1 /*- 2 * Copyright (c) 2008-2015 Nathan Whitehorn 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * Manages physical address maps. 32 * 33 * Since the information managed by this module is also stored by the 34 * logical address mapping module, this module may throw away valid virtual 35 * to physical mappings at almost any time. However, invalidations of 36 * mappings must be done as requested. 37 * 38 * In order to cope with hardware architectures which make virtual to 39 * physical map invalidates expensive, this module may delay invalidate 40 * reduced protection operations until such time as they are actually 41 * necessary. This module is given full information as to which processors 42 * are currently using which maps, and to when physical maps must be made 43 * correct. 44 */ 45 46 #include "opt_compat.h" 47 #include "opt_kstack_pages.h" 48 49 #include <sys/param.h> 50 #include <sys/kernel.h> 51 #include <sys/conf.h> 52 #include <sys/queue.h> 53 #include <sys/cpuset.h> 54 #include <sys/kerneldump.h> 55 #include <sys/ktr.h> 56 #include <sys/lock.h> 57 #include <sys/msgbuf.h> 58 #include <sys/malloc.h> 59 #include <sys/mutex.h> 60 #include <sys/proc.h> 61 #include <sys/rwlock.h> 62 #include <sys/sched.h> 63 #include <sys/sysctl.h> 64 #include <sys/systm.h> 65 #include <sys/vmmeter.h> 66 67 #include <sys/kdb.h> 68 69 #include <dev/ofw/openfirm.h> 70 71 #include <vm/vm.h> 72 #include <vm/vm_param.h> 73 #include <vm/vm_kern.h> 74 #include <vm/vm_page.h> 75 #include <vm/vm_map.h> 76 #include <vm/vm_object.h> 77 #include <vm/vm_extern.h> 78 #include <vm/vm_pageout.h> 79 #include <vm/uma.h> 80 81 #include <machine/_inttypes.h> 82 #include <machine/cpu.h> 83 #include <machine/platform.h> 84 #include <machine/frame.h> 85 #include <machine/md_var.h> 86 #include <machine/psl.h> 87 #include <machine/bat.h> 88 #include <machine/hid.h> 89 #include <machine/pte.h> 90 #include <machine/sr.h> 91 #include <machine/trap.h> 92 #include <machine/mmuvar.h> 93 94 #include "mmu_oea64.h" 95 #include "mmu_if.h" 96 #include "moea64_if.h" 97 98 void moea64_release_vsid(uint64_t vsid); 99 uintptr_t moea64_get_unique_vsid(void); 100 101 #define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR) 102 #define ENABLE_TRANS(msr) mtmsr(msr) 103 104 #define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4)) 105 #define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff) 106 #define VSID_HASH_MASK 0x0000007fffffffffULL 107 108 /* 109 * Locking semantics: 110 * 111 * There are two locks of interest: the page locks and the pmap locks, which 112 * protect their individual PVO lists and are locked in that order. The contents 113 * of all PVO entries are protected by the locks of their respective pmaps. 114 * The pmap of any PVO is guaranteed not to change so long as the PVO is linked 115 * into any list. 116 * 117 */ 118 119 #define PV_LOCK_COUNT PA_LOCK_COUNT*3 120 static struct mtx_padalign pv_lock[PV_LOCK_COUNT]; 121 122 #define PV_LOCKPTR(pa) ((struct mtx *)(&pv_lock[pa_index(pa) % PV_LOCK_COUNT])) 123 #define PV_LOCK(pa) mtx_lock(PV_LOCKPTR(pa)) 124 #define PV_UNLOCK(pa) mtx_unlock(PV_LOCKPTR(pa)) 125 #define PV_LOCKASSERT(pa) mtx_assert(PV_LOCKPTR(pa), MA_OWNED) 126 #define PV_PAGE_LOCK(m) PV_LOCK(VM_PAGE_TO_PHYS(m)) 127 #define PV_PAGE_UNLOCK(m) PV_UNLOCK(VM_PAGE_TO_PHYS(m)) 128 #define PV_PAGE_LOCKASSERT(m) PV_LOCKASSERT(VM_PAGE_TO_PHYS(m)) 129 130 struct ofw_map { 131 cell_t om_va; 132 cell_t om_len; 133 uint64_t om_pa; 134 cell_t om_mode; 135 }; 136 137 extern unsigned char _etext[]; 138 extern unsigned char _end[]; 139 140 /* 141 * Map of physical memory regions. 142 */ 143 static struct mem_region *regions; 144 static struct mem_region *pregions; 145 static u_int phys_avail_count; 146 static int regions_sz, pregions_sz; 147 148 extern void bs_remap_earlyboot(void); 149 150 /* 151 * Lock for the SLB tables. 152 */ 153 struct mtx moea64_slb_mutex; 154 155 /* 156 * PTEG data. 157 */ 158 u_int moea64_pteg_count; 159 u_int moea64_pteg_mask; 160 161 /* 162 * PVO data. 163 */ 164 165 uma_zone_t moea64_pvo_zone; /* zone for pvo entries */ 166 167 static struct pvo_entry *moea64_bpvo_pool; 168 static int moea64_bpvo_pool_index = 0; 169 static int moea64_bpvo_pool_size = 327680; 170 TUNABLE_INT("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size); 171 SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD, 172 &moea64_bpvo_pool_index, 0, ""); 173 174 #define VSID_NBPW (sizeof(u_int32_t) * 8) 175 #ifdef __powerpc64__ 176 #define NVSIDS (NPMAPS * 16) 177 #define VSID_HASHMASK 0xffffffffUL 178 #else 179 #define NVSIDS NPMAPS 180 #define VSID_HASHMASK 0xfffffUL 181 #endif 182 static u_int moea64_vsid_bitmap[NVSIDS / VSID_NBPW]; 183 184 static boolean_t moea64_initialized = FALSE; 185 186 /* 187 * Statistics. 188 */ 189 u_int moea64_pte_valid = 0; 190 u_int moea64_pte_overflow = 0; 191 u_int moea64_pvo_entries = 0; 192 u_int moea64_pvo_enter_calls = 0; 193 u_int moea64_pvo_remove_calls = 0; 194 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD, 195 &moea64_pte_valid, 0, ""); 196 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD, 197 &moea64_pte_overflow, 0, ""); 198 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD, 199 &moea64_pvo_entries, 0, ""); 200 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD, 201 &moea64_pvo_enter_calls, 0, ""); 202 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD, 203 &moea64_pvo_remove_calls, 0, ""); 204 205 vm_offset_t moea64_scratchpage_va[2]; 206 struct pvo_entry *moea64_scratchpage_pvo[2]; 207 struct mtx moea64_scratchpage_mtx; 208 209 uint64_t moea64_large_page_mask = 0; 210 uint64_t moea64_large_page_size = 0; 211 int moea64_large_page_shift = 0; 212 213 /* 214 * PVO calls. 215 */ 216 static int moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo, 217 struct pvo_head *pvo_head); 218 static void moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo); 219 static void moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo); 220 static struct pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t); 221 222 /* 223 * Utility routines. 224 */ 225 static boolean_t moea64_query_bit(mmu_t, vm_page_t, uint64_t); 226 static u_int moea64_clear_bit(mmu_t, vm_page_t, uint64_t); 227 static void moea64_kremove(mmu_t, vm_offset_t); 228 static void moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va, 229 vm_offset_t pa, vm_size_t sz); 230 231 /* 232 * Kernel MMU interface 233 */ 234 void moea64_clear_modify(mmu_t, vm_page_t); 235 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t); 236 void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, 237 vm_page_t *mb, vm_offset_t b_offset, int xfersize); 238 int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, 239 u_int flags, int8_t psind); 240 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t, 241 vm_prot_t); 242 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t); 243 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t); 244 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t); 245 void moea64_init(mmu_t); 246 boolean_t moea64_is_modified(mmu_t, vm_page_t); 247 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t); 248 boolean_t moea64_is_referenced(mmu_t, vm_page_t); 249 int moea64_ts_referenced(mmu_t, vm_page_t); 250 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int); 251 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t); 252 int moea64_page_wired_mappings(mmu_t, vm_page_t); 253 void moea64_pinit(mmu_t, pmap_t); 254 void moea64_pinit0(mmu_t, pmap_t); 255 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t); 256 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int); 257 void moea64_qremove(mmu_t, vm_offset_t, int); 258 void moea64_release(mmu_t, pmap_t); 259 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t); 260 void moea64_remove_pages(mmu_t, pmap_t); 261 void moea64_remove_all(mmu_t, vm_page_t); 262 void moea64_remove_write(mmu_t, vm_page_t); 263 void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t); 264 void moea64_zero_page(mmu_t, vm_page_t); 265 void moea64_zero_page_area(mmu_t, vm_page_t, int, int); 266 void moea64_zero_page_idle(mmu_t, vm_page_t); 267 void moea64_activate(mmu_t, struct thread *); 268 void moea64_deactivate(mmu_t, struct thread *); 269 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t); 270 void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t); 271 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t); 272 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t); 273 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma); 274 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma); 275 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t); 276 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t); 277 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t); 278 void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, 279 void **va); 280 void moea64_scan_init(mmu_t mmu); 281 282 static mmu_method_t moea64_methods[] = { 283 MMUMETHOD(mmu_clear_modify, moea64_clear_modify), 284 MMUMETHOD(mmu_copy_page, moea64_copy_page), 285 MMUMETHOD(mmu_copy_pages, moea64_copy_pages), 286 MMUMETHOD(mmu_enter, moea64_enter), 287 MMUMETHOD(mmu_enter_object, moea64_enter_object), 288 MMUMETHOD(mmu_enter_quick, moea64_enter_quick), 289 MMUMETHOD(mmu_extract, moea64_extract), 290 MMUMETHOD(mmu_extract_and_hold, moea64_extract_and_hold), 291 MMUMETHOD(mmu_init, moea64_init), 292 MMUMETHOD(mmu_is_modified, moea64_is_modified), 293 MMUMETHOD(mmu_is_prefaultable, moea64_is_prefaultable), 294 MMUMETHOD(mmu_is_referenced, moea64_is_referenced), 295 MMUMETHOD(mmu_ts_referenced, moea64_ts_referenced), 296 MMUMETHOD(mmu_map, moea64_map), 297 MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick), 298 MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings), 299 MMUMETHOD(mmu_pinit, moea64_pinit), 300 MMUMETHOD(mmu_pinit0, moea64_pinit0), 301 MMUMETHOD(mmu_protect, moea64_protect), 302 MMUMETHOD(mmu_qenter, moea64_qenter), 303 MMUMETHOD(mmu_qremove, moea64_qremove), 304 MMUMETHOD(mmu_release, moea64_release), 305 MMUMETHOD(mmu_remove, moea64_remove), 306 MMUMETHOD(mmu_remove_pages, moea64_remove_pages), 307 MMUMETHOD(mmu_remove_all, moea64_remove_all), 308 MMUMETHOD(mmu_remove_write, moea64_remove_write), 309 MMUMETHOD(mmu_sync_icache, moea64_sync_icache), 310 MMUMETHOD(mmu_unwire, moea64_unwire), 311 MMUMETHOD(mmu_zero_page, moea64_zero_page), 312 MMUMETHOD(mmu_zero_page_area, moea64_zero_page_area), 313 MMUMETHOD(mmu_zero_page_idle, moea64_zero_page_idle), 314 MMUMETHOD(mmu_activate, moea64_activate), 315 MMUMETHOD(mmu_deactivate, moea64_deactivate), 316 MMUMETHOD(mmu_page_set_memattr, moea64_page_set_memattr), 317 318 /* Internal interfaces */ 319 MMUMETHOD(mmu_mapdev, moea64_mapdev), 320 MMUMETHOD(mmu_mapdev_attr, moea64_mapdev_attr), 321 MMUMETHOD(mmu_unmapdev, moea64_unmapdev), 322 MMUMETHOD(mmu_kextract, moea64_kextract), 323 MMUMETHOD(mmu_kenter, moea64_kenter), 324 MMUMETHOD(mmu_kenter_attr, moea64_kenter_attr), 325 MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped), 326 MMUMETHOD(mmu_scan_init, moea64_scan_init), 327 MMUMETHOD(mmu_dumpsys_map, moea64_dumpsys_map), 328 329 { 0, 0 } 330 }; 331 332 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0); 333 334 static struct pvo_head * 335 vm_page_to_pvoh(vm_page_t m) 336 { 337 338 mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED); 339 return (&m->md.mdpg_pvoh); 340 } 341 342 static struct pvo_entry * 343 alloc_pvo_entry(int bootstrap) 344 { 345 struct pvo_entry *pvo; 346 347 if (!moea64_initialized || bootstrap) { 348 if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) { 349 panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd", 350 moea64_bpvo_pool_index, moea64_bpvo_pool_size, 351 moea64_bpvo_pool_size * sizeof(struct pvo_entry)); 352 } 353 pvo = &moea64_bpvo_pool[ 354 atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)]; 355 bzero(pvo, sizeof(*pvo)); 356 pvo->pvo_vaddr = PVO_BOOTSTRAP; 357 } else { 358 pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT); 359 bzero(pvo, sizeof(*pvo)); 360 } 361 362 return (pvo); 363 } 364 365 366 static void 367 init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va) 368 { 369 uint64_t vsid; 370 uint64_t hash; 371 int shift; 372 373 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 374 375 pvo->pvo_pmap = pmap; 376 va &= ~ADDR_POFF; 377 pvo->pvo_vaddr |= va; 378 vsid = va_to_vsid(pmap, va); 379 pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT) 380 | (vsid << 16); 381 382 shift = (pvo->pvo_vaddr & PVO_LARGE) ? moea64_large_page_shift : 383 ADDR_PIDX_SHFT; 384 hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift); 385 pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3; 386 } 387 388 static void 389 free_pvo_entry(struct pvo_entry *pvo) 390 { 391 392 if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP)) 393 uma_zfree(moea64_pvo_zone, pvo); 394 } 395 396 void 397 moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte) 398 { 399 400 lpte->pte_hi = (pvo->pvo_vpn >> (ADDR_API_SHFT64 - ADDR_PIDX_SHFT)) & 401 LPTE_AVPN_MASK; 402 lpte->pte_hi |= LPTE_VALID; 403 404 if (pvo->pvo_vaddr & PVO_LARGE) 405 lpte->pte_hi |= LPTE_BIG; 406 if (pvo->pvo_vaddr & PVO_WIRED) 407 lpte->pte_hi |= LPTE_WIRED; 408 if (pvo->pvo_vaddr & PVO_HID) 409 lpte->pte_hi |= LPTE_HID; 410 411 lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */ 412 if (pvo->pvo_pte.prot & VM_PROT_WRITE) 413 lpte->pte_lo |= LPTE_BW; 414 else 415 lpte->pte_lo |= LPTE_BR; 416 417 if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE)) 418 lpte->pte_lo |= LPTE_NOEXEC; 419 } 420 421 static __inline uint64_t 422 moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma) 423 { 424 uint64_t pte_lo; 425 int i; 426 427 if (ma != VM_MEMATTR_DEFAULT) { 428 switch (ma) { 429 case VM_MEMATTR_UNCACHEABLE: 430 return (LPTE_I | LPTE_G); 431 case VM_MEMATTR_WRITE_COMBINING: 432 case VM_MEMATTR_WRITE_BACK: 433 case VM_MEMATTR_PREFETCHABLE: 434 return (LPTE_I); 435 case VM_MEMATTR_WRITE_THROUGH: 436 return (LPTE_W | LPTE_M); 437 } 438 } 439 440 /* 441 * Assume the page is cache inhibited and access is guarded unless 442 * it's in our available memory array. 443 */ 444 pte_lo = LPTE_I | LPTE_G; 445 for (i = 0; i < pregions_sz; i++) { 446 if ((pa >= pregions[i].mr_start) && 447 (pa < (pregions[i].mr_start + pregions[i].mr_size))) { 448 pte_lo &= ~(LPTE_I | LPTE_G); 449 pte_lo |= LPTE_M; 450 break; 451 } 452 } 453 454 return pte_lo; 455 } 456 457 /* 458 * Quick sort callout for comparing memory regions. 459 */ 460 static int om_cmp(const void *a, const void *b); 461 462 static int 463 om_cmp(const void *a, const void *b) 464 { 465 const struct ofw_map *mapa; 466 const struct ofw_map *mapb; 467 468 mapa = a; 469 mapb = b; 470 if (mapa->om_pa < mapb->om_pa) 471 return (-1); 472 else if (mapa->om_pa > mapb->om_pa) 473 return (1); 474 else 475 return (0); 476 } 477 478 static void 479 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz) 480 { 481 struct ofw_map translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */ 482 pcell_t acells, trans_cells[sz/sizeof(cell_t)]; 483 struct pvo_entry *pvo; 484 register_t msr; 485 vm_offset_t off; 486 vm_paddr_t pa_base; 487 int i, j; 488 489 bzero(translations, sz); 490 OF_getprop(OF_finddevice("/"), "#address-cells", &acells, 491 sizeof(acells)); 492 if (OF_getprop(mmu, "translations", trans_cells, sz) == -1) 493 panic("moea64_bootstrap: can't get ofw translations"); 494 495 CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations"); 496 sz /= sizeof(cell_t); 497 for (i = 0, j = 0; i < sz; j++) { 498 translations[j].om_va = trans_cells[i++]; 499 translations[j].om_len = trans_cells[i++]; 500 translations[j].om_pa = trans_cells[i++]; 501 if (acells == 2) { 502 translations[j].om_pa <<= 32; 503 translations[j].om_pa |= trans_cells[i++]; 504 } 505 translations[j].om_mode = trans_cells[i++]; 506 } 507 KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)", 508 i, sz)); 509 510 sz = j; 511 qsort(translations, sz, sizeof (*translations), om_cmp); 512 513 for (i = 0; i < sz; i++) { 514 pa_base = translations[i].om_pa; 515 #ifndef __powerpc64__ 516 if ((translations[i].om_pa >> 32) != 0) 517 panic("OFW translations above 32-bit boundary!"); 518 #endif 519 520 if (pa_base % PAGE_SIZE) 521 panic("OFW translation not page-aligned (phys)!"); 522 if (translations[i].om_va % PAGE_SIZE) 523 panic("OFW translation not page-aligned (virt)!"); 524 525 CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x", 526 pa_base, translations[i].om_va, translations[i].om_len); 527 528 /* Now enter the pages for this mapping */ 529 530 DISABLE_TRANS(msr); 531 for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) { 532 /* If this address is direct-mapped, skip remapping */ 533 if (hw_direct_map && translations[i].om_va == pa_base && 534 moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT) == LPTE_M) 535 continue; 536 537 PMAP_LOCK(kernel_pmap); 538 pvo = moea64_pvo_find_va(kernel_pmap, 539 translations[i].om_va + off); 540 PMAP_UNLOCK(kernel_pmap); 541 if (pvo != NULL) 542 continue; 543 544 moea64_kenter(mmup, translations[i].om_va + off, 545 pa_base + off); 546 } 547 ENABLE_TRANS(msr); 548 } 549 } 550 551 #ifdef __powerpc64__ 552 static void 553 moea64_probe_large_page(void) 554 { 555 uint16_t pvr = mfpvr() >> 16; 556 557 switch (pvr) { 558 case IBM970: 559 case IBM970FX: 560 case IBM970MP: 561 powerpc_sync(); isync(); 562 mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG); 563 powerpc_sync(); isync(); 564 565 /* FALLTHROUGH */ 566 default: 567 moea64_large_page_size = 0x1000000; /* 16 MB */ 568 moea64_large_page_shift = 24; 569 } 570 571 moea64_large_page_mask = moea64_large_page_size - 1; 572 } 573 574 static void 575 moea64_bootstrap_slb_prefault(vm_offset_t va, int large) 576 { 577 struct slb *cache; 578 struct slb entry; 579 uint64_t esid, slbe; 580 uint64_t i; 581 582 cache = PCPU_GET(slb); 583 esid = va >> ADDR_SR_SHFT; 584 slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID; 585 586 for (i = 0; i < 64; i++) { 587 if (cache[i].slbe == (slbe | i)) 588 return; 589 } 590 591 entry.slbe = slbe; 592 entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT; 593 if (large) 594 entry.slbv |= SLBV_L; 595 596 slb_insert_kernel(entry.slbe, entry.slbv); 597 } 598 #endif 599 600 static void 601 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart, 602 vm_offset_t kernelend) 603 { 604 struct pvo_entry *pvo; 605 register_t msr; 606 vm_paddr_t pa; 607 vm_offset_t size, off; 608 uint64_t pte_lo; 609 int i; 610 611 if (moea64_large_page_size == 0) 612 hw_direct_map = 0; 613 614 DISABLE_TRANS(msr); 615 if (hw_direct_map) { 616 PMAP_LOCK(kernel_pmap); 617 for (i = 0; i < pregions_sz; i++) { 618 for (pa = pregions[i].mr_start; pa < pregions[i].mr_start + 619 pregions[i].mr_size; pa += moea64_large_page_size) { 620 pte_lo = LPTE_M; 621 622 pvo = alloc_pvo_entry(1 /* bootstrap */); 623 pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE; 624 init_pvo_entry(pvo, kernel_pmap, pa); 625 626 /* 627 * Set memory access as guarded if prefetch within 628 * the page could exit the available physmem area. 629 */ 630 if (pa & moea64_large_page_mask) { 631 pa &= moea64_large_page_mask; 632 pte_lo |= LPTE_G; 633 } 634 if (pa + moea64_large_page_size > 635 pregions[i].mr_start + pregions[i].mr_size) 636 pte_lo |= LPTE_G; 637 638 pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | 639 VM_PROT_EXECUTE; 640 pvo->pvo_pte.pa = pa | pte_lo; 641 moea64_pvo_enter(mmup, pvo, NULL); 642 } 643 } 644 PMAP_UNLOCK(kernel_pmap); 645 } else { 646 size = moea64_bpvo_pool_size*sizeof(struct pvo_entry); 647 off = (vm_offset_t)(moea64_bpvo_pool); 648 for (pa = off; pa < off + size; pa += PAGE_SIZE) 649 moea64_kenter(mmup, pa, pa); 650 651 /* 652 * Map certain important things, like ourselves. 653 * 654 * NOTE: We do not map the exception vector space. That code is 655 * used only in real mode, and leaving it unmapped allows us to 656 * catch NULL pointer deferences, instead of making NULL a valid 657 * address. 658 */ 659 660 for (pa = kernelstart & ~PAGE_MASK; pa < kernelend; 661 pa += PAGE_SIZE) 662 moea64_kenter(mmup, pa, pa); 663 } 664 ENABLE_TRANS(msr); 665 666 /* 667 * Allow user to override unmapped_buf_allowed for testing. 668 * XXXKIB Only direct map implementation was tested. 669 */ 670 if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed", 671 &unmapped_buf_allowed)) 672 unmapped_buf_allowed = hw_direct_map; 673 } 674 675 void 676 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) 677 { 678 int i, j; 679 vm_size_t physsz, hwphyssz; 680 681 #ifndef __powerpc64__ 682 /* We don't have a direct map since there is no BAT */ 683 hw_direct_map = 0; 684 685 /* Make sure battable is zero, since we have no BAT */ 686 for (i = 0; i < 16; i++) { 687 battable[i].batu = 0; 688 battable[i].batl = 0; 689 } 690 #else 691 moea64_probe_large_page(); 692 693 /* Use a direct map if we have large page support */ 694 if (moea64_large_page_size > 0) 695 hw_direct_map = 1; 696 else 697 hw_direct_map = 0; 698 #endif 699 700 /* Get physical memory regions from firmware */ 701 mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); 702 CTR0(KTR_PMAP, "moea64_bootstrap: physical memory"); 703 704 if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz) 705 panic("moea64_bootstrap: phys_avail too small"); 706 707 phys_avail_count = 0; 708 physsz = 0; 709 hwphyssz = 0; 710 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); 711 for (i = 0, j = 0; i < regions_sz; i++, j += 2) { 712 CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)", 713 regions[i].mr_start, regions[i].mr_start + 714 regions[i].mr_size, regions[i].mr_size); 715 if (hwphyssz != 0 && 716 (physsz + regions[i].mr_size) >= hwphyssz) { 717 if (physsz < hwphyssz) { 718 phys_avail[j] = regions[i].mr_start; 719 phys_avail[j + 1] = regions[i].mr_start + 720 hwphyssz - physsz; 721 physsz = hwphyssz; 722 phys_avail_count++; 723 } 724 break; 725 } 726 phys_avail[j] = regions[i].mr_start; 727 phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size; 728 phys_avail_count++; 729 physsz += regions[i].mr_size; 730 } 731 732 /* Check for overlap with the kernel and exception vectors */ 733 for (j = 0; j < 2*phys_avail_count; j+=2) { 734 if (phys_avail[j] < EXC_LAST) 735 phys_avail[j] += EXC_LAST; 736 737 if (kernelstart >= phys_avail[j] && 738 kernelstart < phys_avail[j+1]) { 739 if (kernelend < phys_avail[j+1]) { 740 phys_avail[2*phys_avail_count] = 741 (kernelend & ~PAGE_MASK) + PAGE_SIZE; 742 phys_avail[2*phys_avail_count + 1] = 743 phys_avail[j+1]; 744 phys_avail_count++; 745 } 746 747 phys_avail[j+1] = kernelstart & ~PAGE_MASK; 748 } 749 750 if (kernelend >= phys_avail[j] && 751 kernelend < phys_avail[j+1]) { 752 if (kernelstart > phys_avail[j]) { 753 phys_avail[2*phys_avail_count] = phys_avail[j]; 754 phys_avail[2*phys_avail_count + 1] = 755 kernelstart & ~PAGE_MASK; 756 phys_avail_count++; 757 } 758 759 phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE; 760 } 761 } 762 763 physmem = btoc(physsz); 764 765 #ifdef PTEGCOUNT 766 moea64_pteg_count = PTEGCOUNT; 767 #else 768 moea64_pteg_count = 0x1000; 769 770 while (moea64_pteg_count < physmem) 771 moea64_pteg_count <<= 1; 772 773 moea64_pteg_count >>= 1; 774 #endif /* PTEGCOUNT */ 775 } 776 777 void 778 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) 779 { 780 int i; 781 782 /* 783 * Set PTEG mask 784 */ 785 moea64_pteg_mask = moea64_pteg_count - 1; 786 787 /* 788 * Initialize SLB table lock and page locks 789 */ 790 mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF); 791 for (i = 0; i < PV_LOCK_COUNT; i++) 792 mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF); 793 794 /* 795 * Initialise the bootstrap pvo pool. 796 */ 797 moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc( 798 moea64_bpvo_pool_size*sizeof(struct pvo_entry), 0); 799 moea64_bpvo_pool_index = 0; 800 801 /* 802 * Make sure kernel vsid is allocated as well as VSID 0. 803 */ 804 #ifndef __powerpc64__ 805 moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW] 806 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW); 807 moea64_vsid_bitmap[0] |= 1; 808 #endif 809 810 /* 811 * Initialize the kernel pmap (which is statically allocated). 812 */ 813 #ifdef __powerpc64__ 814 for (i = 0; i < 64; i++) { 815 pcpup->pc_slb[i].slbv = 0; 816 pcpup->pc_slb[i].slbe = 0; 817 } 818 #else 819 for (i = 0; i < 16; i++) 820 kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i; 821 #endif 822 823 kernel_pmap->pmap_phys = kernel_pmap; 824 CPU_FILL(&kernel_pmap->pm_active); 825 RB_INIT(&kernel_pmap->pmap_pvo); 826 827 PMAP_LOCK_INIT(kernel_pmap); 828 829 /* 830 * Now map in all the other buffers we allocated earlier 831 */ 832 833 moea64_setup_direct_map(mmup, kernelstart, kernelend); 834 } 835 836 void 837 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) 838 { 839 ihandle_t mmui; 840 phandle_t chosen; 841 phandle_t mmu; 842 ssize_t sz; 843 int i; 844 vm_offset_t pa, va; 845 void *dpcpu; 846 847 /* 848 * Set up the Open Firmware pmap and add its mappings if not in real 849 * mode. 850 */ 851 852 chosen = OF_finddevice("/chosen"); 853 if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) { 854 mmu = OF_instance_to_package(mmui); 855 if (mmu == -1 || 856 (sz = OF_getproplen(mmu, "translations")) == -1) 857 sz = 0; 858 if (sz > 6144 /* tmpstksz - 2 KB headroom */) 859 panic("moea64_bootstrap: too many ofw translations"); 860 861 if (sz > 0) 862 moea64_add_ofw_mappings(mmup, mmu, sz); 863 } 864 865 /* 866 * Calculate the last available physical address. 867 */ 868 for (i = 0; phys_avail[i + 2] != 0; i += 2) 869 ; 870 Maxmem = powerpc_btop(phys_avail[i + 1]); 871 872 /* 873 * Initialize MMU and remap early physical mappings 874 */ 875 MMU_CPU_BOOTSTRAP(mmup,0); 876 mtmsr(mfmsr() | PSL_DR | PSL_IR); 877 pmap_bootstrapped++; 878 bs_remap_earlyboot(); 879 880 /* 881 * Set the start and end of kva. 882 */ 883 virtual_avail = VM_MIN_KERNEL_ADDRESS; 884 virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS; 885 886 /* 887 * Map the entire KVA range into the SLB. We must not fault there. 888 */ 889 #ifdef __powerpc64__ 890 for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH) 891 moea64_bootstrap_slb_prefault(va, 0); 892 #endif 893 894 /* 895 * Figure out how far we can extend virtual_end into segment 16 896 * without running into existing mappings. Segment 16 is guaranteed 897 * to contain neither RAM nor devices (at least on Apple hardware), 898 * but will generally contain some OFW mappings we should not 899 * step on. 900 */ 901 902 #ifndef __powerpc64__ /* KVA is in high memory on PPC64 */ 903 PMAP_LOCK(kernel_pmap); 904 while (virtual_end < VM_MAX_KERNEL_ADDRESS && 905 moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL) 906 virtual_end += PAGE_SIZE; 907 PMAP_UNLOCK(kernel_pmap); 908 #endif 909 910 /* 911 * Allocate a kernel stack with a guard page for thread0 and map it 912 * into the kernel page map. 913 */ 914 pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE); 915 va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; 916 virtual_avail = va + KSTACK_PAGES * PAGE_SIZE; 917 CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va); 918 thread0.td_kstack = va; 919 thread0.td_kstack_pages = KSTACK_PAGES; 920 for (i = 0; i < KSTACK_PAGES; i++) { 921 moea64_kenter(mmup, va, pa); 922 pa += PAGE_SIZE; 923 va += PAGE_SIZE; 924 } 925 926 /* 927 * Allocate virtual address space for the message buffer. 928 */ 929 pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE); 930 msgbufp = (struct msgbuf *)virtual_avail; 931 va = virtual_avail; 932 virtual_avail += round_page(msgbufsize); 933 while (va < virtual_avail) { 934 moea64_kenter(mmup, va, pa); 935 pa += PAGE_SIZE; 936 va += PAGE_SIZE; 937 } 938 939 /* 940 * Allocate virtual address space for the dynamic percpu area. 941 */ 942 pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE); 943 dpcpu = (void *)virtual_avail; 944 va = virtual_avail; 945 virtual_avail += DPCPU_SIZE; 946 while (va < virtual_avail) { 947 moea64_kenter(mmup, va, pa); 948 pa += PAGE_SIZE; 949 va += PAGE_SIZE; 950 } 951 dpcpu_init(dpcpu, 0); 952 953 /* 954 * Allocate some things for page zeroing. We put this directly 955 * in the page table and use MOEA64_PTE_REPLACE to avoid any 956 * of the PVO book-keeping or other parts of the VM system 957 * from even knowing that this hack exists. 958 */ 959 960 if (!hw_direct_map) { 961 mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL, 962 MTX_DEF); 963 for (i = 0; i < 2; i++) { 964 moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE; 965 virtual_end -= PAGE_SIZE; 966 967 moea64_kenter(mmup, moea64_scratchpage_va[i], 0); 968 969 PMAP_LOCK(kernel_pmap); 970 moea64_scratchpage_pvo[i] = moea64_pvo_find_va( 971 kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]); 972 PMAP_UNLOCK(kernel_pmap); 973 } 974 } 975 } 976 977 /* 978 * Activate a user pmap. This mostly involves setting some non-CPU 979 * state. 980 */ 981 void 982 moea64_activate(mmu_t mmu, struct thread *td) 983 { 984 pmap_t pm; 985 986 pm = &td->td_proc->p_vmspace->vm_pmap; 987 CPU_SET(PCPU_GET(cpuid), &pm->pm_active); 988 989 #ifdef __powerpc64__ 990 PCPU_SET(userslb, pm->pm_slb); 991 __asm __volatile("slbmte %0, %1; isync" :: 992 "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE)); 993 #else 994 PCPU_SET(curpmap, pm->pmap_phys); 995 mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid); 996 #endif 997 } 998 999 void 1000 moea64_deactivate(mmu_t mmu, struct thread *td) 1001 { 1002 pmap_t pm; 1003 1004 __asm __volatile("isync; slbie %0" :: "r"(USER_ADDR)); 1005 1006 pm = &td->td_proc->p_vmspace->vm_pmap; 1007 CPU_CLR(PCPU_GET(cpuid), &pm->pm_active); 1008 #ifdef __powerpc64__ 1009 PCPU_SET(userslb, NULL); 1010 #else 1011 PCPU_SET(curpmap, NULL); 1012 #endif 1013 } 1014 1015 void 1016 moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva) 1017 { 1018 struct pvo_entry key, *pvo; 1019 vm_page_t m; 1020 int64_t refchg; 1021 1022 key.pvo_vaddr = sva; 1023 PMAP_LOCK(pm); 1024 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 1025 pvo != NULL && PVO_VADDR(pvo) < eva; 1026 pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) { 1027 if ((pvo->pvo_vaddr & PVO_WIRED) == 0) 1028 panic("moea64_unwire: pvo %p is missing PVO_WIRED", 1029 pvo); 1030 pvo->pvo_vaddr &= ~PVO_WIRED; 1031 refchg = MOEA64_PTE_REPLACE(mmu, pvo, 0 /* No invalidation */); 1032 if ((pvo->pvo_vaddr & PVO_MANAGED) && 1033 (pvo->pvo_pte.prot & VM_PROT_WRITE)) { 1034 if (refchg < 0) 1035 refchg = LPTE_CHG; 1036 m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN); 1037 1038 refchg |= atomic_readandclear_32(&m->md.mdpg_attrs); 1039 if (refchg & LPTE_CHG) 1040 vm_page_dirty(m); 1041 if (refchg & LPTE_REF) 1042 vm_page_aflag_set(m, PGA_REFERENCED); 1043 } 1044 pm->pm_stats.wired_count--; 1045 } 1046 PMAP_UNLOCK(pm); 1047 } 1048 1049 /* 1050 * This goes through and sets the physical address of our 1051 * special scratch PTE to the PA we want to zero or copy. Because 1052 * of locking issues (this can get called in pvo_enter() by 1053 * the UMA allocator), we can't use most other utility functions here 1054 */ 1055 1056 static __inline 1057 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) { 1058 1059 KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!")); 1060 mtx_assert(&moea64_scratchpage_mtx, MA_OWNED); 1061 1062 moea64_scratchpage_pvo[which]->pvo_pte.pa = 1063 moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa; 1064 MOEA64_PTE_REPLACE(mmup, moea64_scratchpage_pvo[which], 1065 MOEA64_PTE_INVALIDATE); 1066 isync(); 1067 } 1068 1069 void 1070 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst) 1071 { 1072 vm_offset_t dst; 1073 vm_offset_t src; 1074 1075 dst = VM_PAGE_TO_PHYS(mdst); 1076 src = VM_PAGE_TO_PHYS(msrc); 1077 1078 if (hw_direct_map) { 1079 bcopy((void *)src, (void *)dst, PAGE_SIZE); 1080 } else { 1081 mtx_lock(&moea64_scratchpage_mtx); 1082 1083 moea64_set_scratchpage_pa(mmu, 0, src); 1084 moea64_set_scratchpage_pa(mmu, 1, dst); 1085 1086 bcopy((void *)moea64_scratchpage_va[0], 1087 (void *)moea64_scratchpage_va[1], PAGE_SIZE); 1088 1089 mtx_unlock(&moea64_scratchpage_mtx); 1090 } 1091 } 1092 1093 static inline void 1094 moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, 1095 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 1096 { 1097 void *a_cp, *b_cp; 1098 vm_offset_t a_pg_offset, b_pg_offset; 1099 int cnt; 1100 1101 while (xfersize > 0) { 1102 a_pg_offset = a_offset & PAGE_MASK; 1103 cnt = min(xfersize, PAGE_SIZE - a_pg_offset); 1104 a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) + 1105 a_pg_offset; 1106 b_pg_offset = b_offset & PAGE_MASK; 1107 cnt = min(cnt, PAGE_SIZE - b_pg_offset); 1108 b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) + 1109 b_pg_offset; 1110 bcopy(a_cp, b_cp, cnt); 1111 a_offset += cnt; 1112 b_offset += cnt; 1113 xfersize -= cnt; 1114 } 1115 } 1116 1117 static inline void 1118 moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, 1119 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 1120 { 1121 void *a_cp, *b_cp; 1122 vm_offset_t a_pg_offset, b_pg_offset; 1123 int cnt; 1124 1125 mtx_lock(&moea64_scratchpage_mtx); 1126 while (xfersize > 0) { 1127 a_pg_offset = a_offset & PAGE_MASK; 1128 cnt = min(xfersize, PAGE_SIZE - a_pg_offset); 1129 moea64_set_scratchpage_pa(mmu, 0, 1130 VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])); 1131 a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset; 1132 b_pg_offset = b_offset & PAGE_MASK; 1133 cnt = min(cnt, PAGE_SIZE - b_pg_offset); 1134 moea64_set_scratchpage_pa(mmu, 1, 1135 VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])); 1136 b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset; 1137 bcopy(a_cp, b_cp, cnt); 1138 a_offset += cnt; 1139 b_offset += cnt; 1140 xfersize -= cnt; 1141 } 1142 mtx_unlock(&moea64_scratchpage_mtx); 1143 } 1144 1145 void 1146 moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, 1147 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 1148 { 1149 1150 if (hw_direct_map) { 1151 moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset, 1152 xfersize); 1153 } else { 1154 moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset, 1155 xfersize); 1156 } 1157 } 1158 1159 void 1160 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) 1161 { 1162 vm_offset_t pa = VM_PAGE_TO_PHYS(m); 1163 1164 if (size + off > PAGE_SIZE) 1165 panic("moea64_zero_page: size + off > PAGE_SIZE"); 1166 1167 if (hw_direct_map) { 1168 bzero((caddr_t)pa + off, size); 1169 } else { 1170 mtx_lock(&moea64_scratchpage_mtx); 1171 moea64_set_scratchpage_pa(mmu, 0, pa); 1172 bzero((caddr_t)moea64_scratchpage_va[0] + off, size); 1173 mtx_unlock(&moea64_scratchpage_mtx); 1174 } 1175 } 1176 1177 /* 1178 * Zero a page of physical memory by temporarily mapping it 1179 */ 1180 void 1181 moea64_zero_page(mmu_t mmu, vm_page_t m) 1182 { 1183 vm_offset_t pa = VM_PAGE_TO_PHYS(m); 1184 vm_offset_t va, off; 1185 1186 if (!hw_direct_map) { 1187 mtx_lock(&moea64_scratchpage_mtx); 1188 1189 moea64_set_scratchpage_pa(mmu, 0, pa); 1190 va = moea64_scratchpage_va[0]; 1191 } else { 1192 va = pa; 1193 } 1194 1195 for (off = 0; off < PAGE_SIZE; off += cacheline_size) 1196 __asm __volatile("dcbz 0,%0" :: "r"(va + off)); 1197 1198 if (!hw_direct_map) 1199 mtx_unlock(&moea64_scratchpage_mtx); 1200 } 1201 1202 void 1203 moea64_zero_page_idle(mmu_t mmu, vm_page_t m) 1204 { 1205 1206 moea64_zero_page(mmu, m); 1207 } 1208 1209 /* 1210 * Map the given physical page at the specified virtual address in the 1211 * target pmap with the protection requested. If specified the page 1212 * will be wired down. 1213 */ 1214 1215 int 1216 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1217 vm_prot_t prot, u_int flags, int8_t psind) 1218 { 1219 struct pvo_entry *pvo, *oldpvo; 1220 struct pvo_head *pvo_head; 1221 uint64_t pte_lo; 1222 int error; 1223 1224 if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m)) 1225 VM_OBJECT_ASSERT_LOCKED(m->object); 1226 1227 pvo = alloc_pvo_entry(0); 1228 pvo->pvo_pmap = NULL; /* to be filled in later */ 1229 pvo->pvo_pte.prot = prot; 1230 1231 pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m)); 1232 pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | pte_lo; 1233 1234 if ((flags & PMAP_ENTER_WIRED) != 0) 1235 pvo->pvo_vaddr |= PVO_WIRED; 1236 1237 if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) { 1238 pvo_head = NULL; 1239 } else { 1240 pvo_head = &m->md.mdpg_pvoh; 1241 pvo->pvo_vaddr |= PVO_MANAGED; 1242 } 1243 1244 for (;;) { 1245 PV_PAGE_LOCK(m); 1246 PMAP_LOCK(pmap); 1247 if (pvo->pvo_pmap == NULL) 1248 init_pvo_entry(pvo, pmap, va); 1249 if (prot & VM_PROT_WRITE) 1250 if (pmap_bootstrapped && 1251 (m->oflags & VPO_UNMANAGED) == 0) 1252 vm_page_aflag_set(m, PGA_WRITEABLE); 1253 1254 oldpvo = moea64_pvo_find_va(pmap, va); 1255 if (oldpvo != NULL) { 1256 if (oldpvo->pvo_vaddr == pvo->pvo_vaddr && 1257 oldpvo->pvo_pte.pa == pvo->pvo_pte.pa && 1258 oldpvo->pvo_pte.prot == prot) { 1259 /* Identical mapping already exists */ 1260 error = 0; 1261 1262 /* If not in page table, reinsert it */ 1263 if (MOEA64_PTE_SYNCH(mmu, oldpvo) < 0) { 1264 moea64_pte_overflow--; 1265 MOEA64_PTE_INSERT(mmu, oldpvo); 1266 } 1267 1268 /* Then just clean up and go home */ 1269 PV_PAGE_UNLOCK(m); 1270 PMAP_UNLOCK(pmap); 1271 free_pvo_entry(pvo); 1272 break; 1273 } 1274 1275 /* Otherwise, need to kill it first */ 1276 KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old " 1277 "mapping does not match new mapping")); 1278 moea64_pvo_remove_from_pmap(mmu, oldpvo); 1279 } 1280 error = moea64_pvo_enter(mmu, pvo, pvo_head); 1281 PV_PAGE_UNLOCK(m); 1282 PMAP_UNLOCK(pmap); 1283 1284 /* Free any dead pages */ 1285 if (oldpvo != NULL) { 1286 PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN); 1287 moea64_pvo_remove_from_page(mmu, oldpvo); 1288 PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN); 1289 free_pvo_entry(oldpvo); 1290 } 1291 1292 if (error != ENOMEM) 1293 break; 1294 if ((flags & PMAP_ENTER_NOSLEEP) != 0) 1295 return (KERN_RESOURCE_SHORTAGE); 1296 VM_OBJECT_ASSERT_UNLOCKED(m->object); 1297 VM_WAIT; 1298 } 1299 1300 /* 1301 * Flush the page from the instruction cache if this page is 1302 * mapped executable and cacheable. 1303 */ 1304 if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) && 1305 (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { 1306 vm_page_aflag_set(m, PGA_EXECUTABLE); 1307 moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE); 1308 } 1309 return (KERN_SUCCESS); 1310 } 1311 1312 static void 1313 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa, 1314 vm_size_t sz) 1315 { 1316 1317 /* 1318 * This is much trickier than on older systems because 1319 * we can't sync the icache on physical addresses directly 1320 * without a direct map. Instead we check a couple of cases 1321 * where the memory is already mapped in and, failing that, 1322 * use the same trick we use for page zeroing to create 1323 * a temporary mapping for this physical address. 1324 */ 1325 1326 if (!pmap_bootstrapped) { 1327 /* 1328 * If PMAP is not bootstrapped, we are likely to be 1329 * in real mode. 1330 */ 1331 __syncicache((void *)pa, sz); 1332 } else if (pmap == kernel_pmap) { 1333 __syncicache((void *)va, sz); 1334 } else if (hw_direct_map) { 1335 __syncicache((void *)pa, sz); 1336 } else { 1337 /* Use the scratch page to set up a temp mapping */ 1338 1339 mtx_lock(&moea64_scratchpage_mtx); 1340 1341 moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF); 1342 __syncicache((void *)(moea64_scratchpage_va[1] + 1343 (va & ADDR_POFF)), sz); 1344 1345 mtx_unlock(&moea64_scratchpage_mtx); 1346 } 1347 } 1348 1349 /* 1350 * Maps a sequence of resident pages belonging to the same object. 1351 * The sequence begins with the given page m_start. This page is 1352 * mapped at the given virtual address start. Each subsequent page is 1353 * mapped at a virtual address that is offset from start by the same 1354 * amount as the page is offset from m_start within the object. The 1355 * last page in the sequence is the page with the largest offset from 1356 * m_start that can be mapped at a virtual address less than the given 1357 * virtual address end. Not every virtual page between start and end 1358 * is mapped; only those for which a resident page exists with the 1359 * corresponding offset from m_start are mapped. 1360 */ 1361 void 1362 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end, 1363 vm_page_t m_start, vm_prot_t prot) 1364 { 1365 vm_page_t m; 1366 vm_pindex_t diff, psize; 1367 1368 VM_OBJECT_ASSERT_LOCKED(m_start->object); 1369 1370 psize = atop(end - start); 1371 m = m_start; 1372 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { 1373 moea64_enter(mmu, pm, start + ptoa(diff), m, prot & 1374 (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0); 1375 m = TAILQ_NEXT(m, listq); 1376 } 1377 } 1378 1379 void 1380 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m, 1381 vm_prot_t prot) 1382 { 1383 1384 moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), 1385 PMAP_ENTER_NOSLEEP, 0); 1386 } 1387 1388 vm_paddr_t 1389 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va) 1390 { 1391 struct pvo_entry *pvo; 1392 vm_paddr_t pa; 1393 1394 PMAP_LOCK(pm); 1395 pvo = moea64_pvo_find_va(pm, va); 1396 if (pvo == NULL) 1397 pa = 0; 1398 else 1399 pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo)); 1400 PMAP_UNLOCK(pm); 1401 1402 return (pa); 1403 } 1404 1405 /* 1406 * Atomically extract and hold the physical page with the given 1407 * pmap and virtual address pair if that mapping permits the given 1408 * protection. 1409 */ 1410 vm_page_t 1411 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot) 1412 { 1413 struct pvo_entry *pvo; 1414 vm_page_t m; 1415 vm_paddr_t pa; 1416 1417 m = NULL; 1418 pa = 0; 1419 PMAP_LOCK(pmap); 1420 retry: 1421 pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF); 1422 if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) { 1423 if (vm_page_pa_tryrelock(pmap, 1424 pvo->pvo_pte.pa & LPTE_RPGN, &pa)) 1425 goto retry; 1426 m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN); 1427 vm_page_hold(m); 1428 } 1429 PA_UNLOCK_COND(pa); 1430 PMAP_UNLOCK(pmap); 1431 return (m); 1432 } 1433 1434 static mmu_t installed_mmu; 1435 1436 static void * 1437 moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, 1438 int wait) 1439 { 1440 struct pvo_entry *pvo; 1441 vm_offset_t va; 1442 vm_page_t m; 1443 int pflags, needed_lock; 1444 1445 /* 1446 * This entire routine is a horrible hack to avoid bothering kmem 1447 * for new KVA addresses. Because this can get called from inside 1448 * kmem allocation routines, calling kmem for a new address here 1449 * can lead to multiply locking non-recursive mutexes. 1450 */ 1451 1452 *flags = UMA_SLAB_PRIV; 1453 needed_lock = !PMAP_LOCKED(kernel_pmap); 1454 pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED; 1455 1456 for (;;) { 1457 m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ); 1458 if (m == NULL) { 1459 if (wait & M_NOWAIT) 1460 return (NULL); 1461 VM_WAIT; 1462 } else 1463 break; 1464 } 1465 1466 va = VM_PAGE_TO_PHYS(m); 1467 1468 pvo = alloc_pvo_entry(1 /* bootstrap */); 1469 1470 pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE; 1471 pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M; 1472 1473 if (needed_lock) 1474 PMAP_LOCK(kernel_pmap); 1475 1476 init_pvo_entry(pvo, kernel_pmap, va); 1477 pvo->pvo_vaddr |= PVO_WIRED; 1478 1479 moea64_pvo_enter(installed_mmu, pvo, NULL); 1480 1481 if (needed_lock) 1482 PMAP_UNLOCK(kernel_pmap); 1483 1484 if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0) 1485 bzero((void *)va, PAGE_SIZE); 1486 1487 return (void *)va; 1488 } 1489 1490 extern int elf32_nxstack; 1491 1492 void 1493 moea64_init(mmu_t mmu) 1494 { 1495 1496 CTR0(KTR_PMAP, "moea64_init"); 1497 1498 moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry), 1499 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1500 UMA_ZONE_VM | UMA_ZONE_NOFREE); 1501 1502 if (!hw_direct_map) { 1503 installed_mmu = mmu; 1504 uma_zone_set_allocf(moea64_pvo_zone,moea64_uma_page_alloc); 1505 } 1506 1507 #ifdef COMPAT_FREEBSD32 1508 elf32_nxstack = 1; 1509 #endif 1510 1511 moea64_initialized = TRUE; 1512 } 1513 1514 boolean_t 1515 moea64_is_referenced(mmu_t mmu, vm_page_t m) 1516 { 1517 1518 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1519 ("moea64_is_referenced: page %p is not managed", m)); 1520 1521 return (moea64_query_bit(mmu, m, LPTE_REF)); 1522 } 1523 1524 boolean_t 1525 moea64_is_modified(mmu_t mmu, vm_page_t m) 1526 { 1527 1528 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1529 ("moea64_is_modified: page %p is not managed", m)); 1530 1531 /* 1532 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be 1533 * concurrently set while the object is locked. Thus, if PGA_WRITEABLE 1534 * is clear, no PTEs can have LPTE_CHG set. 1535 */ 1536 VM_OBJECT_ASSERT_LOCKED(m->object); 1537 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) 1538 return (FALSE); 1539 return (moea64_query_bit(mmu, m, LPTE_CHG)); 1540 } 1541 1542 boolean_t 1543 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va) 1544 { 1545 struct pvo_entry *pvo; 1546 boolean_t rv = TRUE; 1547 1548 PMAP_LOCK(pmap); 1549 pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF); 1550 if (pvo != NULL) 1551 rv = FALSE; 1552 PMAP_UNLOCK(pmap); 1553 return (rv); 1554 } 1555 1556 void 1557 moea64_clear_modify(mmu_t mmu, vm_page_t m) 1558 { 1559 1560 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1561 ("moea64_clear_modify: page %p is not managed", m)); 1562 VM_OBJECT_ASSERT_WLOCKED(m->object); 1563 KASSERT(!vm_page_xbusied(m), 1564 ("moea64_clear_modify: page %p is exclusive busied", m)); 1565 1566 /* 1567 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG 1568 * set. If the object containing the page is locked and the page is 1569 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set. 1570 */ 1571 if ((m->aflags & PGA_WRITEABLE) == 0) 1572 return; 1573 moea64_clear_bit(mmu, m, LPTE_CHG); 1574 } 1575 1576 /* 1577 * Clear the write and modified bits in each of the given page's mappings. 1578 */ 1579 void 1580 moea64_remove_write(mmu_t mmu, vm_page_t m) 1581 { 1582 struct pvo_entry *pvo; 1583 int64_t refchg, ret; 1584 pmap_t pmap; 1585 1586 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1587 ("moea64_remove_write: page %p is not managed", m)); 1588 1589 /* 1590 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be 1591 * set by another thread while the object is locked. Thus, 1592 * if PGA_WRITEABLE is clear, no page table entries need updating. 1593 */ 1594 VM_OBJECT_ASSERT_WLOCKED(m->object); 1595 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) 1596 return; 1597 powerpc_sync(); 1598 PV_PAGE_LOCK(m); 1599 refchg = 0; 1600 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 1601 pmap = pvo->pvo_pmap; 1602 PMAP_LOCK(pmap); 1603 if (!(pvo->pvo_vaddr & PVO_DEAD) && 1604 (pvo->pvo_pte.prot & VM_PROT_WRITE)) { 1605 pvo->pvo_pte.prot &= ~VM_PROT_WRITE; 1606 ret = MOEA64_PTE_REPLACE(mmu, pvo, 1607 MOEA64_PTE_PROT_UPDATE); 1608 if (ret < 0) 1609 ret = LPTE_CHG; 1610 refchg |= ret; 1611 if (pvo->pvo_pmap == kernel_pmap) 1612 isync(); 1613 } 1614 PMAP_UNLOCK(pmap); 1615 } 1616 if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG) 1617 vm_page_dirty(m); 1618 vm_page_aflag_clear(m, PGA_WRITEABLE); 1619 PV_PAGE_UNLOCK(m); 1620 } 1621 1622 /* 1623 * moea64_ts_referenced: 1624 * 1625 * Return a count of reference bits for a page, clearing those bits. 1626 * It is not necessary for every reference bit to be cleared, but it 1627 * is necessary that 0 only be returned when there are truly no 1628 * reference bits set. 1629 * 1630 * XXX: The exact number of bits to check and clear is a matter that 1631 * should be tested and standardized at some point in the future for 1632 * optimal aging of shared pages. 1633 */ 1634 int 1635 moea64_ts_referenced(mmu_t mmu, vm_page_t m) 1636 { 1637 1638 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1639 ("moea64_ts_referenced: page %p is not managed", m)); 1640 return (moea64_clear_bit(mmu, m, LPTE_REF)); 1641 } 1642 1643 /* 1644 * Modify the WIMG settings of all mappings for a page. 1645 */ 1646 void 1647 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma) 1648 { 1649 struct pvo_entry *pvo; 1650 int64_t refchg; 1651 pmap_t pmap; 1652 uint64_t lo; 1653 1654 if ((m->oflags & VPO_UNMANAGED) != 0) { 1655 m->md.mdpg_cache_attrs = ma; 1656 return; 1657 } 1658 1659 lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma); 1660 1661 PV_PAGE_LOCK(m); 1662 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 1663 pmap = pvo->pvo_pmap; 1664 PMAP_LOCK(pmap); 1665 if (!(pvo->pvo_vaddr & PVO_DEAD)) { 1666 pvo->pvo_pte.pa &= ~LPTE_WIMG; 1667 pvo->pvo_pte.pa |= lo; 1668 refchg = MOEA64_PTE_REPLACE(mmu, pvo, 1669 MOEA64_PTE_INVALIDATE); 1670 if (refchg < 0) 1671 refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ? 1672 LPTE_CHG : 0; 1673 if ((pvo->pvo_vaddr & PVO_MANAGED) && 1674 (pvo->pvo_pte.prot & VM_PROT_WRITE)) { 1675 refchg |= 1676 atomic_readandclear_32(&m->md.mdpg_attrs); 1677 if (refchg & LPTE_CHG) 1678 vm_page_dirty(m); 1679 if (refchg & LPTE_REF) 1680 vm_page_aflag_set(m, PGA_REFERENCED); 1681 } 1682 if (pvo->pvo_pmap == kernel_pmap) 1683 isync(); 1684 } 1685 PMAP_UNLOCK(pmap); 1686 } 1687 m->md.mdpg_cache_attrs = ma; 1688 PV_PAGE_UNLOCK(m); 1689 } 1690 1691 /* 1692 * Map a wired page into kernel virtual address space. 1693 */ 1694 void 1695 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma) 1696 { 1697 int error; 1698 struct pvo_entry *pvo, *oldpvo; 1699 1700 pvo = alloc_pvo_entry(0); 1701 pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 1702 pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma); 1703 pvo->pvo_vaddr |= PVO_WIRED; 1704 1705 PMAP_LOCK(kernel_pmap); 1706 oldpvo = moea64_pvo_find_va(kernel_pmap, va); 1707 if (oldpvo != NULL) 1708 moea64_pvo_remove_from_pmap(mmu, oldpvo); 1709 init_pvo_entry(pvo, kernel_pmap, va); 1710 error = moea64_pvo_enter(mmu, pvo, NULL); 1711 PMAP_UNLOCK(kernel_pmap); 1712 1713 /* Free any dead pages */ 1714 if (oldpvo != NULL) { 1715 PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN); 1716 moea64_pvo_remove_from_page(mmu, oldpvo); 1717 PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN); 1718 free_pvo_entry(oldpvo); 1719 } 1720 1721 if (error != 0 && error != ENOENT) 1722 panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va, 1723 pa, error); 1724 } 1725 1726 void 1727 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa) 1728 { 1729 1730 moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT); 1731 } 1732 1733 /* 1734 * Extract the physical page address associated with the given kernel virtual 1735 * address. 1736 */ 1737 vm_paddr_t 1738 moea64_kextract(mmu_t mmu, vm_offset_t va) 1739 { 1740 struct pvo_entry *pvo; 1741 vm_paddr_t pa; 1742 1743 /* 1744 * Shortcut the direct-mapped case when applicable. We never put 1745 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS. 1746 */ 1747 if (va < VM_MIN_KERNEL_ADDRESS) 1748 return (va); 1749 1750 PMAP_LOCK(kernel_pmap); 1751 pvo = moea64_pvo_find_va(kernel_pmap, va); 1752 KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR, 1753 va)); 1754 pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo)); 1755 PMAP_UNLOCK(kernel_pmap); 1756 return (pa); 1757 } 1758 1759 /* 1760 * Remove a wired page from kernel virtual address space. 1761 */ 1762 void 1763 moea64_kremove(mmu_t mmu, vm_offset_t va) 1764 { 1765 moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE); 1766 } 1767 1768 /* 1769 * Map a range of physical addresses into kernel virtual address space. 1770 * 1771 * The value passed in *virt is a suggested virtual address for the mapping. 1772 * Architectures which can support a direct-mapped physical to virtual region 1773 * can return the appropriate address within that region, leaving '*virt' 1774 * unchanged. Other architectures should map the pages starting at '*virt' and 1775 * update '*virt' with the first usable address after the mapped region. 1776 */ 1777 vm_offset_t 1778 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start, 1779 vm_paddr_t pa_end, int prot) 1780 { 1781 vm_offset_t sva, va; 1782 1783 if (hw_direct_map) { 1784 /* 1785 * Check if every page in the region is covered by the direct 1786 * map. The direct map covers all of physical memory. Use 1787 * moea64_calc_wimg() as a shortcut to see if the page is in 1788 * physical memory as a way to see if the direct map covers it. 1789 */ 1790 for (va = pa_start; va < pa_end; va += PAGE_SIZE) 1791 if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M) 1792 break; 1793 if (va == pa_end) 1794 return (pa_start); 1795 } 1796 sva = *virt; 1797 va = sva; 1798 /* XXX respect prot argument */ 1799 for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE) 1800 moea64_kenter(mmu, va, pa_start); 1801 *virt = va; 1802 1803 return (sva); 1804 } 1805 1806 /* 1807 * Returns true if the pmap's pv is one of the first 1808 * 16 pvs linked to from this page. This count may 1809 * be changed upwards or downwards in the future; it 1810 * is only necessary that true be returned for a small 1811 * subset of pmaps for proper page aging. 1812 */ 1813 boolean_t 1814 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m) 1815 { 1816 int loops; 1817 struct pvo_entry *pvo; 1818 boolean_t rv; 1819 1820 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1821 ("moea64_page_exists_quick: page %p is not managed", m)); 1822 loops = 0; 1823 rv = FALSE; 1824 PV_PAGE_LOCK(m); 1825 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 1826 if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) { 1827 rv = TRUE; 1828 break; 1829 } 1830 if (++loops >= 16) 1831 break; 1832 } 1833 PV_PAGE_UNLOCK(m); 1834 return (rv); 1835 } 1836 1837 /* 1838 * Return the number of managed mappings to the given physical page 1839 * that are wired. 1840 */ 1841 int 1842 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m) 1843 { 1844 struct pvo_entry *pvo; 1845 int count; 1846 1847 count = 0; 1848 if ((m->oflags & VPO_UNMANAGED) != 0) 1849 return (count); 1850 PV_PAGE_LOCK(m); 1851 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) 1852 if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED) 1853 count++; 1854 PV_PAGE_UNLOCK(m); 1855 return (count); 1856 } 1857 1858 static uintptr_t moea64_vsidcontext; 1859 1860 uintptr_t 1861 moea64_get_unique_vsid(void) { 1862 u_int entropy; 1863 register_t hash; 1864 uint32_t mask; 1865 int i; 1866 1867 entropy = 0; 1868 __asm __volatile("mftb %0" : "=r"(entropy)); 1869 1870 mtx_lock(&moea64_slb_mutex); 1871 for (i = 0; i < NVSIDS; i += VSID_NBPW) { 1872 u_int n; 1873 1874 /* 1875 * Create a new value by mutiplying by a prime and adding in 1876 * entropy from the timebase register. This is to make the 1877 * VSID more random so that the PT hash function collides 1878 * less often. (Note that the prime casues gcc to do shifts 1879 * instead of a multiply.) 1880 */ 1881 moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy; 1882 hash = moea64_vsidcontext & (NVSIDS - 1); 1883 if (hash == 0) /* 0 is special, avoid it */ 1884 continue; 1885 n = hash >> 5; 1886 mask = 1 << (hash & (VSID_NBPW - 1)); 1887 hash = (moea64_vsidcontext & VSID_HASHMASK); 1888 if (moea64_vsid_bitmap[n] & mask) { /* collision? */ 1889 /* anything free in this bucket? */ 1890 if (moea64_vsid_bitmap[n] == 0xffffffff) { 1891 entropy = (moea64_vsidcontext >> 20); 1892 continue; 1893 } 1894 i = ffs(~moea64_vsid_bitmap[n]) - 1; 1895 mask = 1 << i; 1896 hash &= VSID_HASHMASK & ~(VSID_NBPW - 1); 1897 hash |= i; 1898 } 1899 if (hash == VSID_VRMA) /* also special, avoid this too */ 1900 continue; 1901 KASSERT(!(moea64_vsid_bitmap[n] & mask), 1902 ("Allocating in-use VSID %#zx\n", hash)); 1903 moea64_vsid_bitmap[n] |= mask; 1904 mtx_unlock(&moea64_slb_mutex); 1905 return (hash); 1906 } 1907 1908 mtx_unlock(&moea64_slb_mutex); 1909 panic("%s: out of segments",__func__); 1910 } 1911 1912 #ifdef __powerpc64__ 1913 void 1914 moea64_pinit(mmu_t mmu, pmap_t pmap) 1915 { 1916 1917 RB_INIT(&pmap->pmap_pvo); 1918 1919 pmap->pm_slb_tree_root = slb_alloc_tree(); 1920 pmap->pm_slb = slb_alloc_user_cache(); 1921 pmap->pm_slb_len = 0; 1922 } 1923 #else 1924 void 1925 moea64_pinit(mmu_t mmu, pmap_t pmap) 1926 { 1927 int i; 1928 uint32_t hash; 1929 1930 RB_INIT(&pmap->pmap_pvo); 1931 1932 if (pmap_bootstrapped) 1933 pmap->pmap_phys = (pmap_t)moea64_kextract(mmu, 1934 (vm_offset_t)pmap); 1935 else 1936 pmap->pmap_phys = pmap; 1937 1938 /* 1939 * Allocate some segment registers for this pmap. 1940 */ 1941 hash = moea64_get_unique_vsid(); 1942 1943 for (i = 0; i < 16; i++) 1944 pmap->pm_sr[i] = VSID_MAKE(i, hash); 1945 1946 KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0")); 1947 } 1948 #endif 1949 1950 /* 1951 * Initialize the pmap associated with process 0. 1952 */ 1953 void 1954 moea64_pinit0(mmu_t mmu, pmap_t pm) 1955 { 1956 1957 PMAP_LOCK_INIT(pm); 1958 moea64_pinit(mmu, pm); 1959 bzero(&pm->pm_stats, sizeof(pm->pm_stats)); 1960 } 1961 1962 /* 1963 * Set the physical protection on the specified range of this map as requested. 1964 */ 1965 static void 1966 moea64_pvo_protect(mmu_t mmu, pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot) 1967 { 1968 struct vm_page *pg; 1969 vm_prot_t oldprot; 1970 int32_t refchg; 1971 1972 PMAP_LOCK_ASSERT(pm, MA_OWNED); 1973 1974 /* 1975 * Change the protection of the page. 1976 */ 1977 oldprot = pvo->pvo_pte.prot; 1978 pvo->pvo_pte.prot = prot; 1979 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN); 1980 1981 /* 1982 * If the PVO is in the page table, update mapping 1983 */ 1984 refchg = MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_PROT_UPDATE); 1985 if (refchg < 0) 1986 refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0; 1987 1988 if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) && 1989 (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { 1990 if ((pg->oflags & VPO_UNMANAGED) == 0) 1991 vm_page_aflag_set(pg, PGA_EXECUTABLE); 1992 moea64_syncicache(mmu, pm, PVO_VADDR(pvo), 1993 pvo->pvo_pte.pa & LPTE_RPGN, PAGE_SIZE); 1994 } 1995 1996 /* 1997 * Update vm about the REF/CHG bits if the page is managed and we have 1998 * removed write access. 1999 */ 2000 if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) && 2001 (oldprot & VM_PROT_WRITE)) { 2002 refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs); 2003 if (refchg & LPTE_CHG) 2004 vm_page_dirty(pg); 2005 if (refchg & LPTE_REF) 2006 vm_page_aflag_set(pg, PGA_REFERENCED); 2007 } 2008 } 2009 2010 void 2011 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva, 2012 vm_prot_t prot) 2013 { 2014 struct pvo_entry *pvo, *tpvo, key; 2015 2016 CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, 2017 sva, eva, prot); 2018 2019 KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap, 2020 ("moea64_protect: non current pmap")); 2021 2022 if ((prot & VM_PROT_READ) == VM_PROT_NONE) { 2023 moea64_remove(mmu, pm, sva, eva); 2024 return; 2025 } 2026 2027 PMAP_LOCK(pm); 2028 key.pvo_vaddr = sva; 2029 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 2030 pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { 2031 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); 2032 moea64_pvo_protect(mmu, pm, pvo, prot); 2033 } 2034 PMAP_UNLOCK(pm); 2035 } 2036 2037 /* 2038 * Map a list of wired pages into kernel virtual address space. This is 2039 * intended for temporary mappings which do not need page modification or 2040 * references recorded. Existing mappings in the region are overwritten. 2041 */ 2042 void 2043 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count) 2044 { 2045 while (count-- > 0) { 2046 moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m)); 2047 va += PAGE_SIZE; 2048 m++; 2049 } 2050 } 2051 2052 /* 2053 * Remove page mappings from kernel virtual address space. Intended for 2054 * temporary mappings entered by moea64_qenter. 2055 */ 2056 void 2057 moea64_qremove(mmu_t mmu, vm_offset_t va, int count) 2058 { 2059 while (count-- > 0) { 2060 moea64_kremove(mmu, va); 2061 va += PAGE_SIZE; 2062 } 2063 } 2064 2065 void 2066 moea64_release_vsid(uint64_t vsid) 2067 { 2068 int idx, mask; 2069 2070 mtx_lock(&moea64_slb_mutex); 2071 idx = vsid & (NVSIDS-1); 2072 mask = 1 << (idx % VSID_NBPW); 2073 idx /= VSID_NBPW; 2074 KASSERT(moea64_vsid_bitmap[idx] & mask, 2075 ("Freeing unallocated VSID %#jx", vsid)); 2076 moea64_vsid_bitmap[idx] &= ~mask; 2077 mtx_unlock(&moea64_slb_mutex); 2078 } 2079 2080 2081 void 2082 moea64_release(mmu_t mmu, pmap_t pmap) 2083 { 2084 2085 /* 2086 * Free segment registers' VSIDs 2087 */ 2088 #ifdef __powerpc64__ 2089 slb_free_tree(pmap); 2090 slb_free_user_cache(pmap->pm_slb); 2091 #else 2092 KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0")); 2093 2094 moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0])); 2095 #endif 2096 } 2097 2098 /* 2099 * Remove all pages mapped by the specified pmap 2100 */ 2101 void 2102 moea64_remove_pages(mmu_t mmu, pmap_t pm) 2103 { 2104 struct pvo_entry *pvo, *tpvo; 2105 struct pvo_tree tofree; 2106 2107 RB_INIT(&tofree); 2108 2109 PMAP_LOCK(pm); 2110 RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) { 2111 if (pvo->pvo_vaddr & PVO_WIRED) 2112 continue; 2113 2114 /* 2115 * For locking reasons, remove this from the page table and 2116 * pmap, but save delinking from the vm_page for a second 2117 * pass 2118 */ 2119 moea64_pvo_remove_from_pmap(mmu, pvo); 2120 RB_INSERT(pvo_tree, &tofree, pvo); 2121 } 2122 PMAP_UNLOCK(pm); 2123 2124 RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) { 2125 PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN); 2126 moea64_pvo_remove_from_page(mmu, pvo); 2127 PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN); 2128 RB_REMOVE(pvo_tree, &tofree, pvo); 2129 free_pvo_entry(pvo); 2130 } 2131 } 2132 2133 /* 2134 * Remove the given range of addresses from the specified map. 2135 */ 2136 void 2137 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva) 2138 { 2139 struct pvo_entry *pvo, *tpvo, key; 2140 struct pvo_tree tofree; 2141 2142 /* 2143 * Perform an unsynchronized read. This is, however, safe. 2144 */ 2145 if (pm->pm_stats.resident_count == 0) 2146 return; 2147 2148 key.pvo_vaddr = sva; 2149 2150 RB_INIT(&tofree); 2151 2152 PMAP_LOCK(pm); 2153 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 2154 pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { 2155 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); 2156 2157 /* 2158 * For locking reasons, remove this from the page table and 2159 * pmap, but save delinking from the vm_page for a second 2160 * pass 2161 */ 2162 moea64_pvo_remove_from_pmap(mmu, pvo); 2163 RB_INSERT(pvo_tree, &tofree, pvo); 2164 } 2165 PMAP_UNLOCK(pm); 2166 2167 RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) { 2168 PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN); 2169 moea64_pvo_remove_from_page(mmu, pvo); 2170 PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN); 2171 RB_REMOVE(pvo_tree, &tofree, pvo); 2172 free_pvo_entry(pvo); 2173 } 2174 } 2175 2176 /* 2177 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove() 2178 * will reflect changes in pte's back to the vm_page. 2179 */ 2180 void 2181 moea64_remove_all(mmu_t mmu, vm_page_t m) 2182 { 2183 struct pvo_entry *pvo, *next_pvo; 2184 struct pvo_head freequeue; 2185 int wasdead; 2186 pmap_t pmap; 2187 2188 LIST_INIT(&freequeue); 2189 2190 PV_PAGE_LOCK(m); 2191 LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) { 2192 pmap = pvo->pvo_pmap; 2193 PMAP_LOCK(pmap); 2194 wasdead = (pvo->pvo_vaddr & PVO_DEAD); 2195 if (!wasdead) 2196 moea64_pvo_remove_from_pmap(mmu, pvo); 2197 moea64_pvo_remove_from_page(mmu, pvo); 2198 if (!wasdead) 2199 LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink); 2200 PMAP_UNLOCK(pmap); 2201 2202 } 2203 KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings")); 2204 KASSERT(!(m->aflags & PGA_WRITEABLE), ("Page still writable")); 2205 PV_PAGE_UNLOCK(m); 2206 2207 /* Clean up UMA allocations */ 2208 LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo) 2209 free_pvo_entry(pvo); 2210 } 2211 2212 /* 2213 * Allocate a physical page of memory directly from the phys_avail map. 2214 * Can only be called from moea64_bootstrap before avail start and end are 2215 * calculated. 2216 */ 2217 vm_offset_t 2218 moea64_bootstrap_alloc(vm_size_t size, u_int align) 2219 { 2220 vm_offset_t s, e; 2221 int i, j; 2222 2223 size = round_page(size); 2224 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 2225 if (align != 0) 2226 s = (phys_avail[i] + align - 1) & ~(align - 1); 2227 else 2228 s = phys_avail[i]; 2229 e = s + size; 2230 2231 if (s < phys_avail[i] || e > phys_avail[i + 1]) 2232 continue; 2233 2234 if (s + size > platform_real_maxaddr()) 2235 continue; 2236 2237 if (s == phys_avail[i]) { 2238 phys_avail[i] += size; 2239 } else if (e == phys_avail[i + 1]) { 2240 phys_avail[i + 1] -= size; 2241 } else { 2242 for (j = phys_avail_count * 2; j > i; j -= 2) { 2243 phys_avail[j] = phys_avail[j - 2]; 2244 phys_avail[j + 1] = phys_avail[j - 1]; 2245 } 2246 2247 phys_avail[i + 3] = phys_avail[i + 1]; 2248 phys_avail[i + 1] = s; 2249 phys_avail[i + 2] = e; 2250 phys_avail_count++; 2251 } 2252 2253 return (s); 2254 } 2255 panic("moea64_bootstrap_alloc: could not allocate memory"); 2256 } 2257 2258 static int 2259 moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo, struct pvo_head *pvo_head) 2260 { 2261 int first, err; 2262 2263 PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); 2264 KASSERT(moea64_pvo_find_va(pvo->pvo_pmap, PVO_VADDR(pvo)) == NULL, 2265 ("Existing mapping for VA %#jx", (uintmax_t)PVO_VADDR(pvo))); 2266 2267 moea64_pvo_enter_calls++; 2268 2269 /* 2270 * Add to pmap list 2271 */ 2272 RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo); 2273 2274 /* 2275 * Remember if the list was empty and therefore will be the first 2276 * item. 2277 */ 2278 if (pvo_head != NULL) { 2279 if (LIST_FIRST(pvo_head) == NULL) 2280 first = 1; 2281 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink); 2282 } 2283 2284 if (pvo->pvo_vaddr & PVO_WIRED) 2285 pvo->pvo_pmap->pm_stats.wired_count++; 2286 pvo->pvo_pmap->pm_stats.resident_count++; 2287 2288 /* 2289 * Insert it into the hardware page table 2290 */ 2291 err = MOEA64_PTE_INSERT(mmu, pvo); 2292 if (err != 0) { 2293 panic("moea64_pvo_enter: overflow"); 2294 } 2295 2296 moea64_pvo_entries++; 2297 2298 if (pvo->pvo_pmap == kernel_pmap) 2299 isync(); 2300 2301 #ifdef __powerpc64__ 2302 /* 2303 * Make sure all our bootstrap mappings are in the SLB as soon 2304 * as virtual memory is switched on. 2305 */ 2306 if (!pmap_bootstrapped) 2307 moea64_bootstrap_slb_prefault(PVO_VADDR(pvo), 2308 pvo->pvo_vaddr & PVO_LARGE); 2309 #endif 2310 2311 return (first ? ENOENT : 0); 2312 } 2313 2314 static void 2315 moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo) 2316 { 2317 struct vm_page *pg; 2318 int32_t refchg; 2319 2320 KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap")); 2321 PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); 2322 KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO")); 2323 2324 /* 2325 * If there is an active pte entry, we need to deactivate it 2326 */ 2327 refchg = MOEA64_PTE_UNSET(mmu, pvo); 2328 if (refchg < 0) { 2329 /* 2330 * If it was evicted from the page table, be pessimistic and 2331 * dirty the page. 2332 */ 2333 if (pvo->pvo_pte.prot & VM_PROT_WRITE) 2334 refchg = LPTE_CHG; 2335 else 2336 refchg = 0; 2337 } 2338 2339 /* 2340 * Update our statistics. 2341 */ 2342 pvo->pvo_pmap->pm_stats.resident_count--; 2343 if (pvo->pvo_vaddr & PVO_WIRED) 2344 pvo->pvo_pmap->pm_stats.wired_count--; 2345 2346 /* 2347 * Remove this PVO from the pmap list. 2348 */ 2349 RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo); 2350 2351 /* 2352 * Mark this for the next sweep 2353 */ 2354 pvo->pvo_vaddr |= PVO_DEAD; 2355 2356 /* Send RC bits to VM */ 2357 if ((pvo->pvo_vaddr & PVO_MANAGED) && 2358 (pvo->pvo_pte.prot & VM_PROT_WRITE)) { 2359 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN); 2360 if (pg != NULL) { 2361 refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs); 2362 if (refchg & LPTE_CHG) 2363 vm_page_dirty(pg); 2364 if (refchg & LPTE_REF) 2365 vm_page_aflag_set(pg, PGA_REFERENCED); 2366 } 2367 } 2368 } 2369 2370 static void 2371 moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo) 2372 { 2373 struct vm_page *pg; 2374 2375 KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page")); 2376 2377 /* Use NULL pmaps as a sentinel for races in page deletion */ 2378 if (pvo->pvo_pmap == NULL) 2379 return; 2380 pvo->pvo_pmap = NULL; 2381 2382 /* 2383 * Update vm about page writeability/executability if managed 2384 */ 2385 PV_LOCKASSERT(pvo->pvo_pte.pa & LPTE_RPGN); 2386 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN); 2387 2388 if ((pvo->pvo_vaddr & PVO_MANAGED) && pg != NULL) { 2389 LIST_REMOVE(pvo, pvo_vlink); 2390 if (LIST_EMPTY(vm_page_to_pvoh(pg))) 2391 vm_page_aflag_clear(pg, PGA_WRITEABLE | PGA_EXECUTABLE); 2392 } 2393 2394 moea64_pvo_entries--; 2395 moea64_pvo_remove_calls++; 2396 } 2397 2398 static struct pvo_entry * 2399 moea64_pvo_find_va(pmap_t pm, vm_offset_t va) 2400 { 2401 struct pvo_entry key; 2402 2403 PMAP_LOCK_ASSERT(pm, MA_OWNED); 2404 2405 key.pvo_vaddr = va & ~ADDR_POFF; 2406 return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key)); 2407 } 2408 2409 static boolean_t 2410 moea64_query_bit(mmu_t mmu, vm_page_t m, uint64_t ptebit) 2411 { 2412 struct pvo_entry *pvo; 2413 int64_t ret; 2414 boolean_t rv; 2415 2416 /* 2417 * See if this bit is stored in the page already. 2418 */ 2419 if (m->md.mdpg_attrs & ptebit) 2420 return (TRUE); 2421 2422 /* 2423 * Examine each PTE. Sync so that any pending REF/CHG bits are 2424 * flushed to the PTEs. 2425 */ 2426 rv = FALSE; 2427 powerpc_sync(); 2428 PV_PAGE_LOCK(m); 2429 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2430 ret = 0; 2431 2432 /* 2433 * See if this pvo has a valid PTE. if so, fetch the 2434 * REF/CHG bits from the valid PTE. If the appropriate 2435 * ptebit is set, return success. 2436 */ 2437 PMAP_LOCK(pvo->pvo_pmap); 2438 if (!(pvo->pvo_vaddr & PVO_DEAD)) 2439 ret = MOEA64_PTE_SYNCH(mmu, pvo); 2440 PMAP_UNLOCK(pvo->pvo_pmap); 2441 2442 if (ret > 0) { 2443 atomic_set_32(&m->md.mdpg_attrs, 2444 ret & (LPTE_CHG | LPTE_REF)); 2445 if (ret & ptebit) { 2446 rv = TRUE; 2447 break; 2448 } 2449 } 2450 } 2451 PV_PAGE_UNLOCK(m); 2452 2453 return (rv); 2454 } 2455 2456 static u_int 2457 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit) 2458 { 2459 u_int count; 2460 struct pvo_entry *pvo; 2461 int64_t ret; 2462 2463 /* 2464 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so 2465 * we can reset the right ones). 2466 */ 2467 powerpc_sync(); 2468 2469 /* 2470 * For each pvo entry, clear the pte's ptebit. 2471 */ 2472 count = 0; 2473 PV_PAGE_LOCK(m); 2474 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2475 ret = 0; 2476 2477 PMAP_LOCK(pvo->pvo_pmap); 2478 if (!(pvo->pvo_vaddr & PVO_DEAD)) 2479 ret = MOEA64_PTE_CLEAR(mmu, pvo, ptebit); 2480 PMAP_UNLOCK(pvo->pvo_pmap); 2481 2482 if (ret > 0 && (ret & ptebit)) 2483 count++; 2484 } 2485 atomic_clear_32(&m->md.mdpg_attrs, ptebit); 2486 PV_PAGE_UNLOCK(m); 2487 2488 return (count); 2489 } 2490 2491 boolean_t 2492 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 2493 { 2494 struct pvo_entry *pvo, key; 2495 vm_offset_t ppa; 2496 int error = 0; 2497 2498 PMAP_LOCK(kernel_pmap); 2499 key.pvo_vaddr = ppa = pa & ~ADDR_POFF; 2500 for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key); 2501 ppa < pa + size; ppa += PAGE_SIZE, 2502 pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) { 2503 if (pvo == NULL || (pvo->pvo_pte.pa & LPTE_RPGN) != ppa) { 2504 error = EFAULT; 2505 break; 2506 } 2507 } 2508 PMAP_UNLOCK(kernel_pmap); 2509 2510 return (error); 2511 } 2512 2513 /* 2514 * Map a set of physical memory pages into the kernel virtual 2515 * address space. Return a pointer to where it is mapped. This 2516 * routine is intended to be used for mapping device memory, 2517 * NOT real memory. 2518 */ 2519 void * 2520 moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma) 2521 { 2522 vm_offset_t va, tmpva, ppa, offset; 2523 2524 ppa = trunc_page(pa); 2525 offset = pa & PAGE_MASK; 2526 size = roundup2(offset + size, PAGE_SIZE); 2527 2528 va = kva_alloc(size); 2529 2530 if (!va) 2531 panic("moea64_mapdev: Couldn't alloc kernel virtual memory"); 2532 2533 for (tmpva = va; size > 0;) { 2534 moea64_kenter_attr(mmu, tmpva, ppa, ma); 2535 size -= PAGE_SIZE; 2536 tmpva += PAGE_SIZE; 2537 ppa += PAGE_SIZE; 2538 } 2539 2540 return ((void *)(va + offset)); 2541 } 2542 2543 void * 2544 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 2545 { 2546 2547 return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT); 2548 } 2549 2550 void 2551 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size) 2552 { 2553 vm_offset_t base, offset; 2554 2555 base = trunc_page(va); 2556 offset = va & PAGE_MASK; 2557 size = roundup2(offset + size, PAGE_SIZE); 2558 2559 kva_free(base, size); 2560 } 2561 2562 void 2563 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz) 2564 { 2565 struct pvo_entry *pvo; 2566 vm_offset_t lim; 2567 vm_paddr_t pa; 2568 vm_size_t len; 2569 2570 PMAP_LOCK(pm); 2571 while (sz > 0) { 2572 lim = round_page(va); 2573 len = MIN(lim - va, sz); 2574 pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF); 2575 if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) { 2576 pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va & ADDR_POFF); 2577 moea64_syncicache(mmu, pm, va, pa, len); 2578 } 2579 va += len; 2580 sz -= len; 2581 } 2582 PMAP_UNLOCK(pm); 2583 } 2584 2585 void 2586 moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va) 2587 { 2588 2589 *va = (void *)pa; 2590 } 2591 2592 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1]; 2593 2594 void 2595 moea64_scan_init(mmu_t mmu) 2596 { 2597 struct pvo_entry *pvo; 2598 vm_offset_t va; 2599 int i; 2600 2601 if (!do_minidump) { 2602 /* Initialize phys. segments for dumpsys(). */ 2603 memset(&dump_map, 0, sizeof(dump_map)); 2604 mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); 2605 for (i = 0; i < pregions_sz; i++) { 2606 dump_map[i].pa_start = pregions[i].mr_start; 2607 dump_map[i].pa_size = pregions[i].mr_size; 2608 } 2609 return; 2610 } 2611 2612 /* Virtual segments for minidumps: */ 2613 memset(&dump_map, 0, sizeof(dump_map)); 2614 2615 /* 1st: kernel .data and .bss. */ 2616 dump_map[0].pa_start = trunc_page((uintptr_t)_etext); 2617 dump_map[0].pa_size = round_page((uintptr_t)_end) - 2618 dump_map[0].pa_start; 2619 2620 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ 2621 dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr; 2622 dump_map[1].pa_size = round_page(msgbufp->msg_size); 2623 2624 /* 3rd: kernel VM. */ 2625 va = dump_map[1].pa_start + dump_map[1].pa_size; 2626 /* Find start of next chunk (from va). */ 2627 while (va < virtual_end) { 2628 /* Don't dump the buffer cache. */ 2629 if (va >= kmi.buffer_sva && va < kmi.buffer_eva) { 2630 va = kmi.buffer_eva; 2631 continue; 2632 } 2633 pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF); 2634 if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD)) 2635 break; 2636 va += PAGE_SIZE; 2637 } 2638 if (va < virtual_end) { 2639 dump_map[2].pa_start = va; 2640 va += PAGE_SIZE; 2641 /* Find last page in chunk. */ 2642 while (va < virtual_end) { 2643 /* Don't run into the buffer cache. */ 2644 if (va == kmi.buffer_sva) 2645 break; 2646 pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF); 2647 if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD)) 2648 break; 2649 va += PAGE_SIZE; 2650 } 2651 dump_map[2].pa_size = va - dump_map[2].pa_start; 2652 } 2653 } 2654 2655