xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision 2c9a9dfc187d171de6b92654d71b977f067ed641)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008-2015 Nathan Whitehorn
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * Manages physical address maps.
34  *
35  * Since the information managed by this module is also stored by the
36  * logical address mapping module, this module may throw away valid virtual
37  * to physical mappings at almost any time.  However, invalidations of
38  * mappings must be done as requested.
39  *
40  * In order to cope with hardware architectures which make virtual to
41  * physical map invalidates expensive, this module may delay invalidate
42  * reduced protection operations until such time as they are actually
43  * necessary.  This module is given full information as to which processors
44  * are currently using which maps, and to when physical maps must be made
45  * correct.
46  */
47 
48 #include "opt_kstack_pages.h"
49 
50 #include <sys/param.h>
51 #include <sys/kernel.h>
52 #include <sys/conf.h>
53 #include <sys/queue.h>
54 #include <sys/cpuset.h>
55 #include <sys/kerneldump.h>
56 #include <sys/ktr.h>
57 #include <sys/lock.h>
58 #include <sys/msgbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/mutex.h>
61 #include <sys/proc.h>
62 #include <sys/rwlock.h>
63 #include <sys/sched.h>
64 #include <sys/sysctl.h>
65 #include <sys/systm.h>
66 #include <sys/vmmeter.h>
67 #include <sys/smp.h>
68 
69 #include <sys/kdb.h>
70 
71 #include <dev/ofw/openfirm.h>
72 
73 #include <vm/vm.h>
74 #include <vm/vm_param.h>
75 #include <vm/vm_kern.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_phys.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_object.h>
80 #include <vm/vm_extern.h>
81 #include <vm/vm_pageout.h>
82 #include <vm/uma.h>
83 
84 #include <machine/_inttypes.h>
85 #include <machine/cpu.h>
86 #include <machine/platform.h>
87 #include <machine/frame.h>
88 #include <machine/md_var.h>
89 #include <machine/psl.h>
90 #include <machine/bat.h>
91 #include <machine/hid.h>
92 #include <machine/pte.h>
93 #include <machine/sr.h>
94 #include <machine/trap.h>
95 #include <machine/mmuvar.h>
96 
97 #include "mmu_oea64.h"
98 #include "mmu_if.h"
99 #include "moea64_if.h"
100 
101 void moea64_release_vsid(uint64_t vsid);
102 uintptr_t moea64_get_unique_vsid(void);
103 
104 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
105 #define ENABLE_TRANS(msr)	mtmsr(msr)
106 
107 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
108 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
109 #define	VSID_HASH_MASK		0x0000007fffffffffULL
110 
111 /*
112  * Locking semantics:
113  *
114  * There are two locks of interest: the page locks and the pmap locks, which
115  * protect their individual PVO lists and are locked in that order. The contents
116  * of all PVO entries are protected by the locks of their respective pmaps.
117  * The pmap of any PVO is guaranteed not to change so long as the PVO is linked
118  * into any list.
119  *
120  */
121 
122 #define PV_LOCK_PER_DOM	(PA_LOCK_COUNT * 3)
123 #define PV_LOCK_COUNT	(PV_LOCK_PER_DOM * MAXMEMDOM)
124 static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
125 
126 /*
127  * Cheap NUMA-izing of the pv locks, to reduce contention across domains.
128  * NUMA domains on POWER9 appear to be indexed as sparse memory spaces, with the
129  * index at (N << 45).
130  */
131 #ifdef __powerpc64__
132 #define PV_LOCK_IDX(pa)	(pa_index(pa) % PV_LOCK_PER_DOM + \
133 			(((pa) >> 45) % MAXMEMDOM) * PV_LOCK_PER_DOM)
134 #else
135 #define PV_LOCK_IDX(pa)	(pa_index(pa) % PV_LOCK_COUNT)
136 #endif
137 #define PV_LOCKPTR(pa)	((struct mtx *)(&pv_lock[PV_LOCK_IDX(pa)]))
138 #define PV_LOCK(pa)		mtx_lock(PV_LOCKPTR(pa))
139 #define PV_UNLOCK(pa)		mtx_unlock(PV_LOCKPTR(pa))
140 #define PV_LOCKASSERT(pa) 	mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
141 #define PV_PAGE_LOCK(m)		PV_LOCK(VM_PAGE_TO_PHYS(m))
142 #define PV_PAGE_UNLOCK(m)	PV_UNLOCK(VM_PAGE_TO_PHYS(m))
143 #define PV_PAGE_LOCKASSERT(m)	PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
144 
145 struct ofw_map {
146 	cell_t	om_va;
147 	cell_t	om_len;
148 	uint64_t om_pa;
149 	cell_t	om_mode;
150 };
151 
152 extern unsigned char _etext[];
153 extern unsigned char _end[];
154 
155 extern void *slbtrap, *slbtrapend;
156 
157 /*
158  * Map of physical memory regions.
159  */
160 static struct	mem_region *regions;
161 static struct	mem_region *pregions;
162 static struct	numa_mem_region *numa_pregions;
163 static u_int	phys_avail_count;
164 static int	regions_sz, pregions_sz, numapregions_sz;
165 
166 extern void bs_remap_earlyboot(void);
167 
168 /*
169  * Lock for the SLB tables.
170  */
171 struct mtx	moea64_slb_mutex;
172 
173 /*
174  * PTEG data.
175  */
176 u_long		moea64_pteg_count;
177 u_long		moea64_pteg_mask;
178 
179 /*
180  * PVO data.
181  */
182 
183 uma_zone_t	moea64_pvo_zone; /* zone for pvo entries */
184 
185 static struct	pvo_entry *moea64_bpvo_pool;
186 static int	moea64_bpvo_pool_index = 0;
187 static int	moea64_bpvo_pool_size = 327680;
188 TUNABLE_INT("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
189 SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
190     &moea64_bpvo_pool_index, 0, "");
191 
192 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
193 #ifdef __powerpc64__
194 #define	NVSIDS		(NPMAPS * 16)
195 #define VSID_HASHMASK	0xffffffffUL
196 #else
197 #define NVSIDS		NPMAPS
198 #define VSID_HASHMASK	0xfffffUL
199 #endif
200 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
201 
202 static boolean_t moea64_initialized = FALSE;
203 
204 #ifdef MOEA64_STATS
205 /*
206  * Statistics.
207  */
208 u_int	moea64_pte_valid = 0;
209 u_int	moea64_pte_overflow = 0;
210 u_int	moea64_pvo_entries = 0;
211 u_int	moea64_pvo_enter_calls = 0;
212 u_int	moea64_pvo_remove_calls = 0;
213 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
214     &moea64_pte_valid, 0, "");
215 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
216     &moea64_pte_overflow, 0, "");
217 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
218     &moea64_pvo_entries, 0, "");
219 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
220     &moea64_pvo_enter_calls, 0, "");
221 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
222     &moea64_pvo_remove_calls, 0, "");
223 #endif
224 
225 vm_offset_t	moea64_scratchpage_va[2];
226 struct pvo_entry *moea64_scratchpage_pvo[2];
227 struct	mtx	moea64_scratchpage_mtx;
228 
229 uint64_t 	moea64_large_page_mask = 0;
230 uint64_t	moea64_large_page_size = 0;
231 int		moea64_large_page_shift = 0;
232 
233 /*
234  * PVO calls.
235  */
236 static int	moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo,
237 		    struct pvo_head *pvo_head, struct pvo_entry **oldpvo);
238 static void	moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo);
239 static void	moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo);
240 static void	moea64_pvo_remove_from_page_locked(mmu_t mmu,
241 		    struct pvo_entry *pvo, vm_page_t m);
242 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
243 
244 /*
245  * Utility routines.
246  */
247 static boolean_t	moea64_query_bit(mmu_t, vm_page_t, uint64_t);
248 static u_int		moea64_clear_bit(mmu_t, vm_page_t, uint64_t);
249 static void		moea64_kremove(mmu_t, vm_offset_t);
250 static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
251 			    vm_paddr_t pa, vm_size_t sz);
252 static void		moea64_pmap_init_qpages(void);
253 
254 /*
255  * Kernel MMU interface
256  */
257 void moea64_clear_modify(mmu_t, vm_page_t);
258 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
259 void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
260     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
261 int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
262     u_int flags, int8_t psind);
263 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
264     vm_prot_t);
265 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
266 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
267 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
268 void moea64_init(mmu_t);
269 boolean_t moea64_is_modified(mmu_t, vm_page_t);
270 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
271 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
272 int moea64_ts_referenced(mmu_t, vm_page_t);
273 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
274 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
275 void moea64_page_init(mmu_t, vm_page_t);
276 int moea64_page_wired_mappings(mmu_t, vm_page_t);
277 void moea64_pinit(mmu_t, pmap_t);
278 void moea64_pinit0(mmu_t, pmap_t);
279 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
280 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
281 void moea64_qremove(mmu_t, vm_offset_t, int);
282 void moea64_release(mmu_t, pmap_t);
283 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
284 void moea64_remove_pages(mmu_t, pmap_t);
285 void moea64_remove_all(mmu_t, vm_page_t);
286 void moea64_remove_write(mmu_t, vm_page_t);
287 void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
288 void moea64_zero_page(mmu_t, vm_page_t);
289 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
290 void moea64_activate(mmu_t, struct thread *);
291 void moea64_deactivate(mmu_t, struct thread *);
292 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
293 void *moea64_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
294 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
295 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
296 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
297 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t ma);
298 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
299 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
300 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
301 void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz,
302     void **va);
303 void moea64_scan_init(mmu_t mmu);
304 vm_offset_t moea64_quick_enter_page(mmu_t mmu, vm_page_t m);
305 void moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr);
306 static int moea64_map_user_ptr(mmu_t mmu, pmap_t pm,
307     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
308 static int moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr,
309     int *is_user, vm_offset_t *decoded_addr);
310 static size_t moea64_scan_pmap(mmu_t mmu);
311 static void *moea64_dump_pmap_init(mmu_t mmu, unsigned blkpgs);
312 static void moea64_page_array_startup(mmu_t, long);
313 
314 
315 static mmu_method_t moea64_methods[] = {
316 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
317 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
318 	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
319 	MMUMETHOD(mmu_enter,		moea64_enter),
320 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
321 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
322 	MMUMETHOD(mmu_extract,		moea64_extract),
323 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
324 	MMUMETHOD(mmu_init,		moea64_init),
325 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
326 	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
327 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
328 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
329 	MMUMETHOD(mmu_map,     		moea64_map),
330 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
331 	MMUMETHOD(mmu_page_init,	moea64_page_init),
332 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
333 	MMUMETHOD(mmu_pinit,		moea64_pinit),
334 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
335 	MMUMETHOD(mmu_protect,		moea64_protect),
336 	MMUMETHOD(mmu_qenter,		moea64_qenter),
337 	MMUMETHOD(mmu_qremove,		moea64_qremove),
338 	MMUMETHOD(mmu_release,		moea64_release),
339 	MMUMETHOD(mmu_remove,		moea64_remove),
340 	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
341 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
342 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
343 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
344 	MMUMETHOD(mmu_unwire,		moea64_unwire),
345 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
346 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
347 	MMUMETHOD(mmu_activate,		moea64_activate),
348 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
349 	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
350 	MMUMETHOD(mmu_quick_enter_page, moea64_quick_enter_page),
351 	MMUMETHOD(mmu_quick_remove_page, moea64_quick_remove_page),
352 	MMUMETHOD(mmu_page_array_startup,	moea64_page_array_startup),
353 
354 	/* Internal interfaces */
355 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
356 	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
357 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
358 	MMUMETHOD(mmu_kextract,		moea64_kextract),
359 	MMUMETHOD(mmu_kenter,		moea64_kenter),
360 	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
361 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
362 	MMUMETHOD(mmu_scan_init,	moea64_scan_init),
363 	MMUMETHOD(mmu_scan_pmap,	moea64_scan_pmap),
364 	MMUMETHOD(mmu_dump_pmap_init,   moea64_dump_pmap_init),
365 	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
366 	MMUMETHOD(mmu_map_user_ptr,	moea64_map_user_ptr),
367 	MMUMETHOD(mmu_decode_kernel_ptr, moea64_decode_kernel_ptr),
368 
369 	{ 0, 0 }
370 };
371 
372 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
373 
374 static struct pvo_head *
375 vm_page_to_pvoh(vm_page_t m)
376 {
377 
378 	mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
379 	return (&m->md.mdpg_pvoh);
380 }
381 
382 static struct pvo_entry *
383 alloc_pvo_entry(int bootstrap)
384 {
385 	struct pvo_entry *pvo;
386 
387 	if (!moea64_initialized || bootstrap) {
388 		if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
389 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
390 			      moea64_bpvo_pool_index, moea64_bpvo_pool_size,
391 			      moea64_bpvo_pool_size * sizeof(struct pvo_entry));
392 		}
393 		pvo = &moea64_bpvo_pool[
394 		    atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
395 		bzero(pvo, sizeof(*pvo));
396 		pvo->pvo_vaddr = PVO_BOOTSTRAP;
397 	} else
398 		pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT | M_ZERO);
399 
400 	return (pvo);
401 }
402 
403 
404 static void
405 init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
406 {
407 	uint64_t vsid;
408 	uint64_t hash;
409 	int shift;
410 
411 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
412 
413 	pvo->pvo_pmap = pmap;
414 	va &= ~ADDR_POFF;
415 	pvo->pvo_vaddr |= va;
416 	vsid = va_to_vsid(pmap, va);
417 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
418 	    | (vsid << 16);
419 
420 	shift = (pvo->pvo_vaddr & PVO_LARGE) ? moea64_large_page_shift :
421 	    ADDR_PIDX_SHFT;
422 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
423 	pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
424 }
425 
426 static void
427 free_pvo_entry(struct pvo_entry *pvo)
428 {
429 
430 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
431 		uma_zfree(moea64_pvo_zone, pvo);
432 }
433 
434 void
435 moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
436 {
437 
438 	lpte->pte_hi = moea64_pte_vpn_from_pvo_vpn(pvo);
439 	lpte->pte_hi |= LPTE_VALID;
440 
441 	if (pvo->pvo_vaddr & PVO_LARGE)
442 		lpte->pte_hi |= LPTE_BIG;
443 	if (pvo->pvo_vaddr & PVO_WIRED)
444 		lpte->pte_hi |= LPTE_WIRED;
445 	if (pvo->pvo_vaddr & PVO_HID)
446 		lpte->pte_hi |= LPTE_HID;
447 
448 	lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
449 	if (pvo->pvo_pte.prot & VM_PROT_WRITE)
450 		lpte->pte_lo |= LPTE_BW;
451 	else
452 		lpte->pte_lo |= LPTE_BR;
453 
454 	if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
455 		lpte->pte_lo |= LPTE_NOEXEC;
456 }
457 
458 static __inline uint64_t
459 moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
460 {
461 	uint64_t pte_lo;
462 	int i;
463 
464 	if (ma != VM_MEMATTR_DEFAULT) {
465 		switch (ma) {
466 		case VM_MEMATTR_UNCACHEABLE:
467 			return (LPTE_I | LPTE_G);
468 		case VM_MEMATTR_CACHEABLE:
469 			return (LPTE_M);
470 		case VM_MEMATTR_WRITE_COMBINING:
471 		case VM_MEMATTR_WRITE_BACK:
472 		case VM_MEMATTR_PREFETCHABLE:
473 			return (LPTE_I);
474 		case VM_MEMATTR_WRITE_THROUGH:
475 			return (LPTE_W | LPTE_M);
476 		}
477 	}
478 
479 	/*
480 	 * Assume the page is cache inhibited and access is guarded unless
481 	 * it's in our available memory array.
482 	 */
483 	pte_lo = LPTE_I | LPTE_G;
484 	for (i = 0; i < pregions_sz; i++) {
485 		if ((pa >= pregions[i].mr_start) &&
486 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
487 			pte_lo &= ~(LPTE_I | LPTE_G);
488 			pte_lo |= LPTE_M;
489 			break;
490 		}
491 	}
492 
493 	return pte_lo;
494 }
495 
496 /*
497  * Quick sort callout for comparing memory regions.
498  */
499 static int	om_cmp(const void *a, const void *b);
500 
501 static int
502 om_cmp(const void *a, const void *b)
503 {
504 	const struct	ofw_map *mapa;
505 	const struct	ofw_map *mapb;
506 
507 	mapa = a;
508 	mapb = b;
509 	if (mapa->om_pa < mapb->om_pa)
510 		return (-1);
511 	else if (mapa->om_pa > mapb->om_pa)
512 		return (1);
513 	else
514 		return (0);
515 }
516 
517 static void
518 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
519 {
520 	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
521 	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
522 	struct pvo_entry *pvo;
523 	register_t	msr;
524 	vm_offset_t	off;
525 	vm_paddr_t	pa_base;
526 	int		i, j;
527 
528 	bzero(translations, sz);
529 	OF_getencprop(OF_finddevice("/"), "#address-cells", &acells,
530 	    sizeof(acells));
531 	if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1)
532 		panic("moea64_bootstrap: can't get ofw translations");
533 
534 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
535 	sz /= sizeof(cell_t);
536 	for (i = 0, j = 0; i < sz; j++) {
537 		translations[j].om_va = trans_cells[i++];
538 		translations[j].om_len = trans_cells[i++];
539 		translations[j].om_pa = trans_cells[i++];
540 		if (acells == 2) {
541 			translations[j].om_pa <<= 32;
542 			translations[j].om_pa |= trans_cells[i++];
543 		}
544 		translations[j].om_mode = trans_cells[i++];
545 	}
546 	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
547 	    i, sz));
548 
549 	sz = j;
550 	qsort(translations, sz, sizeof (*translations), om_cmp);
551 
552 	for (i = 0; i < sz; i++) {
553 		pa_base = translations[i].om_pa;
554 	      #ifndef __powerpc64__
555 		if ((translations[i].om_pa >> 32) != 0)
556 			panic("OFW translations above 32-bit boundary!");
557 	      #endif
558 
559 		if (pa_base % PAGE_SIZE)
560 			panic("OFW translation not page-aligned (phys)!");
561 		if (translations[i].om_va % PAGE_SIZE)
562 			panic("OFW translation not page-aligned (virt)!");
563 
564 		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
565 		    pa_base, translations[i].om_va, translations[i].om_len);
566 
567 		/* Now enter the pages for this mapping */
568 
569 		DISABLE_TRANS(msr);
570 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
571 			/* If this address is direct-mapped, skip remapping */
572 			if (hw_direct_map &&
573 			    translations[i].om_va == PHYS_TO_DMAP(pa_base) &&
574 			    moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT)
575  			    == LPTE_M)
576 				continue;
577 
578 			PMAP_LOCK(kernel_pmap);
579 			pvo = moea64_pvo_find_va(kernel_pmap,
580 			    translations[i].om_va + off);
581 			PMAP_UNLOCK(kernel_pmap);
582 			if (pvo != NULL)
583 				continue;
584 
585 			moea64_kenter(mmup, translations[i].om_va + off,
586 			    pa_base + off);
587 		}
588 		ENABLE_TRANS(msr);
589 	}
590 }
591 
592 #ifdef __powerpc64__
593 static void
594 moea64_probe_large_page(void)
595 {
596 	uint16_t pvr = mfpvr() >> 16;
597 
598 	switch (pvr) {
599 	case IBM970:
600 	case IBM970FX:
601 	case IBM970MP:
602 		powerpc_sync(); isync();
603 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
604 		powerpc_sync(); isync();
605 
606 		/* FALLTHROUGH */
607 	default:
608 		if (moea64_large_page_size == 0) {
609 			moea64_large_page_size = 0x1000000; /* 16 MB */
610 			moea64_large_page_shift = 24;
611 		}
612 	}
613 
614 	moea64_large_page_mask = moea64_large_page_size - 1;
615 }
616 
617 static void
618 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
619 {
620 	struct slb *cache;
621 	struct slb entry;
622 	uint64_t esid, slbe;
623 	uint64_t i;
624 
625 	cache = PCPU_GET(aim.slb);
626 	esid = va >> ADDR_SR_SHFT;
627 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
628 
629 	for (i = 0; i < 64; i++) {
630 		if (cache[i].slbe == (slbe | i))
631 			return;
632 	}
633 
634 	entry.slbe = slbe;
635 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
636 	if (large)
637 		entry.slbv |= SLBV_L;
638 
639 	slb_insert_kernel(entry.slbe, entry.slbv);
640 }
641 #endif
642 
643 static int
644 moea64_kenter_large(mmu_t mmup, vm_offset_t va, vm_paddr_t pa, uint64_t attr, int bootstrap)
645 {
646 	struct pvo_entry *pvo;
647 	uint64_t pte_lo;
648 	int error;
649 
650 	pte_lo = LPTE_M;
651 	pte_lo |= attr;
652 
653 	pvo = alloc_pvo_entry(bootstrap);
654 	pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
655 	init_pvo_entry(pvo, kernel_pmap, va);
656 
657 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
658 	    VM_PROT_EXECUTE;
659 	pvo->pvo_pte.pa = pa | pte_lo;
660 	error = moea64_pvo_enter(mmup, pvo, NULL, NULL);
661 	if (error != 0)
662 		panic("Error %d inserting large page\n", error);
663 	return (0);
664 }
665 
666 static void
667 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
668     vm_offset_t kernelend)
669 {
670 	register_t msr;
671 	vm_paddr_t pa, pkernelstart, pkernelend;
672 	vm_offset_t size, off;
673 	uint64_t pte_lo;
674 	int i;
675 
676 	if (moea64_large_page_size == 0)
677 		hw_direct_map = 0;
678 
679 	DISABLE_TRANS(msr);
680 	if (hw_direct_map) {
681 		PMAP_LOCK(kernel_pmap);
682 		for (i = 0; i < pregions_sz; i++) {
683 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
684 		     pregions[i].mr_size; pa += moea64_large_page_size) {
685 			pte_lo = LPTE_M;
686 			if (pa & moea64_large_page_mask) {
687 				pa &= moea64_large_page_mask;
688 				pte_lo |= LPTE_G;
689 			}
690 			if (pa + moea64_large_page_size >
691 			    pregions[i].mr_start + pregions[i].mr_size)
692 				pte_lo |= LPTE_G;
693 
694 			moea64_kenter_large(mmup, PHYS_TO_DMAP(pa), pa, pte_lo, 1);
695 		  }
696 		}
697 		PMAP_UNLOCK(kernel_pmap);
698 	}
699 
700 	/*
701 	 * Make sure the kernel and BPVO pool stay mapped on systems either
702 	 * without a direct map or on which the kernel is not already executing
703 	 * out of the direct-mapped region.
704 	 */
705 	if (kernelstart < DMAP_BASE_ADDRESS) {
706 		/*
707 		 * For pre-dmap execution, we need to use identity mapping
708 		 * because we will be operating with the mmu on but in the
709 		 * wrong address configuration until we __restartkernel().
710 		 */
711 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
712 		    pa += PAGE_SIZE)
713 			moea64_kenter(mmup, pa, pa);
714 	} else if (!hw_direct_map) {
715 		pkernelstart = kernelstart & ~DMAP_BASE_ADDRESS;
716 		pkernelend = kernelend & ~DMAP_BASE_ADDRESS;
717 		for (pa = pkernelstart & ~PAGE_MASK; pa < pkernelend;
718 		    pa += PAGE_SIZE)
719 			moea64_kenter(mmup, pa | DMAP_BASE_ADDRESS, pa);
720 	}
721 
722 	if (!hw_direct_map) {
723 		size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
724 		off = (vm_offset_t)(moea64_bpvo_pool);
725 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
726 			moea64_kenter(mmup, pa, pa);
727 
728 		/* Map exception vectors */
729 		for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE)
730 			moea64_kenter(mmup, pa | DMAP_BASE_ADDRESS, pa);
731 	}
732 	ENABLE_TRANS(msr);
733 
734 	/*
735 	 * Allow user to override unmapped_buf_allowed for testing.
736 	 * XXXKIB Only direct map implementation was tested.
737 	 */
738 	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
739 	    &unmapped_buf_allowed))
740 		unmapped_buf_allowed = hw_direct_map;
741 }
742 
743 /* Quick sort callout for comparing physical addresses. */
744 static int
745 pa_cmp(const void *a, const void *b)
746 {
747 	const vm_paddr_t *pa = a, *pb = b;
748 
749 	if (*pa < *pb)
750 		return (-1);
751 	else if (*pa > *pb)
752 		return (1);
753 	else
754 		return (0);
755 }
756 
757 void
758 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
759 {
760 	int		i, j;
761 	vm_size_t	physsz, hwphyssz;
762 	vm_paddr_t	kernelphysstart, kernelphysend;
763 	int		rm_pavail;
764 
765 #ifndef __powerpc64__
766 	/* We don't have a direct map since there is no BAT */
767 	hw_direct_map = 0;
768 
769 	/* Make sure battable is zero, since we have no BAT */
770 	for (i = 0; i < 16; i++) {
771 		battable[i].batu = 0;
772 		battable[i].batl = 0;
773 	}
774 #else
775 	moea64_probe_large_page();
776 
777 	/* Use a direct map if we have large page support */
778 	if (moea64_large_page_size > 0)
779 		hw_direct_map = 1;
780 	else
781 		hw_direct_map = 0;
782 
783 	/* Install trap handlers for SLBs */
784 	bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap);
785 	bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap);
786 	__syncicache((void *)EXC_DSE, 0x80);
787 	__syncicache((void *)EXC_ISE, 0x80);
788 #endif
789 
790 	kernelphysstart = kernelstart & ~DMAP_BASE_ADDRESS;
791 	kernelphysend = kernelend & ~DMAP_BASE_ADDRESS;
792 
793 	/* Get physical memory regions from firmware */
794 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
795 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
796 
797 	if (PHYS_AVAIL_ENTRIES < regions_sz)
798 		panic("moea64_bootstrap: phys_avail too small");
799 
800 	phys_avail_count = 0;
801 	physsz = 0;
802 	hwphyssz = 0;
803 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
804 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
805 		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
806 		    regions[i].mr_start, regions[i].mr_start +
807 		    regions[i].mr_size, regions[i].mr_size);
808 		if (hwphyssz != 0 &&
809 		    (physsz + regions[i].mr_size) >= hwphyssz) {
810 			if (physsz < hwphyssz) {
811 				phys_avail[j] = regions[i].mr_start;
812 				phys_avail[j + 1] = regions[i].mr_start +
813 				    hwphyssz - physsz;
814 				physsz = hwphyssz;
815 				phys_avail_count++;
816 				dump_avail[j] = phys_avail[j];
817 				dump_avail[j + 1] = phys_avail[j + 1];
818 			}
819 			break;
820 		}
821 		phys_avail[j] = regions[i].mr_start;
822 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
823 		phys_avail_count++;
824 		physsz += regions[i].mr_size;
825 		dump_avail[j] = phys_avail[j];
826 		dump_avail[j + 1] = phys_avail[j + 1];
827 	}
828 
829 	/* Check for overlap with the kernel and exception vectors */
830 	rm_pavail = 0;
831 	for (j = 0; j < 2*phys_avail_count; j+=2) {
832 		if (phys_avail[j] < EXC_LAST)
833 			phys_avail[j] += EXC_LAST;
834 
835 		if (phys_avail[j] >= kernelphysstart &&
836 		    phys_avail[j+1] <= kernelphysend) {
837 			phys_avail[j] = phys_avail[j+1] = ~0;
838 			rm_pavail++;
839 			continue;
840 		}
841 
842 		if (kernelphysstart >= phys_avail[j] &&
843 		    kernelphysstart < phys_avail[j+1]) {
844 			if (kernelphysend < phys_avail[j+1]) {
845 				phys_avail[2*phys_avail_count] =
846 				    (kernelphysend & ~PAGE_MASK) + PAGE_SIZE;
847 				phys_avail[2*phys_avail_count + 1] =
848 				    phys_avail[j+1];
849 				phys_avail_count++;
850 			}
851 
852 			phys_avail[j+1] = kernelphysstart & ~PAGE_MASK;
853 		}
854 
855 		if (kernelphysend >= phys_avail[j] &&
856 		    kernelphysend < phys_avail[j+1]) {
857 			if (kernelphysstart > phys_avail[j]) {
858 				phys_avail[2*phys_avail_count] = phys_avail[j];
859 				phys_avail[2*phys_avail_count + 1] =
860 				    kernelphysstart & ~PAGE_MASK;
861 				phys_avail_count++;
862 			}
863 
864 			phys_avail[j] = (kernelphysend & ~PAGE_MASK) +
865 			    PAGE_SIZE;
866 		}
867 	}
868 
869 	/* Remove physical available regions marked for removal (~0) */
870 	if (rm_pavail) {
871 		qsort(phys_avail, 2*phys_avail_count, sizeof(phys_avail[0]),
872 			pa_cmp);
873 		phys_avail_count -= rm_pavail;
874 		for (i = 2*phys_avail_count;
875 		     i < 2*(phys_avail_count + rm_pavail); i+=2)
876 			phys_avail[i] = phys_avail[i+1] = 0;
877 	}
878 
879 	physmem = btoc(physsz);
880 
881 #ifdef PTEGCOUNT
882 	moea64_pteg_count = PTEGCOUNT;
883 #else
884 	moea64_pteg_count = 0x1000;
885 
886 	while (moea64_pteg_count < physmem)
887 		moea64_pteg_count <<= 1;
888 
889 	moea64_pteg_count >>= 1;
890 #endif /* PTEGCOUNT */
891 }
892 
893 void
894 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
895 {
896 	int		i;
897 
898 	/*
899 	 * Set PTEG mask
900 	 */
901 	moea64_pteg_mask = moea64_pteg_count - 1;
902 
903 	/*
904 	 * Initialize SLB table lock and page locks
905 	 */
906 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
907 	for (i = 0; i < PV_LOCK_COUNT; i++)
908 		mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
909 
910 	/*
911 	 * Initialise the bootstrap pvo pool.
912 	 */
913 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
914 		moea64_bpvo_pool_size*sizeof(struct pvo_entry), PAGE_SIZE);
915 	moea64_bpvo_pool_index = 0;
916 
917 	/* Place at address usable through the direct map */
918 	if (hw_direct_map)
919 		moea64_bpvo_pool = (struct pvo_entry *)
920 		    PHYS_TO_DMAP((uintptr_t)moea64_bpvo_pool);
921 
922 	/*
923 	 * Make sure kernel vsid is allocated as well as VSID 0.
924 	 */
925 	#ifndef __powerpc64__
926 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
927 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
928 	moea64_vsid_bitmap[0] |= 1;
929 	#endif
930 
931 	/*
932 	 * Initialize the kernel pmap (which is statically allocated).
933 	 */
934 	#ifdef __powerpc64__
935 	for (i = 0; i < 64; i++) {
936 		pcpup->pc_aim.slb[i].slbv = 0;
937 		pcpup->pc_aim.slb[i].slbe = 0;
938 	}
939 	#else
940 	for (i = 0; i < 16; i++)
941 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
942 	#endif
943 
944 	kernel_pmap->pmap_phys = kernel_pmap;
945 	CPU_FILL(&kernel_pmap->pm_active);
946 	RB_INIT(&kernel_pmap->pmap_pvo);
947 
948 	PMAP_LOCK_INIT(kernel_pmap);
949 
950 	/*
951 	 * Now map in all the other buffers we allocated earlier
952 	 */
953 
954 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
955 }
956 
957 void
958 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
959 {
960 	ihandle_t	mmui;
961 	phandle_t	chosen;
962 	phandle_t	mmu;
963 	ssize_t		sz;
964 	int		i;
965 	vm_offset_t	pa, va;
966 	void		*dpcpu;
967 
968 	/*
969 	 * Set up the Open Firmware pmap and add its mappings if not in real
970 	 * mode.
971 	 */
972 
973 	chosen = OF_finddevice("/chosen");
974 	if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) {
975 		mmu = OF_instance_to_package(mmui);
976 		if (mmu == -1 ||
977 		    (sz = OF_getproplen(mmu, "translations")) == -1)
978 			sz = 0;
979 		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
980 			panic("moea64_bootstrap: too many ofw translations");
981 
982 		if (sz > 0)
983 			moea64_add_ofw_mappings(mmup, mmu, sz);
984 	}
985 
986 	/*
987 	 * Calculate the last available physical address.
988 	 */
989 	Maxmem = 0;
990 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
991 		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
992 
993 	/*
994 	 * Initialize MMU.
995 	 */
996 	MMU_CPU_BOOTSTRAP(mmup,0);
997 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
998 	pmap_bootstrapped++;
999 
1000 	/*
1001 	 * Set the start and end of kva.
1002 	 */
1003 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
1004 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
1005 
1006 	/*
1007 	 * Map the entire KVA range into the SLB. We must not fault there.
1008 	 */
1009 	#ifdef __powerpc64__
1010 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
1011 		moea64_bootstrap_slb_prefault(va, 0);
1012 	#endif
1013 
1014 	/*
1015 	 * Remap any early IO mappings (console framebuffer, etc.)
1016 	 */
1017 	bs_remap_earlyboot();
1018 
1019 	/*
1020 	 * Figure out how far we can extend virtual_end into segment 16
1021 	 * without running into existing mappings. Segment 16 is guaranteed
1022 	 * to contain neither RAM nor devices (at least on Apple hardware),
1023 	 * but will generally contain some OFW mappings we should not
1024 	 * step on.
1025 	 */
1026 
1027 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
1028 	PMAP_LOCK(kernel_pmap);
1029 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
1030 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
1031 		virtual_end += PAGE_SIZE;
1032 	PMAP_UNLOCK(kernel_pmap);
1033 	#endif
1034 
1035 	/*
1036 	 * Allocate a kernel stack with a guard page for thread0 and map it
1037 	 * into the kernel page map.
1038 	 */
1039 	pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
1040 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1041 	virtual_avail = va + kstack_pages * PAGE_SIZE;
1042 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
1043 	thread0.td_kstack = va;
1044 	thread0.td_kstack_pages = kstack_pages;
1045 	for (i = 0; i < kstack_pages; i++) {
1046 		moea64_kenter(mmup, va, pa);
1047 		pa += PAGE_SIZE;
1048 		va += PAGE_SIZE;
1049 	}
1050 
1051 	/*
1052 	 * Allocate virtual address space for the message buffer.
1053 	 */
1054 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
1055 	msgbufp = (struct msgbuf *)virtual_avail;
1056 	va = virtual_avail;
1057 	virtual_avail += round_page(msgbufsize);
1058 	while (va < virtual_avail) {
1059 		moea64_kenter(mmup, va, pa);
1060 		pa += PAGE_SIZE;
1061 		va += PAGE_SIZE;
1062 	}
1063 
1064 	/*
1065 	 * Allocate virtual address space for the dynamic percpu area.
1066 	 */
1067 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
1068 	dpcpu = (void *)virtual_avail;
1069 	va = virtual_avail;
1070 	virtual_avail += DPCPU_SIZE;
1071 	while (va < virtual_avail) {
1072 		moea64_kenter(mmup, va, pa);
1073 		pa += PAGE_SIZE;
1074 		va += PAGE_SIZE;
1075 	}
1076 	dpcpu_init(dpcpu, curcpu);
1077 
1078 	crashdumpmap = (caddr_t)virtual_avail;
1079 	virtual_avail += MAXDUMPPGS * PAGE_SIZE;
1080 
1081 	/*
1082 	 * Allocate some things for page zeroing. We put this directly
1083 	 * in the page table and use MOEA64_PTE_REPLACE to avoid any
1084 	 * of the PVO book-keeping or other parts of the VM system
1085 	 * from even knowing that this hack exists.
1086 	 */
1087 
1088 	if (!hw_direct_map) {
1089 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
1090 		    MTX_DEF);
1091 		for (i = 0; i < 2; i++) {
1092 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
1093 			virtual_end -= PAGE_SIZE;
1094 
1095 			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
1096 
1097 			PMAP_LOCK(kernel_pmap);
1098 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
1099 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
1100 			PMAP_UNLOCK(kernel_pmap);
1101 		}
1102 	}
1103 
1104 	numa_mem_regions(&numa_pregions, &numapregions_sz);
1105 }
1106 
1107 static void
1108 moea64_pmap_init_qpages(void)
1109 {
1110 	struct pcpu *pc;
1111 	int i;
1112 
1113 	if (hw_direct_map)
1114 		return;
1115 
1116 	CPU_FOREACH(i) {
1117 		pc = pcpu_find(i);
1118 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1119 		if (pc->pc_qmap_addr == 0)
1120 			panic("pmap_init_qpages: unable to allocate KVA");
1121 		PMAP_LOCK(kernel_pmap);
1122 		pc->pc_aim.qmap_pvo =
1123 		    moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr);
1124 		PMAP_UNLOCK(kernel_pmap);
1125 		mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF);
1126 	}
1127 }
1128 
1129 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL);
1130 
1131 /*
1132  * Activate a user pmap.  This mostly involves setting some non-CPU
1133  * state.
1134  */
1135 void
1136 moea64_activate(mmu_t mmu, struct thread *td)
1137 {
1138 	pmap_t	pm;
1139 
1140 	pm = &td->td_proc->p_vmspace->vm_pmap;
1141 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1142 
1143 	#ifdef __powerpc64__
1144 	PCPU_SET(aim.userslb, pm->pm_slb);
1145 	__asm __volatile("slbmte %0, %1; isync" ::
1146 	    "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
1147 	#else
1148 	PCPU_SET(curpmap, pm->pmap_phys);
1149 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1150 	#endif
1151 }
1152 
1153 void
1154 moea64_deactivate(mmu_t mmu, struct thread *td)
1155 {
1156 	pmap_t	pm;
1157 
1158 	__asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
1159 
1160 	pm = &td->td_proc->p_vmspace->vm_pmap;
1161 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1162 	#ifdef __powerpc64__
1163 	PCPU_SET(aim.userslb, NULL);
1164 	#else
1165 	PCPU_SET(curpmap, NULL);
1166 	#endif
1167 }
1168 
1169 void
1170 moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1171 {
1172 	struct	pvo_entry key, *pvo;
1173 	vm_page_t m;
1174 	int64_t	refchg;
1175 
1176 	key.pvo_vaddr = sva;
1177 	PMAP_LOCK(pm);
1178 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1179 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1180 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1181 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1182 			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1183 			    pvo);
1184 		pvo->pvo_vaddr &= ~PVO_WIRED;
1185 		refchg = MOEA64_PTE_REPLACE(mmu, pvo, 0 /* No invalidation */);
1186 		if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1187 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1188 			if (refchg < 0)
1189 				refchg = LPTE_CHG;
1190 			m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1191 
1192 			refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
1193 			if (refchg & LPTE_CHG)
1194 				vm_page_dirty(m);
1195 			if (refchg & LPTE_REF)
1196 				vm_page_aflag_set(m, PGA_REFERENCED);
1197 		}
1198 		pm->pm_stats.wired_count--;
1199 	}
1200 	PMAP_UNLOCK(pm);
1201 }
1202 
1203 /*
1204  * This goes through and sets the physical address of our
1205  * special scratch PTE to the PA we want to zero or copy. Because
1206  * of locking issues (this can get called in pvo_enter() by
1207  * the UMA allocator), we can't use most other utility functions here
1208  */
1209 
1210 static __inline
1211 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_paddr_t pa)
1212 {
1213 	struct pvo_entry *pvo;
1214 
1215 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1216 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1217 
1218 	pvo = moea64_scratchpage_pvo[which];
1219 	PMAP_LOCK(pvo->pvo_pmap);
1220 	pvo->pvo_pte.pa =
1221 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1222 	MOEA64_PTE_REPLACE(mmup, pvo, MOEA64_PTE_INVALIDATE);
1223 	PMAP_UNLOCK(pvo->pvo_pmap);
1224 	isync();
1225 }
1226 
1227 void
1228 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1229 {
1230 	vm_offset_t	dst;
1231 	vm_offset_t	src;
1232 
1233 	dst = VM_PAGE_TO_PHYS(mdst);
1234 	src = VM_PAGE_TO_PHYS(msrc);
1235 
1236 	if (hw_direct_map) {
1237 		bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst),
1238 		    PAGE_SIZE);
1239 	} else {
1240 		mtx_lock(&moea64_scratchpage_mtx);
1241 
1242 		moea64_set_scratchpage_pa(mmu, 0, src);
1243 		moea64_set_scratchpage_pa(mmu, 1, dst);
1244 
1245 		bcopy((void *)moea64_scratchpage_va[0],
1246 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1247 
1248 		mtx_unlock(&moea64_scratchpage_mtx);
1249 	}
1250 }
1251 
1252 static inline void
1253 moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1254     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1255 {
1256 	void *a_cp, *b_cp;
1257 	vm_offset_t a_pg_offset, b_pg_offset;
1258 	int cnt;
1259 
1260 	while (xfersize > 0) {
1261 		a_pg_offset = a_offset & PAGE_MASK;
1262 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1263 		a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1264 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
1265 		    a_pg_offset;
1266 		b_pg_offset = b_offset & PAGE_MASK;
1267 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1268 		b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1269 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
1270 		    b_pg_offset;
1271 		bcopy(a_cp, b_cp, cnt);
1272 		a_offset += cnt;
1273 		b_offset += cnt;
1274 		xfersize -= cnt;
1275 	}
1276 }
1277 
1278 static inline void
1279 moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1280     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1281 {
1282 	void *a_cp, *b_cp;
1283 	vm_offset_t a_pg_offset, b_pg_offset;
1284 	int cnt;
1285 
1286 	mtx_lock(&moea64_scratchpage_mtx);
1287 	while (xfersize > 0) {
1288 		a_pg_offset = a_offset & PAGE_MASK;
1289 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1290 		moea64_set_scratchpage_pa(mmu, 0,
1291 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1292 		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1293 		b_pg_offset = b_offset & PAGE_MASK;
1294 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1295 		moea64_set_scratchpage_pa(mmu, 1,
1296 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1297 		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1298 		bcopy(a_cp, b_cp, cnt);
1299 		a_offset += cnt;
1300 		b_offset += cnt;
1301 		xfersize -= cnt;
1302 	}
1303 	mtx_unlock(&moea64_scratchpage_mtx);
1304 }
1305 
1306 void
1307 moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1308     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1309 {
1310 
1311 	if (hw_direct_map) {
1312 		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1313 		    xfersize);
1314 	} else {
1315 		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1316 		    xfersize);
1317 	}
1318 }
1319 
1320 void
1321 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1322 {
1323 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1324 
1325 	if (size + off > PAGE_SIZE)
1326 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1327 
1328 	if (hw_direct_map) {
1329 		bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size);
1330 	} else {
1331 		mtx_lock(&moea64_scratchpage_mtx);
1332 		moea64_set_scratchpage_pa(mmu, 0, pa);
1333 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1334 		mtx_unlock(&moea64_scratchpage_mtx);
1335 	}
1336 }
1337 
1338 /*
1339  * Zero a page of physical memory by temporarily mapping it
1340  */
1341 void
1342 moea64_zero_page(mmu_t mmu, vm_page_t m)
1343 {
1344 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1345 	vm_offset_t va, off;
1346 
1347 	if (!hw_direct_map) {
1348 		mtx_lock(&moea64_scratchpage_mtx);
1349 
1350 		moea64_set_scratchpage_pa(mmu, 0, pa);
1351 		va = moea64_scratchpage_va[0];
1352 	} else {
1353 		va = PHYS_TO_DMAP(pa);
1354 	}
1355 
1356 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1357 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1358 
1359 	if (!hw_direct_map)
1360 		mtx_unlock(&moea64_scratchpage_mtx);
1361 }
1362 
1363 vm_offset_t
1364 moea64_quick_enter_page(mmu_t mmu, vm_page_t m)
1365 {
1366 	struct pvo_entry *pvo;
1367 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1368 
1369 	if (hw_direct_map)
1370 		return (PHYS_TO_DMAP(pa));
1371 
1372 	/*
1373  	 * MOEA64_PTE_REPLACE does some locking, so we can't just grab
1374 	 * a critical section and access the PCPU data like on i386.
1375 	 * Instead, pin the thread and grab the PCPU lock to prevent
1376 	 * a preempting thread from using the same PCPU data.
1377 	 */
1378 	sched_pin();
1379 
1380 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED);
1381 	pvo = PCPU_GET(aim.qmap_pvo);
1382 
1383 	mtx_lock(PCPU_PTR(aim.qmap_lock));
1384 	pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) |
1385 	    (uint64_t)pa;
1386 	MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_INVALIDATE);
1387 	isync();
1388 
1389 	return (PCPU_GET(qmap_addr));
1390 }
1391 
1392 void
1393 moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr)
1394 {
1395 	if (hw_direct_map)
1396 		return;
1397 
1398 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED);
1399 	KASSERT(PCPU_GET(qmap_addr) == addr,
1400 	    ("moea64_quick_remove_page: invalid address"));
1401 	mtx_unlock(PCPU_PTR(aim.qmap_lock));
1402 	sched_unpin();
1403 }
1404 
1405 /*
1406  * Map the given physical page at the specified virtual address in the
1407  * target pmap with the protection requested.  If specified the page
1408  * will be wired down.
1409  */
1410 
1411 int
1412 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1413     vm_prot_t prot, u_int flags, int8_t psind)
1414 {
1415 	struct		pvo_entry *pvo, *oldpvo;
1416 	struct		pvo_head *pvo_head;
1417 	uint64_t	pte_lo;
1418 	int		error;
1419 
1420 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1421 		if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1422 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1423 		else
1424 			VM_OBJECT_ASSERT_LOCKED(m->object);
1425 	}
1426 
1427 	pvo = alloc_pvo_entry(0);
1428 	if (pvo == NULL)
1429 		return (KERN_RESOURCE_SHORTAGE);
1430 	pvo->pvo_pmap = NULL; /* to be filled in later */
1431 	pvo->pvo_pte.prot = prot;
1432 
1433 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1434 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | pte_lo;
1435 
1436 	if ((flags & PMAP_ENTER_WIRED) != 0)
1437 		pvo->pvo_vaddr |= PVO_WIRED;
1438 
1439 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1440 		pvo_head = NULL;
1441 	} else {
1442 		pvo_head = &m->md.mdpg_pvoh;
1443 		pvo->pvo_vaddr |= PVO_MANAGED;
1444 	}
1445 
1446 	PV_PAGE_LOCK(m);
1447 	PMAP_LOCK(pmap);
1448 	if (pvo->pvo_pmap == NULL)
1449 		init_pvo_entry(pvo, pmap, va);
1450 	if (prot & VM_PROT_WRITE)
1451 		if (pmap_bootstrapped &&
1452 		    (m->oflags & VPO_UNMANAGED) == 0)
1453 			vm_page_aflag_set(m, PGA_WRITEABLE);
1454 
1455 	error = moea64_pvo_enter(mmu, pvo, pvo_head, &oldpvo);
1456 	if (error == EEXIST) {
1457 		if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
1458 		    oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
1459 		    oldpvo->pvo_pte.prot == prot) {
1460 			/* Identical mapping already exists */
1461 			error = 0;
1462 
1463 			/* If not in page table, reinsert it */
1464 			if (MOEA64_PTE_SYNCH(mmu, oldpvo) < 0) {
1465 				STAT_MOEA64(moea64_pte_overflow--);
1466 				MOEA64_PTE_INSERT(mmu, oldpvo);
1467 			}
1468 
1469 			/* Then just clean up and go home */
1470 			PV_PAGE_UNLOCK(m);
1471 			PMAP_UNLOCK(pmap);
1472 			free_pvo_entry(pvo);
1473 			goto out;
1474 		} else {
1475 			/* Otherwise, need to kill it first */
1476 			KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
1477 			    "mapping does not match new mapping"));
1478 			moea64_pvo_remove_from_pmap(mmu, oldpvo);
1479 			moea64_pvo_enter(mmu, pvo, pvo_head, NULL);
1480 		}
1481 	}
1482 	PMAP_UNLOCK(pmap);
1483 	PV_PAGE_UNLOCK(m);
1484 
1485 	/* Free any dead pages */
1486 	if (error == EEXIST) {
1487 		moea64_pvo_remove_from_page(mmu, oldpvo);
1488 		free_pvo_entry(oldpvo);
1489 	}
1490 
1491 out:
1492 	/*
1493 	 * Flush the page from the instruction cache if this page is
1494 	 * mapped executable and cacheable.
1495 	 */
1496 	if (pmap != kernel_pmap && (m->a.flags & PGA_EXECUTABLE) == 0 &&
1497 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1498 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1499 		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1500 	}
1501 	return (KERN_SUCCESS);
1502 }
1503 
1504 static void
1505 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1506     vm_size_t sz)
1507 {
1508 
1509 	/*
1510 	 * This is much trickier than on older systems because
1511 	 * we can't sync the icache on physical addresses directly
1512 	 * without a direct map. Instead we check a couple of cases
1513 	 * where the memory is already mapped in and, failing that,
1514 	 * use the same trick we use for page zeroing to create
1515 	 * a temporary mapping for this physical address.
1516 	 */
1517 
1518 	if (!pmap_bootstrapped) {
1519 		/*
1520 		 * If PMAP is not bootstrapped, we are likely to be
1521 		 * in real mode.
1522 		 */
1523 		__syncicache((void *)(uintptr_t)pa, sz);
1524 	} else if (pmap == kernel_pmap) {
1525 		__syncicache((void *)va, sz);
1526 	} else if (hw_direct_map) {
1527 		__syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz);
1528 	} else {
1529 		/* Use the scratch page to set up a temp mapping */
1530 
1531 		mtx_lock(&moea64_scratchpage_mtx);
1532 
1533 		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1534 		__syncicache((void *)(moea64_scratchpage_va[1] +
1535 		    (va & ADDR_POFF)), sz);
1536 
1537 		mtx_unlock(&moea64_scratchpage_mtx);
1538 	}
1539 }
1540 
1541 /*
1542  * Maps a sequence of resident pages belonging to the same object.
1543  * The sequence begins with the given page m_start.  This page is
1544  * mapped at the given virtual address start.  Each subsequent page is
1545  * mapped at a virtual address that is offset from start by the same
1546  * amount as the page is offset from m_start within the object.  The
1547  * last page in the sequence is the page with the largest offset from
1548  * m_start that can be mapped at a virtual address less than the given
1549  * virtual address end.  Not every virtual page between start and end
1550  * is mapped; only those for which a resident page exists with the
1551  * corresponding offset from m_start are mapped.
1552  */
1553 void
1554 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1555     vm_page_t m_start, vm_prot_t prot)
1556 {
1557 	vm_page_t m;
1558 	vm_pindex_t diff, psize;
1559 
1560 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1561 
1562 	psize = atop(end - start);
1563 	m = m_start;
1564 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1565 		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1566 		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP |
1567 		    PMAP_ENTER_QUICK_LOCKED, 0);
1568 		m = TAILQ_NEXT(m, listq);
1569 	}
1570 }
1571 
1572 void
1573 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1574     vm_prot_t prot)
1575 {
1576 
1577 	moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1578 	    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0);
1579 }
1580 
1581 vm_paddr_t
1582 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1583 {
1584 	struct	pvo_entry *pvo;
1585 	vm_paddr_t pa;
1586 
1587 	PMAP_LOCK(pm);
1588 	pvo = moea64_pvo_find_va(pm, va);
1589 	if (pvo == NULL)
1590 		pa = 0;
1591 	else
1592 		pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1593 	PMAP_UNLOCK(pm);
1594 
1595 	return (pa);
1596 }
1597 
1598 /*
1599  * Atomically extract and hold the physical page with the given
1600  * pmap and virtual address pair if that mapping permits the given
1601  * protection.
1602  */
1603 vm_page_t
1604 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1605 {
1606 	struct	pvo_entry *pvo;
1607 	vm_page_t m;
1608 
1609 	m = NULL;
1610 	PMAP_LOCK(pmap);
1611 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1612 	if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
1613 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1614 		if (!vm_page_wire_mapped(m))
1615 			m = NULL;
1616 	}
1617 	PMAP_UNLOCK(pmap);
1618 	return (m);
1619 }
1620 
1621 static mmu_t installed_mmu;
1622 
1623 static void *
1624 moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
1625     uint8_t *flags, int wait)
1626 {
1627 	struct pvo_entry *pvo;
1628         vm_offset_t va;
1629         vm_page_t m;
1630         int needed_lock;
1631 
1632 	/*
1633 	 * This entire routine is a horrible hack to avoid bothering kmem
1634 	 * for new KVA addresses. Because this can get called from inside
1635 	 * kmem allocation routines, calling kmem for a new address here
1636 	 * can lead to multiply locking non-recursive mutexes.
1637 	 */
1638 
1639 	*flags = UMA_SLAB_PRIV;
1640 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1641 
1642 	m = vm_page_alloc_domain(NULL, 0, domain,
1643 	    malloc2vm_flags(wait) | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
1644 	if (m == NULL)
1645 		return (NULL);
1646 
1647 	va = VM_PAGE_TO_PHYS(m);
1648 
1649 	pvo = alloc_pvo_entry(1 /* bootstrap */);
1650 
1651 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
1652 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
1653 
1654 	if (needed_lock)
1655 		PMAP_LOCK(kernel_pmap);
1656 
1657 	init_pvo_entry(pvo, kernel_pmap, va);
1658 	pvo->pvo_vaddr |= PVO_WIRED;
1659 
1660 	moea64_pvo_enter(installed_mmu, pvo, NULL, NULL);
1661 
1662 	if (needed_lock)
1663 		PMAP_UNLOCK(kernel_pmap);
1664 
1665 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1666                 bzero((void *)va, PAGE_SIZE);
1667 
1668 	return (void *)va;
1669 }
1670 
1671 extern int elf32_nxstack;
1672 
1673 void
1674 moea64_init(mmu_t mmu)
1675 {
1676 
1677 	CTR0(KTR_PMAP, "moea64_init");
1678 
1679 	moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1680 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1681 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1682 
1683 	if (!hw_direct_map) {
1684 		installed_mmu = mmu;
1685 		uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc);
1686 	}
1687 
1688 #ifdef COMPAT_FREEBSD32
1689 	elf32_nxstack = 1;
1690 #endif
1691 
1692 	moea64_initialized = TRUE;
1693 }
1694 
1695 boolean_t
1696 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1697 {
1698 
1699 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1700 	    ("moea64_is_referenced: page %p is not managed", m));
1701 
1702 	return (moea64_query_bit(mmu, m, LPTE_REF));
1703 }
1704 
1705 boolean_t
1706 moea64_is_modified(mmu_t mmu, vm_page_t m)
1707 {
1708 
1709 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1710 	    ("moea64_is_modified: page %p is not managed", m));
1711 
1712 	/*
1713 	 * If the page is not busied then this check is racy.
1714 	 */
1715 	if (!pmap_page_is_write_mapped(m))
1716 		return (FALSE);
1717 
1718 	return (moea64_query_bit(mmu, m, LPTE_CHG));
1719 }
1720 
1721 boolean_t
1722 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1723 {
1724 	struct pvo_entry *pvo;
1725 	boolean_t rv = TRUE;
1726 
1727 	PMAP_LOCK(pmap);
1728 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1729 	if (pvo != NULL)
1730 		rv = FALSE;
1731 	PMAP_UNLOCK(pmap);
1732 	return (rv);
1733 }
1734 
1735 void
1736 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1737 {
1738 
1739 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1740 	    ("moea64_clear_modify: page %p is not managed", m));
1741 	vm_page_assert_busied(m);
1742 
1743 	if (!pmap_page_is_write_mapped(m))
1744 		return;
1745 	moea64_clear_bit(mmu, m, LPTE_CHG);
1746 }
1747 
1748 /*
1749  * Clear the write and modified bits in each of the given page's mappings.
1750  */
1751 void
1752 moea64_remove_write(mmu_t mmu, vm_page_t m)
1753 {
1754 	struct	pvo_entry *pvo;
1755 	int64_t	refchg, ret;
1756 	pmap_t	pmap;
1757 
1758 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1759 	    ("moea64_remove_write: page %p is not managed", m));
1760 	vm_page_assert_busied(m);
1761 
1762 	if (!pmap_page_is_write_mapped(m))
1763 		return
1764 
1765 	powerpc_sync();
1766 	PV_PAGE_LOCK(m);
1767 	refchg = 0;
1768 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1769 		pmap = pvo->pvo_pmap;
1770 		PMAP_LOCK(pmap);
1771 		if (!(pvo->pvo_vaddr & PVO_DEAD) &&
1772 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1773 			pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
1774 			ret = MOEA64_PTE_REPLACE(mmu, pvo,
1775 			    MOEA64_PTE_PROT_UPDATE);
1776 			if (ret < 0)
1777 				ret = LPTE_CHG;
1778 			refchg |= ret;
1779 			if (pvo->pvo_pmap == kernel_pmap)
1780 				isync();
1781 		}
1782 		PMAP_UNLOCK(pmap);
1783 	}
1784 	if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
1785 		vm_page_dirty(m);
1786 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1787 	PV_PAGE_UNLOCK(m);
1788 }
1789 
1790 /*
1791  *	moea64_ts_referenced:
1792  *
1793  *	Return a count of reference bits for a page, clearing those bits.
1794  *	It is not necessary for every reference bit to be cleared, but it
1795  *	is necessary that 0 only be returned when there are truly no
1796  *	reference bits set.
1797  *
1798  *	XXX: The exact number of bits to check and clear is a matter that
1799  *	should be tested and standardized at some point in the future for
1800  *	optimal aging of shared pages.
1801  */
1802 int
1803 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1804 {
1805 
1806 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1807 	    ("moea64_ts_referenced: page %p is not managed", m));
1808 	return (moea64_clear_bit(mmu, m, LPTE_REF));
1809 }
1810 
1811 /*
1812  * Modify the WIMG settings of all mappings for a page.
1813  */
1814 void
1815 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1816 {
1817 	struct	pvo_entry *pvo;
1818 	int64_t	refchg;
1819 	pmap_t	pmap;
1820 	uint64_t lo;
1821 
1822 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1823 		m->md.mdpg_cache_attrs = ma;
1824 		return;
1825 	}
1826 
1827 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1828 
1829 	PV_PAGE_LOCK(m);
1830 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1831 		pmap = pvo->pvo_pmap;
1832 		PMAP_LOCK(pmap);
1833 		if (!(pvo->pvo_vaddr & PVO_DEAD)) {
1834 			pvo->pvo_pte.pa &= ~LPTE_WIMG;
1835 			pvo->pvo_pte.pa |= lo;
1836 			refchg = MOEA64_PTE_REPLACE(mmu, pvo,
1837 			    MOEA64_PTE_INVALIDATE);
1838 			if (refchg < 0)
1839 				refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
1840 				    LPTE_CHG : 0;
1841 			if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1842 			    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1843 				refchg |=
1844 				    atomic_readandclear_32(&m->md.mdpg_attrs);
1845 				if (refchg & LPTE_CHG)
1846 					vm_page_dirty(m);
1847 				if (refchg & LPTE_REF)
1848 					vm_page_aflag_set(m, PGA_REFERENCED);
1849 			}
1850 			if (pvo->pvo_pmap == kernel_pmap)
1851 				isync();
1852 		}
1853 		PMAP_UNLOCK(pmap);
1854 	}
1855 	m->md.mdpg_cache_attrs = ma;
1856 	PV_PAGE_UNLOCK(m);
1857 }
1858 
1859 /*
1860  * Map a wired page into kernel virtual address space.
1861  */
1862 void
1863 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1864 {
1865 	int		error;
1866 	struct pvo_entry *pvo, *oldpvo;
1867 
1868 	do {
1869 		pvo = alloc_pvo_entry(0);
1870 		if (pvo == NULL)
1871 			vm_wait(NULL);
1872 	} while (pvo == NULL);
1873 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
1874 	pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
1875 	pvo->pvo_vaddr |= PVO_WIRED;
1876 
1877 	PMAP_LOCK(kernel_pmap);
1878 	oldpvo = moea64_pvo_find_va(kernel_pmap, va);
1879 	if (oldpvo != NULL)
1880 		moea64_pvo_remove_from_pmap(mmu, oldpvo);
1881 	init_pvo_entry(pvo, kernel_pmap, va);
1882 	error = moea64_pvo_enter(mmu, pvo, NULL, NULL);
1883 	PMAP_UNLOCK(kernel_pmap);
1884 
1885 	/* Free any dead pages */
1886 	if (oldpvo != NULL) {
1887 		moea64_pvo_remove_from_page(mmu, oldpvo);
1888 		free_pvo_entry(oldpvo);
1889 	}
1890 
1891 	if (error != 0)
1892 		panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va,
1893 		    (uintmax_t)pa, error);
1894 }
1895 
1896 void
1897 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1898 {
1899 
1900 	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1901 }
1902 
1903 /*
1904  * Extract the physical page address associated with the given kernel virtual
1905  * address.
1906  */
1907 vm_paddr_t
1908 moea64_kextract(mmu_t mmu, vm_offset_t va)
1909 {
1910 	struct		pvo_entry *pvo;
1911 	vm_paddr_t pa;
1912 
1913 	/*
1914 	 * Shortcut the direct-mapped case when applicable.  We never put
1915 	 * anything but 1:1 (or 62-bit aliased) mappings below
1916 	 * VM_MIN_KERNEL_ADDRESS.
1917 	 */
1918 	if (va < VM_MIN_KERNEL_ADDRESS)
1919 		return (va & ~DMAP_BASE_ADDRESS);
1920 
1921 	PMAP_LOCK(kernel_pmap);
1922 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1923 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1924 	    va));
1925 	pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1926 	PMAP_UNLOCK(kernel_pmap);
1927 	return (pa);
1928 }
1929 
1930 /*
1931  * Remove a wired page from kernel virtual address space.
1932  */
1933 void
1934 moea64_kremove(mmu_t mmu, vm_offset_t va)
1935 {
1936 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1937 }
1938 
1939 /*
1940  * Provide a kernel pointer corresponding to a given userland pointer.
1941  * The returned pointer is valid until the next time this function is
1942  * called in this thread. This is used internally in copyin/copyout.
1943  */
1944 static int
1945 moea64_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr,
1946     void **kaddr, size_t ulen, size_t *klen)
1947 {
1948 	size_t l;
1949 #ifdef __powerpc64__
1950 	struct slb *slb;
1951 #endif
1952 	register_t slbv;
1953 
1954 	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
1955 	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
1956 	if (l > ulen)
1957 		l = ulen;
1958 	if (klen)
1959 		*klen = l;
1960 	else if (l != ulen)
1961 		return (EFAULT);
1962 
1963 #ifdef __powerpc64__
1964 	/* Try lockless look-up first */
1965 	slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr);
1966 
1967 	if (slb == NULL) {
1968 		/* If it isn't there, we need to pre-fault the VSID */
1969 		PMAP_LOCK(pm);
1970 		slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT;
1971 		PMAP_UNLOCK(pm);
1972 	} else {
1973 		slbv = slb->slbv;
1974 	}
1975 
1976 	/* Mark segment no-execute */
1977 	slbv |= SLBV_N;
1978 #else
1979 	slbv = va_to_vsid(pm, (vm_offset_t)uaddr);
1980 
1981 	/* Mark segment no-execute */
1982 	slbv |= SR_N;
1983 #endif
1984 
1985 	/* If we have already set this VSID, we can just return */
1986 	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv)
1987 		return (0);
1988 
1989 	__asm __volatile("isync");
1990 	curthread->td_pcb->pcb_cpu.aim.usr_segm =
1991 	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
1992 	curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv;
1993 #ifdef __powerpc64__
1994 	__asm __volatile ("slbie %0; slbmte %1, %2; isync" ::
1995 	    "r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE));
1996 #else
1997 	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv));
1998 #endif
1999 
2000 	return (0);
2001 }
2002 
2003 /*
2004  * Figure out where a given kernel pointer (usually in a fault) points
2005  * to from the VM's perspective, potentially remapping into userland's
2006  * address space.
2007  */
2008 static int
2009 moea64_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, int *is_user,
2010     vm_offset_t *decoded_addr)
2011 {
2012 	vm_offset_t user_sr;
2013 
2014 	if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
2015 		user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
2016 		addr &= ADDR_PIDX | ADDR_POFF;
2017 		addr |= user_sr << ADDR_SR_SHFT;
2018 		*decoded_addr = addr;
2019 		*is_user = 1;
2020 	} else {
2021 		*decoded_addr = addr;
2022 		*is_user = 0;
2023 	}
2024 
2025 	return (0);
2026 }
2027 
2028 /*
2029  * Map a range of physical addresses into kernel virtual address space.
2030  *
2031  * The value passed in *virt is a suggested virtual address for the mapping.
2032  * Architectures which can support a direct-mapped physical to virtual region
2033  * can return the appropriate address within that region, leaving '*virt'
2034  * unchanged.  Other architectures should map the pages starting at '*virt' and
2035  * update '*virt' with the first usable address after the mapped region.
2036  */
2037 vm_offset_t
2038 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
2039     vm_paddr_t pa_end, int prot)
2040 {
2041 	vm_offset_t	sva, va;
2042 
2043 	if (hw_direct_map) {
2044 		/*
2045 		 * Check if every page in the region is covered by the direct
2046 		 * map. The direct map covers all of physical memory. Use
2047 		 * moea64_calc_wimg() as a shortcut to see if the page is in
2048 		 * physical memory as a way to see if the direct map covers it.
2049 		 */
2050 		for (va = pa_start; va < pa_end; va += PAGE_SIZE)
2051 			if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
2052 				break;
2053 		if (va == pa_end)
2054 			return (PHYS_TO_DMAP(pa_start));
2055 	}
2056 	sva = *virt;
2057 	va = sva;
2058 	/* XXX respect prot argument */
2059 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
2060 		moea64_kenter(mmu, va, pa_start);
2061 	*virt = va;
2062 
2063 	return (sva);
2064 }
2065 
2066 /*
2067  * Returns true if the pmap's pv is one of the first
2068  * 16 pvs linked to from this page.  This count may
2069  * be changed upwards or downwards in the future; it
2070  * is only necessary that true be returned for a small
2071  * subset of pmaps for proper page aging.
2072  */
2073 boolean_t
2074 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
2075 {
2076         int loops;
2077 	struct pvo_entry *pvo;
2078 	boolean_t rv;
2079 
2080 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2081 	    ("moea64_page_exists_quick: page %p is not managed", m));
2082 	loops = 0;
2083 	rv = FALSE;
2084 	PV_PAGE_LOCK(m);
2085 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2086 		if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
2087 			rv = TRUE;
2088 			break;
2089 		}
2090 		if (++loops >= 16)
2091 			break;
2092 	}
2093 	PV_PAGE_UNLOCK(m);
2094 	return (rv);
2095 }
2096 
2097 void
2098 moea64_page_init(mmu_t mmu __unused, vm_page_t m)
2099 {
2100 
2101 	m->md.mdpg_attrs = 0;
2102 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
2103 	LIST_INIT(&m->md.mdpg_pvoh);
2104 }
2105 
2106 /*
2107  * Return the number of managed mappings to the given physical page
2108  * that are wired.
2109  */
2110 int
2111 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
2112 {
2113 	struct pvo_entry *pvo;
2114 	int count;
2115 
2116 	count = 0;
2117 	if ((m->oflags & VPO_UNMANAGED) != 0)
2118 		return (count);
2119 	PV_PAGE_LOCK(m);
2120 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
2121 		if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
2122 			count++;
2123 	PV_PAGE_UNLOCK(m);
2124 	return (count);
2125 }
2126 
2127 static uintptr_t	moea64_vsidcontext;
2128 
2129 uintptr_t
2130 moea64_get_unique_vsid(void) {
2131 	u_int entropy;
2132 	register_t hash;
2133 	uint32_t mask;
2134 	int i;
2135 
2136 	entropy = 0;
2137 	__asm __volatile("mftb %0" : "=r"(entropy));
2138 
2139 	mtx_lock(&moea64_slb_mutex);
2140 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
2141 		u_int	n;
2142 
2143 		/*
2144 		 * Create a new value by mutiplying by a prime and adding in
2145 		 * entropy from the timebase register.  This is to make the
2146 		 * VSID more random so that the PT hash function collides
2147 		 * less often.  (Note that the prime casues gcc to do shifts
2148 		 * instead of a multiply.)
2149 		 */
2150 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
2151 		hash = moea64_vsidcontext & (NVSIDS - 1);
2152 		if (hash == 0)		/* 0 is special, avoid it */
2153 			continue;
2154 		n = hash >> 5;
2155 		mask = 1 << (hash & (VSID_NBPW - 1));
2156 		hash = (moea64_vsidcontext & VSID_HASHMASK);
2157 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
2158 			/* anything free in this bucket? */
2159 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
2160 				entropy = (moea64_vsidcontext >> 20);
2161 				continue;
2162 			}
2163 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
2164 			mask = 1 << i;
2165 			hash &= rounddown2(VSID_HASHMASK, VSID_NBPW);
2166 			hash |= i;
2167 		}
2168 		if (hash == VSID_VRMA)	/* also special, avoid this too */
2169 			continue;
2170 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
2171 		    ("Allocating in-use VSID %#zx\n", hash));
2172 		moea64_vsid_bitmap[n] |= mask;
2173 		mtx_unlock(&moea64_slb_mutex);
2174 		return (hash);
2175 	}
2176 
2177 	mtx_unlock(&moea64_slb_mutex);
2178 	panic("%s: out of segments",__func__);
2179 }
2180 
2181 #ifdef __powerpc64__
2182 void
2183 moea64_pinit(mmu_t mmu, pmap_t pmap)
2184 {
2185 
2186 	RB_INIT(&pmap->pmap_pvo);
2187 
2188 	pmap->pm_slb_tree_root = slb_alloc_tree();
2189 	pmap->pm_slb = slb_alloc_user_cache();
2190 	pmap->pm_slb_len = 0;
2191 }
2192 #else
2193 void
2194 moea64_pinit(mmu_t mmu, pmap_t pmap)
2195 {
2196 	int	i;
2197 	uint32_t hash;
2198 
2199 	RB_INIT(&pmap->pmap_pvo);
2200 
2201 	if (pmap_bootstrapped)
2202 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
2203 		    (vm_offset_t)pmap);
2204 	else
2205 		pmap->pmap_phys = pmap;
2206 
2207 	/*
2208 	 * Allocate some segment registers for this pmap.
2209 	 */
2210 	hash = moea64_get_unique_vsid();
2211 
2212 	for (i = 0; i < 16; i++)
2213 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
2214 
2215 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
2216 }
2217 #endif
2218 
2219 /*
2220  * Initialize the pmap associated with process 0.
2221  */
2222 void
2223 moea64_pinit0(mmu_t mmu, pmap_t pm)
2224 {
2225 
2226 	PMAP_LOCK_INIT(pm);
2227 	moea64_pinit(mmu, pm);
2228 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2229 }
2230 
2231 /*
2232  * Set the physical protection on the specified range of this map as requested.
2233  */
2234 static void
2235 moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
2236 {
2237 	struct vm_page *pg;
2238 	vm_prot_t oldprot;
2239 	int32_t refchg;
2240 
2241 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2242 
2243 	/*
2244 	 * Change the protection of the page.
2245 	 */
2246 	oldprot = pvo->pvo_pte.prot;
2247 	pvo->pvo_pte.prot = prot;
2248 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2249 
2250 	/*
2251 	 * If the PVO is in the page table, update mapping
2252 	 */
2253 	refchg = MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_PROT_UPDATE);
2254 	if (refchg < 0)
2255 		refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
2256 
2257 	if (pm != kernel_pmap && pg != NULL &&
2258 	    (pg->a.flags & PGA_EXECUTABLE) == 0 &&
2259 	    (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2260 		if ((pg->oflags & VPO_UNMANAGED) == 0)
2261 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
2262 		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
2263 		    pvo->pvo_pte.pa & LPTE_RPGN, PAGE_SIZE);
2264 	}
2265 
2266 	/*
2267 	 * Update vm about the REF/CHG bits if the page is managed and we have
2268 	 * removed write access.
2269 	 */
2270 	if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
2271 	    (oldprot & VM_PROT_WRITE)) {
2272 		refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2273 		if (refchg & LPTE_CHG)
2274 			vm_page_dirty(pg);
2275 		if (refchg & LPTE_REF)
2276 			vm_page_aflag_set(pg, PGA_REFERENCED);
2277 	}
2278 }
2279 
2280 void
2281 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2282     vm_prot_t prot)
2283 {
2284 	struct	pvo_entry *pvo, *tpvo, key;
2285 
2286 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2287 	    sva, eva, prot);
2288 
2289 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2290 	    ("moea64_protect: non current pmap"));
2291 
2292 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2293 		moea64_remove(mmu, pm, sva, eva);
2294 		return;
2295 	}
2296 
2297 	PMAP_LOCK(pm);
2298 	key.pvo_vaddr = sva;
2299 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2300 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2301 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2302 		moea64_pvo_protect(mmu, pm, pvo, prot);
2303 	}
2304 	PMAP_UNLOCK(pm);
2305 }
2306 
2307 /*
2308  * Map a list of wired pages into kernel virtual address space.  This is
2309  * intended for temporary mappings which do not need page modification or
2310  * references recorded.  Existing mappings in the region are overwritten.
2311  */
2312 void
2313 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2314 {
2315 	while (count-- > 0) {
2316 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2317 		va += PAGE_SIZE;
2318 		m++;
2319 	}
2320 }
2321 
2322 /*
2323  * Remove page mappings from kernel virtual address space.  Intended for
2324  * temporary mappings entered by moea64_qenter.
2325  */
2326 void
2327 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2328 {
2329 	while (count-- > 0) {
2330 		moea64_kremove(mmu, va);
2331 		va += PAGE_SIZE;
2332 	}
2333 }
2334 
2335 void
2336 moea64_release_vsid(uint64_t vsid)
2337 {
2338 	int idx, mask;
2339 
2340 	mtx_lock(&moea64_slb_mutex);
2341 	idx = vsid & (NVSIDS-1);
2342 	mask = 1 << (idx % VSID_NBPW);
2343 	idx /= VSID_NBPW;
2344 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2345 	    ("Freeing unallocated VSID %#jx", vsid));
2346 	moea64_vsid_bitmap[idx] &= ~mask;
2347 	mtx_unlock(&moea64_slb_mutex);
2348 }
2349 
2350 
2351 void
2352 moea64_release(mmu_t mmu, pmap_t pmap)
2353 {
2354 
2355 	/*
2356 	 * Free segment registers' VSIDs
2357 	 */
2358     #ifdef __powerpc64__
2359 	slb_free_tree(pmap);
2360 	slb_free_user_cache(pmap->pm_slb);
2361     #else
2362 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2363 
2364 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2365     #endif
2366 }
2367 
2368 /*
2369  * Remove all pages mapped by the specified pmap
2370  */
2371 void
2372 moea64_remove_pages(mmu_t mmu, pmap_t pm)
2373 {
2374 	struct pvo_entry *pvo, *tpvo;
2375 	struct pvo_dlist tofree;
2376 
2377 	SLIST_INIT(&tofree);
2378 
2379 	PMAP_LOCK(pm);
2380 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2381 		if (pvo->pvo_vaddr & PVO_WIRED)
2382 			continue;
2383 
2384 		/*
2385 		 * For locking reasons, remove this from the page table and
2386 		 * pmap, but save delinking from the vm_page for a second
2387 		 * pass
2388 		 */
2389 		moea64_pvo_remove_from_pmap(mmu, pvo);
2390 		SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink);
2391 	}
2392 	PMAP_UNLOCK(pm);
2393 
2394 	while (!SLIST_EMPTY(&tofree)) {
2395 		pvo = SLIST_FIRST(&tofree);
2396 		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2397 		moea64_pvo_remove_from_page(mmu, pvo);
2398 		free_pvo_entry(pvo);
2399 	}
2400 }
2401 
2402 /*
2403  * Remove the given range of addresses from the specified map.
2404  */
2405 void
2406 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2407 {
2408 	struct  pvo_entry *pvo, *tpvo, key;
2409 	struct pvo_dlist tofree;
2410 
2411 	/*
2412 	 * Perform an unsynchronized read.  This is, however, safe.
2413 	 */
2414 	if (pm->pm_stats.resident_count == 0)
2415 		return;
2416 
2417 	key.pvo_vaddr = sva;
2418 
2419 	SLIST_INIT(&tofree);
2420 
2421 	PMAP_LOCK(pm);
2422 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2423 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2424 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2425 
2426 		/*
2427 		 * For locking reasons, remove this from the page table and
2428 		 * pmap, but save delinking from the vm_page for a second
2429 		 * pass
2430 		 */
2431 		moea64_pvo_remove_from_pmap(mmu, pvo);
2432 		SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink);
2433 	}
2434 	PMAP_UNLOCK(pm);
2435 
2436 	while (!SLIST_EMPTY(&tofree)) {
2437 		pvo = SLIST_FIRST(&tofree);
2438 		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2439 		moea64_pvo_remove_from_page(mmu, pvo);
2440 		free_pvo_entry(pvo);
2441 	}
2442 }
2443 
2444 /*
2445  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2446  * will reflect changes in pte's back to the vm_page.
2447  */
2448 void
2449 moea64_remove_all(mmu_t mmu, vm_page_t m)
2450 {
2451 	struct	pvo_entry *pvo, *next_pvo;
2452 	struct	pvo_head freequeue;
2453 	int	wasdead;
2454 	pmap_t	pmap;
2455 
2456 	LIST_INIT(&freequeue);
2457 
2458 	PV_PAGE_LOCK(m);
2459 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2460 		pmap = pvo->pvo_pmap;
2461 		PMAP_LOCK(pmap);
2462 		wasdead = (pvo->pvo_vaddr & PVO_DEAD);
2463 		if (!wasdead)
2464 			moea64_pvo_remove_from_pmap(mmu, pvo);
2465 		moea64_pvo_remove_from_page_locked(mmu, pvo, m);
2466 		if (!wasdead)
2467 			LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
2468 		PMAP_UNLOCK(pmap);
2469 
2470 	}
2471 	KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
2472 	KASSERT((m->a.flags & PGA_WRITEABLE) == 0, ("Page still writable"));
2473 	PV_PAGE_UNLOCK(m);
2474 
2475 	/* Clean up UMA allocations */
2476 	LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
2477 		free_pvo_entry(pvo);
2478 }
2479 
2480 /*
2481  * Allocate a physical page of memory directly from the phys_avail map.
2482  * Can only be called from moea64_bootstrap before avail start and end are
2483  * calculated.
2484  */
2485 vm_offset_t
2486 moea64_bootstrap_alloc(vm_size_t size, vm_size_t align)
2487 {
2488 	vm_offset_t	s, e;
2489 	int		i, j;
2490 
2491 	size = round_page(size);
2492 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2493 		if (align != 0)
2494 			s = roundup2(phys_avail[i], align);
2495 		else
2496 			s = phys_avail[i];
2497 		e = s + size;
2498 
2499 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2500 			continue;
2501 
2502 		if (s + size > platform_real_maxaddr())
2503 			continue;
2504 
2505 		if (s == phys_avail[i]) {
2506 			phys_avail[i] += size;
2507 		} else if (e == phys_avail[i + 1]) {
2508 			phys_avail[i + 1] -= size;
2509 		} else {
2510 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2511 				phys_avail[j] = phys_avail[j - 2];
2512 				phys_avail[j + 1] = phys_avail[j - 1];
2513 			}
2514 
2515 			phys_avail[i + 3] = phys_avail[i + 1];
2516 			phys_avail[i + 1] = s;
2517 			phys_avail[i + 2] = e;
2518 			phys_avail_count++;
2519 		}
2520 
2521 		return (s);
2522 	}
2523 	panic("moea64_bootstrap_alloc: could not allocate memory");
2524 }
2525 
2526 static int
2527 moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo, struct pvo_head *pvo_head,
2528     struct pvo_entry **oldpvop)
2529 {
2530 	struct pvo_entry *old_pvo;
2531 	int err;
2532 
2533 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2534 
2535 	STAT_MOEA64(moea64_pvo_enter_calls++);
2536 
2537 	/*
2538 	 * Add to pmap list
2539 	 */
2540 	old_pvo = RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2541 
2542 	if (old_pvo != NULL) {
2543 		if (oldpvop != NULL)
2544 			*oldpvop = old_pvo;
2545 		return (EEXIST);
2546 	}
2547 
2548 	if (pvo_head != NULL) {
2549 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2550 	}
2551 
2552 	if (pvo->pvo_vaddr & PVO_WIRED)
2553 		pvo->pvo_pmap->pm_stats.wired_count++;
2554 	pvo->pvo_pmap->pm_stats.resident_count++;
2555 
2556 	/*
2557 	 * Insert it into the hardware page table
2558 	 */
2559 	err = MOEA64_PTE_INSERT(mmu, pvo);
2560 	if (err != 0) {
2561 		panic("moea64_pvo_enter: overflow");
2562 	}
2563 
2564 	STAT_MOEA64(moea64_pvo_entries++);
2565 
2566 	if (pvo->pvo_pmap == kernel_pmap)
2567 		isync();
2568 
2569 #ifdef __powerpc64__
2570 	/*
2571 	 * Make sure all our bootstrap mappings are in the SLB as soon
2572 	 * as virtual memory is switched on.
2573 	 */
2574 	if (!pmap_bootstrapped)
2575 		moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
2576 		    pvo->pvo_vaddr & PVO_LARGE);
2577 #endif
2578 
2579 	return (0);
2580 }
2581 
2582 static void
2583 moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo)
2584 {
2585 	struct	vm_page *pg;
2586 	int32_t refchg;
2587 
2588 	KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
2589 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2590 	KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
2591 
2592 	/*
2593 	 * If there is an active pte entry, we need to deactivate it
2594 	 */
2595 	refchg = MOEA64_PTE_UNSET(mmu, pvo);
2596 	if (refchg < 0) {
2597 		/*
2598 		 * If it was evicted from the page table, be pessimistic and
2599 		 * dirty the page.
2600 		 */
2601 		if (pvo->pvo_pte.prot & VM_PROT_WRITE)
2602 			refchg = LPTE_CHG;
2603 		else
2604 			refchg = 0;
2605 	}
2606 
2607 	/*
2608 	 * Update our statistics.
2609 	 */
2610 	pvo->pvo_pmap->pm_stats.resident_count--;
2611 	if (pvo->pvo_vaddr & PVO_WIRED)
2612 		pvo->pvo_pmap->pm_stats.wired_count--;
2613 
2614 	/*
2615 	 * Remove this PVO from the pmap list.
2616 	 */
2617 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2618 
2619 	/*
2620 	 * Mark this for the next sweep
2621 	 */
2622 	pvo->pvo_vaddr |= PVO_DEAD;
2623 
2624 	/* Send RC bits to VM */
2625 	if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2626 	    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2627 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2628 		if (pg != NULL) {
2629 			refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2630 			if (refchg & LPTE_CHG)
2631 				vm_page_dirty(pg);
2632 			if (refchg & LPTE_REF)
2633 				vm_page_aflag_set(pg, PGA_REFERENCED);
2634 		}
2635 	}
2636 }
2637 
2638 static inline void
2639 moea64_pvo_remove_from_page_locked(mmu_t mmu, struct pvo_entry *pvo,
2640     vm_page_t m)
2641 {
2642 
2643 	KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
2644 
2645 	/* Use NULL pmaps as a sentinel for races in page deletion */
2646 	if (pvo->pvo_pmap == NULL)
2647 		return;
2648 	pvo->pvo_pmap = NULL;
2649 
2650 	/*
2651 	 * Update vm about page writeability/executability if managed
2652 	 */
2653 	PV_LOCKASSERT(pvo->pvo_pte.pa & LPTE_RPGN);
2654 	if (pvo->pvo_vaddr & PVO_MANAGED) {
2655 		if (m != NULL) {
2656 			LIST_REMOVE(pvo, pvo_vlink);
2657 			if (LIST_EMPTY(vm_page_to_pvoh(m)))
2658 				vm_page_aflag_clear(m,
2659 				    PGA_WRITEABLE | PGA_EXECUTABLE);
2660 		}
2661 	}
2662 
2663 	STAT_MOEA64(moea64_pvo_entries--);
2664 	STAT_MOEA64(moea64_pvo_remove_calls++);
2665 }
2666 
2667 static void
2668 moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo)
2669 {
2670 	vm_page_t pg = NULL;
2671 
2672 	if (pvo->pvo_vaddr & PVO_MANAGED)
2673 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2674 
2675 	PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2676 	moea64_pvo_remove_from_page_locked(mmu, pvo, pg);
2677 	PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2678 }
2679 
2680 static struct pvo_entry *
2681 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2682 {
2683 	struct pvo_entry key;
2684 
2685 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2686 
2687 	key.pvo_vaddr = va & ~ADDR_POFF;
2688 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2689 }
2690 
2691 static boolean_t
2692 moea64_query_bit(mmu_t mmu, vm_page_t m, uint64_t ptebit)
2693 {
2694 	struct	pvo_entry *pvo;
2695 	int64_t ret;
2696 	boolean_t rv;
2697 
2698 	/*
2699 	 * See if this bit is stored in the page already.
2700 	 */
2701 	if (m->md.mdpg_attrs & ptebit)
2702 		return (TRUE);
2703 
2704 	/*
2705 	 * Examine each PTE.  Sync so that any pending REF/CHG bits are
2706 	 * flushed to the PTEs.
2707 	 */
2708 	rv = FALSE;
2709 	powerpc_sync();
2710 	PV_PAGE_LOCK(m);
2711 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2712 		ret = 0;
2713 
2714 		/*
2715 		 * See if this pvo has a valid PTE.  if so, fetch the
2716 		 * REF/CHG bits from the valid PTE.  If the appropriate
2717 		 * ptebit is set, return success.
2718 		 */
2719 		PMAP_LOCK(pvo->pvo_pmap);
2720 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2721 			ret = MOEA64_PTE_SYNCH(mmu, pvo);
2722 		PMAP_UNLOCK(pvo->pvo_pmap);
2723 
2724 		if (ret > 0) {
2725 			atomic_set_32(&m->md.mdpg_attrs,
2726 			    ret & (LPTE_CHG | LPTE_REF));
2727 			if (ret & ptebit) {
2728 				rv = TRUE;
2729 				break;
2730 			}
2731 		}
2732 	}
2733 	PV_PAGE_UNLOCK(m);
2734 
2735 	return (rv);
2736 }
2737 
2738 static u_int
2739 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2740 {
2741 	u_int	count;
2742 	struct	pvo_entry *pvo;
2743 	int64_t ret;
2744 
2745 	/*
2746 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2747 	 * we can reset the right ones).
2748 	 */
2749 	powerpc_sync();
2750 
2751 	/*
2752 	 * For each pvo entry, clear the pte's ptebit.
2753 	 */
2754 	count = 0;
2755 	PV_PAGE_LOCK(m);
2756 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2757 		ret = 0;
2758 
2759 		PMAP_LOCK(pvo->pvo_pmap);
2760 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2761 			ret = MOEA64_PTE_CLEAR(mmu, pvo, ptebit);
2762 		PMAP_UNLOCK(pvo->pvo_pmap);
2763 
2764 		if (ret > 0 && (ret & ptebit))
2765 			count++;
2766 	}
2767 	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
2768 	PV_PAGE_UNLOCK(m);
2769 
2770 	return (count);
2771 }
2772 
2773 boolean_t
2774 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2775 {
2776 	struct pvo_entry *pvo, key;
2777 	vm_offset_t ppa;
2778 	int error = 0;
2779 
2780 	if (hw_direct_map && mem_valid(pa, size) == 0)
2781 		return (0);
2782 
2783 	PMAP_LOCK(kernel_pmap);
2784 	ppa = pa & ~ADDR_POFF;
2785 	key.pvo_vaddr = DMAP_BASE_ADDRESS + ppa;
2786 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2787 	    ppa < pa + size; ppa += PAGE_SIZE,
2788 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2789 		if (pvo == NULL || (pvo->pvo_pte.pa & LPTE_RPGN) != ppa) {
2790 			error = EFAULT;
2791 			break;
2792 		}
2793 	}
2794 	PMAP_UNLOCK(kernel_pmap);
2795 
2796 	return (error);
2797 }
2798 
2799 /*
2800  * Map a set of physical memory pages into the kernel virtual
2801  * address space. Return a pointer to where it is mapped. This
2802  * routine is intended to be used for mapping device memory,
2803  * NOT real memory.
2804  */
2805 void *
2806 moea64_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2807 {
2808 	vm_offset_t va, tmpva, ppa, offset;
2809 
2810 	ppa = trunc_page(pa);
2811 	offset = pa & PAGE_MASK;
2812 	size = roundup2(offset + size, PAGE_SIZE);
2813 
2814 	va = kva_alloc(size);
2815 
2816 	if (!va)
2817 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2818 
2819 	for (tmpva = va; size > 0;) {
2820 		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2821 		size -= PAGE_SIZE;
2822 		tmpva += PAGE_SIZE;
2823 		ppa += PAGE_SIZE;
2824 	}
2825 
2826 	return ((void *)(va + offset));
2827 }
2828 
2829 void *
2830 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2831 {
2832 
2833 	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2834 }
2835 
2836 void
2837 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2838 {
2839 	vm_offset_t base, offset;
2840 
2841 	base = trunc_page(va);
2842 	offset = va & PAGE_MASK;
2843 	size = roundup2(offset + size, PAGE_SIZE);
2844 
2845 	kva_free(base, size);
2846 }
2847 
2848 void
2849 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2850 {
2851 	struct pvo_entry *pvo;
2852 	vm_offset_t lim;
2853 	vm_paddr_t pa;
2854 	vm_size_t len;
2855 
2856 	if (__predict_false(pm == NULL))
2857 		pm = &curthread->td_proc->p_vmspace->vm_pmap;
2858 
2859 	PMAP_LOCK(pm);
2860 	while (sz > 0) {
2861 		lim = round_page(va+1);
2862 		len = MIN(lim - va, sz);
2863 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2864 		if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
2865 			pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va & ADDR_POFF);
2866 			moea64_syncicache(mmu, pm, va, pa, len);
2867 		}
2868 		va += len;
2869 		sz -= len;
2870 	}
2871 	PMAP_UNLOCK(pm);
2872 }
2873 
2874 void
2875 moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2876 {
2877 
2878 	*va = (void *)(uintptr_t)pa;
2879 }
2880 
2881 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2882 
2883 void
2884 moea64_scan_init(mmu_t mmu)
2885 {
2886 	struct pvo_entry *pvo;
2887 	vm_offset_t va;
2888 	int i;
2889 
2890 	if (!do_minidump) {
2891 		/* Initialize phys. segments for dumpsys(). */
2892 		memset(&dump_map, 0, sizeof(dump_map));
2893 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2894 		for (i = 0; i < pregions_sz; i++) {
2895 			dump_map[i].pa_start = pregions[i].mr_start;
2896 			dump_map[i].pa_size = pregions[i].mr_size;
2897 		}
2898 		return;
2899 	}
2900 
2901 	/* Virtual segments for minidumps: */
2902 	memset(&dump_map, 0, sizeof(dump_map));
2903 
2904 	/* 1st: kernel .data and .bss. */
2905 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2906 	dump_map[0].pa_size = round_page((uintptr_t)_end) -
2907 	    dump_map[0].pa_start;
2908 
2909 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2910 	dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr;
2911 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2912 
2913 	/* 3rd: kernel VM. */
2914 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2915 	/* Find start of next chunk (from va). */
2916 	while (va < virtual_end) {
2917 		/* Don't dump the buffer cache. */
2918 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2919 			va = kmi.buffer_eva;
2920 			continue;
2921 		}
2922 		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2923 		if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2924 			break;
2925 		va += PAGE_SIZE;
2926 	}
2927 	if (va < virtual_end) {
2928 		dump_map[2].pa_start = va;
2929 		va += PAGE_SIZE;
2930 		/* Find last page in chunk. */
2931 		while (va < virtual_end) {
2932 			/* Don't run into the buffer cache. */
2933 			if (va == kmi.buffer_sva)
2934 				break;
2935 			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2936 			if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD))
2937 				break;
2938 			va += PAGE_SIZE;
2939 		}
2940 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2941 	}
2942 }
2943 
2944 #ifdef __powerpc64__
2945 
2946 static size_t
2947 moea64_scan_pmap(mmu_t mmu)
2948 {
2949 	struct pvo_entry *pvo;
2950 	vm_paddr_t pa, pa_end;
2951 	vm_offset_t va, pgva, kstart, kend, kstart_lp, kend_lp;
2952 	uint64_t lpsize;
2953 
2954 	lpsize = moea64_large_page_size;
2955 	kstart = trunc_page((vm_offset_t)_etext);
2956 	kend = round_page((vm_offset_t)_end);
2957 	kstart_lp = kstart & ~moea64_large_page_mask;
2958 	kend_lp = (kend + moea64_large_page_mask) & ~moea64_large_page_mask;
2959 
2960 	CTR4(KTR_PMAP, "moea64_scan_pmap: kstart=0x%016lx, kend=0x%016lx, "
2961 	    "kstart_lp=0x%016lx, kend_lp=0x%016lx",
2962 	    kstart, kend, kstart_lp, kend_lp);
2963 
2964 	PMAP_LOCK(kernel_pmap);
2965 	RB_FOREACH(pvo, pvo_tree, &kernel_pmap->pmap_pvo) {
2966 		va = pvo->pvo_vaddr;
2967 
2968 		if (va & PVO_DEAD)
2969 			continue;
2970 
2971 		/* Skip DMAP (except kernel area) */
2972 		if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS) {
2973 			if (va & PVO_LARGE) {
2974 				pgva = va & ~moea64_large_page_mask;
2975 				if (pgva < kstart_lp || pgva >= kend_lp)
2976 					continue;
2977 			} else {
2978 				pgva = trunc_page(va);
2979 				if (pgva < kstart || pgva >= kend)
2980 					continue;
2981 			}
2982 		}
2983 
2984 		pa = pvo->pvo_pte.pa & LPTE_RPGN;
2985 
2986 		if (va & PVO_LARGE) {
2987 			pa_end = pa + lpsize;
2988 			for (; pa < pa_end; pa += PAGE_SIZE) {
2989 				if (is_dumpable(pa))
2990 					dump_add_page(pa);
2991 			}
2992 		} else {
2993 			if (is_dumpable(pa))
2994 				dump_add_page(pa);
2995 		}
2996 	}
2997 	PMAP_UNLOCK(kernel_pmap);
2998 
2999 	return (sizeof(struct lpte) * moea64_pteg_count * 8);
3000 }
3001 
3002 static struct dump_context dump_ctx;
3003 
3004 static void *
3005 moea64_dump_pmap_init(mmu_t mmu, unsigned blkpgs)
3006 {
3007 	dump_ctx.ptex = 0;
3008 	dump_ctx.ptex_end = moea64_pteg_count * 8;
3009 	dump_ctx.blksz = blkpgs * PAGE_SIZE;
3010 	return (&dump_ctx);
3011 }
3012 
3013 #else
3014 
3015 static size_t
3016 moea64_scan_pmap(mmu_t mmu)
3017 {
3018 	return (0);
3019 }
3020 
3021 static void *
3022 moea64_dump_pmap_init(mmu_t mmu, unsigned blkpgs)
3023 {
3024 	return (NULL);
3025 }
3026 
3027 #endif
3028 
3029 static void
3030 moea64_map_range(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_size_t npages)
3031 {
3032 
3033 	for (; npages > 0; --npages) {
3034 		if (moea64_large_page_size != 0 &&
3035 		    (pa & moea64_large_page_mask) == 0 &&
3036 		    (va & moea64_large_page_mask) == 0 &&
3037 		    npages >= (moea64_large_page_size >> PAGE_SHIFT)) {
3038 			PMAP_LOCK(kernel_pmap);
3039 			moea64_kenter_large(mmu, va, pa, 0, 0);
3040 			PMAP_UNLOCK(kernel_pmap);
3041 			pa += moea64_large_page_size;
3042 			va += moea64_large_page_size;
3043 			npages -= (moea64_large_page_size >> PAGE_SHIFT) - 1;
3044 		} else {
3045 			moea64_kenter(mmu, va, pa);
3046 			pa += PAGE_SIZE;
3047 			va += PAGE_SIZE;
3048 		}
3049 	}
3050 }
3051 
3052 static void
3053 moea64_page_array_startup(mmu_t mmu, long pages)
3054 {
3055 	long dom_pages[MAXMEMDOM];
3056 	vm_paddr_t pa;
3057 	vm_offset_t va, vm_page_base;
3058 	vm_size_t needed, size;
3059 	long page;
3060 	int domain;
3061 	int i;
3062 
3063 	vm_page_base = 0xd000000000000000ULL;
3064 
3065 	/* Short-circuit single-domain systems. */
3066 	if (vm_ndomains == 1) {
3067 		size = round_page(pages * sizeof(struct vm_page));
3068 		pa = vm_phys_early_alloc(0, size);
3069 		vm_page_base = moea64_map(mmu, &vm_page_base,
3070 		    pa, pa + size, VM_PROT_READ | VM_PROT_WRITE);
3071 		vm_page_array_size = pages;
3072 		vm_page_array = (vm_page_t)vm_page_base;
3073 		return;
3074 	}
3075 
3076 	page = 0;
3077 	for (i = 0; i < MAXMEMDOM; i++)
3078 		dom_pages[i] = 0;
3079 
3080 	/* Now get the number of pages required per domain. */
3081 	for (i = 0; i < vm_phys_nsegs; i++) {
3082 		domain = vm_phys_segs[i].domain;
3083 		KASSERT(domain < MAXMEMDOM,
3084 		    ("Invalid vm_phys_segs NUMA domain %d!\n", domain));
3085 		/* Get size of vm_page_array needed for this segment. */
3086 		size = btoc(vm_phys_segs[i].end - vm_phys_segs[i].start);
3087 		dom_pages[domain] += size;
3088 	}
3089 
3090 	for (i = 0; phys_avail[i + 1] != 0; i+= 2) {
3091 		domain = _vm_phys_domain(phys_avail[i]);
3092 		KASSERT(domain < MAXMEMDOM,
3093 		    ("Invalid phys_avail NUMA domain %d!\n", domain));
3094 		size = btoc(phys_avail[i + 1] - phys_avail[i]);
3095 		dom_pages[domain] += size;
3096 	}
3097 
3098 	/*
3099 	 * Map in chunks that can get us all 16MB pages.  There will be some
3100 	 * overlap between domains, but that's acceptable for now.
3101 	 */
3102 	vm_page_array_size = 0;
3103 	va = vm_page_base;
3104 	for (i = 0; i < MAXMEMDOM && vm_page_array_size < pages; i++) {
3105 		if (dom_pages[i] == 0)
3106 			continue;
3107 		size = ulmin(pages - vm_page_array_size, dom_pages[i]);
3108 		size = round_page(size * sizeof(struct vm_page));
3109 		needed = size;
3110 		size = roundup2(size, moea64_large_page_size);
3111 		pa = vm_phys_early_alloc(i, size);
3112 		vm_page_array_size += size / sizeof(struct vm_page);
3113 		moea64_map_range(mmu, va, pa, size >> PAGE_SHIFT);
3114 		/* Scoot up domain 0, to reduce the domain page overlap. */
3115 		if (i == 0)
3116 			vm_page_base += size - needed;
3117 		va += size;
3118 	}
3119 	vm_page_array = (vm_page_t)vm_page_base;
3120 	vm_page_array_size = pages;
3121 }
3122