vaddr & PVO_WIRED) {
2336 		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2337 		pm->pm_stats.wired_count++;
2338 	}
2339 	pm->pm_stats.resident_count++;
2340 
2341 	/*
2342 	 * We hope this succeeds but it isn't required.
2343 	 */
2344 	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2345 	if (i >= 0) {
2346 		PVO_PTEGIDX_SET(pvo, i);
2347 	} else {
2348 		panic("moea64_pvo_enter: overflow");
2349 		moea64_pte_overflow++;
2350 	}
2351 
2352 	if (pm == kernel_pmap)
2353 		isync();
2354 
2355 #ifdef __powerpc64__
2356 	/*
2357 	 * Make sure all our bootstrap mappings are in the SLB as soon
2358 	 * as virtual memory is switched on.
2359 	 */
2360 	if (!pmap_bootstrapped)
2361 		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2362 #endif
2363 
2364 	return (first ? ENOENT : 0);
2365 }
2366 
2367 static void
2368 moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2369 {
2370 	struct	vm_page *pg;
2371 	uintptr_t pt;
2372 
2373 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2374 	rw_assert(&moea64_table_lock, RA_WLOCKED);
2375 
2376 	/*
2377 	 * If there is an active pte entry, we need to deactivate it (and
2378 	 * save the ref & cfg bits).
2379 	 */
2380 	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2381 	if (pt != -1) {
2382 		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2383 		PVO_PTEGIDX_CLR(pvo);
2384 	} else {
2385 		moea64_pte_overflow--;
2386 	}
2387 
2388 	/*
2389 	 * Update our statistics.
2390 	 */
2391 	pvo->pvo_pmap->pm_stats.resident_count--;
2392 	if (pvo->pvo_vaddr & PVO_WIRED)
2393 		pvo->pvo_pmap->pm_stats.wired_count--;
2394 
2395 	/*
2396 	 * Remove this PVO from the pmap list.
2397 	 */
2398 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2399 
2400 	/*
2401 	 * Remove this from the overflow list and return it to the pool
2402 	 * if we aren't going to reuse it.
2403 	 */
2404 	LIST_REMOVE(pvo, pvo_olink);
2405 
2406 	/*
2407 	 * Update vm about the REF/CHG bits if the page is managed.
2408 	 */
2409 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2410 
2411 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && pg != NULL) {
2412 		LIST_REMOVE(pvo, pvo_vlink);
2413 		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
2414 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
2415 				vm_page_dirty(pg);
2416 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
2417 				vm_page_aflag_set(pg, PGA_REFERENCED);
2418 			if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2419 				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2420 		}
2421 		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2422 			vm_page_aflag_clear(pg, PGA_EXECUTABLE);
2423 	}
2424 
2425 	moea64_pvo_entries--;
2426 	moea64_pvo_remove_calls++;
2427 
2428 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2429 		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2430 		    moea64_upvo_zone, pvo);
2431 }
2432 
2433 static struct pvo_entry *
2434 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2435 {
2436 	struct pvo_entry key;
2437 
2438 	key.pvo_vaddr = va & ~ADDR_POFF;
2439 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2440 }
2441 
2442 static boolean_t
2443 moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2444 {
2445 	struct	pvo_entry *pvo;
2446 	uintptr_t pt;
2447 
2448 	LOCK_TABLE_RD();
2449 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2450 		/*
2451 		 * See if we saved the bit off.  If so, return success.
2452 		 */
2453 		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2454 			UNLOCK_TABLE_RD();
2455 			return (TRUE);
2456 		}
2457 	}
2458 
2459 	/*
2460 	 * No luck, now go through the hard part of looking at the PTEs
2461 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2462 	 * the PTEs.
2463 	 */
2464 	powerpc_sync();
2465 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2466 
2467 		/*
2468 		 * See if this pvo has a valid PTE.  if so, fetch the
2469 		 * REF/CHG bits from the valid PTE.  If the appropriate
2470 		 * ptebit is set, return success.
2471 		 */
2472 		PMAP_LOCK(pvo->pvo_pmap);
2473 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2474 		if (pt != -1) {
2475 			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2476 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2477 				PMAP_UNLOCK(pvo->pvo_pmap);
2478 				UNLOCK_TABLE_RD();
2479 				return (TRUE);
2480 			}
2481 		}
2482 		PMAP_UNLOCK(pvo->pvo_pmap);
2483 	}
2484 
2485 	UNLOCK_TABLE_RD();
2486 	return (FALSE);
2487 }
2488 
2489 static u_int
2490 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2491 {
2492 	u_int	count;
2493 	struct	pvo_entry *pvo;
2494 	uintptr_t pt;
2495 
2496 	/*
2497 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2498 	 * we can reset the right ones).  note that since the pvo entries and
2499 	 * list heads are accessed via BAT0 and are never placed in the page
2500 	 * table, we don't have to worry about further accesses setting the
2501 	 * REF/CHG bits.
2502 	 */
2503 	powerpc_sync();
2504 
2505 	/*
2506 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2507 	 * valid pte clear the ptebit from the valid pte.
2508 	 */
2509 	count = 0;
2510 	LOCK_TABLE_RD();
2511 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2512 		PMAP_LOCK(pvo->pvo_pmap);
2513 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2514 		if (pt != -1) {
2515 			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2516 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2517 				count++;
2518 				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2519 				    pvo->pvo_vpn, ptebit);
2520 			}
2521 		}
2522 		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2523 		PMAP_UNLOCK(pvo->pvo_pmap);
2524 	}
2525 
2526 	UNLOCK_TABLE_RD();
2527 	return (count);
2528 }
2529 
2530 boolean_t
2531 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2532 {
2533 	struct pvo_entry *pvo, key;
2534 	vm_offset_t ppa;
2535 	int error = 0;
2536 
2537 	PMAP_LOCK(kernel_pmap);
2538 	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2539 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2540 	    ppa < pa + size; ppa += PAGE_SIZE,
2541 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2542 		if (pvo == NULL ||
2543 		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2544 			error = EFAULT;
2545 			break;
2546 		}
2547 	}
2548 	PMAP_UNLOCK(kernel_pmap);
2549 
2550 	return (error);
2551 }
2552 
2553 /*
2554  * Map a set of physical memory pages into the kernel virtual
2555  * address space. Return a pointer to where it is mapped. This
2556  * routine is intended to be used for mapping device memory,
2557  * NOT real memory.
2558  */
2559 void *
2560 moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2561 {
2562 	vm_offset_t va, tmpva, ppa, offset;
2563 
2564 	ppa = trunc_page(pa);
2565 	offset = pa & PAGE_MASK;
2566 	size = roundup2(offset + size, PAGE_SIZE);
2567 
2568 	va = kva_alloc(size);
2569 
2570 	if (!va)
2571 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2572 
2573 	for (tmpva = va; size > 0;) {
2574 		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2575 		size -= PAGE_SIZE;
2576 		tmpva += PAGE_SIZE;
2577 		ppa += PAGE_SIZE;
2578 	}
2579 
2580 	return ((void *)(va + offset));
2581 }
2582 
2583 void *
2584 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2585 {
2586 
2587 	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2588 }
2589 
2590 void
2591 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2592 {
2593 	vm_offset_t base, offset;
2594 
2595 	base = trunc_page(va);
2596 	offset = va & PAGE_MASK;
2597 	size = roundup2(offset + size, PAGE_SIZE);
2598 
2599 	kva_free(base, size);
2600 }
2601 
2602 void
2603 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2604 {
2605 	struct pvo_entry *pvo;
2606 	vm_offset_t lim;
2607 	vm_paddr_t pa;
2608 	vm_size_t len;
2609 
2610 	PMAP_LOCK(pm);
2611 	while (sz > 0) {
2612 		lim = round_page(va);
2613 		len = MIN(lim - va, sz);
2614 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2615 		if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
2616 			pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
2617 			    (va & ADDR_POFF);
2618 			moea64_syncicache(mmu, pm, va, pa, len);
2619 		}
2620 		va += len;
2621 		sz -= len;
2622 	}
2623 	PMAP_UNLOCK(pm);
2624 }
2625 
2626 void
2627 moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2628 {
2629 
2630 	*va = (void *)pa;
2631 }
2632 
2633 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2634 
2635 void
2636 moea64_scan_init(mmu_t mmu)
2637 {
2638 	struct pvo_entry *pvo;
2639 	vm_offset_t va;
2640 	int i;
2641 
2642 	if (!do_minidump) {
2643 		/* Initialize phys. segments for dumpsys(). */
2644 		memset(&dump_map, 0, sizeof(dump_map));
2645 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2646 		for (i = 0; i < pregions_sz; i++) {
2647 			dump_map[i].pa_start = pregions[i].mr_start;
2648 			dump_map[i].pa_size = pregions[i].mr_size;
2649 		}
2650 		return;
2651 	}
2652 
2653 	/* Virtual segments for minidumps: */
2654 	memset(&dump_map, 0, sizeof(dump_map));
2655 
2656 	/* 1st: kernel .data and .bss. */
2657 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2658 	dump_map[0].pa_size = round_page((uintptr_t)_end) - dump_map[0].pa_start;
2659 
2660 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2661 	dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
2662 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2663 
2664 	/* 3rd: kernel VM. */
2665 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2666 	/* Find start of next chunk (from va). */
2667 	while (va < virtual_end) {
2668 		/* Don't dump the buffer cache. */
2669 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2670 			va = kmi.buffer_eva;
2671 			continue;
2672 		}
2673 		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2674 		if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2675 			break;
2676 		va += PAGE_SIZE;
2677 	}
2678 	if (va < virtual_end) {
2679 		dump_map[2].pa_start = va;
2680 		va += PAGE_SIZE;
2681 		/* Find last page in chunk. */
2682 		while (va < virtual_end) {
2683 			/* Don't run into the buffer cache. */
2684 			if (va == kmi.buffer_sva)
2685 				break;
2686 			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2687 			if (pvo == NULL ||
2688 			    !(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2689 				break;
2690 			va += PAGE_SIZE;
2691 		}
2692 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2693 	}
2694 }
2695