xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision 18849b5da0c5eaa88500b457be05b038813b51b1)
1 /*-
2  * Copyright (c) 2008-2015 Nathan Whitehorn
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * Manages physical address maps.
32  *
33  * Since the information managed by this module is also stored by the
34  * logical address mapping module, this module may throw away valid virtual
35  * to physical mappings at almost any time.  However, invalidations of
36  * mappings must be done as requested.
37  *
38  * In order to cope with hardware architectures which make virtual to
39  * physical map invalidates expensive, this module may delay invalidate
40  * reduced protection operations until such time as they are actually
41  * necessary.  This module is given full information as to which processors
42  * are currently using which maps, and to when physical maps must be made
43  * correct.
44  */
45 
46 #include "opt_compat.h"
47 #include "opt_kstack_pages.h"
48 
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51 #include <sys/conf.h>
52 #include <sys/queue.h>
53 #include <sys/cpuset.h>
54 #include <sys/kerneldump.h>
55 #include <sys/ktr.h>
56 #include <sys/lock.h>
57 #include <sys/msgbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/proc.h>
61 #include <sys/rwlock.h>
62 #include <sys/sched.h>
63 #include <sys/sysctl.h>
64 #include <sys/systm.h>
65 #include <sys/vmmeter.h>
66 #include <sys/smp.h>
67 
68 #include <sys/kdb.h>
69 
70 #include <dev/ofw/openfirm.h>
71 
72 #include <vm/vm.h>
73 #include <vm/vm_param.h>
74 #include <vm/vm_kern.h>
75 #include <vm/vm_page.h>
76 #include <vm/vm_map.h>
77 #include <vm/vm_object.h>
78 #include <vm/vm_extern.h>
79 #include <vm/vm_pageout.h>
80 #include <vm/uma.h>
81 
82 #include <machine/_inttypes.h>
83 #include <machine/cpu.h>
84 #include <machine/platform.h>
85 #include <machine/frame.h>
86 #include <machine/md_var.h>
87 #include <machine/psl.h>
88 #include <machine/bat.h>
89 #include <machine/hid.h>
90 #include <machine/pte.h>
91 #include <machine/sr.h>
92 #include <machine/trap.h>
93 #include <machine/mmuvar.h>
94 
95 #include "mmu_oea64.h"
96 #include "mmu_if.h"
97 #include "moea64_if.h"
98 
99 void moea64_release_vsid(uint64_t vsid);
100 uintptr_t moea64_get_unique_vsid(void);
101 
102 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
103 #define ENABLE_TRANS(msr)	mtmsr(msr)
104 
105 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
106 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
107 #define	VSID_HASH_MASK		0x0000007fffffffffULL
108 
109 /*
110  * Locking semantics:
111  *
112  * There are two locks of interest: the page locks and the pmap locks, which
113  * protect their individual PVO lists and are locked in that order. The contents
114  * of all PVO entries are protected by the locks of their respective pmaps.
115  * The pmap of any PVO is guaranteed not to change so long as the PVO is linked
116  * into any list.
117  *
118  */
119 
120 #define PV_LOCK_COUNT	PA_LOCK_COUNT*3
121 static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
122 
123 #define PV_LOCKPTR(pa)	((struct mtx *)(&pv_lock[pa_index(pa) % PV_LOCK_COUNT]))
124 #define PV_LOCK(pa)		mtx_lock(PV_LOCKPTR(pa))
125 #define PV_UNLOCK(pa)		mtx_unlock(PV_LOCKPTR(pa))
126 #define PV_LOCKASSERT(pa) 	mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
127 #define PV_PAGE_LOCK(m)		PV_LOCK(VM_PAGE_TO_PHYS(m))
128 #define PV_PAGE_UNLOCK(m)	PV_UNLOCK(VM_PAGE_TO_PHYS(m))
129 #define PV_PAGE_LOCKASSERT(m)	PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
130 
131 struct ofw_map {
132 	cell_t	om_va;
133 	cell_t	om_len;
134 	uint64_t om_pa;
135 	cell_t	om_mode;
136 };
137 
138 extern unsigned char _etext[];
139 extern unsigned char _end[];
140 
141 /*
142  * Map of physical memory regions.
143  */
144 static struct	mem_region *regions;
145 static struct	mem_region *pregions;
146 static u_int	phys_avail_count;
147 static int	regions_sz, pregions_sz;
148 
149 extern void bs_remap_earlyboot(void);
150 
151 /*
152  * Lock for the SLB tables.
153  */
154 struct mtx	moea64_slb_mutex;
155 
156 /*
157  * PTEG data.
158  */
159 u_int		moea64_pteg_count;
160 u_int		moea64_pteg_mask;
161 
162 /*
163  * PVO data.
164  */
165 
166 uma_zone_t	moea64_pvo_zone; /* zone for pvo entries */
167 
168 static struct	pvo_entry *moea64_bpvo_pool;
169 static int	moea64_bpvo_pool_index = 0;
170 static int	moea64_bpvo_pool_size = 327680;
171 TUNABLE_INT("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
172 SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
173     &moea64_bpvo_pool_index, 0, "");
174 
175 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
176 #ifdef __powerpc64__
177 #define	NVSIDS		(NPMAPS * 16)
178 #define VSID_HASHMASK	0xffffffffUL
179 #else
180 #define NVSIDS		NPMAPS
181 #define VSID_HASHMASK	0xfffffUL
182 #endif
183 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
184 
185 static boolean_t moea64_initialized = FALSE;
186 
187 /*
188  * Statistics.
189  */
190 u_int	moea64_pte_valid = 0;
191 u_int	moea64_pte_overflow = 0;
192 u_int	moea64_pvo_entries = 0;
193 u_int	moea64_pvo_enter_calls = 0;
194 u_int	moea64_pvo_remove_calls = 0;
195 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
196     &moea64_pte_valid, 0, "");
197 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
198     &moea64_pte_overflow, 0, "");
199 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
200     &moea64_pvo_entries, 0, "");
201 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
202     &moea64_pvo_enter_calls, 0, "");
203 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
204     &moea64_pvo_remove_calls, 0, "");
205 
206 vm_offset_t	moea64_scratchpage_va[2];
207 struct pvo_entry *moea64_scratchpage_pvo[2];
208 struct	mtx	moea64_scratchpage_mtx;
209 
210 uint64_t 	moea64_large_page_mask = 0;
211 uint64_t	moea64_large_page_size = 0;
212 int		moea64_large_page_shift = 0;
213 
214 /*
215  * PVO calls.
216  */
217 static int	moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo,
218 		    struct pvo_head *pvo_head);
219 static void	moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo);
220 static void	moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo);
221 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
222 
223 /*
224  * Utility routines.
225  */
226 static boolean_t	moea64_query_bit(mmu_t, vm_page_t, uint64_t);
227 static u_int		moea64_clear_bit(mmu_t, vm_page_t, uint64_t);
228 static void		moea64_kremove(mmu_t, vm_offset_t);
229 static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
230 			    vm_paddr_t pa, vm_size_t sz);
231 static void		moea64_pmap_init_qpages(void);
232 
233 /*
234  * Kernel MMU interface
235  */
236 void moea64_clear_modify(mmu_t, vm_page_t);
237 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
238 void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
239     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
240 int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
241     u_int flags, int8_t psind);
242 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
243     vm_prot_t);
244 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
245 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
246 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
247 void moea64_init(mmu_t);
248 boolean_t moea64_is_modified(mmu_t, vm_page_t);
249 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
250 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
251 int moea64_ts_referenced(mmu_t, vm_page_t);
252 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
253 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
254 int moea64_page_wired_mappings(mmu_t, vm_page_t);
255 void moea64_pinit(mmu_t, pmap_t);
256 void moea64_pinit0(mmu_t, pmap_t);
257 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
258 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
259 void moea64_qremove(mmu_t, vm_offset_t, int);
260 void moea64_release(mmu_t, pmap_t);
261 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
262 void moea64_remove_pages(mmu_t, pmap_t);
263 void moea64_remove_all(mmu_t, vm_page_t);
264 void moea64_remove_write(mmu_t, vm_page_t);
265 void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
266 void moea64_zero_page(mmu_t, vm_page_t);
267 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
268 void moea64_zero_page_idle(mmu_t, vm_page_t);
269 void moea64_activate(mmu_t, struct thread *);
270 void moea64_deactivate(mmu_t, struct thread *);
271 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
272 void *moea64_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
273 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
274 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
275 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
276 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t ma);
277 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
278 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
279 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
280 void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz,
281     void **va);
282 void moea64_scan_init(mmu_t mmu);
283 vm_offset_t moea64_quick_enter_page(mmu_t mmu, vm_page_t m);
284 void moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr);
285 
286 static mmu_method_t moea64_methods[] = {
287 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
288 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
289 	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
290 	MMUMETHOD(mmu_enter,		moea64_enter),
291 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
292 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
293 	MMUMETHOD(mmu_extract,		moea64_extract),
294 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
295 	MMUMETHOD(mmu_init,		moea64_init),
296 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
297 	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
298 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
299 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
300 	MMUMETHOD(mmu_map,     		moea64_map),
301 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
302 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
303 	MMUMETHOD(mmu_pinit,		moea64_pinit),
304 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
305 	MMUMETHOD(mmu_protect,		moea64_protect),
306 	MMUMETHOD(mmu_qenter,		moea64_qenter),
307 	MMUMETHOD(mmu_qremove,		moea64_qremove),
308 	MMUMETHOD(mmu_release,		moea64_release),
309 	MMUMETHOD(mmu_remove,		moea64_remove),
310 	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
311 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
312 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
313 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
314 	MMUMETHOD(mmu_unwire,		moea64_unwire),
315 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
316 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
317 	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
318 	MMUMETHOD(mmu_activate,		moea64_activate),
319 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
320 	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
321 	MMUMETHOD(mmu_quick_enter_page, moea64_quick_enter_page),
322 	MMUMETHOD(mmu_quick_remove_page, moea64_quick_remove_page),
323 
324 	/* Internal interfaces */
325 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
326 	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
327 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
328 	MMUMETHOD(mmu_kextract,		moea64_kextract),
329 	MMUMETHOD(mmu_kenter,		moea64_kenter),
330 	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
331 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
332 	MMUMETHOD(mmu_scan_init,	moea64_scan_init),
333 	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
334 
335 	{ 0, 0 }
336 };
337 
338 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
339 
340 static struct pvo_head *
341 vm_page_to_pvoh(vm_page_t m)
342 {
343 
344 	mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
345 	return (&m->md.mdpg_pvoh);
346 }
347 
348 static struct pvo_entry *
349 alloc_pvo_entry(int bootstrap)
350 {
351 	struct pvo_entry *pvo;
352 
353 	if (!moea64_initialized || bootstrap) {
354 		if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
355 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
356 			      moea64_bpvo_pool_index, moea64_bpvo_pool_size,
357 			      moea64_bpvo_pool_size * sizeof(struct pvo_entry));
358 		}
359 		pvo = &moea64_bpvo_pool[
360 		    atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
361 		bzero(pvo, sizeof(*pvo));
362 		pvo->pvo_vaddr = PVO_BOOTSTRAP;
363 	} else {
364 		pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT);
365 		bzero(pvo, sizeof(*pvo));
366 	}
367 
368 	return (pvo);
369 }
370 
371 
372 static void
373 init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
374 {
375 	uint64_t vsid;
376 	uint64_t hash;
377 	int shift;
378 
379 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
380 
381 	pvo->pvo_pmap = pmap;
382 	va &= ~ADDR_POFF;
383 	pvo->pvo_vaddr |= va;
384 	vsid = va_to_vsid(pmap, va);
385 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
386 	    | (vsid << 16);
387 
388 	shift = (pvo->pvo_vaddr & PVO_LARGE) ? moea64_large_page_shift :
389 	    ADDR_PIDX_SHFT;
390 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
391 	pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
392 }
393 
394 static void
395 free_pvo_entry(struct pvo_entry *pvo)
396 {
397 
398 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
399 		uma_zfree(moea64_pvo_zone, pvo);
400 }
401 
402 void
403 moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
404 {
405 
406 	lpte->pte_hi = (pvo->pvo_vpn >> (ADDR_API_SHFT64 - ADDR_PIDX_SHFT)) &
407 	    LPTE_AVPN_MASK;
408 	lpte->pte_hi |= LPTE_VALID;
409 
410 	if (pvo->pvo_vaddr & PVO_LARGE)
411 		lpte->pte_hi |= LPTE_BIG;
412 	if (pvo->pvo_vaddr & PVO_WIRED)
413 		lpte->pte_hi |= LPTE_WIRED;
414 	if (pvo->pvo_vaddr & PVO_HID)
415 		lpte->pte_hi |= LPTE_HID;
416 
417 	lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
418 	if (pvo->pvo_pte.prot & VM_PROT_WRITE)
419 		lpte->pte_lo |= LPTE_BW;
420 	else
421 		lpte->pte_lo |= LPTE_BR;
422 
423 	if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
424 		lpte->pte_lo |= LPTE_NOEXEC;
425 }
426 
427 static __inline uint64_t
428 moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
429 {
430 	uint64_t pte_lo;
431 	int i;
432 
433 	if (ma != VM_MEMATTR_DEFAULT) {
434 		switch (ma) {
435 		case VM_MEMATTR_UNCACHEABLE:
436 			return (LPTE_I | LPTE_G);
437 		case VM_MEMATTR_CACHEABLE:
438 			return (LPTE_M);
439 		case VM_MEMATTR_WRITE_COMBINING:
440 		case VM_MEMATTR_WRITE_BACK:
441 		case VM_MEMATTR_PREFETCHABLE:
442 			return (LPTE_I);
443 		case VM_MEMATTR_WRITE_THROUGH:
444 			return (LPTE_W | LPTE_M);
445 		}
446 	}
447 
448 	/*
449 	 * Assume the page is cache inhibited and access is guarded unless
450 	 * it's in our available memory array.
451 	 */
452 	pte_lo = LPTE_I | LPTE_G;
453 	for (i = 0; i < pregions_sz; i++) {
454 		if ((pa >= pregions[i].mr_start) &&
455 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
456 			pte_lo &= ~(LPTE_I | LPTE_G);
457 			pte_lo |= LPTE_M;
458 			break;
459 		}
460 	}
461 
462 	return pte_lo;
463 }
464 
465 /*
466  * Quick sort callout for comparing memory regions.
467  */
468 static int	om_cmp(const void *a, const void *b);
469 
470 static int
471 om_cmp(const void *a, const void *b)
472 {
473 	const struct	ofw_map *mapa;
474 	const struct	ofw_map *mapb;
475 
476 	mapa = a;
477 	mapb = b;
478 	if (mapa->om_pa < mapb->om_pa)
479 		return (-1);
480 	else if (mapa->om_pa > mapb->om_pa)
481 		return (1);
482 	else
483 		return (0);
484 }
485 
486 static void
487 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
488 {
489 	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
490 	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
491 	struct pvo_entry *pvo;
492 	register_t	msr;
493 	vm_offset_t	off;
494 	vm_paddr_t	pa_base;
495 	int		i, j;
496 
497 	bzero(translations, sz);
498 	OF_getencprop(OF_finddevice("/"), "#address-cells", &acells,
499 	    sizeof(acells));
500 	if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1)
501 		panic("moea64_bootstrap: can't get ofw translations");
502 
503 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
504 	sz /= sizeof(cell_t);
505 	for (i = 0, j = 0; i < sz; j++) {
506 		translations[j].om_va = trans_cells[i++];
507 		translations[j].om_len = trans_cells[i++];
508 		translations[j].om_pa = trans_cells[i++];
509 		if (acells == 2) {
510 			translations[j].om_pa <<= 32;
511 			translations[j].om_pa |= trans_cells[i++];
512 		}
513 		translations[j].om_mode = trans_cells[i++];
514 	}
515 	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
516 	    i, sz));
517 
518 	sz = j;
519 	qsort(translations, sz, sizeof (*translations), om_cmp);
520 
521 	for (i = 0; i < sz; i++) {
522 		pa_base = translations[i].om_pa;
523 	      #ifndef __powerpc64__
524 		if ((translations[i].om_pa >> 32) != 0)
525 			panic("OFW translations above 32-bit boundary!");
526 	      #endif
527 
528 		if (pa_base % PAGE_SIZE)
529 			panic("OFW translation not page-aligned (phys)!");
530 		if (translations[i].om_va % PAGE_SIZE)
531 			panic("OFW translation not page-aligned (virt)!");
532 
533 		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
534 		    pa_base, translations[i].om_va, translations[i].om_len);
535 
536 		/* Now enter the pages for this mapping */
537 
538 		DISABLE_TRANS(msr);
539 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
540 			/* If this address is direct-mapped, skip remapping */
541 			if (hw_direct_map && translations[i].om_va == pa_base &&
542 			    moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT) 			    == LPTE_M)
543 				continue;
544 
545 			PMAP_LOCK(kernel_pmap);
546 			pvo = moea64_pvo_find_va(kernel_pmap,
547 			    translations[i].om_va + off);
548 			PMAP_UNLOCK(kernel_pmap);
549 			if (pvo != NULL)
550 				continue;
551 
552 			moea64_kenter(mmup, translations[i].om_va + off,
553 			    pa_base + off);
554 		}
555 		ENABLE_TRANS(msr);
556 	}
557 }
558 
559 #ifdef __powerpc64__
560 static void
561 moea64_probe_large_page(void)
562 {
563 	uint16_t pvr = mfpvr() >> 16;
564 
565 	switch (pvr) {
566 	case IBM970:
567 	case IBM970FX:
568 	case IBM970MP:
569 		powerpc_sync(); isync();
570 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
571 		powerpc_sync(); isync();
572 
573 		/* FALLTHROUGH */
574 	default:
575 		moea64_large_page_size = 0x1000000; /* 16 MB */
576 		moea64_large_page_shift = 24;
577 	}
578 
579 	moea64_large_page_mask = moea64_large_page_size - 1;
580 }
581 
582 static void
583 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
584 {
585 	struct slb *cache;
586 	struct slb entry;
587 	uint64_t esid, slbe;
588 	uint64_t i;
589 
590 	cache = PCPU_GET(slb);
591 	esid = va >> ADDR_SR_SHFT;
592 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
593 
594 	for (i = 0; i < 64; i++) {
595 		if (cache[i].slbe == (slbe | i))
596 			return;
597 	}
598 
599 	entry.slbe = slbe;
600 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
601 	if (large)
602 		entry.slbv |= SLBV_L;
603 
604 	slb_insert_kernel(entry.slbe, entry.slbv);
605 }
606 #endif
607 
608 static void
609 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
610     vm_offset_t kernelend)
611 {
612 	struct pvo_entry *pvo;
613 	register_t msr;
614 	vm_paddr_t pa;
615 	vm_offset_t size, off;
616 	uint64_t pte_lo;
617 	int i;
618 
619 	if (moea64_large_page_size == 0)
620 		hw_direct_map = 0;
621 
622 	DISABLE_TRANS(msr);
623 	if (hw_direct_map) {
624 		PMAP_LOCK(kernel_pmap);
625 		for (i = 0; i < pregions_sz; i++) {
626 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
627 		     pregions[i].mr_size; pa += moea64_large_page_size) {
628 			pte_lo = LPTE_M;
629 
630 			pvo = alloc_pvo_entry(1 /* bootstrap */);
631 			pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
632 			init_pvo_entry(pvo, kernel_pmap, pa);
633 
634 			/*
635 			 * Set memory access as guarded if prefetch within
636 			 * the page could exit the available physmem area.
637 			 */
638 			if (pa & moea64_large_page_mask) {
639 				pa &= moea64_large_page_mask;
640 				pte_lo |= LPTE_G;
641 			}
642 			if (pa + moea64_large_page_size >
643 			    pregions[i].mr_start + pregions[i].mr_size)
644 				pte_lo |= LPTE_G;
645 
646 			pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
647 			    VM_PROT_EXECUTE;
648 			pvo->pvo_pte.pa = pa | pte_lo;
649 			moea64_pvo_enter(mmup, pvo, NULL);
650 		  }
651 		}
652 		PMAP_UNLOCK(kernel_pmap);
653 	} else {
654 		size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
655 		off = (vm_offset_t)(moea64_bpvo_pool);
656 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
657 		moea64_kenter(mmup, pa, pa);
658 
659 		/*
660 		 * Map certain important things, like ourselves.
661 		 *
662 		 * NOTE: We do not map the exception vector space. That code is
663 		 * used only in real mode, and leaving it unmapped allows us to
664 		 * catch NULL pointer deferences, instead of making NULL a valid
665 		 * address.
666 		 */
667 
668 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
669 		    pa += PAGE_SIZE)
670 			moea64_kenter(mmup, pa, pa);
671 	}
672 	ENABLE_TRANS(msr);
673 
674 	/*
675 	 * Allow user to override unmapped_buf_allowed for testing.
676 	 * XXXKIB Only direct map implementation was tested.
677 	 */
678 	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
679 	    &unmapped_buf_allowed))
680 		unmapped_buf_allowed = hw_direct_map;
681 }
682 
683 void
684 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
685 {
686 	int		i, j;
687 	vm_size_t	physsz, hwphyssz;
688 
689 #ifndef __powerpc64__
690 	/* We don't have a direct map since there is no BAT */
691 	hw_direct_map = 0;
692 
693 	/* Make sure battable is zero, since we have no BAT */
694 	for (i = 0; i < 16; i++) {
695 		battable[i].batu = 0;
696 		battable[i].batl = 0;
697 	}
698 #else
699 	moea64_probe_large_page();
700 
701 	/* Use a direct map if we have large page support */
702 	if (moea64_large_page_size > 0)
703 		hw_direct_map = 1;
704 	else
705 		hw_direct_map = 0;
706 #endif
707 
708 	/* Get physical memory regions from firmware */
709 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
710 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
711 
712 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
713 		panic("moea64_bootstrap: phys_avail too small");
714 
715 	phys_avail_count = 0;
716 	physsz = 0;
717 	hwphyssz = 0;
718 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
719 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
720 		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
721 		    regions[i].mr_start, regions[i].mr_start +
722 		    regions[i].mr_size, regions[i].mr_size);
723 		if (hwphyssz != 0 &&
724 		    (physsz + regions[i].mr_size) >= hwphyssz) {
725 			if (physsz < hwphyssz) {
726 				phys_avail[j] = regions[i].mr_start;
727 				phys_avail[j + 1] = regions[i].mr_start +
728 				    hwphyssz - physsz;
729 				physsz = hwphyssz;
730 				phys_avail_count++;
731 			}
732 			break;
733 		}
734 		phys_avail[j] = regions[i].mr_start;
735 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
736 		phys_avail_count++;
737 		physsz += regions[i].mr_size;
738 	}
739 
740 	/* Check for overlap with the kernel and exception vectors */
741 	for (j = 0; j < 2*phys_avail_count; j+=2) {
742 		if (phys_avail[j] < EXC_LAST)
743 			phys_avail[j] += EXC_LAST;
744 
745 		if (kernelstart >= phys_avail[j] &&
746 		    kernelstart < phys_avail[j+1]) {
747 			if (kernelend < phys_avail[j+1]) {
748 				phys_avail[2*phys_avail_count] =
749 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
750 				phys_avail[2*phys_avail_count + 1] =
751 				    phys_avail[j+1];
752 				phys_avail_count++;
753 			}
754 
755 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
756 		}
757 
758 		if (kernelend >= phys_avail[j] &&
759 		    kernelend < phys_avail[j+1]) {
760 			if (kernelstart > phys_avail[j]) {
761 				phys_avail[2*phys_avail_count] = phys_avail[j];
762 				phys_avail[2*phys_avail_count + 1] =
763 				    kernelstart & ~PAGE_MASK;
764 				phys_avail_count++;
765 			}
766 
767 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
768 		}
769 	}
770 
771 	physmem = btoc(physsz);
772 
773 #ifdef PTEGCOUNT
774 	moea64_pteg_count = PTEGCOUNT;
775 #else
776 	moea64_pteg_count = 0x1000;
777 
778 	while (moea64_pteg_count < physmem)
779 		moea64_pteg_count <<= 1;
780 
781 	moea64_pteg_count >>= 1;
782 #endif /* PTEGCOUNT */
783 }
784 
785 void
786 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
787 {
788 	int		i;
789 
790 	/*
791 	 * Set PTEG mask
792 	 */
793 	moea64_pteg_mask = moea64_pteg_count - 1;
794 
795 	/*
796 	 * Initialize SLB table lock and page locks
797 	 */
798 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
799 	for (i = 0; i < PV_LOCK_COUNT; i++)
800 		mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
801 
802 	/*
803 	 * Initialise the bootstrap pvo pool.
804 	 */
805 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
806 		moea64_bpvo_pool_size*sizeof(struct pvo_entry), 0);
807 	moea64_bpvo_pool_index = 0;
808 
809 	/*
810 	 * Make sure kernel vsid is allocated as well as VSID 0.
811 	 */
812 	#ifndef __powerpc64__
813 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
814 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
815 	moea64_vsid_bitmap[0] |= 1;
816 	#endif
817 
818 	/*
819 	 * Initialize the kernel pmap (which is statically allocated).
820 	 */
821 	#ifdef __powerpc64__
822 	for (i = 0; i < 64; i++) {
823 		pcpup->pc_slb[i].slbv = 0;
824 		pcpup->pc_slb[i].slbe = 0;
825 	}
826 	#else
827 	for (i = 0; i < 16; i++)
828 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
829 	#endif
830 
831 	kernel_pmap->pmap_phys = kernel_pmap;
832 	CPU_FILL(&kernel_pmap->pm_active);
833 	RB_INIT(&kernel_pmap->pmap_pvo);
834 
835 	PMAP_LOCK_INIT(kernel_pmap);
836 
837 	/*
838 	 * Now map in all the other buffers we allocated earlier
839 	 */
840 
841 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
842 }
843 
844 void
845 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
846 {
847 	ihandle_t	mmui;
848 	phandle_t	chosen;
849 	phandle_t	mmu;
850 	ssize_t		sz;
851 	int		i;
852 	vm_offset_t	pa, va;
853 	void		*dpcpu;
854 
855 	/*
856 	 * Set up the Open Firmware pmap and add its mappings if not in real
857 	 * mode.
858 	 */
859 
860 	chosen = OF_finddevice("/chosen");
861 	if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) {
862 		mmu = OF_instance_to_package(mmui);
863 		if (mmu == -1 ||
864 		    (sz = OF_getproplen(mmu, "translations")) == -1)
865 			sz = 0;
866 		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
867 			panic("moea64_bootstrap: too many ofw translations");
868 
869 		if (sz > 0)
870 			moea64_add_ofw_mappings(mmup, mmu, sz);
871 	}
872 
873 	/*
874 	 * Calculate the last available physical address.
875 	 */
876 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
877 		;
878 	Maxmem = powerpc_btop(phys_avail[i + 1]);
879 
880 	/*
881 	 * Initialize MMU and remap early physical mappings
882 	 */
883 	MMU_CPU_BOOTSTRAP(mmup,0);
884 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
885 	pmap_bootstrapped++;
886 	bs_remap_earlyboot();
887 
888 	/*
889 	 * Set the start and end of kva.
890 	 */
891 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
892 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
893 
894 	/*
895 	 * Map the entire KVA range into the SLB. We must not fault there.
896 	 */
897 	#ifdef __powerpc64__
898 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
899 		moea64_bootstrap_slb_prefault(va, 0);
900 	#endif
901 
902 	/*
903 	 * Figure out how far we can extend virtual_end into segment 16
904 	 * without running into existing mappings. Segment 16 is guaranteed
905 	 * to contain neither RAM nor devices (at least on Apple hardware),
906 	 * but will generally contain some OFW mappings we should not
907 	 * step on.
908 	 */
909 
910 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
911 	PMAP_LOCK(kernel_pmap);
912 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
913 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
914 		virtual_end += PAGE_SIZE;
915 	PMAP_UNLOCK(kernel_pmap);
916 	#endif
917 
918 	/*
919 	 * Allocate a kernel stack with a guard page for thread0 and map it
920 	 * into the kernel page map.
921 	 */
922 	pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
923 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
924 	virtual_avail = va + kstack_pages * PAGE_SIZE;
925 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
926 	thread0.td_kstack = va;
927 	thread0.td_kstack_pages = kstack_pages;
928 	for (i = 0; i < kstack_pages; i++) {
929 		moea64_kenter(mmup, va, pa);
930 		pa += PAGE_SIZE;
931 		va += PAGE_SIZE;
932 	}
933 
934 	/*
935 	 * Allocate virtual address space for the message buffer.
936 	 */
937 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
938 	msgbufp = (struct msgbuf *)virtual_avail;
939 	va = virtual_avail;
940 	virtual_avail += round_page(msgbufsize);
941 	while (va < virtual_avail) {
942 		moea64_kenter(mmup, va, pa);
943 		pa += PAGE_SIZE;
944 		va += PAGE_SIZE;
945 	}
946 
947 	/*
948 	 * Allocate virtual address space for the dynamic percpu area.
949 	 */
950 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
951 	dpcpu = (void *)virtual_avail;
952 	va = virtual_avail;
953 	virtual_avail += DPCPU_SIZE;
954 	while (va < virtual_avail) {
955 		moea64_kenter(mmup, va, pa);
956 		pa += PAGE_SIZE;
957 		va += PAGE_SIZE;
958 	}
959 	dpcpu_init(dpcpu, 0);
960 
961 	/*
962 	 * Allocate some things for page zeroing. We put this directly
963 	 * in the page table and use MOEA64_PTE_REPLACE to avoid any
964 	 * of the PVO book-keeping or other parts of the VM system
965 	 * from even knowing that this hack exists.
966 	 */
967 
968 	if (!hw_direct_map) {
969 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
970 		    MTX_DEF);
971 		for (i = 0; i < 2; i++) {
972 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
973 			virtual_end -= PAGE_SIZE;
974 
975 			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
976 
977 			PMAP_LOCK(kernel_pmap);
978 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
979 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
980 			PMAP_UNLOCK(kernel_pmap);
981 		}
982 	}
983 }
984 
985 static void
986 moea64_pmap_init_qpages(void)
987 {
988 	struct pcpu *pc;
989 	int i;
990 
991 	if (hw_direct_map)
992 		return;
993 
994 	CPU_FOREACH(i) {
995 		pc = pcpu_find(i);
996 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
997 		if (pc->pc_qmap_addr == 0)
998 			panic("pmap_init_qpages: unable to allocate KVA");
999 		PMAP_LOCK(kernel_pmap);
1000 		pc->pc_qmap_pvo = moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr);
1001 		PMAP_UNLOCK(kernel_pmap);
1002 		mtx_init(&pc->pc_qmap_lock, "qmap lock", NULL, MTX_DEF);
1003 	}
1004 }
1005 
1006 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL);
1007 
1008 /*
1009  * Activate a user pmap.  This mostly involves setting some non-CPU
1010  * state.
1011  */
1012 void
1013 moea64_activate(mmu_t mmu, struct thread *td)
1014 {
1015 	pmap_t	pm;
1016 
1017 	pm = &td->td_proc->p_vmspace->vm_pmap;
1018 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1019 
1020 	#ifdef __powerpc64__
1021 	PCPU_SET(userslb, pm->pm_slb);
1022 	__asm __volatile("slbmte %0, %1; isync" ::
1023 	    "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
1024 	#else
1025 	PCPU_SET(curpmap, pm->pmap_phys);
1026 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1027 	#endif
1028 }
1029 
1030 void
1031 moea64_deactivate(mmu_t mmu, struct thread *td)
1032 {
1033 	pmap_t	pm;
1034 
1035 	__asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
1036 
1037 	pm = &td->td_proc->p_vmspace->vm_pmap;
1038 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1039 	#ifdef __powerpc64__
1040 	PCPU_SET(userslb, NULL);
1041 	#else
1042 	PCPU_SET(curpmap, NULL);
1043 	#endif
1044 }
1045 
1046 void
1047 moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1048 {
1049 	struct	pvo_entry key, *pvo;
1050 	vm_page_t m;
1051 	int64_t	refchg;
1052 
1053 	key.pvo_vaddr = sva;
1054 	PMAP_LOCK(pm);
1055 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1056 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1057 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1058 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1059 			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1060 			    pvo);
1061 		pvo->pvo_vaddr &= ~PVO_WIRED;
1062 		refchg = MOEA64_PTE_REPLACE(mmu, pvo, 0 /* No invalidation */);
1063 		if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1064 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1065 			if (refchg < 0)
1066 				refchg = LPTE_CHG;
1067 			m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1068 
1069 			refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
1070 			if (refchg & LPTE_CHG)
1071 				vm_page_dirty(m);
1072 			if (refchg & LPTE_REF)
1073 				vm_page_aflag_set(m, PGA_REFERENCED);
1074 		}
1075 		pm->pm_stats.wired_count--;
1076 	}
1077 	PMAP_UNLOCK(pm);
1078 }
1079 
1080 /*
1081  * This goes through and sets the physical address of our
1082  * special scratch PTE to the PA we want to zero or copy. Because
1083  * of locking issues (this can get called in pvo_enter() by
1084  * the UMA allocator), we can't use most other utility functions here
1085  */
1086 
1087 static __inline
1088 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_paddr_t pa) {
1089 
1090 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1091 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1092 
1093 	moea64_scratchpage_pvo[which]->pvo_pte.pa =
1094 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1095 	MOEA64_PTE_REPLACE(mmup, moea64_scratchpage_pvo[which],
1096 	    MOEA64_PTE_INVALIDATE);
1097 	isync();
1098 }
1099 
1100 void
1101 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1102 {
1103 	vm_offset_t	dst;
1104 	vm_offset_t	src;
1105 
1106 	dst = VM_PAGE_TO_PHYS(mdst);
1107 	src = VM_PAGE_TO_PHYS(msrc);
1108 
1109 	if (hw_direct_map) {
1110 		bcopy((void *)src, (void *)dst, PAGE_SIZE);
1111 	} else {
1112 		mtx_lock(&moea64_scratchpage_mtx);
1113 
1114 		moea64_set_scratchpage_pa(mmu, 0, src);
1115 		moea64_set_scratchpage_pa(mmu, 1, dst);
1116 
1117 		bcopy((void *)moea64_scratchpage_va[0],
1118 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1119 
1120 		mtx_unlock(&moea64_scratchpage_mtx);
1121 	}
1122 }
1123 
1124 static inline void
1125 moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1126     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1127 {
1128 	void *a_cp, *b_cp;
1129 	vm_offset_t a_pg_offset, b_pg_offset;
1130 	int cnt;
1131 
1132 	while (xfersize > 0) {
1133 		a_pg_offset = a_offset & PAGE_MASK;
1134 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1135 		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1136 		    a_pg_offset;
1137 		b_pg_offset = b_offset & PAGE_MASK;
1138 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1139 		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1140 		    b_pg_offset;
1141 		bcopy(a_cp, b_cp, cnt);
1142 		a_offset += cnt;
1143 		b_offset += cnt;
1144 		xfersize -= cnt;
1145 	}
1146 }
1147 
1148 static inline void
1149 moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1150     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1151 {
1152 	void *a_cp, *b_cp;
1153 	vm_offset_t a_pg_offset, b_pg_offset;
1154 	int cnt;
1155 
1156 	mtx_lock(&moea64_scratchpage_mtx);
1157 	while (xfersize > 0) {
1158 		a_pg_offset = a_offset & PAGE_MASK;
1159 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1160 		moea64_set_scratchpage_pa(mmu, 0,
1161 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1162 		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1163 		b_pg_offset = b_offset & PAGE_MASK;
1164 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1165 		moea64_set_scratchpage_pa(mmu, 1,
1166 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1167 		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1168 		bcopy(a_cp, b_cp, cnt);
1169 		a_offset += cnt;
1170 		b_offset += cnt;
1171 		xfersize -= cnt;
1172 	}
1173 	mtx_unlock(&moea64_scratchpage_mtx);
1174 }
1175 
1176 void
1177 moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1178     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1179 {
1180 
1181 	if (hw_direct_map) {
1182 		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1183 		    xfersize);
1184 	} else {
1185 		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1186 		    xfersize);
1187 	}
1188 }
1189 
1190 void
1191 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1192 {
1193 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1194 
1195 	if (size + off > PAGE_SIZE)
1196 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1197 
1198 	if (hw_direct_map) {
1199 		bzero((caddr_t)pa + off, size);
1200 	} else {
1201 		mtx_lock(&moea64_scratchpage_mtx);
1202 		moea64_set_scratchpage_pa(mmu, 0, pa);
1203 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1204 		mtx_unlock(&moea64_scratchpage_mtx);
1205 	}
1206 }
1207 
1208 /*
1209  * Zero a page of physical memory by temporarily mapping it
1210  */
1211 void
1212 moea64_zero_page(mmu_t mmu, vm_page_t m)
1213 {
1214 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1215 	vm_offset_t va, off;
1216 
1217 	if (!hw_direct_map) {
1218 		mtx_lock(&moea64_scratchpage_mtx);
1219 
1220 		moea64_set_scratchpage_pa(mmu, 0, pa);
1221 		va = moea64_scratchpage_va[0];
1222 	} else {
1223 		va = pa;
1224 	}
1225 
1226 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1227 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1228 
1229 	if (!hw_direct_map)
1230 		mtx_unlock(&moea64_scratchpage_mtx);
1231 }
1232 
1233 void
1234 moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1235 {
1236 
1237 	moea64_zero_page(mmu, m);
1238 }
1239 
1240 vm_offset_t
1241 moea64_quick_enter_page(mmu_t mmu, vm_page_t m)
1242 {
1243 	struct pvo_entry *pvo;
1244 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1245 
1246 	if (hw_direct_map)
1247 		return (pa);
1248 
1249 	/*
1250  	 * MOEA64_PTE_REPLACE does some locking, so we can't just grab
1251 	 * a critical section and access the PCPU data like on i386.
1252 	 * Instead, pin the thread and grab the PCPU lock to prevent
1253 	 * a preempting thread from using the same PCPU data.
1254 	 */
1255 	sched_pin();
1256 
1257 	mtx_assert(PCPU_PTR(qmap_lock), MA_NOTOWNED);
1258 	pvo = PCPU_GET(qmap_pvo);
1259 
1260 	mtx_lock(PCPU_PTR(qmap_lock));
1261 	pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) |
1262 	    (uint64_t)pa;
1263 	MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_INVALIDATE);
1264 	isync();
1265 
1266 	return (PCPU_GET(qmap_addr));
1267 }
1268 
1269 void
1270 moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr)
1271 {
1272 	if (hw_direct_map)
1273 		return;
1274 
1275 	mtx_assert(PCPU_PTR(qmap_lock), MA_OWNED);
1276 	KASSERT(PCPU_GET(qmap_addr) == addr,
1277 	    ("moea64_quick_remove_page: invalid address"));
1278 	mtx_unlock(PCPU_PTR(qmap_lock));
1279 	sched_unpin();
1280 }
1281 
1282 /*
1283  * Map the given physical page at the specified virtual address in the
1284  * target pmap with the protection requested.  If specified the page
1285  * will be wired down.
1286  */
1287 
1288 int
1289 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1290     vm_prot_t prot, u_int flags, int8_t psind)
1291 {
1292 	struct		pvo_entry *pvo, *oldpvo;
1293 	struct		pvo_head *pvo_head;
1294 	uint64_t	pte_lo;
1295 	int		error;
1296 
1297 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1298 		VM_OBJECT_ASSERT_LOCKED(m->object);
1299 
1300 	pvo = alloc_pvo_entry(0);
1301 	pvo->pvo_pmap = NULL; /* to be filled in later */
1302 	pvo->pvo_pte.prot = prot;
1303 
1304 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1305 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | pte_lo;
1306 
1307 	if ((flags & PMAP_ENTER_WIRED) != 0)
1308 		pvo->pvo_vaddr |= PVO_WIRED;
1309 
1310 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1311 		pvo_head = NULL;
1312 	} else {
1313 		pvo_head = &m->md.mdpg_pvoh;
1314 		pvo->pvo_vaddr |= PVO_MANAGED;
1315 	}
1316 
1317 	for (;;) {
1318 		PV_PAGE_LOCK(m);
1319 		PMAP_LOCK(pmap);
1320 		if (pvo->pvo_pmap == NULL)
1321 			init_pvo_entry(pvo, pmap, va);
1322 		if (prot & VM_PROT_WRITE)
1323 			if (pmap_bootstrapped &&
1324 			    (m->oflags & VPO_UNMANAGED) == 0)
1325 				vm_page_aflag_set(m, PGA_WRITEABLE);
1326 
1327 		oldpvo = moea64_pvo_find_va(pmap, va);
1328 		if (oldpvo != NULL) {
1329 			if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
1330 			    oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
1331 			    oldpvo->pvo_pte.prot == prot) {
1332 				/* Identical mapping already exists */
1333 				error = 0;
1334 
1335 				/* If not in page table, reinsert it */
1336 				if (MOEA64_PTE_SYNCH(mmu, oldpvo) < 0) {
1337 					moea64_pte_overflow--;
1338 					MOEA64_PTE_INSERT(mmu, oldpvo);
1339 				}
1340 
1341 				/* Then just clean up and go home */
1342 				PV_PAGE_UNLOCK(m);
1343 				PMAP_UNLOCK(pmap);
1344 				free_pvo_entry(pvo);
1345 				break;
1346 			}
1347 
1348 			/* Otherwise, need to kill it first */
1349 			KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
1350 			    "mapping does not match new mapping"));
1351 			moea64_pvo_remove_from_pmap(mmu, oldpvo);
1352 		}
1353 		error = moea64_pvo_enter(mmu, pvo, pvo_head);
1354 		PV_PAGE_UNLOCK(m);
1355 		PMAP_UNLOCK(pmap);
1356 
1357 		/* Free any dead pages */
1358 		if (oldpvo != NULL) {
1359 			PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1360 			moea64_pvo_remove_from_page(mmu, oldpvo);
1361 			PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1362 			free_pvo_entry(oldpvo);
1363 		}
1364 
1365 		if (error != ENOMEM)
1366 			break;
1367 		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1368 			return (KERN_RESOURCE_SHORTAGE);
1369 		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1370 		VM_WAIT;
1371 	}
1372 
1373 	/*
1374 	 * Flush the page from the instruction cache if this page is
1375 	 * mapped executable and cacheable.
1376 	 */
1377 	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1378 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1379 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1380 		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1381 	}
1382 	return (KERN_SUCCESS);
1383 }
1384 
1385 static void
1386 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1387     vm_size_t sz)
1388 {
1389 
1390 	/*
1391 	 * This is much trickier than on older systems because
1392 	 * we can't sync the icache on physical addresses directly
1393 	 * without a direct map. Instead we check a couple of cases
1394 	 * where the memory is already mapped in and, failing that,
1395 	 * use the same trick we use for page zeroing to create
1396 	 * a temporary mapping for this physical address.
1397 	 */
1398 
1399 	if (!pmap_bootstrapped) {
1400 		/*
1401 		 * If PMAP is not bootstrapped, we are likely to be
1402 		 * in real mode.
1403 		 */
1404 		__syncicache((void *)pa, sz);
1405 	} else if (pmap == kernel_pmap) {
1406 		__syncicache((void *)va, sz);
1407 	} else if (hw_direct_map) {
1408 		__syncicache((void *)pa, sz);
1409 	} else {
1410 		/* Use the scratch page to set up a temp mapping */
1411 
1412 		mtx_lock(&moea64_scratchpage_mtx);
1413 
1414 		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1415 		__syncicache((void *)(moea64_scratchpage_va[1] +
1416 		    (va & ADDR_POFF)), sz);
1417 
1418 		mtx_unlock(&moea64_scratchpage_mtx);
1419 	}
1420 }
1421 
1422 /*
1423  * Maps a sequence of resident pages belonging to the same object.
1424  * The sequence begins with the given page m_start.  This page is
1425  * mapped at the given virtual address start.  Each subsequent page is
1426  * mapped at a virtual address that is offset from start by the same
1427  * amount as the page is offset from m_start within the object.  The
1428  * last page in the sequence is the page with the largest offset from
1429  * m_start that can be mapped at a virtual address less than the given
1430  * virtual address end.  Not every virtual page between start and end
1431  * is mapped; only those for which a resident page exists with the
1432  * corresponding offset from m_start are mapped.
1433  */
1434 void
1435 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1436     vm_page_t m_start, vm_prot_t prot)
1437 {
1438 	vm_page_t m;
1439 	vm_pindex_t diff, psize;
1440 
1441 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1442 
1443 	psize = atop(end - start);
1444 	m = m_start;
1445 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1446 		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1447 		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0);
1448 		m = TAILQ_NEXT(m, listq);
1449 	}
1450 }
1451 
1452 void
1453 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1454     vm_prot_t prot)
1455 {
1456 
1457 	moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1458 	    PMAP_ENTER_NOSLEEP, 0);
1459 }
1460 
1461 vm_paddr_t
1462 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1463 {
1464 	struct	pvo_entry *pvo;
1465 	vm_paddr_t pa;
1466 
1467 	PMAP_LOCK(pm);
1468 	pvo = moea64_pvo_find_va(pm, va);
1469 	if (pvo == NULL)
1470 		pa = 0;
1471 	else
1472 		pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1473 	PMAP_UNLOCK(pm);
1474 
1475 	return (pa);
1476 }
1477 
1478 /*
1479  * Atomically extract and hold the physical page with the given
1480  * pmap and virtual address pair if that mapping permits the given
1481  * protection.
1482  */
1483 vm_page_t
1484 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1485 {
1486 	struct	pvo_entry *pvo;
1487 	vm_page_t m;
1488         vm_paddr_t pa;
1489 
1490 	m = NULL;
1491 	pa = 0;
1492 	PMAP_LOCK(pmap);
1493 retry:
1494 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1495 	if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
1496 		if (vm_page_pa_tryrelock(pmap,
1497 		    pvo->pvo_pte.pa & LPTE_RPGN, &pa))
1498 			goto retry;
1499 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1500 		vm_page_hold(m);
1501 	}
1502 	PA_UNLOCK_COND(pa);
1503 	PMAP_UNLOCK(pmap);
1504 	return (m);
1505 }
1506 
1507 static mmu_t installed_mmu;
1508 
1509 static void *
1510 moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags,
1511     int wait)
1512 {
1513 	struct pvo_entry *pvo;
1514         vm_offset_t va;
1515         vm_page_t m;
1516         int pflags, needed_lock;
1517 
1518 	/*
1519 	 * This entire routine is a horrible hack to avoid bothering kmem
1520 	 * for new KVA addresses. Because this can get called from inside
1521 	 * kmem allocation routines, calling kmem for a new address here
1522 	 * can lead to multiply locking non-recursive mutexes.
1523 	 */
1524 
1525 	*flags = UMA_SLAB_PRIV;
1526 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1527 	pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
1528 
1529         for (;;) {
1530                 m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1531                 if (m == NULL) {
1532                         if (wait & M_NOWAIT)
1533                                 return (NULL);
1534                         VM_WAIT;
1535                 } else
1536                         break;
1537         }
1538 
1539 	va = VM_PAGE_TO_PHYS(m);
1540 
1541 	pvo = alloc_pvo_entry(1 /* bootstrap */);
1542 
1543 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
1544 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
1545 
1546 	if (needed_lock)
1547 		PMAP_LOCK(kernel_pmap);
1548 
1549 	init_pvo_entry(pvo, kernel_pmap, va);
1550 	pvo->pvo_vaddr |= PVO_WIRED;
1551 
1552 	moea64_pvo_enter(installed_mmu, pvo, NULL);
1553 
1554 	if (needed_lock)
1555 		PMAP_UNLOCK(kernel_pmap);
1556 
1557 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1558                 bzero((void *)va, PAGE_SIZE);
1559 
1560 	return (void *)va;
1561 }
1562 
1563 extern int elf32_nxstack;
1564 
1565 void
1566 moea64_init(mmu_t mmu)
1567 {
1568 
1569 	CTR0(KTR_PMAP, "moea64_init");
1570 
1571 	moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1572 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1573 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1574 
1575 	if (!hw_direct_map) {
1576 		installed_mmu = mmu;
1577 		uma_zone_set_allocf(moea64_pvo_zone,moea64_uma_page_alloc);
1578 	}
1579 
1580 #ifdef COMPAT_FREEBSD32
1581 	elf32_nxstack = 1;
1582 #endif
1583 
1584 	moea64_initialized = TRUE;
1585 }
1586 
1587 boolean_t
1588 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1589 {
1590 
1591 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1592 	    ("moea64_is_referenced: page %p is not managed", m));
1593 
1594 	return (moea64_query_bit(mmu, m, LPTE_REF));
1595 }
1596 
1597 boolean_t
1598 moea64_is_modified(mmu_t mmu, vm_page_t m)
1599 {
1600 
1601 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1602 	    ("moea64_is_modified: page %p is not managed", m));
1603 
1604 	/*
1605 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1606 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1607 	 * is clear, no PTEs can have LPTE_CHG set.
1608 	 */
1609 	VM_OBJECT_ASSERT_LOCKED(m->object);
1610 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1611 		return (FALSE);
1612 	return (moea64_query_bit(mmu, m, LPTE_CHG));
1613 }
1614 
1615 boolean_t
1616 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1617 {
1618 	struct pvo_entry *pvo;
1619 	boolean_t rv = TRUE;
1620 
1621 	PMAP_LOCK(pmap);
1622 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1623 	if (pvo != NULL)
1624 		rv = FALSE;
1625 	PMAP_UNLOCK(pmap);
1626 	return (rv);
1627 }
1628 
1629 void
1630 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1631 {
1632 
1633 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1634 	    ("moea64_clear_modify: page %p is not managed", m));
1635 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1636 	KASSERT(!vm_page_xbusied(m),
1637 	    ("moea64_clear_modify: page %p is exclusive busied", m));
1638 
1639 	/*
1640 	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1641 	 * set.  If the object containing the page is locked and the page is
1642 	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1643 	 */
1644 	if ((m->aflags & PGA_WRITEABLE) == 0)
1645 		return;
1646 	moea64_clear_bit(mmu, m, LPTE_CHG);
1647 }
1648 
1649 /*
1650  * Clear the write and modified bits in each of the given page's mappings.
1651  */
1652 void
1653 moea64_remove_write(mmu_t mmu, vm_page_t m)
1654 {
1655 	struct	pvo_entry *pvo;
1656 	int64_t	refchg, ret;
1657 	pmap_t	pmap;
1658 
1659 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1660 	    ("moea64_remove_write: page %p is not managed", m));
1661 
1662 	/*
1663 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1664 	 * set by another thread while the object is locked.  Thus,
1665 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1666 	 */
1667 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1668 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1669 		return;
1670 	powerpc_sync();
1671 	PV_PAGE_LOCK(m);
1672 	refchg = 0;
1673 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1674 		pmap = pvo->pvo_pmap;
1675 		PMAP_LOCK(pmap);
1676 		if (!(pvo->pvo_vaddr & PVO_DEAD) &&
1677 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1678 			pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
1679 			ret = MOEA64_PTE_REPLACE(mmu, pvo,
1680 			    MOEA64_PTE_PROT_UPDATE);
1681 			if (ret < 0)
1682 				ret = LPTE_CHG;
1683 			refchg |= ret;
1684 			if (pvo->pvo_pmap == kernel_pmap)
1685 				isync();
1686 		}
1687 		PMAP_UNLOCK(pmap);
1688 	}
1689 	if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
1690 		vm_page_dirty(m);
1691 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1692 	PV_PAGE_UNLOCK(m);
1693 }
1694 
1695 /*
1696  *	moea64_ts_referenced:
1697  *
1698  *	Return a count of reference bits for a page, clearing those bits.
1699  *	It is not necessary for every reference bit to be cleared, but it
1700  *	is necessary that 0 only be returned when there are truly no
1701  *	reference bits set.
1702  *
1703  *	XXX: The exact number of bits to check and clear is a matter that
1704  *	should be tested and standardized at some point in the future for
1705  *	optimal aging of shared pages.
1706  */
1707 int
1708 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1709 {
1710 
1711 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1712 	    ("moea64_ts_referenced: page %p is not managed", m));
1713 	return (moea64_clear_bit(mmu, m, LPTE_REF));
1714 }
1715 
1716 /*
1717  * Modify the WIMG settings of all mappings for a page.
1718  */
1719 void
1720 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1721 {
1722 	struct	pvo_entry *pvo;
1723 	int64_t	refchg;
1724 	pmap_t	pmap;
1725 	uint64_t lo;
1726 
1727 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1728 		m->md.mdpg_cache_attrs = ma;
1729 		return;
1730 	}
1731 
1732 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1733 
1734 	PV_PAGE_LOCK(m);
1735 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1736 		pmap = pvo->pvo_pmap;
1737 		PMAP_LOCK(pmap);
1738 		if (!(pvo->pvo_vaddr & PVO_DEAD)) {
1739 			pvo->pvo_pte.pa &= ~LPTE_WIMG;
1740 			pvo->pvo_pte.pa |= lo;
1741 			refchg = MOEA64_PTE_REPLACE(mmu, pvo,
1742 			    MOEA64_PTE_INVALIDATE);
1743 			if (refchg < 0)
1744 				refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
1745 				    LPTE_CHG : 0;
1746 			if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1747 			    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1748 				refchg |=
1749 				    atomic_readandclear_32(&m->md.mdpg_attrs);
1750 				if (refchg & LPTE_CHG)
1751 					vm_page_dirty(m);
1752 				if (refchg & LPTE_REF)
1753 					vm_page_aflag_set(m, PGA_REFERENCED);
1754 			}
1755 			if (pvo->pvo_pmap == kernel_pmap)
1756 				isync();
1757 		}
1758 		PMAP_UNLOCK(pmap);
1759 	}
1760 	m->md.mdpg_cache_attrs = ma;
1761 	PV_PAGE_UNLOCK(m);
1762 }
1763 
1764 /*
1765  * Map a wired page into kernel virtual address space.
1766  */
1767 void
1768 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1769 {
1770 	int		error;
1771 	struct pvo_entry *pvo, *oldpvo;
1772 
1773 	pvo = alloc_pvo_entry(0);
1774 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
1775 	pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
1776 	pvo->pvo_vaddr |= PVO_WIRED;
1777 
1778 	PMAP_LOCK(kernel_pmap);
1779 	oldpvo = moea64_pvo_find_va(kernel_pmap, va);
1780 	if (oldpvo != NULL)
1781 		moea64_pvo_remove_from_pmap(mmu, oldpvo);
1782 	init_pvo_entry(pvo, kernel_pmap, va);
1783 	error = moea64_pvo_enter(mmu, pvo, NULL);
1784 	PMAP_UNLOCK(kernel_pmap);
1785 
1786 	/* Free any dead pages */
1787 	if (oldpvo != NULL) {
1788 		PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1789 		moea64_pvo_remove_from_page(mmu, oldpvo);
1790 		PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1791 		free_pvo_entry(oldpvo);
1792 	}
1793 
1794 	if (error != 0 && error != ENOENT)
1795 		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1796 		    pa, error);
1797 }
1798 
1799 void
1800 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1801 {
1802 
1803 	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1804 }
1805 
1806 /*
1807  * Extract the physical page address associated with the given kernel virtual
1808  * address.
1809  */
1810 vm_paddr_t
1811 moea64_kextract(mmu_t mmu, vm_offset_t va)
1812 {
1813 	struct		pvo_entry *pvo;
1814 	vm_paddr_t pa;
1815 
1816 	/*
1817 	 * Shortcut the direct-mapped case when applicable.  We never put
1818 	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1819 	 */
1820 	if (va < VM_MIN_KERNEL_ADDRESS)
1821 		return (va);
1822 
1823 	PMAP_LOCK(kernel_pmap);
1824 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1825 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1826 	    va));
1827 	pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1828 	PMAP_UNLOCK(kernel_pmap);
1829 	return (pa);
1830 }
1831 
1832 /*
1833  * Remove a wired page from kernel virtual address space.
1834  */
1835 void
1836 moea64_kremove(mmu_t mmu, vm_offset_t va)
1837 {
1838 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1839 }
1840 
1841 /*
1842  * Map a range of physical addresses into kernel virtual address space.
1843  *
1844  * The value passed in *virt is a suggested virtual address for the mapping.
1845  * Architectures which can support a direct-mapped physical to virtual region
1846  * can return the appropriate address within that region, leaving '*virt'
1847  * unchanged.  Other architectures should map the pages starting at '*virt' and
1848  * update '*virt' with the first usable address after the mapped region.
1849  */
1850 vm_offset_t
1851 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1852     vm_paddr_t pa_end, int prot)
1853 {
1854 	vm_offset_t	sva, va;
1855 
1856 	if (hw_direct_map) {
1857 		/*
1858 		 * Check if every page in the region is covered by the direct
1859 		 * map. The direct map covers all of physical memory. Use
1860 		 * moea64_calc_wimg() as a shortcut to see if the page is in
1861 		 * physical memory as a way to see if the direct map covers it.
1862 		 */
1863 		for (va = pa_start; va < pa_end; va += PAGE_SIZE)
1864 			if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
1865 				break;
1866 		if (va == pa_end)
1867 			return (pa_start);
1868 	}
1869 	sva = *virt;
1870 	va = sva;
1871 	/* XXX respect prot argument */
1872 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1873 		moea64_kenter(mmu, va, pa_start);
1874 	*virt = va;
1875 
1876 	return (sva);
1877 }
1878 
1879 /*
1880  * Returns true if the pmap's pv is one of the first
1881  * 16 pvs linked to from this page.  This count may
1882  * be changed upwards or downwards in the future; it
1883  * is only necessary that true be returned for a small
1884  * subset of pmaps for proper page aging.
1885  */
1886 boolean_t
1887 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1888 {
1889         int loops;
1890 	struct pvo_entry *pvo;
1891 	boolean_t rv;
1892 
1893 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1894 	    ("moea64_page_exists_quick: page %p is not managed", m));
1895 	loops = 0;
1896 	rv = FALSE;
1897 	PV_PAGE_LOCK(m);
1898 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1899 		if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
1900 			rv = TRUE;
1901 			break;
1902 		}
1903 		if (++loops >= 16)
1904 			break;
1905 	}
1906 	PV_PAGE_UNLOCK(m);
1907 	return (rv);
1908 }
1909 
1910 /*
1911  * Return the number of managed mappings to the given physical page
1912  * that are wired.
1913  */
1914 int
1915 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1916 {
1917 	struct pvo_entry *pvo;
1918 	int count;
1919 
1920 	count = 0;
1921 	if ((m->oflags & VPO_UNMANAGED) != 0)
1922 		return (count);
1923 	PV_PAGE_LOCK(m);
1924 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1925 		if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
1926 			count++;
1927 	PV_PAGE_UNLOCK(m);
1928 	return (count);
1929 }
1930 
1931 static uintptr_t	moea64_vsidcontext;
1932 
1933 uintptr_t
1934 moea64_get_unique_vsid(void) {
1935 	u_int entropy;
1936 	register_t hash;
1937 	uint32_t mask;
1938 	int i;
1939 
1940 	entropy = 0;
1941 	__asm __volatile("mftb %0" : "=r"(entropy));
1942 
1943 	mtx_lock(&moea64_slb_mutex);
1944 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1945 		u_int	n;
1946 
1947 		/*
1948 		 * Create a new value by mutiplying by a prime and adding in
1949 		 * entropy from the timebase register.  This is to make the
1950 		 * VSID more random so that the PT hash function collides
1951 		 * less often.  (Note that the prime casues gcc to do shifts
1952 		 * instead of a multiply.)
1953 		 */
1954 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1955 		hash = moea64_vsidcontext & (NVSIDS - 1);
1956 		if (hash == 0)		/* 0 is special, avoid it */
1957 			continue;
1958 		n = hash >> 5;
1959 		mask = 1 << (hash & (VSID_NBPW - 1));
1960 		hash = (moea64_vsidcontext & VSID_HASHMASK);
1961 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1962 			/* anything free in this bucket? */
1963 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1964 				entropy = (moea64_vsidcontext >> 20);
1965 				continue;
1966 			}
1967 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1968 			mask = 1 << i;
1969 			hash &= rounddown2(VSID_HASHMASK, VSID_NBPW);
1970 			hash |= i;
1971 		}
1972 		if (hash == VSID_VRMA)	/* also special, avoid this too */
1973 			continue;
1974 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1975 		    ("Allocating in-use VSID %#zx\n", hash));
1976 		moea64_vsid_bitmap[n] |= mask;
1977 		mtx_unlock(&moea64_slb_mutex);
1978 		return (hash);
1979 	}
1980 
1981 	mtx_unlock(&moea64_slb_mutex);
1982 	panic("%s: out of segments",__func__);
1983 }
1984 
1985 #ifdef __powerpc64__
1986 void
1987 moea64_pinit(mmu_t mmu, pmap_t pmap)
1988 {
1989 
1990 	RB_INIT(&pmap->pmap_pvo);
1991 
1992 	pmap->pm_slb_tree_root = slb_alloc_tree();
1993 	pmap->pm_slb = slb_alloc_user_cache();
1994 	pmap->pm_slb_len = 0;
1995 }
1996 #else
1997 void
1998 moea64_pinit(mmu_t mmu, pmap_t pmap)
1999 {
2000 	int	i;
2001 	uint32_t hash;
2002 
2003 	RB_INIT(&pmap->pmap_pvo);
2004 
2005 	if (pmap_bootstrapped)
2006 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
2007 		    (vm_offset_t)pmap);
2008 	else
2009 		pmap->pmap_phys = pmap;
2010 
2011 	/*
2012 	 * Allocate some segment registers for this pmap.
2013 	 */
2014 	hash = moea64_get_unique_vsid();
2015 
2016 	for (i = 0; i < 16; i++)
2017 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
2018 
2019 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
2020 }
2021 #endif
2022 
2023 /*
2024  * Initialize the pmap associated with process 0.
2025  */
2026 void
2027 moea64_pinit0(mmu_t mmu, pmap_t pm)
2028 {
2029 
2030 	PMAP_LOCK_INIT(pm);
2031 	moea64_pinit(mmu, pm);
2032 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2033 }
2034 
2035 /*
2036  * Set the physical protection on the specified range of this map as requested.
2037  */
2038 static void
2039 moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
2040 {
2041 	struct vm_page *pg;
2042 	vm_prot_t oldprot;
2043 	int32_t refchg;
2044 
2045 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2046 
2047 	/*
2048 	 * Change the protection of the page.
2049 	 */
2050 	oldprot = pvo->pvo_pte.prot;
2051 	pvo->pvo_pte.prot = prot;
2052 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2053 
2054 	/*
2055 	 * If the PVO is in the page table, update mapping
2056 	 */
2057 	refchg = MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_PROT_UPDATE);
2058 	if (refchg < 0)
2059 		refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
2060 
2061 	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
2062 	    (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2063 		if ((pg->oflags & VPO_UNMANAGED) == 0)
2064 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
2065 		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
2066 		    pvo->pvo_pte.pa & LPTE_RPGN, PAGE_SIZE);
2067 	}
2068 
2069 	/*
2070 	 * Update vm about the REF/CHG bits if the page is managed and we have
2071 	 * removed write access.
2072 	 */
2073 	if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
2074 	    (oldprot & VM_PROT_WRITE)) {
2075 		refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2076 		if (refchg & LPTE_CHG)
2077 			vm_page_dirty(pg);
2078 		if (refchg & LPTE_REF)
2079 			vm_page_aflag_set(pg, PGA_REFERENCED);
2080 	}
2081 }
2082 
2083 void
2084 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2085     vm_prot_t prot)
2086 {
2087 	struct	pvo_entry *pvo, *tpvo, key;
2088 
2089 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2090 	    sva, eva, prot);
2091 
2092 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2093 	    ("moea64_protect: non current pmap"));
2094 
2095 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2096 		moea64_remove(mmu, pm, sva, eva);
2097 		return;
2098 	}
2099 
2100 	PMAP_LOCK(pm);
2101 	key.pvo_vaddr = sva;
2102 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2103 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2104 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2105 		moea64_pvo_protect(mmu, pm, pvo, prot);
2106 	}
2107 	PMAP_UNLOCK(pm);
2108 }
2109 
2110 /*
2111  * Map a list of wired pages into kernel virtual address space.  This is
2112  * intended for temporary mappings which do not need page modification or
2113  * references recorded.  Existing mappings in the region are overwritten.
2114  */
2115 void
2116 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2117 {
2118 	while (count-- > 0) {
2119 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2120 		va += PAGE_SIZE;
2121 		m++;
2122 	}
2123 }
2124 
2125 /*
2126  * Remove page mappings from kernel virtual address space.  Intended for
2127  * temporary mappings entered by moea64_qenter.
2128  */
2129 void
2130 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2131 {
2132 	while (count-- > 0) {
2133 		moea64_kremove(mmu, va);
2134 		va += PAGE_SIZE;
2135 	}
2136 }
2137 
2138 void
2139 moea64_release_vsid(uint64_t vsid)
2140 {
2141 	int idx, mask;
2142 
2143 	mtx_lock(&moea64_slb_mutex);
2144 	idx = vsid & (NVSIDS-1);
2145 	mask = 1 << (idx % VSID_NBPW);
2146 	idx /= VSID_NBPW;
2147 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2148 	    ("Freeing unallocated VSID %#jx", vsid));
2149 	moea64_vsid_bitmap[idx] &= ~mask;
2150 	mtx_unlock(&moea64_slb_mutex);
2151 }
2152 
2153 
2154 void
2155 moea64_release(mmu_t mmu, pmap_t pmap)
2156 {
2157 
2158 	/*
2159 	 * Free segment registers' VSIDs
2160 	 */
2161     #ifdef __powerpc64__
2162 	slb_free_tree(pmap);
2163 	slb_free_user_cache(pmap->pm_slb);
2164     #else
2165 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2166 
2167 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2168     #endif
2169 }
2170 
2171 /*
2172  * Remove all pages mapped by the specified pmap
2173  */
2174 void
2175 moea64_remove_pages(mmu_t mmu, pmap_t pm)
2176 {
2177 	struct pvo_entry *pvo, *tpvo;
2178 	struct pvo_tree tofree;
2179 
2180 	RB_INIT(&tofree);
2181 
2182 	PMAP_LOCK(pm);
2183 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2184 		if (pvo->pvo_vaddr & PVO_WIRED)
2185 			continue;
2186 
2187 		/*
2188 		 * For locking reasons, remove this from the page table and
2189 		 * pmap, but save delinking from the vm_page for a second
2190 		 * pass
2191 		 */
2192 		moea64_pvo_remove_from_pmap(mmu, pvo);
2193 		RB_INSERT(pvo_tree, &tofree, pvo);
2194 	}
2195 	PMAP_UNLOCK(pm);
2196 
2197 	RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) {
2198 		PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2199 		moea64_pvo_remove_from_page(mmu, pvo);
2200 		PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2201 		RB_REMOVE(pvo_tree, &tofree, pvo);
2202 		free_pvo_entry(pvo);
2203 	}
2204 }
2205 
2206 /*
2207  * Remove the given range of addresses from the specified map.
2208  */
2209 void
2210 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2211 {
2212 	struct  pvo_entry *pvo, *tpvo, key;
2213 	struct pvo_tree tofree;
2214 
2215 	/*
2216 	 * Perform an unsynchronized read.  This is, however, safe.
2217 	 */
2218 	if (pm->pm_stats.resident_count == 0)
2219 		return;
2220 
2221 	key.pvo_vaddr = sva;
2222 
2223 	RB_INIT(&tofree);
2224 
2225 	PMAP_LOCK(pm);
2226 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2227 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2228 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2229 
2230 		/*
2231 		 * For locking reasons, remove this from the page table and
2232 		 * pmap, but save delinking from the vm_page for a second
2233 		 * pass
2234 		 */
2235 		moea64_pvo_remove_from_pmap(mmu, pvo);
2236 		RB_INSERT(pvo_tree, &tofree, pvo);
2237 	}
2238 	PMAP_UNLOCK(pm);
2239 
2240 	RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) {
2241 		PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2242 		moea64_pvo_remove_from_page(mmu, pvo);
2243 		PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2244 		RB_REMOVE(pvo_tree, &tofree, pvo);
2245 		free_pvo_entry(pvo);
2246 	}
2247 }
2248 
2249 /*
2250  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2251  * will reflect changes in pte's back to the vm_page.
2252  */
2253 void
2254 moea64_remove_all(mmu_t mmu, vm_page_t m)
2255 {
2256 	struct	pvo_entry *pvo, *next_pvo;
2257 	struct	pvo_head freequeue;
2258 	int	wasdead;
2259 	pmap_t	pmap;
2260 
2261 	LIST_INIT(&freequeue);
2262 
2263 	PV_PAGE_LOCK(m);
2264 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2265 		pmap = pvo->pvo_pmap;
2266 		PMAP_LOCK(pmap);
2267 		wasdead = (pvo->pvo_vaddr & PVO_DEAD);
2268 		if (!wasdead)
2269 			moea64_pvo_remove_from_pmap(mmu, pvo);
2270 		moea64_pvo_remove_from_page(mmu, pvo);
2271 		if (!wasdead)
2272 			LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
2273 		PMAP_UNLOCK(pmap);
2274 
2275 	}
2276 	KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
2277 	KASSERT(!(m->aflags & PGA_WRITEABLE), ("Page still writable"));
2278 	PV_PAGE_UNLOCK(m);
2279 
2280 	/* Clean up UMA allocations */
2281 	LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
2282 		free_pvo_entry(pvo);
2283 }
2284 
2285 /*
2286  * Allocate a physical page of memory directly from the phys_avail map.
2287  * Can only be called from moea64_bootstrap before avail start and end are
2288  * calculated.
2289  */
2290 vm_offset_t
2291 moea64_bootstrap_alloc(vm_size_t size, u_int align)
2292 {
2293 	vm_offset_t	s, e;
2294 	int		i, j;
2295 
2296 	size = round_page(size);
2297 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2298 		if (align != 0)
2299 			s = roundup2(phys_avail[i], align);
2300 		else
2301 			s = phys_avail[i];
2302 		e = s + size;
2303 
2304 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2305 			continue;
2306 
2307 		if (s + size > platform_real_maxaddr())
2308 			continue;
2309 
2310 		if (s == phys_avail[i]) {
2311 			phys_avail[i] += size;
2312 		} else if (e == phys_avail[i + 1]) {
2313 			phys_avail[i + 1] -= size;
2314 		} else {
2315 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2316 				phys_avail[j] = phys_avail[j - 2];
2317 				phys_avail[j + 1] = phys_avail[j - 1];
2318 			}
2319 
2320 			phys_avail[i + 3] = phys_avail[i + 1];
2321 			phys_avail[i + 1] = s;
2322 			phys_avail[i + 2] = e;
2323 			phys_avail_count++;
2324 		}
2325 
2326 		return (s);
2327 	}
2328 	panic("moea64_bootstrap_alloc: could not allocate memory");
2329 }
2330 
2331 static int
2332 moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo, struct pvo_head *pvo_head)
2333 {
2334 	int first, err;
2335 
2336 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2337 	KASSERT(moea64_pvo_find_va(pvo->pvo_pmap, PVO_VADDR(pvo)) == NULL,
2338 	    ("Existing mapping for VA %#jx", (uintmax_t)PVO_VADDR(pvo)));
2339 
2340 	moea64_pvo_enter_calls++;
2341 
2342 	/*
2343 	 * Add to pmap list
2344 	 */
2345 	RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2346 
2347 	/*
2348 	 * Remember if the list was empty and therefore will be the first
2349 	 * item.
2350 	 */
2351 	if (pvo_head != NULL) {
2352 		if (LIST_FIRST(pvo_head) == NULL)
2353 			first = 1;
2354 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2355 	}
2356 
2357 	if (pvo->pvo_vaddr & PVO_WIRED)
2358 		pvo->pvo_pmap->pm_stats.wired_count++;
2359 	pvo->pvo_pmap->pm_stats.resident_count++;
2360 
2361 	/*
2362 	 * Insert it into the hardware page table
2363 	 */
2364 	err = MOEA64_PTE_INSERT(mmu, pvo);
2365 	if (err != 0) {
2366 		panic("moea64_pvo_enter: overflow");
2367 	}
2368 
2369 	moea64_pvo_entries++;
2370 
2371 	if (pvo->pvo_pmap == kernel_pmap)
2372 		isync();
2373 
2374 #ifdef __powerpc64__
2375 	/*
2376 	 * Make sure all our bootstrap mappings are in the SLB as soon
2377 	 * as virtual memory is switched on.
2378 	 */
2379 	if (!pmap_bootstrapped)
2380 		moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
2381 		    pvo->pvo_vaddr & PVO_LARGE);
2382 #endif
2383 
2384 	return (first ? ENOENT : 0);
2385 }
2386 
2387 static void
2388 moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo)
2389 {
2390 	struct	vm_page *pg;
2391 	int32_t refchg;
2392 
2393 	KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
2394 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2395 	KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
2396 
2397 	/*
2398 	 * If there is an active pte entry, we need to deactivate it
2399 	 */
2400 	refchg = MOEA64_PTE_UNSET(mmu, pvo);
2401 	if (refchg < 0) {
2402 		/*
2403 		 * If it was evicted from the page table, be pessimistic and
2404 		 * dirty the page.
2405 		 */
2406 		if (pvo->pvo_pte.prot & VM_PROT_WRITE)
2407 			refchg = LPTE_CHG;
2408 		else
2409 			refchg = 0;
2410 	}
2411 
2412 	/*
2413 	 * Update our statistics.
2414 	 */
2415 	pvo->pvo_pmap->pm_stats.resident_count--;
2416 	if (pvo->pvo_vaddr & PVO_WIRED)
2417 		pvo->pvo_pmap->pm_stats.wired_count--;
2418 
2419 	/*
2420 	 * Remove this PVO from the pmap list.
2421 	 */
2422 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2423 
2424 	/*
2425 	 * Mark this for the next sweep
2426 	 */
2427 	pvo->pvo_vaddr |= PVO_DEAD;
2428 
2429 	/* Send RC bits to VM */
2430 	if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2431 	    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2432 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2433 		if (pg != NULL) {
2434 			refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2435 			if (refchg & LPTE_CHG)
2436 				vm_page_dirty(pg);
2437 			if (refchg & LPTE_REF)
2438 				vm_page_aflag_set(pg, PGA_REFERENCED);
2439 		}
2440 	}
2441 }
2442 
2443 static void
2444 moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo)
2445 {
2446 	struct	vm_page *pg;
2447 
2448 	KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
2449 
2450 	/* Use NULL pmaps as a sentinel for races in page deletion */
2451 	if (pvo->pvo_pmap == NULL)
2452 		return;
2453 	pvo->pvo_pmap = NULL;
2454 
2455 	/*
2456 	 * Update vm about page writeability/executability if managed
2457 	 */
2458 	PV_LOCKASSERT(pvo->pvo_pte.pa & LPTE_RPGN);
2459 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2460 
2461 	if ((pvo->pvo_vaddr & PVO_MANAGED) && pg != NULL) {
2462 		LIST_REMOVE(pvo, pvo_vlink);
2463 		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2464 			vm_page_aflag_clear(pg, PGA_WRITEABLE | PGA_EXECUTABLE);
2465 	}
2466 
2467 	moea64_pvo_entries--;
2468 	moea64_pvo_remove_calls++;
2469 }
2470 
2471 static struct pvo_entry *
2472 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2473 {
2474 	struct pvo_entry key;
2475 
2476 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2477 
2478 	key.pvo_vaddr = va & ~ADDR_POFF;
2479 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2480 }
2481 
2482 static boolean_t
2483 moea64_query_bit(mmu_t mmu, vm_page_t m, uint64_t ptebit)
2484 {
2485 	struct	pvo_entry *pvo;
2486 	int64_t ret;
2487 	boolean_t rv;
2488 
2489 	/*
2490 	 * See if this bit is stored in the page already.
2491 	 */
2492 	if (m->md.mdpg_attrs & ptebit)
2493 		return (TRUE);
2494 
2495 	/*
2496 	 * Examine each PTE.  Sync so that any pending REF/CHG bits are
2497 	 * flushed to the PTEs.
2498 	 */
2499 	rv = FALSE;
2500 	powerpc_sync();
2501 	PV_PAGE_LOCK(m);
2502 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2503 		ret = 0;
2504 
2505 		/*
2506 		 * See if this pvo has a valid PTE.  if so, fetch the
2507 		 * REF/CHG bits from the valid PTE.  If the appropriate
2508 		 * ptebit is set, return success.
2509 		 */
2510 		PMAP_LOCK(pvo->pvo_pmap);
2511 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2512 			ret = MOEA64_PTE_SYNCH(mmu, pvo);
2513 		PMAP_UNLOCK(pvo->pvo_pmap);
2514 
2515 		if (ret > 0) {
2516 			atomic_set_32(&m->md.mdpg_attrs,
2517 			    ret & (LPTE_CHG | LPTE_REF));
2518 			if (ret & ptebit) {
2519 				rv = TRUE;
2520 				break;
2521 			}
2522 		}
2523 	}
2524 	PV_PAGE_UNLOCK(m);
2525 
2526 	return (rv);
2527 }
2528 
2529 static u_int
2530 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2531 {
2532 	u_int	count;
2533 	struct	pvo_entry *pvo;
2534 	int64_t ret;
2535 
2536 	/*
2537 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2538 	 * we can reset the right ones).
2539 	 */
2540 	powerpc_sync();
2541 
2542 	/*
2543 	 * For each pvo entry, clear the pte's ptebit.
2544 	 */
2545 	count = 0;
2546 	PV_PAGE_LOCK(m);
2547 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2548 		ret = 0;
2549 
2550 		PMAP_LOCK(pvo->pvo_pmap);
2551 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2552 			ret = MOEA64_PTE_CLEAR(mmu, pvo, ptebit);
2553 		PMAP_UNLOCK(pvo->pvo_pmap);
2554 
2555 		if (ret > 0 && (ret & ptebit))
2556 			count++;
2557 	}
2558 	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
2559 	PV_PAGE_UNLOCK(m);
2560 
2561 	return (count);
2562 }
2563 
2564 boolean_t
2565 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2566 {
2567 	struct pvo_entry *pvo, key;
2568 	vm_offset_t ppa;
2569 	int error = 0;
2570 
2571 	PMAP_LOCK(kernel_pmap);
2572 	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2573 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2574 	    ppa < pa + size; ppa += PAGE_SIZE,
2575 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2576 		if (pvo == NULL || (pvo->pvo_pte.pa & LPTE_RPGN) != ppa) {
2577 			error = EFAULT;
2578 			break;
2579 		}
2580 	}
2581 	PMAP_UNLOCK(kernel_pmap);
2582 
2583 	return (error);
2584 }
2585 
2586 /*
2587  * Map a set of physical memory pages into the kernel virtual
2588  * address space. Return a pointer to where it is mapped. This
2589  * routine is intended to be used for mapping device memory,
2590  * NOT real memory.
2591  */
2592 void *
2593 moea64_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2594 {
2595 	vm_offset_t va, tmpva, ppa, offset;
2596 
2597 	ppa = trunc_page(pa);
2598 	offset = pa & PAGE_MASK;
2599 	size = roundup2(offset + size, PAGE_SIZE);
2600 
2601 	va = kva_alloc(size);
2602 
2603 	if (!va)
2604 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2605 
2606 	for (tmpva = va; size > 0;) {
2607 		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2608 		size -= PAGE_SIZE;
2609 		tmpva += PAGE_SIZE;
2610 		ppa += PAGE_SIZE;
2611 	}
2612 
2613 	return ((void *)(va + offset));
2614 }
2615 
2616 void *
2617 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2618 {
2619 
2620 	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2621 }
2622 
2623 void
2624 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2625 {
2626 	vm_offset_t base, offset;
2627 
2628 	base = trunc_page(va);
2629 	offset = va & PAGE_MASK;
2630 	size = roundup2(offset + size, PAGE_SIZE);
2631 
2632 	kva_free(base, size);
2633 }
2634 
2635 void
2636 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2637 {
2638 	struct pvo_entry *pvo;
2639 	vm_offset_t lim;
2640 	vm_paddr_t pa;
2641 	vm_size_t len;
2642 
2643 	PMAP_LOCK(pm);
2644 	while (sz > 0) {
2645 		lim = round_page(va);
2646 		len = MIN(lim - va, sz);
2647 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2648 		if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
2649 			pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va & ADDR_POFF);
2650 			moea64_syncicache(mmu, pm, va, pa, len);
2651 		}
2652 		va += len;
2653 		sz -= len;
2654 	}
2655 	PMAP_UNLOCK(pm);
2656 }
2657 
2658 void
2659 moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2660 {
2661 
2662 	*va = (void *)pa;
2663 }
2664 
2665 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2666 
2667 void
2668 moea64_scan_init(mmu_t mmu)
2669 {
2670 	struct pvo_entry *pvo;
2671 	vm_offset_t va;
2672 	int i;
2673 
2674 	if (!do_minidump) {
2675 		/* Initialize phys. segments for dumpsys(). */
2676 		memset(&dump_map, 0, sizeof(dump_map));
2677 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2678 		for (i = 0; i < pregions_sz; i++) {
2679 			dump_map[i].pa_start = pregions[i].mr_start;
2680 			dump_map[i].pa_size = pregions[i].mr_size;
2681 		}
2682 		return;
2683 	}
2684 
2685 	/* Virtual segments for minidumps: */
2686 	memset(&dump_map, 0, sizeof(dump_map));
2687 
2688 	/* 1st: kernel .data and .bss. */
2689 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2690 	dump_map[0].pa_size = round_page((uintptr_t)_end) -
2691 	    dump_map[0].pa_start;
2692 
2693 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2694 	dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
2695 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2696 
2697 	/* 3rd: kernel VM. */
2698 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2699 	/* Find start of next chunk (from va). */
2700 	while (va < virtual_end) {
2701 		/* Don't dump the buffer cache. */
2702 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2703 			va = kmi.buffer_eva;
2704 			continue;
2705 		}
2706 		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2707 		if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2708 			break;
2709 		va += PAGE_SIZE;
2710 	}
2711 	if (va < virtual_end) {
2712 		dump_map[2].pa_start = va;
2713 		va += PAGE_SIZE;
2714 		/* Find last page in chunk. */
2715 		while (va < virtual_end) {
2716 			/* Don't run into the buffer cache. */
2717 			if (va == kmi.buffer_sva)
2718 				break;
2719 			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2720 			if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2721 				break;
2722 			va += PAGE_SIZE;
2723 		}
2724 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2725 	}
2726 }
2727 
2728