xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision 48c779cdecb5f803e5fe5d761987e976ca9609db)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008-2015 Nathan Whitehorn
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * Manages physical address maps.
34  *
35  * Since the information managed by this module is also stored by the
36  * logical address mapping module, this module may throw away valid virtual
37  * to physical mappings at almost any time.  However, invalidations of
38  * mappings must be done as requested.
39  *
40  * In order to cope with hardware architectures which make virtual to
41  * physical map invalidates expensive, this module may delay invalidate
42  * reduced protection operations until such time as they are actually
43  * necessary.  This module is given full information as to which processors
44  * are currently using which maps, and to when physical maps must be made
45  * correct.
46  */
47 
48 #include "opt_kstack_pages.h"
49 
50 #include <sys/param.h>
51 #include <sys/kernel.h>
52 #include <sys/conf.h>
53 #include <sys/queue.h>
54 #include <sys/cpuset.h>
55 #include <sys/kerneldump.h>
56 #include <sys/ktr.h>
57 #include <sys/lock.h>
58 #include <sys/msgbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/mutex.h>
61 #include <sys/proc.h>
62 #include <sys/rwlock.h>
63 #include <sys/sched.h>
64 #include <sys/sysctl.h>
65 #include <sys/systm.h>
66 #include <sys/vmmeter.h>
67 #include <sys/smp.h>
68 
69 #include <sys/kdb.h>
70 
71 #include <dev/ofw/openfirm.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_param.h>
75 #include <vm/vm_kern.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_phys.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_extern.h>
81 #include <vm/vm_pageout.h>
82 #include <vm/uma.h>
83 
84 #include <machine/_inttypes.h>
85 #include <machine/cpu.h>
86 #include <machine/platform.h>
87 #include <machine/frame.h>
88 #include <machine/md_var.h>
89 #include <machine/psl.h>
90 #include <machine/bat.h>
91 #include <machine/hid.h>
92 #include <machine/pte.h>
93 #include <machine/sr.h>
94 #include <machine/trap.h>
95 #include <machine/mmuvar.h>
96 
97 #include "mmu_oea64.h"
98 #include "mmu_if.h"
99 #include "moea64_if.h"
100 
101 void moea64_release_vsid(uint64_t vsid);
102 uintptr_t moea64_get_unique_vsid(void);
103 
104 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
105 #define ENABLE_TRANS(msr)	mtmsr(msr)
106 
107 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
108 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
109 #define	VSID_HASH_MASK		0x0000007fffffffffULL
110 
111 /*
112  * Locking semantics:
113  *
114  * There are two locks of interest: the page locks and the pmap locks, which
115  * protect their individual PVO lists and are locked in that order. The contents
116  * of all PVO entries are protected by the locks of their respective pmaps.
117  * The pmap of any PVO is guaranteed not to change so long as the PVO is linked
118  * into any list.
119  *
120  */
121 
122 #define PV_LOCK_PER_DOM	(PA_LOCK_COUNT * 3)
123 #define PV_LOCK_COUNT	(PV_LOCK_PER_DOM * MAXMEMDOM)
124 static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
125 
126 /*
127  * Cheap NUMA-izing of the pv locks, to reduce contention across domains.
128  * NUMA domains on POWER9 appear to be indexed as sparse memory spaces, with the
129  * index at (N << 45).
130  */
131 #ifdef __powerpc64__
132 #define PV_LOCK_IDX(pa)	(pa_index(pa) % PV_LOCK_PER_DOM + \
133 			(((pa) >> 45) % MAXMEMDOM) * PV_LOCK_PER_DOM)
134 #else
135 #define PV_LOCK_IDX(pa)	(pa_index(pa) % PV_LOCK_COUNT)
136 #endif
137 #define PV_LOCKPTR(pa)	((struct mtx *)(&pv_lock[PV_LOCK_IDX(pa)]))
138 #define PV_LOCK(pa)		mtx_lock(PV_LOCKPTR(pa))
139 #define PV_UNLOCK(pa)		mtx_unlock(PV_LOCKPTR(pa))
140 #define PV_LOCKASSERT(pa) 	mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
141 #define PV_PAGE_LOCK(m)		PV_LOCK(VM_PAGE_TO_PHYS(m))
142 #define PV_PAGE_UNLOCK(m)	PV_UNLOCK(VM_PAGE_TO_PHYS(m))
143 #define PV_PAGE_LOCKASSERT(m)	PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
144 
145 struct ofw_map {
146 	cell_t	om_va;
147 	cell_t	om_len;
148 	uint64_t om_pa;
149 	cell_t	om_mode;
150 };
151 
152 extern unsigned char _etext[];
153 extern unsigned char _end[];
154 
155 extern void *slbtrap, *slbtrapend;
156 
157 /*
158  * Map of physical memory regions.
159  */
160 static struct	mem_region *regions;
161 static struct	mem_region *pregions;
162 static struct	numa_mem_region *numa_pregions;
163 static u_int	phys_avail_count;
164 static int	regions_sz, pregions_sz, numapregions_sz;
165 
166 extern void bs_remap_earlyboot(void);
167 
168 /*
169  * Lock for the SLB tables.
170  */
171 struct mtx	moea64_slb_mutex;
172 
173 /*
174  * PTEG data.
175  */
176 u_long		moea64_pteg_count;
177 u_long		moea64_pteg_mask;
178 
179 /*
180  * PVO data.
181  */
182 
183 uma_zone_t	moea64_pvo_zone; /* zone for pvo entries */
184 
185 static struct	pvo_entry *moea64_bpvo_pool;
186 static int	moea64_bpvo_pool_index = 0;
187 static int	moea64_bpvo_pool_size = 327680;
188 TUNABLE_INT("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
189 SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
190     &moea64_bpvo_pool_index, 0, "");
191 
192 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
193 #ifdef __powerpc64__
194 #define	NVSIDS		(NPMAPS * 16)
195 #define VSID_HASHMASK	0xffffffffUL
196 #else
197 #define NVSIDS		NPMAPS
198 #define VSID_HASHMASK	0xfffffUL
199 #endif
200 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
201 
202 static boolean_t moea64_initialized = FALSE;
203 
204 #ifdef MOEA64_STATS
205 /*
206  * Statistics.
207  */
208 u_int	moea64_pte_valid = 0;
209 u_int	moea64_pte_overflow = 0;
210 u_int	moea64_pvo_entries = 0;
211 u_int	moea64_pvo_enter_calls = 0;
212 u_int	moea64_pvo_remove_calls = 0;
213 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
214     &moea64_pte_valid, 0, "");
215 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
216     &moea64_pte_overflow, 0, "");
217 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
218     &moea64_pvo_entries, 0, "");
219 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
220     &moea64_pvo_enter_calls, 0, "");
221 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
222     &moea64_pvo_remove_calls, 0, "");
223 #endif
224 
225 vm_offset_t	moea64_scratchpage_va[2];
226 struct pvo_entry *moea64_scratchpage_pvo[2];
227 struct	mtx	moea64_scratchpage_mtx;
228 
229 uint64_t 	moea64_large_page_mask = 0;
230 uint64_t	moea64_large_page_size = 0;
231 int		moea64_large_page_shift = 0;
232 
233 /*
234  * PVO calls.
235  */
236 static int	moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo,
237 		    struct pvo_head *pvo_head, struct pvo_entry **oldpvo);
238 static void	moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo);
239 static void	moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo);
240 static void	moea64_pvo_remove_from_page_locked(mmu_t mmu,
241 		    struct pvo_entry *pvo, vm_page_t m);
242 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
243 
244 /*
245  * Utility routines.
246  */
247 static boolean_t	moea64_query_bit(mmu_t, vm_page_t, uint64_t);
248 static u_int		moea64_clear_bit(mmu_t, vm_page_t, uint64_t);
249 static void		moea64_kremove(mmu_t, vm_offset_t);
250 static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
251 			    vm_paddr_t pa, vm_size_t sz);
252 static void		moea64_pmap_init_qpages(void);
253 
254 /*
255  * Kernel MMU interface
256  */
257 void moea64_clear_modify(mmu_t, vm_page_t);
258 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
259 void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
260     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
261 int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
262     u_int flags, int8_t psind);
263 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
264     vm_prot_t);
265 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
266 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
267 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
268 void moea64_init(mmu_t);
269 boolean_t moea64_is_modified(mmu_t, vm_page_t);
270 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
271 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
272 int moea64_ts_referenced(mmu_t, vm_page_t);
273 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
274 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
275 void moea64_page_init(mmu_t, vm_page_t);
276 int moea64_page_wired_mappings(mmu_t, vm_page_t);
277 void moea64_pinit(mmu_t, pmap_t);
278 void moea64_pinit0(mmu_t, pmap_t);
279 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
280 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
281 void moea64_qremove(mmu_t, vm_offset_t, int);
282 void moea64_release(mmu_t, pmap_t);
283 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
284 void moea64_remove_pages(mmu_t, pmap_t);
285 void moea64_remove_all(mmu_t, vm_page_t);
286 void moea64_remove_write(mmu_t, vm_page_t);
287 void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
288 void moea64_zero_page(mmu_t, vm_page_t);
289 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
290 void moea64_activate(mmu_t, struct thread *);
291 void moea64_deactivate(mmu_t, struct thread *);
292 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
293 void *moea64_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
294 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
295 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
296 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
297 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t ma);
298 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
299 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
300 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
301 void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz,
302     void **va);
303 void moea64_scan_init(mmu_t mmu);
304 vm_offset_t moea64_quick_enter_page(mmu_t mmu, vm_page_t m);
305 void moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr);
306 static int moea64_map_user_ptr(mmu_t mmu, pmap_t pm,
307     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
308 static int moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr,
309     int *is_user, vm_offset_t *decoded_addr);
310 static size_t moea64_scan_pmap(mmu_t mmu);
311 static void *moea64_dump_pmap_init(mmu_t mmu, unsigned blkpgs);
312 
313 
314 static mmu_method_t moea64_methods[] = {
315 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
316 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
317 	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
318 	MMUMETHOD(mmu_enter,		moea64_enter),
319 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
320 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
321 	MMUMETHOD(mmu_extract,		moea64_extract),
322 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
323 	MMUMETHOD(mmu_init,		moea64_init),
324 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
325 	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
326 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
327 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
328 	MMUMETHOD(mmu_map,     		moea64_map),
329 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
330 	MMUMETHOD(mmu_page_init,	moea64_page_init),
331 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
332 	MMUMETHOD(mmu_pinit,		moea64_pinit),
333 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
334 	MMUMETHOD(mmu_protect,		moea64_protect),
335 	MMUMETHOD(mmu_qenter,		moea64_qenter),
336 	MMUMETHOD(mmu_qremove,		moea64_qremove),
337 	MMUMETHOD(mmu_release,		moea64_release),
338 	MMUMETHOD(mmu_remove,		moea64_remove),
339 	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
340 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
341 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
342 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
343 	MMUMETHOD(mmu_unwire,		moea64_unwire),
344 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
345 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
346 	MMUMETHOD(mmu_activate,		moea64_activate),
347 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
348 	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
349 	MMUMETHOD(mmu_quick_enter_page, moea64_quick_enter_page),
350 	MMUMETHOD(mmu_quick_remove_page, moea64_quick_remove_page),
351 
352 	/* Internal interfaces */
353 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
354 	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
355 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
356 	MMUMETHOD(mmu_kextract,		moea64_kextract),
357 	MMUMETHOD(mmu_kenter,		moea64_kenter),
358 	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
359 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
360 	MMUMETHOD(mmu_scan_init,	moea64_scan_init),
361 	MMUMETHOD(mmu_scan_pmap,	moea64_scan_pmap),
362 	MMUMETHOD(mmu_dump_pmap_init,   moea64_dump_pmap_init),
363 	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
364 	MMUMETHOD(mmu_map_user_ptr,	moea64_map_user_ptr),
365 	MMUMETHOD(mmu_decode_kernel_ptr, moea64_decode_kernel_ptr),
366 
367 	{ 0, 0 }
368 };
369 
370 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
371 
372 static struct pvo_head *
373 vm_page_to_pvoh(vm_page_t m)
374 {
375 
376 	mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
377 	return (&m->md.mdpg_pvoh);
378 }
379 
380 static struct pvo_entry *
381 alloc_pvo_entry(int bootstrap)
382 {
383 	struct pvo_entry *pvo;
384 
385 	if (!moea64_initialized || bootstrap) {
386 		if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
387 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
388 			      moea64_bpvo_pool_index, moea64_bpvo_pool_size,
389 			      moea64_bpvo_pool_size * sizeof(struct pvo_entry));
390 		}
391 		pvo = &moea64_bpvo_pool[
392 		    atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
393 		bzero(pvo, sizeof(*pvo));
394 		pvo->pvo_vaddr = PVO_BOOTSTRAP;
395 	} else
396 		pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT | M_ZERO);
397 
398 	return (pvo);
399 }
400 
401 
402 static void
403 init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
404 {
405 	uint64_t vsid;
406 	uint64_t hash;
407 	int shift;
408 
409 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
410 
411 	pvo->pvo_pmap = pmap;
412 	va &= ~ADDR_POFF;
413 	pvo->pvo_vaddr |= va;
414 	vsid = va_to_vsid(pmap, va);
415 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
416 	    | (vsid << 16);
417 
418 	shift = (pvo->pvo_vaddr & PVO_LARGE) ? moea64_large_page_shift :
419 	    ADDR_PIDX_SHFT;
420 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
421 	pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
422 }
423 
424 static void
425 free_pvo_entry(struct pvo_entry *pvo)
426 {
427 
428 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
429 		uma_zfree(moea64_pvo_zone, pvo);
430 }
431 
432 void
433 moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
434 {
435 
436 	lpte->pte_hi = (pvo->pvo_vpn >> (ADDR_API_SHFT64 - ADDR_PIDX_SHFT)) &
437 	    LPTE_AVPN_MASK;
438 	lpte->pte_hi |= LPTE_VALID;
439 
440 	if (pvo->pvo_vaddr & PVO_LARGE)
441 		lpte->pte_hi |= LPTE_BIG;
442 	if (pvo->pvo_vaddr & PVO_WIRED)
443 		lpte->pte_hi |= LPTE_WIRED;
444 	if (pvo->pvo_vaddr & PVO_HID)
445 		lpte->pte_hi |= LPTE_HID;
446 
447 	lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
448 	if (pvo->pvo_pte.prot & VM_PROT_WRITE)
449 		lpte->pte_lo |= LPTE_BW;
450 	else
451 		lpte->pte_lo |= LPTE_BR;
452 
453 	if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
454 		lpte->pte_lo |= LPTE_NOEXEC;
455 }
456 
457 static __inline uint64_t
458 moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
459 {
460 	uint64_t pte_lo;
461 	int i;
462 
463 	if (ma != VM_MEMATTR_DEFAULT) {
464 		switch (ma) {
465 		case VM_MEMATTR_UNCACHEABLE:
466 			return (LPTE_I | LPTE_G);
467 		case VM_MEMATTR_CACHEABLE:
468 			return (LPTE_M);
469 		case VM_MEMATTR_WRITE_COMBINING:
470 		case VM_MEMATTR_WRITE_BACK:
471 		case VM_MEMATTR_PREFETCHABLE:
472 			return (LPTE_I);
473 		case VM_MEMATTR_WRITE_THROUGH:
474 			return (LPTE_W | LPTE_M);
475 		}
476 	}
477 
478 	/*
479 	 * Assume the page is cache inhibited and access is guarded unless
480 	 * it's in our available memory array.
481 	 */
482 	pte_lo = LPTE_I | LPTE_G;
483 	for (i = 0; i < pregions_sz; i++) {
484 		if ((pa >= pregions[i].mr_start) &&
485 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
486 			pte_lo &= ~(LPTE_I | LPTE_G);
487 			pte_lo |= LPTE_M;
488 			break;
489 		}
490 	}
491 
492 	return pte_lo;
493 }
494 
495 /*
496  * Quick sort callout for comparing memory regions.
497  */
498 static int	om_cmp(const void *a, const void *b);
499 
500 static int
501 om_cmp(const void *a, const void *b)
502 {
503 	const struct	ofw_map *mapa;
504 	const struct	ofw_map *mapb;
505 
506 	mapa = a;
507 	mapb = b;
508 	if (mapa->om_pa < mapb->om_pa)
509 		return (-1);
510 	else if (mapa->om_pa > mapb->om_pa)
511 		return (1);
512 	else
513 		return (0);
514 }
515 
516 static void
517 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
518 {
519 	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
520 	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
521 	struct pvo_entry *pvo;
522 	register_t	msr;
523 	vm_offset_t	off;
524 	vm_paddr_t	pa_base;
525 	int		i, j;
526 
527 	bzero(translations, sz);
528 	OF_getencprop(OF_finddevice("/"), "#address-cells", &acells,
529 	    sizeof(acells));
530 	if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1)
531 		panic("moea64_bootstrap: can't get ofw translations");
532 
533 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
534 	sz /= sizeof(cell_t);
535 	for (i = 0, j = 0; i < sz; j++) {
536 		translations[j].om_va = trans_cells[i++];
537 		translations[j].om_len = trans_cells[i++];
538 		translations[j].om_pa = trans_cells[i++];
539 		if (acells == 2) {
540 			translations[j].om_pa <<= 32;
541 			translations[j].om_pa |= trans_cells[i++];
542 		}
543 		translations[j].om_mode = trans_cells[i++];
544 	}
545 	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
546 	    i, sz));
547 
548 	sz = j;
549 	qsort(translations, sz, sizeof (*translations), om_cmp);
550 
551 	for (i = 0; i < sz; i++) {
552 		pa_base = translations[i].om_pa;
553 	      #ifndef __powerpc64__
554 		if ((translations[i].om_pa >> 32) != 0)
555 			panic("OFW translations above 32-bit boundary!");
556 	      #endif
557 
558 		if (pa_base % PAGE_SIZE)
559 			panic("OFW translation not page-aligned (phys)!");
560 		if (translations[i].om_va % PAGE_SIZE)
561 			panic("OFW translation not page-aligned (virt)!");
562 
563 		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
564 		    pa_base, translations[i].om_va, translations[i].om_len);
565 
566 		/* Now enter the pages for this mapping */
567 
568 		DISABLE_TRANS(msr);
569 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
570 			/* If this address is direct-mapped, skip remapping */
571 			if (hw_direct_map &&
572 			    translations[i].om_va == PHYS_TO_DMAP(pa_base) &&
573 			    moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT)
574  			    == LPTE_M)
575 				continue;
576 
577 			PMAP_LOCK(kernel_pmap);
578 			pvo = moea64_pvo_find_va(kernel_pmap,
579 			    translations[i].om_va + off);
580 			PMAP_UNLOCK(kernel_pmap);
581 			if (pvo != NULL)
582 				continue;
583 
584 			moea64_kenter(mmup, translations[i].om_va + off,
585 			    pa_base + off);
586 		}
587 		ENABLE_TRANS(msr);
588 	}
589 }
590 
591 #ifdef __powerpc64__
592 static void
593 moea64_probe_large_page(void)
594 {
595 	uint16_t pvr = mfpvr() >> 16;
596 
597 	switch (pvr) {
598 	case IBM970:
599 	case IBM970FX:
600 	case IBM970MP:
601 		powerpc_sync(); isync();
602 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
603 		powerpc_sync(); isync();
604 
605 		/* FALLTHROUGH */
606 	default:
607 		if (moea64_large_page_size == 0) {
608 			moea64_large_page_size = 0x1000000; /* 16 MB */
609 			moea64_large_page_shift = 24;
610 		}
611 	}
612 
613 	moea64_large_page_mask = moea64_large_page_size - 1;
614 }
615 
616 static void
617 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
618 {
619 	struct slb *cache;
620 	struct slb entry;
621 	uint64_t esid, slbe;
622 	uint64_t i;
623 
624 	cache = PCPU_GET(aim.slb);
625 	esid = va >> ADDR_SR_SHFT;
626 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
627 
628 	for (i = 0; i < 64; i++) {
629 		if (cache[i].slbe == (slbe | i))
630 			return;
631 	}
632 
633 	entry.slbe = slbe;
634 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
635 	if (large)
636 		entry.slbv |= SLBV_L;
637 
638 	slb_insert_kernel(entry.slbe, entry.slbv);
639 }
640 #endif
641 
642 static void
643 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
644     vm_offset_t kernelend)
645 {
646 	struct pvo_entry *pvo;
647 	register_t msr;
648 	vm_paddr_t pa, pkernelstart, pkernelend;
649 	vm_offset_t size, off;
650 	uint64_t pte_lo;
651 	int i;
652 
653 	if (moea64_large_page_size == 0)
654 		hw_direct_map = 0;
655 
656 	DISABLE_TRANS(msr);
657 	if (hw_direct_map) {
658 		PMAP_LOCK(kernel_pmap);
659 		for (i = 0; i < pregions_sz; i++) {
660 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
661 		     pregions[i].mr_size; pa += moea64_large_page_size) {
662 			pte_lo = LPTE_M;
663 
664 			pvo = alloc_pvo_entry(1 /* bootstrap */);
665 			pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
666 			init_pvo_entry(pvo, kernel_pmap, PHYS_TO_DMAP(pa));
667 
668 			/*
669 			 * Set memory access as guarded if prefetch within
670 			 * the page could exit the available physmem area.
671 			 */
672 			if (pa & moea64_large_page_mask) {
673 				pa &= moea64_large_page_mask;
674 				pte_lo |= LPTE_G;
675 			}
676 			if (pa + moea64_large_page_size >
677 			    pregions[i].mr_start + pregions[i].mr_size)
678 				pte_lo |= LPTE_G;
679 
680 			pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
681 			    VM_PROT_EXECUTE;
682 			pvo->pvo_pte.pa = pa | pte_lo;
683 			moea64_pvo_enter(mmup, pvo, NULL, NULL);
684 		  }
685 		}
686 		PMAP_UNLOCK(kernel_pmap);
687 	}
688 
689 	/*
690 	 * Make sure the kernel and BPVO pool stay mapped on systems either
691 	 * without a direct map or on which the kernel is not already executing
692 	 * out of the direct-mapped region.
693 	 */
694 	if (kernelstart < DMAP_BASE_ADDRESS) {
695 		/*
696 		 * For pre-dmap execution, we need to use identity mapping
697 		 * because we will be operating with the mmu on but in the
698 		 * wrong address configuration until we __restartkernel().
699 		 */
700 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
701 		    pa += PAGE_SIZE)
702 			moea64_kenter(mmup, pa, pa);
703 	} else if (!hw_direct_map) {
704 		pkernelstart = kernelstart & ~DMAP_BASE_ADDRESS;
705 		pkernelend = kernelend & ~DMAP_BASE_ADDRESS;
706 		for (pa = pkernelstart & ~PAGE_MASK; pa < pkernelend;
707 		    pa += PAGE_SIZE)
708 			moea64_kenter(mmup, pa | DMAP_BASE_ADDRESS, pa);
709 	}
710 
711 	if (!hw_direct_map) {
712 		size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
713 		off = (vm_offset_t)(moea64_bpvo_pool);
714 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
715 			moea64_kenter(mmup, pa, pa);
716 
717 		/* Map exception vectors */
718 		for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE)
719 			moea64_kenter(mmup, pa | DMAP_BASE_ADDRESS, pa);
720 	}
721 	ENABLE_TRANS(msr);
722 
723 	/*
724 	 * Allow user to override unmapped_buf_allowed for testing.
725 	 * XXXKIB Only direct map implementation was tested.
726 	 */
727 	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
728 	    &unmapped_buf_allowed))
729 		unmapped_buf_allowed = hw_direct_map;
730 }
731 
732 /* Quick sort callout for comparing physical addresses. */
733 static int
734 pa_cmp(const void *a, const void *b)
735 {
736 	const vm_paddr_t *pa = a, *pb = b;
737 
738 	if (*pa < *pb)
739 		return (-1);
740 	else if (*pa > *pb)
741 		return (1);
742 	else
743 		return (0);
744 }
745 
746 void
747 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
748 {
749 	int		i, j;
750 	vm_size_t	physsz, hwphyssz;
751 	vm_paddr_t	kernelphysstart, kernelphysend;
752 	int		rm_pavail;
753 
754 #ifndef __powerpc64__
755 	/* We don't have a direct map since there is no BAT */
756 	hw_direct_map = 0;
757 
758 	/* Make sure battable is zero, since we have no BAT */
759 	for (i = 0; i < 16; i++) {
760 		battable[i].batu = 0;
761 		battable[i].batl = 0;
762 	}
763 #else
764 	moea64_probe_large_page();
765 
766 	/* Use a direct map if we have large page support */
767 	if (moea64_large_page_size > 0)
768 		hw_direct_map = 1;
769 	else
770 		hw_direct_map = 0;
771 
772 	/* Install trap handlers for SLBs */
773 	bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap);
774 	bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap);
775 	__syncicache((void *)EXC_DSE, 0x80);
776 	__syncicache((void *)EXC_ISE, 0x80);
777 #endif
778 
779 	kernelphysstart = kernelstart & ~DMAP_BASE_ADDRESS;
780 	kernelphysend = kernelend & ~DMAP_BASE_ADDRESS;
781 
782 	/* Get physical memory regions from firmware */
783 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
784 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
785 
786 	if (PHYS_AVAIL_ENTRIES < regions_sz)
787 		panic("moea64_bootstrap: phys_avail too small");
788 
789 	phys_avail_count = 0;
790 	physsz = 0;
791 	hwphyssz = 0;
792 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
793 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
794 		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
795 		    regions[i].mr_start, regions[i].mr_start +
796 		    regions[i].mr_size, regions[i].mr_size);
797 		if (hwphyssz != 0 &&
798 		    (physsz + regions[i].mr_size) >= hwphyssz) {
799 			if (physsz < hwphyssz) {
800 				phys_avail[j] = regions[i].mr_start;
801 				phys_avail[j + 1] = regions[i].mr_start +
802 				    hwphyssz - physsz;
803 				physsz = hwphyssz;
804 				phys_avail_count++;
805 				dump_avail[j] = phys_avail[j];
806 				dump_avail[j + 1] = phys_avail[j + 1];
807 			}
808 			break;
809 		}
810 		phys_avail[j] = regions[i].mr_start;
811 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
812 		phys_avail_count++;
813 		physsz += regions[i].mr_size;
814 		dump_avail[j] = phys_avail[j];
815 		dump_avail[j + 1] = phys_avail[j + 1];
816 	}
817 
818 	/* Check for overlap with the kernel and exception vectors */
819 	rm_pavail = 0;
820 	for (j = 0; j < 2*phys_avail_count; j+=2) {
821 		if (phys_avail[j] < EXC_LAST)
822 			phys_avail[j] += EXC_LAST;
823 
824 		if (phys_avail[j] >= kernelphysstart &&
825 		    phys_avail[j+1] <= kernelphysend) {
826 			phys_avail[j] = phys_avail[j+1] = ~0;
827 			rm_pavail++;
828 			continue;
829 		}
830 
831 		if (kernelphysstart >= phys_avail[j] &&
832 		    kernelphysstart < phys_avail[j+1]) {
833 			if (kernelphysend < phys_avail[j+1]) {
834 				phys_avail[2*phys_avail_count] =
835 				    (kernelphysend & ~PAGE_MASK) + PAGE_SIZE;
836 				phys_avail[2*phys_avail_count + 1] =
837 				    phys_avail[j+1];
838 				phys_avail_count++;
839 			}
840 
841 			phys_avail[j+1] = kernelphysstart & ~PAGE_MASK;
842 		}
843 
844 		if (kernelphysend >= phys_avail[j] &&
845 		    kernelphysend < phys_avail[j+1]) {
846 			if (kernelphysstart > phys_avail[j]) {
847 				phys_avail[2*phys_avail_count] = phys_avail[j];
848 				phys_avail[2*phys_avail_count + 1] =
849 				    kernelphysstart & ~PAGE_MASK;
850 				phys_avail_count++;
851 			}
852 
853 			phys_avail[j] = (kernelphysend & ~PAGE_MASK) +
854 			    PAGE_SIZE;
855 		}
856 	}
857 
858 	/* Remove physical available regions marked for removal (~0) */
859 	if (rm_pavail) {
860 		qsort(phys_avail, 2*phys_avail_count, sizeof(phys_avail[0]),
861 			pa_cmp);
862 		phys_avail_count -= rm_pavail;
863 		for (i = 2*phys_avail_count;
864 		     i < 2*(phys_avail_count + rm_pavail); i+=2)
865 			phys_avail[i] = phys_avail[i+1] = 0;
866 	}
867 
868 	physmem = btoc(physsz);
869 
870 #ifdef PTEGCOUNT
871 	moea64_pteg_count = PTEGCOUNT;
872 #else
873 	moea64_pteg_count = 0x1000;
874 
875 	while (moea64_pteg_count < physmem)
876 		moea64_pteg_count <<= 1;
877 
878 	moea64_pteg_count >>= 1;
879 #endif /* PTEGCOUNT */
880 }
881 
882 void
883 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
884 {
885 	int		i;
886 
887 	/*
888 	 * Set PTEG mask
889 	 */
890 	moea64_pteg_mask = moea64_pteg_count - 1;
891 
892 	/*
893 	 * Initialize SLB table lock and page locks
894 	 */
895 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
896 	for (i = 0; i < PV_LOCK_COUNT; i++)
897 		mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
898 
899 	/*
900 	 * Initialise the bootstrap pvo pool.
901 	 */
902 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
903 		moea64_bpvo_pool_size*sizeof(struct pvo_entry), PAGE_SIZE);
904 	moea64_bpvo_pool_index = 0;
905 
906 	/* Place at address usable through the direct map */
907 	if (hw_direct_map)
908 		moea64_bpvo_pool = (struct pvo_entry *)
909 		    PHYS_TO_DMAP((uintptr_t)moea64_bpvo_pool);
910 
911 	/*
912 	 * Make sure kernel vsid is allocated as well as VSID 0.
913 	 */
914 	#ifndef __powerpc64__
915 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
916 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
917 	moea64_vsid_bitmap[0] |= 1;
918 	#endif
919 
920 	/*
921 	 * Initialize the kernel pmap (which is statically allocated).
922 	 */
923 	#ifdef __powerpc64__
924 	for (i = 0; i < 64; i++) {
925 		pcpup->pc_aim.slb[i].slbv = 0;
926 		pcpup->pc_aim.slb[i].slbe = 0;
927 	}
928 	#else
929 	for (i = 0; i < 16; i++)
930 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
931 	#endif
932 
933 	kernel_pmap->pmap_phys = kernel_pmap;
934 	CPU_FILL(&kernel_pmap->pm_active);
935 	RB_INIT(&kernel_pmap->pmap_pvo);
936 
937 	PMAP_LOCK_INIT(kernel_pmap);
938 
939 	/*
940 	 * Now map in all the other buffers we allocated earlier
941 	 */
942 
943 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
944 }
945 
946 void
947 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
948 {
949 	ihandle_t	mmui;
950 	phandle_t	chosen;
951 	phandle_t	mmu;
952 	ssize_t		sz;
953 	int		i;
954 	vm_offset_t	pa, va;
955 	void		*dpcpu;
956 
957 	/*
958 	 * Set up the Open Firmware pmap and add its mappings if not in real
959 	 * mode.
960 	 */
961 
962 	chosen = OF_finddevice("/chosen");
963 	if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) {
964 		mmu = OF_instance_to_package(mmui);
965 		if (mmu == -1 ||
966 		    (sz = OF_getproplen(mmu, "translations")) == -1)
967 			sz = 0;
968 		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
969 			panic("moea64_bootstrap: too many ofw translations");
970 
971 		if (sz > 0)
972 			moea64_add_ofw_mappings(mmup, mmu, sz);
973 	}
974 
975 	/*
976 	 * Calculate the last available physical address.
977 	 */
978 	Maxmem = 0;
979 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
980 		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
981 
982 	/*
983 	 * Initialize MMU.
984 	 */
985 	MMU_CPU_BOOTSTRAP(mmup,0);
986 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
987 	pmap_bootstrapped++;
988 
989 	/*
990 	 * Set the start and end of kva.
991 	 */
992 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
993 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
994 
995 	/*
996 	 * Map the entire KVA range into the SLB. We must not fault there.
997 	 */
998 	#ifdef __powerpc64__
999 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
1000 		moea64_bootstrap_slb_prefault(va, 0);
1001 	#endif
1002 
1003 	/*
1004 	 * Remap any early IO mappings (console framebuffer, etc.)
1005 	 */
1006 	bs_remap_earlyboot();
1007 
1008 	/*
1009 	 * Figure out how far we can extend virtual_end into segment 16
1010 	 * without running into existing mappings. Segment 16 is guaranteed
1011 	 * to contain neither RAM nor devices (at least on Apple hardware),
1012 	 * but will generally contain some OFW mappings we should not
1013 	 * step on.
1014 	 */
1015 
1016 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
1017 	PMAP_LOCK(kernel_pmap);
1018 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
1019 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
1020 		virtual_end += PAGE_SIZE;
1021 	PMAP_UNLOCK(kernel_pmap);
1022 	#endif
1023 
1024 	/*
1025 	 * Allocate a kernel stack with a guard page for thread0 and map it
1026 	 * into the kernel page map.
1027 	 */
1028 	pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
1029 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1030 	virtual_avail = va + kstack_pages * PAGE_SIZE;
1031 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
1032 	thread0.td_kstack = va;
1033 	thread0.td_kstack_pages = kstack_pages;
1034 	for (i = 0; i < kstack_pages; i++) {
1035 		moea64_kenter(mmup, va, pa);
1036 		pa += PAGE_SIZE;
1037 		va += PAGE_SIZE;
1038 	}
1039 
1040 	/*
1041 	 * Allocate virtual address space for the message buffer.
1042 	 */
1043 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
1044 	msgbufp = (struct msgbuf *)virtual_avail;
1045 	va = virtual_avail;
1046 	virtual_avail += round_page(msgbufsize);
1047 	while (va < virtual_avail) {
1048 		moea64_kenter(mmup, va, pa);
1049 		pa += PAGE_SIZE;
1050 		va += PAGE_SIZE;
1051 	}
1052 
1053 	/*
1054 	 * Allocate virtual address space for the dynamic percpu area.
1055 	 */
1056 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
1057 	dpcpu = (void *)virtual_avail;
1058 	va = virtual_avail;
1059 	virtual_avail += DPCPU_SIZE;
1060 	while (va < virtual_avail) {
1061 		moea64_kenter(mmup, va, pa);
1062 		pa += PAGE_SIZE;
1063 		va += PAGE_SIZE;
1064 	}
1065 	dpcpu_init(dpcpu, curcpu);
1066 
1067 	crashdumpmap = (caddr_t)virtual_avail;
1068 	virtual_avail += MAXDUMPPGS * PAGE_SIZE;
1069 
1070 	/*
1071 	 * Allocate some things for page zeroing. We put this directly
1072 	 * in the page table and use MOEA64_PTE_REPLACE to avoid any
1073 	 * of the PVO book-keeping or other parts of the VM system
1074 	 * from even knowing that this hack exists.
1075 	 */
1076 
1077 	if (!hw_direct_map) {
1078 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
1079 		    MTX_DEF);
1080 		for (i = 0; i < 2; i++) {
1081 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
1082 			virtual_end -= PAGE_SIZE;
1083 
1084 			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
1085 
1086 			PMAP_LOCK(kernel_pmap);
1087 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
1088 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
1089 			PMAP_UNLOCK(kernel_pmap);
1090 		}
1091 	}
1092 
1093 	numa_mem_regions(&numa_pregions, &numapregions_sz);
1094 }
1095 
1096 static void
1097 moea64_pmap_init_qpages(void)
1098 {
1099 	struct pcpu *pc;
1100 	int i;
1101 
1102 	if (hw_direct_map)
1103 		return;
1104 
1105 	CPU_FOREACH(i) {
1106 		pc = pcpu_find(i);
1107 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1108 		if (pc->pc_qmap_addr == 0)
1109 			panic("pmap_init_qpages: unable to allocate KVA");
1110 		PMAP_LOCK(kernel_pmap);
1111 		pc->pc_aim.qmap_pvo =
1112 		    moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr);
1113 		PMAP_UNLOCK(kernel_pmap);
1114 		mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF);
1115 	}
1116 }
1117 
1118 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL);
1119 
1120 /*
1121  * Activate a user pmap.  This mostly involves setting some non-CPU
1122  * state.
1123  */
1124 void
1125 moea64_activate(mmu_t mmu, struct thread *td)
1126 {
1127 	pmap_t	pm;
1128 
1129 	pm = &td->td_proc->p_vmspace->vm_pmap;
1130 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1131 
1132 	#ifdef __powerpc64__
1133 	PCPU_SET(aim.userslb, pm->pm_slb);
1134 	__asm __volatile("slbmte %0, %1; isync" ::
1135 	    "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
1136 	#else
1137 	PCPU_SET(curpmap, pm->pmap_phys);
1138 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1139 	#endif
1140 }
1141 
1142 void
1143 moea64_deactivate(mmu_t mmu, struct thread *td)
1144 {
1145 	pmap_t	pm;
1146 
1147 	__asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
1148 
1149 	pm = &td->td_proc->p_vmspace->vm_pmap;
1150 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1151 	#ifdef __powerpc64__
1152 	PCPU_SET(aim.userslb, NULL);
1153 	#else
1154 	PCPU_SET(curpmap, NULL);
1155 	#endif
1156 }
1157 
1158 void
1159 moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1160 {
1161 	struct	pvo_entry key, *pvo;
1162 	vm_page_t m;
1163 	int64_t	refchg;
1164 
1165 	key.pvo_vaddr = sva;
1166 	PMAP_LOCK(pm);
1167 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1168 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1169 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1170 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1171 			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1172 			    pvo);
1173 		pvo->pvo_vaddr &= ~PVO_WIRED;
1174 		refchg = MOEA64_PTE_REPLACE(mmu, pvo, 0 /* No invalidation */);
1175 		if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1176 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1177 			if (refchg < 0)
1178 				refchg = LPTE_CHG;
1179 			m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1180 
1181 			refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
1182 			if (refchg & LPTE_CHG)
1183 				vm_page_dirty(m);
1184 			if (refchg & LPTE_REF)
1185 				vm_page_aflag_set(m, PGA_REFERENCED);
1186 		}
1187 		pm->pm_stats.wired_count--;
1188 	}
1189 	PMAP_UNLOCK(pm);
1190 }
1191 
1192 /*
1193  * This goes through and sets the physical address of our
1194  * special scratch PTE to the PA we want to zero or copy. Because
1195  * of locking issues (this can get called in pvo_enter() by
1196  * the UMA allocator), we can't use most other utility functions here
1197  */
1198 
1199 static __inline
1200 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_paddr_t pa)
1201 {
1202 	struct pvo_entry *pvo;
1203 
1204 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1205 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1206 
1207 	pvo = moea64_scratchpage_pvo[which];
1208 	PMAP_LOCK(pvo->pvo_pmap);
1209 	pvo->pvo_pte.pa =
1210 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1211 	MOEA64_PTE_REPLACE(mmup, pvo, MOEA64_PTE_INVALIDATE);
1212 	PMAP_UNLOCK(pvo->pvo_pmap);
1213 	isync();
1214 }
1215 
1216 void
1217 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1218 {
1219 	vm_offset_t	dst;
1220 	vm_offset_t	src;
1221 
1222 	dst = VM_PAGE_TO_PHYS(mdst);
1223 	src = VM_PAGE_TO_PHYS(msrc);
1224 
1225 	if (hw_direct_map) {
1226 		bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst),
1227 		    PAGE_SIZE);
1228 	} else {
1229 		mtx_lock(&moea64_scratchpage_mtx);
1230 
1231 		moea64_set_scratchpage_pa(mmu, 0, src);
1232 		moea64_set_scratchpage_pa(mmu, 1, dst);
1233 
1234 		bcopy((void *)moea64_scratchpage_va[0],
1235 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1236 
1237 		mtx_unlock(&moea64_scratchpage_mtx);
1238 	}
1239 }
1240 
1241 static inline void
1242 moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1243     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1244 {
1245 	void *a_cp, *b_cp;
1246 	vm_offset_t a_pg_offset, b_pg_offset;
1247 	int cnt;
1248 
1249 	while (xfersize > 0) {
1250 		a_pg_offset = a_offset & PAGE_MASK;
1251 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1252 		a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1253 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
1254 		    a_pg_offset;
1255 		b_pg_offset = b_offset & PAGE_MASK;
1256 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1257 		b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1258 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
1259 		    b_pg_offset;
1260 		bcopy(a_cp, b_cp, cnt);
1261 		a_offset += cnt;
1262 		b_offset += cnt;
1263 		xfersize -= cnt;
1264 	}
1265 }
1266 
1267 static inline void
1268 moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1269     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1270 {
1271 	void *a_cp, *b_cp;
1272 	vm_offset_t a_pg_offset, b_pg_offset;
1273 	int cnt;
1274 
1275 	mtx_lock(&moea64_scratchpage_mtx);
1276 	while (xfersize > 0) {
1277 		a_pg_offset = a_offset & PAGE_MASK;
1278 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1279 		moea64_set_scratchpage_pa(mmu, 0,
1280 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1281 		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1282 		b_pg_offset = b_offset & PAGE_MASK;
1283 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1284 		moea64_set_scratchpage_pa(mmu, 1,
1285 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1286 		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1287 		bcopy(a_cp, b_cp, cnt);
1288 		a_offset += cnt;
1289 		b_offset += cnt;
1290 		xfersize -= cnt;
1291 	}
1292 	mtx_unlock(&moea64_scratchpage_mtx);
1293 }
1294 
1295 void
1296 moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1297     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1298 {
1299 
1300 	if (hw_direct_map) {
1301 		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1302 		    xfersize);
1303 	} else {
1304 		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1305 		    xfersize);
1306 	}
1307 }
1308 
1309 void
1310 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1311 {
1312 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1313 
1314 	if (size + off > PAGE_SIZE)
1315 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1316 
1317 	if (hw_direct_map) {
1318 		bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size);
1319 	} else {
1320 		mtx_lock(&moea64_scratchpage_mtx);
1321 		moea64_set_scratchpage_pa(mmu, 0, pa);
1322 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1323 		mtx_unlock(&moea64_scratchpage_mtx);
1324 	}
1325 }
1326 
1327 /*
1328  * Zero a page of physical memory by temporarily mapping it
1329  */
1330 void
1331 moea64_zero_page(mmu_t mmu, vm_page_t m)
1332 {
1333 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1334 	vm_offset_t va, off;
1335 
1336 	if (!hw_direct_map) {
1337 		mtx_lock(&moea64_scratchpage_mtx);
1338 
1339 		moea64_set_scratchpage_pa(mmu, 0, pa);
1340 		va = moea64_scratchpage_va[0];
1341 	} else {
1342 		va = PHYS_TO_DMAP(pa);
1343 	}
1344 
1345 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1346 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1347 
1348 	if (!hw_direct_map)
1349 		mtx_unlock(&moea64_scratchpage_mtx);
1350 }
1351 
1352 vm_offset_t
1353 moea64_quick_enter_page(mmu_t mmu, vm_page_t m)
1354 {
1355 	struct pvo_entry *pvo;
1356 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1357 
1358 	if (hw_direct_map)
1359 		return (PHYS_TO_DMAP(pa));
1360 
1361 	/*
1362  	 * MOEA64_PTE_REPLACE does some locking, so we can't just grab
1363 	 * a critical section and access the PCPU data like on i386.
1364 	 * Instead, pin the thread and grab the PCPU lock to prevent
1365 	 * a preempting thread from using the same PCPU data.
1366 	 */
1367 	sched_pin();
1368 
1369 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED);
1370 	pvo = PCPU_GET(aim.qmap_pvo);
1371 
1372 	mtx_lock(PCPU_PTR(aim.qmap_lock));
1373 	pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) |
1374 	    (uint64_t)pa;
1375 	MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_INVALIDATE);
1376 	isync();
1377 
1378 	return (PCPU_GET(qmap_addr));
1379 }
1380 
1381 void
1382 moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr)
1383 {
1384 	if (hw_direct_map)
1385 		return;
1386 
1387 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED);
1388 	KASSERT(PCPU_GET(qmap_addr) == addr,
1389 	    ("moea64_quick_remove_page: invalid address"));
1390 	mtx_unlock(PCPU_PTR(aim.qmap_lock));
1391 	sched_unpin();
1392 }
1393 
1394 /*
1395  * Map the given physical page at the specified virtual address in the
1396  * target pmap with the protection requested.  If specified the page
1397  * will be wired down.
1398  */
1399 
1400 int
1401 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1402     vm_prot_t prot, u_int flags, int8_t psind)
1403 {
1404 	struct		pvo_entry *pvo, *oldpvo;
1405 	struct		pvo_head *pvo_head;
1406 	uint64_t	pte_lo;
1407 	int		error;
1408 
1409 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1410 		if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1411 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1412 		else
1413 			VM_OBJECT_ASSERT_LOCKED(m->object);
1414 	}
1415 
1416 	pvo = alloc_pvo_entry(0);
1417 	if (pvo == NULL)
1418 		return (KERN_RESOURCE_SHORTAGE);
1419 	pvo->pvo_pmap = NULL; /* to be filled in later */
1420 	pvo->pvo_pte.prot = prot;
1421 
1422 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1423 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | pte_lo;
1424 
1425 	if ((flags & PMAP_ENTER_WIRED) != 0)
1426 		pvo->pvo_vaddr |= PVO_WIRED;
1427 
1428 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1429 		pvo_head = NULL;
1430 	} else {
1431 		pvo_head = &m->md.mdpg_pvoh;
1432 		pvo->pvo_vaddr |= PVO_MANAGED;
1433 	}
1434 
1435 	PV_PAGE_LOCK(m);
1436 	PMAP_LOCK(pmap);
1437 	if (pvo->pvo_pmap == NULL)
1438 		init_pvo_entry(pvo, pmap, va);
1439 	if (prot & VM_PROT_WRITE)
1440 		if (pmap_bootstrapped &&
1441 		    (m->oflags & VPO_UNMANAGED) == 0)
1442 			vm_page_aflag_set(m, PGA_WRITEABLE);
1443 
1444 	error = moea64_pvo_enter(mmu, pvo, pvo_head, &oldpvo);
1445 	if (error == EEXIST) {
1446 		if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
1447 		    oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
1448 		    oldpvo->pvo_pte.prot == prot) {
1449 			/* Identical mapping already exists */
1450 			error = 0;
1451 
1452 			/* If not in page table, reinsert it */
1453 			if (MOEA64_PTE_SYNCH(mmu, oldpvo) < 0) {
1454 				STAT_MOEA64(moea64_pte_overflow--);
1455 				MOEA64_PTE_INSERT(mmu, oldpvo);
1456 			}
1457 
1458 			/* Then just clean up and go home */
1459 			PV_PAGE_UNLOCK(m);
1460 			PMAP_UNLOCK(pmap);
1461 			free_pvo_entry(pvo);
1462 			goto out;
1463 		} else {
1464 			/* Otherwise, need to kill it first */
1465 			KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
1466 			    "mapping does not match new mapping"));
1467 			moea64_pvo_remove_from_pmap(mmu, oldpvo);
1468 			moea64_pvo_enter(mmu, pvo, pvo_head, NULL);
1469 		}
1470 	}
1471 	PMAP_UNLOCK(pmap);
1472 	PV_PAGE_UNLOCK(m);
1473 
1474 	/* Free any dead pages */
1475 	if (error == EEXIST) {
1476 		moea64_pvo_remove_from_page(mmu, oldpvo);
1477 		free_pvo_entry(oldpvo);
1478 	}
1479 
1480 out:
1481 	/*
1482 	 * Flush the page from the instruction cache if this page is
1483 	 * mapped executable and cacheable.
1484 	 */
1485 	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1486 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1487 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1488 		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1489 	}
1490 	return (KERN_SUCCESS);
1491 }
1492 
1493 static void
1494 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1495     vm_size_t sz)
1496 {
1497 
1498 	/*
1499 	 * This is much trickier than on older systems because
1500 	 * we can't sync the icache on physical addresses directly
1501 	 * without a direct map. Instead we check a couple of cases
1502 	 * where the memory is already mapped in and, failing that,
1503 	 * use the same trick we use for page zeroing to create
1504 	 * a temporary mapping for this physical address.
1505 	 */
1506 
1507 	if (!pmap_bootstrapped) {
1508 		/*
1509 		 * If PMAP is not bootstrapped, we are likely to be
1510 		 * in real mode.
1511 		 */
1512 		__syncicache((void *)(uintptr_t)pa, sz);
1513 	} else if (pmap == kernel_pmap) {
1514 		__syncicache((void *)va, sz);
1515 	} else if (hw_direct_map) {
1516 		__syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz);
1517 	} else {
1518 		/* Use the scratch page to set up a temp mapping */
1519 
1520 		mtx_lock(&moea64_scratchpage_mtx);
1521 
1522 		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1523 		__syncicache((void *)(moea64_scratchpage_va[1] +
1524 		    (va & ADDR_POFF)), sz);
1525 
1526 		mtx_unlock(&moea64_scratchpage_mtx);
1527 	}
1528 }
1529 
1530 /*
1531  * Maps a sequence of resident pages belonging to the same object.
1532  * The sequence begins with the given page m_start.  This page is
1533  * mapped at the given virtual address start.  Each subsequent page is
1534  * mapped at a virtual address that is offset from start by the same
1535  * amount as the page is offset from m_start within the object.  The
1536  * last page in the sequence is the page with the largest offset from
1537  * m_start that can be mapped at a virtual address less than the given
1538  * virtual address end.  Not every virtual page between start and end
1539  * is mapped; only those for which a resident page exists with the
1540  * corresponding offset from m_start are mapped.
1541  */
1542 void
1543 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1544     vm_page_t m_start, vm_prot_t prot)
1545 {
1546 	vm_page_t m;
1547 	vm_pindex_t diff, psize;
1548 
1549 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1550 
1551 	psize = atop(end - start);
1552 	m = m_start;
1553 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1554 		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1555 		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP |
1556 		    PMAP_ENTER_QUICK_LOCKED, 0);
1557 		m = TAILQ_NEXT(m, listq);
1558 	}
1559 }
1560 
1561 void
1562 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1563     vm_prot_t prot)
1564 {
1565 
1566 	moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1567 	    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0);
1568 }
1569 
1570 vm_paddr_t
1571 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1572 {
1573 	struct	pvo_entry *pvo;
1574 	vm_paddr_t pa;
1575 
1576 	PMAP_LOCK(pm);
1577 	pvo = moea64_pvo_find_va(pm, va);
1578 	if (pvo == NULL)
1579 		pa = 0;
1580 	else
1581 		pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1582 	PMAP_UNLOCK(pm);
1583 
1584 	return (pa);
1585 }
1586 
1587 /*
1588  * Atomically extract and hold the physical page with the given
1589  * pmap and virtual address pair if that mapping permits the given
1590  * protection.
1591  */
1592 vm_page_t
1593 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1594 {
1595 	struct	pvo_entry *pvo;
1596 	vm_page_t m;
1597 
1598 	m = NULL;
1599 	PMAP_LOCK(pmap);
1600 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1601 	if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
1602 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1603 		if (!vm_page_wire_mapped(m))
1604 			m = NULL;
1605 	}
1606 	PMAP_UNLOCK(pmap);
1607 	return (m);
1608 }
1609 
1610 static mmu_t installed_mmu;
1611 
1612 static void *
1613 moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
1614     uint8_t *flags, int wait)
1615 {
1616 	struct pvo_entry *pvo;
1617         vm_offset_t va;
1618         vm_page_t m;
1619         int needed_lock;
1620 
1621 	/*
1622 	 * This entire routine is a horrible hack to avoid bothering kmem
1623 	 * for new KVA addresses. Because this can get called from inside
1624 	 * kmem allocation routines, calling kmem for a new address here
1625 	 * can lead to multiply locking non-recursive mutexes.
1626 	 */
1627 
1628 	*flags = UMA_SLAB_PRIV;
1629 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1630 
1631 	m = vm_page_alloc_domain(NULL, 0, domain,
1632 	    malloc2vm_flags(wait) | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
1633 	if (m == NULL)
1634 		return (NULL);
1635 
1636 	va = VM_PAGE_TO_PHYS(m);
1637 
1638 	pvo = alloc_pvo_entry(1 /* bootstrap */);
1639 
1640 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
1641 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
1642 
1643 	if (needed_lock)
1644 		PMAP_LOCK(kernel_pmap);
1645 
1646 	init_pvo_entry(pvo, kernel_pmap, va);
1647 	pvo->pvo_vaddr |= PVO_WIRED;
1648 
1649 	moea64_pvo_enter(installed_mmu, pvo, NULL, NULL);
1650 
1651 	if (needed_lock)
1652 		PMAP_UNLOCK(kernel_pmap);
1653 
1654 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1655                 bzero((void *)va, PAGE_SIZE);
1656 
1657 	return (void *)va;
1658 }
1659 
1660 extern int elf32_nxstack;
1661 
1662 void
1663 moea64_init(mmu_t mmu)
1664 {
1665 
1666 	CTR0(KTR_PMAP, "moea64_init");
1667 
1668 	moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1669 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1670 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1671 
1672 	if (!hw_direct_map) {
1673 		installed_mmu = mmu;
1674 		uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc);
1675 	}
1676 
1677 #ifdef COMPAT_FREEBSD32
1678 	elf32_nxstack = 1;
1679 #endif
1680 
1681 	moea64_initialized = TRUE;
1682 }
1683 
1684 boolean_t
1685 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1686 {
1687 
1688 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1689 	    ("moea64_is_referenced: page %p is not managed", m));
1690 
1691 	return (moea64_query_bit(mmu, m, LPTE_REF));
1692 }
1693 
1694 boolean_t
1695 moea64_is_modified(mmu_t mmu, vm_page_t m)
1696 {
1697 
1698 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1699 	    ("moea64_is_modified: page %p is not managed", m));
1700 
1701 	/*
1702 	 * If the page is not busied then this check is racy.
1703 	 */
1704 	if (!pmap_page_is_write_mapped(m))
1705 		return (FALSE);
1706 
1707 	return (moea64_query_bit(mmu, m, LPTE_CHG));
1708 }
1709 
1710 boolean_t
1711 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1712 {
1713 	struct pvo_entry *pvo;
1714 	boolean_t rv = TRUE;
1715 
1716 	PMAP_LOCK(pmap);
1717 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1718 	if (pvo != NULL)
1719 		rv = FALSE;
1720 	PMAP_UNLOCK(pmap);
1721 	return (rv);
1722 }
1723 
1724 void
1725 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1726 {
1727 
1728 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1729 	    ("moea64_clear_modify: page %p is not managed", m));
1730 	vm_page_assert_busied(m);
1731 
1732 	if (!pmap_page_is_write_mapped(m))
1733 		return;
1734 	moea64_clear_bit(mmu, m, LPTE_CHG);
1735 }
1736 
1737 /*
1738  * Clear the write and modified bits in each of the given page's mappings.
1739  */
1740 void
1741 moea64_remove_write(mmu_t mmu, vm_page_t m)
1742 {
1743 	struct	pvo_entry *pvo;
1744 	int64_t	refchg, ret;
1745 	pmap_t	pmap;
1746 
1747 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1748 	    ("moea64_remove_write: page %p is not managed", m));
1749 	vm_page_assert_busied(m);
1750 
1751 	if (!pmap_page_is_write_mapped(m))
1752 		return
1753 
1754 	powerpc_sync();
1755 	PV_PAGE_LOCK(m);
1756 	refchg = 0;
1757 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1758 		pmap = pvo->pvo_pmap;
1759 		PMAP_LOCK(pmap);
1760 		if (!(pvo->pvo_vaddr & PVO_DEAD) &&
1761 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1762 			pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
1763 			ret = MOEA64_PTE_REPLACE(mmu, pvo,
1764 			    MOEA64_PTE_PROT_UPDATE);
1765 			if (ret < 0)
1766 				ret = LPTE_CHG;
1767 			refchg |= ret;
1768 			if (pvo->pvo_pmap == kernel_pmap)
1769 				isync();
1770 		}
1771 		PMAP_UNLOCK(pmap);
1772 	}
1773 	if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
1774 		vm_page_dirty(m);
1775 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1776 	PV_PAGE_UNLOCK(m);
1777 }
1778 
1779 /*
1780  *	moea64_ts_referenced:
1781  *
1782  *	Return a count of reference bits for a page, clearing those bits.
1783  *	It is not necessary for every reference bit to be cleared, but it
1784  *	is necessary that 0 only be returned when there are truly no
1785  *	reference bits set.
1786  *
1787  *	XXX: The exact number of bits to check and clear is a matter that
1788  *	should be tested and standardized at some point in the future for
1789  *	optimal aging of shared pages.
1790  */
1791 int
1792 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1793 {
1794 
1795 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1796 	    ("moea64_ts_referenced: page %p is not managed", m));
1797 	return (moea64_clear_bit(mmu, m, LPTE_REF));
1798 }
1799 
1800 /*
1801  * Modify the WIMG settings of all mappings for a page.
1802  */
1803 void
1804 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1805 {
1806 	struct	pvo_entry *pvo;
1807 	int64_t	refchg;
1808 	pmap_t	pmap;
1809 	uint64_t lo;
1810 
1811 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1812 		m->md.mdpg_cache_attrs = ma;
1813 		return;
1814 	}
1815 
1816 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1817 
1818 	PV_PAGE_LOCK(m);
1819 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1820 		pmap = pvo->pvo_pmap;
1821 		PMAP_LOCK(pmap);
1822 		if (!(pvo->pvo_vaddr & PVO_DEAD)) {
1823 			pvo->pvo_pte.pa &= ~LPTE_WIMG;
1824 			pvo->pvo_pte.pa |= lo;
1825 			refchg = MOEA64_PTE_REPLACE(mmu, pvo,
1826 			    MOEA64_PTE_INVALIDATE);
1827 			if (refchg < 0)
1828 				refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
1829 				    LPTE_CHG : 0;
1830 			if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1831 			    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1832 				refchg |=
1833 				    atomic_readandclear_32(&m->md.mdpg_attrs);
1834 				if (refchg & LPTE_CHG)
1835 					vm_page_dirty(m);
1836 				if (refchg & LPTE_REF)
1837 					vm_page_aflag_set(m, PGA_REFERENCED);
1838 			}
1839 			if (pvo->pvo_pmap == kernel_pmap)
1840 				isync();
1841 		}
1842 		PMAP_UNLOCK(pmap);
1843 	}
1844 	m->md.mdpg_cache_attrs = ma;
1845 	PV_PAGE_UNLOCK(m);
1846 }
1847 
1848 /*
1849  * Map a wired page into kernel virtual address space.
1850  */
1851 void
1852 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1853 {
1854 	int		error;
1855 	struct pvo_entry *pvo, *oldpvo;
1856 
1857 	do {
1858 		pvo = alloc_pvo_entry(0);
1859 		if (pvo == NULL)
1860 			vm_wait(NULL);
1861 	} while (pvo == NULL);
1862 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
1863 	pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
1864 	pvo->pvo_vaddr |= PVO_WIRED;
1865 
1866 	PMAP_LOCK(kernel_pmap);
1867 	oldpvo = moea64_pvo_find_va(kernel_pmap, va);
1868 	if (oldpvo != NULL)
1869 		moea64_pvo_remove_from_pmap(mmu, oldpvo);
1870 	init_pvo_entry(pvo, kernel_pmap, va);
1871 	error = moea64_pvo_enter(mmu, pvo, NULL, NULL);
1872 	PMAP_UNLOCK(kernel_pmap);
1873 
1874 	/* Free any dead pages */
1875 	if (oldpvo != NULL) {
1876 		moea64_pvo_remove_from_page(mmu, oldpvo);
1877 		free_pvo_entry(oldpvo);
1878 	}
1879 
1880 	if (error != 0 && error != ENOENT)
1881 		panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va,
1882 		    (uintmax_t)pa, error);
1883 }
1884 
1885 void
1886 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1887 {
1888 
1889 	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1890 }
1891 
1892 /*
1893  * Extract the physical page address associated with the given kernel virtual
1894  * address.
1895  */
1896 vm_paddr_t
1897 moea64_kextract(mmu_t mmu, vm_offset_t va)
1898 {
1899 	struct		pvo_entry *pvo;
1900 	vm_paddr_t pa;
1901 
1902 	/*
1903 	 * Shortcut the direct-mapped case when applicable.  We never put
1904 	 * anything but 1:1 (or 62-bit aliased) mappings below
1905 	 * VM_MIN_KERNEL_ADDRESS.
1906 	 */
1907 	if (va < VM_MIN_KERNEL_ADDRESS)
1908 		return (va & ~DMAP_BASE_ADDRESS);
1909 
1910 	PMAP_LOCK(kernel_pmap);
1911 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1912 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1913 	    va));
1914 	pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1915 	PMAP_UNLOCK(kernel_pmap);
1916 	return (pa);
1917 }
1918 
1919 /*
1920  * Remove a wired page from kernel virtual address space.
1921  */
1922 void
1923 moea64_kremove(mmu_t mmu, vm_offset_t va)
1924 {
1925 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1926 }
1927 
1928 /*
1929  * Provide a kernel pointer corresponding to a given userland pointer.
1930  * The returned pointer is valid until the next time this function is
1931  * called in this thread. This is used internally in copyin/copyout.
1932  */
1933 static int
1934 moea64_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr,
1935     void **kaddr, size_t ulen, size_t *klen)
1936 {
1937 	size_t l;
1938 #ifdef __powerpc64__
1939 	struct slb *slb;
1940 #endif
1941 	register_t slbv;
1942 
1943 	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
1944 	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
1945 	if (l > ulen)
1946 		l = ulen;
1947 	if (klen)
1948 		*klen = l;
1949 	else if (l != ulen)
1950 		return (EFAULT);
1951 
1952 #ifdef __powerpc64__
1953 	/* Try lockless look-up first */
1954 	slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr);
1955 
1956 	if (slb == NULL) {
1957 		/* If it isn't there, we need to pre-fault the VSID */
1958 		PMAP_LOCK(pm);
1959 		slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT;
1960 		PMAP_UNLOCK(pm);
1961 	} else {
1962 		slbv = slb->slbv;
1963 	}
1964 
1965 	/* Mark segment no-execute */
1966 	slbv |= SLBV_N;
1967 #else
1968 	slbv = va_to_vsid(pm, (vm_offset_t)uaddr);
1969 
1970 	/* Mark segment no-execute */
1971 	slbv |= SR_N;
1972 #endif
1973 
1974 	/* If we have already set this VSID, we can just return */
1975 	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv)
1976 		return (0);
1977 
1978 	__asm __volatile("isync");
1979 	curthread->td_pcb->pcb_cpu.aim.usr_segm =
1980 	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
1981 	curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv;
1982 #ifdef __powerpc64__
1983 	__asm __volatile ("slbie %0; slbmte %1, %2; isync" ::
1984 	    "r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE));
1985 #else
1986 	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv));
1987 #endif
1988 
1989 	return (0);
1990 }
1991 
1992 /*
1993  * Figure out where a given kernel pointer (usually in a fault) points
1994  * to from the VM's perspective, potentially remapping into userland's
1995  * address space.
1996  */
1997 static int
1998 moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, int *is_user,
1999     vm_offset_t *decoded_addr)
2000 {
2001 	vm_offset_t user_sr;
2002 
2003 	if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
2004 		user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
2005 		addr &= ADDR_PIDX | ADDR_POFF;
2006 		addr |= user_sr << ADDR_SR_SHFT;
2007 		*decoded_addr = addr;
2008 		*is_user = 1;
2009 	} else {
2010 		*decoded_addr = addr;
2011 		*is_user = 0;
2012 	}
2013 
2014 	return (0);
2015 }
2016 
2017 /*
2018  * Map a range of physical addresses into kernel virtual address space.
2019  *
2020  * The value passed in *virt is a suggested virtual address for the mapping.
2021  * Architectures which can support a direct-mapped physical to virtual region
2022  * can return the appropriate address within that region, leaving '*virt'
2023  * unchanged.  Other architectures should map the pages starting at '*virt' and
2024  * update '*virt' with the first usable address after the mapped region.
2025  */
2026 vm_offset_t
2027 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
2028     vm_paddr_t pa_end, int prot)
2029 {
2030 	vm_offset_t	sva, va;
2031 
2032 	if (hw_direct_map) {
2033 		/*
2034 		 * Check if every page in the region is covered by the direct
2035 		 * map. The direct map covers all of physical memory. Use
2036 		 * moea64_calc_wimg() as a shortcut to see if the page is in
2037 		 * physical memory as a way to see if the direct map covers it.
2038 		 */
2039 		for (va = pa_start; va < pa_end; va += PAGE_SIZE)
2040 			if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
2041 				break;
2042 		if (va == pa_end)
2043 			return (PHYS_TO_DMAP(pa_start));
2044 	}
2045 	sva = *virt;
2046 	va = sva;
2047 	/* XXX respect prot argument */
2048 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
2049 		moea64_kenter(mmu, va, pa_start);
2050 	*virt = va;
2051 
2052 	return (sva);
2053 }
2054 
2055 /*
2056  * Returns true if the pmap's pv is one of the first
2057  * 16 pvs linked to from this page.  This count may
2058  * be changed upwards or downwards in the future; it
2059  * is only necessary that true be returned for a small
2060  * subset of pmaps for proper page aging.
2061  */
2062 boolean_t
2063 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2064 {
2065         int loops;
2066 	struct pvo_entry *pvo;
2067 	boolean_t rv;
2068 
2069 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2070 	    ("moea64_page_exists_quick: page %p is not managed", m));
2071 	loops = 0;
2072 	rv = FALSE;
2073 	PV_PAGE_LOCK(m);
2074 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2075 		if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
2076 			rv = TRUE;
2077 			break;
2078 		}
2079 		if (++loops >= 16)
2080 			break;
2081 	}
2082 	PV_PAGE_UNLOCK(m);
2083 	return (rv);
2084 }
2085 
2086 void
2087 moea64_page_init(mmu_t mmu __unused, vm_page_t m)
2088 {
2089 
2090 	m->md.mdpg_attrs = 0;
2091 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
2092 	LIST_INIT(&m->md.mdpg_pvoh);
2093 }
2094 
2095 /*
2096  * Return the number of managed mappings to the given physical page
2097  * that are wired.
2098  */
2099 int
2100 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
2101 {
2102 	struct pvo_entry *pvo;
2103 	int count;
2104 
2105 	count = 0;
2106 	if ((m->oflags & VPO_UNMANAGED) != 0)
2107 		return (count);
2108 	PV_PAGE_LOCK(m);
2109 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
2110 		if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
2111 			count++;
2112 	PV_PAGE_UNLOCK(m);
2113 	return (count);
2114 }
2115 
2116 static uintptr_t	moea64_vsidcontext;
2117 
2118 uintptr_t
2119 moea64_get_unique_vsid(void) {
2120 	u_int entropy;
2121 	register_t hash;
2122 	uint32_t mask;
2123 	int i;
2124 
2125 	entropy = 0;
2126 	__asm __volatile("mftb %0" : "=r"(entropy));
2127 
2128 	mtx_lock(&moea64_slb_mutex);
2129 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
2130 		u_int	n;
2131 
2132 		/*
2133 		 * Create a new value by mutiplying by a prime and adding in
2134 		 * entropy from the timebase register.  This is to make the
2135 		 * VSID more random so that the PT hash function collides
2136 		 * less often.  (Note that the prime casues gcc to do shifts
2137 		 * instead of a multiply.)
2138 		 */
2139 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
2140 		hash = moea64_vsidcontext & (NVSIDS - 1);
2141 		if (hash == 0)		/* 0 is special, avoid it */
2142 			continue;
2143 		n = hash >> 5;
2144 		mask = 1 << (hash & (VSID_NBPW - 1));
2145 		hash = (moea64_vsidcontext & VSID_HASHMASK);
2146 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
2147 			/* anything free in this bucket? */
2148 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
2149 				entropy = (moea64_vsidcontext >> 20);
2150 				continue;
2151 			}
2152 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
2153 			mask = 1 << i;
2154 			hash &= rounddown2(VSID_HASHMASK, VSID_NBPW);
2155 			hash |= i;
2156 		}
2157 		if (hash == VSID_VRMA)	/* also special, avoid this too */
2158 			continue;
2159 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
2160 		    ("Allocating in-use VSID %#zx\n", hash));
2161 		moea64_vsid_bitmap[n] |= mask;
2162 		mtx_unlock(&moea64_slb_mutex);
2163 		return (hash);
2164 	}
2165 
2166 	mtx_unlock(&moea64_slb_mutex);
2167 	panic("%s: out of segments",__func__);
2168 }
2169 
2170 #ifdef __powerpc64__
2171 void
2172 moea64_pinit(mmu_t mmu, pmap_t pmap)
2173 {
2174 
2175 	RB_INIT(&pmap->pmap_pvo);
2176 
2177 	pmap->pm_slb_tree_root = slb_alloc_tree();
2178 	pmap->pm_slb = slb_alloc_user_cache();
2179 	pmap->pm_slb_len = 0;
2180 }
2181 #else
2182 void
2183 moea64_pinit(mmu_t mmu, pmap_t pmap)
2184 {
2185 	int	i;
2186 	uint32_t hash;
2187 
2188 	RB_INIT(&pmap->pmap_pvo);
2189 
2190 	if (pmap_bootstrapped)
2191 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
2192 		    (vm_offset_t)pmap);
2193 	else
2194 		pmap->pmap_phys = pmap;
2195 
2196 	/*
2197 	 * Allocate some segment registers for this pmap.
2198 	 */
2199 	hash = moea64_get_unique_vsid();
2200 
2201 	for (i = 0; i < 16; i++)
2202 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
2203 
2204 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
2205 }
2206 #endif
2207 
2208 /*
2209  * Initialize the pmap associated with process 0.
2210  */
2211 void
2212 moea64_pinit0(mmu_t mmu, pmap_t pm)
2213 {
2214 
2215 	PMAP_LOCK_INIT(pm);
2216 	moea64_pinit(mmu, pm);
2217 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2218 }
2219 
2220 /*
2221  * Set the physical protection on the specified range of this map as requested.
2222  */
2223 static void
2224 moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
2225 {
2226 	struct vm_page *pg;
2227 	vm_prot_t oldprot;
2228 	int32_t refchg;
2229 
2230 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2231 
2232 	/*
2233 	 * Change the protection of the page.
2234 	 */
2235 	oldprot = pvo->pvo_pte.prot;
2236 	pvo->pvo_pte.prot = prot;
2237 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2238 
2239 	/*
2240 	 * If the PVO is in the page table, update mapping
2241 	 */
2242 	refchg = MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_PROT_UPDATE);
2243 	if (refchg < 0)
2244 		refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
2245 
2246 	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
2247 	    (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2248 		if ((pg->oflags & VPO_UNMANAGED) == 0)
2249 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
2250 		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
2251 		    pvo->pvo_pte.pa & LPTE_RPGN, PAGE_SIZE);
2252 	}
2253 
2254 	/*
2255 	 * Update vm about the REF/CHG bits if the page is managed and we have
2256 	 * removed write access.
2257 	 */
2258 	if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
2259 	    (oldprot & VM_PROT_WRITE)) {
2260 		refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2261 		if (refchg & LPTE_CHG)
2262 			vm_page_dirty(pg);
2263 		if (refchg & LPTE_REF)
2264 			vm_page_aflag_set(pg, PGA_REFERENCED);
2265 	}
2266 }
2267 
2268 void
2269 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2270     vm_prot_t prot)
2271 {
2272 	struct	pvo_entry *pvo, *tpvo, key;
2273 
2274 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2275 	    sva, eva, prot);
2276 
2277 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2278 	    ("moea64_protect: non current pmap"));
2279 
2280 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2281 		moea64_remove(mmu, pm, sva, eva);
2282 		return;
2283 	}
2284 
2285 	PMAP_LOCK(pm);
2286 	key.pvo_vaddr = sva;
2287 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2288 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2289 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2290 		moea64_pvo_protect(mmu, pm, pvo, prot);
2291 	}
2292 	PMAP_UNLOCK(pm);
2293 }
2294 
2295 /*
2296  * Map a list of wired pages into kernel virtual address space.  This is
2297  * intended for temporary mappings which do not need page modification or
2298  * references recorded.  Existing mappings in the region are overwritten.
2299  */
2300 void
2301 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2302 {
2303 	while (count-- > 0) {
2304 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2305 		va += PAGE_SIZE;
2306 		m++;
2307 	}
2308 }
2309 
2310 /*
2311  * Remove page mappings from kernel virtual address space.  Intended for
2312  * temporary mappings entered by moea64_qenter.
2313  */
2314 void
2315 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2316 {
2317 	while (count-- > 0) {
2318 		moea64_kremove(mmu, va);
2319 		va += PAGE_SIZE;
2320 	}
2321 }
2322 
2323 void
2324 moea64_release_vsid(uint64_t vsid)
2325 {
2326 	int idx, mask;
2327 
2328 	mtx_lock(&moea64_slb_mutex);
2329 	idx = vsid & (NVSIDS-1);
2330 	mask = 1 << (idx % VSID_NBPW);
2331 	idx /= VSID_NBPW;
2332 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2333 	    ("Freeing unallocated VSID %#jx", vsid));
2334 	moea64_vsid_bitmap[idx] &= ~mask;
2335 	mtx_unlock(&moea64_slb_mutex);
2336 }
2337 
2338 
2339 void
2340 moea64_release(mmu_t mmu, pmap_t pmap)
2341 {
2342 
2343 	/*
2344 	 * Free segment registers' VSIDs
2345 	 */
2346     #ifdef __powerpc64__
2347 	slb_free_tree(pmap);
2348 	slb_free_user_cache(pmap->pm_slb);
2349     #else
2350 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2351 
2352 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2353     #endif
2354 }
2355 
2356 /*
2357  * Remove all pages mapped by the specified pmap
2358  */
2359 void
2360 moea64_remove_pages(mmu_t mmu, pmap_t pm)
2361 {
2362 	struct pvo_entry *pvo, *tpvo;
2363 	struct pvo_dlist tofree;
2364 
2365 	SLIST_INIT(&tofree);
2366 
2367 	PMAP_LOCK(pm);
2368 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2369 		if (pvo->pvo_vaddr & PVO_WIRED)
2370 			continue;
2371 
2372 		/*
2373 		 * For locking reasons, remove this from the page table and
2374 		 * pmap, but save delinking from the vm_page for a second
2375 		 * pass
2376 		 */
2377 		moea64_pvo_remove_from_pmap(mmu, pvo);
2378 		SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink);
2379 	}
2380 	PMAP_UNLOCK(pm);
2381 
2382 	while (!SLIST_EMPTY(&tofree)) {
2383 		pvo = SLIST_FIRST(&tofree);
2384 		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2385 		moea64_pvo_remove_from_page(mmu, pvo);
2386 		free_pvo_entry(pvo);
2387 	}
2388 }
2389 
2390 /*
2391  * Remove the given range of addresses from the specified map.
2392  */
2393 void
2394 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2395 {
2396 	struct  pvo_entry *pvo, *tpvo, key;
2397 	struct pvo_dlist tofree;
2398 
2399 	/*
2400 	 * Perform an unsynchronized read.  This is, however, safe.
2401 	 */
2402 	if (pm->pm_stats.resident_count == 0)
2403 		return;
2404 
2405 	key.pvo_vaddr = sva;
2406 
2407 	SLIST_INIT(&tofree);
2408 
2409 	PMAP_LOCK(pm);
2410 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2411 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2412 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2413 
2414 		/*
2415 		 * For locking reasons, remove this from the page table and
2416 		 * pmap, but save delinking from the vm_page for a second
2417 		 * pass
2418 		 */
2419 		moea64_pvo_remove_from_pmap(mmu, pvo);
2420 		SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink);
2421 	}
2422 	PMAP_UNLOCK(pm);
2423 
2424 	while (!SLIST_EMPTY(&tofree)) {
2425 		pvo = SLIST_FIRST(&tofree);
2426 		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2427 		moea64_pvo_remove_from_page(mmu, pvo);
2428 		free_pvo_entry(pvo);
2429 	}
2430 }
2431 
2432 /*
2433  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2434  * will reflect changes in pte's back to the vm_page.
2435  */
2436 void
2437 moea64_remove_all(mmu_t mmu, vm_page_t m)
2438 {
2439 	struct	pvo_entry *pvo, *next_pvo;
2440 	struct	pvo_head freequeue;
2441 	int	wasdead;
2442 	pmap_t	pmap;
2443 
2444 	LIST_INIT(&freequeue);
2445 
2446 	PV_PAGE_LOCK(m);
2447 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2448 		pmap = pvo->pvo_pmap;
2449 		PMAP_LOCK(pmap);
2450 		wasdead = (pvo->pvo_vaddr & PVO_DEAD);
2451 		if (!wasdead)
2452 			moea64_pvo_remove_from_pmap(mmu, pvo);
2453 		moea64_pvo_remove_from_page_locked(mmu, pvo, m);
2454 		if (!wasdead)
2455 			LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
2456 		PMAP_UNLOCK(pmap);
2457 
2458 	}
2459 	KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
2460 	KASSERT(!(m->aflags & PGA_WRITEABLE), ("Page still writable"));
2461 	PV_PAGE_UNLOCK(m);
2462 
2463 	/* Clean up UMA allocations */
2464 	LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
2465 		free_pvo_entry(pvo);
2466 }
2467 
2468 /*
2469  * Allocate a physical page of memory directly from the phys_avail map.
2470  * Can only be called from moea64_bootstrap before avail start and end are
2471  * calculated.
2472  */
2473 vm_offset_t
2474 moea64_bootstrap_alloc(vm_size_t size, vm_size_t align)
2475 {
2476 	vm_offset_t	s, e;
2477 	int		i, j;
2478 
2479 	size = round_page(size);
2480 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2481 		if (align != 0)
2482 			s = roundup2(phys_avail[i], align);
2483 		else
2484 			s = phys_avail[i];
2485 		e = s + size;
2486 
2487 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2488 			continue;
2489 
2490 		if (s + size > platform_real_maxaddr())
2491 			continue;
2492 
2493 		if (s == phys_avail[i]) {
2494 			phys_avail[i] += size;
2495 		} else if (e == phys_avail[i + 1]) {
2496 			phys_avail[i + 1] -= size;
2497 		} else {
2498 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2499 				phys_avail[j] = phys_avail[j - 2];
2500 				phys_avail[j + 1] = phys_avail[j - 1];
2501 			}
2502 
2503 			phys_avail[i + 3] = phys_avail[i + 1];
2504 			phys_avail[i + 1] = s;
2505 			phys_avail[i + 2] = e;
2506 			phys_avail_count++;
2507 		}
2508 
2509 		return (s);
2510 	}
2511 	panic("moea64_bootstrap_alloc: could not allocate memory");
2512 }
2513 
2514 static int
2515 moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo, struct pvo_head *pvo_head,
2516     struct pvo_entry **oldpvop)
2517 {
2518 	int first, err;
2519 	struct pvo_entry *old_pvo;
2520 
2521 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2522 
2523 	STAT_MOEA64(moea64_pvo_enter_calls++);
2524 
2525 	/*
2526 	 * Add to pmap list
2527 	 */
2528 	old_pvo = RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2529 
2530 	if (old_pvo != NULL) {
2531 		if (oldpvop != NULL)
2532 			*oldpvop = old_pvo;
2533 		return (EEXIST);
2534 	}
2535 
2536 	/*
2537 	 * Remember if the list was empty and therefore will be the first
2538 	 * item.
2539 	 */
2540 	if (pvo_head != NULL) {
2541 		if (LIST_FIRST(pvo_head) == NULL)
2542 			first = 1;
2543 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2544 	}
2545 
2546 	if (pvo->pvo_vaddr & PVO_WIRED)
2547 		pvo->pvo_pmap->pm_stats.wired_count++;
2548 	pvo->pvo_pmap->pm_stats.resident_count++;
2549 
2550 	/*
2551 	 * Insert it into the hardware page table
2552 	 */
2553 	err = MOEA64_PTE_INSERT(mmu, pvo);
2554 	if (err != 0) {
2555 		panic("moea64_pvo_enter: overflow");
2556 	}
2557 
2558 	STAT_MOEA64(moea64_pvo_entries++);
2559 
2560 	if (pvo->pvo_pmap == kernel_pmap)
2561 		isync();
2562 
2563 #ifdef __powerpc64__
2564 	/*
2565 	 * Make sure all our bootstrap mappings are in the SLB as soon
2566 	 * as virtual memory is switched on.
2567 	 */
2568 	if (!pmap_bootstrapped)
2569 		moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
2570 		    pvo->pvo_vaddr & PVO_LARGE);
2571 #endif
2572 
2573 	return (first ? ENOENT : 0);
2574 }
2575 
2576 static void
2577 moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo)
2578 {
2579 	struct	vm_page *pg;
2580 	int32_t refchg;
2581 
2582 	KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
2583 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2584 	KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
2585 
2586 	/*
2587 	 * If there is an active pte entry, we need to deactivate it
2588 	 */
2589 	refchg = MOEA64_PTE_UNSET(mmu, pvo);
2590 	if (refchg < 0) {
2591 		/*
2592 		 * If it was evicted from the page table, be pessimistic and
2593 		 * dirty the page.
2594 		 */
2595 		if (pvo->pvo_pte.prot & VM_PROT_WRITE)
2596 			refchg = LPTE_CHG;
2597 		else
2598 			refchg = 0;
2599 	}
2600 
2601 	/*
2602 	 * Update our statistics.
2603 	 */
2604 	pvo->pvo_pmap->pm_stats.resident_count--;
2605 	if (pvo->pvo_vaddr & PVO_WIRED)
2606 		pvo->pvo_pmap->pm_stats.wired_count--;
2607 
2608 	/*
2609 	 * Remove this PVO from the pmap list.
2610 	 */
2611 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2612 
2613 	/*
2614 	 * Mark this for the next sweep
2615 	 */
2616 	pvo->pvo_vaddr |= PVO_DEAD;
2617 
2618 	/* Send RC bits to VM */
2619 	if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2620 	    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2621 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2622 		if (pg != NULL) {
2623 			refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2624 			if (refchg & LPTE_CHG)
2625 				vm_page_dirty(pg);
2626 			if (refchg & LPTE_REF)
2627 				vm_page_aflag_set(pg, PGA_REFERENCED);
2628 		}
2629 	}
2630 }
2631 
2632 static inline void
2633 moea64_pvo_remove_from_page_locked(mmu_t mmu, struct pvo_entry *pvo,
2634     vm_page_t m)
2635 {
2636 
2637 	KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
2638 
2639 	/* Use NULL pmaps as a sentinel for races in page deletion */
2640 	if (pvo->pvo_pmap == NULL)
2641 		return;
2642 	pvo->pvo_pmap = NULL;
2643 
2644 	/*
2645 	 * Update vm about page writeability/executability if managed
2646 	 */
2647 	PV_LOCKASSERT(pvo->pvo_pte.pa & LPTE_RPGN);
2648 	if (pvo->pvo_vaddr & PVO_MANAGED) {
2649 		if (m != NULL) {
2650 			LIST_REMOVE(pvo, pvo_vlink);
2651 			if (LIST_EMPTY(vm_page_to_pvoh(m)))
2652 				vm_page_aflag_clear(m,
2653 				    PGA_WRITEABLE | PGA_EXECUTABLE);
2654 		}
2655 	}
2656 
2657 	STAT_MOEA64(moea64_pvo_entries--);
2658 	STAT_MOEA64(moea64_pvo_remove_calls++);
2659 }
2660 
2661 static void
2662 moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo)
2663 {
2664 	vm_page_t pg = NULL;
2665 
2666 	if (pvo->pvo_vaddr & PVO_MANAGED)
2667 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2668 
2669 	PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2670 	moea64_pvo_remove_from_page_locked(mmu, pvo, pg);
2671 	PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2672 }
2673 
2674 static struct pvo_entry *
2675 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2676 {
2677 	struct pvo_entry key;
2678 
2679 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2680 
2681 	key.pvo_vaddr = va & ~ADDR_POFF;
2682 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2683 }
2684 
2685 static boolean_t
2686 moea64_query_bit(mmu_t mmu, vm_page_t m, uint64_t ptebit)
2687 {
2688 	struct	pvo_entry *pvo;
2689 	int64_t ret;
2690 	boolean_t rv;
2691 
2692 	/*
2693 	 * See if this bit is stored in the page already.
2694 	 */
2695 	if (m->md.mdpg_attrs & ptebit)
2696 		return (TRUE);
2697 
2698 	/*
2699 	 * Examine each PTE.  Sync so that any pending REF/CHG bits are
2700 	 * flushed to the PTEs.
2701 	 */
2702 	rv = FALSE;
2703 	powerpc_sync();
2704 	PV_PAGE_LOCK(m);
2705 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2706 		ret = 0;
2707 
2708 		/*
2709 		 * See if this pvo has a valid PTE.  if so, fetch the
2710 		 * REF/CHG bits from the valid PTE.  If the appropriate
2711 		 * ptebit is set, return success.
2712 		 */
2713 		PMAP_LOCK(pvo->pvo_pmap);
2714 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2715 			ret = MOEA64_PTE_SYNCH(mmu, pvo);
2716 		PMAP_UNLOCK(pvo->pvo_pmap);
2717 
2718 		if (ret > 0) {
2719 			atomic_set_32(&m->md.mdpg_attrs,
2720 			    ret & (LPTE_CHG | LPTE_REF));
2721 			if (ret & ptebit) {
2722 				rv = TRUE;
2723 				break;
2724 			}
2725 		}
2726 	}
2727 	PV_PAGE_UNLOCK(m);
2728 
2729 	return (rv);
2730 }
2731 
2732 static u_int
2733 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2734 {
2735 	u_int	count;
2736 	struct	pvo_entry *pvo;
2737 	int64_t ret;
2738 
2739 	/*
2740 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2741 	 * we can reset the right ones).
2742 	 */
2743 	powerpc_sync();
2744 
2745 	/*
2746 	 * For each pvo entry, clear the pte's ptebit.
2747 	 */
2748 	count = 0;
2749 	PV_PAGE_LOCK(m);
2750 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2751 		ret = 0;
2752 
2753 		PMAP_LOCK(pvo->pvo_pmap);
2754 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2755 			ret = MOEA64_PTE_CLEAR(mmu, pvo, ptebit);
2756 		PMAP_UNLOCK(pvo->pvo_pmap);
2757 
2758 		if (ret > 0 && (ret & ptebit))
2759 			count++;
2760 	}
2761 	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
2762 	PV_PAGE_UNLOCK(m);
2763 
2764 	return (count);
2765 }
2766 
2767 boolean_t
2768 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2769 {
2770 	struct pvo_entry *pvo, key;
2771 	vm_offset_t ppa;
2772 	int error = 0;
2773 
2774 	if (hw_direct_map && mem_valid(pa, size) == 0)
2775 		return (0);
2776 
2777 	PMAP_LOCK(kernel_pmap);
2778 	ppa = pa & ~ADDR_POFF;
2779 	key.pvo_vaddr = DMAP_BASE_ADDRESS + ppa;
2780 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2781 	    ppa < pa + size; ppa += PAGE_SIZE,
2782 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2783 		if (pvo == NULL || (pvo->pvo_pte.pa & LPTE_RPGN) != ppa) {
2784 			error = EFAULT;
2785 			break;
2786 		}
2787 	}
2788 	PMAP_UNLOCK(kernel_pmap);
2789 
2790 	return (error);
2791 }
2792 
2793 /*
2794  * Map a set of physical memory pages into the kernel virtual
2795  * address space. Return a pointer to where it is mapped. This
2796  * routine is intended to be used for mapping device memory,
2797  * NOT real memory.
2798  */
2799 void *
2800 moea64_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2801 {
2802 	vm_offset_t va, tmpva, ppa, offset;
2803 
2804 	ppa = trunc_page(pa);
2805 	offset = pa & PAGE_MASK;
2806 	size = roundup2(offset + size, PAGE_SIZE);
2807 
2808 	va = kva_alloc(size);
2809 
2810 	if (!va)
2811 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2812 
2813 	for (tmpva = va; size > 0;) {
2814 		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2815 		size -= PAGE_SIZE;
2816 		tmpva += PAGE_SIZE;
2817 		ppa += PAGE_SIZE;
2818 	}
2819 
2820 	return ((void *)(va + offset));
2821 }
2822 
2823 void *
2824 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2825 {
2826 
2827 	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2828 }
2829 
2830 void
2831 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2832 {
2833 	vm_offset_t base, offset;
2834 
2835 	base = trunc_page(va);
2836 	offset = va & PAGE_MASK;
2837 	size = roundup2(offset + size, PAGE_SIZE);
2838 
2839 	kva_free(base, size);
2840 }
2841 
2842 void
2843 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2844 {
2845 	struct pvo_entry *pvo;
2846 	vm_offset_t lim;
2847 	vm_paddr_t pa;
2848 	vm_size_t len;
2849 
2850 	if (__predict_false(pm == NULL))
2851 		pm = &curthread->td_proc->p_vmspace->vm_pmap;
2852 
2853 	PMAP_LOCK(pm);
2854 	while (sz > 0) {
2855 		lim = round_page(va+1);
2856 		len = MIN(lim - va, sz);
2857 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2858 		if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
2859 			pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va & ADDR_POFF);
2860 			moea64_syncicache(mmu, pm, va, pa, len);
2861 		}
2862 		va += len;
2863 		sz -= len;
2864 	}
2865 	PMAP_UNLOCK(pm);
2866 }
2867 
2868 void
2869 moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2870 {
2871 
2872 	*va = (void *)(uintptr_t)pa;
2873 }
2874 
2875 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2876 
2877 void
2878 moea64_scan_init(mmu_t mmu)
2879 {
2880 	struct pvo_entry *pvo;
2881 	vm_offset_t va;
2882 	int i;
2883 
2884 	if (!do_minidump) {
2885 		/* Initialize phys. segments for dumpsys(). */
2886 		memset(&dump_map, 0, sizeof(dump_map));
2887 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2888 		for (i = 0; i < pregions_sz; i++) {
2889 			dump_map[i].pa_start = pregions[i].mr_start;
2890 			dump_map[i].pa_size = pregions[i].mr_size;
2891 		}
2892 		return;
2893 	}
2894 
2895 	/* Virtual segments for minidumps: */
2896 	memset(&dump_map, 0, sizeof(dump_map));
2897 
2898 	/* 1st: kernel .data and .bss. */
2899 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2900 	dump_map[0].pa_size = round_page((uintptr_t)_end) -
2901 	    dump_map[0].pa_start;
2902 
2903 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2904 	dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr;
2905 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2906 
2907 	/* 3rd: kernel VM. */
2908 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2909 	/* Find start of next chunk (from va). */
2910 	while (va < virtual_end) {
2911 		/* Don't dump the buffer cache. */
2912 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2913 			va = kmi.buffer_eva;
2914 			continue;
2915 		}
2916 		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2917 		if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2918 			break;
2919 		va += PAGE_SIZE;
2920 	}
2921 	if (va < virtual_end) {
2922 		dump_map[2].pa_start = va;
2923 		va += PAGE_SIZE;
2924 		/* Find last page in chunk. */
2925 		while (va < virtual_end) {
2926 			/* Don't run into the buffer cache. */
2927 			if (va == kmi.buffer_sva)
2928 				break;
2929 			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2930 			if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD))
2931 				break;
2932 			va += PAGE_SIZE;
2933 		}
2934 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2935 	}
2936 }
2937 
2938 #ifdef __powerpc64__
2939 
2940 static size_t
2941 moea64_scan_pmap(mmu_t mmu)
2942 {
2943 	struct pvo_entry *pvo;
2944 	vm_paddr_t pa, pa_end;
2945 	vm_offset_t va, pgva, kstart, kend, kstart_lp, kend_lp;
2946 	uint64_t lpsize;
2947 
2948 	lpsize = moea64_large_page_size;
2949 	kstart = trunc_page((vm_offset_t)_etext);
2950 	kend = round_page((vm_offset_t)_end);
2951 	kstart_lp = kstart & ~moea64_large_page_mask;
2952 	kend_lp = (kend + moea64_large_page_mask) & ~moea64_large_page_mask;
2953 
2954 	CTR4(KTR_PMAP, "moea64_scan_pmap: kstart=0x%016lx, kend=0x%016lx, "
2955 	    "kstart_lp=0x%016lx, kend_lp=0x%016lx",
2956 	    kstart, kend, kstart_lp, kend_lp);
2957 
2958 	PMAP_LOCK(kernel_pmap);
2959 	RB_FOREACH(pvo, pvo_tree, &kernel_pmap->pmap_pvo) {
2960 		va = pvo->pvo_vaddr;
2961 
2962 		if (va & PVO_DEAD)
2963 			continue;
2964 
2965 		/* Skip DMAP (except kernel area) */
2966 		if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS) {
2967 			if (va & PVO_LARGE) {
2968 				pgva = va & ~moea64_large_page_mask;
2969 				if (pgva < kstart_lp || pgva >= kend_lp)
2970 					continue;
2971 			} else {
2972 				pgva = trunc_page(va);
2973 				if (pgva < kstart || pgva >= kend)
2974 					continue;
2975 			}
2976 		}
2977 
2978 		pa = pvo->pvo_pte.pa & LPTE_RPGN;
2979 
2980 		if (va & PVO_LARGE) {
2981 			pa_end = pa + lpsize;
2982 			for (; pa < pa_end; pa += PAGE_SIZE) {
2983 				if (is_dumpable(pa))
2984 					dump_add_page(pa);
2985 			}
2986 		} else {
2987 			if (is_dumpable(pa))
2988 				dump_add_page(pa);
2989 		}
2990 	}
2991 	PMAP_UNLOCK(kernel_pmap);
2992 
2993 	return (sizeof(struct lpte) * moea64_pteg_count * 8);
2994 }
2995 
2996 static struct dump_context dump_ctx;
2997 
2998 static void *
2999 moea64_dump_pmap_init(mmu_t mmu, unsigned blkpgs)
3000 {
3001 	dump_ctx.ptex = 0;
3002 	dump_ctx.ptex_end = moea64_pteg_count * 8;
3003 	dump_ctx.blksz = blkpgs * PAGE_SIZE;
3004 	return (&dump_ctx);
3005 }
3006 
3007 #else
3008 
3009 static size_t
3010 moea64_scan_pmap(mmu_t mmu)
3011 {
3012 	return (0);
3013 }
3014 
3015 static void *
3016 moea64_dump_pmap_init(mmu_t mmu, unsigned blkpgs)
3017 {
3018 	return (NULL);
3019 }
3020 
3021 #endif
3022