xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision 3ef51c5fb9163f2aafb1c14729e06a8bf0c4d113)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*-
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 /*
97  * Manages physical address maps.
98  *
99  * In addition to hardware address maps, this module is called upon to
100  * provide software-use-only maps which may or may not be stored in the
101  * same form as hardware maps.  These pseudo-maps are used to store
102  * intermediate results from copy operations to and from address spaces.
103  *
104  * Since the information managed by this module is also stored by the
105  * logical address mapping module, this module may throw away valid virtual
106  * to physical mappings at almost any time.  However, invalidations of
107  * mappings must be done as requested.
108  *
109  * In order to cope with hardware architectures which make virtual to
110  * physical map invalidates expensive, this module may delay invalidate
111  * reduced protection operations until such time as they are actually
112  * necessary.  This module is given full information as to which processors
113  * are currently using which maps, and to when physical maps must be made
114  * correct.
115  */
116 
117 #include "opt_compat.h"
118 #include "opt_kstack_pages.h"
119 
120 #include <sys/param.h>
121 #include <sys/kernel.h>
122 #include <sys/queue.h>
123 #include <sys/cpuset.h>
124 #include <sys/ktr.h>
125 #include <sys/lock.h>
126 #include <sys/msgbuf.h>
127 #include <sys/mutex.h>
128 #include <sys/proc.h>
129 #include <sys/rwlock.h>
130 #include <sys/sched.h>
131 #include <sys/sysctl.h>
132 #include <sys/systm.h>
133 #include <sys/vmmeter.h>
134 
135 #include <sys/kdb.h>
136 
137 #include <dev/ofw/openfirm.h>
138 
139 #include <vm/vm.h>
140 #include <vm/vm_param.h>
141 #include <vm/vm_kern.h>
142 #include <vm/vm_page.h>
143 #include <vm/vm_map.h>
144 #include <vm/vm_object.h>
145 #include <vm/vm_extern.h>
146 #include <vm/vm_pageout.h>
147 #include <vm/vm_pager.h>
148 #include <vm/uma.h>
149 
150 #include <machine/_inttypes.h>
151 #include <machine/cpu.h>
152 #include <machine/platform.h>
153 #include <machine/frame.h>
154 #include <machine/md_var.h>
155 #include <machine/psl.h>
156 #include <machine/bat.h>
157 #include <machine/hid.h>
158 #include <machine/pte.h>
159 #include <machine/sr.h>
160 #include <machine/trap.h>
161 #include <machine/mmuvar.h>
162 
163 #include "mmu_oea64.h"
164 #include "mmu_if.h"
165 #include "moea64_if.h"
166 
167 void moea64_release_vsid(uint64_t vsid);
168 uintptr_t moea64_get_unique_vsid(void);
169 
170 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
171 #define ENABLE_TRANS(msr)	mtmsr(msr)
172 
173 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
174 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
175 #define	VSID_HASH_MASK		0x0000007fffffffffULL
176 
177 /*
178  * Locking semantics:
179  * -- Read lock: if no modifications are being made to either the PVO lists
180  *    or page table or if any modifications being made result in internal
181  *    changes (e.g. wiring, protection) such that the existence of the PVOs
182  *    is unchanged and they remain associated with the same pmap (in which
183  *    case the changes should be protected by the pmap lock)
184  * -- Write lock: required if PTEs/PVOs are being inserted or removed.
185  */
186 
187 #define LOCK_TABLE_RD() rw_rlock(&moea64_table_lock)
188 #define UNLOCK_TABLE_RD() rw_runlock(&moea64_table_lock)
189 #define LOCK_TABLE_WR() rw_wlock(&moea64_table_lock)
190 #define UNLOCK_TABLE_WR() rw_wunlock(&moea64_table_lock)
191 
192 struct ofw_map {
193 	cell_t	om_va;
194 	cell_t	om_len;
195 	cell_t	om_pa_hi;
196 	cell_t	om_pa_lo;
197 	cell_t	om_mode;
198 };
199 
200 /*
201  * Map of physical memory regions.
202  */
203 static struct	mem_region *regions;
204 static struct	mem_region *pregions;
205 static u_int	phys_avail_count;
206 static int	regions_sz, pregions_sz;
207 
208 extern void bs_remap_earlyboot(void);
209 
210 /*
211  * Lock for the pteg and pvo tables.
212  */
213 struct rwlock	moea64_table_lock;
214 struct mtx	moea64_slb_mutex;
215 
216 /*
217  * PTEG data.
218  */
219 u_int		moea64_pteg_count;
220 u_int		moea64_pteg_mask;
221 
222 /*
223  * PVO data.
224  */
225 struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
226 struct	pvo_head moea64_pvo_kunmanaged =	/* list of unmanaged pages */
227     LIST_HEAD_INITIALIZER(moea64_pvo_kunmanaged);
228 
229 uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
230 uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
231 
232 #define	BPVO_POOL_SIZE	327680
233 static struct	pvo_entry *moea64_bpvo_pool;
234 static int	moea64_bpvo_pool_index = 0;
235 
236 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
237 #ifdef __powerpc64__
238 #define	NVSIDS		(NPMAPS * 16)
239 #define VSID_HASHMASK	0xffffffffUL
240 #else
241 #define NVSIDS		NPMAPS
242 #define VSID_HASHMASK	0xfffffUL
243 #endif
244 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
245 
246 static boolean_t moea64_initialized = FALSE;
247 
248 /*
249  * Statistics.
250  */
251 u_int	moea64_pte_valid = 0;
252 u_int	moea64_pte_overflow = 0;
253 u_int	moea64_pvo_entries = 0;
254 u_int	moea64_pvo_enter_calls = 0;
255 u_int	moea64_pvo_remove_calls = 0;
256 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
257     &moea64_pte_valid, 0, "");
258 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
259     &moea64_pte_overflow, 0, "");
260 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
261     &moea64_pvo_entries, 0, "");
262 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
263     &moea64_pvo_enter_calls, 0, "");
264 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
265     &moea64_pvo_remove_calls, 0, "");
266 
267 vm_offset_t	moea64_scratchpage_va[2];
268 struct pvo_entry *moea64_scratchpage_pvo[2];
269 uintptr_t	moea64_scratchpage_pte[2];
270 struct	mtx	moea64_scratchpage_mtx;
271 
272 uint64_t 	moea64_large_page_mask = 0;
273 int		moea64_large_page_size = 0;
274 int		moea64_large_page_shift = 0;
275 
276 /*
277  * PVO calls.
278  */
279 static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
280 		    vm_offset_t, vm_offset_t, uint64_t, int);
281 static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
282 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
283 
284 /*
285  * Utility routines.
286  */
287 static void		moea64_enter_locked(mmu_t, pmap_t, vm_offset_t,
288 			    vm_page_t, vm_prot_t, boolean_t);
289 static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
290 static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
291 static void		moea64_kremove(mmu_t, vm_offset_t);
292 static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
293 			    vm_offset_t pa, vm_size_t sz);
294 
295 /*
296  * Kernel MMU interface
297  */
298 void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
299 void moea64_clear_modify(mmu_t, vm_page_t);
300 void moea64_clear_reference(mmu_t, vm_page_t);
301 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
302 void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
303 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
304     vm_prot_t);
305 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
306 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
307 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
308 void moea64_init(mmu_t);
309 boolean_t moea64_is_modified(mmu_t, vm_page_t);
310 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
311 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
312 boolean_t moea64_ts_referenced(mmu_t, vm_page_t);
313 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
314 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
315 int moea64_page_wired_mappings(mmu_t, vm_page_t);
316 void moea64_pinit(mmu_t, pmap_t);
317 void moea64_pinit0(mmu_t, pmap_t);
318 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
319 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
320 void moea64_qremove(mmu_t, vm_offset_t, int);
321 void moea64_release(mmu_t, pmap_t);
322 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
323 void moea64_remove_pages(mmu_t, pmap_t);
324 void moea64_remove_all(mmu_t, vm_page_t);
325 void moea64_remove_write(mmu_t, vm_page_t);
326 void moea64_zero_page(mmu_t, vm_page_t);
327 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
328 void moea64_zero_page_idle(mmu_t, vm_page_t);
329 void moea64_activate(mmu_t, struct thread *);
330 void moea64_deactivate(mmu_t, struct thread *);
331 void *moea64_mapdev(mmu_t, vm_offset_t, vm_size_t);
332 void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
333 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
334 vm_offset_t moea64_kextract(mmu_t, vm_offset_t);
335 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
336 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
337 void moea64_kenter(mmu_t, vm_offset_t, vm_offset_t);
338 boolean_t moea64_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
339 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
340 
341 static mmu_method_t moea64_methods[] = {
342 	MMUMETHOD(mmu_change_wiring,	moea64_change_wiring),
343 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
344 	MMUMETHOD(mmu_clear_reference,	moea64_clear_reference),
345 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
346 	MMUMETHOD(mmu_enter,		moea64_enter),
347 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
348 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
349 	MMUMETHOD(mmu_extract,		moea64_extract),
350 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
351 	MMUMETHOD(mmu_init,		moea64_init),
352 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
353 	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
354 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
355 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
356 	MMUMETHOD(mmu_map,     		moea64_map),
357 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
358 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
359 	MMUMETHOD(mmu_pinit,		moea64_pinit),
360 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
361 	MMUMETHOD(mmu_protect,		moea64_protect),
362 	MMUMETHOD(mmu_qenter,		moea64_qenter),
363 	MMUMETHOD(mmu_qremove,		moea64_qremove),
364 	MMUMETHOD(mmu_release,		moea64_release),
365 	MMUMETHOD(mmu_remove,		moea64_remove),
366 	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
367 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
368 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
369 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
370 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
371 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
372 	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
373 	MMUMETHOD(mmu_activate,		moea64_activate),
374 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
375 	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
376 
377 	/* Internal interfaces */
378 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
379 	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
380 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
381 	MMUMETHOD(mmu_kextract,		moea64_kextract),
382 	MMUMETHOD(mmu_kenter,		moea64_kenter),
383 	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
384 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
385 
386 	{ 0, 0 }
387 };
388 
389 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
390 
391 static __inline u_int
392 va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
393 {
394 	uint64_t hash;
395 	int shift;
396 
397 	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
398 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
399 	    shift);
400 	return (hash & moea64_pteg_mask);
401 }
402 
403 static __inline struct pvo_head *
404 vm_page_to_pvoh(vm_page_t m)
405 {
406 
407 	return (&m->md.mdpg_pvoh);
408 }
409 
410 static __inline void
411 moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
412     uint64_t pte_lo, int flags)
413 {
414 
415 	/*
416 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
417 	 * set when the real pte is set in memory.
418 	 *
419 	 * Note: Don't set the valid bit for correct operation of tlb update.
420 	 */
421 	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
422 	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
423 
424 	if (flags & PVO_LARGE)
425 		pt->pte_hi |= LPTE_BIG;
426 
427 	pt->pte_lo = pte_lo;
428 }
429 
430 static __inline uint64_t
431 moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
432 {
433 	uint64_t pte_lo;
434 	int i;
435 
436 	if (ma != VM_MEMATTR_DEFAULT) {
437 		switch (ma) {
438 		case VM_MEMATTR_UNCACHEABLE:
439 			return (LPTE_I | LPTE_G);
440 		case VM_MEMATTR_WRITE_COMBINING:
441 		case VM_MEMATTR_WRITE_BACK:
442 		case VM_MEMATTR_PREFETCHABLE:
443 			return (LPTE_I);
444 		case VM_MEMATTR_WRITE_THROUGH:
445 			return (LPTE_W | LPTE_M);
446 		}
447 	}
448 
449 	/*
450 	 * Assume the page is cache inhibited and access is guarded unless
451 	 * it's in our available memory array.
452 	 */
453 	pte_lo = LPTE_I | LPTE_G;
454 	for (i = 0; i < pregions_sz; i++) {
455 		if ((pa >= pregions[i].mr_start) &&
456 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
457 			pte_lo &= ~(LPTE_I | LPTE_G);
458 			pte_lo |= LPTE_M;
459 			break;
460 		}
461 	}
462 
463 	return pte_lo;
464 }
465 
466 /*
467  * Quick sort callout for comparing memory regions.
468  */
469 static int	om_cmp(const void *a, const void *b);
470 
471 static int
472 om_cmp(const void *a, const void *b)
473 {
474 	const struct	ofw_map *mapa;
475 	const struct	ofw_map *mapb;
476 
477 	mapa = a;
478 	mapb = b;
479 	if (mapa->om_pa_hi < mapb->om_pa_hi)
480 		return (-1);
481 	else if (mapa->om_pa_hi > mapb->om_pa_hi)
482 		return (1);
483 	else if (mapa->om_pa_lo < mapb->om_pa_lo)
484 		return (-1);
485 	else if (mapa->om_pa_lo > mapb->om_pa_lo)
486 		return (1);
487 	else
488 		return (0);
489 }
490 
491 static void
492 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
493 {
494 	struct ofw_map	translations[sz/sizeof(struct ofw_map)];
495 	register_t	msr;
496 	vm_offset_t	off;
497 	vm_paddr_t	pa_base;
498 	int		i;
499 
500 	bzero(translations, sz);
501 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
502 		panic("moea64_bootstrap: can't get ofw translations");
503 
504 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
505 	sz /= sizeof(*translations);
506 	qsort(translations, sz, sizeof (*translations), om_cmp);
507 
508 	for (i = 0; i < sz; i++) {
509 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
510 		    (uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
511 		    translations[i].om_len);
512 
513 		if (translations[i].om_pa_lo % PAGE_SIZE)
514 			panic("OFW translation not page-aligned!");
515 
516 		pa_base = translations[i].om_pa_lo;
517 
518 	      #ifdef __powerpc64__
519 		pa_base += (vm_offset_t)translations[i].om_pa_hi << 32;
520 	      #else
521 		if (translations[i].om_pa_hi)
522 			panic("OFW translations above 32-bit boundary!");
523 	      #endif
524 
525 		/* Now enter the pages for this mapping */
526 
527 		DISABLE_TRANS(msr);
528 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
529 			if (moea64_pvo_find_va(kernel_pmap,
530 			    translations[i].om_va + off) != NULL)
531 				continue;
532 
533 			moea64_kenter(mmup, translations[i].om_va + off,
534 			    pa_base + off);
535 		}
536 		ENABLE_TRANS(msr);
537 	}
538 }
539 
540 #ifdef __powerpc64__
541 static void
542 moea64_probe_large_page(void)
543 {
544 	uint16_t pvr = mfpvr() >> 16;
545 
546 	switch (pvr) {
547 	case IBM970:
548 	case IBM970FX:
549 	case IBM970MP:
550 		powerpc_sync(); isync();
551 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
552 		powerpc_sync(); isync();
553 
554 		/* FALLTHROUGH */
555 	case IBMCELLBE:
556 		moea64_large_page_size = 0x1000000; /* 16 MB */
557 		moea64_large_page_shift = 24;
558 		break;
559 	default:
560 		moea64_large_page_size = 0;
561 	}
562 
563 	moea64_large_page_mask = moea64_large_page_size - 1;
564 }
565 
566 static void
567 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
568 {
569 	struct slb *cache;
570 	struct slb entry;
571 	uint64_t esid, slbe;
572 	uint64_t i;
573 
574 	cache = PCPU_GET(slb);
575 	esid = va >> ADDR_SR_SHFT;
576 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
577 
578 	for (i = 0; i < 64; i++) {
579 		if (cache[i].slbe == (slbe | i))
580 			return;
581 	}
582 
583 	entry.slbe = slbe;
584 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
585 	if (large)
586 		entry.slbv |= SLBV_L;
587 
588 	slb_insert_kernel(entry.slbe, entry.slbv);
589 }
590 #endif
591 
592 static void
593 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
594     vm_offset_t kernelend)
595 {
596 	register_t msr;
597 	vm_paddr_t pa;
598 	vm_offset_t size, off;
599 	uint64_t pte_lo;
600 	int i;
601 
602 	if (moea64_large_page_size == 0)
603 		hw_direct_map = 0;
604 
605 	DISABLE_TRANS(msr);
606 	if (hw_direct_map) {
607 		LOCK_TABLE_WR();
608 		PMAP_LOCK(kernel_pmap);
609 		for (i = 0; i < pregions_sz; i++) {
610 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
611 		     pregions[i].mr_size; pa += moea64_large_page_size) {
612 			pte_lo = LPTE_M;
613 
614 			/*
615 			 * Set memory access as guarded if prefetch within
616 			 * the page could exit the available physmem area.
617 			 */
618 			if (pa & moea64_large_page_mask) {
619 				pa &= moea64_large_page_mask;
620 				pte_lo |= LPTE_G;
621 			}
622 			if (pa + moea64_large_page_size >
623 			    pregions[i].mr_start + pregions[i].mr_size)
624 				pte_lo |= LPTE_G;
625 
626 			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
627 				    &moea64_pvo_kunmanaged, pa, pa,
628 				    pte_lo, PVO_WIRED | PVO_LARGE);
629 		  }
630 		}
631 		PMAP_UNLOCK(kernel_pmap);
632 		UNLOCK_TABLE_WR();
633 	} else {
634 		size = sizeof(struct pvo_head) * moea64_pteg_count;
635 		off = (vm_offset_t)(moea64_pvo_table);
636 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
637 			moea64_kenter(mmup, pa, pa);
638 		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
639 		off = (vm_offset_t)(moea64_bpvo_pool);
640 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
641 		moea64_kenter(mmup, pa, pa);
642 
643 		/*
644 		 * Map certain important things, like ourselves.
645 		 *
646 		 * NOTE: We do not map the exception vector space. That code is
647 		 * used only in real mode, and leaving it unmapped allows us to
648 		 * catch NULL pointer deferences, instead of making NULL a valid
649 		 * address.
650 		 */
651 
652 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
653 		    pa += PAGE_SIZE)
654 			moea64_kenter(mmup, pa, pa);
655 	}
656 	ENABLE_TRANS(msr);
657 }
658 
659 void
660 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
661 {
662 	int		i, j;
663 	vm_size_t	physsz, hwphyssz;
664 
665 #ifndef __powerpc64__
666 	/* We don't have a direct map since there is no BAT */
667 	hw_direct_map = 0;
668 
669 	/* Make sure battable is zero, since we have no BAT */
670 	for (i = 0; i < 16; i++) {
671 		battable[i].batu = 0;
672 		battable[i].batl = 0;
673 	}
674 #else
675 	moea64_probe_large_page();
676 
677 	/* Use a direct map if we have large page support */
678 	if (moea64_large_page_size > 0)
679 		hw_direct_map = 1;
680 	else
681 		hw_direct_map = 0;
682 #endif
683 
684 	/* Get physical memory regions from firmware */
685 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
686 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
687 
688 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
689 		panic("moea64_bootstrap: phys_avail too small");
690 
691 	phys_avail_count = 0;
692 	physsz = 0;
693 	hwphyssz = 0;
694 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
695 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
696 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
697 		    regions[i].mr_start + regions[i].mr_size,
698 		    regions[i].mr_size);
699 		if (hwphyssz != 0 &&
700 		    (physsz + regions[i].mr_size) >= hwphyssz) {
701 			if (physsz < hwphyssz) {
702 				phys_avail[j] = regions[i].mr_start;
703 				phys_avail[j + 1] = regions[i].mr_start +
704 				    hwphyssz - physsz;
705 				physsz = hwphyssz;
706 				phys_avail_count++;
707 			}
708 			break;
709 		}
710 		phys_avail[j] = regions[i].mr_start;
711 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
712 		phys_avail_count++;
713 		physsz += regions[i].mr_size;
714 	}
715 
716 	/* Check for overlap with the kernel and exception vectors */
717 	for (j = 0; j < 2*phys_avail_count; j+=2) {
718 		if (phys_avail[j] < EXC_LAST)
719 			phys_avail[j] += EXC_LAST;
720 
721 		if (kernelstart >= phys_avail[j] &&
722 		    kernelstart < phys_avail[j+1]) {
723 			if (kernelend < phys_avail[j+1]) {
724 				phys_avail[2*phys_avail_count] =
725 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
726 				phys_avail[2*phys_avail_count + 1] =
727 				    phys_avail[j+1];
728 				phys_avail_count++;
729 			}
730 
731 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
732 		}
733 
734 		if (kernelend >= phys_avail[j] &&
735 		    kernelend < phys_avail[j+1]) {
736 			if (kernelstart > phys_avail[j]) {
737 				phys_avail[2*phys_avail_count] = phys_avail[j];
738 				phys_avail[2*phys_avail_count + 1] =
739 				    kernelstart & ~PAGE_MASK;
740 				phys_avail_count++;
741 			}
742 
743 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
744 		}
745 	}
746 
747 	physmem = btoc(physsz);
748 
749 #ifdef PTEGCOUNT
750 	moea64_pteg_count = PTEGCOUNT;
751 #else
752 	moea64_pteg_count = 0x1000;
753 
754 	while (moea64_pteg_count < physmem)
755 		moea64_pteg_count <<= 1;
756 
757 	moea64_pteg_count >>= 1;
758 #endif /* PTEGCOUNT */
759 }
760 
761 void
762 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
763 {
764 	vm_size_t	size;
765 	register_t	msr;
766 	int		i;
767 
768 	/*
769 	 * Set PTEG mask
770 	 */
771 	moea64_pteg_mask = moea64_pteg_count - 1;
772 
773 	/*
774 	 * Allocate pv/overflow lists.
775 	 */
776 	size = sizeof(struct pvo_head) * moea64_pteg_count;
777 
778 	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
779 	    PAGE_SIZE);
780 	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
781 
782 	DISABLE_TRANS(msr);
783 	for (i = 0; i < moea64_pteg_count; i++)
784 		LIST_INIT(&moea64_pvo_table[i]);
785 	ENABLE_TRANS(msr);
786 
787 	/*
788 	 * Initialize the lock that synchronizes access to the pteg and pvo
789 	 * tables.
790 	 */
791 	rw_init_flags(&moea64_table_lock, "pmap tables", RW_RECURSE);
792 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
793 
794 	/*
795 	 * Initialise the unmanaged pvo pool.
796 	 */
797 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
798 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
799 	moea64_bpvo_pool_index = 0;
800 
801 	/*
802 	 * Make sure kernel vsid is allocated as well as VSID 0.
803 	 */
804 	#ifndef __powerpc64__
805 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
806 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
807 	moea64_vsid_bitmap[0] |= 1;
808 	#endif
809 
810 	/*
811 	 * Initialize the kernel pmap (which is statically allocated).
812 	 */
813 	#ifdef __powerpc64__
814 	for (i = 0; i < 64; i++) {
815 		pcpup->pc_slb[i].slbv = 0;
816 		pcpup->pc_slb[i].slbe = 0;
817 	}
818 	#else
819 	for (i = 0; i < 16; i++)
820 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
821 	#endif
822 
823 	kernel_pmap->pmap_phys = kernel_pmap;
824 	CPU_FILL(&kernel_pmap->pm_active);
825 	LIST_INIT(&kernel_pmap->pmap_pvo);
826 
827 	PMAP_LOCK_INIT(kernel_pmap);
828 
829 	/*
830 	 * Now map in all the other buffers we allocated earlier
831 	 */
832 
833 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
834 }
835 
836 void
837 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
838 {
839 	ihandle_t	mmui;
840 	phandle_t	chosen;
841 	phandle_t	mmu;
842 	size_t		sz;
843 	int		i;
844 	vm_offset_t	pa, va;
845 	void		*dpcpu;
846 
847 	/*
848 	 * Set up the Open Firmware pmap and add its mappings if not in real
849 	 * mode.
850 	 */
851 
852 	chosen = OF_finddevice("/chosen");
853 	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
854 	    mmu = OF_instance_to_package(mmui);
855 	    if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
856 		sz = 0;
857 	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
858 		panic("moea64_bootstrap: too many ofw translations");
859 
860 	    if (sz > 0)
861 		moea64_add_ofw_mappings(mmup, mmu, sz);
862 	}
863 
864 	/*
865 	 * Calculate the last available physical address.
866 	 */
867 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
868 		;
869 	Maxmem = powerpc_btop(phys_avail[i + 1]);
870 
871 	/*
872 	 * Initialize MMU and remap early physical mappings
873 	 */
874 	MMU_CPU_BOOTSTRAP(mmup,0);
875 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
876 	pmap_bootstrapped++;
877 	bs_remap_earlyboot();
878 
879 	/*
880 	 * Set the start and end of kva.
881 	 */
882 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
883 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
884 
885 	/*
886 	 * Map the entire KVA range into the SLB. We must not fault there.
887 	 */
888 	#ifdef __powerpc64__
889 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
890 		moea64_bootstrap_slb_prefault(va, 0);
891 	#endif
892 
893 	/*
894 	 * Figure out how far we can extend virtual_end into segment 16
895 	 * without running into existing mappings. Segment 16 is guaranteed
896 	 * to contain neither RAM nor devices (at least on Apple hardware),
897 	 * but will generally contain some OFW mappings we should not
898 	 * step on.
899 	 */
900 
901 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
902 	PMAP_LOCK(kernel_pmap);
903 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
904 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
905 		virtual_end += PAGE_SIZE;
906 	PMAP_UNLOCK(kernel_pmap);
907 	#endif
908 
909 	/*
910 	 * Allocate a kernel stack with a guard page for thread0 and map it
911 	 * into the kernel page map.
912 	 */
913 	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
914 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
915 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
916 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
917 	thread0.td_kstack = va;
918 	thread0.td_kstack_pages = KSTACK_PAGES;
919 	for (i = 0; i < KSTACK_PAGES; i++) {
920 		moea64_kenter(mmup, va, pa);
921 		pa += PAGE_SIZE;
922 		va += PAGE_SIZE;
923 	}
924 
925 	/*
926 	 * Allocate virtual address space for the message buffer.
927 	 */
928 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
929 	msgbufp = (struct msgbuf *)virtual_avail;
930 	va = virtual_avail;
931 	virtual_avail += round_page(msgbufsize);
932 	while (va < virtual_avail) {
933 		moea64_kenter(mmup, va, pa);
934 		pa += PAGE_SIZE;
935 		va += PAGE_SIZE;
936 	}
937 
938 	/*
939 	 * Allocate virtual address space for the dynamic percpu area.
940 	 */
941 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
942 	dpcpu = (void *)virtual_avail;
943 	va = virtual_avail;
944 	virtual_avail += DPCPU_SIZE;
945 	while (va < virtual_avail) {
946 		moea64_kenter(mmup, va, pa);
947 		pa += PAGE_SIZE;
948 		va += PAGE_SIZE;
949 	}
950 	dpcpu_init(dpcpu, 0);
951 
952 	/*
953 	 * Allocate some things for page zeroing. We put this directly
954 	 * in the page table, marked with LPTE_LOCKED, to avoid any
955 	 * of the PVO book-keeping or other parts of the VM system
956 	 * from even knowing that this hack exists.
957 	 */
958 
959 	if (!hw_direct_map) {
960 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
961 		    MTX_DEF);
962 		for (i = 0; i < 2; i++) {
963 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
964 			virtual_end -= PAGE_SIZE;
965 
966 			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
967 
968 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
969 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
970 			LOCK_TABLE_RD();
971 			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
972 			    mmup, moea64_scratchpage_pvo[i]);
973 			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
974 			    |= LPTE_LOCKED;
975 			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
976 			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
977 			    moea64_scratchpage_pvo[i]->pvo_vpn);
978 			UNLOCK_TABLE_RD();
979 		}
980 	}
981 }
982 
983 /*
984  * Activate a user pmap.  The pmap must be activated before its address
985  * space can be accessed in any way.
986  */
987 void
988 moea64_activate(mmu_t mmu, struct thread *td)
989 {
990 	pmap_t	pm;
991 
992 	pm = &td->td_proc->p_vmspace->vm_pmap;
993 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
994 
995 	#ifdef __powerpc64__
996 	PCPU_SET(userslb, pm->pm_slb);
997 	#else
998 	PCPU_SET(curpmap, pm->pmap_phys);
999 	#endif
1000 }
1001 
1002 void
1003 moea64_deactivate(mmu_t mmu, struct thread *td)
1004 {
1005 	pmap_t	pm;
1006 
1007 	pm = &td->td_proc->p_vmspace->vm_pmap;
1008 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1009 	#ifdef __powerpc64__
1010 	PCPU_SET(userslb, NULL);
1011 	#else
1012 	PCPU_SET(curpmap, NULL);
1013 	#endif
1014 }
1015 
1016 void
1017 moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1018 {
1019 	struct	pvo_entry *pvo;
1020 	uintptr_t pt;
1021 	uint64_t vsid;
1022 	int	i, ptegidx;
1023 
1024 	LOCK_TABLE_WR();
1025 	PMAP_LOCK(pm);
1026 	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
1027 
1028 	if (pvo != NULL) {
1029 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1030 
1031 		if (wired) {
1032 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1033 				pm->pm_stats.wired_count++;
1034 			pvo->pvo_vaddr |= PVO_WIRED;
1035 			pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
1036 		} else {
1037 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1038 				pm->pm_stats.wired_count--;
1039 			pvo->pvo_vaddr &= ~PVO_WIRED;
1040 			pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1041 		}
1042 
1043 		if (pt != -1) {
1044 			/* Update wiring flag in page table. */
1045 			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1046 			    pvo->pvo_vpn);
1047 		} else if (wired) {
1048 			/*
1049 			 * If we are wiring the page, and it wasn't in the
1050 			 * page table before, add it.
1051 			 */
1052 			vsid = PVO_VSID(pvo);
1053 			ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
1054 			    pvo->pvo_vaddr & PVO_LARGE);
1055 
1056 			i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
1057 
1058 			if (i >= 0) {
1059 				PVO_PTEGIDX_CLR(pvo);
1060 				PVO_PTEGIDX_SET(pvo, i);
1061 			}
1062 		}
1063 
1064 	}
1065 	UNLOCK_TABLE_WR();
1066 	PMAP_UNLOCK(pm);
1067 }
1068 
1069 /*
1070  * This goes through and sets the physical address of our
1071  * special scratch PTE to the PA we want to zero or copy. Because
1072  * of locking issues (this can get called in pvo_enter() by
1073  * the UMA allocator), we can't use most other utility functions here
1074  */
1075 
1076 static __inline
1077 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1078 
1079 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1080 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1081 
1082 	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1083 	    ~(LPTE_WIMG | LPTE_RPGN);
1084 	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1085 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1086 	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1087 	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1088 	    moea64_scratchpage_pvo[which]->pvo_vpn);
1089 	isync();
1090 }
1091 
1092 void
1093 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1094 {
1095 	vm_offset_t	dst;
1096 	vm_offset_t	src;
1097 
1098 	dst = VM_PAGE_TO_PHYS(mdst);
1099 	src = VM_PAGE_TO_PHYS(msrc);
1100 
1101 	if (hw_direct_map) {
1102 		kcopy((void *)src, (void *)dst, PAGE_SIZE);
1103 	} else {
1104 		mtx_lock(&moea64_scratchpage_mtx);
1105 
1106 		moea64_set_scratchpage_pa(mmu, 0, src);
1107 		moea64_set_scratchpage_pa(mmu, 1, dst);
1108 
1109 		kcopy((void *)moea64_scratchpage_va[0],
1110 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1111 
1112 		mtx_unlock(&moea64_scratchpage_mtx);
1113 	}
1114 }
1115 
1116 void
1117 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1118 {
1119 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1120 
1121 	if (size + off > PAGE_SIZE)
1122 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1123 
1124 	if (hw_direct_map) {
1125 		bzero((caddr_t)pa + off, size);
1126 	} else {
1127 		mtx_lock(&moea64_scratchpage_mtx);
1128 		moea64_set_scratchpage_pa(mmu, 0, pa);
1129 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1130 		mtx_unlock(&moea64_scratchpage_mtx);
1131 	}
1132 }
1133 
1134 /*
1135  * Zero a page of physical memory by temporarily mapping it
1136  */
1137 void
1138 moea64_zero_page(mmu_t mmu, vm_page_t m)
1139 {
1140 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1141 	vm_offset_t va, off;
1142 
1143 	if (!hw_direct_map) {
1144 		mtx_lock(&moea64_scratchpage_mtx);
1145 
1146 		moea64_set_scratchpage_pa(mmu, 0, pa);
1147 		va = moea64_scratchpage_va[0];
1148 	} else {
1149 		va = pa;
1150 	}
1151 
1152 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1153 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1154 
1155 	if (!hw_direct_map)
1156 		mtx_unlock(&moea64_scratchpage_mtx);
1157 }
1158 
1159 void
1160 moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1161 {
1162 
1163 	moea64_zero_page(mmu, m);
1164 }
1165 
1166 /*
1167  * Map the given physical page at the specified virtual address in the
1168  * target pmap with the protection requested.  If specified the page
1169  * will be wired down.
1170  */
1171 void
1172 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1173     vm_prot_t prot, boolean_t wired)
1174 {
1175 
1176 	LOCK_TABLE_WR();
1177 	PMAP_LOCK(pmap);
1178 	moea64_enter_locked(mmu, pmap, va, m, prot, wired);
1179 	UNLOCK_TABLE_WR();
1180 	PMAP_UNLOCK(pmap);
1181 }
1182 
1183 /*
1184  * Map the given physical page at the specified virtual address in the
1185  * target pmap with the protection requested.  If specified the page
1186  * will be wired down.
1187  *
1188  * The table (write) and pmap must be locked.
1189  */
1190 
1191 static void
1192 moea64_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1193     vm_prot_t prot, boolean_t wired)
1194 {
1195 	struct		pvo_head *pvo_head;
1196 	uma_zone_t	zone;
1197 	vm_page_t	pg;
1198 	uint64_t	pte_lo;
1199 	u_int		pvo_flags;
1200 	int		error;
1201 
1202 	if (!moea64_initialized) {
1203 		pvo_head = &moea64_pvo_kunmanaged;
1204 		pg = NULL;
1205 		zone = moea64_upvo_zone;
1206 		pvo_flags = 0;
1207 	} else {
1208 		pvo_head = vm_page_to_pvoh(m);
1209 		pg = m;
1210 		zone = moea64_mpvo_zone;
1211 		pvo_flags = PVO_MANAGED;
1212 	}
1213 
1214 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1215 	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
1216 	    VM_OBJECT_LOCKED(m->object),
1217 	    ("moea64_enter_locked: page %p is not busy", m));
1218 
1219 	/* XXX change the pvo head for fake pages */
1220 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1221 		pvo_flags &= ~PVO_MANAGED;
1222 		pvo_head = &moea64_pvo_kunmanaged;
1223 		zone = moea64_upvo_zone;
1224 	}
1225 
1226 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1227 
1228 	if (prot & VM_PROT_WRITE) {
1229 		pte_lo |= LPTE_BW;
1230 		if (pmap_bootstrapped &&
1231 		    (m->oflags & VPO_UNMANAGED) == 0)
1232 			vm_page_aflag_set(m, PGA_WRITEABLE);
1233 	} else
1234 		pte_lo |= LPTE_BR;
1235 
1236 	if ((prot & VM_PROT_EXECUTE) == 0)
1237 		pte_lo |= LPTE_NOEXEC;
1238 
1239 	if (wired)
1240 		pvo_flags |= PVO_WIRED;
1241 
1242 	error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1243 	    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags);
1244 
1245 	/*
1246 	 * Flush the page from the instruction cache if this page is
1247 	 * mapped executable and cacheable.
1248 	 */
1249 	if ((pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0)
1250 		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1251 }
1252 
1253 static void
1254 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1255     vm_size_t sz)
1256 {
1257 
1258 	/*
1259 	 * This is much trickier than on older systems because
1260 	 * we can't sync the icache on physical addresses directly
1261 	 * without a direct map. Instead we check a couple of cases
1262 	 * where the memory is already mapped in and, failing that,
1263 	 * use the same trick we use for page zeroing to create
1264 	 * a temporary mapping for this physical address.
1265 	 */
1266 
1267 	if (!pmap_bootstrapped) {
1268 		/*
1269 		 * If PMAP is not bootstrapped, we are likely to be
1270 		 * in real mode.
1271 		 */
1272 		__syncicache((void *)pa, sz);
1273 	} else if (pmap == kernel_pmap) {
1274 		__syncicache((void *)va, sz);
1275 	} else if (hw_direct_map) {
1276 		__syncicache((void *)pa, sz);
1277 	} else {
1278 		/* Use the scratch page to set up a temp mapping */
1279 
1280 		mtx_lock(&moea64_scratchpage_mtx);
1281 
1282 		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1283 		__syncicache((void *)(moea64_scratchpage_va[1] +
1284 		    (va & ADDR_POFF)), sz);
1285 
1286 		mtx_unlock(&moea64_scratchpage_mtx);
1287 	}
1288 }
1289 
1290 /*
1291  * Maps a sequence of resident pages belonging to the same object.
1292  * The sequence begins with the given page m_start.  This page is
1293  * mapped at the given virtual address start.  Each subsequent page is
1294  * mapped at a virtual address that is offset from start by the same
1295  * amount as the page is offset from m_start within the object.  The
1296  * last page in the sequence is the page with the largest offset from
1297  * m_start that can be mapped at a virtual address less than the given
1298  * virtual address end.  Not every virtual page between start and end
1299  * is mapped; only those for which a resident page exists with the
1300  * corresponding offset from m_start are mapped.
1301  */
1302 void
1303 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1304     vm_page_t m_start, vm_prot_t prot)
1305 {
1306 	vm_page_t m;
1307 	vm_pindex_t diff, psize;
1308 
1309 	psize = atop(end - start);
1310 	m = m_start;
1311 	LOCK_TABLE_WR();
1312 	PMAP_LOCK(pm);
1313 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1314 		moea64_enter_locked(mmu, pm, start + ptoa(diff), m, prot &
1315 		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1316 		m = TAILQ_NEXT(m, listq);
1317 	}
1318 	UNLOCK_TABLE_WR();
1319 	PMAP_UNLOCK(pm);
1320 }
1321 
1322 void
1323 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1324     vm_prot_t prot)
1325 {
1326 
1327 	LOCK_TABLE_WR();
1328 	PMAP_LOCK(pm);
1329 	moea64_enter_locked(mmu, pm, va, m,
1330 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1331 	UNLOCK_TABLE_WR();
1332 	PMAP_UNLOCK(pm);
1333 }
1334 
1335 vm_paddr_t
1336 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1337 {
1338 	struct	pvo_entry *pvo;
1339 	vm_paddr_t pa;
1340 
1341 	LOCK_TABLE_RD();
1342 	PMAP_LOCK(pm);
1343 	pvo = moea64_pvo_find_va(pm, va);
1344 	if (pvo == NULL)
1345 		pa = 0;
1346 	else
1347 		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1348 		    (va - PVO_VADDR(pvo));
1349 	UNLOCK_TABLE_RD();
1350 	PMAP_UNLOCK(pm);
1351 	return (pa);
1352 }
1353 
1354 /*
1355  * Atomically extract and hold the physical page with the given
1356  * pmap and virtual address pair if that mapping permits the given
1357  * protection.
1358  */
1359 vm_page_t
1360 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1361 {
1362 	struct	pvo_entry *pvo;
1363 	vm_page_t m;
1364         vm_paddr_t pa;
1365 
1366 	m = NULL;
1367 	pa = 0;
1368 	LOCK_TABLE_RD();
1369 	PMAP_LOCK(pmap);
1370 retry:
1371 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1372 	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1373 	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1374 	     (prot & VM_PROT_WRITE) == 0)) {
1375 		if (vm_page_pa_tryrelock(pmap,
1376 			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1377 			goto retry;
1378 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1379 		vm_page_hold(m);
1380 	}
1381 	PA_UNLOCK_COND(pa);
1382 	UNLOCK_TABLE_RD();
1383 	PMAP_UNLOCK(pmap);
1384 	return (m);
1385 }
1386 
1387 static mmu_t installed_mmu;
1388 
1389 static void *
1390 moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1391 {
1392 	/*
1393 	 * This entire routine is a horrible hack to avoid bothering kmem
1394 	 * for new KVA addresses. Because this can get called from inside
1395 	 * kmem allocation routines, calling kmem for a new address here
1396 	 * can lead to multiply locking non-recursive mutexes.
1397 	 */
1398         vm_offset_t va;
1399 
1400         vm_page_t m;
1401         int pflags, needed_lock;
1402 
1403 	*flags = UMA_SLAB_PRIV;
1404 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1405 
1406         if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
1407                 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
1408         else
1409                 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
1410         if (wait & M_ZERO)
1411                 pflags |= VM_ALLOC_ZERO;
1412 
1413         for (;;) {
1414                 m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1415                 if (m == NULL) {
1416                         if (wait & M_NOWAIT)
1417                                 return (NULL);
1418                         VM_WAIT;
1419                 } else
1420                         break;
1421         }
1422 
1423 	va = VM_PAGE_TO_PHYS(m);
1424 
1425 	LOCK_TABLE_WR();
1426 	if (needed_lock)
1427 		PMAP_LOCK(kernel_pmap);
1428 
1429 	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1430 	    &moea64_pvo_kunmanaged, va, VM_PAGE_TO_PHYS(m), LPTE_M,
1431 	    PVO_WIRED | PVO_BOOTSTRAP);
1432 
1433 	if (needed_lock)
1434 		PMAP_UNLOCK(kernel_pmap);
1435 	UNLOCK_TABLE_WR();
1436 
1437 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1438                 bzero((void *)va, PAGE_SIZE);
1439 
1440 	return (void *)va;
1441 }
1442 
1443 extern int elf32_nxstack;
1444 
1445 void
1446 moea64_init(mmu_t mmu)
1447 {
1448 
1449 	CTR0(KTR_PMAP, "moea64_init");
1450 
1451 	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1452 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1453 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1454 	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1455 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1456 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1457 
1458 	if (!hw_direct_map) {
1459 		installed_mmu = mmu;
1460 		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1461 		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1462 	}
1463 
1464 #ifdef COMPAT_FREEBSD32
1465 	elf32_nxstack = 1;
1466 #endif
1467 
1468 	moea64_initialized = TRUE;
1469 }
1470 
1471 boolean_t
1472 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1473 {
1474 
1475 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1476 	    ("moea64_is_referenced: page %p is not managed", m));
1477 	return (moea64_query_bit(mmu, m, PTE_REF));
1478 }
1479 
1480 boolean_t
1481 moea64_is_modified(mmu_t mmu, vm_page_t m)
1482 {
1483 
1484 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1485 	    ("moea64_is_modified: page %p is not managed", m));
1486 
1487 	/*
1488 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
1489 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1490 	 * is clear, no PTEs can have LPTE_CHG set.
1491 	 */
1492 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1493 	if ((m->oflags & VPO_BUSY) == 0 &&
1494 	    (m->aflags & PGA_WRITEABLE) == 0)
1495 		return (FALSE);
1496 	return (moea64_query_bit(mmu, m, LPTE_CHG));
1497 }
1498 
1499 boolean_t
1500 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1501 {
1502 	struct pvo_entry *pvo;
1503 	boolean_t rv;
1504 
1505 	LOCK_TABLE_RD();
1506 	PMAP_LOCK(pmap);
1507 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1508 	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1509 	PMAP_UNLOCK(pmap);
1510 	UNLOCK_TABLE_RD();
1511 	return (rv);
1512 }
1513 
1514 void
1515 moea64_clear_reference(mmu_t mmu, vm_page_t m)
1516 {
1517 
1518 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1519 	    ("moea64_clear_reference: page %p is not managed", m));
1520 	moea64_clear_bit(mmu, m, LPTE_REF);
1521 }
1522 
1523 void
1524 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1525 {
1526 
1527 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1528 	    ("moea64_clear_modify: page %p is not managed", m));
1529 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1530 	KASSERT((m->oflags & VPO_BUSY) == 0,
1531 	    ("moea64_clear_modify: page %p is busy", m));
1532 
1533 	/*
1534 	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1535 	 * set.  If the object containing the page is locked and the page is
1536 	 * not VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
1537 	 */
1538 	if ((m->aflags & PGA_WRITEABLE) == 0)
1539 		return;
1540 	moea64_clear_bit(mmu, m, LPTE_CHG);
1541 }
1542 
1543 /*
1544  * Clear the write and modified bits in each of the given page's mappings.
1545  */
1546 void
1547 moea64_remove_write(mmu_t mmu, vm_page_t m)
1548 {
1549 	struct	pvo_entry *pvo;
1550 	uintptr_t pt;
1551 	pmap_t	pmap;
1552 	uint64_t lo = 0;
1553 
1554 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1555 	    ("moea64_remove_write: page %p is not managed", m));
1556 
1557 	/*
1558 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1559 	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
1560 	 * is clear, no page table entries need updating.
1561 	 */
1562 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1563 	if ((m->oflags & VPO_BUSY) == 0 &&
1564 	    (m->aflags & PGA_WRITEABLE) == 0)
1565 		return;
1566 	powerpc_sync();
1567 	LOCK_TABLE_RD();
1568 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1569 		pmap = pvo->pvo_pmap;
1570 		PMAP_LOCK(pmap);
1571 		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1572 			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1573 			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1574 			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1575 			if (pt != -1) {
1576 				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1577 				lo |= pvo->pvo_pte.lpte.pte_lo;
1578 				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1579 				MOEA64_PTE_CHANGE(mmu, pt,
1580 				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1581 				if (pvo->pvo_pmap == kernel_pmap)
1582 					isync();
1583 			}
1584 		}
1585 		if ((lo & LPTE_CHG) != 0)
1586 			vm_page_dirty(m);
1587 		PMAP_UNLOCK(pmap);
1588 	}
1589 	UNLOCK_TABLE_RD();
1590 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1591 }
1592 
1593 /*
1594  *	moea64_ts_referenced:
1595  *
1596  *	Return a count of reference bits for a page, clearing those bits.
1597  *	It is not necessary for every reference bit to be cleared, but it
1598  *	is necessary that 0 only be returned when there are truly no
1599  *	reference bits set.
1600  *
1601  *	XXX: The exact number of bits to check and clear is a matter that
1602  *	should be tested and standardized at some point in the future for
1603  *	optimal aging of shared pages.
1604  */
1605 boolean_t
1606 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1607 {
1608 
1609 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1610 	    ("moea64_ts_referenced: page %p is not managed", m));
1611 	return (moea64_clear_bit(mmu, m, LPTE_REF));
1612 }
1613 
1614 /*
1615  * Modify the WIMG settings of all mappings for a page.
1616  */
1617 void
1618 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1619 {
1620 	struct	pvo_entry *pvo;
1621 	struct  pvo_head *pvo_head;
1622 	uintptr_t pt;
1623 	pmap_t	pmap;
1624 	uint64_t lo;
1625 
1626 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1627 		m->md.mdpg_cache_attrs = ma;
1628 		return;
1629 	}
1630 
1631 	pvo_head = vm_page_to_pvoh(m);
1632 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1633 	LOCK_TABLE_RD();
1634 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1635 		pmap = pvo->pvo_pmap;
1636 		PMAP_LOCK(pmap);
1637 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1638 		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1639 		pvo->pvo_pte.lpte.pte_lo |= lo;
1640 		if (pt != -1) {
1641 			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1642 			    pvo->pvo_vpn);
1643 			if (pvo->pvo_pmap == kernel_pmap)
1644 				isync();
1645 		}
1646 		PMAP_UNLOCK(pmap);
1647 	}
1648 	UNLOCK_TABLE_RD();
1649 	m->md.mdpg_cache_attrs = ma;
1650 }
1651 
1652 /*
1653  * Map a wired page into kernel virtual address space.
1654  */
1655 void
1656 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1657 {
1658 	uint64_t	pte_lo;
1659 	int		error;
1660 
1661 	pte_lo = moea64_calc_wimg(pa, ma);
1662 
1663 	LOCK_TABLE_WR();
1664 	PMAP_LOCK(kernel_pmap);
1665 	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1666 	    &moea64_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1667 	PMAP_UNLOCK(kernel_pmap);
1668 	UNLOCK_TABLE_WR();
1669 
1670 	if (error != 0 && error != ENOENT)
1671 		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1672 		    pa, error);
1673 
1674 	/*
1675 	 * Flush the memory from the instruction cache.
1676 	 */
1677 	if ((pte_lo & (LPTE_I | LPTE_G)) == 0)
1678 		__syncicache((void *)va, PAGE_SIZE);
1679 }
1680 
1681 void
1682 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1683 {
1684 
1685 	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1686 }
1687 
1688 /*
1689  * Extract the physical page address associated with the given kernel virtual
1690  * address.
1691  */
1692 vm_offset_t
1693 moea64_kextract(mmu_t mmu, vm_offset_t va)
1694 {
1695 	struct		pvo_entry *pvo;
1696 	vm_paddr_t pa;
1697 
1698 	/*
1699 	 * Shortcut the direct-mapped case when applicable.  We never put
1700 	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1701 	 */
1702 	if (va < VM_MIN_KERNEL_ADDRESS)
1703 		return (va);
1704 
1705 	LOCK_TABLE_RD();
1706 	PMAP_LOCK(kernel_pmap);
1707 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1708 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1709 	    va));
1710 	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1711 	UNLOCK_TABLE_RD();
1712 	PMAP_UNLOCK(kernel_pmap);
1713 	return (pa);
1714 }
1715 
1716 /*
1717  * Remove a wired page from kernel virtual address space.
1718  */
1719 void
1720 moea64_kremove(mmu_t mmu, vm_offset_t va)
1721 {
1722 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1723 }
1724 
1725 /*
1726  * Map a range of physical addresses into kernel virtual address space.
1727  *
1728  * The value passed in *virt is a suggested virtual address for the mapping.
1729  * Architectures which can support a direct-mapped physical to virtual region
1730  * can return the appropriate address within that region, leaving '*virt'
1731  * unchanged.  We cannot and therefore do not; *virt is updated with the
1732  * first usable address after the mapped region.
1733  */
1734 vm_offset_t
1735 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1736     vm_offset_t pa_end, int prot)
1737 {
1738 	vm_offset_t	sva, va;
1739 
1740 	sva = *virt;
1741 	va = sva;
1742 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1743 		moea64_kenter(mmu, va, pa_start);
1744 	*virt = va;
1745 
1746 	return (sva);
1747 }
1748 
1749 /*
1750  * Returns true if the pmap's pv is one of the first
1751  * 16 pvs linked to from this page.  This count may
1752  * be changed upwards or downwards in the future; it
1753  * is only necessary that true be returned for a small
1754  * subset of pmaps for proper page aging.
1755  */
1756 boolean_t
1757 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1758 {
1759         int loops;
1760 	struct pvo_entry *pvo;
1761 	boolean_t rv;
1762 
1763 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1764 	    ("moea64_page_exists_quick: page %p is not managed", m));
1765 	loops = 0;
1766 	rv = FALSE;
1767 	LOCK_TABLE_RD();
1768 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1769 		if (pvo->pvo_pmap == pmap) {
1770 			rv = TRUE;
1771 			break;
1772 		}
1773 		if (++loops >= 16)
1774 			break;
1775 	}
1776 	UNLOCK_TABLE_RD();
1777 	return (rv);
1778 }
1779 
1780 /*
1781  * Return the number of managed mappings to the given physical page
1782  * that are wired.
1783  */
1784 int
1785 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1786 {
1787 	struct pvo_entry *pvo;
1788 	int count;
1789 
1790 	count = 0;
1791 	if ((m->oflags & VPO_UNMANAGED) != 0)
1792 		return (count);
1793 	LOCK_TABLE_RD();
1794 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1795 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1796 			count++;
1797 	UNLOCK_TABLE_RD();
1798 	return (count);
1799 }
1800 
1801 static uintptr_t	moea64_vsidcontext;
1802 
1803 uintptr_t
1804 moea64_get_unique_vsid(void) {
1805 	u_int entropy;
1806 	register_t hash;
1807 	uint32_t mask;
1808 	int i;
1809 
1810 	entropy = 0;
1811 	__asm __volatile("mftb %0" : "=r"(entropy));
1812 
1813 	mtx_lock(&moea64_slb_mutex);
1814 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1815 		u_int	n;
1816 
1817 		/*
1818 		 * Create a new value by mutiplying by a prime and adding in
1819 		 * entropy from the timebase register.  This is to make the
1820 		 * VSID more random so that the PT hash function collides
1821 		 * less often.  (Note that the prime casues gcc to do shifts
1822 		 * instead of a multiply.)
1823 		 */
1824 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1825 		hash = moea64_vsidcontext & (NVSIDS - 1);
1826 		if (hash == 0)		/* 0 is special, avoid it */
1827 			continue;
1828 		n = hash >> 5;
1829 		mask = 1 << (hash & (VSID_NBPW - 1));
1830 		hash = (moea64_vsidcontext & VSID_HASHMASK);
1831 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1832 			/* anything free in this bucket? */
1833 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1834 				entropy = (moea64_vsidcontext >> 20);
1835 				continue;
1836 			}
1837 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1838 			mask = 1 << i;
1839 			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1840 			hash |= i;
1841 		}
1842 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1843 		    ("Allocating in-use VSID %#zx\n", hash));
1844 		moea64_vsid_bitmap[n] |= mask;
1845 		mtx_unlock(&moea64_slb_mutex);
1846 		return (hash);
1847 	}
1848 
1849 	mtx_unlock(&moea64_slb_mutex);
1850 	panic("%s: out of segments",__func__);
1851 }
1852 
1853 #ifdef __powerpc64__
1854 void
1855 moea64_pinit(mmu_t mmu, pmap_t pmap)
1856 {
1857 	PMAP_LOCK_INIT(pmap);
1858 	LIST_INIT(&pmap->pmap_pvo);
1859 
1860 	pmap->pm_slb_tree_root = slb_alloc_tree();
1861 	pmap->pm_slb = slb_alloc_user_cache();
1862 	pmap->pm_slb_len = 0;
1863 }
1864 #else
1865 void
1866 moea64_pinit(mmu_t mmu, pmap_t pmap)
1867 {
1868 	int	i;
1869 	uint32_t hash;
1870 
1871 	PMAP_LOCK_INIT(pmap);
1872 	LIST_INIT(&pmap->pmap_pvo);
1873 
1874 	if (pmap_bootstrapped)
1875 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1876 		    (vm_offset_t)pmap);
1877 	else
1878 		pmap->pmap_phys = pmap;
1879 
1880 	/*
1881 	 * Allocate some segment registers for this pmap.
1882 	 */
1883 	hash = moea64_get_unique_vsid();
1884 
1885 	for (i = 0; i < 16; i++)
1886 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1887 
1888 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1889 }
1890 #endif
1891 
1892 /*
1893  * Initialize the pmap associated with process 0.
1894  */
1895 void
1896 moea64_pinit0(mmu_t mmu, pmap_t pm)
1897 {
1898 	moea64_pinit(mmu, pm);
1899 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1900 }
1901 
1902 /*
1903  * Set the physical protection on the specified range of this map as requested.
1904  */
1905 static void
1906 moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1907 {
1908 	uintptr_t pt;
1909 	uint64_t oldlo;
1910 
1911 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
1912 
1913 	/*
1914 	 * Grab the PTE pointer before we diddle with the cached PTE
1915 	 * copy.
1916 	 */
1917 	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1918 
1919 	/*
1920 	 * Change the protection of the page.
1921 	 */
1922 	oldlo = pvo->pvo_pte.lpte.pte_lo;
1923 	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1924 	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1925 	if ((prot & VM_PROT_EXECUTE) == 0)
1926 		pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1927 	if (prot & VM_PROT_WRITE)
1928 		pvo->pvo_pte.lpte.pte_lo |= LPTE_BW;
1929 	else
1930 		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1931 
1932 	/*
1933 	 * If the PVO is in the page table, update that pte as well.
1934 	 */
1935 	if (pt != -1) {
1936 		MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1937 		    pvo->pvo_vpn);
1938 		if ((pvo->pvo_pte.lpte.pte_lo &
1939 		    (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1940 			moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1941 			    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN,
1942 			    PAGE_SIZE);
1943 		}
1944 	}
1945 
1946 	/*
1947 	 * Update vm about the REF/CHG bits if the page is managed and we have
1948 	 * removed write access.
1949 	 */
1950 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED &&
1951 	    (oldlo & LPTE_PP) != LPTE_BR && !(prot && VM_PROT_WRITE)) {
1952 		struct	vm_page *pg;
1953 
1954 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1955 		if (pg != NULL) {
1956 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
1957 				vm_page_dirty(pg);
1958 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
1959 				vm_page_aflag_set(pg, PGA_REFERENCED);
1960 		}
1961 	}
1962 }
1963 
1964 void
1965 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1966     vm_prot_t prot)
1967 {
1968 	struct	pvo_entry *pvo, *tpvo;
1969 
1970 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
1971 	    sva, eva, prot);
1972 
1973 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1974 	    ("moea64_protect: non current pmap"));
1975 
1976 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1977 		moea64_remove(mmu, pm, sva, eva);
1978 		return;
1979 	}
1980 
1981 	LOCK_TABLE_RD();
1982 	PMAP_LOCK(pm);
1983 	if ((eva - sva)/PAGE_SIZE < pm->pm_stats.resident_count) {
1984 		while (sva < eva) {
1985 			#ifdef __powerpc64__
1986 			if (pm != kernel_pmap &&
1987 			    user_va_to_slb_entry(pm, sva) == NULL) {
1988 				sva = roundup2(sva + 1, SEGMENT_LENGTH);
1989 				continue;
1990 			}
1991 			#endif
1992 			pvo = moea64_pvo_find_va(pm, sva);
1993 			if (pvo != NULL)
1994 				moea64_pvo_protect(mmu, pm, pvo, prot);
1995 			sva += PAGE_SIZE;
1996 		}
1997 	} else {
1998 		LIST_FOREACH_SAFE(pvo, &pm->pmap_pvo, pvo_plink, tpvo) {
1999 			if (PVO_VADDR(pvo) < sva || PVO_VADDR(pvo) >= eva)
2000 				continue;
2001 			moea64_pvo_protect(mmu, pm, pvo, prot);
2002 		}
2003 	}
2004 	UNLOCK_TABLE_RD();
2005 	PMAP_UNLOCK(pm);
2006 }
2007 
2008 /*
2009  * Map a list of wired pages into kernel virtual address space.  This is
2010  * intended for temporary mappings which do not need page modification or
2011  * references recorded.  Existing mappings in the region are overwritten.
2012  */
2013 void
2014 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2015 {
2016 	while (count-- > 0) {
2017 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2018 		va += PAGE_SIZE;
2019 		m++;
2020 	}
2021 }
2022 
2023 /*
2024  * Remove page mappings from kernel virtual address space.  Intended for
2025  * temporary mappings entered by moea64_qenter.
2026  */
2027 void
2028 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2029 {
2030 	while (count-- > 0) {
2031 		moea64_kremove(mmu, va);
2032 		va += PAGE_SIZE;
2033 	}
2034 }
2035 
2036 void
2037 moea64_release_vsid(uint64_t vsid)
2038 {
2039 	int idx, mask;
2040 
2041 	mtx_lock(&moea64_slb_mutex);
2042 	idx = vsid & (NVSIDS-1);
2043 	mask = 1 << (idx % VSID_NBPW);
2044 	idx /= VSID_NBPW;
2045 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2046 	    ("Freeing unallocated VSID %#jx", vsid));
2047 	moea64_vsid_bitmap[idx] &= ~mask;
2048 	mtx_unlock(&moea64_slb_mutex);
2049 }
2050 
2051 
2052 void
2053 moea64_release(mmu_t mmu, pmap_t pmap)
2054 {
2055 
2056 	/*
2057 	 * Free segment registers' VSIDs
2058 	 */
2059     #ifdef __powerpc64__
2060 	slb_free_tree(pmap);
2061 	slb_free_user_cache(pmap->pm_slb);
2062     #else
2063 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2064 
2065 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2066     #endif
2067 
2068 	PMAP_LOCK_DESTROY(pmap);
2069 }
2070 
2071 /*
2072  * Remove all pages mapped by the specified pmap
2073  */
2074 void
2075 moea64_remove_pages(mmu_t mmu, pmap_t pm)
2076 {
2077 	struct	pvo_entry *pvo, *tpvo;
2078 
2079 	LOCK_TABLE_WR();
2080 	PMAP_LOCK(pm);
2081 	LIST_FOREACH_SAFE(pvo, &pm->pmap_pvo, pvo_plink, tpvo) {
2082 		if (!(pvo->pvo_vaddr & PVO_WIRED))
2083 			moea64_pvo_remove(mmu, pvo);
2084 	}
2085 	UNLOCK_TABLE_WR();
2086 	PMAP_UNLOCK(pm);
2087 }
2088 
2089 /*
2090  * Remove the given range of addresses from the specified map.
2091  */
2092 void
2093 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2094 {
2095 	struct	pvo_entry *pvo, *tpvo;
2096 
2097 	/*
2098 	 * Perform an unsynchronized read.  This is, however, safe.
2099 	 */
2100 	if (pm->pm_stats.resident_count == 0)
2101 		return;
2102 
2103 	LOCK_TABLE_WR();
2104 	PMAP_LOCK(pm);
2105 	if ((eva - sva)/PAGE_SIZE < pm->pm_stats.resident_count) {
2106 		while (sva < eva) {
2107 			#ifdef __powerpc64__
2108 			if (pm != kernel_pmap &&
2109 			    user_va_to_slb_entry(pm, sva) == NULL) {
2110 				sva = roundup2(sva + 1, SEGMENT_LENGTH);
2111 				continue;
2112 			}
2113 			#endif
2114 			pvo = moea64_pvo_find_va(pm, sva);
2115 			if (pvo != NULL)
2116 				moea64_pvo_remove(mmu, pvo);
2117 			sva += PAGE_SIZE;
2118 		}
2119 	} else {
2120 		LIST_FOREACH_SAFE(pvo, &pm->pmap_pvo, pvo_plink, tpvo) {
2121 			if (PVO_VADDR(pvo) < sva || PVO_VADDR(pvo) >= eva)
2122 				continue;
2123 			moea64_pvo_remove(mmu, pvo);
2124 		}
2125 	}
2126 	UNLOCK_TABLE_WR();
2127 	PMAP_UNLOCK(pm);
2128 }
2129 
2130 /*
2131  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2132  * will reflect changes in pte's back to the vm_page.
2133  */
2134 void
2135 moea64_remove_all(mmu_t mmu, vm_page_t m)
2136 {
2137 	struct  pvo_head *pvo_head;
2138 	struct	pvo_entry *pvo, *next_pvo;
2139 	pmap_t	pmap;
2140 
2141 	pvo_head = vm_page_to_pvoh(m);
2142 	LOCK_TABLE_WR();
2143 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2144 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
2145 
2146 		pmap = pvo->pvo_pmap;
2147 		PMAP_LOCK(pmap);
2148 		moea64_pvo_remove(mmu, pvo);
2149 		PMAP_UNLOCK(pmap);
2150 	}
2151 	UNLOCK_TABLE_WR();
2152 	if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m))
2153 		vm_page_dirty(m);
2154 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2155 }
2156 
2157 /*
2158  * Allocate a physical page of memory directly from the phys_avail map.
2159  * Can only be called from moea64_bootstrap before avail start and end are
2160  * calculated.
2161  */
2162 vm_offset_t
2163 moea64_bootstrap_alloc(vm_size_t size, u_int align)
2164 {
2165 	vm_offset_t	s, e;
2166 	int		i, j;
2167 
2168 	size = round_page(size);
2169 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2170 		if (align != 0)
2171 			s = (phys_avail[i] + align - 1) & ~(align - 1);
2172 		else
2173 			s = phys_avail[i];
2174 		e = s + size;
2175 
2176 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2177 			continue;
2178 
2179 		if (s + size > platform_real_maxaddr())
2180 			continue;
2181 
2182 		if (s == phys_avail[i]) {
2183 			phys_avail[i] += size;
2184 		} else if (e == phys_avail[i + 1]) {
2185 			phys_avail[i + 1] -= size;
2186 		} else {
2187 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2188 				phys_avail[j] = phys_avail[j - 2];
2189 				phys_avail[j + 1] = phys_avail[j - 1];
2190 			}
2191 
2192 			phys_avail[i + 3] = phys_avail[i + 1];
2193 			phys_avail[i + 1] = s;
2194 			phys_avail[i + 2] = e;
2195 			phys_avail_count++;
2196 		}
2197 
2198 		return (s);
2199 	}
2200 	panic("moea64_bootstrap_alloc: could not allocate memory");
2201 }
2202 
2203 static int
2204 moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2205     struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2206     uint64_t pte_lo, int flags)
2207 {
2208 	struct	 pvo_entry *pvo;
2209 	uint64_t vsid;
2210 	int	 first;
2211 	u_int	 ptegidx;
2212 	int	 i;
2213 	int      bootstrap;
2214 
2215 	/*
2216 	 * One nasty thing that can happen here is that the UMA calls to
2217 	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2218 	 * which calls UMA...
2219 	 *
2220 	 * We break the loop by detecting recursion and allocating out of
2221 	 * the bootstrap pool.
2222 	 */
2223 
2224 	first = 0;
2225 	bootstrap = (flags & PVO_BOOTSTRAP);
2226 
2227 	if (!moea64_initialized)
2228 		bootstrap = 1;
2229 
2230 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2231 	rw_assert(&moea64_table_lock, RA_WLOCKED);
2232 
2233 	/*
2234 	 * Compute the PTE Group index.
2235 	 */
2236 	va &= ~ADDR_POFF;
2237 	vsid = va_to_vsid(pm, va);
2238 	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2239 
2240 	/*
2241 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2242 	 * there is a mapping.
2243 	 */
2244 	moea64_pvo_enter_calls++;
2245 
2246 	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2247 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2248 			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2249 			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2250 			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2251 			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2252 					/* Re-insert if spilled */
2253 					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2254 					    &pvo->pvo_pte.lpte);
2255 					if (i >= 0)
2256 						PVO_PTEGIDX_SET(pvo, i);
2257 					moea64_pte_overflow--;
2258 				}
2259 				return (0);
2260 			}
2261 			moea64_pvo_remove(mmu, pvo);
2262 			break;
2263 		}
2264 	}
2265 
2266 	/*
2267 	 * If we aren't overwriting a mapping, try to allocate.
2268 	 */
2269 	if (bootstrap) {
2270 		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2271 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2272 			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2273 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2274 		}
2275 		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2276 		moea64_bpvo_pool_index++;
2277 		bootstrap = 1;
2278 	} else {
2279 		/*
2280 		 * Note: drop the table lock around the UMA allocation in
2281 		 * case the UMA allocator needs to manipulate the page
2282 		 * table. The mapping we are working with is already
2283 		 * protected by the PMAP lock.
2284 		 */
2285 		pvo = uma_zalloc(zone, M_NOWAIT);
2286 	}
2287 
2288 	if (pvo == NULL)
2289 		return (ENOMEM);
2290 
2291 	moea64_pvo_entries++;
2292 	pvo->pvo_vaddr = va;
2293 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2294 	    | (vsid << 16);
2295 	pvo->pvo_pmap = pm;
2296 	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2297 	pvo->pvo_vaddr &= ~ADDR_POFF;
2298 
2299 	if (flags & PVO_WIRED)
2300 		pvo->pvo_vaddr |= PVO_WIRED;
2301 	if (pvo_head != &moea64_pvo_kunmanaged)
2302 		pvo->pvo_vaddr |= PVO_MANAGED;
2303 	if (bootstrap)
2304 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2305 	if (flags & PVO_LARGE)
2306 		pvo->pvo_vaddr |= PVO_LARGE;
2307 
2308 	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2309 	    (uint64_t)(pa) | pte_lo, flags);
2310 
2311 	/*
2312 	 * Add to pmap list
2313 	 */
2314 	LIST_INSERT_HEAD(&pm->pmap_pvo, pvo, pvo_plink);
2315 
2316 	/*
2317 	 * Remember if the list was empty and therefore will be the first
2318 	 * item.
2319 	 */
2320 	if (LIST_FIRST(pvo_head) == NULL)
2321 		first = 1;
2322 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2323 
2324 	if (pvo->pvo_vaddr & PVO_WIRED) {
2325 		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2326 		pm->pm_stats.wired_count++;
2327 	}
2328 	pm->pm_stats.resident_count++;
2329 
2330 	/*
2331 	 * We hope this succeeds but it isn't required.
2332 	 */
2333 	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2334 	if (i >= 0) {
2335 		PVO_PTEGIDX_SET(pvo, i);
2336 	} else {
2337 		panic("moea64_pvo_enter: overflow");
2338 		moea64_pte_overflow++;
2339 	}
2340 
2341 	if (pm == kernel_pmap)
2342 		isync();
2343 
2344 #ifdef __powerpc64__
2345 	/*
2346 	 * Make sure all our bootstrap mappings are in the SLB as soon
2347 	 * as virtual memory is switched on.
2348 	 */
2349 	if (!pmap_bootstrapped)
2350 		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2351 #endif
2352 
2353 	return (first ? ENOENT : 0);
2354 }
2355 
2356 static void
2357 moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2358 {
2359 	uintptr_t pt;
2360 
2361 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2362 	rw_assert(&moea64_table_lock, RA_WLOCKED);
2363 
2364 	/*
2365 	 * If there is an active pte entry, we need to deactivate it (and
2366 	 * save the ref & cfg bits).
2367 	 */
2368 	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2369 	if (pt != -1) {
2370 		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2371 		PVO_PTEGIDX_CLR(pvo);
2372 	} else {
2373 		moea64_pte_overflow--;
2374 	}
2375 
2376 	/*
2377 	 * Update our statistics.
2378 	 */
2379 	pvo->pvo_pmap->pm_stats.resident_count--;
2380 	if (pvo->pvo_vaddr & PVO_WIRED)
2381 		pvo->pvo_pmap->pm_stats.wired_count--;
2382 
2383 	/*
2384 	 * Remove this PVO from the PV and pmap lists.
2385 	 */
2386 	LIST_REMOVE(pvo, pvo_vlink);
2387 	LIST_REMOVE(pvo, pvo_plink);
2388 
2389 	/*
2390 	 * Remove this from the overflow list and return it to the pool
2391 	 * if we aren't going to reuse it.
2392 	 */
2393 	LIST_REMOVE(pvo, pvo_olink);
2394 
2395 	/*
2396 	 * Update vm about the REF/CHG bits if the page is managed.
2397 	 */
2398 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED &&
2399 	    (pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
2400 		struct	vm_page *pg;
2401 
2402 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2403 		if (pg != NULL) {
2404 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
2405 				vm_page_dirty(pg);
2406 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
2407 				vm_page_aflag_set(pg, PGA_REFERENCED);
2408 			if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2409 				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2410 		}
2411 	}
2412 
2413 	moea64_pvo_entries--;
2414 	moea64_pvo_remove_calls++;
2415 
2416 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2417 		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2418 		    moea64_upvo_zone, pvo);
2419 }
2420 
2421 static struct pvo_entry *
2422 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2423 {
2424 	struct		pvo_entry *pvo;
2425 	int		ptegidx;
2426 	uint64_t	vsid;
2427 	#ifdef __powerpc64__
2428 	uint64_t	slbv;
2429 
2430 	if (pm == kernel_pmap) {
2431 		slbv = kernel_va_to_slbv(va);
2432 	} else {
2433 		struct slb *slb;
2434 		slb = user_va_to_slb_entry(pm, va);
2435 		/* The page is not mapped if the segment isn't */
2436 		if (slb == NULL)
2437 			return NULL;
2438 		slbv = slb->slbv;
2439 	}
2440 
2441 	vsid = (slbv & SLBV_VSID_MASK) >> SLBV_VSID_SHIFT;
2442 	if (slbv & SLBV_L)
2443 		va &= ~moea64_large_page_mask;
2444 	else
2445 		va &= ~ADDR_POFF;
2446 	ptegidx = va_to_pteg(vsid, va, slbv & SLBV_L);
2447 	#else
2448 	va &= ~ADDR_POFF;
2449 	vsid = va_to_vsid(pm, va);
2450 	ptegidx = va_to_pteg(vsid, va, 0);
2451 	#endif
2452 
2453 	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2454 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va)
2455 			break;
2456 	}
2457 
2458 	return (pvo);
2459 }
2460 
2461 static boolean_t
2462 moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2463 {
2464 	struct	pvo_entry *pvo;
2465 	uintptr_t pt;
2466 
2467 	LOCK_TABLE_RD();
2468 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2469 		/*
2470 		 * See if we saved the bit off.  If so, return success.
2471 		 */
2472 		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2473 			UNLOCK_TABLE_RD();
2474 			return (TRUE);
2475 		}
2476 	}
2477 
2478 	/*
2479 	 * No luck, now go through the hard part of looking at the PTEs
2480 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2481 	 * the PTEs.
2482 	 */
2483 	powerpc_sync();
2484 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2485 
2486 		/*
2487 		 * See if this pvo has a valid PTE.  if so, fetch the
2488 		 * REF/CHG bits from the valid PTE.  If the appropriate
2489 		 * ptebit is set, return success.
2490 		 */
2491 		PMAP_LOCK(pvo->pvo_pmap);
2492 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2493 		if (pt != -1) {
2494 			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2495 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2496 				PMAP_UNLOCK(pvo->pvo_pmap);
2497 				UNLOCK_TABLE_RD();
2498 				return (TRUE);
2499 			}
2500 		}
2501 		PMAP_UNLOCK(pvo->pvo_pmap);
2502 	}
2503 
2504 	UNLOCK_TABLE_RD();
2505 	return (FALSE);
2506 }
2507 
2508 static u_int
2509 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2510 {
2511 	u_int	count;
2512 	struct	pvo_entry *pvo;
2513 	uintptr_t pt;
2514 
2515 	/*
2516 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2517 	 * we can reset the right ones).  note that since the pvo entries and
2518 	 * list heads are accessed via BAT0 and are never placed in the page
2519 	 * table, we don't have to worry about further accesses setting the
2520 	 * REF/CHG bits.
2521 	 */
2522 	powerpc_sync();
2523 
2524 	/*
2525 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2526 	 * valid pte clear the ptebit from the valid pte.
2527 	 */
2528 	count = 0;
2529 	LOCK_TABLE_RD();
2530 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2531 		PMAP_LOCK(pvo->pvo_pmap);
2532 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2533 		if (pt != -1) {
2534 			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2535 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2536 				count++;
2537 				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2538 				    pvo->pvo_vpn, ptebit);
2539 			}
2540 		}
2541 		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2542 		PMAP_UNLOCK(pvo->pvo_pmap);
2543 	}
2544 
2545 	UNLOCK_TABLE_RD();
2546 	return (count);
2547 }
2548 
2549 boolean_t
2550 moea64_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2551 {
2552 	struct pvo_entry *pvo;
2553 	vm_offset_t ppa;
2554 	int error = 0;
2555 
2556 	LOCK_TABLE_RD();
2557 	PMAP_LOCK(kernel_pmap);
2558 	for (ppa = pa & ~ADDR_POFF; ppa < pa + size; ppa += PAGE_SIZE) {
2559 		pvo = moea64_pvo_find_va(kernel_pmap, ppa);
2560 		if (pvo == NULL ||
2561 		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2562 			error = EFAULT;
2563 			break;
2564 		}
2565 	}
2566 	UNLOCK_TABLE_RD();
2567 	PMAP_UNLOCK(kernel_pmap);
2568 
2569 	return (error);
2570 }
2571 
2572 /*
2573  * Map a set of physical memory pages into the kernel virtual
2574  * address space. Return a pointer to where it is mapped. This
2575  * routine is intended to be used for mapping device memory,
2576  * NOT real memory.
2577  */
2578 void *
2579 moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2580 {
2581 	vm_offset_t va, tmpva, ppa, offset;
2582 
2583 	ppa = trunc_page(pa);
2584 	offset = pa & PAGE_MASK;
2585 	size = roundup2(offset + size, PAGE_SIZE);
2586 
2587 	va = kmem_alloc_nofault(kernel_map, size);
2588 
2589 	if (!va)
2590 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2591 
2592 	for (tmpva = va; size > 0;) {
2593 		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2594 		size -= PAGE_SIZE;
2595 		tmpva += PAGE_SIZE;
2596 		ppa += PAGE_SIZE;
2597 	}
2598 
2599 	return ((void *)(va + offset));
2600 }
2601 
2602 void *
2603 moea64_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2604 {
2605 
2606 	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2607 }
2608 
2609 void
2610 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2611 {
2612 	vm_offset_t base, offset;
2613 
2614 	base = trunc_page(va);
2615 	offset = va & PAGE_MASK;
2616 	size = roundup2(offset + size, PAGE_SIZE);
2617 
2618 	kmem_free(kernel_map, base, size);
2619 }
2620 
2621 void
2622 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2623 {
2624 	struct pvo_entry *pvo;
2625 	vm_offset_t lim;
2626 	vm_paddr_t pa;
2627 	vm_size_t len;
2628 
2629 	LOCK_TABLE_RD();
2630 	PMAP_LOCK(pm);
2631 	while (sz > 0) {
2632 		lim = round_page(va);
2633 		len = MIN(lim - va, sz);
2634 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2635 		if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
2636 			pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
2637 			    (va & ADDR_POFF);
2638 			moea64_syncicache(mmu, pm, va, pa, len);
2639 		}
2640 		va += len;
2641 		sz -= len;
2642 	}
2643 	UNLOCK_TABLE_RD();
2644 	PMAP_UNLOCK(pm);
2645 }
2646