xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision 28f42739a547ffe0b5dfaaf9f49fb4c4813aa232)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27  * POSSIBILITY OF SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
31  * Copyright (C) 1995, 1996 TooLs GmbH.
32  * All rights reserved.
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. All advertising materials mentioning features or use of this software
43  *    must display the following acknowledgement:
44  *	This product includes software developed by TooLs GmbH.
45  * 4. The name of TooLs GmbH may not be used to endorse or promote products
46  *    derived from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
49  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
50  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
51  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
53  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
54  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
55  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
56  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
57  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
58  *
59  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
60  */
61 /*-
62  * Copyright (C) 2001 Benno Rice.
63  * All rights reserved.
64  *
65  * Redistribution and use in source and binary forms, with or without
66  * modification, are permitted provided that the following conditions
67  * are met:
68  * 1. Redistributions of source code must retain the above copyright
69  *    notice, this list of conditions and the following disclaimer.
70  * 2. Redistributions in binary form must reproduce the above copyright
71  *    notice, this list of conditions and the following disclaimer in the
72  *    documentation and/or other materials provided with the distribution.
73  *
74  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
75  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
76  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
77  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
78  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
79  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
80  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
81  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
82  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
83  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
84  */
85 
86 #include <sys/cdefs.h>
87 __FBSDID("$FreeBSD$");
88 
89 /*
90  * Manages physical address maps.
91  *
92  * Since the information managed by this module is also stored by the
93  * logical address mapping module, this module may throw away valid virtual
94  * to physical mappings at almost any time.  However, invalidations of
95  * mappings must be done as requested.
96  *
97  * In order to cope with hardware architectures which make virtual to
98  * physical map invalidates expensive, this module may delay invalidate
99  * reduced protection operations until such time as they are actually
100  * necessary.  This module is given full information as to which processors
101  * are currently using which maps, and to when physical maps must be made
102  * correct.
103  */
104 
105 #include "opt_compat.h"
106 #include "opt_kstack_pages.h"
107 
108 #include <sys/param.h>
109 #include <sys/kernel.h>
110 #include <sys/conf.h>
111 #include <sys/queue.h>
112 #include <sys/cpuset.h>
113 #include <sys/kerneldump.h>
114 #include <sys/ktr.h>
115 #include <sys/lock.h>
116 #include <sys/msgbuf.h>
117 #include <sys/malloc.h>
118 #include <sys/mutex.h>
119 #include <sys/proc.h>
120 #include <sys/rwlock.h>
121 #include <sys/sched.h>
122 #include <sys/sysctl.h>
123 #include <sys/systm.h>
124 #include <sys/vmmeter.h>
125 
126 #include <sys/kdb.h>
127 
128 #include <dev/ofw/openfirm.h>
129 
130 #include <vm/vm.h>
131 #include <vm/vm_param.h>
132 #include <vm/vm_kern.h>
133 #include <vm/vm_page.h>
134 #include <vm/vm_map.h>
135 #include <vm/vm_object.h>
136 #include <vm/vm_extern.h>
137 #include <vm/vm_pageout.h>
138 #include <vm/uma.h>
139 
140 #include <machine/_inttypes.h>
141 #include <machine/cpu.h>
142 #include <machine/platform.h>
143 #include <machine/frame.h>
144 #include <machine/md_var.h>
145 #include <machine/psl.h>
146 #include <machine/bat.h>
147 #include <machine/hid.h>
148 #include <machine/pte.h>
149 #include <machine/sr.h>
150 #include <machine/trap.h>
151 #include <machine/mmuvar.h>
152 
153 #include "mmu_oea64.h"
154 #include "mmu_if.h"
155 #include "moea64_if.h"
156 
157 void moea64_release_vsid(uint64_t vsid);
158 uintptr_t moea64_get_unique_vsid(void);
159 
160 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
161 #define ENABLE_TRANS(msr)	mtmsr(msr)
162 
163 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
164 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
165 #define	VSID_HASH_MASK		0x0000007fffffffffULL
166 
167 /*
168  * Locking semantics:
169  * -- Read lock: if no modifications are being made to either the PVO lists
170  *    or page table or if any modifications being made result in internal
171  *    changes (e.g. wiring, protection) such that the existence of the PVOs
172  *    is unchanged and they remain associated with the same pmap (in which
173  *    case the changes should be protected by the pmap lock)
174  * -- Write lock: required if PTEs/PVOs are being inserted or removed.
175  */
176 
177 #define LOCK_TABLE_RD() rw_rlock(&moea64_table_lock)
178 #define UNLOCK_TABLE_RD() rw_runlock(&moea64_table_lock)
179 #define LOCK_TABLE_WR() rw_wlock(&moea64_table_lock)
180 #define UNLOCK_TABLE_WR() rw_wunlock(&moea64_table_lock)
181 
182 struct ofw_map {
183 	cell_t	om_va;
184 	cell_t	om_len;
185 	uint64_t om_pa;
186 	cell_t	om_mode;
187 };
188 
189 extern unsigned char _etext[];
190 extern unsigned char _end[];
191 
192 extern int ofw_real_mode;
193 
194 /*
195  * Map of physical memory regions.
196  */
197 static struct	mem_region *regions;
198 static struct	mem_region *pregions;
199 static u_int	phys_avail_count;
200 static int	regions_sz, pregions_sz;
201 
202 extern void bs_remap_earlyboot(void);
203 
204 /*
205  * Lock for the pteg and pvo tables.
206  */
207 struct rwlock	moea64_table_lock;
208 struct mtx	moea64_slb_mutex;
209 
210 /*
211  * PTEG data.
212  */
213 u_int		moea64_pteg_count;
214 u_int		moea64_pteg_mask;
215 
216 /*
217  * PVO data.
218  */
219 struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
220 
221 uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
222 uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
223 
224 #define	BPVO_POOL_SIZE	327680
225 static struct	pvo_entry *moea64_bpvo_pool;
226 static int	moea64_bpvo_pool_index = 0;
227 
228 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
229 #ifdef __powerpc64__
230 #define	NVSIDS		(NPMAPS * 16)
231 #define VSID_HASHMASK	0xffffffffUL
232 #else
233 #define NVSIDS		NPMAPS
234 #define VSID_HASHMASK	0xfffffUL
235 #endif
236 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
237 
238 static boolean_t moea64_initialized = FALSE;
239 
240 /*
241  * Statistics.
242  */
243 u_int	moea64_pte_valid = 0;
244 u_int	moea64_pte_overflow = 0;
245 u_int	moea64_pvo_entries = 0;
246 u_int	moea64_pvo_enter_calls = 0;
247 u_int	moea64_pvo_remove_calls = 0;
248 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
249     &moea64_pte_valid, 0, "");
250 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
251     &moea64_pte_overflow, 0, "");
252 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
253     &moea64_pvo_entries, 0, "");
254 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
255     &moea64_pvo_enter_calls, 0, "");
256 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
257     &moea64_pvo_remove_calls, 0, "");
258 
259 vm_offset_t	moea64_scratchpage_va[2];
260 struct pvo_entry *moea64_scratchpage_pvo[2];
261 uintptr_t	moea64_scratchpage_pte[2];
262 struct	mtx	moea64_scratchpage_mtx;
263 
264 uint64_t 	moea64_large_page_mask = 0;
265 uint64_t	moea64_large_page_size = 0;
266 int		moea64_large_page_shift = 0;
267 
268 /*
269  * PVO calls.
270  */
271 static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
272 		    vm_offset_t, vm_offset_t, uint64_t, int, int8_t);
273 static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
274 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
275 
276 /*
277  * Utility routines.
278  */
279 static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
280 static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
281 static void		moea64_kremove(mmu_t, vm_offset_t);
282 static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
283 			    vm_offset_t pa, vm_size_t sz);
284 
285 /*
286  * Kernel MMU interface
287  */
288 void moea64_clear_modify(mmu_t, vm_page_t);
289 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
290 void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
291     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
292 int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
293     u_int flags, int8_t psind);
294 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
295     vm_prot_t);
296 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
297 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
298 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
299 void moea64_init(mmu_t);
300 boolean_t moea64_is_modified(mmu_t, vm_page_t);
301 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
302 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
303 int moea64_ts_referenced(mmu_t, vm_page_t);
304 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
305 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
306 int moea64_page_wired_mappings(mmu_t, vm_page_t);
307 void moea64_pinit(mmu_t, pmap_t);
308 void moea64_pinit0(mmu_t, pmap_t);
309 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
310 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
311 void moea64_qremove(mmu_t, vm_offset_t, int);
312 void moea64_release(mmu_t, pmap_t);
313 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
314 void moea64_remove_pages(mmu_t, pmap_t);
315 void moea64_remove_all(mmu_t, vm_page_t);
316 void moea64_remove_write(mmu_t, vm_page_t);
317 void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
318 void moea64_zero_page(mmu_t, vm_page_t);
319 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
320 void moea64_zero_page_idle(mmu_t, vm_page_t);
321 void moea64_activate(mmu_t, struct thread *);
322 void moea64_deactivate(mmu_t, struct thread *);
323 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
324 void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
325 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
326 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
327 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
328 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
329 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
330 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
331 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
332 void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz,
333     void **va);
334 void moea64_scan_init(mmu_t mmu);
335 
336 static mmu_method_t moea64_methods[] = {
337 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
338 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
339 	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
340 	MMUMETHOD(mmu_enter,		moea64_enter),
341 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
342 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
343 	MMUMETHOD(mmu_extract,		moea64_extract),
344 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
345 	MMUMETHOD(mmu_init,		moea64_init),
346 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
347 	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
348 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
349 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
350 	MMUMETHOD(mmu_map,     		moea64_map),
351 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
352 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
353 	MMUMETHOD(mmu_pinit,		moea64_pinit),
354 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
355 	MMUMETHOD(mmu_protect,		moea64_protect),
356 	MMUMETHOD(mmu_qenter,		moea64_qenter),
357 	MMUMETHOD(mmu_qremove,		moea64_qremove),
358 	MMUMETHOD(mmu_release,		moea64_release),
359 	MMUMETHOD(mmu_remove,		moea64_remove),
360 	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
361 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
362 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
363 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
364 	MMUMETHOD(mmu_unwire,		moea64_unwire),
365 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
366 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
367 	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
368 	MMUMETHOD(mmu_activate,		moea64_activate),
369 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
370 	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
371 
372 	/* Internal interfaces */
373 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
374 	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
375 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
376 	MMUMETHOD(mmu_kextract,		moea64_kextract),
377 	MMUMETHOD(mmu_kenter,		moea64_kenter),
378 	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
379 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
380 	MMUMETHOD(mmu_scan_init,	moea64_scan_init),
381 	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
382 
383 	{ 0, 0 }
384 };
385 
386 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
387 
388 static __inline u_int
389 va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
390 {
391 	uint64_t hash;
392 	int shift;
393 
394 	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
395 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
396 	    shift);
397 	return (hash & moea64_pteg_mask);
398 }
399 
400 static __inline struct pvo_head *
401 vm_page_to_pvoh(vm_page_t m)
402 {
403 
404 	return (&m->md.mdpg_pvoh);
405 }
406 
407 static __inline void
408 moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
409     uint64_t pte_lo, int flags)
410 {
411 
412 	/*
413 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
414 	 * set when the real pte is set in memory.
415 	 *
416 	 * Note: Don't set the valid bit for correct operation of tlb update.
417 	 */
418 	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
419 	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
420 
421 	if (flags & PVO_LARGE)
422 		pt->pte_hi |= LPTE_BIG;
423 
424 	pt->pte_lo = pte_lo;
425 }
426 
427 static __inline uint64_t
428 moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
429 {
430 	uint64_t pte_lo;
431 	int i;
432 
433 	if (ma != VM_MEMATTR_DEFAULT) {
434 		switch (ma) {
435 		case VM_MEMATTR_UNCACHEABLE:
436 			return (LPTE_I | LPTE_G);
437 		case VM_MEMATTR_WRITE_COMBINING:
438 		case VM_MEMATTR_WRITE_BACK:
439 		case VM_MEMATTR_PREFETCHABLE:
440 			return (LPTE_I);
441 		case VM_MEMATTR_WRITE_THROUGH:
442 			return (LPTE_W | LPTE_M);
443 		}
444 	}
445 
446 	/*
447 	 * Assume the page is cache inhibited and access is guarded unless
448 	 * it's in our available memory array.
449 	 */
450 	pte_lo = LPTE_I | LPTE_G;
451 	for (i = 0; i < pregions_sz; i++) {
452 		if ((pa >= pregions[i].mr_start) &&
453 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
454 			pte_lo &= ~(LPTE_I | LPTE_G);
455 			pte_lo |= LPTE_M;
456 			break;
457 		}
458 	}
459 
460 	return pte_lo;
461 }
462 
463 /*
464  * Quick sort callout for comparing memory regions.
465  */
466 static int	om_cmp(const void *a, const void *b);
467 
468 static int
469 om_cmp(const void *a, const void *b)
470 {
471 	const struct	ofw_map *mapa;
472 	const struct	ofw_map *mapb;
473 
474 	mapa = a;
475 	mapb = b;
476 	if (mapa->om_pa < mapb->om_pa)
477 		return (-1);
478 	else if (mapa->om_pa > mapb->om_pa)
479 		return (1);
480 	else
481 		return (0);
482 }
483 
484 static void
485 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
486 {
487 	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
488 	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
489 	register_t	msr;
490 	vm_offset_t	off;
491 	vm_paddr_t	pa_base;
492 	int		i, j;
493 
494 	bzero(translations, sz);
495 	OF_getprop(OF_finddevice("/"), "#address-cells", &acells,
496 	    sizeof(acells));
497 	if (OF_getprop(mmu, "translations", trans_cells, sz) == -1)
498 		panic("moea64_bootstrap: can't get ofw translations");
499 
500 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
501 	sz /= sizeof(cell_t);
502 	for (i = 0, j = 0; i < sz; j++) {
503 		translations[j].om_va = trans_cells[i++];
504 		translations[j].om_len = trans_cells[i++];
505 		translations[j].om_pa = trans_cells[i++];
506 		if (acells == 2) {
507 			translations[j].om_pa <<= 32;
508 			translations[j].om_pa |= trans_cells[i++];
509 		}
510 		translations[j].om_mode = trans_cells[i++];
511 	}
512 	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
513 	    i, sz));
514 
515 	sz = j;
516 	qsort(translations, sz, sizeof (*translations), om_cmp);
517 
518 	for (i = 0; i < sz; i++) {
519 		pa_base = translations[i].om_pa;
520 	      #ifndef __powerpc64__
521 		if ((translations[i].om_pa >> 32) != 0)
522 			panic("OFW translations above 32-bit boundary!");
523 	      #endif
524 
525 		if (pa_base % PAGE_SIZE)
526 			panic("OFW translation not page-aligned (phys)!");
527 		if (translations[i].om_va % PAGE_SIZE)
528 			panic("OFW translation not page-aligned (virt)!");
529 
530 		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
531 		    pa_base, translations[i].om_va, translations[i].om_len);
532 
533 		/* Now enter the pages for this mapping */
534 
535 		DISABLE_TRANS(msr);
536 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
537 			if (moea64_pvo_find_va(kernel_pmap,
538 			    translations[i].om_va + off) != NULL)
539 				continue;
540 
541 			moea64_kenter(mmup, translations[i].om_va + off,
542 			    pa_base + off);
543 		}
544 		ENABLE_TRANS(msr);
545 	}
546 }
547 
548 #ifdef __powerpc64__
549 static void
550 moea64_probe_large_page(void)
551 {
552 	uint16_t pvr = mfpvr() >> 16;
553 
554 	switch (pvr) {
555 	case IBM970:
556 	case IBM970FX:
557 	case IBM970MP:
558 		powerpc_sync(); isync();
559 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
560 		powerpc_sync(); isync();
561 
562 		/* FALLTHROUGH */
563 	default:
564 		moea64_large_page_size = 0x1000000; /* 16 MB */
565 		moea64_large_page_shift = 24;
566 	}
567 
568 	moea64_large_page_mask = moea64_large_page_size - 1;
569 }
570 
571 static void
572 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
573 {
574 	struct slb *cache;
575 	struct slb entry;
576 	uint64_t esid, slbe;
577 	uint64_t i;
578 
579 	cache = PCPU_GET(slb);
580 	esid = va >> ADDR_SR_SHFT;
581 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
582 
583 	for (i = 0; i < 64; i++) {
584 		if (cache[i].slbe == (slbe | i))
585 			return;
586 	}
587 
588 	entry.slbe = slbe;
589 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
590 	if (large)
591 		entry.slbv |= SLBV_L;
592 
593 	slb_insert_kernel(entry.slbe, entry.slbv);
594 }
595 #endif
596 
597 static void
598 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
599     vm_offset_t kernelend)
600 {
601 	register_t msr;
602 	vm_paddr_t pa;
603 	vm_offset_t size, off;
604 	uint64_t pte_lo;
605 	int i;
606 
607 	if (moea64_large_page_size == 0)
608 		hw_direct_map = 0;
609 
610 	DISABLE_TRANS(msr);
611 	if (hw_direct_map) {
612 		LOCK_TABLE_WR();
613 		PMAP_LOCK(kernel_pmap);
614 		for (i = 0; i < pregions_sz; i++) {
615 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
616 		     pregions[i].mr_size; pa += moea64_large_page_size) {
617 			pte_lo = LPTE_M;
618 
619 			/*
620 			 * Set memory access as guarded if prefetch within
621 			 * the page could exit the available physmem area.
622 			 */
623 			if (pa & moea64_large_page_mask) {
624 				pa &= moea64_large_page_mask;
625 				pte_lo |= LPTE_G;
626 			}
627 			if (pa + moea64_large_page_size >
628 			    pregions[i].mr_start + pregions[i].mr_size)
629 				pte_lo |= LPTE_G;
630 
631 			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
632 				    NULL, pa, pa, pte_lo,
633 				    PVO_WIRED | PVO_LARGE, 0);
634 		  }
635 		}
636 		PMAP_UNLOCK(kernel_pmap);
637 		UNLOCK_TABLE_WR();
638 	} else {
639 		size = sizeof(struct pvo_head) * moea64_pteg_count;
640 		off = (vm_offset_t)(moea64_pvo_table);
641 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
642 			moea64_kenter(mmup, pa, pa);
643 		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
644 		off = (vm_offset_t)(moea64_bpvo_pool);
645 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
646 		moea64_kenter(mmup, pa, pa);
647 
648 		/*
649 		 * Map certain important things, like ourselves.
650 		 *
651 		 * NOTE: We do not map the exception vector space. That code is
652 		 * used only in real mode, and leaving it unmapped allows us to
653 		 * catch NULL pointer deferences, instead of making NULL a valid
654 		 * address.
655 		 */
656 
657 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
658 		    pa += PAGE_SIZE)
659 			moea64_kenter(mmup, pa, pa);
660 	}
661 	ENABLE_TRANS(msr);
662 
663 	/*
664 	 * Allow user to override unmapped_buf_allowed for testing.
665 	 * XXXKIB Only direct map implementation was tested.
666 	 */
667 	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
668 	    &unmapped_buf_allowed))
669 		unmapped_buf_allowed = hw_direct_map;
670 }
671 
672 void
673 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
674 {
675 	int		i, j;
676 	vm_size_t	physsz, hwphyssz;
677 
678 #ifndef __powerpc64__
679 	/* We don't have a direct map since there is no BAT */
680 	hw_direct_map = 0;
681 
682 	/* Make sure battable is zero, since we have no BAT */
683 	for (i = 0; i < 16; i++) {
684 		battable[i].batu = 0;
685 		battable[i].batl = 0;
686 	}
687 #else
688 	moea64_probe_large_page();
689 
690 	/* Use a direct map if we have large page support */
691 	if (moea64_large_page_size > 0)
692 		hw_direct_map = 1;
693 	else
694 		hw_direct_map = 0;
695 #endif
696 
697 	/* Get physical memory regions from firmware */
698 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
699 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
700 
701 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
702 		panic("moea64_bootstrap: phys_avail too small");
703 
704 	phys_avail_count = 0;
705 	physsz = 0;
706 	hwphyssz = 0;
707 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
708 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
709 		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
710 		    regions[i].mr_start, regions[i].mr_start +
711 		    regions[i].mr_size, regions[i].mr_size);
712 		if (hwphyssz != 0 &&
713 		    (physsz + regions[i].mr_size) >= hwphyssz) {
714 			if (physsz < hwphyssz) {
715 				phys_avail[j] = regions[i].mr_start;
716 				phys_avail[j + 1] = regions[i].mr_start +
717 				    hwphyssz - physsz;
718 				physsz = hwphyssz;
719 				phys_avail_count++;
720 			}
721 			break;
722 		}
723 		phys_avail[j] = regions[i].mr_start;
724 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
725 		phys_avail_count++;
726 		physsz += regions[i].mr_size;
727 	}
728 
729 	/* Check for overlap with the kernel and exception vectors */
730 	for (j = 0; j < 2*phys_avail_count; j+=2) {
731 		if (phys_avail[j] < EXC_LAST)
732 			phys_avail[j] += EXC_LAST;
733 
734 		if (kernelstart >= phys_avail[j] &&
735 		    kernelstart < phys_avail[j+1]) {
736 			if (kernelend < phys_avail[j+1]) {
737 				phys_avail[2*phys_avail_count] =
738 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
739 				phys_avail[2*phys_avail_count + 1] =
740 				    phys_avail[j+1];
741 				phys_avail_count++;
742 			}
743 
744 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
745 		}
746 
747 		if (kernelend >= phys_avail[j] &&
748 		    kernelend < phys_avail[j+1]) {
749 			if (kernelstart > phys_avail[j]) {
750 				phys_avail[2*phys_avail_count] = phys_avail[j];
751 				phys_avail[2*phys_avail_count + 1] =
752 				    kernelstart & ~PAGE_MASK;
753 				phys_avail_count++;
754 			}
755 
756 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
757 		}
758 	}
759 
760 	physmem = btoc(physsz);
761 
762 #ifdef PTEGCOUNT
763 	moea64_pteg_count = PTEGCOUNT;
764 #else
765 	moea64_pteg_count = 0x1000;
766 
767 	while (moea64_pteg_count < physmem)
768 		moea64_pteg_count <<= 1;
769 
770 	moea64_pteg_count >>= 1;
771 #endif /* PTEGCOUNT */
772 }
773 
774 void
775 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
776 {
777 	vm_size_t	size;
778 	register_t	msr;
779 	int		i;
780 
781 	/*
782 	 * Set PTEG mask
783 	 */
784 	moea64_pteg_mask = moea64_pteg_count - 1;
785 
786 	/*
787 	 * Allocate pv/overflow lists.
788 	 */
789 	size = sizeof(struct pvo_head) * moea64_pteg_count;
790 
791 	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
792 	    PAGE_SIZE);
793 	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
794 
795 	DISABLE_TRANS(msr);
796 	for (i = 0; i < moea64_pteg_count; i++)
797 		LIST_INIT(&moea64_pvo_table[i]);
798 	ENABLE_TRANS(msr);
799 
800 	/*
801 	 * Initialize the lock that synchronizes access to the pteg and pvo
802 	 * tables.
803 	 */
804 	rw_init_flags(&moea64_table_lock, "pmap tables", RW_RECURSE);
805 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
806 
807 	/*
808 	 * Initialise the unmanaged pvo pool.
809 	 */
810 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
811 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
812 	moea64_bpvo_pool_index = 0;
813 
814 	/*
815 	 * Make sure kernel vsid is allocated as well as VSID 0.
816 	 */
817 	#ifndef __powerpc64__
818 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
819 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
820 	moea64_vsid_bitmap[0] |= 1;
821 	#endif
822 
823 	/*
824 	 * Initialize the kernel pmap (which is statically allocated).
825 	 */
826 	#ifdef __powerpc64__
827 	for (i = 0; i < 64; i++) {
828 		pcpup->pc_slb[i].slbv = 0;
829 		pcpup->pc_slb[i].slbe = 0;
830 	}
831 	#else
832 	for (i = 0; i < 16; i++)
833 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
834 	#endif
835 
836 	kernel_pmap->pmap_phys = kernel_pmap;
837 	CPU_FILL(&kernel_pmap->pm_active);
838 	RB_INIT(&kernel_pmap->pmap_pvo);
839 
840 	PMAP_LOCK_INIT(kernel_pmap);
841 
842 	/*
843 	 * Now map in all the other buffers we allocated earlier
844 	 */
845 
846 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
847 }
848 
849 void
850 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
851 {
852 	ihandle_t	mmui;
853 	phandle_t	chosen;
854 	phandle_t	mmu;
855 	ssize_t		sz;
856 	int		i;
857 	vm_offset_t	pa, va;
858 	void		*dpcpu;
859 
860 	/*
861 	 * Set up the Open Firmware pmap and add its mappings if not in real
862 	 * mode.
863 	 */
864 
865 	chosen = OF_finddevice("/chosen");
866 	if (!ofw_real_mode && chosen != -1 &&
867 	    OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
868 		mmu = OF_instance_to_package(mmui);
869 		if (mmu == -1 ||
870 		    (sz = OF_getproplen(mmu, "translations")) == -1)
871 			sz = 0;
872 		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
873 			panic("moea64_bootstrap: too many ofw translations");
874 
875 		if (sz > 0)
876 			moea64_add_ofw_mappings(mmup, mmu, sz);
877 	}
878 
879 	/*
880 	 * Calculate the last available physical address.
881 	 */
882 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
883 		;
884 	Maxmem = powerpc_btop(phys_avail[i + 1]);
885 
886 	/*
887 	 * Initialize MMU and remap early physical mappings
888 	 */
889 	MMU_CPU_BOOTSTRAP(mmup,0);
890 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
891 	pmap_bootstrapped++;
892 	bs_remap_earlyboot();
893 
894 	/*
895 	 * Set the start and end of kva.
896 	 */
897 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
898 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
899 
900 	/*
901 	 * Map the entire KVA range into the SLB. We must not fault there.
902 	 */
903 	#ifdef __powerpc64__
904 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
905 		moea64_bootstrap_slb_prefault(va, 0);
906 	#endif
907 
908 	/*
909 	 * Figure out how far we can extend virtual_end into segment 16
910 	 * without running into existing mappings. Segment 16 is guaranteed
911 	 * to contain neither RAM nor devices (at least on Apple hardware),
912 	 * but will generally contain some OFW mappings we should not
913 	 * step on.
914 	 */
915 
916 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
917 	PMAP_LOCK(kernel_pmap);
918 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
919 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
920 		virtual_end += PAGE_SIZE;
921 	PMAP_UNLOCK(kernel_pmap);
922 	#endif
923 
924 	/*
925 	 * Allocate a kernel stack with a guard page for thread0 and map it
926 	 * into the kernel page map.
927 	 */
928 	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
929 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
930 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
931 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
932 	thread0.td_kstack = va;
933 	thread0.td_kstack_pages = KSTACK_PAGES;
934 	for (i = 0; i < KSTACK_PAGES; i++) {
935 		moea64_kenter(mmup, va, pa);
936 		pa += PAGE_SIZE;
937 		va += PAGE_SIZE;
938 	}
939 
940 	/*
941 	 * Allocate virtual address space for the message buffer.
942 	 */
943 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
944 	msgbufp = (struct msgbuf *)virtual_avail;
945 	va = virtual_avail;
946 	virtual_avail += round_page(msgbufsize);
947 	while (va < virtual_avail) {
948 		moea64_kenter(mmup, va, pa);
949 		pa += PAGE_SIZE;
950 		va += PAGE_SIZE;
951 	}
952 
953 	/*
954 	 * Allocate virtual address space for the dynamic percpu area.
955 	 */
956 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
957 	dpcpu = (void *)virtual_avail;
958 	va = virtual_avail;
959 	virtual_avail += DPCPU_SIZE;
960 	while (va < virtual_avail) {
961 		moea64_kenter(mmup, va, pa);
962 		pa += PAGE_SIZE;
963 		va += PAGE_SIZE;
964 	}
965 	dpcpu_init(dpcpu, 0);
966 
967 	/*
968 	 * Allocate some things for page zeroing. We put this directly
969 	 * in the page table, marked with LPTE_LOCKED, to avoid any
970 	 * of the PVO book-keeping or other parts of the VM system
971 	 * from even knowing that this hack exists.
972 	 */
973 
974 	if (!hw_direct_map) {
975 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
976 		    MTX_DEF);
977 		for (i = 0; i < 2; i++) {
978 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
979 			virtual_end -= PAGE_SIZE;
980 
981 			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
982 
983 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
984 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
985 			LOCK_TABLE_RD();
986 			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
987 			    mmup, moea64_scratchpage_pvo[i]);
988 			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
989 			    |= LPTE_LOCKED;
990 			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
991 			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
992 			    moea64_scratchpage_pvo[i]->pvo_vpn);
993 			UNLOCK_TABLE_RD();
994 		}
995 	}
996 }
997 
998 /*
999  * Activate a user pmap.  The pmap must be activated before its address
1000  * space can be accessed in any way.
1001  */
1002 void
1003 moea64_activate(mmu_t mmu, struct thread *td)
1004 {
1005 	pmap_t	pm;
1006 
1007 	pm = &td->td_proc->p_vmspace->vm_pmap;
1008 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1009 
1010 	#ifdef __powerpc64__
1011 	PCPU_SET(userslb, pm->pm_slb);
1012 	#else
1013 	PCPU_SET(curpmap, pm->pmap_phys);
1014 	#endif
1015 }
1016 
1017 void
1018 moea64_deactivate(mmu_t mmu, struct thread *td)
1019 {
1020 	pmap_t	pm;
1021 
1022 	pm = &td->td_proc->p_vmspace->vm_pmap;
1023 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1024 	#ifdef __powerpc64__
1025 	PCPU_SET(userslb, NULL);
1026 	#else
1027 	PCPU_SET(curpmap, NULL);
1028 	#endif
1029 }
1030 
1031 void
1032 moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1033 {
1034 	struct	pvo_entry key, *pvo;
1035 	uintptr_t pt;
1036 
1037 	LOCK_TABLE_RD();
1038 	PMAP_LOCK(pm);
1039 	key.pvo_vaddr = sva;
1040 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1041 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1042 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1043 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1044 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1045 			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1046 			    pvo);
1047 		pvo->pvo_vaddr &= ~PVO_WIRED;
1048 		if ((pvo->pvo_pte.lpte.pte_hi & LPTE_WIRED) == 0)
1049 			panic("moea64_unwire: pte %p is missing LPTE_WIRED",
1050 			    &pvo->pvo_pte.lpte);
1051 		pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1052 		if (pt != -1) {
1053 			/*
1054 			 * The PTE's wired attribute is not a hardware
1055 			 * feature, so there is no need to invalidate any TLB
1056 			 * entries.
1057 			 */
1058 			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1059 			    pvo->pvo_vpn);
1060 		}
1061 		pm->pm_stats.wired_count--;
1062 	}
1063 	UNLOCK_TABLE_RD();
1064 	PMAP_UNLOCK(pm);
1065 }
1066 
1067 /*
1068  * This goes through and sets the physical address of our
1069  * special scratch PTE to the PA we want to zero or copy. Because
1070  * of locking issues (this can get called in pvo_enter() by
1071  * the UMA allocator), we can't use most other utility functions here
1072  */
1073 
1074 static __inline
1075 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1076 
1077 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1078 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1079 
1080 	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1081 	    ~(LPTE_WIMG | LPTE_RPGN);
1082 	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1083 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1084 	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1085 	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1086 	    moea64_scratchpage_pvo[which]->pvo_vpn);
1087 	isync();
1088 }
1089 
1090 void
1091 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1092 {
1093 	vm_offset_t	dst;
1094 	vm_offset_t	src;
1095 
1096 	dst = VM_PAGE_TO_PHYS(mdst);
1097 	src = VM_PAGE_TO_PHYS(msrc);
1098 
1099 	if (hw_direct_map) {
1100 		bcopy((void *)src, (void *)dst, PAGE_SIZE);
1101 	} else {
1102 		mtx_lock(&moea64_scratchpage_mtx);
1103 
1104 		moea64_set_scratchpage_pa(mmu, 0, src);
1105 		moea64_set_scratchpage_pa(mmu, 1, dst);
1106 
1107 		bcopy((void *)moea64_scratchpage_va[0],
1108 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1109 
1110 		mtx_unlock(&moea64_scratchpage_mtx);
1111 	}
1112 }
1113 
1114 static inline void
1115 moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1116     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1117 {
1118 	void *a_cp, *b_cp;
1119 	vm_offset_t a_pg_offset, b_pg_offset;
1120 	int cnt;
1121 
1122 	while (xfersize > 0) {
1123 		a_pg_offset = a_offset & PAGE_MASK;
1124 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1125 		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1126 		    a_pg_offset;
1127 		b_pg_offset = b_offset & PAGE_MASK;
1128 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1129 		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1130 		    b_pg_offset;
1131 		bcopy(a_cp, b_cp, cnt);
1132 		a_offset += cnt;
1133 		b_offset += cnt;
1134 		xfersize -= cnt;
1135 	}
1136 }
1137 
1138 static inline void
1139 moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1140     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1141 {
1142 	void *a_cp, *b_cp;
1143 	vm_offset_t a_pg_offset, b_pg_offset;
1144 	int cnt;
1145 
1146 	mtx_lock(&moea64_scratchpage_mtx);
1147 	while (xfersize > 0) {
1148 		a_pg_offset = a_offset & PAGE_MASK;
1149 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1150 		moea64_set_scratchpage_pa(mmu, 0,
1151 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1152 		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1153 		b_pg_offset = b_offset & PAGE_MASK;
1154 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1155 		moea64_set_scratchpage_pa(mmu, 1,
1156 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1157 		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1158 		bcopy(a_cp, b_cp, cnt);
1159 		a_offset += cnt;
1160 		b_offset += cnt;
1161 		xfersize -= cnt;
1162 	}
1163 	mtx_unlock(&moea64_scratchpage_mtx);
1164 }
1165 
1166 void
1167 moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1168     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1169 {
1170 
1171 	if (hw_direct_map) {
1172 		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1173 		    xfersize);
1174 	} else {
1175 		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1176 		    xfersize);
1177 	}
1178 }
1179 
1180 void
1181 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1182 {
1183 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1184 
1185 	if (size + off > PAGE_SIZE)
1186 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1187 
1188 	if (hw_direct_map) {
1189 		bzero((caddr_t)pa + off, size);
1190 	} else {
1191 		mtx_lock(&moea64_scratchpage_mtx);
1192 		moea64_set_scratchpage_pa(mmu, 0, pa);
1193 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1194 		mtx_unlock(&moea64_scratchpage_mtx);
1195 	}
1196 }
1197 
1198 /*
1199  * Zero a page of physical memory by temporarily mapping it
1200  */
1201 void
1202 moea64_zero_page(mmu_t mmu, vm_page_t m)
1203 {
1204 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1205 	vm_offset_t va, off;
1206 
1207 	if (!hw_direct_map) {
1208 		mtx_lock(&moea64_scratchpage_mtx);
1209 
1210 		moea64_set_scratchpage_pa(mmu, 0, pa);
1211 		va = moea64_scratchpage_va[0];
1212 	} else {
1213 		va = pa;
1214 	}
1215 
1216 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1217 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1218 
1219 	if (!hw_direct_map)
1220 		mtx_unlock(&moea64_scratchpage_mtx);
1221 }
1222 
1223 void
1224 moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1225 {
1226 
1227 	moea64_zero_page(mmu, m);
1228 }
1229 
1230 /*
1231  * Map the given physical page at the specified virtual address in the
1232  * target pmap with the protection requested.  If specified the page
1233  * will be wired down.
1234  */
1235 
1236 int
1237 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1238     vm_prot_t prot, u_int flags, int8_t psind)
1239 {
1240 	struct		pvo_head *pvo_head;
1241 	uma_zone_t	zone;
1242 	uint64_t	pte_lo;
1243 	u_int		pvo_flags;
1244 	int		error;
1245 
1246 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1247 		VM_OBJECT_ASSERT_LOCKED(m->object);
1248 
1249 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1250 		pvo_head = NULL;
1251 		zone = moea64_upvo_zone;
1252 		pvo_flags = 0;
1253 	} else {
1254 		pvo_head = vm_page_to_pvoh(m);
1255 		zone = moea64_mpvo_zone;
1256 		pvo_flags = PVO_MANAGED;
1257 	}
1258 
1259 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1260 
1261 	if (prot & VM_PROT_WRITE) {
1262 		pte_lo |= LPTE_BW;
1263 		if (pmap_bootstrapped &&
1264 		    (m->oflags & VPO_UNMANAGED) == 0)
1265 			vm_page_aflag_set(m, PGA_WRITEABLE);
1266 	} else
1267 		pte_lo |= LPTE_BR;
1268 
1269 	if ((prot & VM_PROT_EXECUTE) == 0)
1270 		pte_lo |= LPTE_NOEXEC;
1271 
1272 	if ((flags & PMAP_ENTER_WIRED) != 0)
1273 		pvo_flags |= PVO_WIRED;
1274 
1275 	for (;;) {
1276 		LOCK_TABLE_WR();
1277 		PMAP_LOCK(pmap);
1278 		error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1279 		    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags, psind);
1280 		PMAP_UNLOCK(pmap);
1281 		UNLOCK_TABLE_WR();
1282 		if (error != ENOMEM)
1283 			break;
1284 		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1285 			return (KERN_RESOURCE_SHORTAGE);
1286 		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1287 		VM_WAIT;
1288 	}
1289 
1290 	/*
1291 	 * Flush the page from the instruction cache if this page is
1292 	 * mapped executable and cacheable.
1293 	 */
1294 	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1295 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1296 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1297 		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1298 	}
1299 	return (KERN_SUCCESS);
1300 }
1301 
1302 static void
1303 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1304     vm_size_t sz)
1305 {
1306 
1307 	/*
1308 	 * This is much trickier than on older systems because
1309 	 * we can't sync the icache on physical addresses directly
1310 	 * without a direct map. Instead we check a couple of cases
1311 	 * where the memory is already mapped in and, failing that,
1312 	 * use the same trick we use for page zeroing to create
1313 	 * a temporary mapping for this physical address.
1314 	 */
1315 
1316 	if (!pmap_bootstrapped) {
1317 		/*
1318 		 * If PMAP is not bootstrapped, we are likely to be
1319 		 * in real mode.
1320 		 */
1321 		__syncicache((void *)pa, sz);
1322 	} else if (pmap == kernel_pmap) {
1323 		__syncicache((void *)va, sz);
1324 	} else if (hw_direct_map) {
1325 		__syncicache((void *)pa, sz);
1326 	} else {
1327 		/* Use the scratch page to set up a temp mapping */
1328 
1329 		mtx_lock(&moea64_scratchpage_mtx);
1330 
1331 		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1332 		__syncicache((void *)(moea64_scratchpage_va[1] +
1333 		    (va & ADDR_POFF)), sz);
1334 
1335 		mtx_unlock(&moea64_scratchpage_mtx);
1336 	}
1337 }
1338 
1339 /*
1340  * Maps a sequence of resident pages belonging to the same object.
1341  * The sequence begins with the given page m_start.  This page is
1342  * mapped at the given virtual address start.  Each subsequent page is
1343  * mapped at a virtual address that is offset from start by the same
1344  * amount as the page is offset from m_start within the object.  The
1345  * last page in the sequence is the page with the largest offset from
1346  * m_start that can be mapped at a virtual address less than the given
1347  * virtual address end.  Not every virtual page between start and end
1348  * is mapped; only those for which a resident page exists with the
1349  * corresponding offset from m_start are mapped.
1350  */
1351 void
1352 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1353     vm_page_t m_start, vm_prot_t prot)
1354 {
1355 	vm_page_t m;
1356 	vm_pindex_t diff, psize;
1357 
1358 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1359 
1360 	psize = atop(end - start);
1361 	m = m_start;
1362 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1363 		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1364 		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0);
1365 		m = TAILQ_NEXT(m, listq);
1366 	}
1367 }
1368 
1369 void
1370 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1371     vm_prot_t prot)
1372 {
1373 
1374 	moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1375 	    PMAP_ENTER_NOSLEEP, 0);
1376 }
1377 
1378 vm_paddr_t
1379 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1380 {
1381 	struct	pvo_entry *pvo;
1382 	vm_paddr_t pa;
1383 
1384 	PMAP_LOCK(pm);
1385 	pvo = moea64_pvo_find_va(pm, va);
1386 	if (pvo == NULL)
1387 		pa = 0;
1388 	else
1389 		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1390 		    (va - PVO_VADDR(pvo));
1391 	PMAP_UNLOCK(pm);
1392 	return (pa);
1393 }
1394 
1395 /*
1396  * Atomically extract and hold the physical page with the given
1397  * pmap and virtual address pair if that mapping permits the given
1398  * protection.
1399  */
1400 vm_page_t
1401 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1402 {
1403 	struct	pvo_entry *pvo;
1404 	vm_page_t m;
1405         vm_paddr_t pa;
1406 
1407 	m = NULL;
1408 	pa = 0;
1409 	PMAP_LOCK(pmap);
1410 retry:
1411 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1412 	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1413 	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1414 	     (prot & VM_PROT_WRITE) == 0)) {
1415 		if (vm_page_pa_tryrelock(pmap,
1416 			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1417 			goto retry;
1418 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1419 		vm_page_hold(m);
1420 	}
1421 	PA_UNLOCK_COND(pa);
1422 	PMAP_UNLOCK(pmap);
1423 	return (m);
1424 }
1425 
1426 static mmu_t installed_mmu;
1427 
1428 static void *
1429 moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1430 {
1431 	/*
1432 	 * This entire routine is a horrible hack to avoid bothering kmem
1433 	 * for new KVA addresses. Because this can get called from inside
1434 	 * kmem allocation routines, calling kmem for a new address here
1435 	 * can lead to multiply locking non-recursive mutexes.
1436 	 */
1437         vm_offset_t va;
1438 
1439         vm_page_t m;
1440         int pflags, needed_lock;
1441 
1442 	*flags = UMA_SLAB_PRIV;
1443 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1444 	pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
1445 
1446         for (;;) {
1447                 m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1448                 if (m == NULL) {
1449                         if (wait & M_NOWAIT)
1450                                 return (NULL);
1451                         VM_WAIT;
1452                 } else
1453                         break;
1454         }
1455 
1456 	va = VM_PAGE_TO_PHYS(m);
1457 
1458 	LOCK_TABLE_WR();
1459 	if (needed_lock)
1460 		PMAP_LOCK(kernel_pmap);
1461 
1462 	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1463 	    NULL, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP,
1464 	    0);
1465 
1466 	if (needed_lock)
1467 		PMAP_UNLOCK(kernel_pmap);
1468 	UNLOCK_TABLE_WR();
1469 
1470 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1471                 bzero((void *)va, PAGE_SIZE);
1472 
1473 	return (void *)va;
1474 }
1475 
1476 extern int elf32_nxstack;
1477 
1478 void
1479 moea64_init(mmu_t mmu)
1480 {
1481 
1482 	CTR0(KTR_PMAP, "moea64_init");
1483 
1484 	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1485 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1486 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1487 	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1488 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1489 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1490 
1491 	if (!hw_direct_map) {
1492 		installed_mmu = mmu;
1493 		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1494 		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1495 	}
1496 
1497 #ifdef COMPAT_FREEBSD32
1498 	elf32_nxstack = 1;
1499 #endif
1500 
1501 	moea64_initialized = TRUE;
1502 }
1503 
1504 boolean_t
1505 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1506 {
1507 
1508 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1509 	    ("moea64_is_referenced: page %p is not managed", m));
1510 	return (moea64_query_bit(mmu, m, PTE_REF));
1511 }
1512 
1513 boolean_t
1514 moea64_is_modified(mmu_t mmu, vm_page_t m)
1515 {
1516 
1517 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1518 	    ("moea64_is_modified: page %p is not managed", m));
1519 
1520 	/*
1521 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1522 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1523 	 * is clear, no PTEs can have LPTE_CHG set.
1524 	 */
1525 	VM_OBJECT_ASSERT_LOCKED(m->object);
1526 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1527 		return (FALSE);
1528 	return (moea64_query_bit(mmu, m, LPTE_CHG));
1529 }
1530 
1531 boolean_t
1532 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1533 {
1534 	struct pvo_entry *pvo;
1535 	boolean_t rv;
1536 
1537 	PMAP_LOCK(pmap);
1538 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1539 	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1540 	PMAP_UNLOCK(pmap);
1541 	return (rv);
1542 }
1543 
1544 void
1545 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1546 {
1547 
1548 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1549 	    ("moea64_clear_modify: page %p is not managed", m));
1550 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1551 	KASSERT(!vm_page_xbusied(m),
1552 	    ("moea64_clear_modify: page %p is exclusive busied", m));
1553 
1554 	/*
1555 	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1556 	 * set.  If the object containing the page is locked and the page is
1557 	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1558 	 */
1559 	if ((m->aflags & PGA_WRITEABLE) == 0)
1560 		return;
1561 	moea64_clear_bit(mmu, m, LPTE_CHG);
1562 }
1563 
1564 /*
1565  * Clear the write and modified bits in each of the given page's mappings.
1566  */
1567 void
1568 moea64_remove_write(mmu_t mmu, vm_page_t m)
1569 {
1570 	struct	pvo_entry *pvo;
1571 	uintptr_t pt;
1572 	pmap_t	pmap;
1573 	uint64_t lo = 0;
1574 
1575 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1576 	    ("moea64_remove_write: page %p is not managed", m));
1577 
1578 	/*
1579 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1580 	 * set by another thread while the object is locked.  Thus,
1581 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1582 	 */
1583 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1584 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1585 		return;
1586 	powerpc_sync();
1587 	LOCK_TABLE_RD();
1588 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1589 		pmap = pvo->pvo_pmap;
1590 		PMAP_LOCK(pmap);
1591 		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1592 			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1593 			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1594 			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1595 			if (pt != -1) {
1596 				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1597 				lo |= pvo->pvo_pte.lpte.pte_lo;
1598 				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1599 				MOEA64_PTE_CHANGE(mmu, pt,
1600 				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1601 				if (pvo->pvo_pmap == kernel_pmap)
1602 					isync();
1603 			}
1604 		}
1605 		if ((lo & LPTE_CHG) != 0)
1606 			vm_page_dirty(m);
1607 		PMAP_UNLOCK(pmap);
1608 	}
1609 	UNLOCK_TABLE_RD();
1610 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1611 }
1612 
1613 /*
1614  *	moea64_ts_referenced:
1615  *
1616  *	Return a count of reference bits for a page, clearing those bits.
1617  *	It is not necessary for every reference bit to be cleared, but it
1618  *	is necessary that 0 only be returned when there are truly no
1619  *	reference bits set.
1620  *
1621  *	XXX: The exact number of bits to check and clear is a matter that
1622  *	should be tested and standardized at some point in the future for
1623  *	optimal aging of shared pages.
1624  */
1625 int
1626 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1627 {
1628 
1629 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1630 	    ("moea64_ts_referenced: page %p is not managed", m));
1631 	return (moea64_clear_bit(mmu, m, LPTE_REF));
1632 }
1633 
1634 /*
1635  * Modify the WIMG settings of all mappings for a page.
1636  */
1637 void
1638 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1639 {
1640 	struct	pvo_entry *pvo;
1641 	struct  pvo_head *pvo_head;
1642 	uintptr_t pt;
1643 	pmap_t	pmap;
1644 	uint64_t lo;
1645 
1646 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1647 		m->md.mdpg_cache_attrs = ma;
1648 		return;
1649 	}
1650 
1651 	pvo_head = vm_page_to_pvoh(m);
1652 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1653 	LOCK_TABLE_RD();
1654 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1655 		pmap = pvo->pvo_pmap;
1656 		PMAP_LOCK(pmap);
1657 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1658 		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1659 		pvo->pvo_pte.lpte.pte_lo |= lo;
1660 		if (pt != -1) {
1661 			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1662 			    pvo->pvo_vpn);
1663 			if (pvo->pvo_pmap == kernel_pmap)
1664 				isync();
1665 		}
1666 		PMAP_UNLOCK(pmap);
1667 	}
1668 	UNLOCK_TABLE_RD();
1669 	m->md.mdpg_cache_attrs = ma;
1670 }
1671 
1672 /*
1673  * Map a wired page into kernel virtual address space.
1674  */
1675 void
1676 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1677 {
1678 	uint64_t	pte_lo;
1679 	int		error;
1680 
1681 	pte_lo = moea64_calc_wimg(pa, ma);
1682 
1683 	LOCK_TABLE_WR();
1684 	PMAP_LOCK(kernel_pmap);
1685 	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1686 	    NULL, va, pa, pte_lo, PVO_WIRED, 0);
1687 	PMAP_UNLOCK(kernel_pmap);
1688 	UNLOCK_TABLE_WR();
1689 
1690 	if (error != 0 && error != ENOENT)
1691 		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1692 		    pa, error);
1693 }
1694 
1695 void
1696 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1697 {
1698 
1699 	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1700 }
1701 
1702 /*
1703  * Extract the physical page address associated with the given kernel virtual
1704  * address.
1705  */
1706 vm_paddr_t
1707 moea64_kextract(mmu_t mmu, vm_offset_t va)
1708 {
1709 	struct		pvo_entry *pvo;
1710 	vm_paddr_t pa;
1711 
1712 	/*
1713 	 * Shortcut the direct-mapped case when applicable.  We never put
1714 	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1715 	 */
1716 	if (va < VM_MIN_KERNEL_ADDRESS)
1717 		return (va);
1718 
1719 	PMAP_LOCK(kernel_pmap);
1720 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1721 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1722 	    va));
1723 	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1724 	PMAP_UNLOCK(kernel_pmap);
1725 	return (pa);
1726 }
1727 
1728 /*
1729  * Remove a wired page from kernel virtual address space.
1730  */
1731 void
1732 moea64_kremove(mmu_t mmu, vm_offset_t va)
1733 {
1734 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1735 }
1736 
1737 /*
1738  * Map a range of physical addresses into kernel virtual address space.
1739  *
1740  * The value passed in *virt is a suggested virtual address for the mapping.
1741  * Architectures which can support a direct-mapped physical to virtual region
1742  * can return the appropriate address within that region, leaving '*virt'
1743  * unchanged.  We cannot and therefore do not; *virt is updated with the
1744  * first usable address after the mapped region.
1745  */
1746 vm_offset_t
1747 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1748     vm_paddr_t pa_end, int prot)
1749 {
1750 	vm_offset_t	sva, va;
1751 
1752 	sva = *virt;
1753 	va = sva;
1754 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1755 		moea64_kenter(mmu, va, pa_start);
1756 	*virt = va;
1757 
1758 	return (sva);
1759 }
1760 
1761 /*
1762  * Returns true if the pmap's pv is one of the first
1763  * 16 pvs linked to from this page.  This count may
1764  * be changed upwards or downwards in the future; it
1765  * is only necessary that true be returned for a small
1766  * subset of pmaps for proper page aging.
1767  */
1768 boolean_t
1769 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1770 {
1771         int loops;
1772 	struct pvo_entry *pvo;
1773 	boolean_t rv;
1774 
1775 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1776 	    ("moea64_page_exists_quick: page %p is not managed", m));
1777 	loops = 0;
1778 	rv = FALSE;
1779 	LOCK_TABLE_RD();
1780 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1781 		if (pvo->pvo_pmap == pmap) {
1782 			rv = TRUE;
1783 			break;
1784 		}
1785 		if (++loops >= 16)
1786 			break;
1787 	}
1788 	UNLOCK_TABLE_RD();
1789 	return (rv);
1790 }
1791 
1792 /*
1793  * Return the number of managed mappings to the given physical page
1794  * that are wired.
1795  */
1796 int
1797 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1798 {
1799 	struct pvo_entry *pvo;
1800 	int count;
1801 
1802 	count = 0;
1803 	if ((m->oflags & VPO_UNMANAGED) != 0)
1804 		return (count);
1805 	LOCK_TABLE_RD();
1806 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1807 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1808 			count++;
1809 	UNLOCK_TABLE_RD();
1810 	return (count);
1811 }
1812 
1813 static uintptr_t	moea64_vsidcontext;
1814 
1815 uintptr_t
1816 moea64_get_unique_vsid(void) {
1817 	u_int entropy;
1818 	register_t hash;
1819 	uint32_t mask;
1820 	int i;
1821 
1822 	entropy = 0;
1823 	__asm __volatile("mftb %0" : "=r"(entropy));
1824 
1825 	mtx_lock(&moea64_slb_mutex);
1826 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1827 		u_int	n;
1828 
1829 		/*
1830 		 * Create a new value by mutiplying by a prime and adding in
1831 		 * entropy from the timebase register.  This is to make the
1832 		 * VSID more random so that the PT hash function collides
1833 		 * less often.  (Note that the prime casues gcc to do shifts
1834 		 * instead of a multiply.)
1835 		 */
1836 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1837 		hash = moea64_vsidcontext & (NVSIDS - 1);
1838 		if (hash == 0)		/* 0 is special, avoid it */
1839 			continue;
1840 		n = hash >> 5;
1841 		mask = 1 << (hash & (VSID_NBPW - 1));
1842 		hash = (moea64_vsidcontext & VSID_HASHMASK);
1843 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1844 			/* anything free in this bucket? */
1845 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1846 				entropy = (moea64_vsidcontext >> 20);
1847 				continue;
1848 			}
1849 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1850 			mask = 1 << i;
1851 			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1852 			hash |= i;
1853 		}
1854 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1855 		    ("Allocating in-use VSID %#zx\n", hash));
1856 		moea64_vsid_bitmap[n] |= mask;
1857 		mtx_unlock(&moea64_slb_mutex);
1858 		return (hash);
1859 	}
1860 
1861 	mtx_unlock(&moea64_slb_mutex);
1862 	panic("%s: out of segments",__func__);
1863 }
1864 
1865 #ifdef __powerpc64__
1866 void
1867 moea64_pinit(mmu_t mmu, pmap_t pmap)
1868 {
1869 
1870 	RB_INIT(&pmap->pmap_pvo);
1871 
1872 	pmap->pm_slb_tree_root = slb_alloc_tree();
1873 	pmap->pm_slb = slb_alloc_user_cache();
1874 	pmap->pm_slb_len = 0;
1875 }
1876 #else
1877 void
1878 moea64_pinit(mmu_t mmu, pmap_t pmap)
1879 {
1880 	int	i;
1881 	uint32_t hash;
1882 
1883 	RB_INIT(&pmap->pmap_pvo);
1884 
1885 	if (pmap_bootstrapped)
1886 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1887 		    (vm_offset_t)pmap);
1888 	else
1889 		pmap->pmap_phys = pmap;
1890 
1891 	/*
1892 	 * Allocate some segment registers for this pmap.
1893 	 */
1894 	hash = moea64_get_unique_vsid();
1895 
1896 	for (i = 0; i < 16; i++)
1897 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1898 
1899 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1900 }
1901 #endif
1902 
1903 /*
1904  * Initialize the pmap associated with process 0.
1905  */
1906 void
1907 moea64_pinit0(mmu_t mmu, pmap_t pm)
1908 {
1909 
1910 	PMAP_LOCK_INIT(pm);
1911 	moea64_pinit(mmu, pm);
1912 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1913 }
1914 
1915 /*
1916  * Set the physical protection on the specified range of this map as requested.
1917  */
1918 static void
1919 moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1920 {
1921 	uintptr_t pt;
1922 	struct	vm_page *pg;
1923 	uint64_t oldlo;
1924 
1925 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
1926 
1927 	/*
1928 	 * Grab the PTE pointer before we diddle with the cached PTE
1929 	 * copy.
1930 	 */
1931 	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1932 
1933 	/*
1934 	 * Change the protection of the page.
1935 	 */
1936 	oldlo = pvo->pvo_pte.lpte.pte_lo;
1937 	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1938 	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1939 	if ((prot & VM_PROT_EXECUTE) == 0)
1940 		pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1941 	if (prot & VM_PROT_WRITE)
1942 		pvo->pvo_pte.lpte.pte_lo |= LPTE_BW;
1943 	else
1944 		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1945 
1946 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1947 
1948 	/*
1949 	 * If the PVO is in the page table, update that pte as well.
1950 	 */
1951 	if (pt != -1)
1952 		MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1953 		    pvo->pvo_vpn);
1954 	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
1955 	    (pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1956 		if ((pg->oflags & VPO_UNMANAGED) == 0)
1957 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
1958 		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1959 		    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, PAGE_SIZE);
1960 	}
1961 
1962 	/*
1963 	 * Update vm about the REF/CHG bits if the page is managed and we have
1964 	 * removed write access.
1965 	 */
1966 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED &&
1967 	    (oldlo & LPTE_PP) != LPTE_BR && !(prot & VM_PROT_WRITE)) {
1968 		if (pg != NULL) {
1969 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
1970 				vm_page_dirty(pg);
1971 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
1972 				vm_page_aflag_set(pg, PGA_REFERENCED);
1973 		}
1974 	}
1975 }
1976 
1977 void
1978 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1979     vm_prot_t prot)
1980 {
1981 	struct	pvo_entry *pvo, *tpvo, key;
1982 
1983 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
1984 	    sva, eva, prot);
1985 
1986 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1987 	    ("moea64_protect: non current pmap"));
1988 
1989 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1990 		moea64_remove(mmu, pm, sva, eva);
1991 		return;
1992 	}
1993 
1994 	LOCK_TABLE_RD();
1995 	PMAP_LOCK(pm);
1996 	key.pvo_vaddr = sva;
1997 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1998 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1999 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2000 		moea64_pvo_protect(mmu, pm, pvo, prot);
2001 	}
2002 	UNLOCK_TABLE_RD();
2003 	PMAP_UNLOCK(pm);
2004 }
2005 
2006 /*
2007  * Map a list of wired pages into kernel virtual address space.  This is
2008  * intended for temporary mappings which do not need page modification or
2009  * references recorded.  Existing mappings in the region are overwritten.
2010  */
2011 void
2012 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2013 {
2014 	while (count-- > 0) {
2015 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2016 		va += PAGE_SIZE;
2017 		m++;
2018 	}
2019 }
2020 
2021 /*
2022  * Remove page mappings from kernel virtual address space.  Intended for
2023  * temporary mappings entered by moea64_qenter.
2024  */
2025 void
2026 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2027 {
2028 	while (count-- > 0) {
2029 		moea64_kremove(mmu, va);
2030 		va += PAGE_SIZE;
2031 	}
2032 }
2033 
2034 void
2035 moea64_release_vsid(uint64_t vsid)
2036 {
2037 	int idx, mask;
2038 
2039 	mtx_lock(&moea64_slb_mutex);
2040 	idx = vsid & (NVSIDS-1);
2041 	mask = 1 << (idx % VSID_NBPW);
2042 	idx /= VSID_NBPW;
2043 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2044 	    ("Freeing unallocated VSID %#jx", vsid));
2045 	moea64_vsid_bitmap[idx] &= ~mask;
2046 	mtx_unlock(&moea64_slb_mutex);
2047 }
2048 
2049 
2050 void
2051 moea64_release(mmu_t mmu, pmap_t pmap)
2052 {
2053 
2054 	/*
2055 	 * Free segment registers' VSIDs
2056 	 */
2057     #ifdef __powerpc64__
2058 	slb_free_tree(pmap);
2059 	slb_free_user_cache(pmap->pm_slb);
2060     #else
2061 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2062 
2063 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2064     #endif
2065 }
2066 
2067 /*
2068  * Remove all pages mapped by the specified pmap
2069  */
2070 void
2071 moea64_remove_pages(mmu_t mmu, pmap_t pm)
2072 {
2073 	struct	pvo_entry *pvo, *tpvo;
2074 
2075 	LOCK_TABLE_WR();
2076 	PMAP_LOCK(pm);
2077 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2078 		if (!(pvo->pvo_vaddr & PVO_WIRED))
2079 			moea64_pvo_remove(mmu, pvo);
2080 	}
2081 	UNLOCK_TABLE_WR();
2082 	PMAP_UNLOCK(pm);
2083 }
2084 
2085 /*
2086  * Remove the given range of addresses from the specified map.
2087  */
2088 void
2089 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2090 {
2091 	struct	pvo_entry *pvo, *tpvo, key;
2092 
2093 	/*
2094 	 * Perform an unsynchronized read.  This is, however, safe.
2095 	 */
2096 	if (pm->pm_stats.resident_count == 0)
2097 		return;
2098 
2099 	LOCK_TABLE_WR();
2100 	PMAP_LOCK(pm);
2101 	key.pvo_vaddr = sva;
2102 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2103 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2104 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2105 		moea64_pvo_remove(mmu, pvo);
2106 	}
2107 	UNLOCK_TABLE_WR();
2108 	PMAP_UNLOCK(pm);
2109 }
2110 
2111 /*
2112  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2113  * will reflect changes in pte's back to the vm_page.
2114  */
2115 void
2116 moea64_remove_all(mmu_t mmu, vm_page_t m)
2117 {
2118 	struct	pvo_entry *pvo, *next_pvo;
2119 	pmap_t	pmap;
2120 
2121 	LOCK_TABLE_WR();
2122 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2123 		pmap = pvo->pvo_pmap;
2124 		PMAP_LOCK(pmap);
2125 		moea64_pvo_remove(mmu, pvo);
2126 		PMAP_UNLOCK(pmap);
2127 	}
2128 	UNLOCK_TABLE_WR();
2129 	if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m))
2130 		vm_page_dirty(m);
2131 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2132 	vm_page_aflag_clear(m, PGA_EXECUTABLE);
2133 }
2134 
2135 /*
2136  * Allocate a physical page of memory directly from the phys_avail map.
2137  * Can only be called from moea64_bootstrap before avail start and end are
2138  * calculated.
2139  */
2140 vm_offset_t
2141 moea64_bootstrap_alloc(vm_size_t size, u_int align)
2142 {
2143 	vm_offset_t	s, e;
2144 	int		i, j;
2145 
2146 	size = round_page(size);
2147 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2148 		if (align != 0)
2149 			s = (phys_avail[i] + align - 1) & ~(align - 1);
2150 		else
2151 			s = phys_avail[i];
2152 		e = s + size;
2153 
2154 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2155 			continue;
2156 
2157 		if (s + size > platform_real_maxaddr())
2158 			continue;
2159 
2160 		if (s == phys_avail[i]) {
2161 			phys_avail[i] += size;
2162 		} else if (e == phys_avail[i + 1]) {
2163 			phys_avail[i + 1] -= size;
2164 		} else {
2165 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2166 				phys_avail[j] = phys_avail[j - 2];
2167 				phys_avail[j + 1] = phys_avail[j - 1];
2168 			}
2169 
2170 			phys_avail[i + 3] = phys_avail[i + 1];
2171 			phys_avail[i + 1] = s;
2172 			phys_avail[i + 2] = e;
2173 			phys_avail_count++;
2174 		}
2175 
2176 		return (s);
2177 	}
2178 	panic("moea64_bootstrap_alloc: could not allocate memory");
2179 }
2180 
2181 static int
2182 moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2183     struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2184     uint64_t pte_lo, int flags, int8_t psind __unused)
2185 {
2186 	struct	 pvo_entry *pvo;
2187 	uintptr_t pt;
2188 	uint64_t vsid;
2189 	int	 first;
2190 	u_int	 ptegidx;
2191 	int	 i;
2192 	int      bootstrap;
2193 
2194 	/*
2195 	 * One nasty thing that can happen here is that the UMA calls to
2196 	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2197 	 * which calls UMA...
2198 	 *
2199 	 * We break the loop by detecting recursion and allocating out of
2200 	 * the bootstrap pool.
2201 	 */
2202 
2203 	first = 0;
2204 	bootstrap = (flags & PVO_BOOTSTRAP);
2205 
2206 	if (!moea64_initialized)
2207 		bootstrap = 1;
2208 
2209 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2210 	rw_assert(&moea64_table_lock, RA_WLOCKED);
2211 
2212 	/*
2213 	 * Compute the PTE Group index.
2214 	 */
2215 	va &= ~ADDR_POFF;
2216 	vsid = va_to_vsid(pm, va);
2217 	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2218 
2219 	/*
2220 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2221 	 * there is a mapping.
2222 	 */
2223 	moea64_pvo_enter_calls++;
2224 
2225 	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2226 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2227 			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2228 			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2229 			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2230 				/*
2231 				 * The physical page and protection are not
2232 				 * changing.  Instead, this may be a request
2233 				 * to change the mapping's wired attribute.
2234 				 */
2235 				pt = -1;
2236 				if ((flags & PVO_WIRED) != 0 &&
2237 				    (pvo->pvo_vaddr & PVO_WIRED) == 0) {
2238 					pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2239 					pvo->pvo_vaddr |= PVO_WIRED;
2240 					pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2241 					pm->pm_stats.wired_count++;
2242 				} else if ((flags & PVO_WIRED) == 0 &&
2243 				    (pvo->pvo_vaddr & PVO_WIRED) != 0) {
2244 					pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2245 					pvo->pvo_vaddr &= ~PVO_WIRED;
2246 					pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
2247 					pm->pm_stats.wired_count--;
2248 				}
2249 			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2250 					KASSERT(pt == -1,
2251 					    ("moea64_pvo_enter: valid pt"));
2252 					/* Re-insert if spilled */
2253 					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2254 					    &pvo->pvo_pte.lpte);
2255 					if (i >= 0)
2256 						PVO_PTEGIDX_SET(pvo, i);
2257 					moea64_pte_overflow--;
2258 				} else if (pt != -1) {
2259 					/*
2260 					 * The PTE's wired attribute is not a
2261 					 * hardware feature, so there is no
2262 					 * need to invalidate any TLB entries.
2263 					 */
2264 					MOEA64_PTE_CHANGE(mmu, pt,
2265 					    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2266 				}
2267 				return (0);
2268 			}
2269 			moea64_pvo_remove(mmu, pvo);
2270 			break;
2271 		}
2272 	}
2273 
2274 	/*
2275 	 * If we aren't overwriting a mapping, try to allocate.
2276 	 */
2277 	if (bootstrap) {
2278 		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2279 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2280 			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2281 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2282 		}
2283 		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2284 		moea64_bpvo_pool_index++;
2285 		bootstrap = 1;
2286 	} else {
2287 		pvo = uma_zalloc(zone, M_NOWAIT);
2288 	}
2289 
2290 	if (pvo == NULL)
2291 		return (ENOMEM);
2292 
2293 	moea64_pvo_entries++;
2294 	pvo->pvo_vaddr = va;
2295 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2296 	    | (vsid << 16);
2297 	pvo->pvo_pmap = pm;
2298 	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2299 	pvo->pvo_vaddr &= ~ADDR_POFF;
2300 
2301 	if (flags & PVO_WIRED)
2302 		pvo->pvo_vaddr |= PVO_WIRED;
2303 	if (pvo_head != NULL)
2304 		pvo->pvo_vaddr |= PVO_MANAGED;
2305 	if (bootstrap)
2306 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2307 	if (flags & PVO_LARGE)
2308 		pvo->pvo_vaddr |= PVO_LARGE;
2309 
2310 	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2311 	    (uint64_t)(pa) | pte_lo, flags);
2312 
2313 	/*
2314 	 * Add to pmap list
2315 	 */
2316 	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2317 
2318 	/*
2319 	 * Remember if the list was empty and therefore will be the first
2320 	 * item.
2321 	 */
2322 	if (pvo_head != NULL) {
2323 		if (LIST_FIRST(pvo_head) == NULL)
2324 			first = 1;
2325 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2326 	}
2327 
2328 	if (pvo->pvo_vaddr & PVO_WIRED) {
2329 		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2330 		pm->pm_stats.wired_count++;
2331 	}
2332 	pm->pm_stats.resident_count++;
2333 
2334 	/*
2335 	 * We hope this succeeds but it isn't required.
2336 	 */
2337 	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2338 	if (i >= 0) {
2339 		PVO_PTEGIDX_SET(pvo, i);
2340 	} else {
2341 		panic("moea64_pvo_enter: overflow");
2342 		moea64_pte_overflow++;
2343 	}
2344 
2345 	if (pm == kernel_pmap)
2346 		isync();
2347 
2348 #ifdef __powerpc64__
2349 	/*
2350 	 * Make sure all our bootstrap mappings are in the SLB as soon
2351 	 * as virtual memory is switched on.
2352 	 */
2353 	if (!pmap_bootstrapped)
2354 		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2355 #endif
2356 
2357 	return (first ? ENOENT : 0);
2358 }
2359 
2360 static void
2361 moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2362 {
2363 	struct	vm_page *pg;
2364 	uintptr_t pt;
2365 
2366 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2367 	rw_assert(&moea64_table_lock, RA_WLOCKED);
2368 
2369 	/*
2370 	 * If there is an active pte entry, we need to deactivate it (and
2371 	 * save the ref & cfg bits).
2372 	 */
2373 	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2374 	if (pt != -1) {
2375 		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2376 		PVO_PTEGIDX_CLR(pvo);
2377 	} else {
2378 		moea64_pte_overflow--;
2379 	}
2380 
2381 	/*
2382 	 * Update our statistics.
2383 	 */
2384 	pvo->pvo_pmap->pm_stats.resident_count--;
2385 	if (pvo->pvo_vaddr & PVO_WIRED)
2386 		pvo->pvo_pmap->pm_stats.wired_count--;
2387 
2388 	/*
2389 	 * Remove this PVO from the pmap list.
2390 	 */
2391 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2392 
2393 	/*
2394 	 * Remove this from the overflow list and return it to the pool
2395 	 * if we aren't going to reuse it.
2396 	 */
2397 	LIST_REMOVE(pvo, pvo_olink);
2398 
2399 	/*
2400 	 * Update vm about the REF/CHG bits if the page is managed.
2401 	 */
2402 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2403 
2404 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && pg != NULL) {
2405 		LIST_REMOVE(pvo, pvo_vlink);
2406 		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
2407 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
2408 				vm_page_dirty(pg);
2409 			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
2410 				vm_page_aflag_set(pg, PGA_REFERENCED);
2411 			if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2412 				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2413 		}
2414 		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2415 			vm_page_aflag_clear(pg, PGA_EXECUTABLE);
2416 	}
2417 
2418 	moea64_pvo_entries--;
2419 	moea64_pvo_remove_calls++;
2420 
2421 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2422 		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2423 		    moea64_upvo_zone, pvo);
2424 }
2425 
2426 static struct pvo_entry *
2427 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2428 {
2429 	struct pvo_entry key;
2430 
2431 	key.pvo_vaddr = va & ~ADDR_POFF;
2432 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2433 }
2434 
2435 static boolean_t
2436 moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2437 {
2438 	struct	pvo_entry *pvo;
2439 	uintptr_t pt;
2440 
2441 	LOCK_TABLE_RD();
2442 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2443 		/*
2444 		 * See if we saved the bit off.  If so, return success.
2445 		 */
2446 		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2447 			UNLOCK_TABLE_RD();
2448 			return (TRUE);
2449 		}
2450 	}
2451 
2452 	/*
2453 	 * No luck, now go through the hard part of looking at the PTEs
2454 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2455 	 * the PTEs.
2456 	 */
2457 	powerpc_sync();
2458 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2459 
2460 		/*
2461 		 * See if this pvo has a valid PTE.  if so, fetch the
2462 		 * REF/CHG bits from the valid PTE.  If the appropriate
2463 		 * ptebit is set, return success.
2464 		 */
2465 		PMAP_LOCK(pvo->pvo_pmap);
2466 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2467 		if (pt != -1) {
2468 			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2469 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2470 				PMAP_UNLOCK(pvo->pvo_pmap);
2471 				UNLOCK_TABLE_RD();
2472 				return (TRUE);
2473 			}
2474 		}
2475 		PMAP_UNLOCK(pvo->pvo_pmap);
2476 	}
2477 
2478 	UNLOCK_TABLE_RD();
2479 	return (FALSE);
2480 }
2481 
2482 static u_int
2483 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2484 {
2485 	u_int	count;
2486 	struct	pvo_entry *pvo;
2487 	uintptr_t pt;
2488 
2489 	/*
2490 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2491 	 * we can reset the right ones).  note that since the pvo entries and
2492 	 * list heads are accessed via BAT0 and are never placed in the page
2493 	 * table, we don't have to worry about further accesses setting the
2494 	 * REF/CHG bits.
2495 	 */
2496 	powerpc_sync();
2497 
2498 	/*
2499 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2500 	 * valid pte clear the ptebit from the valid pte.
2501 	 */
2502 	count = 0;
2503 	LOCK_TABLE_RD();
2504 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2505 		PMAP_LOCK(pvo->pvo_pmap);
2506 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2507 		if (pt != -1) {
2508 			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2509 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2510 				count++;
2511 				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2512 				    pvo->pvo_vpn, ptebit);
2513 			}
2514 		}
2515 		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2516 		PMAP_UNLOCK(pvo->pvo_pmap);
2517 	}
2518 
2519 	UNLOCK_TABLE_RD();
2520 	return (count);
2521 }
2522 
2523 boolean_t
2524 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2525 {
2526 	struct pvo_entry *pvo, key;
2527 	vm_offset_t ppa;
2528 	int error = 0;
2529 
2530 	PMAP_LOCK(kernel_pmap);
2531 	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2532 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2533 	    ppa < pa + size; ppa += PAGE_SIZE,
2534 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2535 		if (pvo == NULL ||
2536 		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2537 			error = EFAULT;
2538 			break;
2539 		}
2540 	}
2541 	PMAP_UNLOCK(kernel_pmap);
2542 
2543 	return (error);
2544 }
2545 
2546 /*
2547  * Map a set of physical memory pages into the kernel virtual
2548  * address space. Return a pointer to where it is mapped. This
2549  * routine is intended to be used for mapping device memory,
2550  * NOT real memory.
2551  */
2552 void *
2553 moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2554 {
2555 	vm_offset_t va, tmpva, ppa, offset;
2556 
2557 	ppa = trunc_page(pa);
2558 	offset = pa & PAGE_MASK;
2559 	size = roundup2(offset + size, PAGE_SIZE);
2560 
2561 	va = kva_alloc(size);
2562 
2563 	if (!va)
2564 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2565 
2566 	for (tmpva = va; size > 0;) {
2567 		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2568 		size -= PAGE_SIZE;
2569 		tmpva += PAGE_SIZE;
2570 		ppa += PAGE_SIZE;
2571 	}
2572 
2573 	return ((void *)(va + offset));
2574 }
2575 
2576 void *
2577 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2578 {
2579 
2580 	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2581 }
2582 
2583 void
2584 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2585 {
2586 	vm_offset_t base, offset;
2587 
2588 	base = trunc_page(va);
2589 	offset = va & PAGE_MASK;
2590 	size = roundup2(offset + size, PAGE_SIZE);
2591 
2592 	kva_free(base, size);
2593 }
2594 
2595 void
2596 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2597 {
2598 	struct pvo_entry *pvo;
2599 	vm_offset_t lim;
2600 	vm_paddr_t pa;
2601 	vm_size_t len;
2602 
2603 	PMAP_LOCK(pm);
2604 	while (sz > 0) {
2605 		lim = round_page(va);
2606 		len = MIN(lim - va, sz);
2607 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2608 		if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
2609 			pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
2610 			    (va & ADDR_POFF);
2611 			moea64_syncicache(mmu, pm, va, pa, len);
2612 		}
2613 		va += len;
2614 		sz -= len;
2615 	}
2616 	PMAP_UNLOCK(pm);
2617 }
2618 
2619 void
2620 moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2621 {
2622 
2623 	*va = (void *)pa;
2624 }
2625 
2626 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2627 
2628 void
2629 moea64_scan_init(mmu_t mmu)
2630 {
2631 	struct pvo_entry *pvo;
2632 	vm_offset_t va;
2633 	int i;
2634 
2635 	if (!do_minidump) {
2636 		/* Initialize phys. segments for dumpsys(). */
2637 		memset(&dump_map, 0, sizeof(dump_map));
2638 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2639 		for (i = 0; i < pregions_sz; i++) {
2640 			dump_map[i].pa_start = pregions[i].mr_start;
2641 			dump_map[i].pa_size = pregions[i].mr_size;
2642 		}
2643 		return;
2644 	}
2645 
2646 	/* Virtual segments for minidumps: */
2647 	memset(&dump_map, 0, sizeof(dump_map));
2648 
2649 	/* 1st: kernel .data and .bss. */
2650 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2651 	dump_map[0].pa_size = round_page((uintptr_t)_end) - dump_map[0].pa_start;
2652 
2653 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2654 	dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
2655 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2656 
2657 	/* 3rd: kernel VM. */
2658 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2659 	/* Find start of next chunk (from va). */
2660 	while (va < virtual_end) {
2661 		/* Don't dump the buffer cache. */
2662 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2663 			va = kmi.buffer_eva;
2664 			continue;
2665 		}
2666 		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2667 		if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2668 			break;
2669 		va += PAGE_SIZE;
2670 	}
2671 	if (va < virtual_end) {
2672 		dump_map[2].pa_start = va;
2673 		va += PAGE_SIZE;
2674 		/* Find last page in chunk. */
2675 		while (va < virtual_end) {
2676 			/* Don't run into the buffer cache. */
2677 			if (va == kmi.buffer_sva)
2678 				break;
2679 			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2680 			if (pvo == NULL ||
2681 			    !(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2682 				break;
2683 			va += PAGE_SIZE;
2684 		}
2685 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2686 	}
2687 }
2688