xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision 184c1b943937986c81e1996d999d21626ec7a4ff)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2008-2015 Nathan Whitehorn
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * Manages physical address maps.
34  *
35  * Since the information managed by this module is also stored by the
36  * logical address mapping module, this module may throw away valid virtual
37  * to physical mappings at almost any time.  However, invalidations of
38  * mappings must be done as requested.
39  *
40  * In order to cope with hardware architectures which make virtual to
41  * physical map invalidates expensive, this module may delay invalidate
42  * reduced protection operations until such time as they are actually
43  * necessary.  This module is given full information as to which processors
44  * are currently using which maps, and to when physical maps must be made
45  * correct.
46  */
47 
48 #include "opt_kstack_pages.h"
49 
50 #include <sys/param.h>
51 #include <sys/kernel.h>
52 #include <sys/conf.h>
53 #include <sys/queue.h>
54 #include <sys/cpuset.h>
55 #include <sys/kerneldump.h>
56 #include <sys/ktr.h>
57 #include <sys/lock.h>
58 #include <sys/msgbuf.h>
59 #include <sys/malloc.h>
60 #include <sys/mman.h>
61 #include <sys/mutex.h>
62 #include <sys/proc.h>
63 #include <sys/rwlock.h>
64 #include <sys/sched.h>
65 #include <sys/sysctl.h>
66 #include <sys/systm.h>
67 #include <sys/vmmeter.h>
68 #include <sys/smp.h>
69 #include <sys/reboot.h>
70 
71 #include <sys/kdb.h>
72 
73 #include <dev/ofw/openfirm.h>
74 
75 #include <vm/vm.h>
76 #include <vm/pmap.h>
77 #include <vm/vm_param.h>
78 #include <vm/vm_kern.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_phys.h>
81 #include <vm/vm_map.h>
82 #include <vm/vm_object.h>
83 #include <vm/vm_extern.h>
84 #include <vm/vm_pageout.h>
85 #include <vm/vm_dumpset.h>
86 #include <vm/vm_reserv.h>
87 #include <vm/uma.h>
88 
89 #include <machine/_inttypes.h>
90 #include <machine/cpu.h>
91 #include <machine/ifunc.h>
92 #include <machine/platform.h>
93 #include <machine/frame.h>
94 #include <machine/md_var.h>
95 #include <machine/psl.h>
96 #include <machine/bat.h>
97 #include <machine/hid.h>
98 #include <machine/pte.h>
99 #include <machine/sr.h>
100 #include <machine/trap.h>
101 #include <machine/mmuvar.h>
102 
103 #include "mmu_oea64.h"
104 
105 void moea64_release_vsid(uint64_t vsid);
106 uintptr_t moea64_get_unique_vsid(void);
107 
108 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
109 #define ENABLE_TRANS(msr)	mtmsr(msr)
110 
111 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
112 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
113 #define	VSID_HASH_MASK		0x0000007fffffffffULL
114 
115 /*
116  * Locking semantics:
117  *
118  * There are two locks of interest: the page locks and the pmap locks, which
119  * protect their individual PVO lists and are locked in that order. The contents
120  * of all PVO entries are protected by the locks of their respective pmaps.
121  * The pmap of any PVO is guaranteed not to change so long as the PVO is linked
122  * into any list.
123  *
124  */
125 
126 #define PV_LOCK_COUNT	PA_LOCK_COUNT
127 static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
128 
129 /*
130  * Cheap NUMA-izing of the pv locks, to reduce contention across domains.
131  * NUMA domains on POWER9 appear to be indexed as sparse memory spaces, with the
132  * index at (N << 45).
133  */
134 #ifdef __powerpc64__
135 #define PV_LOCK_IDX(pa)	((pa_index(pa) * (((pa) >> 45) + 1)) % PV_LOCK_COUNT)
136 #else
137 #define PV_LOCK_IDX(pa)	(pa_index(pa) % PV_LOCK_COUNT)
138 #endif
139 #define PV_LOCKPTR(pa)	((struct mtx *)(&pv_lock[PV_LOCK_IDX(pa)]))
140 #define PV_LOCK(pa)		mtx_lock(PV_LOCKPTR(pa))
141 #define PV_UNLOCK(pa)		mtx_unlock(PV_LOCKPTR(pa))
142 #define PV_LOCKASSERT(pa) 	mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
143 #define PV_PAGE_LOCK(m)		PV_LOCK(VM_PAGE_TO_PHYS(m))
144 #define PV_PAGE_UNLOCK(m)	PV_UNLOCK(VM_PAGE_TO_PHYS(m))
145 #define PV_PAGE_LOCKASSERT(m)	PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
146 
147 /* Superpage PV lock */
148 
149 #define	PV_LOCK_SIZE		(1<<PDRSHIFT)
150 
151 static __always_inline void
152 moea64_sp_pv_lock(vm_paddr_t pa)
153 {
154 	vm_paddr_t pa_end;
155 
156 	/* Note: breaking when pa_end is reached to avoid overflows */
157 	pa_end = pa + (HPT_SP_SIZE - PV_LOCK_SIZE);
158 	for (;;) {
159 		mtx_lock_flags(PV_LOCKPTR(pa), MTX_DUPOK);
160 		if (pa == pa_end)
161 			break;
162 		pa += PV_LOCK_SIZE;
163 	}
164 }
165 
166 static __always_inline void
167 moea64_sp_pv_unlock(vm_paddr_t pa)
168 {
169 	vm_paddr_t pa_end;
170 
171 	/* Note: breaking when pa_end is reached to avoid overflows */
172 	pa_end = pa;
173 	pa += HPT_SP_SIZE - PV_LOCK_SIZE;
174 	for (;;) {
175 		mtx_unlock_flags(PV_LOCKPTR(pa), MTX_DUPOK);
176 		if (pa == pa_end)
177 			break;
178 		pa -= PV_LOCK_SIZE;
179 	}
180 }
181 
182 #define	SP_PV_LOCK_ALIGNED(pa)		moea64_sp_pv_lock(pa)
183 #define	SP_PV_UNLOCK_ALIGNED(pa)	moea64_sp_pv_unlock(pa)
184 #define	SP_PV_LOCK(pa)			moea64_sp_pv_lock((pa) & ~HPT_SP_MASK)
185 #define	SP_PV_UNLOCK(pa)		moea64_sp_pv_unlock((pa) & ~HPT_SP_MASK)
186 #define	SP_PV_PAGE_LOCK(m)		SP_PV_LOCK(VM_PAGE_TO_PHYS(m))
187 #define	SP_PV_PAGE_UNLOCK(m)		SP_PV_UNLOCK(VM_PAGE_TO_PHYS(m))
188 
189 struct ofw_map {
190 	cell_t	om_va;
191 	cell_t	om_len;
192 	uint64_t om_pa;
193 	cell_t	om_mode;
194 };
195 
196 extern unsigned char _etext[];
197 extern unsigned char _end[];
198 
199 extern void *slbtrap, *slbtrapend;
200 
201 /*
202  * Map of physical memory regions.
203  */
204 static struct	mem_region *regions;
205 static struct	mem_region *pregions;
206 static struct	numa_mem_region *numa_pregions;
207 static u_int	phys_avail_count;
208 static int	regions_sz, pregions_sz, numapregions_sz;
209 
210 extern void bs_remap_earlyboot(void);
211 
212 /*
213  * Lock for the SLB tables.
214  */
215 struct mtx	moea64_slb_mutex;
216 
217 /*
218  * PTEG data.
219  */
220 u_long		moea64_pteg_count;
221 u_long		moea64_pteg_mask;
222 
223 /*
224  * PVO data.
225  */
226 
227 uma_zone_t	moea64_pvo_zone; /* zone for pvo entries */
228 
229 static struct	pvo_entry *moea64_bpvo_pool;
230 static int	moea64_bpvo_pool_index = 0;
231 static int	moea64_bpvo_pool_size = 0;
232 SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
233     &moea64_bpvo_pool_index, 0, "");
234 
235 #define	BPVO_POOL_SIZE	327680 /* Sensible historical default value */
236 #define	BPVO_POOL_EXPANSION_FACTOR	3
237 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
238 #ifdef __powerpc64__
239 #define	NVSIDS		(NPMAPS * 16)
240 #define VSID_HASHMASK	0xffffffffUL
241 #else
242 #define NVSIDS		NPMAPS
243 #define VSID_HASHMASK	0xfffffUL
244 #endif
245 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
246 
247 static boolean_t moea64_initialized = FALSE;
248 
249 #ifdef MOEA64_STATS
250 /*
251  * Statistics.
252  */
253 u_int	moea64_pte_valid = 0;
254 u_int	moea64_pte_overflow = 0;
255 u_int	moea64_pvo_entries = 0;
256 u_int	moea64_pvo_enter_calls = 0;
257 u_int	moea64_pvo_remove_calls = 0;
258 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
259     &moea64_pte_valid, 0, "");
260 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
261     &moea64_pte_overflow, 0, "");
262 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
263     &moea64_pvo_entries, 0, "");
264 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
265     &moea64_pvo_enter_calls, 0, "");
266 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
267     &moea64_pvo_remove_calls, 0, "");
268 #endif
269 
270 vm_offset_t	moea64_scratchpage_va[2];
271 struct pvo_entry *moea64_scratchpage_pvo[2];
272 struct	mtx	moea64_scratchpage_mtx;
273 
274 uint64_t 	moea64_large_page_mask = 0;
275 uint64_t	moea64_large_page_size = 0;
276 int		moea64_large_page_shift = 0;
277 bool		moea64_has_lp_4k_16m = false;
278 
279 /*
280  * PVO calls.
281  */
282 static int	moea64_pvo_enter(struct pvo_entry *pvo,
283 		    struct pvo_head *pvo_head, struct pvo_entry **oldpvo);
284 static void	moea64_pvo_remove_from_pmap(struct pvo_entry *pvo);
285 static void	moea64_pvo_remove_from_page(struct pvo_entry *pvo);
286 static void	moea64_pvo_remove_from_page_locked(
287 		    struct pvo_entry *pvo, vm_page_t m);
288 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
289 
290 /*
291  * Utility routines.
292  */
293 static boolean_t	moea64_query_bit(vm_page_t, uint64_t);
294 static u_int		moea64_clear_bit(vm_page_t, uint64_t);
295 static void		moea64_kremove(vm_offset_t);
296 static void		moea64_syncicache(pmap_t pmap, vm_offset_t va,
297 			    vm_paddr_t pa, vm_size_t sz);
298 static void		moea64_pmap_init_qpages(void);
299 static void		moea64_remove_locked(pmap_t, vm_offset_t,
300 			    vm_offset_t, struct pvo_dlist *);
301 
302 /*
303  * Superpages data and routines.
304  */
305 
306 /*
307  * PVO flags (in vaddr) that must match for promotion to succeed.
308  * Note that protection bits are checked separately, as they reside in
309  * another field.
310  */
311 #define	PVO_FLAGS_PROMOTE	(PVO_WIRED | PVO_MANAGED | PVO_PTEGIDX_VALID)
312 
313 #define	PVO_IS_SP(pvo)		(((pvo)->pvo_vaddr & PVO_LARGE) && \
314 				 (pvo)->pvo_pmap != kernel_pmap)
315 
316 /* Get physical address from PVO. */
317 #define	PVO_PADDR(pvo)		moea64_pvo_paddr(pvo)
318 
319 /* MD page flag indicating that the page is a superpage. */
320 #define	MDPG_ATTR_SP		0x40000000
321 
322 SYSCTL_DECL(_vm_pmap);
323 
324 static SYSCTL_NODE(_vm_pmap, OID_AUTO, sp, CTLFLAG_RD, 0,
325     "SP page mapping counters");
326 
327 static u_long sp_demotions;
328 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, demotions, CTLFLAG_RD,
329     &sp_demotions, 0, "SP page demotions");
330 
331 static u_long sp_mappings;
332 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, mappings, CTLFLAG_RD,
333     &sp_mappings, 0, "SP page mappings");
334 
335 static u_long sp_p_failures;
336 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_failures, CTLFLAG_RD,
337     &sp_p_failures, 0, "SP page promotion failures");
338 
339 static u_long sp_p_fail_pa;
340 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_pa, CTLFLAG_RD,
341     &sp_p_fail_pa, 0, "SP page promotion failure: PAs don't match");
342 
343 static u_long sp_p_fail_flags;
344 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_flags, CTLFLAG_RD,
345     &sp_p_fail_flags, 0, "SP page promotion failure: page flags don't match");
346 
347 static u_long sp_p_fail_prot;
348 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_prot, CTLFLAG_RD,
349     &sp_p_fail_prot, 0,
350     "SP page promotion failure: page protections don't match");
351 
352 static u_long sp_p_fail_wimg;
353 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, p_fail_wimg, CTLFLAG_RD,
354     &sp_p_fail_wimg, 0, "SP page promotion failure: WIMG bits don't match");
355 
356 static u_long sp_promotions;
357 SYSCTL_ULONG(_vm_pmap_sp, OID_AUTO, promotions, CTLFLAG_RD,
358     &sp_promotions, 0, "SP page promotions");
359 
360 static bool moea64_ps_enabled(pmap_t);
361 static void moea64_align_superpage(vm_object_t, vm_ooffset_t,
362     vm_offset_t *, vm_size_t);
363 
364 static int moea64_sp_enter(pmap_t pmap, vm_offset_t va,
365     vm_page_t m, vm_prot_t prot, u_int flags, int8_t psind);
366 static struct pvo_entry *moea64_sp_remove(struct pvo_entry *sp,
367     struct pvo_dlist *tofree);
368 
369 static void moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m);
370 static void moea64_sp_demote_aligned(struct pvo_entry *sp);
371 static void moea64_sp_demote(struct pvo_entry *pvo);
372 
373 static struct pvo_entry *moea64_sp_unwire(struct pvo_entry *sp);
374 static struct pvo_entry *moea64_sp_protect(struct pvo_entry *sp,
375     vm_prot_t prot);
376 
377 static int64_t moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit);
378 static int64_t moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m,
379     uint64_t ptebit);
380 
381 static __inline bool moea64_sp_pvo_in_range(struct pvo_entry *pvo,
382     vm_offset_t sva, vm_offset_t eva);
383 
384 /*
385  * Kernel MMU interface
386  */
387 void moea64_clear_modify(vm_page_t);
388 void moea64_copy_page(vm_page_t, vm_page_t);
389 void moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
390     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
391 int moea64_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
392     u_int flags, int8_t psind);
393 void moea64_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
394     vm_prot_t);
395 void moea64_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
396 vm_paddr_t moea64_extract(pmap_t, vm_offset_t);
397 vm_page_t moea64_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
398 void moea64_init(void);
399 boolean_t moea64_is_modified(vm_page_t);
400 boolean_t moea64_is_prefaultable(pmap_t, vm_offset_t);
401 boolean_t moea64_is_referenced(vm_page_t);
402 int moea64_ts_referenced(vm_page_t);
403 vm_offset_t moea64_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
404 boolean_t moea64_page_exists_quick(pmap_t, vm_page_t);
405 void moea64_page_init(vm_page_t);
406 int moea64_page_wired_mappings(vm_page_t);
407 int moea64_pinit(pmap_t);
408 void moea64_pinit0(pmap_t);
409 void moea64_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
410 void moea64_qenter(vm_offset_t, vm_page_t *, int);
411 void moea64_qremove(vm_offset_t, int);
412 void moea64_release(pmap_t);
413 void moea64_remove(pmap_t, vm_offset_t, vm_offset_t);
414 void moea64_remove_pages(pmap_t);
415 void moea64_remove_all(vm_page_t);
416 void moea64_remove_write(vm_page_t);
417 void moea64_unwire(pmap_t, vm_offset_t, vm_offset_t);
418 void moea64_zero_page(vm_page_t);
419 void moea64_zero_page_area(vm_page_t, int, int);
420 void moea64_activate(struct thread *);
421 void moea64_deactivate(struct thread *);
422 void *moea64_mapdev(vm_paddr_t, vm_size_t);
423 void *moea64_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
424 void moea64_unmapdev(vm_offset_t, vm_size_t);
425 vm_paddr_t moea64_kextract(vm_offset_t);
426 void moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma);
427 void moea64_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t ma);
428 void moea64_kenter(vm_offset_t, vm_paddr_t);
429 boolean_t moea64_dev_direct_mapped(vm_paddr_t, vm_size_t);
430 static void moea64_sync_icache(pmap_t, vm_offset_t, vm_size_t);
431 void moea64_dumpsys_map(vm_paddr_t pa, size_t sz,
432     void **va);
433 void moea64_scan_init(void);
434 vm_offset_t moea64_quick_enter_page(vm_page_t m);
435 void moea64_quick_remove_page(vm_offset_t addr);
436 boolean_t moea64_page_is_mapped(vm_page_t m);
437 static int moea64_map_user_ptr(pmap_t pm,
438     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
439 static int moea64_decode_kernel_ptr(vm_offset_t addr,
440     int *is_user, vm_offset_t *decoded_addr);
441 static size_t moea64_scan_pmap(void);
442 static void *moea64_dump_pmap_init(unsigned blkpgs);
443 #ifdef __powerpc64__
444 static void moea64_page_array_startup(long);
445 #endif
446 static int moea64_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
447 
448 static struct pmap_funcs moea64_methods = {
449 	.clear_modify = moea64_clear_modify,
450 	.copy_page = moea64_copy_page,
451 	.copy_pages = moea64_copy_pages,
452 	.enter = moea64_enter,
453 	.enter_object = moea64_enter_object,
454 	.enter_quick = moea64_enter_quick,
455 	.extract = moea64_extract,
456 	.extract_and_hold = moea64_extract_and_hold,
457 	.init = moea64_init,
458 	.is_modified = moea64_is_modified,
459 	.is_prefaultable = moea64_is_prefaultable,
460 	.is_referenced = moea64_is_referenced,
461 	.ts_referenced = moea64_ts_referenced,
462 	.map =      		moea64_map,
463 	.mincore = moea64_mincore,
464 	.page_exists_quick = moea64_page_exists_quick,
465 	.page_init = moea64_page_init,
466 	.page_wired_mappings = moea64_page_wired_mappings,
467 	.pinit = moea64_pinit,
468 	.pinit0 = moea64_pinit0,
469 	.protect = moea64_protect,
470 	.qenter = moea64_qenter,
471 	.qremove = moea64_qremove,
472 	.release = moea64_release,
473 	.remove = moea64_remove,
474 	.remove_pages = moea64_remove_pages,
475 	.remove_all =       	moea64_remove_all,
476 	.remove_write = moea64_remove_write,
477 	.sync_icache = moea64_sync_icache,
478 	.unwire = moea64_unwire,
479 	.zero_page =        	moea64_zero_page,
480 	.zero_page_area = moea64_zero_page_area,
481 	.activate = moea64_activate,
482 	.deactivate =       	moea64_deactivate,
483 	.page_set_memattr = moea64_page_set_memattr,
484 	.quick_enter_page =  moea64_quick_enter_page,
485 	.quick_remove_page =  moea64_quick_remove_page,
486 	.page_is_mapped = moea64_page_is_mapped,
487 #ifdef __powerpc64__
488 	.page_array_startup = moea64_page_array_startup,
489 #endif
490 	.ps_enabled = moea64_ps_enabled,
491 	.align_superpage = moea64_align_superpage,
492 
493 	/* Internal interfaces */
494 	.mapdev = moea64_mapdev,
495 	.mapdev_attr = moea64_mapdev_attr,
496 	.unmapdev = moea64_unmapdev,
497 	.kextract = moea64_kextract,
498 	.kenter = moea64_kenter,
499 	.kenter_attr = moea64_kenter_attr,
500 	.dev_direct_mapped = moea64_dev_direct_mapped,
501 	.dumpsys_pa_init = moea64_scan_init,
502 	.dumpsys_scan_pmap = moea64_scan_pmap,
503 	.dumpsys_dump_pmap_init =    moea64_dump_pmap_init,
504 	.dumpsys_map_chunk = moea64_dumpsys_map,
505 	.map_user_ptr = moea64_map_user_ptr,
506 	.decode_kernel_ptr =  moea64_decode_kernel_ptr,
507 };
508 
509 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods);
510 
511 /*
512  * Get physical address from PVO.
513  *
514  * For superpages, the lower bits are not stored on pvo_pte.pa and must be
515  * obtained from VA.
516  */
517 static __always_inline vm_paddr_t
518 moea64_pvo_paddr(struct pvo_entry *pvo)
519 {
520 	vm_paddr_t pa;
521 
522 	pa = (pvo)->pvo_pte.pa & LPTE_RPGN;
523 
524 	if (PVO_IS_SP(pvo)) {
525 		pa &= ~HPT_SP_MASK; /* This is needed to clear LPTE_LP bits. */
526 		pa |= PVO_VADDR(pvo) & HPT_SP_MASK;
527 	}
528 	return (pa);
529 }
530 
531 static struct pvo_head *
532 vm_page_to_pvoh(vm_page_t m)
533 {
534 
535 	mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
536 	return (&m->md.mdpg_pvoh);
537 }
538 
539 static struct pvo_entry *
540 alloc_pvo_entry(int bootstrap)
541 {
542 	struct pvo_entry *pvo;
543 
544 	if (!moea64_initialized || bootstrap) {
545 		if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
546 			panic("%s: bpvo pool exhausted, index=%d, size=%d, bytes=%zd."
547 			    "Try setting machdep.moea64_bpvo_pool_size tunable",
548 			    __func__, moea64_bpvo_pool_index,
549 			    moea64_bpvo_pool_size,
550 			    moea64_bpvo_pool_size * sizeof(struct pvo_entry));
551 		}
552 		pvo = &moea64_bpvo_pool[
553 		    atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
554 		bzero(pvo, sizeof(*pvo));
555 		pvo->pvo_vaddr = PVO_BOOTSTRAP;
556 	} else
557 		pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT | M_ZERO);
558 
559 	return (pvo);
560 }
561 
562 static void
563 init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
564 {
565 	uint64_t vsid;
566 	uint64_t hash;
567 	int shift;
568 
569 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
570 
571 	pvo->pvo_pmap = pmap;
572 	va &= ~ADDR_POFF;
573 	pvo->pvo_vaddr |= va;
574 	vsid = va_to_vsid(pmap, va);
575 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
576 	    | (vsid << 16);
577 
578 	if (pmap == kernel_pmap && (pvo->pvo_vaddr & PVO_LARGE) != 0)
579 		shift = moea64_large_page_shift;
580 	else
581 		shift = ADDR_PIDX_SHFT;
582 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
583 	pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
584 }
585 
586 static void
587 free_pvo_entry(struct pvo_entry *pvo)
588 {
589 
590 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
591 		uma_zfree(moea64_pvo_zone, pvo);
592 }
593 
594 void
595 moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
596 {
597 
598 	lpte->pte_hi = moea64_pte_vpn_from_pvo_vpn(pvo);
599 	lpte->pte_hi |= LPTE_VALID;
600 
601 	if (pvo->pvo_vaddr & PVO_LARGE)
602 		lpte->pte_hi |= LPTE_BIG;
603 	if (pvo->pvo_vaddr & PVO_WIRED)
604 		lpte->pte_hi |= LPTE_WIRED;
605 	if (pvo->pvo_vaddr & PVO_HID)
606 		lpte->pte_hi |= LPTE_HID;
607 
608 	lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
609 	if (pvo->pvo_pte.prot & VM_PROT_WRITE)
610 		lpte->pte_lo |= LPTE_BW;
611 	else
612 		lpte->pte_lo |= LPTE_BR;
613 
614 	if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
615 		lpte->pte_lo |= LPTE_NOEXEC;
616 }
617 
618 static __inline uint64_t
619 moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
620 {
621 	uint64_t pte_lo;
622 	int i;
623 
624 	if (ma != VM_MEMATTR_DEFAULT) {
625 		switch (ma) {
626 		case VM_MEMATTR_UNCACHEABLE:
627 			return (LPTE_I | LPTE_G);
628 		case VM_MEMATTR_CACHEABLE:
629 			return (LPTE_M);
630 		case VM_MEMATTR_WRITE_COMBINING:
631 		case VM_MEMATTR_WRITE_BACK:
632 		case VM_MEMATTR_PREFETCHABLE:
633 			return (LPTE_I);
634 		case VM_MEMATTR_WRITE_THROUGH:
635 			return (LPTE_W | LPTE_M);
636 		}
637 	}
638 
639 	/*
640 	 * Assume the page is cache inhibited and access is guarded unless
641 	 * it's in our available memory array.
642 	 */
643 	pte_lo = LPTE_I | LPTE_G;
644 	for (i = 0; i < pregions_sz; i++) {
645 		if ((pa >= pregions[i].mr_start) &&
646 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
647 			pte_lo &= ~(LPTE_I | LPTE_G);
648 			pte_lo |= LPTE_M;
649 			break;
650 		}
651 	}
652 
653 	return pte_lo;
654 }
655 
656 /*
657  * Quick sort callout for comparing memory regions.
658  */
659 static int	om_cmp(const void *a, const void *b);
660 
661 static int
662 om_cmp(const void *a, const void *b)
663 {
664 	const struct	ofw_map *mapa;
665 	const struct	ofw_map *mapb;
666 
667 	mapa = a;
668 	mapb = b;
669 	if (mapa->om_pa < mapb->om_pa)
670 		return (-1);
671 	else if (mapa->om_pa > mapb->om_pa)
672 		return (1);
673 	else
674 		return (0);
675 }
676 
677 static void
678 moea64_add_ofw_mappings(phandle_t mmu, size_t sz)
679 {
680 	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
681 	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
682 	struct pvo_entry *pvo;
683 	register_t	msr;
684 	vm_offset_t	off;
685 	vm_paddr_t	pa_base;
686 	int		i, j;
687 
688 	bzero(translations, sz);
689 	OF_getencprop(OF_finddevice("/"), "#address-cells", &acells,
690 	    sizeof(acells));
691 	if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1)
692 		panic("moea64_bootstrap: can't get ofw translations");
693 
694 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
695 	sz /= sizeof(cell_t);
696 	for (i = 0, j = 0; i < sz; j++) {
697 		translations[j].om_va = trans_cells[i++];
698 		translations[j].om_len = trans_cells[i++];
699 		translations[j].om_pa = trans_cells[i++];
700 		if (acells == 2) {
701 			translations[j].om_pa <<= 32;
702 			translations[j].om_pa |= trans_cells[i++];
703 		}
704 		translations[j].om_mode = trans_cells[i++];
705 	}
706 	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
707 	    i, sz));
708 
709 	sz = j;
710 	qsort(translations, sz, sizeof (*translations), om_cmp);
711 
712 	for (i = 0; i < sz; i++) {
713 		pa_base = translations[i].om_pa;
714 	      #ifndef __powerpc64__
715 		if ((translations[i].om_pa >> 32) != 0)
716 			panic("OFW translations above 32-bit boundary!");
717 	      #endif
718 
719 		if (pa_base % PAGE_SIZE)
720 			panic("OFW translation not page-aligned (phys)!");
721 		if (translations[i].om_va % PAGE_SIZE)
722 			panic("OFW translation not page-aligned (virt)!");
723 
724 		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
725 		    pa_base, translations[i].om_va, translations[i].om_len);
726 
727 		/* Now enter the pages for this mapping */
728 
729 		DISABLE_TRANS(msr);
730 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
731 			/* If this address is direct-mapped, skip remapping */
732 			if (hw_direct_map &&
733 			    translations[i].om_va == PHYS_TO_DMAP(pa_base) &&
734 			    moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT)
735  			    == LPTE_M)
736 				continue;
737 
738 			PMAP_LOCK(kernel_pmap);
739 			pvo = moea64_pvo_find_va(kernel_pmap,
740 			    translations[i].om_va + off);
741 			PMAP_UNLOCK(kernel_pmap);
742 			if (pvo != NULL)
743 				continue;
744 
745 			moea64_kenter(translations[i].om_va + off,
746 			    pa_base + off);
747 		}
748 		ENABLE_TRANS(msr);
749 	}
750 }
751 
752 #ifdef __powerpc64__
753 static void
754 moea64_probe_large_page(void)
755 {
756 	uint16_t pvr = mfpvr() >> 16;
757 
758 	switch (pvr) {
759 	case IBM970:
760 	case IBM970FX:
761 	case IBM970MP:
762 		powerpc_sync(); isync();
763 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
764 		powerpc_sync(); isync();
765 
766 		/* FALLTHROUGH */
767 	default:
768 		if (moea64_large_page_size == 0) {
769 			moea64_large_page_size = 0x1000000; /* 16 MB */
770 			moea64_large_page_shift = 24;
771 		}
772 	}
773 
774 	moea64_large_page_mask = moea64_large_page_size - 1;
775 }
776 
777 static void
778 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
779 {
780 	struct slb *cache;
781 	struct slb entry;
782 	uint64_t esid, slbe;
783 	uint64_t i;
784 
785 	cache = PCPU_GET(aim.slb);
786 	esid = va >> ADDR_SR_SHFT;
787 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
788 
789 	for (i = 0; i < 64; i++) {
790 		if (cache[i].slbe == (slbe | i))
791 			return;
792 	}
793 
794 	entry.slbe = slbe;
795 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
796 	if (large)
797 		entry.slbv |= SLBV_L;
798 
799 	slb_insert_kernel(entry.slbe, entry.slbv);
800 }
801 #endif
802 
803 static int
804 moea64_kenter_large(vm_offset_t va, vm_paddr_t pa, uint64_t attr, int bootstrap)
805 {
806 	struct pvo_entry *pvo;
807 	uint64_t pte_lo;
808 	int error;
809 
810 	pte_lo = LPTE_M;
811 	pte_lo |= attr;
812 
813 	pvo = alloc_pvo_entry(bootstrap);
814 	pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
815 	init_pvo_entry(pvo, kernel_pmap, va);
816 
817 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
818 	    VM_PROT_EXECUTE;
819 	pvo->pvo_pte.pa = pa | pte_lo;
820 	error = moea64_pvo_enter(pvo, NULL, NULL);
821 	if (error != 0)
822 		panic("Error %d inserting large page\n", error);
823 	return (0);
824 }
825 
826 static void
827 moea64_setup_direct_map(vm_offset_t kernelstart,
828     vm_offset_t kernelend)
829 {
830 	register_t msr;
831 	vm_paddr_t pa, pkernelstart, pkernelend;
832 	vm_offset_t size, off;
833 	uint64_t pte_lo;
834 	int i;
835 
836 	if (moea64_large_page_size == 0)
837 		hw_direct_map = 0;
838 
839 	DISABLE_TRANS(msr);
840 	if (hw_direct_map) {
841 		PMAP_LOCK(kernel_pmap);
842 		for (i = 0; i < pregions_sz; i++) {
843 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
844 		     pregions[i].mr_size; pa += moea64_large_page_size) {
845 			pte_lo = LPTE_M;
846 			if (pa & moea64_large_page_mask) {
847 				pa &= moea64_large_page_mask;
848 				pte_lo |= LPTE_G;
849 			}
850 			if (pa + moea64_large_page_size >
851 			    pregions[i].mr_start + pregions[i].mr_size)
852 				pte_lo |= LPTE_G;
853 
854 			moea64_kenter_large(PHYS_TO_DMAP(pa), pa, pte_lo, 1);
855 		  }
856 		}
857 		PMAP_UNLOCK(kernel_pmap);
858 	}
859 
860 	/*
861 	 * Make sure the kernel and BPVO pool stay mapped on systems either
862 	 * without a direct map or on which the kernel is not already executing
863 	 * out of the direct-mapped region.
864 	 */
865 	if (kernelstart < DMAP_BASE_ADDRESS) {
866 		/*
867 		 * For pre-dmap execution, we need to use identity mapping
868 		 * because we will be operating with the mmu on but in the
869 		 * wrong address configuration until we __restartkernel().
870 		 */
871 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
872 		    pa += PAGE_SIZE)
873 			moea64_kenter(pa, pa);
874 	} else if (!hw_direct_map) {
875 		pkernelstart = kernelstart & ~DMAP_BASE_ADDRESS;
876 		pkernelend = kernelend & ~DMAP_BASE_ADDRESS;
877 		for (pa = pkernelstart & ~PAGE_MASK; pa < pkernelend;
878 		    pa += PAGE_SIZE)
879 			moea64_kenter(pa | DMAP_BASE_ADDRESS, pa);
880 	}
881 
882 	if (!hw_direct_map) {
883 		size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
884 		off = (vm_offset_t)(moea64_bpvo_pool);
885 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
886 			moea64_kenter(pa, pa);
887 
888 		/* Map exception vectors */
889 		for (pa = EXC_RSVD; pa < EXC_LAST; pa += PAGE_SIZE)
890 			moea64_kenter(pa | DMAP_BASE_ADDRESS, pa);
891 	}
892 	ENABLE_TRANS(msr);
893 
894 	/*
895 	 * Allow user to override unmapped_buf_allowed for testing.
896 	 * XXXKIB Only direct map implementation was tested.
897 	 */
898 	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
899 	    &unmapped_buf_allowed))
900 		unmapped_buf_allowed = hw_direct_map;
901 }
902 
903 /* Quick sort callout for comparing physical addresses. */
904 static int
905 pa_cmp(const void *a, const void *b)
906 {
907 	const vm_paddr_t *pa = a, *pb = b;
908 
909 	if (*pa < *pb)
910 		return (-1);
911 	else if (*pa > *pb)
912 		return (1);
913 	else
914 		return (0);
915 }
916 
917 void
918 moea64_early_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
919 {
920 	int		i, j;
921 	vm_size_t	physsz, hwphyssz;
922 	vm_paddr_t	kernelphysstart, kernelphysend;
923 	int		rm_pavail;
924 
925 	/* Level 0 reservations consist of 4096 pages (16MB superpage). */
926 	vm_level_0_order = 12;
927 
928 #ifndef __powerpc64__
929 	/* We don't have a direct map since there is no BAT */
930 	hw_direct_map = 0;
931 
932 	/* Make sure battable is zero, since we have no BAT */
933 	for (i = 0; i < 16; i++) {
934 		battable[i].batu = 0;
935 		battable[i].batl = 0;
936 	}
937 #else
938 	moea64_probe_large_page();
939 
940 	/* Use a direct map if we have large page support */
941 	if (moea64_large_page_size > 0)
942 		hw_direct_map = 1;
943 	else
944 		hw_direct_map = 0;
945 
946 	/* Install trap handlers for SLBs */
947 	bcopy(&slbtrap, (void *)EXC_DSE,(size_t)&slbtrapend - (size_t)&slbtrap);
948 	bcopy(&slbtrap, (void *)EXC_ISE,(size_t)&slbtrapend - (size_t)&slbtrap);
949 	__syncicache((void *)EXC_DSE, 0x80);
950 	__syncicache((void *)EXC_ISE, 0x80);
951 #endif
952 
953 	kernelphysstart = kernelstart & ~DMAP_BASE_ADDRESS;
954 	kernelphysend = kernelend & ~DMAP_BASE_ADDRESS;
955 
956 	/* Get physical memory regions from firmware */
957 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
958 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
959 
960 	if (PHYS_AVAIL_ENTRIES < regions_sz)
961 		panic("moea64_bootstrap: phys_avail too small");
962 
963 	phys_avail_count = 0;
964 	physsz = 0;
965 	hwphyssz = 0;
966 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
967 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
968 		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
969 		    regions[i].mr_start, regions[i].mr_start +
970 		    regions[i].mr_size, regions[i].mr_size);
971 		if (hwphyssz != 0 &&
972 		    (physsz + regions[i].mr_size) >= hwphyssz) {
973 			if (physsz < hwphyssz) {
974 				phys_avail[j] = regions[i].mr_start;
975 				phys_avail[j + 1] = regions[i].mr_start +
976 				    hwphyssz - physsz;
977 				physsz = hwphyssz;
978 				phys_avail_count++;
979 				dump_avail[j] = phys_avail[j];
980 				dump_avail[j + 1] = phys_avail[j + 1];
981 			}
982 			break;
983 		}
984 		phys_avail[j] = regions[i].mr_start;
985 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
986 		phys_avail_count++;
987 		physsz += regions[i].mr_size;
988 		dump_avail[j] = phys_avail[j];
989 		dump_avail[j + 1] = phys_avail[j + 1];
990 	}
991 
992 	/* Check for overlap with the kernel and exception vectors */
993 	rm_pavail = 0;
994 	for (j = 0; j < 2*phys_avail_count; j+=2) {
995 		if (phys_avail[j] < EXC_LAST)
996 			phys_avail[j] += EXC_LAST;
997 
998 		if (phys_avail[j] >= kernelphysstart &&
999 		    phys_avail[j+1] <= kernelphysend) {
1000 			phys_avail[j] = phys_avail[j+1] = ~0;
1001 			rm_pavail++;
1002 			continue;
1003 		}
1004 
1005 		if (kernelphysstart >= phys_avail[j] &&
1006 		    kernelphysstart < phys_avail[j+1]) {
1007 			if (kernelphysend < phys_avail[j+1]) {
1008 				phys_avail[2*phys_avail_count] =
1009 				    (kernelphysend & ~PAGE_MASK) + PAGE_SIZE;
1010 				phys_avail[2*phys_avail_count + 1] =
1011 				    phys_avail[j+1];
1012 				phys_avail_count++;
1013 			}
1014 
1015 			phys_avail[j+1] = kernelphysstart & ~PAGE_MASK;
1016 		}
1017 
1018 		if (kernelphysend >= phys_avail[j] &&
1019 		    kernelphysend < phys_avail[j+1]) {
1020 			if (kernelphysstart > phys_avail[j]) {
1021 				phys_avail[2*phys_avail_count] = phys_avail[j];
1022 				phys_avail[2*phys_avail_count + 1] =
1023 				    kernelphysstart & ~PAGE_MASK;
1024 				phys_avail_count++;
1025 			}
1026 
1027 			phys_avail[j] = (kernelphysend & ~PAGE_MASK) +
1028 			    PAGE_SIZE;
1029 		}
1030 	}
1031 
1032 	/* Remove physical available regions marked for removal (~0) */
1033 	if (rm_pavail) {
1034 		qsort(phys_avail, 2*phys_avail_count, sizeof(phys_avail[0]),
1035 			pa_cmp);
1036 		phys_avail_count -= rm_pavail;
1037 		for (i = 2*phys_avail_count;
1038 		     i < 2*(phys_avail_count + rm_pavail); i+=2)
1039 			phys_avail[i] = phys_avail[i+1] = 0;
1040 	}
1041 
1042 	physmem = btoc(physsz);
1043 
1044 #ifdef PTEGCOUNT
1045 	moea64_pteg_count = PTEGCOUNT;
1046 #else
1047 	moea64_pteg_count = 0x1000;
1048 
1049 	while (moea64_pteg_count < physmem)
1050 		moea64_pteg_count <<= 1;
1051 
1052 	moea64_pteg_count >>= 1;
1053 #endif /* PTEGCOUNT */
1054 }
1055 
1056 void
1057 moea64_mid_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
1058 {
1059 	int		i;
1060 
1061 	/*
1062 	 * Set PTEG mask
1063 	 */
1064 	moea64_pteg_mask = moea64_pteg_count - 1;
1065 
1066 	/*
1067 	 * Initialize SLB table lock and page locks
1068 	 */
1069 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
1070 	for (i = 0; i < PV_LOCK_COUNT; i++)
1071 		mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
1072 
1073 	/*
1074 	 * Initialise the bootstrap pvo pool.
1075 	 */
1076 	TUNABLE_INT_FETCH("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
1077 	if (moea64_bpvo_pool_size == 0) {
1078 		if (!hw_direct_map)
1079 			moea64_bpvo_pool_size = ((ptoa((uintmax_t)physmem) * sizeof(struct vm_page)) /
1080 			    (PAGE_SIZE * PAGE_SIZE)) * BPVO_POOL_EXPANSION_FACTOR;
1081 		else
1082 			moea64_bpvo_pool_size = BPVO_POOL_SIZE;
1083 	}
1084 
1085 	if (boothowto & RB_VERBOSE) {
1086 		printf("mmu_oea64: bpvo pool entries = %d, bpvo pool size = %zu MB\n",
1087 		    moea64_bpvo_pool_size,
1088 		    moea64_bpvo_pool_size*sizeof(struct pvo_entry) / 1048576);
1089 	}
1090 
1091 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
1092 		moea64_bpvo_pool_size*sizeof(struct pvo_entry), PAGE_SIZE);
1093 	moea64_bpvo_pool_index = 0;
1094 
1095 	/* Place at address usable through the direct map */
1096 	if (hw_direct_map)
1097 		moea64_bpvo_pool = (struct pvo_entry *)
1098 		    PHYS_TO_DMAP((uintptr_t)moea64_bpvo_pool);
1099 
1100 	/*
1101 	 * Make sure kernel vsid is allocated as well as VSID 0.
1102 	 */
1103 	#ifndef __powerpc64__
1104 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
1105 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
1106 	moea64_vsid_bitmap[0] |= 1;
1107 	#endif
1108 
1109 	/*
1110 	 * Initialize the kernel pmap (which is statically allocated).
1111 	 */
1112 	#ifdef __powerpc64__
1113 	for (i = 0; i < 64; i++) {
1114 		pcpup->pc_aim.slb[i].slbv = 0;
1115 		pcpup->pc_aim.slb[i].slbe = 0;
1116 	}
1117 	#else
1118 	for (i = 0; i < 16; i++)
1119 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
1120 	#endif
1121 
1122 	kernel_pmap->pmap_phys = kernel_pmap;
1123 	CPU_FILL(&kernel_pmap->pm_active);
1124 	RB_INIT(&kernel_pmap->pmap_pvo);
1125 
1126 	PMAP_LOCK_INIT(kernel_pmap);
1127 
1128 	/*
1129 	 * Now map in all the other buffers we allocated earlier
1130 	 */
1131 
1132 	moea64_setup_direct_map(kernelstart, kernelend);
1133 }
1134 
1135 void
1136 moea64_late_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
1137 {
1138 	ihandle_t	mmui;
1139 	phandle_t	chosen;
1140 	phandle_t	mmu;
1141 	ssize_t		sz;
1142 	int		i;
1143 	vm_offset_t	pa, va;
1144 	void		*dpcpu;
1145 
1146 	/*
1147 	 * Set up the Open Firmware pmap and add its mappings if not in real
1148 	 * mode.
1149 	 */
1150 
1151 	chosen = OF_finddevice("/chosen");
1152 	if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) {
1153 		mmu = OF_instance_to_package(mmui);
1154 		if (mmu == -1 ||
1155 		    (sz = OF_getproplen(mmu, "translations")) == -1)
1156 			sz = 0;
1157 		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
1158 			panic("moea64_bootstrap: too many ofw translations");
1159 
1160 		if (sz > 0)
1161 			moea64_add_ofw_mappings(mmu, sz);
1162 	}
1163 
1164 	/*
1165 	 * Calculate the last available physical address.
1166 	 */
1167 	Maxmem = 0;
1168 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
1169 		Maxmem = MAX(Maxmem, powerpc_btop(phys_avail[i + 1]));
1170 
1171 	/*
1172 	 * Initialize MMU.
1173 	 */
1174 	pmap_cpu_bootstrap(0);
1175 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
1176 	pmap_bootstrapped++;
1177 
1178 	/*
1179 	 * Set the start and end of kva.
1180 	 */
1181 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
1182 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
1183 
1184 	/*
1185 	 * Map the entire KVA range into the SLB. We must not fault there.
1186 	 */
1187 	#ifdef __powerpc64__
1188 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
1189 		moea64_bootstrap_slb_prefault(va, 0);
1190 	#endif
1191 
1192 	/*
1193 	 * Remap any early IO mappings (console framebuffer, etc.)
1194 	 */
1195 	bs_remap_earlyboot();
1196 
1197 	/*
1198 	 * Figure out how far we can extend virtual_end into segment 16
1199 	 * without running into existing mappings. Segment 16 is guaranteed
1200 	 * to contain neither RAM nor devices (at least on Apple hardware),
1201 	 * but will generally contain some OFW mappings we should not
1202 	 * step on.
1203 	 */
1204 
1205 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
1206 	PMAP_LOCK(kernel_pmap);
1207 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
1208 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
1209 		virtual_end += PAGE_SIZE;
1210 	PMAP_UNLOCK(kernel_pmap);
1211 	#endif
1212 
1213 	/*
1214 	 * Allocate a kernel stack with a guard page for thread0 and map it
1215 	 * into the kernel page map.
1216 	 */
1217 	pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
1218 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
1219 	virtual_avail = va + kstack_pages * PAGE_SIZE;
1220 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
1221 	thread0.td_kstack = va;
1222 	thread0.td_kstack_pages = kstack_pages;
1223 	for (i = 0; i < kstack_pages; i++) {
1224 		moea64_kenter(va, pa);
1225 		pa += PAGE_SIZE;
1226 		va += PAGE_SIZE;
1227 	}
1228 
1229 	/*
1230 	 * Allocate virtual address space for the message buffer.
1231 	 */
1232 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
1233 	msgbufp = (struct msgbuf *)virtual_avail;
1234 	va = virtual_avail;
1235 	virtual_avail += round_page(msgbufsize);
1236 	while (va < virtual_avail) {
1237 		moea64_kenter(va, pa);
1238 		pa += PAGE_SIZE;
1239 		va += PAGE_SIZE;
1240 	}
1241 
1242 	/*
1243 	 * Allocate virtual address space for the dynamic percpu area.
1244 	 */
1245 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
1246 	dpcpu = (void *)virtual_avail;
1247 	va = virtual_avail;
1248 	virtual_avail += DPCPU_SIZE;
1249 	while (va < virtual_avail) {
1250 		moea64_kenter(va, pa);
1251 		pa += PAGE_SIZE;
1252 		va += PAGE_SIZE;
1253 	}
1254 	dpcpu_init(dpcpu, curcpu);
1255 
1256 	crashdumpmap = (caddr_t)virtual_avail;
1257 	virtual_avail += MAXDUMPPGS * PAGE_SIZE;
1258 
1259 	/*
1260 	 * Allocate some things for page zeroing. We put this directly
1261 	 * in the page table and use MOEA64_PTE_REPLACE to avoid any
1262 	 * of the PVO book-keeping or other parts of the VM system
1263 	 * from even knowing that this hack exists.
1264 	 */
1265 
1266 	if (!hw_direct_map) {
1267 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
1268 		    MTX_DEF);
1269 		for (i = 0; i < 2; i++) {
1270 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
1271 			virtual_end -= PAGE_SIZE;
1272 
1273 			moea64_kenter(moea64_scratchpage_va[i], 0);
1274 
1275 			PMAP_LOCK(kernel_pmap);
1276 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
1277 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
1278 			PMAP_UNLOCK(kernel_pmap);
1279 		}
1280 	}
1281 
1282 	numa_mem_regions(&numa_pregions, &numapregions_sz);
1283 }
1284 
1285 static void
1286 moea64_pmap_init_qpages(void)
1287 {
1288 	struct pcpu *pc;
1289 	int i;
1290 
1291 	if (hw_direct_map)
1292 		return;
1293 
1294 	CPU_FOREACH(i) {
1295 		pc = pcpu_find(i);
1296 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
1297 		if (pc->pc_qmap_addr == 0)
1298 			panic("pmap_init_qpages: unable to allocate KVA");
1299 		PMAP_LOCK(kernel_pmap);
1300 		pc->pc_aim.qmap_pvo =
1301 		    moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr);
1302 		PMAP_UNLOCK(kernel_pmap);
1303 		mtx_init(&pc->pc_aim.qmap_lock, "qmap lock", NULL, MTX_DEF);
1304 	}
1305 }
1306 
1307 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL);
1308 
1309 /*
1310  * Activate a user pmap.  This mostly involves setting some non-CPU
1311  * state.
1312  */
1313 void
1314 moea64_activate(struct thread *td)
1315 {
1316 	pmap_t	pm;
1317 
1318 	pm = &td->td_proc->p_vmspace->vm_pmap;
1319 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1320 
1321 	#ifdef __powerpc64__
1322 	PCPU_SET(aim.userslb, pm->pm_slb);
1323 	__asm __volatile("slbmte %0, %1; isync" ::
1324 	    "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
1325 	#else
1326 	PCPU_SET(curpmap, pm->pmap_phys);
1327 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1328 	#endif
1329 }
1330 
1331 void
1332 moea64_deactivate(struct thread *td)
1333 {
1334 	pmap_t	pm;
1335 
1336 	__asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
1337 
1338 	pm = &td->td_proc->p_vmspace->vm_pmap;
1339 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1340 	#ifdef __powerpc64__
1341 	PCPU_SET(aim.userslb, NULL);
1342 	#else
1343 	PCPU_SET(curpmap, NULL);
1344 	#endif
1345 }
1346 
1347 void
1348 moea64_unwire(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1349 {
1350 	struct	pvo_entry key, *pvo;
1351 	vm_page_t m;
1352 	int64_t	refchg;
1353 
1354 	key.pvo_vaddr = sva;
1355 	PMAP_LOCK(pm);
1356 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1357 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1358 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1359 		if (PVO_IS_SP(pvo)) {
1360 			if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
1361 				pvo = moea64_sp_unwire(pvo);
1362 				continue;
1363 			} else {
1364 				CTR1(KTR_PMAP, "%s: demote before unwire",
1365 				    __func__);
1366 				moea64_sp_demote(pvo);
1367 			}
1368 		}
1369 
1370 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1371 			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1372 			    pvo);
1373 		pvo->pvo_vaddr &= ~PVO_WIRED;
1374 		refchg = moea64_pte_replace(pvo, 0 /* No invalidation */);
1375 		if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1376 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1377 			if (refchg < 0)
1378 				refchg = LPTE_CHG;
1379 			m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
1380 
1381 			refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
1382 			if (refchg & LPTE_CHG)
1383 				vm_page_dirty(m);
1384 			if (refchg & LPTE_REF)
1385 				vm_page_aflag_set(m, PGA_REFERENCED);
1386 		}
1387 		pm->pm_stats.wired_count--;
1388 	}
1389 	PMAP_UNLOCK(pm);
1390 }
1391 
1392 static int
1393 moea64_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
1394 {
1395 	struct pvo_entry *pvo;
1396 	vm_paddr_t pa;
1397 	vm_page_t m;
1398 	int val;
1399 	bool managed;
1400 
1401 	PMAP_LOCK(pmap);
1402 
1403 	/* XXX Add support for superpages */
1404 	pvo = moea64_pvo_find_va(pmap, addr);
1405 	if (pvo != NULL) {
1406 		pa = PVO_PADDR(pvo);
1407 		m = PHYS_TO_VM_PAGE(pa);
1408 		managed = (pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED;
1409 		val = MINCORE_INCORE;
1410 	} else {
1411 		PMAP_UNLOCK(pmap);
1412 		return (0);
1413 	}
1414 
1415 	PMAP_UNLOCK(pmap);
1416 
1417 	if (m == NULL)
1418 		return (0);
1419 
1420 	if (managed) {
1421 		if (moea64_is_modified(m))
1422 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
1423 
1424 		if (moea64_is_referenced(m))
1425 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
1426 	}
1427 
1428 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
1429 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
1430 	    managed) {
1431 		*pap = pa;
1432 	}
1433 
1434 	return (val);
1435 }
1436 
1437 /*
1438  * This goes through and sets the physical address of our
1439  * special scratch PTE to the PA we want to zero or copy. Because
1440  * of locking issues (this can get called in pvo_enter() by
1441  * the UMA allocator), we can't use most other utility functions here
1442  */
1443 
1444 static __inline
1445 void moea64_set_scratchpage_pa(int which, vm_paddr_t pa)
1446 {
1447 	struct pvo_entry *pvo;
1448 
1449 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1450 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1451 
1452 	pvo = moea64_scratchpage_pvo[which];
1453 	PMAP_LOCK(pvo->pvo_pmap);
1454 	pvo->pvo_pte.pa =
1455 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1456 	moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
1457 	PMAP_UNLOCK(pvo->pvo_pmap);
1458 	isync();
1459 }
1460 
1461 void
1462 moea64_copy_page(vm_page_t msrc, vm_page_t mdst)
1463 {
1464 	vm_offset_t	dst;
1465 	vm_offset_t	src;
1466 
1467 	dst = VM_PAGE_TO_PHYS(mdst);
1468 	src = VM_PAGE_TO_PHYS(msrc);
1469 
1470 	if (hw_direct_map) {
1471 		bcopy((void *)PHYS_TO_DMAP(src), (void *)PHYS_TO_DMAP(dst),
1472 		    PAGE_SIZE);
1473 	} else {
1474 		mtx_lock(&moea64_scratchpage_mtx);
1475 
1476 		moea64_set_scratchpage_pa(0, src);
1477 		moea64_set_scratchpage_pa(1, dst);
1478 
1479 		bcopy((void *)moea64_scratchpage_va[0],
1480 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1481 
1482 		mtx_unlock(&moea64_scratchpage_mtx);
1483 	}
1484 }
1485 
1486 static inline void
1487 moea64_copy_pages_dmap(vm_page_t *ma, vm_offset_t a_offset,
1488     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1489 {
1490 	void *a_cp, *b_cp;
1491 	vm_offset_t a_pg_offset, b_pg_offset;
1492 	int cnt;
1493 
1494 	while (xfersize > 0) {
1495 		a_pg_offset = a_offset & PAGE_MASK;
1496 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1497 		a_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1498 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])) +
1499 		    a_pg_offset;
1500 		b_pg_offset = b_offset & PAGE_MASK;
1501 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1502 		b_cp = (char *)(uintptr_t)PHYS_TO_DMAP(
1503 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])) +
1504 		    b_pg_offset;
1505 		bcopy(a_cp, b_cp, cnt);
1506 		a_offset += cnt;
1507 		b_offset += cnt;
1508 		xfersize -= cnt;
1509 	}
1510 }
1511 
1512 static inline void
1513 moea64_copy_pages_nodmap(vm_page_t *ma, vm_offset_t a_offset,
1514     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1515 {
1516 	void *a_cp, *b_cp;
1517 	vm_offset_t a_pg_offset, b_pg_offset;
1518 	int cnt;
1519 
1520 	mtx_lock(&moea64_scratchpage_mtx);
1521 	while (xfersize > 0) {
1522 		a_pg_offset = a_offset & PAGE_MASK;
1523 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1524 		moea64_set_scratchpage_pa(0,
1525 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1526 		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1527 		b_pg_offset = b_offset & PAGE_MASK;
1528 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1529 		moea64_set_scratchpage_pa(1,
1530 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1531 		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1532 		bcopy(a_cp, b_cp, cnt);
1533 		a_offset += cnt;
1534 		b_offset += cnt;
1535 		xfersize -= cnt;
1536 	}
1537 	mtx_unlock(&moea64_scratchpage_mtx);
1538 }
1539 
1540 void
1541 moea64_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
1542     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1543 {
1544 
1545 	if (hw_direct_map) {
1546 		moea64_copy_pages_dmap(ma, a_offset, mb, b_offset,
1547 		    xfersize);
1548 	} else {
1549 		moea64_copy_pages_nodmap(ma, a_offset, mb, b_offset,
1550 		    xfersize);
1551 	}
1552 }
1553 
1554 void
1555 moea64_zero_page_area(vm_page_t m, int off, int size)
1556 {
1557 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1558 
1559 	if (size + off > PAGE_SIZE)
1560 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1561 
1562 	if (hw_direct_map) {
1563 		bzero((caddr_t)(uintptr_t)PHYS_TO_DMAP(pa) + off, size);
1564 	} else {
1565 		mtx_lock(&moea64_scratchpage_mtx);
1566 		moea64_set_scratchpage_pa(0, pa);
1567 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1568 		mtx_unlock(&moea64_scratchpage_mtx);
1569 	}
1570 }
1571 
1572 /*
1573  * Zero a page of physical memory by temporarily mapping it
1574  */
1575 void
1576 moea64_zero_page(vm_page_t m)
1577 {
1578 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1579 	vm_offset_t va, off;
1580 
1581 	if (!hw_direct_map) {
1582 		mtx_lock(&moea64_scratchpage_mtx);
1583 
1584 		moea64_set_scratchpage_pa(0, pa);
1585 		va = moea64_scratchpage_va[0];
1586 	} else {
1587 		va = PHYS_TO_DMAP(pa);
1588 	}
1589 
1590 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1591 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1592 
1593 	if (!hw_direct_map)
1594 		mtx_unlock(&moea64_scratchpage_mtx);
1595 }
1596 
1597 vm_offset_t
1598 moea64_quick_enter_page(vm_page_t m)
1599 {
1600 	struct pvo_entry *pvo;
1601 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1602 
1603 	if (hw_direct_map)
1604 		return (PHYS_TO_DMAP(pa));
1605 
1606 	/*
1607  	 * MOEA64_PTE_REPLACE does some locking, so we can't just grab
1608 	 * a critical section and access the PCPU data like on i386.
1609 	 * Instead, pin the thread and grab the PCPU lock to prevent
1610 	 * a preempting thread from using the same PCPU data.
1611 	 */
1612 	sched_pin();
1613 
1614 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_NOTOWNED);
1615 	pvo = PCPU_GET(aim.qmap_pvo);
1616 
1617 	mtx_lock(PCPU_PTR(aim.qmap_lock));
1618 	pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) |
1619 	    (uint64_t)pa;
1620 	moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
1621 	isync();
1622 
1623 	return (PCPU_GET(qmap_addr));
1624 }
1625 
1626 void
1627 moea64_quick_remove_page(vm_offset_t addr)
1628 {
1629 	if (hw_direct_map)
1630 		return;
1631 
1632 	mtx_assert(PCPU_PTR(aim.qmap_lock), MA_OWNED);
1633 	KASSERT(PCPU_GET(qmap_addr) == addr,
1634 	    ("moea64_quick_remove_page: invalid address"));
1635 	mtx_unlock(PCPU_PTR(aim.qmap_lock));
1636 	sched_unpin();
1637 }
1638 
1639 boolean_t
1640 moea64_page_is_mapped(vm_page_t m)
1641 {
1642 	return (!LIST_EMPTY(&(m)->md.mdpg_pvoh));
1643 }
1644 
1645 /*
1646  * Map the given physical page at the specified virtual address in the
1647  * target pmap with the protection requested.  If specified the page
1648  * will be wired down.
1649  */
1650 
1651 int
1652 moea64_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
1653     vm_prot_t prot, u_int flags, int8_t psind)
1654 {
1655 	struct		pvo_entry *pvo, *oldpvo, *tpvo;
1656 	struct		pvo_head *pvo_head;
1657 	uint64_t	pte_lo;
1658 	int		error;
1659 	vm_paddr_t	pa;
1660 
1661 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1662 		if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1663 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1664 		else
1665 			VM_OBJECT_ASSERT_LOCKED(m->object);
1666 	}
1667 
1668 	if (psind > 0)
1669 		return (moea64_sp_enter(pmap, va, m, prot, flags, psind));
1670 
1671 	pvo = alloc_pvo_entry(0);
1672 	if (pvo == NULL)
1673 		return (KERN_RESOURCE_SHORTAGE);
1674 	pvo->pvo_pmap = NULL; /* to be filled in later */
1675 	pvo->pvo_pte.prot = prot;
1676 
1677 	pa = VM_PAGE_TO_PHYS(m);
1678 	pte_lo = moea64_calc_wimg(pa, pmap_page_get_memattr(m));
1679 	pvo->pvo_pte.pa = pa | pte_lo;
1680 
1681 	if ((flags & PMAP_ENTER_WIRED) != 0)
1682 		pvo->pvo_vaddr |= PVO_WIRED;
1683 
1684 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1685 		pvo_head = NULL;
1686 	} else {
1687 		pvo_head = &m->md.mdpg_pvoh;
1688 		pvo->pvo_vaddr |= PVO_MANAGED;
1689 	}
1690 
1691 	PV_LOCK(pa);
1692 	PMAP_LOCK(pmap);
1693 	if (pvo->pvo_pmap == NULL)
1694 		init_pvo_entry(pvo, pmap, va);
1695 
1696 	if (moea64_ps_enabled(pmap) &&
1697 	    (tpvo = moea64_pvo_find_va(pmap, va & ~HPT_SP_MASK)) != NULL &&
1698 	    PVO_IS_SP(tpvo)) {
1699 		/* Demote SP before entering a regular page */
1700 		CTR2(KTR_PMAP, "%s: demote before enter: va=%#jx",
1701 		    __func__, (uintmax_t)va);
1702 		moea64_sp_demote_aligned(tpvo);
1703 	}
1704 
1705 	if (prot & VM_PROT_WRITE)
1706 		if (pmap_bootstrapped &&
1707 		    (m->oflags & VPO_UNMANAGED) == 0)
1708 			vm_page_aflag_set(m, PGA_WRITEABLE);
1709 
1710 	error = moea64_pvo_enter(pvo, pvo_head, &oldpvo);
1711 	if (error == EEXIST) {
1712 		if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
1713 		    oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
1714 		    oldpvo->pvo_pte.prot == prot) {
1715 			/* Identical mapping already exists */
1716 			error = 0;
1717 
1718 			/* If not in page table, reinsert it */
1719 			if (moea64_pte_synch(oldpvo) < 0) {
1720 				STAT_MOEA64(moea64_pte_overflow--);
1721 				moea64_pte_insert(oldpvo);
1722 			}
1723 
1724 			/* Then just clean up and go home */
1725 			PMAP_UNLOCK(pmap);
1726 			PV_UNLOCK(pa);
1727 			free_pvo_entry(pvo);
1728 			pvo = NULL;
1729 			goto out;
1730 		} else {
1731 			/* Otherwise, need to kill it first */
1732 			KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
1733 			    "mapping does not match new mapping"));
1734 			moea64_pvo_remove_from_pmap(oldpvo);
1735 			moea64_pvo_enter(pvo, pvo_head, NULL);
1736 		}
1737 	}
1738 	PMAP_UNLOCK(pmap);
1739 	PV_UNLOCK(pa);
1740 
1741 	/* Free any dead pages */
1742 	if (error == EEXIST) {
1743 		moea64_pvo_remove_from_page(oldpvo);
1744 		free_pvo_entry(oldpvo);
1745 	}
1746 
1747 out:
1748 	/*
1749 	 * Flush the page from the instruction cache if this page is
1750 	 * mapped executable and cacheable.
1751 	 */
1752 	if (pmap != kernel_pmap && (m->a.flags & PGA_EXECUTABLE) == 0 &&
1753 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1754 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1755 		moea64_syncicache(pmap, va, pa, PAGE_SIZE);
1756 	}
1757 
1758 #if VM_NRESERVLEVEL > 0
1759 	/*
1760 	 * Try to promote pages.
1761 	 *
1762 	 * If the VA of the entered page is not aligned with its PA,
1763 	 * don't try page promotion as it is not possible.
1764 	 * This reduces the number of promotion failures dramatically.
1765 	 */
1766 	if (moea64_ps_enabled(pmap) && pmap != kernel_pmap && pvo != NULL &&
1767 	    (pvo->pvo_vaddr & PVO_MANAGED) != 0 &&
1768 	    (va & HPT_SP_MASK) == (pa & HPT_SP_MASK) &&
1769 	    (m->flags & PG_FICTITIOUS) == 0 &&
1770 	    vm_reserv_level_iffullpop(m) == 0)
1771 		moea64_sp_promote(pmap, va, m);
1772 #endif
1773 
1774 	return (KERN_SUCCESS);
1775 }
1776 
1777 static void
1778 moea64_syncicache(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1779     vm_size_t sz)
1780 {
1781 
1782 	/*
1783 	 * This is much trickier than on older systems because
1784 	 * we can't sync the icache on physical addresses directly
1785 	 * without a direct map. Instead we check a couple of cases
1786 	 * where the memory is already mapped in and, failing that,
1787 	 * use the same trick we use for page zeroing to create
1788 	 * a temporary mapping for this physical address.
1789 	 */
1790 
1791 	if (!pmap_bootstrapped) {
1792 		/*
1793 		 * If PMAP is not bootstrapped, we are likely to be
1794 		 * in real mode.
1795 		 */
1796 		__syncicache((void *)(uintptr_t)pa, sz);
1797 	} else if (pmap == kernel_pmap) {
1798 		__syncicache((void *)va, sz);
1799 	} else if (hw_direct_map) {
1800 		__syncicache((void *)(uintptr_t)PHYS_TO_DMAP(pa), sz);
1801 	} else {
1802 		/* Use the scratch page to set up a temp mapping */
1803 
1804 		mtx_lock(&moea64_scratchpage_mtx);
1805 
1806 		moea64_set_scratchpage_pa(1, pa & ~ADDR_POFF);
1807 		__syncicache((void *)(moea64_scratchpage_va[1] +
1808 		    (va & ADDR_POFF)), sz);
1809 
1810 		mtx_unlock(&moea64_scratchpage_mtx);
1811 	}
1812 }
1813 
1814 /*
1815  * Maps a sequence of resident pages belonging to the same object.
1816  * The sequence begins with the given page m_start.  This page is
1817  * mapped at the given virtual address start.  Each subsequent page is
1818  * mapped at a virtual address that is offset from start by the same
1819  * amount as the page is offset from m_start within the object.  The
1820  * last page in the sequence is the page with the largest offset from
1821  * m_start that can be mapped at a virtual address less than the given
1822  * virtual address end.  Not every virtual page between start and end
1823  * is mapped; only those for which a resident page exists with the
1824  * corresponding offset from m_start are mapped.
1825  */
1826 void
1827 moea64_enter_object(pmap_t pm, vm_offset_t start, vm_offset_t end,
1828     vm_page_t m_start, vm_prot_t prot)
1829 {
1830 	vm_page_t m;
1831 	vm_pindex_t diff, psize;
1832 	vm_offset_t va;
1833 	int8_t psind;
1834 
1835 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1836 
1837 	psize = atop(end - start);
1838 	m = m_start;
1839 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1840 		va = start + ptoa(diff);
1841 		if ((va & HPT_SP_MASK) == 0 && va + HPT_SP_SIZE <= end &&
1842 		    m->psind == 1 && moea64_ps_enabled(pm))
1843 			psind = 1;
1844 		else
1845 			psind = 0;
1846 		moea64_enter(pm, va, m, prot &
1847 		    (VM_PROT_READ | VM_PROT_EXECUTE),
1848 		    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, psind);
1849 		if (psind == 1)
1850 			m = &m[HPT_SP_SIZE / PAGE_SIZE - 1];
1851 		m = TAILQ_NEXT(m, listq);
1852 	}
1853 }
1854 
1855 void
1856 moea64_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m,
1857     vm_prot_t prot)
1858 {
1859 
1860 	moea64_enter(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1861 	    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0);
1862 }
1863 
1864 vm_paddr_t
1865 moea64_extract(pmap_t pm, vm_offset_t va)
1866 {
1867 	struct	pvo_entry *pvo;
1868 	vm_paddr_t pa;
1869 
1870 	PMAP_LOCK(pm);
1871 	pvo = moea64_pvo_find_va(pm, va);
1872 	if (pvo == NULL)
1873 		pa = 0;
1874 	else
1875 		pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo));
1876 	PMAP_UNLOCK(pm);
1877 
1878 	return (pa);
1879 }
1880 
1881 /*
1882  * Atomically extract and hold the physical page with the given
1883  * pmap and virtual address pair if that mapping permits the given
1884  * protection.
1885  */
1886 vm_page_t
1887 moea64_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1888 {
1889 	struct	pvo_entry *pvo;
1890 	vm_page_t m;
1891 
1892 	m = NULL;
1893 	PMAP_LOCK(pmap);
1894 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1895 	if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
1896 		m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
1897 		if (!vm_page_wire_mapped(m))
1898 			m = NULL;
1899 	}
1900 	PMAP_UNLOCK(pmap);
1901 	return (m);
1902 }
1903 
1904 static void *
1905 moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain,
1906     uint8_t *flags, int wait)
1907 {
1908 	struct pvo_entry *pvo;
1909         vm_offset_t va;
1910         vm_page_t m;
1911         int needed_lock;
1912 
1913 	/*
1914 	 * This entire routine is a horrible hack to avoid bothering kmem
1915 	 * for new KVA addresses. Because this can get called from inside
1916 	 * kmem allocation routines, calling kmem for a new address here
1917 	 * can lead to multiply locking non-recursive mutexes.
1918 	 */
1919 
1920 	*flags = UMA_SLAB_PRIV;
1921 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1922 
1923 	m = vm_page_alloc_domain(NULL, 0, domain,
1924 	    malloc2vm_flags(wait) | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
1925 	if (m == NULL)
1926 		return (NULL);
1927 
1928 	va = VM_PAGE_TO_PHYS(m);
1929 
1930 	pvo = alloc_pvo_entry(1 /* bootstrap */);
1931 
1932 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
1933 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
1934 
1935 	if (needed_lock)
1936 		PMAP_LOCK(kernel_pmap);
1937 
1938 	init_pvo_entry(pvo, kernel_pmap, va);
1939 	pvo->pvo_vaddr |= PVO_WIRED;
1940 
1941 	moea64_pvo_enter(pvo, NULL, NULL);
1942 
1943 	if (needed_lock)
1944 		PMAP_UNLOCK(kernel_pmap);
1945 
1946 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1947                 bzero((void *)va, PAGE_SIZE);
1948 
1949 	return (void *)va;
1950 }
1951 
1952 extern int elf32_nxstack;
1953 
1954 void
1955 moea64_init()
1956 {
1957 
1958 	CTR0(KTR_PMAP, "moea64_init");
1959 
1960 	moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1961 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1962 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1963 
1964 	/*
1965 	 * Are large page mappings enabled?
1966 	 *
1967 	 * While HPT superpages are not better tested, leave it disabled by
1968 	 * default.
1969 	 */
1970 	superpages_enabled = 0;
1971 	TUNABLE_INT_FETCH("vm.pmap.superpages_enabled", &superpages_enabled);
1972 	if (superpages_enabled) {
1973 		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1974 		    ("moea64_init: can't assign to pagesizes[1]"));
1975 
1976 		if (moea64_large_page_size == 0) {
1977 			printf("mmu_oea64: HW does not support large pages. "
1978 					"Disabling superpages...\n");
1979 			superpages_enabled = 0;
1980 		} else if (!moea64_has_lp_4k_16m) {
1981 			printf("mmu_oea64: "
1982 			    "HW does not support mixed 4KB/16MB page sizes. "
1983 			    "Disabling superpages...\n");
1984 			superpages_enabled = 0;
1985 		} else
1986 			pagesizes[1] = HPT_SP_SIZE;
1987 	}
1988 
1989 	if (!hw_direct_map) {
1990 		uma_zone_set_allocf(moea64_pvo_zone, moea64_uma_page_alloc);
1991 	}
1992 
1993 #ifdef COMPAT_FREEBSD32
1994 	elf32_nxstack = 1;
1995 #endif
1996 
1997 	moea64_initialized = TRUE;
1998 }
1999 
2000 boolean_t
2001 moea64_is_referenced(vm_page_t m)
2002 {
2003 
2004 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2005 	    ("moea64_is_referenced: page %p is not managed", m));
2006 
2007 	return (moea64_query_bit(m, LPTE_REF));
2008 }
2009 
2010 boolean_t
2011 moea64_is_modified(vm_page_t m)
2012 {
2013 
2014 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2015 	    ("moea64_is_modified: page %p is not managed", m));
2016 
2017 	/*
2018 	 * If the page is not busied then this check is racy.
2019 	 */
2020 	if (!pmap_page_is_write_mapped(m))
2021 		return (FALSE);
2022 
2023 	return (moea64_query_bit(m, LPTE_CHG));
2024 }
2025 
2026 boolean_t
2027 moea64_is_prefaultable(pmap_t pmap, vm_offset_t va)
2028 {
2029 	struct pvo_entry *pvo;
2030 	boolean_t rv = TRUE;
2031 
2032 	PMAP_LOCK(pmap);
2033 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
2034 	if (pvo != NULL)
2035 		rv = FALSE;
2036 	PMAP_UNLOCK(pmap);
2037 	return (rv);
2038 }
2039 
2040 void
2041 moea64_clear_modify(vm_page_t m)
2042 {
2043 
2044 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2045 	    ("moea64_clear_modify: page %p is not managed", m));
2046 	vm_page_assert_busied(m);
2047 
2048 	if (!pmap_page_is_write_mapped(m))
2049 		return;
2050 	moea64_clear_bit(m, LPTE_CHG);
2051 }
2052 
2053 /*
2054  * Clear the write and modified bits in each of the given page's mappings.
2055  */
2056 void
2057 moea64_remove_write(vm_page_t m)
2058 {
2059 	struct	pvo_entry *pvo;
2060 	int64_t	refchg, ret;
2061 	pmap_t	pmap;
2062 
2063 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2064 	    ("moea64_remove_write: page %p is not managed", m));
2065 	vm_page_assert_busied(m);
2066 
2067 	if (!pmap_page_is_write_mapped(m))
2068 		return;
2069 
2070 	powerpc_sync();
2071 	PV_PAGE_LOCK(m);
2072 	refchg = 0;
2073 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2074 		pmap = pvo->pvo_pmap;
2075 		PMAP_LOCK(pmap);
2076 		if (!(pvo->pvo_vaddr & PVO_DEAD) &&
2077 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2078 			if (PVO_IS_SP(pvo)) {
2079 				CTR1(KTR_PMAP, "%s: demote before remwr",
2080 				    __func__);
2081 				moea64_sp_demote(pvo);
2082 			}
2083 			pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
2084 			ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
2085 			if (ret < 0)
2086 				ret = LPTE_CHG;
2087 			refchg |= ret;
2088 			if (pvo->pvo_pmap == kernel_pmap)
2089 				isync();
2090 		}
2091 		PMAP_UNLOCK(pmap);
2092 	}
2093 	if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
2094 		vm_page_dirty(m);
2095 	vm_page_aflag_clear(m, PGA_WRITEABLE);
2096 	PV_PAGE_UNLOCK(m);
2097 }
2098 
2099 /*
2100  *	moea64_ts_referenced:
2101  *
2102  *	Return a count of reference bits for a page, clearing those bits.
2103  *	It is not necessary for every reference bit to be cleared, but it
2104  *	is necessary that 0 only be returned when there are truly no
2105  *	reference bits set.
2106  *
2107  *	XXX: The exact number of bits to check and clear is a matter that
2108  *	should be tested and standardized at some point in the future for
2109  *	optimal aging of shared pages.
2110  */
2111 int
2112 moea64_ts_referenced(vm_page_t m)
2113 {
2114 
2115 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2116 	    ("moea64_ts_referenced: page %p is not managed", m));
2117 	return (moea64_clear_bit(m, LPTE_REF));
2118 }
2119 
2120 /*
2121  * Modify the WIMG settings of all mappings for a page.
2122  */
2123 void
2124 moea64_page_set_memattr(vm_page_t m, vm_memattr_t ma)
2125 {
2126 	struct	pvo_entry *pvo;
2127 	int64_t	refchg;
2128 	pmap_t	pmap;
2129 	uint64_t lo;
2130 
2131 	CTR3(KTR_PMAP, "%s: pa=%#jx, ma=%#x",
2132 	    __func__, (uintmax_t)VM_PAGE_TO_PHYS(m), ma);
2133 
2134 	if ((m->oflags & VPO_UNMANAGED) != 0) {
2135 		m->md.mdpg_cache_attrs = ma;
2136 		return;
2137 	}
2138 
2139 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
2140 
2141 	PV_PAGE_LOCK(m);
2142 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2143 		pmap = pvo->pvo_pmap;
2144 		PMAP_LOCK(pmap);
2145 		if (!(pvo->pvo_vaddr & PVO_DEAD)) {
2146 			if (PVO_IS_SP(pvo)) {
2147 				CTR1(KTR_PMAP,
2148 				    "%s: demote before set_memattr", __func__);
2149 				moea64_sp_demote(pvo);
2150 			}
2151 			pvo->pvo_pte.pa &= ~LPTE_WIMG;
2152 			pvo->pvo_pte.pa |= lo;
2153 			refchg = moea64_pte_replace(pvo, MOEA64_PTE_INVALIDATE);
2154 			if (refchg < 0)
2155 				refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
2156 				    LPTE_CHG : 0;
2157 			if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2158 			    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2159 				refchg |=
2160 				    atomic_readandclear_32(&m->md.mdpg_attrs);
2161 				if (refchg & LPTE_CHG)
2162 					vm_page_dirty(m);
2163 				if (refchg & LPTE_REF)
2164 					vm_page_aflag_set(m, PGA_REFERENCED);
2165 			}
2166 			if (pvo->pvo_pmap == kernel_pmap)
2167 				isync();
2168 		}
2169 		PMAP_UNLOCK(pmap);
2170 	}
2171 	m->md.mdpg_cache_attrs = ma;
2172 	PV_PAGE_UNLOCK(m);
2173 }
2174 
2175 /*
2176  * Map a wired page into kernel virtual address space.
2177  */
2178 void
2179 moea64_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
2180 {
2181 	int		error;
2182 	struct pvo_entry *pvo, *oldpvo;
2183 
2184 	do {
2185 		pvo = alloc_pvo_entry(0);
2186 		if (pvo == NULL)
2187 			vm_wait(NULL);
2188 	} while (pvo == NULL);
2189 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
2190 	pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
2191 	pvo->pvo_vaddr |= PVO_WIRED;
2192 
2193 	PMAP_LOCK(kernel_pmap);
2194 	oldpvo = moea64_pvo_find_va(kernel_pmap, va);
2195 	if (oldpvo != NULL)
2196 		moea64_pvo_remove_from_pmap(oldpvo);
2197 	init_pvo_entry(pvo, kernel_pmap, va);
2198 	error = moea64_pvo_enter(pvo, NULL, NULL);
2199 	PMAP_UNLOCK(kernel_pmap);
2200 
2201 	/* Free any dead pages */
2202 	if (oldpvo != NULL) {
2203 		moea64_pvo_remove_from_page(oldpvo);
2204 		free_pvo_entry(oldpvo);
2205 	}
2206 
2207 	if (error != 0)
2208 		panic("moea64_kenter: failed to enter va %#zx pa %#jx: %d", va,
2209 		    (uintmax_t)pa, error);
2210 }
2211 
2212 void
2213 moea64_kenter(vm_offset_t va, vm_paddr_t pa)
2214 {
2215 
2216 	moea64_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
2217 }
2218 
2219 /*
2220  * Extract the physical page address associated with the given kernel virtual
2221  * address.
2222  */
2223 vm_paddr_t
2224 moea64_kextract(vm_offset_t va)
2225 {
2226 	struct		pvo_entry *pvo;
2227 	vm_paddr_t pa;
2228 
2229 	/*
2230 	 * Shortcut the direct-mapped case when applicable.  We never put
2231 	 * anything but 1:1 (or 62-bit aliased) mappings below
2232 	 * VM_MIN_KERNEL_ADDRESS.
2233 	 */
2234 	if (va < VM_MIN_KERNEL_ADDRESS)
2235 		return (va & ~DMAP_BASE_ADDRESS);
2236 
2237 	PMAP_LOCK(kernel_pmap);
2238 	pvo = moea64_pvo_find_va(kernel_pmap, va);
2239 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
2240 	    va));
2241 	pa = PVO_PADDR(pvo) | (va - PVO_VADDR(pvo));
2242 	PMAP_UNLOCK(kernel_pmap);
2243 	return (pa);
2244 }
2245 
2246 /*
2247  * Remove a wired page from kernel virtual address space.
2248  */
2249 void
2250 moea64_kremove(vm_offset_t va)
2251 {
2252 	moea64_remove(kernel_pmap, va, va + PAGE_SIZE);
2253 }
2254 
2255 /*
2256  * Provide a kernel pointer corresponding to a given userland pointer.
2257  * The returned pointer is valid until the next time this function is
2258  * called in this thread. This is used internally in copyin/copyout.
2259  */
2260 static int
2261 moea64_map_user_ptr(pmap_t pm, volatile const void *uaddr,
2262     void **kaddr, size_t ulen, size_t *klen)
2263 {
2264 	size_t l;
2265 #ifdef __powerpc64__
2266 	struct slb *slb;
2267 #endif
2268 	register_t slbv;
2269 
2270 	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
2271 	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
2272 	if (l > ulen)
2273 		l = ulen;
2274 	if (klen)
2275 		*klen = l;
2276 	else if (l != ulen)
2277 		return (EFAULT);
2278 
2279 #ifdef __powerpc64__
2280 	/* Try lockless look-up first */
2281 	slb = user_va_to_slb_entry(pm, (vm_offset_t)uaddr);
2282 
2283 	if (slb == NULL) {
2284 		/* If it isn't there, we need to pre-fault the VSID */
2285 		PMAP_LOCK(pm);
2286 		slbv = va_to_vsid(pm, (vm_offset_t)uaddr) << SLBV_VSID_SHIFT;
2287 		PMAP_UNLOCK(pm);
2288 	} else {
2289 		slbv = slb->slbv;
2290 	}
2291 
2292 	/* Mark segment no-execute */
2293 	slbv |= SLBV_N;
2294 #else
2295 	slbv = va_to_vsid(pm, (vm_offset_t)uaddr);
2296 
2297 	/* Mark segment no-execute */
2298 	slbv |= SR_N;
2299 #endif
2300 
2301 	/* If we have already set this VSID, we can just return */
2302 	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == slbv)
2303 		return (0);
2304 
2305 	__asm __volatile("isync");
2306 	curthread->td_pcb->pcb_cpu.aim.usr_segm =
2307 	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
2308 	curthread->td_pcb->pcb_cpu.aim.usr_vsid = slbv;
2309 #ifdef __powerpc64__
2310 	__asm __volatile ("slbie %0; slbmte %1, %2; isync" ::
2311 	    "r"(USER_ADDR), "r"(slbv), "r"(USER_SLB_SLBE));
2312 #else
2313 	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(slbv));
2314 #endif
2315 
2316 	return (0);
2317 }
2318 
2319 /*
2320  * Figure out where a given kernel pointer (usually in a fault) points
2321  * to from the VM's perspective, potentially remapping into userland's
2322  * address space.
2323  */
2324 static int
2325 moea64_decode_kernel_ptr(vm_offset_t addr, int *is_user,
2326     vm_offset_t *decoded_addr)
2327 {
2328 	vm_offset_t user_sr;
2329 
2330 	if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
2331 		user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
2332 		addr &= ADDR_PIDX | ADDR_POFF;
2333 		addr |= user_sr << ADDR_SR_SHFT;
2334 		*decoded_addr = addr;
2335 		*is_user = 1;
2336 	} else {
2337 		*decoded_addr = addr;
2338 		*is_user = 0;
2339 	}
2340 
2341 	return (0);
2342 }
2343 
2344 /*
2345  * Map a range of physical addresses into kernel virtual address space.
2346  *
2347  * The value passed in *virt is a suggested virtual address for the mapping.
2348  * Architectures which can support a direct-mapped physical to virtual region
2349  * can return the appropriate address within that region, leaving '*virt'
2350  * unchanged.  Other architectures should map the pages starting at '*virt' and
2351  * update '*virt' with the first usable address after the mapped region.
2352  */
2353 vm_offset_t
2354 moea64_map(vm_offset_t *virt, vm_paddr_t pa_start,
2355     vm_paddr_t pa_end, int prot)
2356 {
2357 	vm_offset_t	sva, va;
2358 
2359 	if (hw_direct_map) {
2360 		/*
2361 		 * Check if every page in the region is covered by the direct
2362 		 * map. The direct map covers all of physical memory. Use
2363 		 * moea64_calc_wimg() as a shortcut to see if the page is in
2364 		 * physical memory as a way to see if the direct map covers it.
2365 		 */
2366 		for (va = pa_start; va < pa_end; va += PAGE_SIZE)
2367 			if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
2368 				break;
2369 		if (va == pa_end)
2370 			return (PHYS_TO_DMAP(pa_start));
2371 	}
2372 	sva = *virt;
2373 	va = sva;
2374 	/* XXX respect prot argument */
2375 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
2376 		moea64_kenter(va, pa_start);
2377 	*virt = va;
2378 
2379 	return (sva);
2380 }
2381 
2382 /*
2383  * Returns true if the pmap's pv is one of the first
2384  * 16 pvs linked to from this page.  This count may
2385  * be changed upwards or downwards in the future; it
2386  * is only necessary that true be returned for a small
2387  * subset of pmaps for proper page aging.
2388  */
2389 boolean_t
2390 moea64_page_exists_quick(pmap_t pmap, vm_page_t m)
2391 {
2392         int loops;
2393 	struct pvo_entry *pvo;
2394 	boolean_t rv;
2395 
2396 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
2397 	    ("moea64_page_exists_quick: page %p is not managed", m));
2398 	loops = 0;
2399 	rv = FALSE;
2400 	PV_PAGE_LOCK(m);
2401 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2402 		if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
2403 			rv = TRUE;
2404 			break;
2405 		}
2406 		if (++loops >= 16)
2407 			break;
2408 	}
2409 	PV_PAGE_UNLOCK(m);
2410 	return (rv);
2411 }
2412 
2413 void
2414 moea64_page_init(vm_page_t m)
2415 {
2416 
2417 	m->md.mdpg_attrs = 0;
2418 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
2419 	LIST_INIT(&m->md.mdpg_pvoh);
2420 }
2421 
2422 /*
2423  * Return the number of managed mappings to the given physical page
2424  * that are wired.
2425  */
2426 int
2427 moea64_page_wired_mappings(vm_page_t m)
2428 {
2429 	struct pvo_entry *pvo;
2430 	int count;
2431 
2432 	count = 0;
2433 	if ((m->oflags & VPO_UNMANAGED) != 0)
2434 		return (count);
2435 	PV_PAGE_LOCK(m);
2436 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
2437 		if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
2438 			count++;
2439 	PV_PAGE_UNLOCK(m);
2440 	return (count);
2441 }
2442 
2443 static uintptr_t	moea64_vsidcontext;
2444 
2445 uintptr_t
2446 moea64_get_unique_vsid(void) {
2447 	u_int entropy;
2448 	register_t hash;
2449 	uint32_t mask;
2450 	int i;
2451 
2452 	entropy = 0;
2453 	__asm __volatile("mftb %0" : "=r"(entropy));
2454 
2455 	mtx_lock(&moea64_slb_mutex);
2456 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
2457 		u_int	n;
2458 
2459 		/*
2460 		 * Create a new value by mutiplying by a prime and adding in
2461 		 * entropy from the timebase register.  This is to make the
2462 		 * VSID more random so that the PT hash function collides
2463 		 * less often.  (Note that the prime casues gcc to do shifts
2464 		 * instead of a multiply.)
2465 		 */
2466 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
2467 		hash = moea64_vsidcontext & (NVSIDS - 1);
2468 		if (hash == 0)		/* 0 is special, avoid it */
2469 			continue;
2470 		n = hash >> 5;
2471 		mask = 1 << (hash & (VSID_NBPW - 1));
2472 		hash = (moea64_vsidcontext & VSID_HASHMASK);
2473 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
2474 			/* anything free in this bucket? */
2475 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
2476 				entropy = (moea64_vsidcontext >> 20);
2477 				continue;
2478 			}
2479 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
2480 			mask = 1 << i;
2481 			hash &= rounddown2(VSID_HASHMASK, VSID_NBPW);
2482 			hash |= i;
2483 		}
2484 		if (hash == VSID_VRMA)	/* also special, avoid this too */
2485 			continue;
2486 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
2487 		    ("Allocating in-use VSID %#zx\n", hash));
2488 		moea64_vsid_bitmap[n] |= mask;
2489 		mtx_unlock(&moea64_slb_mutex);
2490 		return (hash);
2491 	}
2492 
2493 	mtx_unlock(&moea64_slb_mutex);
2494 	panic("%s: out of segments",__func__);
2495 }
2496 
2497 #ifdef __powerpc64__
2498 int
2499 moea64_pinit(pmap_t pmap)
2500 {
2501 
2502 	RB_INIT(&pmap->pmap_pvo);
2503 
2504 	pmap->pm_slb_tree_root = slb_alloc_tree();
2505 	pmap->pm_slb = slb_alloc_user_cache();
2506 	pmap->pm_slb_len = 0;
2507 
2508 	return (1);
2509 }
2510 #else
2511 int
2512 moea64_pinit(pmap_t pmap)
2513 {
2514 	int	i;
2515 	uint32_t hash;
2516 
2517 	RB_INIT(&pmap->pmap_pvo);
2518 
2519 	if (pmap_bootstrapped)
2520 		pmap->pmap_phys = (pmap_t)moea64_kextract((vm_offset_t)pmap);
2521 	else
2522 		pmap->pmap_phys = pmap;
2523 
2524 	/*
2525 	 * Allocate some segment registers for this pmap.
2526 	 */
2527 	hash = moea64_get_unique_vsid();
2528 
2529 	for (i = 0; i < 16; i++)
2530 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
2531 
2532 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
2533 
2534 	return (1);
2535 }
2536 #endif
2537 
2538 /*
2539  * Initialize the pmap associated with process 0.
2540  */
2541 void
2542 moea64_pinit0(pmap_t pm)
2543 {
2544 
2545 	PMAP_LOCK_INIT(pm);
2546 	moea64_pinit(pm);
2547 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2548 }
2549 
2550 /*
2551  * Set the physical protection on the specified range of this map as requested.
2552  */
2553 static void
2554 moea64_pvo_protect( pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
2555 {
2556 	struct vm_page *pg;
2557 	vm_prot_t oldprot;
2558 	int32_t refchg;
2559 
2560 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2561 
2562 	/*
2563 	 * Change the protection of the page.
2564 	 */
2565 	oldprot = pvo->pvo_pte.prot;
2566 	pvo->pvo_pte.prot = prot;
2567 	pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
2568 
2569 	/*
2570 	 * If the PVO is in the page table, update mapping
2571 	 */
2572 	refchg = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
2573 	if (refchg < 0)
2574 		refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
2575 
2576 	if (pm != kernel_pmap && pg != NULL &&
2577 	    (pg->a.flags & PGA_EXECUTABLE) == 0 &&
2578 	    (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2579 		if ((pg->oflags & VPO_UNMANAGED) == 0)
2580 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
2581 		moea64_syncicache(pm, PVO_VADDR(pvo),
2582 		    PVO_PADDR(pvo), PAGE_SIZE);
2583 	}
2584 
2585 	/*
2586 	 * Update vm about the REF/CHG bits if the page is managed and we have
2587 	 * removed write access.
2588 	 */
2589 	if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
2590 	    (oldprot & VM_PROT_WRITE)) {
2591 		refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2592 		if (refchg & LPTE_CHG)
2593 			vm_page_dirty(pg);
2594 		if (refchg & LPTE_REF)
2595 			vm_page_aflag_set(pg, PGA_REFERENCED);
2596 	}
2597 }
2598 
2599 void
2600 moea64_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2601     vm_prot_t prot)
2602 {
2603 	struct	pvo_entry *pvo, key;
2604 
2605 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2606 	    sva, eva, prot);
2607 
2608 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2609 	    ("moea64_protect: non current pmap"));
2610 
2611 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2612 		moea64_remove(pm, sva, eva);
2613 		return;
2614 	}
2615 
2616 	PMAP_LOCK(pm);
2617 	key.pvo_vaddr = sva;
2618 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2619 	    pvo != NULL && PVO_VADDR(pvo) < eva;
2620 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
2621 		if (PVO_IS_SP(pvo)) {
2622 			if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
2623 				pvo = moea64_sp_protect(pvo, prot);
2624 				continue;
2625 			} else {
2626 				CTR1(KTR_PMAP, "%s: demote before protect",
2627 				    __func__);
2628 				moea64_sp_demote(pvo);
2629 			}
2630 		}
2631 		moea64_pvo_protect(pm, pvo, prot);
2632 	}
2633 	PMAP_UNLOCK(pm);
2634 }
2635 
2636 /*
2637  * Map a list of wired pages into kernel virtual address space.  This is
2638  * intended for temporary mappings which do not need page modification or
2639  * references recorded.  Existing mappings in the region are overwritten.
2640  */
2641 void
2642 moea64_qenter(vm_offset_t va, vm_page_t *m, int count)
2643 {
2644 	while (count-- > 0) {
2645 		moea64_kenter(va, VM_PAGE_TO_PHYS(*m));
2646 		va += PAGE_SIZE;
2647 		m++;
2648 	}
2649 }
2650 
2651 /*
2652  * Remove page mappings from kernel virtual address space.  Intended for
2653  * temporary mappings entered by moea64_qenter.
2654  */
2655 void
2656 moea64_qremove(vm_offset_t va, int count)
2657 {
2658 	while (count-- > 0) {
2659 		moea64_kremove(va);
2660 		va += PAGE_SIZE;
2661 	}
2662 }
2663 
2664 void
2665 moea64_release_vsid(uint64_t vsid)
2666 {
2667 	int idx, mask;
2668 
2669 	mtx_lock(&moea64_slb_mutex);
2670 	idx = vsid & (NVSIDS-1);
2671 	mask = 1 << (idx % VSID_NBPW);
2672 	idx /= VSID_NBPW;
2673 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2674 	    ("Freeing unallocated VSID %#jx", vsid));
2675 	moea64_vsid_bitmap[idx] &= ~mask;
2676 	mtx_unlock(&moea64_slb_mutex);
2677 }
2678 
2679 void
2680 moea64_release(pmap_t pmap)
2681 {
2682 
2683 	/*
2684 	 * Free segment registers' VSIDs
2685 	 */
2686     #ifdef __powerpc64__
2687 	slb_free_tree(pmap);
2688 	slb_free_user_cache(pmap->pm_slb);
2689     #else
2690 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2691 
2692 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2693     #endif
2694 }
2695 
2696 /*
2697  * Remove all pages mapped by the specified pmap
2698  */
2699 void
2700 moea64_remove_pages(pmap_t pm)
2701 {
2702 	struct pvo_entry *pvo, *tpvo;
2703 	struct pvo_dlist tofree;
2704 
2705 	SLIST_INIT(&tofree);
2706 
2707 	PMAP_LOCK(pm);
2708 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2709 		if (pvo->pvo_vaddr & PVO_WIRED)
2710 			continue;
2711 
2712 		/*
2713 		 * For locking reasons, remove this from the page table and
2714 		 * pmap, but save delinking from the vm_page for a second
2715 		 * pass
2716 		 */
2717 		moea64_pvo_remove_from_pmap(pvo);
2718 		SLIST_INSERT_HEAD(&tofree, pvo, pvo_dlink);
2719 	}
2720 	PMAP_UNLOCK(pm);
2721 
2722 	while (!SLIST_EMPTY(&tofree)) {
2723 		pvo = SLIST_FIRST(&tofree);
2724 		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2725 		moea64_pvo_remove_from_page(pvo);
2726 		free_pvo_entry(pvo);
2727 	}
2728 }
2729 
2730 static void
2731 moea64_remove_locked(pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2732     struct pvo_dlist *tofree)
2733 {
2734 	struct pvo_entry *pvo, *tpvo, key;
2735 
2736 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2737 
2738 	key.pvo_vaddr = sva;
2739 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2740 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2741 		if (PVO_IS_SP(pvo)) {
2742 			if (moea64_sp_pvo_in_range(pvo, sva, eva)) {
2743 				tpvo = moea64_sp_remove(pvo, tofree);
2744 				continue;
2745 			} else {
2746 				CTR1(KTR_PMAP, "%s: demote before remove",
2747 				    __func__);
2748 				moea64_sp_demote(pvo);
2749 			}
2750 		}
2751 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2752 
2753 		/*
2754 		 * For locking reasons, remove this from the page table and
2755 		 * pmap, but save delinking from the vm_page for a second
2756 		 * pass
2757 		 */
2758 		moea64_pvo_remove_from_pmap(pvo);
2759 		SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink);
2760 	}
2761 }
2762 
2763 /*
2764  * Remove the given range of addresses from the specified map.
2765  */
2766 void
2767 moea64_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2768 {
2769 	struct pvo_entry *pvo;
2770 	struct pvo_dlist tofree;
2771 
2772 	/*
2773 	 * Perform an unsynchronized read.  This is, however, safe.
2774 	 */
2775 	if (pm->pm_stats.resident_count == 0)
2776 		return;
2777 
2778 	SLIST_INIT(&tofree);
2779 	PMAP_LOCK(pm);
2780 	moea64_remove_locked(pm, sva, eva, &tofree);
2781 	PMAP_UNLOCK(pm);
2782 
2783 	while (!SLIST_EMPTY(&tofree)) {
2784 		pvo = SLIST_FIRST(&tofree);
2785 		SLIST_REMOVE_HEAD(&tofree, pvo_dlink);
2786 		moea64_pvo_remove_from_page(pvo);
2787 		free_pvo_entry(pvo);
2788 	}
2789 }
2790 
2791 /*
2792  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2793  * will reflect changes in pte's back to the vm_page.
2794  */
2795 void
2796 moea64_remove_all(vm_page_t m)
2797 {
2798 	struct	pvo_entry *pvo, *next_pvo;
2799 	struct	pvo_head freequeue;
2800 	int	wasdead;
2801 	pmap_t	pmap;
2802 
2803 	LIST_INIT(&freequeue);
2804 
2805 	PV_PAGE_LOCK(m);
2806 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2807 		pmap = pvo->pvo_pmap;
2808 		PMAP_LOCK(pmap);
2809 		wasdead = (pvo->pvo_vaddr & PVO_DEAD);
2810 		if (!wasdead) {
2811 			if (PVO_IS_SP(pvo)) {
2812 				CTR1(KTR_PMAP, "%s: demote before remove_all",
2813 				    __func__);
2814 				moea64_sp_demote(pvo);
2815 			}
2816 			moea64_pvo_remove_from_pmap(pvo);
2817 		}
2818 		moea64_pvo_remove_from_page_locked(pvo, m);
2819 		if (!wasdead)
2820 			LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
2821 		PMAP_UNLOCK(pmap);
2822 
2823 	}
2824 	KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
2825 	KASSERT((m->a.flags & PGA_WRITEABLE) == 0, ("Page still writable"));
2826 	PV_PAGE_UNLOCK(m);
2827 
2828 	/* Clean up UMA allocations */
2829 	LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
2830 		free_pvo_entry(pvo);
2831 }
2832 
2833 /*
2834  * Allocate a physical page of memory directly from the phys_avail map.
2835  * Can only be called from moea64_bootstrap before avail start and end are
2836  * calculated.
2837  */
2838 vm_offset_t
2839 moea64_bootstrap_alloc(vm_size_t size, vm_size_t align)
2840 {
2841 	vm_offset_t	s, e;
2842 	int		i, j;
2843 
2844 	size = round_page(size);
2845 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2846 		if (align != 0)
2847 			s = roundup2(phys_avail[i], align);
2848 		else
2849 			s = phys_avail[i];
2850 		e = s + size;
2851 
2852 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2853 			continue;
2854 
2855 		if (s + size > platform_real_maxaddr())
2856 			continue;
2857 
2858 		if (s == phys_avail[i]) {
2859 			phys_avail[i] += size;
2860 		} else if (e == phys_avail[i + 1]) {
2861 			phys_avail[i + 1] -= size;
2862 		} else {
2863 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2864 				phys_avail[j] = phys_avail[j - 2];
2865 				phys_avail[j + 1] = phys_avail[j - 1];
2866 			}
2867 
2868 			phys_avail[i + 3] = phys_avail[i + 1];
2869 			phys_avail[i + 1] = s;
2870 			phys_avail[i + 2] = e;
2871 			phys_avail_count++;
2872 		}
2873 
2874 		return (s);
2875 	}
2876 	panic("moea64_bootstrap_alloc: could not allocate memory");
2877 }
2878 
2879 static int
2880 moea64_pvo_enter(struct pvo_entry *pvo, struct pvo_head *pvo_head,
2881     struct pvo_entry **oldpvop)
2882 {
2883 	struct pvo_entry *old_pvo;
2884 	int err;
2885 
2886 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2887 
2888 	STAT_MOEA64(moea64_pvo_enter_calls++);
2889 
2890 	/*
2891 	 * Add to pmap list
2892 	 */
2893 	old_pvo = RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2894 
2895 	if (old_pvo != NULL) {
2896 		if (oldpvop != NULL)
2897 			*oldpvop = old_pvo;
2898 		return (EEXIST);
2899 	}
2900 
2901 	if (pvo_head != NULL) {
2902 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2903 	}
2904 
2905 	if (pvo->pvo_vaddr & PVO_WIRED)
2906 		pvo->pvo_pmap->pm_stats.wired_count++;
2907 	pvo->pvo_pmap->pm_stats.resident_count++;
2908 
2909 	/*
2910 	 * Insert it into the hardware page table
2911 	 */
2912 	err = moea64_pte_insert(pvo);
2913 	if (err != 0) {
2914 		panic("moea64_pvo_enter: overflow");
2915 	}
2916 
2917 	STAT_MOEA64(moea64_pvo_entries++);
2918 
2919 	if (pvo->pvo_pmap == kernel_pmap)
2920 		isync();
2921 
2922 #ifdef __powerpc64__
2923 	/*
2924 	 * Make sure all our bootstrap mappings are in the SLB as soon
2925 	 * as virtual memory is switched on.
2926 	 */
2927 	if (!pmap_bootstrapped)
2928 		moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
2929 		    pvo->pvo_vaddr & PVO_LARGE);
2930 #endif
2931 
2932 	return (0);
2933 }
2934 
2935 static void
2936 moea64_pvo_remove_from_pmap(struct pvo_entry *pvo)
2937 {
2938 	struct	vm_page *pg;
2939 	int32_t refchg;
2940 
2941 	KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
2942 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2943 	KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
2944 
2945 	/*
2946 	 * If there is an active pte entry, we need to deactivate it
2947 	 */
2948 	refchg = moea64_pte_unset(pvo);
2949 	if (refchg < 0) {
2950 		/*
2951 		 * If it was evicted from the page table, be pessimistic and
2952 		 * dirty the page.
2953 		 */
2954 		if (pvo->pvo_pte.prot & VM_PROT_WRITE)
2955 			refchg = LPTE_CHG;
2956 		else
2957 			refchg = 0;
2958 	}
2959 
2960 	/*
2961 	 * Update our statistics.
2962 	 */
2963 	pvo->pvo_pmap->pm_stats.resident_count--;
2964 	if (pvo->pvo_vaddr & PVO_WIRED)
2965 		pvo->pvo_pmap->pm_stats.wired_count--;
2966 
2967 	/*
2968 	 * Remove this PVO from the pmap list.
2969 	 */
2970 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2971 
2972 	/*
2973 	 * Mark this for the next sweep
2974 	 */
2975 	pvo->pvo_vaddr |= PVO_DEAD;
2976 
2977 	/* Send RC bits to VM */
2978 	if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2979 	    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2980 		pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
2981 		if (pg != NULL) {
2982 			refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2983 			if (refchg & LPTE_CHG)
2984 				vm_page_dirty(pg);
2985 			if (refchg & LPTE_REF)
2986 				vm_page_aflag_set(pg, PGA_REFERENCED);
2987 		}
2988 	}
2989 }
2990 
2991 static inline void
2992 moea64_pvo_remove_from_page_locked(struct pvo_entry *pvo,
2993     vm_page_t m)
2994 {
2995 
2996 	KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
2997 
2998 	/* Use NULL pmaps as a sentinel for races in page deletion */
2999 	if (pvo->pvo_pmap == NULL)
3000 		return;
3001 	pvo->pvo_pmap = NULL;
3002 
3003 	/*
3004 	 * Update vm about page writeability/executability if managed
3005 	 */
3006 	PV_LOCKASSERT(PVO_PADDR(pvo));
3007 	if (pvo->pvo_vaddr & PVO_MANAGED) {
3008 		if (m != NULL) {
3009 			LIST_REMOVE(pvo, pvo_vlink);
3010 			if (LIST_EMPTY(vm_page_to_pvoh(m)))
3011 				vm_page_aflag_clear(m,
3012 				    PGA_WRITEABLE | PGA_EXECUTABLE);
3013 		}
3014 	}
3015 
3016 	STAT_MOEA64(moea64_pvo_entries--);
3017 	STAT_MOEA64(moea64_pvo_remove_calls++);
3018 }
3019 
3020 static void
3021 moea64_pvo_remove_from_page(struct pvo_entry *pvo)
3022 {
3023 	vm_page_t pg = NULL;
3024 
3025 	if (pvo->pvo_vaddr & PVO_MANAGED)
3026 		pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
3027 
3028 	PV_LOCK(PVO_PADDR(pvo));
3029 	moea64_pvo_remove_from_page_locked(pvo, pg);
3030 	PV_UNLOCK(PVO_PADDR(pvo));
3031 }
3032 
3033 static struct pvo_entry *
3034 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
3035 {
3036 	struct pvo_entry key;
3037 
3038 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
3039 
3040 	key.pvo_vaddr = va & ~ADDR_POFF;
3041 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
3042 }
3043 
3044 static boolean_t
3045 moea64_query_bit(vm_page_t m, uint64_t ptebit)
3046 {
3047 	struct	pvo_entry *pvo;
3048 	int64_t ret;
3049 	boolean_t rv;
3050 	vm_page_t sp;
3051 
3052 	/*
3053 	 * See if this bit is stored in the page already.
3054 	 *
3055 	 * For superpages, the bit is stored in the first vm page.
3056 	 */
3057 	if ((m->md.mdpg_attrs & ptebit) != 0 ||
3058 	    ((sp = PHYS_TO_VM_PAGE(VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK)) != NULL &&
3059 	     (sp->md.mdpg_attrs & (ptebit | MDPG_ATTR_SP)) ==
3060 	     (ptebit | MDPG_ATTR_SP)))
3061 		return (TRUE);
3062 
3063 	/*
3064 	 * Examine each PTE.  Sync so that any pending REF/CHG bits are
3065 	 * flushed to the PTEs.
3066 	 */
3067 	rv = FALSE;
3068 	powerpc_sync();
3069 	PV_PAGE_LOCK(m);
3070 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
3071 		if (PVO_IS_SP(pvo)) {
3072 			ret = moea64_sp_query(pvo, ptebit);
3073 			/*
3074 			 * If SP was not demoted, check its REF/CHG bits here.
3075 			 */
3076 			if (ret != -1) {
3077 				if ((ret & ptebit) != 0) {
3078 					rv = TRUE;
3079 					break;
3080 				}
3081 				continue;
3082 			}
3083 			/* else, fallthrough */
3084 		}
3085 
3086 		ret = 0;
3087 
3088 		/*
3089 		 * See if this pvo has a valid PTE.  if so, fetch the
3090 		 * REF/CHG bits from the valid PTE.  If the appropriate
3091 		 * ptebit is set, return success.
3092 		 */
3093 		PMAP_LOCK(pvo->pvo_pmap);
3094 		if (!(pvo->pvo_vaddr & PVO_DEAD))
3095 			ret = moea64_pte_synch(pvo);
3096 		PMAP_UNLOCK(pvo->pvo_pmap);
3097 
3098 		if (ret > 0) {
3099 			atomic_set_32(&m->md.mdpg_attrs,
3100 			    ret & (LPTE_CHG | LPTE_REF));
3101 			if (ret & ptebit) {
3102 				rv = TRUE;
3103 				break;
3104 			}
3105 		}
3106 	}
3107 	PV_PAGE_UNLOCK(m);
3108 
3109 	return (rv);
3110 }
3111 
3112 static u_int
3113 moea64_clear_bit(vm_page_t m, u_int64_t ptebit)
3114 {
3115 	u_int	count;
3116 	struct	pvo_entry *pvo;
3117 	int64_t ret;
3118 
3119 	/*
3120 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
3121 	 * we can reset the right ones).
3122 	 */
3123 	powerpc_sync();
3124 
3125 	/*
3126 	 * For each pvo entry, clear the pte's ptebit.
3127 	 */
3128 	count = 0;
3129 	PV_PAGE_LOCK(m);
3130 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
3131 		if (PVO_IS_SP(pvo)) {
3132 			if ((ret = moea64_sp_clear(pvo, m, ptebit)) != -1) {
3133 				count += ret;
3134 				continue;
3135 			}
3136 		}
3137 		ret = 0;
3138 
3139 		PMAP_LOCK(pvo->pvo_pmap);
3140 		if (!(pvo->pvo_vaddr & PVO_DEAD))
3141 			ret = moea64_pte_clear(pvo, ptebit);
3142 		PMAP_UNLOCK(pvo->pvo_pmap);
3143 
3144 		if (ret > 0 && (ret & ptebit))
3145 			count++;
3146 	}
3147 	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
3148 	PV_PAGE_UNLOCK(m);
3149 
3150 	return (count);
3151 }
3152 
3153 boolean_t
3154 moea64_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
3155 {
3156 	struct pvo_entry *pvo, key;
3157 	vm_offset_t ppa;
3158 	int error = 0;
3159 
3160 	if (hw_direct_map && mem_valid(pa, size) == 0)
3161 		return (0);
3162 
3163 	PMAP_LOCK(kernel_pmap);
3164 	ppa = pa & ~ADDR_POFF;
3165 	key.pvo_vaddr = DMAP_BASE_ADDRESS + ppa;
3166 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
3167 	    ppa < pa + size; ppa += PAGE_SIZE,
3168 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
3169 		if (pvo == NULL || PVO_PADDR(pvo) != ppa) {
3170 			error = EFAULT;
3171 			break;
3172 		}
3173 	}
3174 	PMAP_UNLOCK(kernel_pmap);
3175 
3176 	return (error);
3177 }
3178 
3179 /*
3180  * Map a set of physical memory pages into the kernel virtual
3181  * address space. Return a pointer to where it is mapped. This
3182  * routine is intended to be used for mapping device memory,
3183  * NOT real memory.
3184  */
3185 void *
3186 moea64_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
3187 {
3188 	vm_offset_t va, tmpva, ppa, offset;
3189 
3190 	ppa = trunc_page(pa);
3191 	offset = pa & PAGE_MASK;
3192 	size = roundup2(offset + size, PAGE_SIZE);
3193 
3194 	va = kva_alloc(size);
3195 
3196 	if (!va)
3197 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
3198 
3199 	for (tmpva = va; size > 0;) {
3200 		moea64_kenter_attr(tmpva, ppa, ma);
3201 		size -= PAGE_SIZE;
3202 		tmpva += PAGE_SIZE;
3203 		ppa += PAGE_SIZE;
3204 	}
3205 
3206 	return ((void *)(va + offset));
3207 }
3208 
3209 void *
3210 moea64_mapdev(vm_paddr_t pa, vm_size_t size)
3211 {
3212 
3213 	return moea64_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT);
3214 }
3215 
3216 void
3217 moea64_unmapdev(vm_offset_t va, vm_size_t size)
3218 {
3219 	vm_offset_t base, offset;
3220 
3221 	base = trunc_page(va);
3222 	offset = va & PAGE_MASK;
3223 	size = roundup2(offset + size, PAGE_SIZE);
3224 
3225 	moea64_qremove(base, atop(size));
3226 	kva_free(base, size);
3227 }
3228 
3229 void
3230 moea64_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
3231 {
3232 	struct pvo_entry *pvo;
3233 	vm_offset_t lim;
3234 	vm_paddr_t pa;
3235 	vm_size_t len;
3236 
3237 	if (__predict_false(pm == NULL))
3238 		pm = &curthread->td_proc->p_vmspace->vm_pmap;
3239 
3240 	PMAP_LOCK(pm);
3241 	while (sz > 0) {
3242 		lim = round_page(va+1);
3243 		len = MIN(lim - va, sz);
3244 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
3245 		if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
3246 			pa = PVO_PADDR(pvo) | (va & ADDR_POFF);
3247 			moea64_syncicache(pm, va, pa, len);
3248 		}
3249 		va += len;
3250 		sz -= len;
3251 	}
3252 	PMAP_UNLOCK(pm);
3253 }
3254 
3255 void
3256 moea64_dumpsys_map(vm_paddr_t pa, size_t sz, void **va)
3257 {
3258 
3259 	*va = (void *)(uintptr_t)pa;
3260 }
3261 
3262 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
3263 
3264 void
3265 moea64_scan_init()
3266 {
3267 	struct pvo_entry *pvo;
3268 	vm_offset_t va;
3269 	int i;
3270 
3271 	if (!do_minidump) {
3272 		/* Initialize phys. segments for dumpsys(). */
3273 		memset(&dump_map, 0, sizeof(dump_map));
3274 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
3275 		for (i = 0; i < pregions_sz; i++) {
3276 			dump_map[i].pa_start = pregions[i].mr_start;
3277 			dump_map[i].pa_size = pregions[i].mr_size;
3278 		}
3279 		return;
3280 	}
3281 
3282 	/* Virtual segments for minidumps: */
3283 	memset(&dump_map, 0, sizeof(dump_map));
3284 
3285 	/* 1st: kernel .data and .bss. */
3286 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
3287 	dump_map[0].pa_size = round_page((uintptr_t)_end) -
3288 	    dump_map[0].pa_start;
3289 
3290 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
3291 	dump_map[1].pa_start = (vm_paddr_t)(uintptr_t)msgbufp->msg_ptr;
3292 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
3293 
3294 	/* 3rd: kernel VM. */
3295 	va = dump_map[1].pa_start + dump_map[1].pa_size;
3296 	/* Find start of next chunk (from va). */
3297 	while (va < virtual_end) {
3298 		/* Don't dump the buffer cache. */
3299 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
3300 			va = kmi.buffer_eva;
3301 			continue;
3302 		}
3303 		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
3304 		if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
3305 			break;
3306 		va += PAGE_SIZE;
3307 	}
3308 	if (va < virtual_end) {
3309 		dump_map[2].pa_start = va;
3310 		va += PAGE_SIZE;
3311 		/* Find last page in chunk. */
3312 		while (va < virtual_end) {
3313 			/* Don't run into the buffer cache. */
3314 			if (va == kmi.buffer_sva)
3315 				break;
3316 			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
3317 			if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD))
3318 				break;
3319 			va += PAGE_SIZE;
3320 		}
3321 		dump_map[2].pa_size = va - dump_map[2].pa_start;
3322 	}
3323 }
3324 
3325 #ifdef __powerpc64__
3326 
3327 static size_t
3328 moea64_scan_pmap()
3329 {
3330 	struct pvo_entry *pvo;
3331 	vm_paddr_t pa, pa_end;
3332 	vm_offset_t va, pgva, kstart, kend, kstart_lp, kend_lp;
3333 	uint64_t lpsize;
3334 
3335 	lpsize = moea64_large_page_size;
3336 	kstart = trunc_page((vm_offset_t)_etext);
3337 	kend = round_page((vm_offset_t)_end);
3338 	kstart_lp = kstart & ~moea64_large_page_mask;
3339 	kend_lp = (kend + moea64_large_page_mask) & ~moea64_large_page_mask;
3340 
3341 	CTR4(KTR_PMAP, "moea64_scan_pmap: kstart=0x%016lx, kend=0x%016lx, "
3342 	    "kstart_lp=0x%016lx, kend_lp=0x%016lx",
3343 	    kstart, kend, kstart_lp, kend_lp);
3344 
3345 	PMAP_LOCK(kernel_pmap);
3346 	RB_FOREACH(pvo, pvo_tree, &kernel_pmap->pmap_pvo) {
3347 		va = pvo->pvo_vaddr;
3348 
3349 		if (va & PVO_DEAD)
3350 			continue;
3351 
3352 		/* Skip DMAP (except kernel area) */
3353 		if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS) {
3354 			if (va & PVO_LARGE) {
3355 				pgva = va & ~moea64_large_page_mask;
3356 				if (pgva < kstart_lp || pgva >= kend_lp)
3357 					continue;
3358 			} else {
3359 				pgva = trunc_page(va);
3360 				if (pgva < kstart || pgva >= kend)
3361 					continue;
3362 			}
3363 		}
3364 
3365 		pa = PVO_PADDR(pvo);
3366 
3367 		if (va & PVO_LARGE) {
3368 			pa_end = pa + lpsize;
3369 			for (; pa < pa_end; pa += PAGE_SIZE) {
3370 				if (is_dumpable(pa))
3371 					dump_add_page(pa);
3372 			}
3373 		} else {
3374 			if (is_dumpable(pa))
3375 				dump_add_page(pa);
3376 		}
3377 	}
3378 	PMAP_UNLOCK(kernel_pmap);
3379 
3380 	return (sizeof(struct lpte) * moea64_pteg_count * 8);
3381 }
3382 
3383 static struct dump_context dump_ctx;
3384 
3385 static void *
3386 moea64_dump_pmap_init(unsigned blkpgs)
3387 {
3388 	dump_ctx.ptex = 0;
3389 	dump_ctx.ptex_end = moea64_pteg_count * 8;
3390 	dump_ctx.blksz = blkpgs * PAGE_SIZE;
3391 	return (&dump_ctx);
3392 }
3393 
3394 #else
3395 
3396 static size_t
3397 moea64_scan_pmap()
3398 {
3399 	return (0);
3400 }
3401 
3402 static void *
3403 moea64_dump_pmap_init(unsigned blkpgs)
3404 {
3405 	return (NULL);
3406 }
3407 
3408 #endif
3409 
3410 #ifdef __powerpc64__
3411 static void
3412 moea64_map_range(vm_offset_t va, vm_paddr_t pa, vm_size_t npages)
3413 {
3414 
3415 	for (; npages > 0; --npages) {
3416 		if (moea64_large_page_size != 0 &&
3417 		    (pa & moea64_large_page_mask) == 0 &&
3418 		    (va & moea64_large_page_mask) == 0 &&
3419 		    npages >= (moea64_large_page_size >> PAGE_SHIFT)) {
3420 			PMAP_LOCK(kernel_pmap);
3421 			moea64_kenter_large(va, pa, 0, 0);
3422 			PMAP_UNLOCK(kernel_pmap);
3423 			pa += moea64_large_page_size;
3424 			va += moea64_large_page_size;
3425 			npages -= (moea64_large_page_size >> PAGE_SHIFT) - 1;
3426 		} else {
3427 			moea64_kenter(va, pa);
3428 			pa += PAGE_SIZE;
3429 			va += PAGE_SIZE;
3430 		}
3431 	}
3432 }
3433 
3434 static void
3435 moea64_page_array_startup(long pages)
3436 {
3437 	long dom_pages[MAXMEMDOM];
3438 	vm_paddr_t pa;
3439 	vm_offset_t va, vm_page_base;
3440 	vm_size_t needed, size;
3441 	long page;
3442 	int domain;
3443 	int i;
3444 
3445 	vm_page_base = 0xd000000000000000ULL;
3446 
3447 	/* Short-circuit single-domain systems. */
3448 	if (vm_ndomains == 1) {
3449 		size = round_page(pages * sizeof(struct vm_page));
3450 		pa = vm_phys_early_alloc(0, size);
3451 		vm_page_base = moea64_map(&vm_page_base,
3452 		    pa, pa + size, VM_PROT_READ | VM_PROT_WRITE);
3453 		vm_page_array_size = pages;
3454 		vm_page_array = (vm_page_t)vm_page_base;
3455 		return;
3456 	}
3457 
3458 	page = 0;
3459 	for (i = 0; i < MAXMEMDOM; i++)
3460 		dom_pages[i] = 0;
3461 
3462 	/* Now get the number of pages required per domain. */
3463 	for (i = 0; i < vm_phys_nsegs; i++) {
3464 		domain = vm_phys_segs[i].domain;
3465 		KASSERT(domain < MAXMEMDOM,
3466 		    ("Invalid vm_phys_segs NUMA domain %d!\n", domain));
3467 		/* Get size of vm_page_array needed for this segment. */
3468 		size = btoc(vm_phys_segs[i].end - vm_phys_segs[i].start);
3469 		dom_pages[domain] += size;
3470 	}
3471 
3472 	for (i = 0; phys_avail[i + 1] != 0; i+= 2) {
3473 		domain = vm_phys_domain(phys_avail[i]);
3474 		KASSERT(domain < MAXMEMDOM,
3475 		    ("Invalid phys_avail NUMA domain %d!\n", domain));
3476 		size = btoc(phys_avail[i + 1] - phys_avail[i]);
3477 		dom_pages[domain] += size;
3478 	}
3479 
3480 	/*
3481 	 * Map in chunks that can get us all 16MB pages.  There will be some
3482 	 * overlap between domains, but that's acceptable for now.
3483 	 */
3484 	vm_page_array_size = 0;
3485 	va = vm_page_base;
3486 	for (i = 0; i < MAXMEMDOM && vm_page_array_size < pages; i++) {
3487 		if (dom_pages[i] == 0)
3488 			continue;
3489 		size = ulmin(pages - vm_page_array_size, dom_pages[i]);
3490 		size = round_page(size * sizeof(struct vm_page));
3491 		needed = size;
3492 		size = roundup2(size, moea64_large_page_size);
3493 		pa = vm_phys_early_alloc(i, size);
3494 		vm_page_array_size += size / sizeof(struct vm_page);
3495 		moea64_map_range(va, pa, size >> PAGE_SHIFT);
3496 		/* Scoot up domain 0, to reduce the domain page overlap. */
3497 		if (i == 0)
3498 			vm_page_base += size - needed;
3499 		va += size;
3500 	}
3501 	vm_page_array = (vm_page_t)vm_page_base;
3502 	vm_page_array_size = pages;
3503 }
3504 #endif
3505 
3506 static int64_t
3507 moea64_null_method(void)
3508 {
3509 	return (0);
3510 }
3511 
3512 static int64_t moea64_pte_replace_default(struct pvo_entry *pvo, int flags)
3513 {
3514 	int64_t refchg;
3515 
3516 	refchg = moea64_pte_unset(pvo);
3517 	moea64_pte_insert(pvo);
3518 
3519 	return (refchg);
3520 }
3521 
3522 struct moea64_funcs *moea64_ops;
3523 
3524 #define DEFINE_OEA64_IFUNC(ret, func, args, def)		\
3525 	DEFINE_IFUNC(, ret, moea64_##func, args) {		\
3526 		moea64_##func##_t f;				\
3527 		if (moea64_ops == NULL)				\
3528 			return ((moea64_##func##_t)def);	\
3529 		f = moea64_ops->func;				\
3530 		return (f != NULL ? f : (moea64_##func##_t)def);\
3531 	}
3532 
3533 DEFINE_OEA64_IFUNC(int64_t, pte_replace, (struct pvo_entry *, int),
3534     moea64_pte_replace_default)
3535 DEFINE_OEA64_IFUNC(int64_t, pte_insert, (struct pvo_entry *), moea64_null_method)
3536 DEFINE_OEA64_IFUNC(int64_t, pte_unset, (struct pvo_entry *), moea64_null_method)
3537 DEFINE_OEA64_IFUNC(int64_t, pte_clear, (struct pvo_entry *, uint64_t),
3538     moea64_null_method)
3539 DEFINE_OEA64_IFUNC(int64_t, pte_synch, (struct pvo_entry *), moea64_null_method)
3540 DEFINE_OEA64_IFUNC(int64_t, pte_insert_sp, (struct pvo_entry *), moea64_null_method)
3541 DEFINE_OEA64_IFUNC(int64_t, pte_unset_sp, (struct pvo_entry *), moea64_null_method)
3542 DEFINE_OEA64_IFUNC(int64_t, pte_replace_sp, (struct pvo_entry *), moea64_null_method)
3543 
3544 /* Superpage functions */
3545 
3546 /* MMU interface */
3547 
3548 static bool
3549 moea64_ps_enabled(pmap_t pmap)
3550 {
3551 	return (superpages_enabled);
3552 }
3553 
3554 static void
3555 moea64_align_superpage(vm_object_t object, vm_ooffset_t offset,
3556     vm_offset_t *addr, vm_size_t size)
3557 {
3558 	vm_offset_t sp_offset;
3559 
3560 	if (size < HPT_SP_SIZE)
3561 		return;
3562 
3563 	CTR4(KTR_PMAP, "%s: offs=%#jx, addr=%p, size=%#jx",
3564 	    __func__, (uintmax_t)offset, addr, (uintmax_t)size);
3565 
3566 	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
3567 		offset += ptoa(object->pg_color);
3568 	sp_offset = offset & HPT_SP_MASK;
3569 	if (size - ((HPT_SP_SIZE - sp_offset) & HPT_SP_MASK) < HPT_SP_SIZE ||
3570 	    (*addr & HPT_SP_MASK) == sp_offset)
3571 		return;
3572 	if ((*addr & HPT_SP_MASK) < sp_offset)
3573 		*addr = (*addr & ~HPT_SP_MASK) + sp_offset;
3574 	else
3575 		*addr = ((*addr + HPT_SP_MASK) & ~HPT_SP_MASK) + sp_offset;
3576 }
3577 
3578 /* Helpers */
3579 
3580 static __inline void
3581 moea64_pvo_cleanup(struct pvo_dlist *tofree)
3582 {
3583 	struct pvo_entry *pvo;
3584 
3585 	/* clean up */
3586 	while (!SLIST_EMPTY(tofree)) {
3587 		pvo = SLIST_FIRST(tofree);
3588 		SLIST_REMOVE_HEAD(tofree, pvo_dlink);
3589 		if (pvo->pvo_vaddr & PVO_DEAD)
3590 			moea64_pvo_remove_from_page(pvo);
3591 		free_pvo_entry(pvo);
3592 	}
3593 }
3594 
3595 static __inline uint16_t
3596 pvo_to_vmpage_flags(struct pvo_entry *pvo)
3597 {
3598 	uint16_t flags;
3599 
3600 	flags = 0;
3601 	if ((pvo->pvo_pte.prot & VM_PROT_WRITE) != 0)
3602 		flags |= PGA_WRITEABLE;
3603 	if ((pvo->pvo_pte.prot & VM_PROT_EXECUTE) != 0)
3604 		flags |= PGA_EXECUTABLE;
3605 
3606 	return (flags);
3607 }
3608 
3609 /*
3610  * Check if the given pvo and its superpage are in sva-eva range.
3611  */
3612 static __inline bool
3613 moea64_sp_pvo_in_range(struct pvo_entry *pvo, vm_offset_t sva, vm_offset_t eva)
3614 {
3615 	vm_offset_t spva;
3616 
3617 	spva = PVO_VADDR(pvo) & ~HPT_SP_MASK;
3618 	if (spva >= sva && spva + HPT_SP_SIZE <= eva) {
3619 		/*
3620 		 * Because this function is intended to be called from loops
3621 		 * that iterate over ordered pvo entries, if the condition
3622 		 * above is true then the pvo must be the first of its
3623 		 * superpage.
3624 		 */
3625 		KASSERT(PVO_VADDR(pvo) == spva,
3626 		    ("%s: unexpected unaligned superpage pvo", __func__));
3627 		return (true);
3628 	}
3629 	return (false);
3630 }
3631 
3632 /*
3633  * Update vm about the REF/CHG bits if the superpage is managed and
3634  * has (or had) write access.
3635  */
3636 static void
3637 moea64_sp_refchg_process(struct pvo_entry *sp, vm_page_t m,
3638     int64_t sp_refchg, vm_prot_t prot)
3639 {
3640 	vm_page_t m_end;
3641 	int64_t refchg;
3642 
3643 	if ((sp->pvo_vaddr & PVO_MANAGED) != 0 && (prot & VM_PROT_WRITE) != 0) {
3644 		for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++) {
3645 			refchg = sp_refchg |
3646 			    atomic_readandclear_32(&m->md.mdpg_attrs);
3647 			if (refchg & LPTE_CHG)
3648 				vm_page_dirty(m);
3649 			if (refchg & LPTE_REF)
3650 				vm_page_aflag_set(m, PGA_REFERENCED);
3651 		}
3652 	}
3653 }
3654 
3655 /* Superpage ops */
3656 
3657 static int
3658 moea64_sp_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
3659     vm_prot_t prot, u_int flags, int8_t psind)
3660 {
3661 	struct pvo_entry *pvo, **pvos;
3662 	struct pvo_head *pvo_head;
3663 	vm_offset_t sva;
3664 	vm_page_t sm;
3665 	vm_paddr_t pa, spa;
3666 	bool sync;
3667 	struct pvo_dlist tofree;
3668 	int error, i;
3669 	uint16_t aflags;
3670 
3671 	KASSERT((va & HPT_SP_MASK) == 0, ("%s: va %#jx unaligned",
3672 	    __func__, (uintmax_t)va));
3673 	KASSERT(psind == 1, ("%s: invalid psind: %d", __func__, psind));
3674 	KASSERT(m->psind == 1, ("%s: invalid m->psind: %d",
3675 	    __func__, m->psind));
3676 	KASSERT(pmap != kernel_pmap,
3677 	    ("%s: function called with kernel pmap", __func__));
3678 
3679 	CTR5(KTR_PMAP, "%s: va=%#jx, pa=%#jx, prot=%#x, flags=%#x, psind=1",
3680 	    __func__, (uintmax_t)va, (uintmax_t)VM_PAGE_TO_PHYS(m),
3681 	    prot, flags);
3682 
3683 	SLIST_INIT(&tofree);
3684 
3685 	sva = va;
3686 	sm = m;
3687 	spa = pa = VM_PAGE_TO_PHYS(sm);
3688 
3689 	/* Try to allocate all PVOs first, to make failure handling easier. */
3690 	pvos = malloc(HPT_SP_PAGES * sizeof(struct pvo_entry *), M_TEMP,
3691 	    M_NOWAIT);
3692 	if (pvos == NULL) {
3693 		CTR1(KTR_PMAP, "%s: failed to alloc pvo array", __func__);
3694 		return (KERN_RESOURCE_SHORTAGE);
3695 	}
3696 
3697 	for (i = 0; i < HPT_SP_PAGES; i++) {
3698 		pvos[i] = alloc_pvo_entry(0);
3699 		if (pvos[i] == NULL) {
3700 			CTR1(KTR_PMAP, "%s: failed to alloc pvo", __func__);
3701 			for (i = i - 1; i >= 0; i--)
3702 				free_pvo_entry(pvos[i]);
3703 			free(pvos, M_TEMP);
3704 			return (KERN_RESOURCE_SHORTAGE);
3705 		}
3706 	}
3707 
3708 	SP_PV_LOCK_ALIGNED(spa);
3709 	PMAP_LOCK(pmap);
3710 
3711 	/* Note: moea64_remove_locked() also clears cached REF/CHG bits. */
3712 	moea64_remove_locked(pmap, va, va + HPT_SP_SIZE, &tofree);
3713 
3714 	/* Enter pages */
3715 	for (i = 0; i < HPT_SP_PAGES;
3716 	    i++, va += PAGE_SIZE, pa += PAGE_SIZE, m++) {
3717 		pvo = pvos[i];
3718 
3719 		pvo->pvo_pte.prot = prot;
3720 		pvo->pvo_pte.pa = (pa & ~LPTE_LP_MASK) | LPTE_LP_4K_16M |
3721 		    moea64_calc_wimg(pa, pmap_page_get_memattr(m));
3722 
3723 		if ((flags & PMAP_ENTER_WIRED) != 0)
3724 			pvo->pvo_vaddr |= PVO_WIRED;
3725 		pvo->pvo_vaddr |= PVO_LARGE;
3726 
3727 		if ((m->oflags & VPO_UNMANAGED) != 0)
3728 			pvo_head = NULL;
3729 		else {
3730 			pvo_head = &m->md.mdpg_pvoh;
3731 			pvo->pvo_vaddr |= PVO_MANAGED;
3732 		}
3733 
3734 		init_pvo_entry(pvo, pmap, va);
3735 
3736 		error = moea64_pvo_enter(pvo, pvo_head, NULL);
3737 		/*
3738 		 * All superpage PVOs were previously removed, so no errors
3739 		 * should occur while inserting the new ones.
3740 		 */
3741 		KASSERT(error == 0, ("%s: unexpected error "
3742 			    "when inserting superpage PVO: %d",
3743 			    __func__, error));
3744 	}
3745 
3746 	PMAP_UNLOCK(pmap);
3747 	SP_PV_UNLOCK_ALIGNED(spa);
3748 
3749 	sync = (sm->a.flags & PGA_EXECUTABLE) == 0;
3750 	/* Note: moea64_pvo_cleanup() also clears page prot. flags. */
3751 	moea64_pvo_cleanup(&tofree);
3752 	pvo = pvos[0];
3753 
3754 	/* Set vm page flags */
3755 	aflags = pvo_to_vmpage_flags(pvo);
3756 	if (aflags != 0)
3757 		for (m = sm; m < &sm[HPT_SP_PAGES]; m++)
3758 			vm_page_aflag_set(m, aflags);
3759 
3760 	/*
3761 	 * Flush the page from the instruction cache if this page is
3762 	 * mapped executable and cacheable.
3763 	 */
3764 	if (sync && (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0)
3765 		moea64_syncicache(pmap, sva, spa, HPT_SP_SIZE);
3766 
3767 	atomic_add_long(&sp_mappings, 1);
3768 	CTR3(KTR_PMAP, "%s: SP success for va %#jx in pmap %p",
3769 	    __func__, (uintmax_t)sva, pmap);
3770 
3771 	free(pvos, M_TEMP);
3772 	return (KERN_SUCCESS);
3773 }
3774 
3775 static void
3776 moea64_sp_promote(pmap_t pmap, vm_offset_t va, vm_page_t m)
3777 {
3778 	struct pvo_entry *first, *pvo;
3779 	vm_paddr_t pa, pa_end;
3780 	vm_offset_t sva, va_end;
3781 	int64_t sp_refchg;
3782 
3783 	/* This CTR may generate a lot of output. */
3784 	/* CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)va); */
3785 
3786 	va &= ~HPT_SP_MASK;
3787 	sva = va;
3788 	/* Get superpage */
3789 	pa = VM_PAGE_TO_PHYS(m) & ~HPT_SP_MASK;
3790 	m = PHYS_TO_VM_PAGE(pa);
3791 
3792 	PMAP_LOCK(pmap);
3793 
3794 	/*
3795 	 * Check if all pages meet promotion criteria.
3796 	 *
3797 	 * XXX In some cases the loop below may be executed for each or most
3798 	 * of the entered pages of a superpage, which can be expensive
3799 	 * (although it was not profiled) and need some optimization.
3800 	 *
3801 	 * Some cases where this seems to happen are:
3802 	 * - When a superpage is first entered read-only and later becomes
3803 	 *   read-write.
3804 	 * - When some of the superpage's virtual addresses map to previously
3805 	 *   wired/cached pages while others map to pages allocated from a
3806 	 *   different physical address range. A common scenario where this
3807 	 *   happens is when mmap'ing a file that is already present in FS
3808 	 *   block cache and doesn't fill a superpage.
3809 	 */
3810 	first = pvo = moea64_pvo_find_va(pmap, sva);
3811 	for (pa_end = pa + HPT_SP_SIZE;
3812 	    pa < pa_end; pa += PAGE_SIZE, va += PAGE_SIZE) {
3813 		if (pvo == NULL || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
3814 			CTR3(KTR_PMAP,
3815 			    "%s: NULL or dead PVO: pmap=%p, va=%#jx",
3816 			    __func__, pmap, (uintmax_t)va);
3817 			goto error;
3818 		}
3819 		if (PVO_PADDR(pvo) != pa) {
3820 			CTR5(KTR_PMAP, "%s: PAs don't match: "
3821 			    "pmap=%p, va=%#jx, pvo_pa=%#jx, exp_pa=%#jx",
3822 			    __func__, pmap, (uintmax_t)va,
3823 			    (uintmax_t)PVO_PADDR(pvo), (uintmax_t)pa);
3824 			atomic_add_long(&sp_p_fail_pa, 1);
3825 			goto error;
3826 		}
3827 		if ((first->pvo_vaddr & PVO_FLAGS_PROMOTE) !=
3828 		    (pvo->pvo_vaddr & PVO_FLAGS_PROMOTE)) {
3829 			CTR5(KTR_PMAP, "%s: PVO flags don't match: "
3830 			    "pmap=%p, va=%#jx, pvo_flags=%#jx, exp_flags=%#jx",
3831 			    __func__, pmap, (uintmax_t)va,
3832 			    (uintmax_t)(pvo->pvo_vaddr & PVO_FLAGS_PROMOTE),
3833 			    (uintmax_t)(first->pvo_vaddr & PVO_FLAGS_PROMOTE));
3834 			atomic_add_long(&sp_p_fail_flags, 1);
3835 			goto error;
3836 		}
3837 		if (first->pvo_pte.prot != pvo->pvo_pte.prot) {
3838 			CTR5(KTR_PMAP, "%s: PVO protections don't match: "
3839 			    "pmap=%p, va=%#jx, pvo_prot=%#x, exp_prot=%#x",
3840 			    __func__, pmap, (uintmax_t)va,
3841 			    pvo->pvo_pte.prot, first->pvo_pte.prot);
3842 			atomic_add_long(&sp_p_fail_prot, 1);
3843 			goto error;
3844 		}
3845 		if ((first->pvo_pte.pa & LPTE_WIMG) !=
3846 		    (pvo->pvo_pte.pa & LPTE_WIMG)) {
3847 			CTR5(KTR_PMAP, "%s: WIMG bits don't match: "
3848 			    "pmap=%p, va=%#jx, pvo_wimg=%#jx, exp_wimg=%#jx",
3849 			    __func__, pmap, (uintmax_t)va,
3850 			    (uintmax_t)(pvo->pvo_pte.pa & LPTE_WIMG),
3851 			    (uintmax_t)(first->pvo_pte.pa & LPTE_WIMG));
3852 			atomic_add_long(&sp_p_fail_wimg, 1);
3853 			goto error;
3854 		}
3855 
3856 		pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo);
3857 	}
3858 
3859 	/* All OK, promote. */
3860 
3861 	/*
3862 	 * Handle superpage REF/CHG bits. If REF or CHG is set in
3863 	 * any page, then it must be set in the superpage.
3864 	 *
3865 	 * Instead of querying each page, we take advantage of two facts:
3866 	 * 1- If a page is being promoted, it was referenced.
3867 	 * 2- If promoted pages are writable, they were modified.
3868 	 */
3869 	sp_refchg = LPTE_REF |
3870 	    ((first->pvo_pte.prot & VM_PROT_WRITE) != 0 ? LPTE_CHG : 0);
3871 
3872 	/* Promote pages */
3873 
3874 	for (pvo = first, va_end = PVO_VADDR(pvo) + HPT_SP_SIZE;
3875 	    pvo != NULL && PVO_VADDR(pvo) < va_end;
3876 	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
3877 		pvo->pvo_pte.pa &= ~LPTE_LP_MASK;
3878 		pvo->pvo_pte.pa |= LPTE_LP_4K_16M;
3879 		pvo->pvo_vaddr |= PVO_LARGE;
3880 	}
3881 	moea64_pte_replace_sp(first);
3882 
3883 	/* Send REF/CHG bits to VM */
3884 	moea64_sp_refchg_process(first, m, sp_refchg, first->pvo_pte.prot);
3885 
3886 	/* Use first page to cache REF/CHG bits */
3887 	atomic_set_32(&m->md.mdpg_attrs, sp_refchg | MDPG_ATTR_SP);
3888 
3889 	PMAP_UNLOCK(pmap);
3890 
3891 	atomic_add_long(&sp_mappings, 1);
3892 	atomic_add_long(&sp_promotions, 1);
3893 	CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p",
3894 	    __func__, (uintmax_t)sva, pmap);
3895 	return;
3896 
3897 error:
3898 	atomic_add_long(&sp_p_failures, 1);
3899 	PMAP_UNLOCK(pmap);
3900 }
3901 
3902 static void
3903 moea64_sp_demote_aligned(struct pvo_entry *sp)
3904 {
3905 	struct pvo_entry *pvo;
3906 	vm_offset_t va, va_end;
3907 	vm_paddr_t pa;
3908 	vm_page_t m;
3909 	pmap_t pmap;
3910 	int64_t refchg;
3911 
3912 	CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
3913 
3914 	pmap = sp->pvo_pmap;
3915 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3916 
3917 	pvo = sp;
3918 
3919 	/* Demote pages */
3920 
3921 	va = PVO_VADDR(pvo);
3922 	pa = PVO_PADDR(pvo);
3923 	m = PHYS_TO_VM_PAGE(pa);
3924 
3925 	for (pvo = sp, va_end = va + HPT_SP_SIZE;
3926 	    pvo != NULL && PVO_VADDR(pvo) < va_end;
3927 	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo),
3928 	    va += PAGE_SIZE, pa += PAGE_SIZE) {
3929 		KASSERT(pvo && PVO_VADDR(pvo) == va,
3930 		    ("%s: missing PVO for va %#jx", __func__, (uintmax_t)va));
3931 
3932 		pvo->pvo_vaddr &= ~PVO_LARGE;
3933 		pvo->pvo_pte.pa &= ~LPTE_RPGN;
3934 		pvo->pvo_pte.pa |= pa;
3935 
3936 	}
3937 	refchg = moea64_pte_replace_sp(sp);
3938 
3939 	/*
3940 	 * Clear SP flag
3941 	 *
3942 	 * XXX It is possible that another pmap has this page mapped as
3943 	 *     part of a superpage, but as the SP flag is used only for
3944 	 *     caching SP REF/CHG bits, that will be queried if not set
3945 	 *     in cache, it should be ok to clear it here.
3946 	 */
3947 	atomic_clear_32(&m->md.mdpg_attrs, MDPG_ATTR_SP);
3948 
3949 	/*
3950 	 * Handle superpage REF/CHG bits. A bit set in the superpage
3951 	 * means all pages should consider it set.
3952 	 */
3953 	moea64_sp_refchg_process(sp, m, refchg, sp->pvo_pte.prot);
3954 
3955 	atomic_add_long(&sp_demotions, 1);
3956 	CTR3(KTR_PMAP, "%s: success for va %#jx in pmap %p",
3957 	    __func__, (uintmax_t)PVO_VADDR(sp), pmap);
3958 }
3959 
3960 static void
3961 moea64_sp_demote(struct pvo_entry *pvo)
3962 {
3963 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
3964 
3965 	if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
3966 		pvo = moea64_pvo_find_va(pvo->pvo_pmap,
3967 		    PVO_VADDR(pvo) & ~HPT_SP_MASK);
3968 		KASSERT(pvo != NULL, ("%s: missing PVO for va %#jx",
3969 		     __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
3970 	}
3971 	moea64_sp_demote_aligned(pvo);
3972 }
3973 
3974 static struct pvo_entry *
3975 moea64_sp_unwire(struct pvo_entry *sp)
3976 {
3977 	struct pvo_entry *pvo, *prev;
3978 	vm_offset_t eva;
3979 	pmap_t pm;
3980 	int64_t ret, refchg;
3981 
3982 	CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
3983 
3984 	pm = sp->pvo_pmap;
3985 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
3986 
3987 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
3988 	refchg = 0;
3989 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
3990 	    prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
3991 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
3992 			panic("%s: pvo %p is missing PVO_WIRED",
3993 			    __func__, pvo);
3994 		pvo->pvo_vaddr &= ~PVO_WIRED;
3995 
3996 		ret = moea64_pte_replace(pvo, 0 /* No invalidation */);
3997 		if (ret < 0)
3998 			refchg |= LPTE_CHG;
3999 		else
4000 			refchg |= ret;
4001 
4002 		pm->pm_stats.wired_count--;
4003 	}
4004 
4005 	/* Send REF/CHG bits to VM */
4006 	moea64_sp_refchg_process(sp, PHYS_TO_VM_PAGE(PVO_PADDR(sp)),
4007 	    refchg, sp->pvo_pte.prot);
4008 
4009 	return (prev);
4010 }
4011 
4012 static struct pvo_entry *
4013 moea64_sp_protect(struct pvo_entry *sp, vm_prot_t prot)
4014 {
4015 	struct pvo_entry *pvo, *prev;
4016 	vm_offset_t eva;
4017 	pmap_t pm;
4018 	vm_page_t m, m_end;
4019 	int64_t ret, refchg;
4020 	vm_prot_t oldprot;
4021 
4022 	CTR3(KTR_PMAP, "%s: va=%#jx, prot=%x",
4023 	    __func__, (uintmax_t)PVO_VADDR(sp), prot);
4024 
4025 	pm = sp->pvo_pmap;
4026 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
4027 
4028 	oldprot = sp->pvo_pte.prot;
4029 	m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
4030 	KASSERT(m != NULL, ("%s: missing vm page for pa %#jx",
4031 	    __func__, (uintmax_t)PVO_PADDR(sp)));
4032 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4033 	refchg = 0;
4034 
4035 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4036 	    prev = pvo, pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
4037 		pvo->pvo_pte.prot = prot;
4038 		/*
4039 		 * If the PVO is in the page table, update mapping
4040 		 */
4041 		ret = moea64_pte_replace(pvo, MOEA64_PTE_PROT_UPDATE);
4042 		if (ret < 0)
4043 			refchg |= LPTE_CHG;
4044 		else
4045 			refchg |= ret;
4046 	}
4047 
4048 	/* Send REF/CHG bits to VM */
4049 	moea64_sp_refchg_process(sp, m, refchg, oldprot);
4050 
4051 	/* Handle pages that became executable */
4052 	if ((m->a.flags & PGA_EXECUTABLE) == 0 &&
4053 	    (sp->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
4054 		if ((m->oflags & VPO_UNMANAGED) == 0)
4055 			for (m_end = &m[HPT_SP_PAGES]; m < m_end; m++)
4056 				vm_page_aflag_set(m, PGA_EXECUTABLE);
4057 		moea64_syncicache(pm, PVO_VADDR(sp), PVO_PADDR(sp),
4058 		    HPT_SP_SIZE);
4059 	}
4060 
4061 	return (prev);
4062 }
4063 
4064 static struct pvo_entry *
4065 moea64_sp_remove(struct pvo_entry *sp, struct pvo_dlist *tofree)
4066 {
4067 	struct pvo_entry *pvo, *tpvo;
4068 	vm_offset_t eva;
4069 	pmap_t pm;
4070 
4071 	CTR2(KTR_PMAP, "%s: va=%#jx", __func__, (uintmax_t)PVO_VADDR(sp));
4072 
4073 	pm = sp->pvo_pmap;
4074 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
4075 
4076 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4077 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
4078 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
4079 
4080 		/*
4081 		 * For locking reasons, remove this from the page table and
4082 		 * pmap, but save delinking from the vm_page for a second
4083 		 * pass
4084 		 */
4085 		moea64_pvo_remove_from_pmap(pvo);
4086 		SLIST_INSERT_HEAD(tofree, pvo, pvo_dlink);
4087 	}
4088 
4089 	/*
4090 	 * Clear SP bit
4091 	 *
4092 	 * XXX See comment in moea64_sp_demote_aligned() for why it's
4093 	 *     ok to always clear the SP bit on remove/demote.
4094 	 */
4095 	atomic_clear_32(&PHYS_TO_VM_PAGE(PVO_PADDR(sp))->md.mdpg_attrs,
4096 	    MDPG_ATTR_SP);
4097 
4098 	return (tpvo);
4099 }
4100 
4101 static int64_t
4102 moea64_sp_query_locked(struct pvo_entry *pvo, uint64_t ptebit)
4103 {
4104 	int64_t refchg, ret;
4105 	vm_offset_t eva;
4106 	vm_page_t m;
4107 	pmap_t pmap;
4108 	struct pvo_entry *sp;
4109 
4110 	pmap = pvo->pvo_pmap;
4111 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4112 
4113 	/* Get first SP PVO */
4114 	if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
4115 		sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK);
4116 		KASSERT(sp != NULL, ("%s: missing PVO for va %#jx",
4117 		     __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
4118 	} else
4119 		sp = pvo;
4120 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4121 
4122 	refchg = 0;
4123 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4124 	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
4125 		ret = moea64_pte_synch(pvo);
4126 		if (ret > 0) {
4127 			refchg |= ret & (LPTE_CHG | LPTE_REF);
4128 			if ((refchg & ptebit) != 0)
4129 				break;
4130 		}
4131 	}
4132 
4133 	/* Save results */
4134 	if (refchg != 0) {
4135 		m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
4136 		atomic_set_32(&m->md.mdpg_attrs, refchg | MDPG_ATTR_SP);
4137 	}
4138 
4139 	return (refchg);
4140 }
4141 
4142 static int64_t
4143 moea64_sp_query(struct pvo_entry *pvo, uint64_t ptebit)
4144 {
4145 	int64_t refchg;
4146 	pmap_t pmap;
4147 
4148 	pmap = pvo->pvo_pmap;
4149 	PMAP_LOCK(pmap);
4150 
4151 	/*
4152 	 * Check if SP was demoted/removed before pmap lock was acquired.
4153 	 */
4154 	if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
4155 		CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
4156 		    __func__, (uintmax_t)PVO_PADDR(pvo));
4157 		PMAP_UNLOCK(pmap);
4158 		return (-1);
4159 	}
4160 
4161 	refchg = moea64_sp_query_locked(pvo, ptebit);
4162 	PMAP_UNLOCK(pmap);
4163 
4164 	CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx",
4165 	    __func__, (uintmax_t)PVO_VADDR(pvo),
4166 	    (uintmax_t)PVO_PADDR(pvo), (uintmax_t)refchg);
4167 
4168 	return (refchg);
4169 }
4170 
4171 static int64_t
4172 moea64_sp_pvo_clear(struct pvo_entry *pvo, uint64_t ptebit)
4173 {
4174 	int64_t refchg, ret;
4175 	pmap_t pmap;
4176 	struct pvo_entry *sp;
4177 	vm_offset_t eva;
4178 	vm_page_t m;
4179 
4180 	pmap = pvo->pvo_pmap;
4181 	PMAP_LOCK(pmap);
4182 
4183 	/*
4184 	 * Check if SP was demoted/removed before pmap lock was acquired.
4185 	 */
4186 	if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
4187 		CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
4188 		    __func__, (uintmax_t)PVO_PADDR(pvo));
4189 		PMAP_UNLOCK(pmap);
4190 		return (-1);
4191 	}
4192 
4193 	/* Get first SP PVO */
4194 	if ((PVO_VADDR(pvo) & HPT_SP_MASK) != 0) {
4195 		sp = moea64_pvo_find_va(pmap, PVO_VADDR(pvo) & ~HPT_SP_MASK);
4196 		KASSERT(sp != NULL, ("%s: missing PVO for va %#jx",
4197 		     __func__, (uintmax_t)(PVO_VADDR(pvo) & ~HPT_SP_MASK)));
4198 	} else
4199 		sp = pvo;
4200 	eva = PVO_VADDR(sp) + HPT_SP_SIZE;
4201 
4202 	refchg = 0;
4203 	for (pvo = sp; pvo != NULL && PVO_VADDR(pvo) < eva;
4204 	    pvo = RB_NEXT(pvo_tree, &pmap->pmap_pvo, pvo)) {
4205 		ret = moea64_pte_clear(pvo, ptebit);
4206 		if (ret > 0)
4207 			refchg |= ret & (LPTE_CHG | LPTE_REF);
4208 	}
4209 
4210 	m = PHYS_TO_VM_PAGE(PVO_PADDR(sp));
4211 	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
4212 	PMAP_UNLOCK(pmap);
4213 
4214 	CTR4(KTR_PMAP, "%s: va=%#jx, pa=%#jx: refchg=%#jx",
4215 	    __func__, (uintmax_t)PVO_VADDR(sp),
4216 	    (uintmax_t)PVO_PADDR(sp), (uintmax_t)refchg);
4217 
4218 	return (refchg);
4219 }
4220 
4221 static int64_t
4222 moea64_sp_clear(struct pvo_entry *pvo, vm_page_t m, uint64_t ptebit)
4223 {
4224 	int64_t count, ret;
4225 	pmap_t pmap;
4226 
4227 	count = 0;
4228 	pmap = pvo->pvo_pmap;
4229 
4230 	/*
4231 	 * Since this reference bit is shared by 4096 4KB pages, it
4232 	 * should not be cleared every time it is tested. Apply a
4233 	 * simple "hash" function on the physical page number, the
4234 	 * virtual superpage number, and the pmap address to select
4235 	 * one 4KB page out of the 4096 on which testing the
4236 	 * reference bit will result in clearing that reference bit.
4237 	 * This function is designed to avoid the selection of the
4238 	 * same 4KB page for every 16MB page mapping.
4239 	 *
4240 	 * Always leave the reference bit of a wired mapping set, as
4241 	 * the current state of its reference bit won't affect page
4242 	 * replacement.
4243 	 */
4244 	if (ptebit == LPTE_REF && (((VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) ^
4245 	    (PVO_VADDR(pvo) >> HPT_SP_SHIFT) ^ (uintptr_t)pmap) &
4246 	    (HPT_SP_PAGES - 1)) == 0 && (pvo->pvo_vaddr & PVO_WIRED) == 0) {
4247 		if ((ret = moea64_sp_pvo_clear(pvo, ptebit)) == -1)
4248 			return (-1);
4249 
4250 		if ((ret & ptebit) != 0)
4251 			count++;
4252 
4253 	/*
4254 	 * If this page was not selected by the hash function, then assume
4255 	 * its REF bit was set.
4256 	 */
4257 	} else if (ptebit == LPTE_REF) {
4258 		count++;
4259 
4260 	/*
4261 	 * To clear the CHG bit of a single SP page, first it must be demoted.
4262 	 * But if no CHG bit is set, no bit clear and thus no SP demotion is
4263 	 * needed.
4264 	 */
4265 	} else {
4266 		CTR4(KTR_PMAP, "%s: ptebit=%#jx, va=%#jx, pa=%#jx",
4267 		    __func__, (uintmax_t)ptebit, (uintmax_t)PVO_VADDR(pvo),
4268 		    (uintmax_t)PVO_PADDR(pvo));
4269 
4270 		PMAP_LOCK(pmap);
4271 
4272 		/*
4273 		 * Make sure SP wasn't demoted/removed before pmap lock
4274 		 * was acquired.
4275 		 */
4276 		if (!PVO_IS_SP(pvo) || (pvo->pvo_vaddr & PVO_DEAD) != 0) {
4277 			CTR2(KTR_PMAP, "%s: demoted/removed: pa=%#jx",
4278 			    __func__, (uintmax_t)PVO_PADDR(pvo));
4279 			PMAP_UNLOCK(pmap);
4280 			return (-1);
4281 		}
4282 
4283 		ret = moea64_sp_query_locked(pvo, ptebit);
4284 		if ((ret & ptebit) != 0)
4285 			count++;
4286 		else {
4287 			PMAP_UNLOCK(pmap);
4288 			return (0);
4289 		}
4290 
4291 		moea64_sp_demote(pvo);
4292 		moea64_pte_clear(pvo, ptebit);
4293 
4294 		/*
4295 		 * Write protect the mapping to a single page so that a
4296 		 * subsequent write access may repromote.
4297 		 */
4298 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
4299 			moea64_pvo_protect(pmap, pvo,
4300 			    pvo->pvo_pte.prot & ~VM_PROT_WRITE);
4301 
4302 		PMAP_UNLOCK(pmap);
4303 	}
4304 
4305 	return (count);
4306 }
4307