1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2008-2015 Nathan Whitehorn 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 /* 33 * Manages physical address maps. 34 * 35 * Since the information managed by this module is also stored by the 36 * logical address mapping module, this module may throw away valid virtual 37 * to physical mappings at almost any time. However, invalidations of 38 * mappings must be done as requested. 39 * 40 * In order to cope with hardware architectures which make virtual to 41 * physical map invalidates expensive, this module may delay invalidate 42 * reduced protection operations until such time as they are actually 43 * necessary. This module is given full information as to which processors 44 * are currently using which maps, and to when physical maps must be made 45 * correct. 46 */ 47 48 #include "opt_kstack_pages.h" 49 50 #include <sys/param.h> 51 #include <sys/kernel.h> 52 #include <sys/conf.h> 53 #include <sys/queue.h> 54 #include <sys/cpuset.h> 55 #include <sys/kerneldump.h> 56 #include <sys/ktr.h> 57 #include <sys/lock.h> 58 #include <sys/msgbuf.h> 59 #include <sys/malloc.h> 60 #include <sys/mman.h> 61 #include <sys/mutex.h> 62 #include <sys/proc.h> 63 #include <sys/rwlock.h> 64 #include <sys/sched.h> 65 #include <sys/sysctl.h> 66 #include <sys/systm.h> 67 #include <sys/vmmeter.h> 68 #include <sys/smp.h> 69 #include <sys/reboot.h> 70 71 #include <sys/kdb.h> 72 73 #include <dev/ofw/openfirm.h> 74 75 #include <vm/vm.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_param.h> 78 #include <vm/vm_kern.h> 79 #include <vm/vm_page.h> 80 #include <vm/vm_phys.h> 81 #include <vm/vm_map.h> 82 #include <vm/vm_object.h> 83 #include <vm/vm_extern.h> 84 #include <vm/vm_pageout.h> 85 #include <vm/vm_dumpset.h> 86 #include <vm/vm_reserv.h> 87 #include <vm/uma.h> 88 89 #include <machine/_inttypes.h> 90 #include <machine/cpu.h> 91 #include <machine/ifunc.h> 92 #include <machine/platform.h> 93 #include <machine/frame.h> 94 #include <machine/md_var.h> 95 #include <machine/psl.h> 96 #include <machine/bat.h> 97 #include <machine/hid.h> 98 #include <machine/pte.h> 99 #include <machine/sr.h> 100 #include <machine/trap.h> 101 #include <machine/mmuvar.h> 102 103 #include "mmu_oea64.h" 104 105 void moea64_release_vsid(uint64_t vsid); 106 uintptr_t moea64_get_unique_vsid(void); 107 108 #define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR) 109 #define ENABLE_TRANS(msr) mtmsr(msr) 110 111 #define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4)) 112 #define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff) 113 #define VSID_HASH_MASK 0x0000007fffffffffULL 114 115 /* 116 * Locking semantics: 117 * 118 * There are two locks of interest: the page locks and the pmap locks, which 119 * protect their individual PVO lists and are locked in that order. The contents 120 * of all PVO entries are protected by the locks of their respective pmaps. 121 * The pmap of any PVO is guaranteed not to change so long as the PVO is linked 122 * into any list. 123 * 124 */ 125 126 #define PV_LOCK_COUNT PA_LOCK_COUNT 127 static struct mtx_padalign pv_lock[PV_LOCK_COUNT]; 128 129 /* 130 * Cheap NUMA-izing of the pv locks, to reduce contention across domains. 131 * NUMA domains on POWER9 appear to be indexed as sparse memory spaces, with the 132 * index at (N << 45). 133 */ 134 #ifdef __powerpc64__ 135 #define PV_LOCK_IDX(pa) ((pa_index(pa) * (((pa) >> 45) + 1)) % PV_LOCK_COUNT) 136 #else 137 #define PV_LOCK_IDX(pa) (pa_index(pa) % PV_LOCK_COUNT) 138 #endif 139 #define PV_LOCKPTR(pa) ((struct mtx *)(&pv_lock[PV_LOCK_IDX(pa)])) 140 #define PV_LOCK(pa) mtx_lock(PV_LOCKPTR(pa)) 141 #define PV_UNLOCK(pa) mtx_unlock(PV_LOCKPTR(pa)) 142 #define PV_LOCKASSERT(pa) mtx_assert(PV_LOCKPTR(pa), MA_OWNED) 143 #define PV_PAGE_LOCK(m) PV_LOCK(VM_PAGE_TO_PHYS(m)) 144 #define PV_PAGE_UNLOCK(m) PV_UNLOCK(VM_PAGE_TO_PHYS(m)) 145 #define PV_PAGE_LOCKASSERT(m) PV_LOCKASSERT(VM_PAGE_TO_PHYS(m)) 146 147 /* Superpage PV lock */ 148 149 #define PV_LOCK_SIZE (1<<PDRSHIFT) 150 151 static __always_inline void 152 moea64_sp_pv_lock(vm_paddr_t pa) 153 { 154 vm_paddr_t pa_end; 155 156 /* Note: breaking when pa_end is reached to avoid overflows */ 157 pa_end = pa + (HPT_SP_SIZE - PV_LOCK_SIZE); 158 for (;;) { 159 mtx_lock_flags(PV_LOCKPTR(pa), MTX_DUPOK); 160 if (pa == pa_end) 161 break; 162 pa += PV_LOCK_SIZE; 163 } 164 } 165 166 static __always_inline void 167 moea64_sp_pv_unlock(vm_paddr_t pa) 168 { 169 vm_paddr_t pa_end; 170 171 /* Note: breaking when pa_end is reached to avoid overflows */ 172 pa_end = pa; 173 pa += HPT_SP_SIZE - PV_LOCK_SIZE; 174 for (;;) { 175 mtx_unlock_flags(PV_LOCKPTR(pa), MTX_DUPOK); 176 if (pa == pa_end) 177 break; 178 pa -= PV_LOCK_SIZE; 179 } 180 } 181 182 #define SP_PV_LOCK_ALIGNED(pa) moea64_sp_pv_lock(pa) 183 #define SP_PV_UNLOCK_ALIGNED(pa) moea64_sp_pv_unlock(pa) 184 #define SP_PV_LOCK(pa) moea64_sp_pv_lock((pa) & ~HPT_SP_MASK) 185 #define SP_PV_UNLOCK(pa) moea64_sp_pv_unlock((pa) & ~HPT_SP_MASK) 186 #define SP_PV_PAGE_LOCK(m) SP_PV_LOCK(VM_PAGE_TO_PHYS(m)) 187 #define SP_PV_PAGE_UNLOCK(m) SP_PV_UNLOCK(VM_PAGE_TO_PHYS(m)) 188 189 struct ofw_map { 190 cell_t om_va; 191 cell_t om_len; 192 uint64_t om_pa; 193 cell_t om_mode; 194 }; 195 196 extern unsigned char _etext[]; 197 extern unsigned char _end[]; 198 199 extern void *slbtrap, *slbtrapend; 200 201 /* 202 * Map of physical memory regions. 203 */ 204 static struct mem_region *regions; 205 static struct mem_region *pregions; 206 static struct numa_mem_region *numa_pregions; 207 static u_int phys_avail_count; 208 static int regions_sz, pregions_sz, numapregions_sz; 209 210 extern void bs_remap_earlyboot(void); 211 212 /* 213 * Lock for the SLB tables. 214 */ 215 struct mtx moea64_slb_mutex; 216 217 /* 218 * PTEG data. 219 */ 220 u_long moea64_pteg_count; 221 u_long moea64_pteg_mask; 222 223 /* 224 * PVO data. 225 */ 226 227 uma_zone_t moea64_pvo_zone; /* zone for pvo entries */ 228 229 static struct pvo_entry *moea64_bpvo_pool; 230 static int moea64_bpvo_pool_index = 0; 231 static int moea64_bpvo_pool_size = 0; 232 SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD, 233 &moea64_bpvo_pool_index, 0, ""); 234 235 #define BPVO_POOL_SIZE 327680 /* Sensible historical default value */ 236 #define BPVO_POOL_EXPANSION_FACTOR 3 237 #define VSID_NBPW (sizeof(u_int32_t) * 8) 238 #ifdef __powerpc64__ 239 #define NVSIDS (NPMAPS * 16) 240 #define VSID_HASHMASK 0xffffffffUL 241 #else 242 #define NVSIDS NPMAPS 243 #define VSID_HASHMASK 0xfffffUL 244 #endif 245 static u_int moea64_vsid_bitmap[NVSIDS / VSID_NBPW]; 246 247 static boolean_t moea64_initialized = FALSE; 248 249 #ifdef MOEA64_STATS 250 /* 251 * Statistics. 252 */ 253 u_int moea64_pte_valid = 0; 254 u_int moea64_pte_overflow = 0; 255 u_int moea64_pvo_entries = 0; 256 u_int moea64_pvo_enter_calls = 0; 257 u_int moea64_pvo_remove_calls = 0; 258 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD, 259 &moea64_pte_valid, 0, ""); 260 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD, 261 &moea64_pte_overflow, 0, ""); 262 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD, 263 &moea64_pvo_entries, 0, ""); 264 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD, 265 &moea64_pvo_enter_calls, 0, ""); 266 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD, 267 &moea64_pvo_remove_calls, 0, ""); 268 #endif 269 270 vm_offset_t moea64_scratchpage_va[2]; 271 struct pvo_entry *moea64_scratchpage_pvo[2]; 272 struct mtx moea64_scratchpage_mtx; 273 274 uint64_t moea64_large_page_mask = 0; 275 uint64_t moea64_large_page_size = 0; 276 int moea64_large_page_shift = 0; 277 bool moea64_has_lp_4k_16m = false; 278 279 /* 280 * PVO calls. 281 */ 282 static int moea64_pvo_enter(struct pvo_entry *pvo, 283 struct pvo_head *pvo_head, struct pvo_entry **oldpvo); 284 static void moea64_pvo_remove_from_pmap(struct pvo_entry *pvo); 285 static void moea64_pvo_remove_from_page(struct pvo_entry *pvo); 286 static void moea64_pvo_remove_from_page_locked( 287 struct pvo_entry *pvo, vm_page_t m); 288 static struct pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t); 289 290 /* 291 * Utility routines. 292 */ 293 static boolean_t moea64_query_bit(vm_page_t, uint64_t); 294 static u_int moea64_clear_bit(vm_page_t, uint64_t); 295 static void moea64_kremove(vm_offset_t); 296 static void moea64_syncicache(pmap_t pmap, vm_offset_t va, 297 vm_paddr_t pa, vm_size_t sz); 298 static void moea64_pmap_init_qpages(void); 299 static void moea64_remove_locked(pmap_t, vm_offset_t, 300 vm_offset_t, struct pvo_dlist *); 301 302 /* 303 * Superpages data and routines. 304 */ 305 306 /* 307 * PVO flags (in vaddr) that must match for promotion to succeed. 308 * Note that protection bits are checked separately, as they reside in 309 * another field. 310 */ 311 #define PVO_FLAGS_PROMOTE (PVO_WIRED | PVO_MANAGED | PVO_PTEGIDX_VALID) 312 313 #define PVO_IS_SP(pvo) (((pvo)->pvo_vaddr & PVO_LARGE) && \ 314 (pvo)->pvo_pmap != kernel_pmap) 315 316 /* Get physical address from PVO. */ 317 #define PVO_PADDR(pvo) moea64_pvo_paddr(pvo) 318 319 /* MD page flag indicating that the page is a superpage. */ 320 #define MDPG_ATTR_SP 0x40000000 321 322 SYSCTL_DECL(_vm_pmap); 323 324 static SYSCTL_NODE(_vm_pmap, OID_AUTO, sp, CTLFLAG_RD, 0, 325 "SP page mapping counters"); 326 327 static u_long sp_demotions; 328 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, demotions, CTLFLAG_RD, 329 &sp_demotions, 0, "SP page demotions"); 330 331 static u_long sp_mappings; 332 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, mappings, CTLFLAG_RD, 333 &sp_mappings, 0, "SP page mappings"); 334 335 static u_long sp_p_failures; 336 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_failures, CTLFLAG_RD, 337 &sp_p_failures, 0, "SP page promotion failures"); 338 339 static u_long sp_p_fail_pa; 340 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_pa, CTLFLAG_RD, 341 &sp_p_fail_pa, 0, "SP page promotion failure: PAs don't match"); 342 343 static u_long sp_p_fail_flags; 344 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_flags, CTLFLAG_RD, 345 &sp_p_fail_flags, 0, "SP page promotion failure: page flags don't match"); 346 347 static u_long sp_p_fail_prot; 348 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_prot, CTLFLAG_RD, 349 &sp_p_fail_prot, 0, 350 "SP page promotion failure: page protections don't match"); 351 352 static u_long sp_p_fail_wimg; 353 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_wimg, CTLFLAG_RD, 354 &sp_p_fail_wimg, 0, "SP page promotion failure: WIMG bits don't match"); 355 356 static u_long sp_promotions; 357 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, promotions, CTLFLAG_RD, 358 &sp_promotions, 0, "SP page promotions"); 359 360 static bool moea64_ps_enabled(pmap_t); 361 static void moea64_align_superpage(vm_object_t, vm_ooffset_t, 362 vm_offset_t *, vm_size_t); 363 364 static int moea64_sp_enter(pmap_t pmap, vm_offset_t va, 365 vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind); 366 static struct pvo_entry *moea64_sp_remove(struct pvo_entry *sp, 367 struct pvo_dlist *tofree); 368 369 static void moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m); 370 static void moea64_sp_demote_aligned(struct pvo_entry *sp); 371 static void moea64_sp_demote(struct pvo_entry *pvo); 372 373 static struct pvo_entry *moea64_sp_unwire(struct pvo_entry *sp); 374 static struct pvo_entry *moea64_sp_protect(struct pvo_entry *sp, 375 vm_prot_t prot); 376 377 static int64_t moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit); 378 static int64_t moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m, 379 uint64_t ptebit); 380 381 static __inline bool moea64_sp_pvo_in_range(struct pvo_entry *pvo, 382 vm_offset_t sva, vm_offset_t eva); 383 384 /* 385 * Kernel MMU interface 386 */ 387 void moea64_clear_modify(vm_page_t); 388 void moea64_copy_page(vm_page_t, vm_page_t); 389 void moea64_copy_page_dmap(vm_page_t, vm_page_t); 390 void moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset, 391 vm_page_t *mb, vm_offset_t b_offset, int xfersize); 392 void moea64_copy_pages_dmap(vm_page_t *ma, vm_offset_t a_offset, 393 vm_page_t *mb, vm_offset_t b_offset, int xfersize); 394 int moea64_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, 395 u_int flags, int8_t psind); 396 void moea64_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t, 397 vm_prot_t); 398 void moea64_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t); 399 vm_paddr_t moea64_extract(pmap_t, vm_offset_t); 400 vm_page_t moea64_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t); 401 void moea64_init(void); 402 boolean_t moea64_is_modified(vm_page_t); 403 boolean_t moea64_is_prefaultable(pmap_t, vm_offset_t); 404 boolean_t moea64_is_referenced(vm_page_t); 405 int moea64_ts_referenced(vm_page_t); 406 vm_offset_t moea64_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int); 407 boolean_t moea64_page_exists_quick(pmap_t, vm_page_t); 408 void moea64_page_init(vm_page_t); 409 int moea64_page_wired_mappings(vm_page_t); 410 int moea64_pinit(pmap_t); 411 void moea64_pinit0(pmap_t); 412 void moea64_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t); 413 void moea64_qenter(vm_offset_t, vm_page_t *, int); 414 void moea64_qremove(vm_offset_t, int); 415 void moea64_release(pmap_t); 416 void moea64_remove(pmap_t, vm_offset_t, vm_offset_t); 417 void moea64_remove_pages(pmap_t); 418 void moea64_remove_all(vm_page_t); 419 void moea64_remove_write(vm_page_t); 420 void moea64_unwire(pmap_t, vm_offset_t, vm_offset_t); 421 void moea64_zero_page(vm_page_t); 422 void moea64_zero_page_dmap(vm_page_t); 423 void moea64_zero_page_area(vm_page_t, int, int); 424 void moea64_activate(struct thread *); 425 void moea64_deactivate(struct thread *); 426 void *moea64_mapdev(vm_paddr_t, vm_size_t); 427 void *moea64_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t); 428 void moea64_unmapdev(void *, vm_size_t); 429 vm_paddr_t moea64_kextract(vm_offset_t); 430 void moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma); 431 void moea64_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma); 432 void moea64_kenter(vm_offset_t, vm_paddr_t); 433 int moea64_dev_direct_mapped(vm_paddr_t, vm_size_t); 434 static void moea64_sync_icache(pmap_t, vm_offset_t, vm_size_t); 435 void moea64_dumpsys_map(vm_paddr_t pa, size_t sz, 436 void **va); 437 void moea64_scan_init(void); 438 vm_offset_t moea64_quick_enter_page(vm_page_t m); 439 vm_offset_t moea64_quick_enter_page_dmap(vm_page_t m); 440 void moea64_quick_remove_page(vm_offset_t addr); 441 boolean_t moea64_page_is_mapped(vm_page_t m); 442 static int moea64_map_user_ptr(pmap_t pm, 443 volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen); 444 static int moea64_decode_kernel_ptr(vm_offset_t addr, 445 int *is_user, vm_offset_t *decoded_addr); 446 static size_t moea64_scan_pmap(struct bitset *dump_bitset); 447 static void *moea64_dump_pmap_init(unsigned blkpgs); 448 #ifdef __powerpc64__ 449 static void moea64_page_array_startup(long); 450 #endif 451 static int moea64_mincore(pmap_t, vm_offset_t, vm_paddr_t *); 452 453 static struct pmap_funcs moea64_methods = { 454 .clear_modify = moea64_clear_modify, 455 .copy_page = moea64_copy_page, 456 .copy_pages = moea64_copy_pages, 457 .enter = moea64_enter, 458 .enter_object = moea64_enter_object, 459 .enter_quick = moea64_enter_quick, 460 .extract = moea64_extract, 461 .extract_and_hold = moea64_extract_and_hold, 462 .init = moea64_init, 463 .is_modified = moea64_is_modified, 464 .is_prefaultable = moea64_is_prefaultable, 465 .is_referenced = moea64_is_referenced, 466 .ts_referenced = moea64_ts_referenced, 467 .map = moea64_map, 468 .mincore = moea64_mincore, 469 .page_exists_quick = moea64_page_exists_quick, 470 .page_init = moea64_page_init, 471 .page_wired_mappings = moea64_page_wired_mappings, 472 .pinit = moea64_pinit, 473 .pinit0 = moea64_pinit0, 474 .protect = moea64_protect, 475 .qenter = moea64_qenter, 476 .qremove = moea64_qremove, 477 .release = moea64_release, 478 .remove = moea64_remove, 479 .remove_pages = moea64_remove_pages, 480 .remove_all = moea64_remove_all, 481 .remove_write = moea64_remove_write, 482 .sync_icache = moea64_sync_icache, 483 .unwire = moea64_unwire, 484 .zero_page = moea64_zero_page, 485 .zero_page_area = moea64_zero_page_area, 486 .activate = moea64_activate, 487 .deactivate = moea64_deactivate, 488 .page_set_memattr = moea64_page_set_memattr, 489 .quick_enter_page = moea64_quick_enter_page, 490 .quick_remove_page = moea64_quick_remove_page, 491 .page_is_mapped = moea64_page_is_mapped, 492 #ifdef __powerpc64__ 493 .page_array_startup = moea64_page_array_startup, 494 #endif 495 .ps_enabled = moea64_ps_enabled, 496 .align_superpage = moea64_align_superpage, 497 498 /* Internal interfaces */ 499 .mapdev = moea64_mapdev, 500 .mapdev_attr = moea64_mapdev_attr, 501 .unmapdev = moea64_unmapdev, 502 .kextract = moea64_kextract, 503 .kenter = moea64_kenter, 504 .kenter_attr = moea64_kenter_attr, 505 .dev_direct_mapped = moea64_dev_direct_mapped, 506 .dumpsys_pa_init = moea64_scan_init, 507 .dumpsys_scan_pmap = moea64_scan_pmap, 508 .dumpsys_dump_pmap_init = moea64_dump_pmap_init, 509 .dumpsys_map_chunk = moea64_dumpsys_map, 510 .map_user_ptr = moea64_map_user_ptr, 511 .decode_kernel_ptr = moea64_decode_kernel_ptr, 512 }; 513 514 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods); 515 516 /* 517 * Get physical address from PVO. 518 * 519 * For superpages, the lower bits are not stored on pvo_pte.pa and must be 520 * obtained from VA. 521 */ 522 static __always_inline vm_paddr_t 523 moea64_pvo_paddr(struct pvo_entry *pvo) 524 { 525 vm_paddr_t pa; 526 527 pa = (pvo)->pvo_pte.pa & LPTE_RPGN; 528 529 if (PVO_IS_SP(pvo)) { 530 pa &= ~HPT_SP_MASK; /* This is needed to clear LPTE_LP bits. */ 531 pa |= PVO_VADDR(pvo) & HPT_SP_MASK; 532 } 533 return (pa); 534 } 535 536 static struct pvo_head * 537 vm_page_to_pvoh(vm_page_t m) 538 { 539 540 mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED); 541 return (&m->md.mdpg_pvoh); 542 } 543 544 static struct pvo_entry * 545 alloc_pvo_entry(int bootstrap) 546 { 547 struct pvo_entry *pvo; 548 549 if (!moea64_initialized || bootstrap) { 550 if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) { 551 panic("%s: bpvo pool exhausted, index=%d, size=%d, bytes=%zd." 552 "Try setting machdep.moea64_bpvo_pool_size tunable", 553 __func__, moea64_bpvo_pool_index, 554 moea64_bpvo_pool_size, 555 moea64_bpvo_pool_size * sizeof(struct pvo_entry)); 556 } 557 pvo = &moea64_bpvo_pool[ 558 atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)]; 559 bzero(pvo, sizeof(*pvo)); 560 pvo->pvo_vaddr = PVO_BOOTSTRAP; 561 } else 562 pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT | M_ZERO); 563 564 return (pvo); 565 } 566 567 static void 568 init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va) 569 { 570 uint64_t vsid; 571 uint64_t hash; 572 int shift; 573 574 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 575 576 pvo->pvo_pmap = pmap; 577 va &= ~ADDR_POFF; 578 pvo->pvo_vaddr |= va; 579 vsid = va_to_vsid(pmap, va); 580 pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT) 581 | (vsid << 16); 582 583 if (pmap == kernel_pmap && (pvo->pvo_vaddr & PVO_LARGE) != 0) 584 shift = moea64_large_page_shift; 585 else 586 shift = ADDR_PIDX_SHFT; 587 hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift); 588 pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3; 589 } 590 591 static void 592 free_pvo_entry(struct pvo_entry *pvo) 593 { 594 595 if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP)) 596 uma_zfree(moea64_pvo_zone, pvo); 597 } 598 599 void 600 moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte) 601 { 602 603 lpte->pte_hi = moea64_pte_vpn_from_pvo_vpn(pvo); 604 lpte->pte_hi |= LPTE_VALID; 605 606 if (pvo->pvo_vaddr & PVO_LARGE) 607 lpte->pte_hi |= LPTE_BIG; 608 if (pvo->pvo_vaddr & PVO_WIRED) 609 lpte->pte_hi |= LPTE_WIRED; 610 if (pvo->pvo_vaddr & PVO_HID) 611 lpte->pte_hi |= LPTE_HID; 612 613 lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */ 614 if (pvo->pvo_pte.prot & VM_PROT_WRITE) 615 lpte->pte_lo |= LPTE_BW; 616 else 617 lpte->pte_lo |= LPTE_BR; 618 619 if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE)) 620 lpte->pte_lo |= LPTE_NOEXEC; 621 } 622 623 static __inline uint64_t 624 moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma) 625 { 626 uint64_t pte_lo; 627 int i; 628 629 if (ma != VM_MEMATTR_DEFAULT) { 630 switch (ma) { 631 case VM_MEMATTR_UNCACHEABLE: 632 return (LPTE_I | LPTE_G); 633 case VM_MEMATTR_CACHEABLE: 634 return (LPTE_M); 635 case VM_MEMATTR_WRITE_COMBINING: 636 case VM_MEMATTR_WRITE_BACK: 637 case VM_MEMATTR_PREFETCHABLE: 638 return (LPTE_I); 639 case VM_MEMATTR_WRITE_THROUGH: 640 return (LPTE_W | LPTE_M); 641 } 642 } 643 644 /* 645 * Assume the page is cache inhibited and access is guarded unless 646 * it's in our available memory array. 647 */ 648 pte_lo = LPTE_I | LPTE_G; 649 for (i = 0; i < pregions_sz; i++) { 650 if ((pa >= pregions[i].mr_start) && 651 (pa < (pregions[i].mr_start + pregions[i].mr_size))) { 652 pte_lo &= ~(LPTE_I | LPTE_G); 653 pte_lo |= LPTE_M; 654 break; 655 } 656 } 657 658 return pte_lo; 659 } 660 661 /* 662 * Quick sort callout for comparing memory regions. 663 */ 664 static int om_cmp(const void *a, const void *b); 665 666 static int 667 om_cmp(const void *a, const void *b) 668 { 669 const struct ofw_map *mapa; 670 const struct ofw_map *mapb; 671 672 mapa = a; 673 mapb = b; 674 if (mapa->om_pa < mapb->om_pa) 675 return (-1); 676 else if (mapa->om_pa > mapb->om_pa) 677 return (1); 678 else 679 return (0); 680 } 681 682 static void 683 moea64_add_ofw_mappings(phandle_t mmu, size_t sz) 684 { 685 struct ofw_map translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */ 686 pcell_t acells, trans_cells[sz/sizeof(cell_t)]; 687 struct pvo_entry *pvo; 688 register_t msr; 689 vm_offset_t off; 690 vm_paddr_t pa_base; 691 int i, j; 692 693 bzero(translations, sz); 694 OF_getencprop(OF_finddevice("/"), "#address-cells", &acells, 695 sizeof(acells)); 696 if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1) 697 panic("moea64_bootstrap: can't get ofw translations"); 698 699 CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations"); 700 sz /= sizeof(cell_t); 701 for (i = 0, j = 0; i < sz; j++) { 702 translations[j].om_va = trans_cells[i++]; 703 translations[j].om_len = trans_cells[i++]; 704 translations[j].om_pa = trans_cells[i++]; 705 if (acells == 2) { 706 translations[j].om_pa <<= 32; 707 translations[j].om_pa |= trans_cells[i++]; 708 } 709 translations[j].om_mode = trans_cells[i++]; 710 } 711 KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)", 712 i, sz)); 713 714 sz = j; 715 qsort(translations, sz, sizeof (*translations), om_cmp); 716 717 for (i = 0; i < sz; i++) { 718 pa_base = translations[i].om_pa; 719 #ifndef __powerpc64__ 720 if ((translations[i].om_pa >> 32) != 0) 721 panic("OFW translations above 32-bit boundary!"); 722 #endif 723 724 if (pa_base % PAGE_SIZE) 725 panic("OFW translation not page-aligned (phys)!"); 726 if (translations[i].om_va % PAGE_SIZE) 727 panic("OFW translation not page-aligned (virt)!"); 728 729 CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x", 730 pa_base, translations[i].om_va, translations[i].om_len); 731 732 /* Now enter the pages for this mapping */ 733 734 DISABLE_TRANS(msr); 735 for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) { 736 /* If this address is direct-mapped, skip remapping */ 737 if (hw_direct_map && 738 translations[i].om_va == PHYS_TO_DMAP(pa_base) && 739 moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT) 740 == LPTE_M) 741 continue; 742 743 PMAP_LOCK(kernel_pmap); 744 pvo = moea64_pvo_find_va(kernel_pmap, 745 translations[i].om_va + off); 746 PMAP_UNLOCK(kernel_pmap); 747 if (pvo != NULL) 748 continue; 749 750 moea64_kenter(translations[i].om_va + off, 751 pa_base + off); 752 } 753 ENABLE_TRANS(msr); 754 } 755 } 756 757 #ifdef __powerpc64__ 758 static void 759 moea64_probe_large_page(void) 760 { 761 uint16_t pvr = mfpvr() >> 16; 762 763 switch (pvr) { 764 case IBM970: 765 case IBM970FX: 766 case IBM970MP: 767 powerpc_sync(); isync(); 768 mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG); 769 powerpc_sync(); isync(); 770 771 /* FALLTHROUGH */ 772 default: 773 if (moea64_large_page_size == 0) { 774 moea64_large_page_size = 0x1000000; /* 16 MB */ 775 moea64_large_page_shift = 24; 776 } 777 } 778 779 moea64_large_page_mask = moea64_large_page_size - 1; 780 } 781 782 static void 783 moea64_bootstrap_slb_prefault(vm_offset_t va, int large) 784 { 785 struct slb *cache; 786 struct slb entry; 787 uint64_t esid, slbe; 788 uint64_t i; 789 790 cache = PCPU_GET(aim.slb); 791 esid = va >> ADDR_SR_SHFT; 792 slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID; 793 794 for (i = 0; i < 64; i++) { 795 if (cache[i].slbe == (slbe | i)) 796 return; 797 } 798 799 entry.slbe = slbe; 800 entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT; 801 if (large) 802 entry.slbv |= SLBV_L; 803 804 slb_insert_kernel(entry.slbe, entry.slbv); 805 } 806 #endif 807 808 static int 809 moea64_kenter_large(vm_offset_t va, vm_paddr_t pa, uint64_t attr, int bootstrap) 810 { 811 struct pvo_entry *pvo; 812 uint64_t pte_lo; 813 int error; 814 815 pte_lo = LPTE_M; 816 pte_lo |= attr; 817 818 pvo = alloc_pvo_entry(bootstrap); 819 pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE; 820 init_pvo_entry(pvo, kernel_pmap, va); 821 822 pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | 823 VM_PROT_EXECUTE; 824 pvo->pvo_pte.pa = pa | pte_lo; 825 error = moea64_pvo_enter(pvo, NULL, NULL); 826 if (error != 0) 827 panic("Error %d inserting large page\n", error); 828 return (0); 829 } 830 831 static void 832 moea64_setup_direct_map(vm_offset_t kernelstart, 833 vm_offset_t kernelend) 834 { 835 register_t msr; 836 vm_paddr_t pa, pkernelstart, pkernelend; 837 vm_offset_t size, off; 838 uint64_t pte_lo; 839 int i; 840 841 if (moea64_large_page_size == 0) 842 hw_direct_map = 0; 843 844 DISABLE_TRANS(msr); 845 if (hw_direct_map) { 846 PMAP_LOCK(kernel_pmap); 847 for (i = 0; i < pregions_sz; i++) { 848 for (pa = pregions[i].mr_start; pa < pregions[i].mr_start + 849 pregions[i].mr_size; pa += moea64_large_page_size) { 850 pte_lo = LPTE_M; 851 if (pa & moea64_large_page_mask) { 852 pa &= moea64_large_page_mask; 853 pte_lo |= LPTE_G; 854 } 855 if (pa + moea64_large_page_size > 856 pregions[i].mr_start + pregions[i].mr_size) 857 pte_lo |= LPTE_G; 858 859 moea64_kenter_large(PHYS_TO_DMAP(pa), pa, pte_lo, 1); 860 } 861 } 862 PMAP_UNLOCK(kernel_pmap); 863 } 864 865 /* 866 * Make sure the kernel and BPVO pool stay mapped on systems either 867 * without a direct map or on which the kernel is not already executing 868 * out of the direct-mapped region. 869 */ 870 if (kernelstart < DMAP_BASE_ADDRESS) { 871 /* 872 * For pre-dmap execution, we need to use identity mapping 873 * because we will be operating with the mmu on but in the 874 * wrong address configuration until we __restartkernel(). 875 */ 876 for (pa = kernelstart & ~PAGE_MASK; pa < kernelend; 877 pa += PAGE_SIZE) 878 moea64_kenter(pa, pa); 879 } else if (!hw_direct_map) { 880 pkernelstart = kernelstart & ~DMAP_BASE_ADDRESS; 881 pkernelend = kernelend & ~DMAP_BASE_ADDRESS; 882 for (pa = pkernelstart & ~PAGE_MASK; pa < pkernelend; 883 pa += PAGE_SIZE) 884 moea64_kenter(pa | DMAP_BASE_ADDRESS, pa); 885 } 886 887 if (!hw_direct_map) { 888 size = moea64_bpvo_pool_size*sizeof(struct pvo_entry); 889 off = (vm_offset_t)(moea64_bpvo_pool); 890 for (pa = off; pa < off + size; pa += PAGE_SIZE) 891 moea64_kenter(pa, pa); 892 893 /* Map exception vectors */ 894 for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE) 895 moea64_kenter(pa | DMAP_BASE_ADDRESS, pa); 896 } 897 ENABLE_TRANS(msr); 898 899 /* 900 * Allow user to override unmapped_buf_allowed for testing. 901 * XXXKIB Only direct map implementation was tested. 902 */ 903 if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed", 904 &unmapped_buf_allowed)) 905 unmapped_buf_allowed = hw_direct_map; 906 } 907 908 /* Quick sort callout for comparing physical addresses. */ 909 static int 910 pa_cmp(const void *a, const void *b) 911 { 912 const vm_paddr_t *pa = a, *pb = b; 913 914 if (*pa < *pb) 915 return (-1); 916 else if (*pa > *pb) 917 return (1); 918 else 919 return (0); 920 } 921 922 void 923 moea64_early_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend) 924 { 925 int i, j; 926 vm_size_t physsz, hwphyssz; 927 vm_paddr_t kernelphysstart, kernelphysend; 928 int rm_pavail; 929 930 /* Level 0 reservations consist of 4096 pages (16MB superpage). */ 931 vm_level_0_order = 12; 932 933 #ifndef __powerpc64__ 934 /* We don't have a direct map since there is no BAT */ 935 hw_direct_map = 0; 936 937 /* Make sure battable is zero, since we have no BAT */ 938 for (i = 0; i < 16; i++) { 939 battable[i].batu = 0; 940 battable[i].batl = 0; 941 } 942 #else 943 /* Install trap handlers for SLBs */ 944 bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap); 945 bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap); 946 __syncicache((void *)EXC_DSE, 0x80); 947 __syncicache((void *)EXC_ISE, 0x80); 948 #endif 949 950 kernelphysstart = kernelstart & ~DMAP_BASE_ADDRESS; 951 kernelphysend = kernelend & ~DMAP_BASE_ADDRESS; 952 953 /* Get physical memory regions from firmware */ 954 mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); 955 CTR0(KTR_PMAP, "moea64_bootstrap: physical memory"); 956 957 if (PHYS_AVAIL_ENTRIES < regions_sz) 958 panic("moea64_bootstrap: phys_avail too small"); 959 960 phys_avail_count = 0; 961 physsz = 0; 962 hwphyssz = 0; 963 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); 964 for (i = 0, j = 0; i < regions_sz; i++, j += 2) { 965 CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)", 966 regions[i].mr_start, regions[i].mr_start + 967 regions[i].mr_size, regions[i].mr_size); 968 if (hwphyssz != 0 && 969 (physsz + regions[i].mr_size) >= hwphyssz) { 970 if (physsz < hwphyssz) { 971 phys_avail[j] = regions[i].mr_start; 972 phys_avail[j + 1] = regions[i].mr_start + 973 hwphyssz - physsz; 974 physsz = hwphyssz; 975 phys_avail_count++; 976 dump_avail[j] = phys_avail[j]; 977 dump_avail[j + 1] = phys_avail[j + 1]; 978 } 979 break; 980 } 981 phys_avail[j] = regions[i].mr_start; 982 phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size; 983 phys_avail_count++; 984 physsz += regions[i].mr_size; 985 dump_avail[j] = phys_avail[j]; 986 dump_avail[j + 1] = phys_avail[j + 1]; 987 } 988 989 /* Check for overlap with the kernel and exception vectors */ 990 rm_pavail = 0; 991 for (j = 0; j < 2*phys_avail_count; j+=2) { 992 if (phys_avail[j] < EXC_LAST) 993 phys_avail[j] += EXC_LAST; 994 995 if (phys_avail[j] >= kernelphysstart && 996 phys_avail[j+1] <= kernelphysend) { 997 phys_avail[j] = phys_avail[j+1] = ~0; 998 rm_pavail++; 999 continue; 1000 } 1001 1002 if (kernelphysstart >= phys_avail[j] && 1003 kernelphysstart < phys_avail[j+1]) { 1004 if (kernelphysend < phys_avail[j+1]) { 1005 phys_avail[2*phys_avail_count] = 1006 (kernelphysend & ~PAGE_MASK) + PAGE_SIZE; 1007 phys_avail[2*phys_avail_count + 1] = 1008 phys_avail[j+1]; 1009 phys_avail_count++; 1010 } 1011 1012 phys_avail[j+1] = kernelphysstart & ~PAGE_MASK; 1013 } 1014 1015 if (kernelphysend >= phys_avail[j] && 1016 kernelphysend < phys_avail[j+1]) { 1017 if (kernelphysstart > phys_avail[j]) { 1018 phys_avail[2*phys_avail_count] = phys_avail[j]; 1019 phys_avail[2*phys_avail_count + 1] = 1020 kernelphysstart & ~PAGE_MASK; 1021 phys_avail_count++; 1022 } 1023 1024 phys_avail[j] = (kernelphysend & ~PAGE_MASK) + 1025 PAGE_SIZE; 1026 } 1027 } 1028 1029 /* Remove physical available regions marked for removal (~0) */ 1030 if (rm_pavail) { 1031 qsort(phys_avail, 2*phys_avail_count, sizeof(phys_avail[0]), 1032 pa_cmp); 1033 phys_avail_count -= rm_pavail; 1034 for (i = 2*phys_avail_count; 1035 i < 2*(phys_avail_count + rm_pavail); i+=2) 1036 phys_avail[i] = phys_avail[i+1] = 0; 1037 } 1038 1039 physmem = btoc(physsz); 1040 1041 #ifdef PTEGCOUNT 1042 moea64_pteg_count = PTEGCOUNT; 1043 #else 1044 moea64_pteg_count = 0x1000; 1045 1046 while (moea64_pteg_count < physmem) 1047 moea64_pteg_count <<= 1; 1048 1049 moea64_pteg_count >>= 1; 1050 #endif /* PTEGCOUNT */ 1051 } 1052 1053 void 1054 moea64_mid_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend) 1055 { 1056 int i; 1057 1058 /* 1059 * Set PTEG mask 1060 */ 1061 moea64_pteg_mask = moea64_pteg_count - 1; 1062 1063 /* 1064 * Initialize SLB table lock and page locks 1065 */ 1066 mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF); 1067 for (i = 0; i < PV_LOCK_COUNT; i++) 1068 mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF); 1069 1070 /* 1071 * Initialise the bootstrap pvo pool. 1072 */ 1073 TUNABLE_INT_FETCH("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size); 1074 if (moea64_bpvo_pool_size == 0) { 1075 if (!hw_direct_map) 1076 moea64_bpvo_pool_size = ((ptoa((uintmax_t)physmem) * sizeof(struct vm_page)) / 1077 (PAGE_SIZE * PAGE_SIZE)) * BPVO_POOL_EXPANSION_FACTOR; 1078 else 1079 moea64_bpvo_pool_size = BPVO_POOL_SIZE; 1080 } 1081 1082 if (boothowto & RB_VERBOSE) { 1083 printf("mmu_oea64: bpvo pool entries = %d, bpvo pool size = %zu MB\n", 1084 moea64_bpvo_pool_size, 1085 moea64_bpvo_pool_size*sizeof(struct pvo_entry) / 1048576); 1086 } 1087 1088 moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc( 1089 moea64_bpvo_pool_size*sizeof(struct pvo_entry), PAGE_SIZE); 1090 moea64_bpvo_pool_index = 0; 1091 1092 /* Place at address usable through the direct map */ 1093 if (hw_direct_map) 1094 moea64_bpvo_pool = (struct pvo_entry *) 1095 PHYS_TO_DMAP((uintptr_t)moea64_bpvo_pool); 1096 1097 /* 1098 * Make sure kernel vsid is allocated as well as VSID 0. 1099 */ 1100 #ifndef __powerpc64__ 1101 moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW] 1102 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW); 1103 moea64_vsid_bitmap[0] |= 1; 1104 #endif 1105 1106 /* 1107 * Initialize the kernel pmap (which is statically allocated). 1108 */ 1109 #ifdef __powerpc64__ 1110 for (i = 0; i < 64; i++) { 1111 pcpup->pc_aim.slb[i].slbv = 0; 1112 pcpup->pc_aim.slb[i].slbe = 0; 1113 } 1114 #else 1115 for (i = 0; i < 16; i++) 1116 kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i; 1117 #endif 1118 1119 kernel_pmap->pmap_phys = kernel_pmap; 1120 CPU_FILL(&kernel_pmap->pm_active); 1121 RB_INIT(&kernel_pmap->pmap_pvo); 1122 1123 PMAP_LOCK_INIT(kernel_pmap); 1124 1125 /* 1126 * Now map in all the other buffers we allocated earlier 1127 */ 1128 1129 moea64_setup_direct_map(kernelstart, kernelend); 1130 } 1131 1132 void 1133 moea64_late_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend) 1134 { 1135 ihandle_t mmui; 1136 phandle_t chosen; 1137 phandle_t mmu; 1138 ssize_t sz; 1139 int i; 1140 vm_offset_t pa, va; 1141 void *dpcpu; 1142 1143 /* 1144 * Set up the Open Firmware pmap and add its mappings if not in real 1145 * mode. 1146 */ 1147 1148 chosen = OF_finddevice("/chosen"); 1149 if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) { 1150 mmu = OF_instance_to_package(mmui); 1151 if (mmu == -1 || 1152 (sz = OF_getproplen(mmu, "translations")) == -1) 1153 sz = 0; 1154 if (sz > 6144 /* tmpstksz - 2 KB headroom */) 1155 panic("moea64_bootstrap: too many ofw translations"); 1156 1157 if (sz > 0) 1158 moea64_add_ofw_mappings(mmu, sz); 1159 } 1160 1161 /* 1162 * Calculate the last available physical address. 1163 */ 1164 Maxmem = 0; 1165 for (i = 0; phys_avail[i + 1] != 0; i += 2) 1166 Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1])); 1167 1168 /* 1169 * Initialize MMU. 1170 */ 1171 pmap_cpu_bootstrap(0); 1172 mtmsr(mfmsr() | PSL_DR | PSL_IR); 1173 pmap_bootstrapped++; 1174 1175 /* 1176 * Set the start and end of kva. 1177 */ 1178 virtual_avail = VM_MIN_KERNEL_ADDRESS; 1179 virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS; 1180 1181 /* 1182 * Map the entire KVA range into the SLB. We must not fault there. 1183 */ 1184 #ifdef __powerpc64__ 1185 for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH) 1186 moea64_bootstrap_slb_prefault(va, 0); 1187 #endif 1188 1189 /* 1190 * Remap any early IO mappings (console framebuffer, etc.) 1191 */ 1192 bs_remap_earlyboot(); 1193 1194 /* 1195 * Figure out how far we can extend virtual_end into segment 16 1196 * without running into existing mappings. Segment 16 is guaranteed 1197 * to contain neither RAM nor devices (at least on Apple hardware), 1198 * but will generally contain some OFW mappings we should not 1199 * step on. 1200 */ 1201 1202 #ifndef __powerpc64__ /* KVA is in high memory on PPC64 */ 1203 PMAP_LOCK(kernel_pmap); 1204 while (virtual_end < VM_MAX_KERNEL_ADDRESS && 1205 moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL) 1206 virtual_end += PAGE_SIZE; 1207 PMAP_UNLOCK(kernel_pmap); 1208 #endif 1209 1210 /* 1211 * Allocate a kernel stack with a guard page for thread0 and map it 1212 * into the kernel page map. 1213 */ 1214 pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE); 1215 va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; 1216 virtual_avail = va + kstack_pages * PAGE_SIZE; 1217 CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va); 1218 thread0.td_kstack = va; 1219 thread0.td_kstack_pages = kstack_pages; 1220 for (i = 0; i < kstack_pages; i++) { 1221 moea64_kenter(va, pa); 1222 pa += PAGE_SIZE; 1223 va += PAGE_SIZE; 1224 } 1225 1226 /* 1227 * Allocate virtual address space for the message buffer. 1228 */ 1229 pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE); 1230 msgbufp = (struct msgbuf *)virtual_avail; 1231 va = virtual_avail; 1232 virtual_avail += round_page(msgbufsize); 1233 while (va < virtual_avail) { 1234 moea64_kenter(va, pa); 1235 pa += PAGE_SIZE; 1236 va += PAGE_SIZE; 1237 } 1238 1239 /* 1240 * Allocate virtual address space for the dynamic percpu area. 1241 */ 1242 pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE); 1243 dpcpu = (void *)virtual_avail; 1244 va = virtual_avail; 1245 virtual_avail += DPCPU_SIZE; 1246 while (va < virtual_avail) { 1247 moea64_kenter(va, pa); 1248 pa += PAGE_SIZE; 1249 va += PAGE_SIZE; 1250 } 1251 dpcpu_init(dpcpu, curcpu); 1252 1253 crashdumpmap = (caddr_t)virtual_avail; 1254 virtual_avail += MAXDUMPPGS * PAGE_SIZE; 1255 1256 /* 1257 * Allocate some things for page zeroing. We put this directly 1258 * in the page table and use MOEA64_PTE_REPLACE to avoid any 1259 * of the PVO book-keeping or other parts of the VM system 1260 * from even knowing that this hack exists. 1261 */ 1262 1263 if (!hw_direct_map) { 1264 mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL, 1265 MTX_DEF); 1266 for (i = 0; i < 2; i++) { 1267 moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE; 1268 virtual_end -= PAGE_SIZE; 1269 1270 moea64_kenter(moea64_scratchpage_va[i], 0); 1271 1272 PMAP_LOCK(kernel_pmap); 1273 moea64_scratchpage_pvo[i] = moea64_pvo_find_va( 1274 kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]); 1275 PMAP_UNLOCK(kernel_pmap); 1276 } 1277 } 1278 1279 numa_mem_regions(&numa_pregions, &numapregions_sz); 1280 } 1281 1282 static void 1283 moea64_pmap_init_qpages(void) 1284 { 1285 struct pcpu *pc; 1286 int i; 1287 1288 if (hw_direct_map) 1289 return; 1290 1291 CPU_FOREACH(i) { 1292 pc = pcpu_find(i); 1293 pc->pc_qmap_addr = kva_alloc(PAGE_SIZE); 1294 if (pc->pc_qmap_addr == 0) 1295 panic("pmap_init_qpages: unable to allocate KVA"); 1296 PMAP_LOCK(kernel_pmap); 1297 pc->pc_aim.qmap_pvo = 1298 moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr); 1299 PMAP_UNLOCK(kernel_pmap); 1300 mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF); 1301 } 1302 } 1303 1304 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL); 1305 1306 /* 1307 * Activate a user pmap. This mostly involves setting some non-CPU 1308 * state. 1309 */ 1310 void 1311 moea64_activate(struct thread *td) 1312 { 1313 pmap_t pm; 1314 1315 pm = &td->td_proc->p_vmspace->vm_pmap; 1316 CPU_SET(PCPU_GET(cpuid), &pm->pm_active); 1317 1318 #ifdef __powerpc64__ 1319 PCPU_SET(aim.userslb, pm->pm_slb); 1320 __asm __volatile("slbmte %0, %1; isync" :: 1321 "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE)); 1322 #else 1323 PCPU_SET(curpmap, pm->pmap_phys); 1324 mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid); 1325 #endif 1326 } 1327 1328 void 1329 moea64_deactivate(struct thread *td) 1330 { 1331 pmap_t pm; 1332 1333 __asm __volatile("isync; slbie %0" :: "r"(USER_ADDR)); 1334 1335 pm = &td->td_proc->p_vmspace->vm_pmap; 1336 CPU_CLR(PCPU_GET(cpuid), &pm->pm_active); 1337 #ifdef __powerpc64__ 1338 PCPU_SET(aim.userslb, NULL); 1339 #else 1340 PCPU_SET(curpmap, NULL); 1341 #endif 1342 } 1343 1344 void 1345 moea64_unwire(pmap_t pm, vm_offset_t sva, vm_offset_t eva) 1346 { 1347 struct pvo_entry key, *pvo; 1348 vm_page_t m; 1349 int64_t refchg; 1350 1351 key.pvo_vaddr = sva; 1352 PMAP_LOCK(pm); 1353 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 1354 pvo != NULL && PVO_VADDR(pvo) < eva; 1355 pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) { 1356 if (PVO_IS_SP(pvo)) { 1357 if (moea64_sp_pvo_in_range(pvo, sva, eva)) { 1358 pvo = moea64_sp_unwire(pvo); 1359 continue; 1360 } else { 1361 CTR1(KTR_PMAP, "%s: demote before unwire", 1362 __func__); 1363 moea64_sp_demote(pvo); 1364 } 1365 } 1366 1367 if ((pvo->pvo_vaddr & PVO_WIRED) == 0) 1368 panic("moea64_unwire: pvo %p is missing PVO_WIRED", 1369 pvo); 1370 pvo->pvo_vaddr &= ~PVO_WIRED; 1371 refchg = moea64_pte_replace(pvo, 0 /* No invalidation */); 1372 if ((pvo->pvo_vaddr & PVO_MANAGED) && 1373 (pvo->pvo_pte.prot & VM_PROT_WRITE)) { 1374 if (refchg < 0) 1375 refchg = LPTE_CHG; 1376 m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo)); 1377 1378 refchg |= atomic_readandclear_32(&m->md.mdpg_attrs); 1379 if (refchg & LPTE_CHG) 1380 vm_page_dirty(m); 1381 if (refchg & LPTE_REF) 1382 vm_page_aflag_set(m, PGA_REFERENCED); 1383 } 1384 pm->pm_stats.wired_count--; 1385 } 1386 PMAP_UNLOCK(pm); 1387 } 1388 1389 static int 1390 moea64_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap) 1391 { 1392 struct pvo_entry *pvo; 1393 vm_paddr_t pa; 1394 vm_page_t m; 1395 int val; 1396 bool managed; 1397 1398 PMAP_LOCK(pmap); 1399 1400 pvo = moea64_pvo_find_va(pmap, addr); 1401 if (pvo != NULL) { 1402 pa = PVO_PADDR(pvo); 1403 m = PHYS_TO_VM_PAGE(pa); 1404 managed = (pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED; 1405 if (PVO_IS_SP(pvo)) 1406 val = MINCORE_INCORE | MINCORE_PSIND(1); 1407 else 1408 val = MINCORE_INCORE; 1409 } else { 1410 PMAP_UNLOCK(pmap); 1411 return (0); 1412 } 1413 1414 PMAP_UNLOCK(pmap); 1415 1416 if (m == NULL) 1417 return (0); 1418 1419 if (managed) { 1420 if (moea64_is_modified(m)) 1421 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER; 1422 1423 if (moea64_is_referenced(m)) 1424 val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER; 1425 } 1426 1427 if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) != 1428 (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && 1429 managed) { 1430 *pap = pa; 1431 } 1432 1433 return (val); 1434 } 1435 1436 /* 1437 * This goes through and sets the physical address of our 1438 * special scratch PTE to the PA we want to zero or copy. Because 1439 * of locking issues (this can get called in pvo_enter() by 1440 * the UMA allocator), we can't use most other utility functions here 1441 */ 1442 1443 static __inline 1444 void moea64_set_scratchpage_pa(int which, vm_paddr_t pa) 1445 { 1446 struct pvo_entry *pvo; 1447 1448 KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!")); 1449 mtx_assert(&moea64_scratchpage_mtx, MA_OWNED); 1450 1451 pvo = moea64_scratchpage_pvo[which]; 1452 PMAP_LOCK(pvo->pvo_pmap); 1453 pvo->pvo_pte.pa = 1454 moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa; 1455 moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE); 1456 PMAP_UNLOCK(pvo->pvo_pmap); 1457 isync(); 1458 } 1459 1460 void 1461 moea64_copy_page(vm_page_t msrc, vm_page_t mdst) 1462 { 1463 mtx_lock(&moea64_scratchpage_mtx); 1464 1465 moea64_set_scratchpage_pa(0, VM_PAGE_TO_PHYS(msrc)); 1466 moea64_set_scratchpage_pa(1, VM_PAGE_TO_PHYS(mdst)); 1467 1468 bcopy((void *)moea64_scratchpage_va[0], 1469 (void *)moea64_scratchpage_va[1], PAGE_SIZE); 1470 1471 mtx_unlock(&moea64_scratchpage_mtx); 1472 } 1473 1474 void 1475 moea64_copy_page_dmap(vm_page_t msrc, vm_page_t mdst) 1476 { 1477 vm_offset_t dst; 1478 vm_offset_t src; 1479 1480 dst = VM_PAGE_TO_PHYS(mdst); 1481 src = VM_PAGE_TO_PHYS(msrc); 1482 1483 bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst), 1484 PAGE_SIZE); 1485 } 1486 1487 inline void 1488 moea64_copy_pages_dmap(vm_page_t *ma, vm_offset_t a_offset, 1489 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 1490 { 1491 void *a_cp, *b_cp; 1492 vm_offset_t a_pg_offset, b_pg_offset; 1493 int cnt; 1494 1495 while (xfersize > 0) { 1496 a_pg_offset = a_offset & PAGE_MASK; 1497 cnt = min(xfersize, PAGE_SIZE - a_pg_offset); 1498 a_cp = (char *)(uintptr_t)PHYS_TO_DMAP( 1499 VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) + 1500 a_pg_offset; 1501 b_pg_offset = b_offset & PAGE_MASK; 1502 cnt = min(cnt, PAGE_SIZE - b_pg_offset); 1503 b_cp = (char *)(uintptr_t)PHYS_TO_DMAP( 1504 VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) + 1505 b_pg_offset; 1506 bcopy(a_cp, b_cp, cnt); 1507 a_offset += cnt; 1508 b_offset += cnt; 1509 xfersize -= cnt; 1510 } 1511 } 1512 1513 void 1514 moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset, 1515 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 1516 { 1517 void *a_cp, *b_cp; 1518 vm_offset_t a_pg_offset, b_pg_offset; 1519 int cnt; 1520 1521 mtx_lock(&moea64_scratchpage_mtx); 1522 while (xfersize > 0) { 1523 a_pg_offset = a_offset & PAGE_MASK; 1524 cnt = min(xfersize, PAGE_SIZE - a_pg_offset); 1525 moea64_set_scratchpage_pa(0, 1526 VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])); 1527 a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset; 1528 b_pg_offset = b_offset & PAGE_MASK; 1529 cnt = min(cnt, PAGE_SIZE - b_pg_offset); 1530 moea64_set_scratchpage_pa(1, 1531 VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])); 1532 b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset; 1533 bcopy(a_cp, b_cp, cnt); 1534 a_offset += cnt; 1535 b_offset += cnt; 1536 xfersize -= cnt; 1537 } 1538 mtx_unlock(&moea64_scratchpage_mtx); 1539 } 1540 1541 void 1542 moea64_zero_page_area(vm_page_t m, int off, int size) 1543 { 1544 vm_paddr_t pa = VM_PAGE_TO_PHYS(m); 1545 1546 if (size + off > PAGE_SIZE) 1547 panic("moea64_zero_page: size + off > PAGE_SIZE"); 1548 1549 if (hw_direct_map) { 1550 bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size); 1551 } else { 1552 mtx_lock(&moea64_scratchpage_mtx); 1553 moea64_set_scratchpage_pa(0, pa); 1554 bzero((caddr_t)moea64_scratchpage_va[0] + off, size); 1555 mtx_unlock(&moea64_scratchpage_mtx); 1556 } 1557 } 1558 1559 /* 1560 * Zero a page of physical memory by temporarily mapping it 1561 */ 1562 void 1563 moea64_zero_page(vm_page_t m) 1564 { 1565 vm_paddr_t pa = VM_PAGE_TO_PHYS(m); 1566 vm_offset_t va, off; 1567 1568 mtx_lock(&moea64_scratchpage_mtx); 1569 1570 moea64_set_scratchpage_pa(0, pa); 1571 va = moea64_scratchpage_va[0]; 1572 1573 for (off = 0; off < PAGE_SIZE; off += cacheline_size) 1574 __asm __volatile("dcbz 0,%0" :: "r"(va + off)); 1575 1576 mtx_unlock(&moea64_scratchpage_mtx); 1577 } 1578 1579 void 1580 moea64_zero_page_dmap(vm_page_t m) 1581 { 1582 vm_paddr_t pa = VM_PAGE_TO_PHYS(m); 1583 vm_offset_t va, off; 1584 1585 va = PHYS_TO_DMAP(pa); 1586 for (off = 0; off < PAGE_SIZE; off += cacheline_size) 1587 __asm __volatile("dcbz 0,%0" :: "r"(va + off)); 1588 } 1589 1590 vm_offset_t 1591 moea64_quick_enter_page(vm_page_t m) 1592 { 1593 struct pvo_entry *pvo; 1594 vm_paddr_t pa = VM_PAGE_TO_PHYS(m); 1595 1596 /* 1597 * MOEA64_PTE_REPLACE does some locking, so we can't just grab 1598 * a critical section and access the PCPU data like on i386. 1599 * Instead, pin the thread and grab the PCPU lock to prevent 1600 * a preempting thread from using the same PCPU data. 1601 */ 1602 sched_pin(); 1603 1604 mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED); 1605 pvo = PCPU_GET(aim.qmap_pvo); 1606 1607 mtx_lock(PCPU_PTR(aim.qmap_lock)); 1608 pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) | 1609 (uint64_t)pa; 1610 moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE); 1611 isync(); 1612 1613 return (PCPU_GET(qmap_addr)); 1614 } 1615 1616 vm_offset_t 1617 moea64_quick_enter_page_dmap(vm_page_t m) 1618 { 1619 1620 return (PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m))); 1621 } 1622 1623 void 1624 moea64_quick_remove_page(vm_offset_t addr) 1625 { 1626 1627 mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED); 1628 KASSERT(PCPU_GET(qmap_addr) == addr, 1629 ("moea64_quick_remove_page: invalid address")); 1630 mtx_unlock(PCPU_PTR(aim.qmap_lock)); 1631 sched_unpin(); 1632 } 1633 1634 boolean_t 1635 moea64_page_is_mapped(vm_page_t m) 1636 { 1637 return (!LIST_EMPTY(&(m)->md.mdpg_pvoh)); 1638 } 1639 1640 /* 1641 * Map the given physical page at the specified virtual address in the 1642 * target pmap with the protection requested. If specified the page 1643 * will be wired down. 1644 */ 1645 1646 int 1647 moea64_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, 1648 vm_prot_t prot, u_int flags, int8_t psind) 1649 { 1650 struct pvo_entry *pvo, *oldpvo, *tpvo; 1651 struct pvo_head *pvo_head; 1652 uint64_t pte_lo; 1653 int error; 1654 vm_paddr_t pa; 1655 1656 if ((m->oflags & VPO_UNMANAGED) == 0) { 1657 if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0) 1658 VM_PAGE_OBJECT_BUSY_ASSERT(m); 1659 else 1660 VM_OBJECT_ASSERT_LOCKED(m->object); 1661 } 1662 1663 if (psind > 0) 1664 return (moea64_sp_enter(pmap, va, m, prot, flags, psind)); 1665 1666 pvo = alloc_pvo_entry(0); 1667 if (pvo == NULL) 1668 return (KERN_RESOURCE_SHORTAGE); 1669 pvo->pvo_pmap = NULL; /* to be filled in later */ 1670 pvo->pvo_pte.prot = prot; 1671 1672 pa = VM_PAGE_TO_PHYS(m); 1673 pte_lo = moea64_calc_wimg(pa, pmap_page_get_memattr(m)); 1674 pvo->pvo_pte.pa = pa | pte_lo; 1675 1676 if ((flags & PMAP_ENTER_WIRED) != 0) 1677 pvo->pvo_vaddr |= PVO_WIRED; 1678 1679 if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) { 1680 pvo_head = NULL; 1681 } else { 1682 pvo_head = &m->md.mdpg_pvoh; 1683 pvo->pvo_vaddr |= PVO_MANAGED; 1684 } 1685 1686 PV_LOCK(pa); 1687 PMAP_LOCK(pmap); 1688 if (pvo->pvo_pmap == NULL) 1689 init_pvo_entry(pvo, pmap, va); 1690 1691 if (moea64_ps_enabled(pmap) && 1692 (tpvo = moea64_pvo_find_va(pmap, va & ~HPT_SP_MASK)) != NULL && 1693 PVO_IS_SP(tpvo)) { 1694 /* Demote SP before entering a regular page */ 1695 CTR2(KTR_PMAP, "%s: demote before enter: va=%#jx", 1696 __func__, (uintmax_t)va); 1697 moea64_sp_demote_aligned(tpvo); 1698 } 1699 1700 if (prot & VM_PROT_WRITE) 1701 if (pmap_bootstrapped && 1702 (m->oflags & VPO_UNMANAGED) == 0) 1703 vm_page_aflag_set(m, PGA_WRITEABLE); 1704 1705 error = moea64_pvo_enter(pvo, pvo_head, &oldpvo); 1706 if (error == EEXIST) { 1707 if (oldpvo->pvo_vaddr == pvo->pvo_vaddr && 1708 oldpvo->pvo_pte.pa == pvo->pvo_pte.pa && 1709 oldpvo->pvo_pte.prot == prot) { 1710 /* Identical mapping already exists */ 1711 error = 0; 1712 1713 /* If not in page table, reinsert it */ 1714 if (moea64_pte_synch(oldpvo) < 0) { 1715 STAT_MOEA64(moea64_pte_overflow--); 1716 moea64_pte_insert(oldpvo); 1717 } 1718 1719 /* Then just clean up and go home */ 1720 PMAP_UNLOCK(pmap); 1721 PV_UNLOCK(pa); 1722 free_pvo_entry(pvo); 1723 pvo = NULL; 1724 goto out; 1725 } else { 1726 /* Otherwise, need to kill it first */ 1727 KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old " 1728 "mapping does not match new mapping")); 1729 moea64_pvo_remove_from_pmap(oldpvo); 1730 moea64_pvo_enter(pvo, pvo_head, NULL); 1731 } 1732 } 1733 PMAP_UNLOCK(pmap); 1734 PV_UNLOCK(pa); 1735 1736 /* Free any dead pages */ 1737 if (error == EEXIST) { 1738 moea64_pvo_remove_from_page(oldpvo); 1739 free_pvo_entry(oldpvo); 1740 } 1741 1742 out: 1743 /* 1744 * Flush the page from the instruction cache if this page is 1745 * mapped executable and cacheable. 1746 */ 1747 if (pmap != kernel_pmap && (m->a.flags & PGA_EXECUTABLE) == 0 && 1748 (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { 1749 vm_page_aflag_set(m, PGA_EXECUTABLE); 1750 moea64_syncicache(pmap, va, pa, PAGE_SIZE); 1751 } 1752 1753 #if VM_NRESERVLEVEL > 0 1754 /* 1755 * Try to promote pages. 1756 * 1757 * If the VA of the entered page is not aligned with its PA, 1758 * don't try page promotion as it is not possible. 1759 * This reduces the number of promotion failures dramatically. 1760 */ 1761 if (moea64_ps_enabled(pmap) && pmap != kernel_pmap && pvo != NULL && 1762 (pvo->pvo_vaddr & PVO_MANAGED) != 0 && 1763 (va & HPT_SP_MASK) == (pa & HPT_SP_MASK) && 1764 (m->flags & PG_FICTITIOUS) == 0 && 1765 vm_reserv_level_iffullpop(m) == 0) 1766 moea64_sp_promote(pmap, va, m); 1767 #endif 1768 1769 return (KERN_SUCCESS); 1770 } 1771 1772 static void 1773 moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_paddr_t pa, 1774 vm_size_t sz) 1775 { 1776 1777 /* 1778 * This is much trickier than on older systems because 1779 * we can't sync the icache on physical addresses directly 1780 * without a direct map. Instead we check a couple of cases 1781 * where the memory is already mapped in and, failing that, 1782 * use the same trick we use for page zeroing to create 1783 * a temporary mapping for this physical address. 1784 */ 1785 1786 if (!pmap_bootstrapped) { 1787 /* 1788 * If PMAP is not bootstrapped, we are likely to be 1789 * in real mode. 1790 */ 1791 __syncicache((void *)(uintptr_t)pa, sz); 1792 } else if (pmap == kernel_pmap) { 1793 __syncicache((void *)va, sz); 1794 } else if (hw_direct_map) { 1795 __syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz); 1796 } else { 1797 /* Use the scratch page to set up a temp mapping */ 1798 1799 mtx_lock(&moea64_scratchpage_mtx); 1800 1801 moea64_set_scratchpage_pa(1, pa & ~ADDR_POFF); 1802 __syncicache((void *)(moea64_scratchpage_va[1] + 1803 (va & ADDR_POFF)), sz); 1804 1805 mtx_unlock(&moea64_scratchpage_mtx); 1806 } 1807 } 1808 1809 /* 1810 * Maps a sequence of resident pages belonging to the same object. 1811 * The sequence begins with the given page m_start. This page is 1812 * mapped at the given virtual address start. Each subsequent page is 1813 * mapped at a virtual address that is offset from start by the same 1814 * amount as the page is offset from m_start within the object. The 1815 * last page in the sequence is the page with the largest offset from 1816 * m_start that can be mapped at a virtual address less than the given 1817 * virtual address end. Not every virtual page between start and end 1818 * is mapped; only those for which a resident page exists with the 1819 * corresponding offset from m_start are mapped. 1820 */ 1821 void 1822 moea64_enter_object(pmap_t pm, vm_offset_t start, vm_offset_t end, 1823 vm_page_t m_start, vm_prot_t prot) 1824 { 1825 vm_page_t m; 1826 vm_pindex_t diff, psize; 1827 vm_offset_t va; 1828 int8_t psind; 1829 1830 VM_OBJECT_ASSERT_LOCKED(m_start->object); 1831 1832 psize = atop(end - start); 1833 m = m_start; 1834 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { 1835 va = start + ptoa(diff); 1836 if ((va & HPT_SP_MASK) == 0 && va + HPT_SP_SIZE <= end && 1837 m->psind == 1 && moea64_ps_enabled(pm)) 1838 psind = 1; 1839 else 1840 psind = 0; 1841 moea64_enter(pm, va, m, prot & 1842 (VM_PROT_READ | VM_PROT_EXECUTE), 1843 PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, psind); 1844 if (psind == 1) 1845 m = &m[HPT_SP_SIZE / PAGE_SIZE - 1]; 1846 m = TAILQ_NEXT(m, listq); 1847 } 1848 } 1849 1850 void 1851 moea64_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m, 1852 vm_prot_t prot) 1853 { 1854 1855 moea64_enter(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), 1856 PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0); 1857 } 1858 1859 vm_paddr_t 1860 moea64_extract(pmap_t pm, vm_offset_t va) 1861 { 1862 struct pvo_entry *pvo; 1863 vm_paddr_t pa; 1864 1865 PMAP_LOCK(pm); 1866 pvo = moea64_pvo_find_va(pm, va); 1867 if (pvo == NULL) 1868 pa = 0; 1869 else 1870 pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo)); 1871 PMAP_UNLOCK(pm); 1872 1873 return (pa); 1874 } 1875 1876 /* 1877 * Atomically extract and hold the physical page with the given 1878 * pmap and virtual address pair if that mapping permits the given 1879 * protection. 1880 */ 1881 vm_page_t 1882 moea64_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot) 1883 { 1884 struct pvo_entry *pvo; 1885 vm_page_t m; 1886 1887 m = NULL; 1888 PMAP_LOCK(pmap); 1889 pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF); 1890 if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) { 1891 m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo)); 1892 if (!vm_page_wire_mapped(m)) 1893 m = NULL; 1894 } 1895 PMAP_UNLOCK(pmap); 1896 return (m); 1897 } 1898 1899 static void * 1900 moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, 1901 uint8_t *flags, int wait) 1902 { 1903 struct pvo_entry *pvo; 1904 vm_offset_t va; 1905 vm_page_t m; 1906 int needed_lock; 1907 1908 /* 1909 * This entire routine is a horrible hack to avoid bothering kmem 1910 * for new KVA addresses. Because this can get called from inside 1911 * kmem allocation routines, calling kmem for a new address here 1912 * can lead to multiply locking non-recursive mutexes. 1913 */ 1914 1915 *flags = UMA_SLAB_PRIV; 1916 needed_lock = !PMAP_LOCKED(kernel_pmap); 1917 1918 m = vm_page_alloc_noobj_domain(domain, malloc2vm_flags(wait) | 1919 VM_ALLOC_WIRED); 1920 if (m == NULL) 1921 return (NULL); 1922 1923 va = VM_PAGE_TO_PHYS(m); 1924 1925 pvo = alloc_pvo_entry(1 /* bootstrap */); 1926 1927 pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE; 1928 pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M; 1929 1930 if (needed_lock) 1931 PMAP_LOCK(kernel_pmap); 1932 1933 init_pvo_entry(pvo, kernel_pmap, va); 1934 pvo->pvo_vaddr |= PVO_WIRED; 1935 1936 moea64_pvo_enter(pvo, NULL, NULL); 1937 1938 if (needed_lock) 1939 PMAP_UNLOCK(kernel_pmap); 1940 1941 return (void *)va; 1942 } 1943 1944 extern int elf32_nxstack; 1945 1946 void 1947 moea64_init(void) 1948 { 1949 1950 CTR0(KTR_PMAP, "moea64_init"); 1951 1952 moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry), 1953 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1954 UMA_ZONE_VM | UMA_ZONE_NOFREE); 1955 1956 /* 1957 * Are large page mappings enabled? 1958 * 1959 * While HPT superpages are not better tested, leave it disabled by 1960 * default. 1961 */ 1962 superpages_enabled = 0; 1963 TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled); 1964 if (superpages_enabled) { 1965 KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0, 1966 ("moea64_init: can't assign to pagesizes[1]")); 1967 1968 if (moea64_large_page_size == 0) { 1969 printf("mmu_oea64: HW does not support large pages. " 1970 "Disabling superpages...\n"); 1971 superpages_enabled = 0; 1972 } else if (!moea64_has_lp_4k_16m) { 1973 printf("mmu_oea64: " 1974 "HW does not support mixed 4KB/16MB page sizes. " 1975 "Disabling superpages...\n"); 1976 superpages_enabled = 0; 1977 } else 1978 pagesizes[1] = HPT_SP_SIZE; 1979 } 1980 1981 if (!hw_direct_map) { 1982 uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc); 1983 } 1984 1985 #ifdef COMPAT_FREEBSD32 1986 elf32_nxstack = 1; 1987 #endif 1988 1989 moea64_initialized = TRUE; 1990 } 1991 1992 boolean_t 1993 moea64_is_referenced(vm_page_t m) 1994 { 1995 1996 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1997 ("moea64_is_referenced: page %p is not managed", m)); 1998 1999 return (moea64_query_bit(m, LPTE_REF)); 2000 } 2001 2002 boolean_t 2003 moea64_is_modified(vm_page_t m) 2004 { 2005 2006 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2007 ("moea64_is_modified: page %p is not managed", m)); 2008 2009 /* 2010 * If the page is not busied then this check is racy. 2011 */ 2012 if (!pmap_page_is_write_mapped(m)) 2013 return (FALSE); 2014 2015 return (moea64_query_bit(m, LPTE_CHG)); 2016 } 2017 2018 boolean_t 2019 moea64_is_prefaultable(pmap_t pmap, vm_offset_t va) 2020 { 2021 struct pvo_entry *pvo; 2022 boolean_t rv = TRUE; 2023 2024 PMAP_LOCK(pmap); 2025 pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF); 2026 if (pvo != NULL) 2027 rv = FALSE; 2028 PMAP_UNLOCK(pmap); 2029 return (rv); 2030 } 2031 2032 void 2033 moea64_clear_modify(vm_page_t m) 2034 { 2035 2036 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2037 ("moea64_clear_modify: page %p is not managed", m)); 2038 vm_page_assert_busied(m); 2039 2040 if (!pmap_page_is_write_mapped(m)) 2041 return; 2042 moea64_clear_bit(m, LPTE_CHG); 2043 } 2044 2045 /* 2046 * Clear the write and modified bits in each of the given page's mappings. 2047 */ 2048 void 2049 moea64_remove_write(vm_page_t m) 2050 { 2051 struct pvo_entry *pvo; 2052 int64_t refchg, ret; 2053 pmap_t pmap; 2054 2055 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2056 ("moea64_remove_write: page %p is not managed", m)); 2057 vm_page_assert_busied(m); 2058 2059 if (!pmap_page_is_write_mapped(m)) 2060 return; 2061 2062 powerpc_sync(); 2063 PV_PAGE_LOCK(m); 2064 refchg = 0; 2065 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2066 pmap = pvo->pvo_pmap; 2067 PMAP_LOCK(pmap); 2068 if (!(pvo->pvo_vaddr & PVO_DEAD) && 2069 (pvo->pvo_pte.prot & VM_PROT_WRITE)) { 2070 if (PVO_IS_SP(pvo)) { 2071 CTR1(KTR_PMAP, "%s: demote before remwr", 2072 __func__); 2073 moea64_sp_demote(pvo); 2074 } 2075 pvo->pvo_pte.prot &= ~VM_PROT_WRITE; 2076 ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE); 2077 if (ret < 0) 2078 ret = LPTE_CHG; 2079 refchg |= ret; 2080 if (pvo->pvo_pmap == kernel_pmap) 2081 isync(); 2082 } 2083 PMAP_UNLOCK(pmap); 2084 } 2085 if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG) 2086 vm_page_dirty(m); 2087 vm_page_aflag_clear(m, PGA_WRITEABLE); 2088 PV_PAGE_UNLOCK(m); 2089 } 2090 2091 /* 2092 * moea64_ts_referenced: 2093 * 2094 * Return a count of reference bits for a page, clearing those bits. 2095 * It is not necessary for every reference bit to be cleared, but it 2096 * is necessary that 0 only be returned when there are truly no 2097 * reference bits set. 2098 * 2099 * XXX: The exact number of bits to check and clear is a matter that 2100 * should be tested and standardized at some point in the future for 2101 * optimal aging of shared pages. 2102 */ 2103 int 2104 moea64_ts_referenced(vm_page_t m) 2105 { 2106 2107 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2108 ("moea64_ts_referenced: page %p is not managed", m)); 2109 return (moea64_clear_bit(m, LPTE_REF)); 2110 } 2111 2112 /* 2113 * Modify the WIMG settings of all mappings for a page. 2114 */ 2115 void 2116 moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma) 2117 { 2118 struct pvo_entry *pvo; 2119 int64_t refchg; 2120 pmap_t pmap; 2121 uint64_t lo; 2122 2123 CTR3(KTR_PMAP, "%s: pa=%#jx, ma=%#x", 2124 __func__, (uintmax_t)VM_PAGE_TO_PHYS(m), ma); 2125 2126 if ((m->oflags & VPO_UNMANAGED) != 0) { 2127 m->md.mdpg_cache_attrs = ma; 2128 return; 2129 } 2130 2131 lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma); 2132 2133 PV_PAGE_LOCK(m); 2134 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2135 pmap = pvo->pvo_pmap; 2136 PMAP_LOCK(pmap); 2137 if (!(pvo->pvo_vaddr & PVO_DEAD)) { 2138 if (PVO_IS_SP(pvo)) { 2139 CTR1(KTR_PMAP, 2140 "%s: demote before set_memattr", __func__); 2141 moea64_sp_demote(pvo); 2142 } 2143 pvo->pvo_pte.pa &= ~LPTE_WIMG; 2144 pvo->pvo_pte.pa |= lo; 2145 refchg = moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE); 2146 if (refchg < 0) 2147 refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ? 2148 LPTE_CHG : 0; 2149 if ((pvo->pvo_vaddr & PVO_MANAGED) && 2150 (pvo->pvo_pte.prot & VM_PROT_WRITE)) { 2151 refchg |= 2152 atomic_readandclear_32(&m->md.mdpg_attrs); 2153 if (refchg & LPTE_CHG) 2154 vm_page_dirty(m); 2155 if (refchg & LPTE_REF) 2156 vm_page_aflag_set(m, PGA_REFERENCED); 2157 } 2158 if (pvo->pvo_pmap == kernel_pmap) 2159 isync(); 2160 } 2161 PMAP_UNLOCK(pmap); 2162 } 2163 m->md.mdpg_cache_attrs = ma; 2164 PV_PAGE_UNLOCK(m); 2165 } 2166 2167 /* 2168 * Map a wired page into kernel virtual address space. 2169 */ 2170 void 2171 moea64_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma) 2172 { 2173 int error; 2174 struct pvo_entry *pvo, *oldpvo; 2175 2176 do { 2177 pvo = alloc_pvo_entry(0); 2178 if (pvo == NULL) 2179 vm_wait(NULL); 2180 } while (pvo == NULL); 2181 pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 2182 pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma); 2183 pvo->pvo_vaddr |= PVO_WIRED; 2184 2185 PMAP_LOCK(kernel_pmap); 2186 oldpvo = moea64_pvo_find_va(kernel_pmap, va); 2187 if (oldpvo != NULL) 2188 moea64_pvo_remove_from_pmap(oldpvo); 2189 init_pvo_entry(pvo, kernel_pmap, va); 2190 error = moea64_pvo_enter(pvo, NULL, NULL); 2191 PMAP_UNLOCK(kernel_pmap); 2192 2193 /* Free any dead pages */ 2194 if (oldpvo != NULL) { 2195 moea64_pvo_remove_from_page(oldpvo); 2196 free_pvo_entry(oldpvo); 2197 } 2198 2199 if (error != 0) 2200 panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va, 2201 (uintmax_t)pa, error); 2202 } 2203 2204 void 2205 moea64_kenter(vm_offset_t va, vm_paddr_t pa) 2206 { 2207 2208 moea64_kenter_attr(va, pa, VM_MEMATTR_DEFAULT); 2209 } 2210 2211 /* 2212 * Extract the physical page address associated with the given kernel virtual 2213 * address. 2214 */ 2215 vm_paddr_t 2216 moea64_kextract(vm_offset_t va) 2217 { 2218 struct pvo_entry *pvo; 2219 vm_paddr_t pa; 2220 2221 /* 2222 * Shortcut the direct-mapped case when applicable. We never put 2223 * anything but 1:1 (or 62-bit aliased) mappings below 2224 * VM_MIN_KERNEL_ADDRESS. 2225 */ 2226 if (va < VM_MIN_KERNEL_ADDRESS) 2227 return (va & ~DMAP_BASE_ADDRESS); 2228 2229 PMAP_LOCK(kernel_pmap); 2230 pvo = moea64_pvo_find_va(kernel_pmap, va); 2231 KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR, 2232 va)); 2233 pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo)); 2234 PMAP_UNLOCK(kernel_pmap); 2235 return (pa); 2236 } 2237 2238 /* 2239 * Remove a wired page from kernel virtual address space. 2240 */ 2241 void 2242 moea64_kremove(vm_offset_t va) 2243 { 2244 moea64_remove(kernel_pmap, va, va + PAGE_SIZE); 2245 } 2246 2247 /* 2248 * Provide a kernel pointer corresponding to a given userland pointer. 2249 * The returned pointer is valid until the next time this function is 2250 * called in this thread. This is used internally in copyin/copyout. 2251 */ 2252 static int 2253 moea64_map_user_ptr(pmap_t pm, volatile const void *uaddr, 2254 void **kaddr, size_t ulen, size_t *klen) 2255 { 2256 size_t l; 2257 #ifdef __powerpc64__ 2258 struct slb *slb; 2259 #endif 2260 register_t slbv; 2261 2262 *kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK); 2263 l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr); 2264 if (l > ulen) 2265 l = ulen; 2266 if (klen) 2267 *klen = l; 2268 else if (l != ulen) 2269 return (EFAULT); 2270 2271 #ifdef __powerpc64__ 2272 /* Try lockless look-up first */ 2273 slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr); 2274 2275 if (slb == NULL) { 2276 /* If it isn't there, we need to pre-fault the VSID */ 2277 PMAP_LOCK(pm); 2278 slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT; 2279 PMAP_UNLOCK(pm); 2280 } else { 2281 slbv = slb->slbv; 2282 } 2283 2284 /* Mark segment no-execute */ 2285 slbv |= SLBV_N; 2286 #else 2287 slbv = va_to_vsid(pm, (vm_offset_t)uaddr); 2288 2289 /* Mark segment no-execute */ 2290 slbv |= SR_N; 2291 #endif 2292 2293 /* If we have already set this VSID, we can just return */ 2294 if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv) 2295 return (0); 2296 2297 __asm __volatile("isync"); 2298 curthread->td_pcb->pcb_cpu.aim.usr_segm = 2299 (uintptr_t)uaddr >> ADDR_SR_SHFT; 2300 curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv; 2301 #ifdef __powerpc64__ 2302 __asm __volatile ("slbie %0; slbmte %1, %2; isync" :: 2303 "r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE)); 2304 #else 2305 __asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv)); 2306 #endif 2307 2308 return (0); 2309 } 2310 2311 /* 2312 * Figure out where a given kernel pointer (usually in a fault) points 2313 * to from the VM's perspective, potentially remapping into userland's 2314 * address space. 2315 */ 2316 static int 2317 moea64_decode_kernel_ptr(vm_offset_t addr, int *is_user, 2318 vm_offset_t *decoded_addr) 2319 { 2320 vm_offset_t user_sr; 2321 2322 if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) { 2323 user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm; 2324 addr &= ADDR_PIDX | ADDR_POFF; 2325 addr |= user_sr << ADDR_SR_SHFT; 2326 *decoded_addr = addr; 2327 *is_user = 1; 2328 } else { 2329 *decoded_addr = addr; 2330 *is_user = 0; 2331 } 2332 2333 return (0); 2334 } 2335 2336 /* 2337 * Map a range of physical addresses into kernel virtual address space. 2338 * 2339 * The value passed in *virt is a suggested virtual address for the mapping. 2340 * Architectures which can support a direct-mapped physical to virtual region 2341 * can return the appropriate address within that region, leaving '*virt' 2342 * unchanged. Other architectures should map the pages starting at '*virt' and 2343 * update '*virt' with the first usable address after the mapped region. 2344 */ 2345 vm_offset_t 2346 moea64_map(vm_offset_t *virt, vm_paddr_t pa_start, 2347 vm_paddr_t pa_end, int prot) 2348 { 2349 vm_offset_t sva, va; 2350 2351 if (hw_direct_map) { 2352 /* 2353 * Check if every page in the region is covered by the direct 2354 * map. The direct map covers all of physical memory. Use 2355 * moea64_calc_wimg() as a shortcut to see if the page is in 2356 * physical memory as a way to see if the direct map covers it. 2357 */ 2358 for (va = pa_start; va < pa_end; va += PAGE_SIZE) 2359 if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M) 2360 break; 2361 if (va == pa_end) 2362 return (PHYS_TO_DMAP(pa_start)); 2363 } 2364 sva = *virt; 2365 va = sva; 2366 /* XXX respect prot argument */ 2367 for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE) 2368 moea64_kenter(va, pa_start); 2369 *virt = va; 2370 2371 return (sva); 2372 } 2373 2374 /* 2375 * Returns true if the pmap's pv is one of the first 2376 * 16 pvs linked to from this page. This count may 2377 * be changed upwards or downwards in the future; it 2378 * is only necessary that true be returned for a small 2379 * subset of pmaps for proper page aging. 2380 */ 2381 boolean_t 2382 moea64_page_exists_quick(pmap_t pmap, vm_page_t m) 2383 { 2384 int loops; 2385 struct pvo_entry *pvo; 2386 boolean_t rv; 2387 2388 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 2389 ("moea64_page_exists_quick: page %p is not managed", m)); 2390 loops = 0; 2391 rv = FALSE; 2392 PV_PAGE_LOCK(m); 2393 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2394 if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) { 2395 rv = TRUE; 2396 break; 2397 } 2398 if (++loops >= 16) 2399 break; 2400 } 2401 PV_PAGE_UNLOCK(m); 2402 return (rv); 2403 } 2404 2405 void 2406 moea64_page_init(vm_page_t m) 2407 { 2408 2409 m->md.mdpg_attrs = 0; 2410 m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT; 2411 LIST_INIT(&m->md.mdpg_pvoh); 2412 } 2413 2414 /* 2415 * Return the number of managed mappings to the given physical page 2416 * that are wired. 2417 */ 2418 int 2419 moea64_page_wired_mappings(vm_page_t m) 2420 { 2421 struct pvo_entry *pvo; 2422 int count; 2423 2424 count = 0; 2425 if ((m->oflags & VPO_UNMANAGED) != 0) 2426 return (count); 2427 PV_PAGE_LOCK(m); 2428 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) 2429 if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED) 2430 count++; 2431 PV_PAGE_UNLOCK(m); 2432 return (count); 2433 } 2434 2435 static uintptr_t moea64_vsidcontext; 2436 2437 uintptr_t 2438 moea64_get_unique_vsid(void) { 2439 u_int entropy; 2440 register_t hash; 2441 uint32_t mask; 2442 int i; 2443 2444 entropy = 0; 2445 __asm __volatile("mftb %0" : "=r"(entropy)); 2446 2447 mtx_lock(&moea64_slb_mutex); 2448 for (i = 0; i < NVSIDS; i += VSID_NBPW) { 2449 u_int n; 2450 2451 /* 2452 * Create a new value by multiplying by a prime and adding in 2453 * entropy from the timebase register. This is to make the 2454 * VSID more random so that the PT hash function collides 2455 * less often. (Note that the prime casues gcc to do shifts 2456 * instead of a multiply.) 2457 */ 2458 moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy; 2459 hash = moea64_vsidcontext & (NVSIDS - 1); 2460 if (hash == 0) /* 0 is special, avoid it */ 2461 continue; 2462 n = hash >> 5; 2463 mask = 1 << (hash & (VSID_NBPW - 1)); 2464 hash = (moea64_vsidcontext & VSID_HASHMASK); 2465 if (moea64_vsid_bitmap[n] & mask) { /* collision? */ 2466 /* anything free in this bucket? */ 2467 if (moea64_vsid_bitmap[n] == 0xffffffff) { 2468 entropy = (moea64_vsidcontext >> 20); 2469 continue; 2470 } 2471 i = ffs(~moea64_vsid_bitmap[n]) - 1; 2472 mask = 1 << i; 2473 hash &= rounddown2(VSID_HASHMASK, VSID_NBPW); 2474 hash |= i; 2475 } 2476 if (hash == VSID_VRMA) /* also special, avoid this too */ 2477 continue; 2478 KASSERT(!(moea64_vsid_bitmap[n] & mask), 2479 ("Allocating in-use VSID %#zx\n", hash)); 2480 moea64_vsid_bitmap[n] |= mask; 2481 mtx_unlock(&moea64_slb_mutex); 2482 return (hash); 2483 } 2484 2485 mtx_unlock(&moea64_slb_mutex); 2486 panic("%s: out of segments",__func__); 2487 } 2488 2489 #ifdef __powerpc64__ 2490 int 2491 moea64_pinit(pmap_t pmap) 2492 { 2493 2494 RB_INIT(&pmap->pmap_pvo); 2495 2496 pmap->pm_slb_tree_root = slb_alloc_tree(); 2497 pmap->pm_slb = slb_alloc_user_cache(); 2498 pmap->pm_slb_len = 0; 2499 2500 return (1); 2501 } 2502 #else 2503 int 2504 moea64_pinit(pmap_t pmap) 2505 { 2506 int i; 2507 uint32_t hash; 2508 2509 RB_INIT(&pmap->pmap_pvo); 2510 2511 if (pmap_bootstrapped) 2512 pmap->pmap_phys = (pmap_t)moea64_kextract((vm_offset_t)pmap); 2513 else 2514 pmap->pmap_phys = pmap; 2515 2516 /* 2517 * Allocate some segment registers for this pmap. 2518 */ 2519 hash = moea64_get_unique_vsid(); 2520 2521 for (i = 0; i < 16; i++) 2522 pmap->pm_sr[i] = VSID_MAKE(i, hash); 2523 2524 KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0")); 2525 2526 return (1); 2527 } 2528 #endif 2529 2530 /* 2531 * Initialize the pmap associated with process 0. 2532 */ 2533 void 2534 moea64_pinit0(pmap_t pm) 2535 { 2536 2537 PMAP_LOCK_INIT(pm); 2538 moea64_pinit(pm); 2539 bzero(&pm->pm_stats, sizeof(pm->pm_stats)); 2540 } 2541 2542 /* 2543 * Set the physical protection on the specified range of this map as requested. 2544 */ 2545 static void 2546 moea64_pvo_protect( pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot) 2547 { 2548 struct vm_page *pg; 2549 vm_prot_t oldprot; 2550 int32_t refchg; 2551 2552 PMAP_LOCK_ASSERT(pm, MA_OWNED); 2553 2554 /* 2555 * Change the protection of the page. 2556 */ 2557 oldprot = pvo->pvo_pte.prot; 2558 pvo->pvo_pte.prot = prot; 2559 pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo)); 2560 2561 /* 2562 * If the PVO is in the page table, update mapping 2563 */ 2564 refchg = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE); 2565 if (refchg < 0) 2566 refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0; 2567 2568 if (pm != kernel_pmap && pg != NULL && 2569 (pg->a.flags & PGA_EXECUTABLE) == 0 && 2570 (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { 2571 if ((pg->oflags & VPO_UNMANAGED) == 0) 2572 vm_page_aflag_set(pg, PGA_EXECUTABLE); 2573 moea64_syncicache(pm, PVO_VADDR(pvo), 2574 PVO_PADDR(pvo), PAGE_SIZE); 2575 } 2576 2577 /* 2578 * Update vm about the REF/CHG bits if the page is managed and we have 2579 * removed write access. 2580 */ 2581 if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) && 2582 (oldprot & VM_PROT_WRITE)) { 2583 refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs); 2584 if (refchg & LPTE_CHG) 2585 vm_page_dirty(pg); 2586 if (refchg & LPTE_REF) 2587 vm_page_aflag_set(pg, PGA_REFERENCED); 2588 } 2589 } 2590 2591 void 2592 moea64_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, 2593 vm_prot_t prot) 2594 { 2595 struct pvo_entry *pvo, key; 2596 2597 CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, 2598 sva, eva, prot); 2599 2600 KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap, 2601 ("moea64_protect: non current pmap")); 2602 2603 if ((prot & VM_PROT_READ) == VM_PROT_NONE) { 2604 moea64_remove(pm, sva, eva); 2605 return; 2606 } 2607 2608 PMAP_LOCK(pm); 2609 key.pvo_vaddr = sva; 2610 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 2611 pvo != NULL && PVO_VADDR(pvo) < eva; 2612 pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) { 2613 if (PVO_IS_SP(pvo)) { 2614 if (moea64_sp_pvo_in_range(pvo, sva, eva)) { 2615 pvo = moea64_sp_protect(pvo, prot); 2616 continue; 2617 } else { 2618 CTR1(KTR_PMAP, "%s: demote before protect", 2619 __func__); 2620 moea64_sp_demote(pvo); 2621 } 2622 } 2623 moea64_pvo_protect(pm, pvo, prot); 2624 } 2625 PMAP_UNLOCK(pm); 2626 } 2627 2628 /* 2629 * Map a list of wired pages into kernel virtual address space. This is 2630 * intended for temporary mappings which do not need page modification or 2631 * references recorded. Existing mappings in the region are overwritten. 2632 */ 2633 void 2634 moea64_qenter(vm_offset_t va, vm_page_t *m, int count) 2635 { 2636 while (count-- > 0) { 2637 moea64_kenter(va, VM_PAGE_TO_PHYS(*m)); 2638 va += PAGE_SIZE; 2639 m++; 2640 } 2641 } 2642 2643 /* 2644 * Remove page mappings from kernel virtual address space. Intended for 2645 * temporary mappings entered by moea64_qenter. 2646 */ 2647 void 2648 moea64_qremove(vm_offset_t va, int count) 2649 { 2650 while (count-- > 0) { 2651 moea64_kremove(va); 2652 va += PAGE_SIZE; 2653 } 2654 } 2655 2656 void 2657 moea64_release_vsid(uint64_t vsid) 2658 { 2659 int idx, mask; 2660 2661 mtx_lock(&moea64_slb_mutex); 2662 idx = vsid & (NVSIDS-1); 2663 mask = 1 << (idx % VSID_NBPW); 2664 idx /= VSID_NBPW; 2665 KASSERT(moea64_vsid_bitmap[idx] & mask, 2666 ("Freeing unallocated VSID %#jx", vsid)); 2667 moea64_vsid_bitmap[idx] &= ~mask; 2668 mtx_unlock(&moea64_slb_mutex); 2669 } 2670 2671 void 2672 moea64_release(pmap_t pmap) 2673 { 2674 2675 /* 2676 * Free segment registers' VSIDs 2677 */ 2678 #ifdef __powerpc64__ 2679 slb_free_tree(pmap); 2680 slb_free_user_cache(pmap->pm_slb); 2681 #else 2682 KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0")); 2683 2684 moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0])); 2685 #endif 2686 } 2687 2688 /* 2689 * Remove all pages mapped by the specified pmap 2690 */ 2691 void 2692 moea64_remove_pages(pmap_t pm) 2693 { 2694 struct pvo_entry *pvo, *tpvo; 2695 struct pvo_dlist tofree; 2696 2697 SLIST_INIT(&tofree); 2698 2699 PMAP_LOCK(pm); 2700 RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) { 2701 if (pvo->pvo_vaddr & PVO_WIRED) 2702 continue; 2703 2704 /* 2705 * For locking reasons, remove this from the page table and 2706 * pmap, but save delinking from the vm_page for a second 2707 * pass 2708 */ 2709 moea64_pvo_remove_from_pmap(pvo); 2710 SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink); 2711 } 2712 PMAP_UNLOCK(pm); 2713 2714 while (!SLIST_EMPTY(&tofree)) { 2715 pvo = SLIST_FIRST(&tofree); 2716 SLIST_REMOVE_HEAD(&tofree, pvo_dlink); 2717 moea64_pvo_remove_from_page(pvo); 2718 free_pvo_entry(pvo); 2719 } 2720 } 2721 2722 static void 2723 moea64_remove_locked(pmap_t pm, vm_offset_t sva, vm_offset_t eva, 2724 struct pvo_dlist *tofree) 2725 { 2726 struct pvo_entry *pvo, *tpvo, key; 2727 2728 PMAP_LOCK_ASSERT(pm, MA_OWNED); 2729 2730 key.pvo_vaddr = sva; 2731 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 2732 pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { 2733 if (PVO_IS_SP(pvo)) { 2734 if (moea64_sp_pvo_in_range(pvo, sva, eva)) { 2735 tpvo = moea64_sp_remove(pvo, tofree); 2736 continue; 2737 } else { 2738 CTR1(KTR_PMAP, "%s: demote before remove", 2739 __func__); 2740 moea64_sp_demote(pvo); 2741 } 2742 } 2743 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); 2744 2745 /* 2746 * For locking reasons, remove this from the page table and 2747 * pmap, but save delinking from the vm_page for a second 2748 * pass 2749 */ 2750 moea64_pvo_remove_from_pmap(pvo); 2751 SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink); 2752 } 2753 } 2754 2755 /* 2756 * Remove the given range of addresses from the specified map. 2757 */ 2758 void 2759 moea64_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva) 2760 { 2761 struct pvo_entry *pvo; 2762 struct pvo_dlist tofree; 2763 2764 /* 2765 * Perform an unsynchronized read. This is, however, safe. 2766 */ 2767 if (pm->pm_stats.resident_count == 0) 2768 return; 2769 2770 SLIST_INIT(&tofree); 2771 PMAP_LOCK(pm); 2772 moea64_remove_locked(pm, sva, eva, &tofree); 2773 PMAP_UNLOCK(pm); 2774 2775 while (!SLIST_EMPTY(&tofree)) { 2776 pvo = SLIST_FIRST(&tofree); 2777 SLIST_REMOVE_HEAD(&tofree, pvo_dlink); 2778 moea64_pvo_remove_from_page(pvo); 2779 free_pvo_entry(pvo); 2780 } 2781 } 2782 2783 /* 2784 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove() 2785 * will reflect changes in pte's back to the vm_page. 2786 */ 2787 void 2788 moea64_remove_all(vm_page_t m) 2789 { 2790 struct pvo_entry *pvo, *next_pvo; 2791 struct pvo_head freequeue; 2792 int wasdead; 2793 pmap_t pmap; 2794 2795 LIST_INIT(&freequeue); 2796 2797 PV_PAGE_LOCK(m); 2798 LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) { 2799 pmap = pvo->pvo_pmap; 2800 PMAP_LOCK(pmap); 2801 wasdead = (pvo->pvo_vaddr & PVO_DEAD); 2802 if (!wasdead) { 2803 if (PVO_IS_SP(pvo)) { 2804 CTR1(KTR_PMAP, "%s: demote before remove_all", 2805 __func__); 2806 moea64_sp_demote(pvo); 2807 } 2808 moea64_pvo_remove_from_pmap(pvo); 2809 } 2810 moea64_pvo_remove_from_page_locked(pvo, m); 2811 if (!wasdead) 2812 LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink); 2813 PMAP_UNLOCK(pmap); 2814 2815 } 2816 KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings")); 2817 KASSERT((m->a.flags & PGA_WRITEABLE) == 0, ("Page still writable")); 2818 PV_PAGE_UNLOCK(m); 2819 2820 /* Clean up UMA allocations */ 2821 LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo) 2822 free_pvo_entry(pvo); 2823 } 2824 2825 /* 2826 * Allocate a physical page of memory directly from the phys_avail map. 2827 * Can only be called from moea64_bootstrap before avail start and end are 2828 * calculated. 2829 */ 2830 vm_offset_t 2831 moea64_bootstrap_alloc(vm_size_t size, vm_size_t align) 2832 { 2833 vm_offset_t s, e; 2834 int i, j; 2835 2836 size = round_page(size); 2837 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 2838 if (align != 0) 2839 s = roundup2(phys_avail[i], align); 2840 else 2841 s = phys_avail[i]; 2842 e = s + size; 2843 2844 if (s < phys_avail[i] || e > phys_avail[i + 1]) 2845 continue; 2846 2847 if (s + size > platform_real_maxaddr()) 2848 continue; 2849 2850 if (s == phys_avail[i]) { 2851 phys_avail[i] += size; 2852 } else if (e == phys_avail[i + 1]) { 2853 phys_avail[i + 1] -= size; 2854 } else { 2855 for (j = phys_avail_count * 2; j > i; j -= 2) { 2856 phys_avail[j] = phys_avail[j - 2]; 2857 phys_avail[j + 1] = phys_avail[j - 1]; 2858 } 2859 2860 phys_avail[i + 3] = phys_avail[i + 1]; 2861 phys_avail[i + 1] = s; 2862 phys_avail[i + 2] = e; 2863 phys_avail_count++; 2864 } 2865 2866 return (s); 2867 } 2868 panic("moea64_bootstrap_alloc: could not allocate memory"); 2869 } 2870 2871 static int 2872 moea64_pvo_enter(struct pvo_entry *pvo, struct pvo_head *pvo_head, 2873 struct pvo_entry **oldpvop) 2874 { 2875 struct pvo_entry *old_pvo; 2876 int err; 2877 2878 PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); 2879 2880 STAT_MOEA64(moea64_pvo_enter_calls++); 2881 2882 /* 2883 * Add to pmap list 2884 */ 2885 old_pvo = RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo); 2886 2887 if (old_pvo != NULL) { 2888 if (oldpvop != NULL) 2889 *oldpvop = old_pvo; 2890 return (EEXIST); 2891 } 2892 2893 if (pvo_head != NULL) { 2894 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink); 2895 } 2896 2897 if (pvo->pvo_vaddr & PVO_WIRED) 2898 pvo->pvo_pmap->pm_stats.wired_count++; 2899 pvo->pvo_pmap->pm_stats.resident_count++; 2900 2901 /* 2902 * Insert it into the hardware page table 2903 */ 2904 err = moea64_pte_insert(pvo); 2905 if (err != 0) { 2906 panic("moea64_pvo_enter: overflow"); 2907 } 2908 2909 STAT_MOEA64(moea64_pvo_entries++); 2910 2911 if (pvo->pvo_pmap == kernel_pmap) 2912 isync(); 2913 2914 #ifdef __powerpc64__ 2915 /* 2916 * Make sure all our bootstrap mappings are in the SLB as soon 2917 * as virtual memory is switched on. 2918 */ 2919 if (!pmap_bootstrapped) 2920 moea64_bootstrap_slb_prefault(PVO_VADDR(pvo), 2921 pvo->pvo_vaddr & PVO_LARGE); 2922 #endif 2923 2924 return (0); 2925 } 2926 2927 static void 2928 moea64_pvo_remove_from_pmap(struct pvo_entry *pvo) 2929 { 2930 struct vm_page *pg; 2931 int32_t refchg; 2932 2933 KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap")); 2934 PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); 2935 KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO")); 2936 2937 /* 2938 * If there is an active pte entry, we need to deactivate it 2939 */ 2940 refchg = moea64_pte_unset(pvo); 2941 if (refchg < 0) { 2942 /* 2943 * If it was evicted from the page table, be pessimistic and 2944 * dirty the page. 2945 */ 2946 if (pvo->pvo_pte.prot & VM_PROT_WRITE) 2947 refchg = LPTE_CHG; 2948 else 2949 refchg = 0; 2950 } 2951 2952 /* 2953 * Update our statistics. 2954 */ 2955 pvo->pvo_pmap->pm_stats.resident_count--; 2956 if (pvo->pvo_vaddr & PVO_WIRED) 2957 pvo->pvo_pmap->pm_stats.wired_count--; 2958 2959 /* 2960 * Remove this PVO from the pmap list. 2961 */ 2962 RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo); 2963 2964 /* 2965 * Mark this for the next sweep 2966 */ 2967 pvo->pvo_vaddr |= PVO_DEAD; 2968 2969 /* Send RC bits to VM */ 2970 if ((pvo->pvo_vaddr & PVO_MANAGED) && 2971 (pvo->pvo_pte.prot & VM_PROT_WRITE)) { 2972 pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo)); 2973 if (pg != NULL) { 2974 refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs); 2975 if (refchg & LPTE_CHG) 2976 vm_page_dirty(pg); 2977 if (refchg & LPTE_REF) 2978 vm_page_aflag_set(pg, PGA_REFERENCED); 2979 } 2980 } 2981 } 2982 2983 static inline void 2984 moea64_pvo_remove_from_page_locked(struct pvo_entry *pvo, 2985 vm_page_t m) 2986 { 2987 2988 KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page")); 2989 2990 /* Use NULL pmaps as a sentinel for races in page deletion */ 2991 if (pvo->pvo_pmap == NULL) 2992 return; 2993 pvo->pvo_pmap = NULL; 2994 2995 /* 2996 * Update vm about page writeability/executability if managed 2997 */ 2998 PV_LOCKASSERT(PVO_PADDR(pvo)); 2999 if (pvo->pvo_vaddr & PVO_MANAGED) { 3000 if (m != NULL) { 3001 LIST_REMOVE(pvo, pvo_vlink); 3002 if (LIST_EMPTY(vm_page_to_pvoh(m))) 3003 vm_page_aflag_clear(m, 3004 PGA_WRITEABLE | PGA_EXECUTABLE); 3005 } 3006 } 3007 3008 STAT_MOEA64(moea64_pvo_entries--); 3009 STAT_MOEA64(moea64_pvo_remove_calls++); 3010 } 3011 3012 static void 3013 moea64_pvo_remove_from_page(struct pvo_entry *pvo) 3014 { 3015 vm_page_t pg = NULL; 3016 3017 if (pvo->pvo_vaddr & PVO_MANAGED) 3018 pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo)); 3019 3020 PV_LOCK(PVO_PADDR(pvo)); 3021 moea64_pvo_remove_from_page_locked(pvo, pg); 3022 PV_UNLOCK(PVO_PADDR(pvo)); 3023 } 3024 3025 static struct pvo_entry * 3026 moea64_pvo_find_va(pmap_t pm, vm_offset_t va) 3027 { 3028 struct pvo_entry key; 3029 3030 PMAP_LOCK_ASSERT(pm, MA_OWNED); 3031 3032 key.pvo_vaddr = va & ~ADDR_POFF; 3033 return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key)); 3034 } 3035 3036 static boolean_t 3037 moea64_query_bit(vm_page_t m, uint64_t ptebit) 3038 { 3039 struct pvo_entry *pvo; 3040 int64_t ret; 3041 boolean_t rv; 3042 vm_page_t sp; 3043 3044 /* 3045 * See if this bit is stored in the page already. 3046 * 3047 * For superpages, the bit is stored in the first vm page. 3048 */ 3049 if ((m->md.mdpg_attrs & ptebit) != 0 || 3050 ((sp = PHYS_TO_VM_PAGE(VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK)) != NULL && 3051 (sp->md.mdpg_attrs & (ptebit | MDPG_ATTR_SP)) == 3052 (ptebit | MDPG_ATTR_SP))) 3053 return (TRUE); 3054 3055 /* 3056 * Examine each PTE. Sync so that any pending REF/CHG bits are 3057 * flushed to the PTEs. 3058 */ 3059 rv = FALSE; 3060 powerpc_sync(); 3061 PV_PAGE_LOCK(m); 3062 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 3063 if (PVO_IS_SP(pvo)) { 3064 ret = moea64_sp_query(pvo, ptebit); 3065 /* 3066 * If SP was not demoted, check its REF/CHG bits here. 3067 */ 3068 if (ret != -1) { 3069 if ((ret & ptebit) != 0) { 3070 rv = TRUE; 3071 break; 3072 } 3073 continue; 3074 } 3075 /* else, fallthrough */ 3076 } 3077 3078 ret = 0; 3079 3080 /* 3081 * See if this pvo has a valid PTE. if so, fetch the 3082 * REF/CHG bits from the valid PTE. If the appropriate 3083 * ptebit is set, return success. 3084 */ 3085 PMAP_LOCK(pvo->pvo_pmap); 3086 if (!(pvo->pvo_vaddr & PVO_DEAD)) 3087 ret = moea64_pte_synch(pvo); 3088 PMAP_UNLOCK(pvo->pvo_pmap); 3089 3090 if (ret > 0) { 3091 atomic_set_32(&m->md.mdpg_attrs, 3092 ret & (LPTE_CHG | LPTE_REF)); 3093 if (ret & ptebit) { 3094 rv = TRUE; 3095 break; 3096 } 3097 } 3098 } 3099 PV_PAGE_UNLOCK(m); 3100 3101 return (rv); 3102 } 3103 3104 static u_int 3105 moea64_clear_bit(vm_page_t m, u_int64_t ptebit) 3106 { 3107 u_int count; 3108 struct pvo_entry *pvo; 3109 int64_t ret; 3110 3111 /* 3112 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so 3113 * we can reset the right ones). 3114 */ 3115 powerpc_sync(); 3116 3117 /* 3118 * For each pvo entry, clear the pte's ptebit. 3119 */ 3120 count = 0; 3121 PV_PAGE_LOCK(m); 3122 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 3123 if (PVO_IS_SP(pvo)) { 3124 if ((ret = moea64_sp_clear(pvo, m, ptebit)) != -1) { 3125 count += ret; 3126 continue; 3127 } 3128 } 3129 ret = 0; 3130 3131 PMAP_LOCK(pvo->pvo_pmap); 3132 if (!(pvo->pvo_vaddr & PVO_DEAD)) 3133 ret = moea64_pte_clear(pvo, ptebit); 3134 PMAP_UNLOCK(pvo->pvo_pmap); 3135 3136 if (ret > 0 && (ret & ptebit)) 3137 count++; 3138 } 3139 atomic_clear_32(&m->md.mdpg_attrs, ptebit); 3140 PV_PAGE_UNLOCK(m); 3141 3142 return (count); 3143 } 3144 3145 int 3146 moea64_dev_direct_mapped(vm_paddr_t pa, vm_size_t size) 3147 { 3148 struct pvo_entry *pvo, key; 3149 vm_offset_t ppa; 3150 int error = 0; 3151 3152 if (hw_direct_map && mem_valid(pa, size) == 0) 3153 return (0); 3154 3155 PMAP_LOCK(kernel_pmap); 3156 ppa = pa & ~ADDR_POFF; 3157 key.pvo_vaddr = DMAP_BASE_ADDRESS + ppa; 3158 for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key); 3159 ppa < pa + size; ppa += PAGE_SIZE, 3160 pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) { 3161 if (pvo == NULL || PVO_PADDR(pvo) != ppa) { 3162 error = EFAULT; 3163 break; 3164 } 3165 } 3166 PMAP_UNLOCK(kernel_pmap); 3167 3168 return (error); 3169 } 3170 3171 /* 3172 * Map a set of physical memory pages into the kernel virtual 3173 * address space. Return a pointer to where it is mapped. This 3174 * routine is intended to be used for mapping device memory, 3175 * NOT real memory. 3176 */ 3177 void * 3178 moea64_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma) 3179 { 3180 vm_offset_t va, tmpva, ppa, offset; 3181 3182 ppa = trunc_page(pa); 3183 offset = pa & PAGE_MASK; 3184 size = roundup2(offset + size, PAGE_SIZE); 3185 3186 va = kva_alloc(size); 3187 3188 if (!va) 3189 panic("moea64_mapdev: Couldn't alloc kernel virtual memory"); 3190 3191 for (tmpva = va; size > 0;) { 3192 moea64_kenter_attr(tmpva, ppa, ma); 3193 size -= PAGE_SIZE; 3194 tmpva += PAGE_SIZE; 3195 ppa += PAGE_SIZE; 3196 } 3197 3198 return ((void *)(va + offset)); 3199 } 3200 3201 void * 3202 moea64_mapdev(vm_paddr_t pa, vm_size_t size) 3203 { 3204 3205 return moea64_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT); 3206 } 3207 3208 void 3209 moea64_unmapdev(void *p, vm_size_t size) 3210 { 3211 vm_offset_t base, offset, va; 3212 3213 va = (vm_offset_t)p; 3214 base = trunc_page(va); 3215 offset = va & PAGE_MASK; 3216 size = roundup2(offset + size, PAGE_SIZE); 3217 3218 moea64_qremove(base, atop(size)); 3219 kva_free(base, size); 3220 } 3221 3222 void 3223 moea64_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz) 3224 { 3225 struct pvo_entry *pvo; 3226 vm_offset_t lim; 3227 vm_paddr_t pa; 3228 vm_size_t len; 3229 3230 if (__predict_false(pm == NULL)) 3231 pm = &curthread->td_proc->p_vmspace->vm_pmap; 3232 3233 PMAP_LOCK(pm); 3234 while (sz > 0) { 3235 lim = round_page(va+1); 3236 len = MIN(lim - va, sz); 3237 pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF); 3238 if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) { 3239 pa = PVO_PADDR(pvo) | (va & ADDR_POFF); 3240 moea64_syncicache(pm, va, pa, len); 3241 } 3242 va += len; 3243 sz -= len; 3244 } 3245 PMAP_UNLOCK(pm); 3246 } 3247 3248 void 3249 moea64_dumpsys_map(vm_paddr_t pa, size_t sz, void **va) 3250 { 3251 3252 *va = (void *)(uintptr_t)pa; 3253 } 3254 3255 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1]; 3256 3257 void 3258 moea64_scan_init(void) 3259 { 3260 struct pvo_entry *pvo; 3261 vm_offset_t va; 3262 int i; 3263 3264 if (!do_minidump) { 3265 /* Initialize phys. segments for dumpsys(). */ 3266 memset(&dump_map, 0, sizeof(dump_map)); 3267 mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); 3268 for (i = 0; i < pregions_sz; i++) { 3269 dump_map[i].pa_start = pregions[i].mr_start; 3270 dump_map[i].pa_size = pregions[i].mr_size; 3271 } 3272 return; 3273 } 3274 3275 /* Virtual segments for minidumps: */ 3276 memset(&dump_map, 0, sizeof(dump_map)); 3277 3278 /* 1st: kernel .data and .bss. */ 3279 dump_map[0].pa_start = trunc_page((uintptr_t)_etext); 3280 dump_map[0].pa_size = round_page((uintptr_t)_end) - 3281 dump_map[0].pa_start; 3282 3283 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ 3284 dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr; 3285 dump_map[1].pa_size = round_page(msgbufp->msg_size); 3286 3287 /* 3rd: kernel VM. */ 3288 va = dump_map[1].pa_start + dump_map[1].pa_size; 3289 /* Find start of next chunk (from va). */ 3290 while (va < virtual_end) { 3291 /* Don't dump the buffer cache. */ 3292 if (va >= kmi.buffer_sva && va < kmi.buffer_eva) { 3293 va = kmi.buffer_eva; 3294 continue; 3295 } 3296 pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF); 3297 if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD)) 3298 break; 3299 va += PAGE_SIZE; 3300 } 3301 if (va < virtual_end) { 3302 dump_map[2].pa_start = va; 3303 va += PAGE_SIZE; 3304 /* Find last page in chunk. */ 3305 while (va < virtual_end) { 3306 /* Don't run into the buffer cache. */ 3307 if (va == kmi.buffer_sva) 3308 break; 3309 pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF); 3310 if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD)) 3311 break; 3312 va += PAGE_SIZE; 3313 } 3314 dump_map[2].pa_size = va - dump_map[2].pa_start; 3315 } 3316 } 3317 3318 #ifdef __powerpc64__ 3319 3320 static size_t 3321 moea64_scan_pmap(struct bitset *dump_bitset) 3322 { 3323 struct pvo_entry *pvo; 3324 vm_paddr_t pa, pa_end; 3325 vm_offset_t va, pgva, kstart, kend, kstart_lp, kend_lp; 3326 uint64_t lpsize; 3327 3328 lpsize = moea64_large_page_size; 3329 kstart = trunc_page((vm_offset_t)_etext); 3330 kend = round_page((vm_offset_t)_end); 3331 kstart_lp = kstart & ~moea64_large_page_mask; 3332 kend_lp = (kend + moea64_large_page_mask) & ~moea64_large_page_mask; 3333 3334 CTR4(KTR_PMAP, "moea64_scan_pmap: kstart=0x%016lx, kend=0x%016lx, " 3335 "kstart_lp=0x%016lx, kend_lp=0x%016lx", 3336 kstart, kend, kstart_lp, kend_lp); 3337 3338 PMAP_LOCK(kernel_pmap); 3339 RB_FOREACH(pvo, pvo_tree, &kernel_pmap->pmap_pvo) { 3340 va = pvo->pvo_vaddr; 3341 3342 if (va & PVO_DEAD) 3343 continue; 3344 3345 /* Skip DMAP (except kernel area) */ 3346 if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS) { 3347 if (va & PVO_LARGE) { 3348 pgva = va & ~moea64_large_page_mask; 3349 if (pgva < kstart_lp || pgva >= kend_lp) 3350 continue; 3351 } else { 3352 pgva = trunc_page(va); 3353 if (pgva < kstart || pgva >= kend) 3354 continue; 3355 } 3356 } 3357 3358 pa = PVO_PADDR(pvo); 3359 3360 if (va & PVO_LARGE) { 3361 pa_end = pa + lpsize; 3362 for (; pa < pa_end; pa += PAGE_SIZE) { 3363 if (vm_phys_is_dumpable(pa)) 3364 vm_page_dump_add(dump_bitset, pa); 3365 } 3366 } else { 3367 if (vm_phys_is_dumpable(pa)) 3368 vm_page_dump_add(dump_bitset, pa); 3369 } 3370 } 3371 PMAP_UNLOCK(kernel_pmap); 3372 3373 return (sizeof(struct lpte) * moea64_pteg_count * 8); 3374 } 3375 3376 static struct dump_context dump_ctx; 3377 3378 static void * 3379 moea64_dump_pmap_init(unsigned blkpgs) 3380 { 3381 dump_ctx.ptex = 0; 3382 dump_ctx.ptex_end = moea64_pteg_count * 8; 3383 dump_ctx.blksz = blkpgs * PAGE_SIZE; 3384 return (&dump_ctx); 3385 } 3386 3387 #else 3388 3389 static size_t 3390 moea64_scan_pmap(struct bitset *dump_bitset __unused) 3391 { 3392 return (0); 3393 } 3394 3395 static void * 3396 moea64_dump_pmap_init(unsigned blkpgs) 3397 { 3398 return (NULL); 3399 } 3400 3401 #endif 3402 3403 #ifdef __powerpc64__ 3404 static void 3405 moea64_map_range(vm_offset_t va, vm_paddr_t pa, vm_size_t npages) 3406 { 3407 3408 for (; npages > 0; --npages) { 3409 if (moea64_large_page_size != 0 && 3410 (pa & moea64_large_page_mask) == 0 && 3411 (va & moea64_large_page_mask) == 0 && 3412 npages >= (moea64_large_page_size >> PAGE_SHIFT)) { 3413 PMAP_LOCK(kernel_pmap); 3414 moea64_kenter_large(va, pa, 0, 0); 3415 PMAP_UNLOCK(kernel_pmap); 3416 pa += moea64_large_page_size; 3417 va += moea64_large_page_size; 3418 npages -= (moea64_large_page_size >> PAGE_SHIFT) - 1; 3419 } else { 3420 moea64_kenter(va, pa); 3421 pa += PAGE_SIZE; 3422 va += PAGE_SIZE; 3423 } 3424 } 3425 } 3426 3427 static void 3428 moea64_page_array_startup(long pages) 3429 { 3430 long dom_pages[MAXMEMDOM]; 3431 vm_paddr_t pa; 3432 vm_offset_t va, vm_page_base; 3433 vm_size_t needed, size; 3434 int domain; 3435 int i; 3436 3437 vm_page_base = 0xd000000000000000ULL; 3438 3439 /* Short-circuit single-domain systems. */ 3440 if (vm_ndomains == 1) { 3441 size = round_page(pages * sizeof(struct vm_page)); 3442 pa = vm_phys_early_alloc(0, size); 3443 vm_page_base = moea64_map(&vm_page_base, 3444 pa, pa + size, VM_PROT_READ | VM_PROT_WRITE); 3445 vm_page_array_size = pages; 3446 vm_page_array = (vm_page_t)vm_page_base; 3447 return; 3448 } 3449 3450 for (i = 0; i < MAXMEMDOM; i++) 3451 dom_pages[i] = 0; 3452 3453 /* Now get the number of pages required per domain. */ 3454 for (i = 0; i < vm_phys_nsegs; i++) { 3455 domain = vm_phys_segs[i].domain; 3456 KASSERT(domain < MAXMEMDOM, 3457 ("Invalid vm_phys_segs NUMA domain %d!\n", domain)); 3458 /* Get size of vm_page_array needed for this segment. */ 3459 size = btoc(vm_phys_segs[i].end - vm_phys_segs[i].start); 3460 dom_pages[domain] += size; 3461 } 3462 3463 for (i = 0; phys_avail[i + 1] != 0; i+= 2) { 3464 domain = vm_phys_domain(phys_avail[i]); 3465 KASSERT(domain < MAXMEMDOM, 3466 ("Invalid phys_avail NUMA domain %d!\n", domain)); 3467 size = btoc(phys_avail[i + 1] - phys_avail[i]); 3468 dom_pages[domain] += size; 3469 } 3470 3471 /* 3472 * Map in chunks that can get us all 16MB pages. There will be some 3473 * overlap between domains, but that's acceptable for now. 3474 */ 3475 vm_page_array_size = 0; 3476 va = vm_page_base; 3477 for (i = 0; i < MAXMEMDOM && vm_page_array_size < pages; i++) { 3478 if (dom_pages[i] == 0) 3479 continue; 3480 size = ulmin(pages - vm_page_array_size, dom_pages[i]); 3481 size = round_page(size * sizeof(struct vm_page)); 3482 needed = size; 3483 size = roundup2(size, moea64_large_page_size); 3484 pa = vm_phys_early_alloc(i, size); 3485 vm_page_array_size += size / sizeof(struct vm_page); 3486 moea64_map_range(va, pa, size >> PAGE_SHIFT); 3487 /* Scoot up domain 0, to reduce the domain page overlap. */ 3488 if (i == 0) 3489 vm_page_base += size - needed; 3490 va += size; 3491 } 3492 vm_page_array = (vm_page_t)vm_page_base; 3493 vm_page_array_size = pages; 3494 } 3495 #endif 3496 3497 static int64_t 3498 moea64_null_method(void) 3499 { 3500 return (0); 3501 } 3502 3503 static int64_t moea64_pte_replace_default(struct pvo_entry *pvo, int flags) 3504 { 3505 int64_t refchg; 3506 3507 refchg = moea64_pte_unset(pvo); 3508 moea64_pte_insert(pvo); 3509 3510 return (refchg); 3511 } 3512 3513 struct moea64_funcs *moea64_ops; 3514 3515 #define DEFINE_OEA64_IFUNC(ret, func, args, def) \ 3516 DEFINE_IFUNC(, ret, moea64_##func, args) { \ 3517 moea64_##func##_t f; \ 3518 if (moea64_ops == NULL) \ 3519 return ((moea64_##func##_t)def); \ 3520 f = moea64_ops->func; \ 3521 return (f != NULL ? f : (moea64_##func##_t)def);\ 3522 } 3523 3524 void 3525 moea64_install(void) 3526 { 3527 #ifdef __powerpc64__ 3528 if (hw_direct_map == -1) { 3529 moea64_probe_large_page(); 3530 3531 /* Use a direct map if we have large page support */ 3532 if (moea64_large_page_size > 0) 3533 hw_direct_map = 1; 3534 else 3535 hw_direct_map = 0; 3536 } 3537 #endif 3538 3539 /* 3540 * Default to non-DMAP, and switch over to DMAP functions once we know 3541 * we have DMAP. 3542 */ 3543 if (hw_direct_map) { 3544 moea64_methods.quick_enter_page = moea64_quick_enter_page_dmap; 3545 moea64_methods.quick_remove_page = NULL; 3546 moea64_methods.copy_page = moea64_copy_page_dmap; 3547 moea64_methods.zero_page = moea64_zero_page_dmap; 3548 moea64_methods.copy_pages = moea64_copy_pages_dmap; 3549 } 3550 } 3551 3552 DEFINE_OEA64_IFUNC(int64_t, pte_replace, (struct pvo_entry *, int), 3553 moea64_pte_replace_default) 3554 DEFINE_OEA64_IFUNC(int64_t, pte_insert, (struct pvo_entry *), moea64_null_method) 3555 DEFINE_OEA64_IFUNC(int64_t, pte_unset, (struct pvo_entry *), moea64_null_method) 3556 DEFINE_OEA64_IFUNC(int64_t, pte_clear, (struct pvo_entry *, uint64_t), 3557 moea64_null_method) 3558 DEFINE_OEA64_IFUNC(int64_t, pte_synch, (struct pvo_entry *), moea64_null_method) 3559 DEFINE_OEA64_IFUNC(int64_t, pte_insert_sp, (struct pvo_entry *), moea64_null_method) 3560 DEFINE_OEA64_IFUNC(int64_t, pte_unset_sp, (struct pvo_entry *), moea64_null_method) 3561 DEFINE_OEA64_IFUNC(int64_t, pte_replace_sp, (struct pvo_entry *), moea64_null_method) 3562 3563 /* Superpage functions */ 3564 3565 /* MMU interface */ 3566 3567 static bool 3568 moea64_ps_enabled(pmap_t pmap) 3569 { 3570 return (superpages_enabled); 3571 } 3572 3573 static void 3574 moea64_align_superpage(vm_object_t object, vm_ooffset_t offset, 3575 vm_offset_t *addr, vm_size_t size) 3576 { 3577 vm_offset_t sp_offset; 3578 3579 if (size < HPT_SP_SIZE) 3580 return; 3581 3582 CTR4(KTR_PMAP, "%s: offs=%#jx, addr=%p, size=%#jx", 3583 __func__, (uintmax_t)offset, addr, (uintmax_t)size); 3584 3585 if (object != NULL && (object->flags & OBJ_COLORED) != 0) 3586 offset += ptoa(object->pg_color); 3587 sp_offset = offset & HPT_SP_MASK; 3588 if (size - ((HPT_SP_SIZE - sp_offset) & HPT_SP_MASK) < HPT_SP_SIZE || 3589 (*addr & HPT_SP_MASK) == sp_offset) 3590 return; 3591 if ((*addr & HPT_SP_MASK) < sp_offset) 3592 *addr = (*addr & ~HPT_SP_MASK) + sp_offset; 3593 else 3594 *addr = ((*addr + HPT_SP_MASK) & ~HPT_SP_MASK) + sp_offset; 3595 } 3596 3597 /* Helpers */ 3598 3599 static __inline void 3600 moea64_pvo_cleanup(struct pvo_dlist *tofree) 3601 { 3602 struct pvo_entry *pvo; 3603 3604 /* clean up */ 3605 while (!SLIST_EMPTY(tofree)) { 3606 pvo = SLIST_FIRST(tofree); 3607 SLIST_REMOVE_HEAD(tofree, pvo_dlink); 3608 if (pvo->pvo_vaddr & PVO_DEAD) 3609 moea64_pvo_remove_from_page(pvo); 3610 free_pvo_entry(pvo); 3611 } 3612 } 3613 3614 static __inline uint16_t 3615 pvo_to_vmpage_flags(struct pvo_entry *pvo) 3616 { 3617 uint16_t flags; 3618 3619 flags = 0; 3620 if ((pvo->pvo_pte.prot & VM_PROT_WRITE) != 0) 3621 flags |= PGA_WRITEABLE; 3622 if ((pvo->pvo_pte.prot & VM_PROT_EXECUTE) != 0) 3623 flags |= PGA_EXECUTABLE; 3624 3625 return (flags); 3626 } 3627 3628 /* 3629 * Check if the given pvo and its superpage are in sva-eva range. 3630 */ 3631 static __inline bool 3632 moea64_sp_pvo_in_range(struct pvo_entry *pvo, vm_offset_t sva, vm_offset_t eva) 3633 { 3634 vm_offset_t spva; 3635 3636 spva = PVO_VADDR(pvo) & ~HPT_SP_MASK; 3637 if (spva >= sva && spva + HPT_SP_SIZE <= eva) { 3638 /* 3639 * Because this function is intended to be called from loops 3640 * that iterate over ordered pvo entries, if the condition 3641 * above is true then the pvo must be the first of its 3642 * superpage. 3643 */ 3644 KASSERT(PVO_VADDR(pvo) == spva, 3645 ("%s: unexpected unaligned superpage pvo", __func__)); 3646 return (true); 3647 } 3648 return (false); 3649 } 3650 3651 /* 3652 * Update vm about the REF/CHG bits if the superpage is managed and 3653 * has (or had) write access. 3654 */ 3655 static void 3656 moea64_sp_refchg_process(struct pvo_entry *sp, vm_page_t m, 3657 int64_t sp_refchg, vm_prot_t prot) 3658 { 3659 vm_page_t m_end; 3660 int64_t refchg; 3661 3662 if ((sp->pvo_vaddr & PVO_MANAGED) != 0 && (prot & VM_PROT_WRITE) != 0) { 3663 for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++) { 3664 refchg = sp_refchg | 3665 atomic_readandclear_32(&m->md.mdpg_attrs); 3666 if (refchg & LPTE_CHG) 3667 vm_page_dirty(m); 3668 if (refchg & LPTE_REF) 3669 vm_page_aflag_set(m, PGA_REFERENCED); 3670 } 3671 } 3672 } 3673 3674 /* Superpage ops */ 3675 3676 static int 3677 moea64_sp_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, 3678 vm_prot_t prot, u_int flags, int8_t psind) 3679 { 3680 struct pvo_entry *pvo, **pvos; 3681 struct pvo_head *pvo_head; 3682 vm_offset_t sva; 3683 vm_page_t sm; 3684 vm_paddr_t pa, spa; 3685 bool sync; 3686 struct pvo_dlist tofree; 3687 int error __diagused, i; 3688 uint16_t aflags; 3689 3690 KASSERT((va & HPT_SP_MASK) == 0, ("%s: va %#jx unaligned", 3691 __func__, (uintmax_t)va)); 3692 KASSERT(psind == 1, ("%s: invalid psind: %d", __func__, psind)); 3693 KASSERT(m->psind == 1, ("%s: invalid m->psind: %d", 3694 __func__, m->psind)); 3695 KASSERT(pmap != kernel_pmap, 3696 ("%s: function called with kernel pmap", __func__)); 3697 3698 CTR5(KTR_PMAP, "%s: va=%#jx, pa=%#jx, prot=%#x, flags=%#x, psind=1", 3699 __func__, (uintmax_t)va, (uintmax_t)VM_PAGE_TO_PHYS(m), 3700 prot, flags); 3701 3702 SLIST_INIT(&tofree); 3703 3704 sva = va; 3705 sm = m; 3706 spa = pa = VM_PAGE_TO_PHYS(sm); 3707 3708 /* Try to allocate all PVOs first, to make failure handling easier. */ 3709 pvos = malloc(HPT_SP_PAGES * sizeof(struct pvo_entry *), M_TEMP, 3710 M_NOWAIT); 3711 if (pvos == NULL) { 3712 CTR1(KTR_PMAP, "%s: failed to alloc pvo array", __func__); 3713 return (KERN_RESOURCE_SHORTAGE); 3714 } 3715 3716 for (i = 0; i < HPT_SP_PAGES; i++) { 3717 pvos[i] = alloc_pvo_entry(0); 3718 if (pvos[i] == NULL) { 3719 CTR1(KTR_PMAP, "%s: failed to alloc pvo", __func__); 3720 for (i = i - 1; i >= 0; i--) 3721 free_pvo_entry(pvos[i]); 3722 free(pvos, M_TEMP); 3723 return (KERN_RESOURCE_SHORTAGE); 3724 } 3725 } 3726 3727 SP_PV_LOCK_ALIGNED(spa); 3728 PMAP_LOCK(pmap); 3729 3730 /* Note: moea64_remove_locked() also clears cached REF/CHG bits. */ 3731 moea64_remove_locked(pmap, va, va + HPT_SP_SIZE, &tofree); 3732 3733 /* Enter pages */ 3734 for (i = 0; i < HPT_SP_PAGES; 3735 i++, va += PAGE_SIZE, pa += PAGE_SIZE, m++) { 3736 pvo = pvos[i]; 3737 3738 pvo->pvo_pte.prot = prot; 3739 pvo->pvo_pte.pa = (pa & ~HPT_SP_MASK) | LPTE_LP_4K_16M | 3740 moea64_calc_wimg(pa, pmap_page_get_memattr(m)); 3741 3742 if ((flags & PMAP_ENTER_WIRED) != 0) 3743 pvo->pvo_vaddr |= PVO_WIRED; 3744 pvo->pvo_vaddr |= PVO_LARGE; 3745 3746 if ((m->oflags & VPO_UNMANAGED) != 0) 3747 pvo_head = NULL; 3748 else { 3749 pvo_head = &m->md.mdpg_pvoh; 3750 pvo->pvo_vaddr |= PVO_MANAGED; 3751 } 3752 3753 init_pvo_entry(pvo, pmap, va); 3754 3755 error = moea64_pvo_enter(pvo, pvo_head, NULL); 3756 /* 3757 * All superpage PVOs were previously removed, so no errors 3758 * should occur while inserting the new ones. 3759 */ 3760 KASSERT(error == 0, ("%s: unexpected error " 3761 "when inserting superpage PVO: %d", 3762 __func__, error)); 3763 } 3764 3765 PMAP_UNLOCK(pmap); 3766 SP_PV_UNLOCK_ALIGNED(spa); 3767 3768 sync = (sm->a.flags & PGA_EXECUTABLE) == 0; 3769 /* Note: moea64_pvo_cleanup() also clears page prot. flags. */ 3770 moea64_pvo_cleanup(&tofree); 3771 pvo = pvos[0]; 3772 3773 /* Set vm page flags */ 3774 aflags = pvo_to_vmpage_flags(pvo); 3775 if (aflags != 0) 3776 for (m = sm; m < &sm[HPT_SP_PAGES]; m++) 3777 vm_page_aflag_set(m, aflags); 3778 3779 /* 3780 * Flush the page from the instruction cache if this page is 3781 * mapped executable and cacheable. 3782 */ 3783 if (sync && (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) 3784 moea64_syncicache(pmap, sva, spa, HPT_SP_SIZE); 3785 3786 atomic_add_long(&sp_mappings, 1); 3787 CTR3(KTR_PMAP, "%s: SP success for va %#jx in pmap %p", 3788 __func__, (uintmax_t)sva, pmap); 3789 3790 free(pvos, M_TEMP); 3791 return (KERN_SUCCESS); 3792 } 3793 3794 static void 3795 moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m) 3796 { 3797 struct pvo_entry *first, *pvo; 3798 vm_paddr_t pa, pa_end; 3799 vm_offset_t sva, va_end; 3800 int64_t sp_refchg; 3801 3802 /* This CTR may generate a lot of output. */ 3803 /* CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)va); */ 3804 3805 va &= ~HPT_SP_MASK; 3806 sva = va; 3807 /* Get superpage */ 3808 pa = VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK; 3809 m = PHYS_TO_VM_PAGE(pa); 3810 3811 PMAP_LOCK(pmap); 3812 3813 /* 3814 * Check if all pages meet promotion criteria. 3815 * 3816 * XXX In some cases the loop below may be executed for each or most 3817 * of the entered pages of a superpage, which can be expensive 3818 * (although it was not profiled) and need some optimization. 3819 * 3820 * Some cases where this seems to happen are: 3821 * - When a superpage is first entered read-only and later becomes 3822 * read-write. 3823 * - When some of the superpage's virtual addresses map to previously 3824 * wired/cached pages while others map to pages allocated from a 3825 * different physical address range. A common scenario where this 3826 * happens is when mmap'ing a file that is already present in FS 3827 * block cache and doesn't fill a superpage. 3828 */ 3829 first = pvo = moea64_pvo_find_va(pmap, sva); 3830 for (pa_end = pa + HPT_SP_SIZE; 3831 pa < pa_end; pa += PAGE_SIZE, va += PAGE_SIZE) { 3832 if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD) != 0) { 3833 CTR3(KTR_PMAP, 3834 "%s: NULL or dead PVO: pmap=%p, va=%#jx", 3835 __func__, pmap, (uintmax_t)va); 3836 goto error; 3837 } 3838 if (PVO_PADDR(pvo) != pa) { 3839 CTR5(KTR_PMAP, "%s: PAs don't match: " 3840 "pmap=%p, va=%#jx, pvo_pa=%#jx, exp_pa=%#jx", 3841 __func__, pmap, (uintmax_t)va, 3842 (uintmax_t)PVO_PADDR(pvo), (uintmax_t)pa); 3843 atomic_add_long(&sp_p_fail_pa, 1); 3844 goto error; 3845 } 3846 if ((first->pvo_vaddr & PVO_FLAGS_PROMOTE) != 3847 (pvo->pvo_vaddr & PVO_FLAGS_PROMOTE)) { 3848 CTR5(KTR_PMAP, "%s: PVO flags don't match: " 3849 "pmap=%p, va=%#jx, pvo_flags=%#jx, exp_flags=%#jx", 3850 __func__, pmap, (uintmax_t)va, 3851 (uintmax_t)(pvo->pvo_vaddr & PVO_FLAGS_PROMOTE), 3852 (uintmax_t)(first->pvo_vaddr & PVO_FLAGS_PROMOTE)); 3853 atomic_add_long(&sp_p_fail_flags, 1); 3854 goto error; 3855 } 3856 if (first->pvo_pte.prot != pvo->pvo_pte.prot) { 3857 CTR5(KTR_PMAP, "%s: PVO protections don't match: " 3858 "pmap=%p, va=%#jx, pvo_prot=%#x, exp_prot=%#x", 3859 __func__, pmap, (uintmax_t)va, 3860 pvo->pvo_pte.prot, first->pvo_pte.prot); 3861 atomic_add_long(&sp_p_fail_prot, 1); 3862 goto error; 3863 } 3864 if ((first->pvo_pte.pa & LPTE_WIMG) != 3865 (pvo->pvo_pte.pa & LPTE_WIMG)) { 3866 CTR5(KTR_PMAP, "%s: WIMG bits don't match: " 3867 "pmap=%p, va=%#jx, pvo_wimg=%#jx, exp_wimg=%#jx", 3868 __func__, pmap, (uintmax_t)va, 3869 (uintmax_t)(pvo->pvo_pte.pa & LPTE_WIMG), 3870 (uintmax_t)(first->pvo_pte.pa & LPTE_WIMG)); 3871 atomic_add_long(&sp_p_fail_wimg, 1); 3872 goto error; 3873 } 3874 3875 pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo); 3876 } 3877 3878 /* All OK, promote. */ 3879 3880 /* 3881 * Handle superpage REF/CHG bits. If REF or CHG is set in 3882 * any page, then it must be set in the superpage. 3883 * 3884 * Instead of querying each page, we take advantage of two facts: 3885 * 1- If a page is being promoted, it was referenced. 3886 * 2- If promoted pages are writable, they were modified. 3887 */ 3888 sp_refchg = LPTE_REF | 3889 ((first->pvo_pte.prot & VM_PROT_WRITE) != 0 ? LPTE_CHG : 0); 3890 3891 /* Promote pages */ 3892 3893 for (pvo = first, va_end = PVO_VADDR(pvo) + HPT_SP_SIZE; 3894 pvo != NULL && PVO_VADDR(pvo) < va_end; 3895 pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) { 3896 pvo->pvo_pte.pa &= ADDR_POFF | ~HPT_SP_MASK; 3897 pvo->pvo_pte.pa |= LPTE_LP_4K_16M; 3898 pvo->pvo_vaddr |= PVO_LARGE; 3899 } 3900 moea64_pte_replace_sp(first); 3901 3902 /* Send REF/CHG bits to VM */ 3903 moea64_sp_refchg_process(first, m, sp_refchg, first->pvo_pte.prot); 3904 3905 /* Use first page to cache REF/CHG bits */ 3906 atomic_set_32(&m->md.mdpg_attrs, sp_refchg | MDPG_ATTR_SP); 3907 3908 PMAP_UNLOCK(pmap); 3909 3910 atomic_add_long(&sp_mappings, 1); 3911 atomic_add_long(&sp_promotions, 1); 3912 CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p", 3913 __func__, (uintmax_t)sva, pmap); 3914 return; 3915 3916 error: 3917 atomic_add_long(&sp_p_failures, 1); 3918 PMAP_UNLOCK(pmap); 3919 } 3920 3921 static void 3922 moea64_sp_demote_aligned(struct pvo_entry *sp) 3923 { 3924 struct pvo_entry *pvo; 3925 vm_offset_t va, va_end; 3926 vm_paddr_t pa; 3927 vm_page_t m; 3928 pmap_t pmap __diagused; 3929 int64_t refchg; 3930 3931 CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp)); 3932 3933 pmap = sp->pvo_pmap; 3934 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 3935 3936 pvo = sp; 3937 3938 /* Demote pages */ 3939 3940 va = PVO_VADDR(pvo); 3941 pa = PVO_PADDR(pvo); 3942 m = PHYS_TO_VM_PAGE(pa); 3943 3944 for (pvo = sp, va_end = va + HPT_SP_SIZE; 3945 pvo != NULL && PVO_VADDR(pvo) < va_end; 3946 pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo), 3947 va += PAGE_SIZE, pa += PAGE_SIZE) { 3948 KASSERT(pvo && PVO_VADDR(pvo) == va, 3949 ("%s: missing PVO for va %#jx", __func__, (uintmax_t)va)); 3950 3951 pvo->pvo_vaddr &= ~PVO_LARGE; 3952 pvo->pvo_pte.pa &= ~LPTE_RPGN; 3953 pvo->pvo_pte.pa |= pa; 3954 3955 } 3956 refchg = moea64_pte_replace_sp(sp); 3957 3958 /* 3959 * Clear SP flag 3960 * 3961 * XXX It is possible that another pmap has this page mapped as 3962 * part of a superpage, but as the SP flag is used only for 3963 * caching SP REF/CHG bits, that will be queried if not set 3964 * in cache, it should be ok to clear it here. 3965 */ 3966 atomic_clear_32(&m->md.mdpg_attrs, MDPG_ATTR_SP); 3967 3968 /* 3969 * Handle superpage REF/CHG bits. A bit set in the superpage 3970 * means all pages should consider it set. 3971 */ 3972 moea64_sp_refchg_process(sp, m, refchg, sp->pvo_pte.prot); 3973 3974 atomic_add_long(&sp_demotions, 1); 3975 CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p", 3976 __func__, (uintmax_t)PVO_VADDR(sp), pmap); 3977 } 3978 3979 static void 3980 moea64_sp_demote(struct pvo_entry *pvo) 3981 { 3982 PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); 3983 3984 if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) { 3985 pvo = moea64_pvo_find_va(pvo->pvo_pmap, 3986 PVO_VADDR(pvo) & ~HPT_SP_MASK); 3987 KASSERT(pvo != NULL, ("%s: missing PVO for va %#jx", 3988 __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK))); 3989 } 3990 moea64_sp_demote_aligned(pvo); 3991 } 3992 3993 static struct pvo_entry * 3994 moea64_sp_unwire(struct pvo_entry *sp) 3995 { 3996 struct pvo_entry *pvo, *prev; 3997 vm_offset_t eva; 3998 pmap_t pm; 3999 int64_t ret, refchg; 4000 4001 CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp)); 4002 4003 pm = sp->pvo_pmap; 4004 PMAP_LOCK_ASSERT(pm, MA_OWNED); 4005 4006 eva = PVO_VADDR(sp) + HPT_SP_SIZE; 4007 refchg = 0; 4008 for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; 4009 prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) { 4010 if ((pvo->pvo_vaddr & PVO_WIRED) == 0) 4011 panic("%s: pvo %p is missing PVO_WIRED", 4012 __func__, pvo); 4013 pvo->pvo_vaddr &= ~PVO_WIRED; 4014 4015 ret = moea64_pte_replace(pvo, 0 /* No invalidation */); 4016 if (ret < 0) 4017 refchg |= LPTE_CHG; 4018 else 4019 refchg |= ret; 4020 4021 pm->pm_stats.wired_count--; 4022 } 4023 4024 /* Send REF/CHG bits to VM */ 4025 moea64_sp_refchg_process(sp, PHYS_TO_VM_PAGE(PVO_PADDR(sp)), 4026 refchg, sp->pvo_pte.prot); 4027 4028 return (prev); 4029 } 4030 4031 static struct pvo_entry * 4032 moea64_sp_protect(struct pvo_entry *sp, vm_prot_t prot) 4033 { 4034 struct pvo_entry *pvo, *prev; 4035 vm_offset_t eva; 4036 pmap_t pm; 4037 vm_page_t m, m_end; 4038 int64_t ret, refchg; 4039 vm_prot_t oldprot; 4040 4041 CTR3(KTR_PMAP, "%s: va=%#jx, prot=%x", 4042 __func__, (uintmax_t)PVO_VADDR(sp), prot); 4043 4044 pm = sp->pvo_pmap; 4045 PMAP_LOCK_ASSERT(pm, MA_OWNED); 4046 4047 oldprot = sp->pvo_pte.prot; 4048 m = PHYS_TO_VM_PAGE(PVO_PADDR(sp)); 4049 KASSERT(m != NULL, ("%s: missing vm page for pa %#jx", 4050 __func__, (uintmax_t)PVO_PADDR(sp))); 4051 eva = PVO_VADDR(sp) + HPT_SP_SIZE; 4052 refchg = 0; 4053 4054 for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; 4055 prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) { 4056 pvo->pvo_pte.prot = prot; 4057 /* 4058 * If the PVO is in the page table, update mapping 4059 */ 4060 ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE); 4061 if (ret < 0) 4062 refchg |= LPTE_CHG; 4063 else 4064 refchg |= ret; 4065 } 4066 4067 /* Send REF/CHG bits to VM */ 4068 moea64_sp_refchg_process(sp, m, refchg, oldprot); 4069 4070 /* Handle pages that became executable */ 4071 if ((m->a.flags & PGA_EXECUTABLE) == 0 && 4072 (sp->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { 4073 if ((m->oflags & VPO_UNMANAGED) == 0) 4074 for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++) 4075 vm_page_aflag_set(m, PGA_EXECUTABLE); 4076 moea64_syncicache(pm, PVO_VADDR(sp), PVO_PADDR(sp), 4077 HPT_SP_SIZE); 4078 } 4079 4080 return (prev); 4081 } 4082 4083 static struct pvo_entry * 4084 moea64_sp_remove(struct pvo_entry *sp, struct pvo_dlist *tofree) 4085 { 4086 struct pvo_entry *pvo, *tpvo; 4087 vm_offset_t eva; 4088 pmap_t pm __diagused; 4089 4090 CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp)); 4091 4092 pm = sp->pvo_pmap; 4093 PMAP_LOCK_ASSERT(pm, MA_OWNED); 4094 4095 eva = PVO_VADDR(sp) + HPT_SP_SIZE; 4096 for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { 4097 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); 4098 4099 /* 4100 * For locking reasons, remove this from the page table and 4101 * pmap, but save delinking from the vm_page for a second 4102 * pass 4103 */ 4104 moea64_pvo_remove_from_pmap(pvo); 4105 SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink); 4106 } 4107 4108 /* 4109 * Clear SP bit 4110 * 4111 * XXX See comment in moea64_sp_demote_aligned() for why it's 4112 * ok to always clear the SP bit on remove/demote. 4113 */ 4114 atomic_clear_32(&PHYS_TO_VM_PAGE(PVO_PADDR(sp))->md.mdpg_attrs, 4115 MDPG_ATTR_SP); 4116 4117 return (tpvo); 4118 } 4119 4120 static int64_t 4121 moea64_sp_query_locked(struct pvo_entry *pvo, uint64_t ptebit) 4122 { 4123 int64_t refchg, ret; 4124 vm_offset_t eva; 4125 vm_page_t m; 4126 pmap_t pmap; 4127 struct pvo_entry *sp; 4128 4129 pmap = pvo->pvo_pmap; 4130 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 4131 4132 /* Get first SP PVO */ 4133 if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) { 4134 sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK); 4135 KASSERT(sp != NULL, ("%s: missing PVO for va %#jx", 4136 __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK))); 4137 } else 4138 sp = pvo; 4139 eva = PVO_VADDR(sp) + HPT_SP_SIZE; 4140 4141 refchg = 0; 4142 for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; 4143 pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) { 4144 ret = moea64_pte_synch(pvo); 4145 if (ret > 0) { 4146 refchg |= ret & (LPTE_CHG | LPTE_REF); 4147 if ((refchg & ptebit) != 0) 4148 break; 4149 } 4150 } 4151 4152 /* Save results */ 4153 if (refchg != 0) { 4154 m = PHYS_TO_VM_PAGE(PVO_PADDR(sp)); 4155 atomic_set_32(&m->md.mdpg_attrs, refchg | MDPG_ATTR_SP); 4156 } 4157 4158 return (refchg); 4159 } 4160 4161 static int64_t 4162 moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit) 4163 { 4164 int64_t refchg; 4165 pmap_t pmap; 4166 4167 pmap = pvo->pvo_pmap; 4168 PMAP_LOCK(pmap); 4169 4170 /* 4171 * Check if SP was demoted/removed before pmap lock was acquired. 4172 */ 4173 if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) { 4174 CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx", 4175 __func__, (uintmax_t)PVO_PADDR(pvo)); 4176 PMAP_UNLOCK(pmap); 4177 return (-1); 4178 } 4179 4180 refchg = moea64_sp_query_locked(pvo, ptebit); 4181 PMAP_UNLOCK(pmap); 4182 4183 CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx", 4184 __func__, (uintmax_t)PVO_VADDR(pvo), 4185 (uintmax_t)PVO_PADDR(pvo), (uintmax_t)refchg); 4186 4187 return (refchg); 4188 } 4189 4190 static int64_t 4191 moea64_sp_pvo_clear(struct pvo_entry *pvo, uint64_t ptebit) 4192 { 4193 int64_t refchg, ret; 4194 pmap_t pmap; 4195 struct pvo_entry *sp; 4196 vm_offset_t eva; 4197 vm_page_t m; 4198 4199 pmap = pvo->pvo_pmap; 4200 PMAP_LOCK(pmap); 4201 4202 /* 4203 * Check if SP was demoted/removed before pmap lock was acquired. 4204 */ 4205 if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) { 4206 CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx", 4207 __func__, (uintmax_t)PVO_PADDR(pvo)); 4208 PMAP_UNLOCK(pmap); 4209 return (-1); 4210 } 4211 4212 /* Get first SP PVO */ 4213 if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) { 4214 sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK); 4215 KASSERT(sp != NULL, ("%s: missing PVO for va %#jx", 4216 __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK))); 4217 } else 4218 sp = pvo; 4219 eva = PVO_VADDR(sp) + HPT_SP_SIZE; 4220 4221 refchg = 0; 4222 for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; 4223 pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) { 4224 ret = moea64_pte_clear(pvo, ptebit); 4225 if (ret > 0) 4226 refchg |= ret & (LPTE_CHG | LPTE_REF); 4227 } 4228 4229 m = PHYS_TO_VM_PAGE(PVO_PADDR(sp)); 4230 atomic_clear_32(&m->md.mdpg_attrs, ptebit); 4231 PMAP_UNLOCK(pmap); 4232 4233 CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx", 4234 __func__, (uintmax_t)PVO_VADDR(sp), 4235 (uintmax_t)PVO_PADDR(sp), (uintmax_t)refchg); 4236 4237 return (refchg); 4238 } 4239 4240 static int64_t 4241 moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m, uint64_t ptebit) 4242 { 4243 int64_t count, ret; 4244 pmap_t pmap; 4245 4246 count = 0; 4247 pmap = pvo->pvo_pmap; 4248 4249 /* 4250 * Since this reference bit is shared by 4096 4KB pages, it 4251 * should not be cleared every time it is tested. Apply a 4252 * simple "hash" function on the physical page number, the 4253 * virtual superpage number, and the pmap address to select 4254 * one 4KB page out of the 4096 on which testing the 4255 * reference bit will result in clearing that reference bit. 4256 * This function is designed to avoid the selection of the 4257 * same 4KB page for every 16MB page mapping. 4258 * 4259 * Always leave the reference bit of a wired mapping set, as 4260 * the current state of its reference bit won't affect page 4261 * replacement. 4262 */ 4263 if (ptebit == LPTE_REF && (((VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) ^ 4264 (PVO_VADDR(pvo) >> HPT_SP_SHIFT) ^ (uintptr_t)pmap) & 4265 (HPT_SP_PAGES - 1)) == 0 && (pvo->pvo_vaddr & PVO_WIRED) == 0) { 4266 if ((ret = moea64_sp_pvo_clear(pvo, ptebit)) == -1) 4267 return (-1); 4268 4269 if ((ret & ptebit) != 0) 4270 count++; 4271 4272 /* 4273 * If this page was not selected by the hash function, then assume 4274 * its REF bit was set. 4275 */ 4276 } else if (ptebit == LPTE_REF) { 4277 count++; 4278 4279 /* 4280 * To clear the CHG bit of a single SP page, first it must be demoted. 4281 * But if no CHG bit is set, no bit clear and thus no SP demotion is 4282 * needed. 4283 */ 4284 } else { 4285 CTR4(KTR_PMAP, "%s: ptebit=%#jx, va=%#jx, pa=%#jx", 4286 __func__, (uintmax_t)ptebit, (uintmax_t)PVO_VADDR(pvo), 4287 (uintmax_t)PVO_PADDR(pvo)); 4288 4289 PMAP_LOCK(pmap); 4290 4291 /* 4292 * Make sure SP wasn't demoted/removed before pmap lock 4293 * was acquired. 4294 */ 4295 if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) { 4296 CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx", 4297 __func__, (uintmax_t)PVO_PADDR(pvo)); 4298 PMAP_UNLOCK(pmap); 4299 return (-1); 4300 } 4301 4302 ret = moea64_sp_query_locked(pvo, ptebit); 4303 if ((ret & ptebit) != 0) 4304 count++; 4305 else { 4306 PMAP_UNLOCK(pmap); 4307 return (0); 4308 } 4309 4310 moea64_sp_demote(pvo); 4311 moea64_pte_clear(pvo, ptebit); 4312 4313 /* 4314 * Write protect the mapping to a single page so that a 4315 * subsequent write access may repromote. 4316 */ 4317 if ((pvo->pvo_vaddr & PVO_WIRED) == 0) 4318 moea64_pvo_protect(pmap, pvo, 4319 pvo->pvo_pte.prot & ~VM_PROT_WRITE); 4320 4321 PMAP_UNLOCK(pmap); 4322 } 4323 4324 return (count); 4325 } 4326