xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision 10b9d77bf1ccf2f3affafa6261692cb92cf7e992)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*-
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 /*
97  * Manages physical address maps.
98  *
99  * In addition to hardware address maps, this module is called upon to
100  * provide software-use-only maps which may or may not be stored in the
101  * same form as hardware maps.  These pseudo-maps are used to store
102  * intermediate results from copy operations to and from address spaces.
103  *
104  * Since the information managed by this module is also stored by the
105  * logical address mapping module, this module may throw away valid virtual
106  * to physical mappings at almost any time.  However, invalidations of
107  * mappings must be done as requested.
108  *
109  * In order to cope with hardware architectures which make virtual to
110  * physical map invalidates expensive, this module may delay invalidate
111  * reduced protection operations until such time as they are actually
112  * necessary.  This module is given full information as to which processors
113  * are currently using which maps, and to when physical maps must be made
114  * correct.
115  */
116 
117 #include "opt_kstack_pages.h"
118 
119 #include <sys/param.h>
120 #include <sys/kernel.h>
121 #include <sys/ktr.h>
122 #include <sys/lock.h>
123 #include <sys/msgbuf.h>
124 #include <sys/mutex.h>
125 #include <sys/proc.h>
126 #include <sys/sysctl.h>
127 #include <sys/systm.h>
128 #include <sys/vmmeter.h>
129 
130 #include <sys/kdb.h>
131 
132 #include <dev/ofw/openfirm.h>
133 
134 #include <vm/vm.h>
135 #include <vm/vm_param.h>
136 #include <vm/vm_kern.h>
137 #include <vm/vm_page.h>
138 #include <vm/vm_map.h>
139 #include <vm/vm_object.h>
140 #include <vm/vm_extern.h>
141 #include <vm/vm_pageout.h>
142 #include <vm/vm_pager.h>
143 #include <vm/uma.h>
144 
145 #include <machine/_inttypes.h>
146 #include <machine/cpu.h>
147 #include <machine/platform.h>
148 #include <machine/frame.h>
149 #include <machine/md_var.h>
150 #include <machine/psl.h>
151 #include <machine/bat.h>
152 #include <machine/hid.h>
153 #include <machine/pte.h>
154 #include <machine/sr.h>
155 #include <machine/trap.h>
156 #include <machine/mmuvar.h>
157 
158 #include "mmu_oea64.h"
159 #include "mmu_if.h"
160 #include "moea64_if.h"
161 
162 void moea64_release_vsid(uint64_t vsid);
163 uintptr_t moea64_get_unique_vsid(void);
164 
165 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR); isync()
166 #define ENABLE_TRANS(msr)	mtmsr(msr); isync()
167 
168 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
169 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
170 #define	VSID_HASH_MASK		0x0000007fffffffffULL
171 
172 #define	MOEA_PVO_CHECK(pvo)
173 
174 #define LOCK_TABLE() mtx_lock(&moea64_table_mutex)
175 #define UNLOCK_TABLE() mtx_unlock(&moea64_table_mutex);
176 #define ASSERT_TABLE_LOCK() mtx_assert(&moea64_table_mutex, MA_OWNED)
177 
178 struct ofw_map {
179 	cell_t	om_va;
180 	cell_t	om_len;
181 	cell_t	om_pa_hi;
182 	cell_t	om_pa_lo;
183 	cell_t	om_mode;
184 };
185 
186 /*
187  * Map of physical memory regions.
188  */
189 static struct	mem_region *regions;
190 static struct	mem_region *pregions;
191 static u_int	phys_avail_count;
192 static int	regions_sz, pregions_sz;
193 
194 extern void bs_remap_earlyboot(void);
195 
196 /*
197  * Lock for the pteg and pvo tables.
198  */
199 struct mtx	moea64_table_mutex;
200 struct mtx	moea64_slb_mutex;
201 
202 /*
203  * PTEG data.
204  */
205 u_int		moea64_pteg_count;
206 u_int		moea64_pteg_mask;
207 
208 /*
209  * PVO data.
210  */
211 struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
212 struct	pvo_head moea64_pvo_kunmanaged =	/* list of unmanaged pages */
213     LIST_HEAD_INITIALIZER(moea64_pvo_kunmanaged);
214 
215 uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
216 uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
217 
218 #define	BPVO_POOL_SIZE	327680
219 static struct	pvo_entry *moea64_bpvo_pool;
220 static int	moea64_bpvo_pool_index = 0;
221 
222 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
223 #ifdef __powerpc64__
224 #define	NVSIDS		(NPMAPS * 16)
225 #define VSID_HASHMASK	0xffffffffUL
226 #else
227 #define NVSIDS		NPMAPS
228 #define VSID_HASHMASK	0xfffffUL
229 #endif
230 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
231 
232 static boolean_t moea64_initialized = FALSE;
233 
234 /*
235  * Statistics.
236  */
237 u_int	moea64_pte_valid = 0;
238 u_int	moea64_pte_overflow = 0;
239 u_int	moea64_pvo_entries = 0;
240 u_int	moea64_pvo_enter_calls = 0;
241 u_int	moea64_pvo_remove_calls = 0;
242 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
243     &moea64_pte_valid, 0, "");
244 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
245     &moea64_pte_overflow, 0, "");
246 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
247     &moea64_pvo_entries, 0, "");
248 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
249     &moea64_pvo_enter_calls, 0, "");
250 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
251     &moea64_pvo_remove_calls, 0, "");
252 
253 vm_offset_t	moea64_scratchpage_va[2];
254 struct pvo_entry *moea64_scratchpage_pvo[2];
255 uintptr_t	moea64_scratchpage_pte[2];
256 struct	mtx	moea64_scratchpage_mtx;
257 
258 uint64_t 	moea64_large_page_mask = 0;
259 int		moea64_large_page_size = 0;
260 int		moea64_large_page_shift = 0;
261 
262 /*
263  * PVO calls.
264  */
265 static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
266 		    vm_offset_t, vm_offset_t, uint64_t, int);
267 static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
268 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
269 
270 /*
271  * Utility routines.
272  */
273 static void		moea64_enter_locked(mmu_t, pmap_t, vm_offset_t,
274 			    vm_page_t, vm_prot_t, boolean_t);
275 static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
276 static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
277 static void		moea64_kremove(mmu_t, vm_offset_t);
278 static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
279 			    vm_offset_t pa, vm_size_t sz);
280 
281 /*
282  * Kernel MMU interface
283  */
284 void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
285 void moea64_clear_modify(mmu_t, vm_page_t);
286 void moea64_clear_reference(mmu_t, vm_page_t);
287 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
288 void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
289 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
290     vm_prot_t);
291 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
292 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
293 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
294 void moea64_init(mmu_t);
295 boolean_t moea64_is_modified(mmu_t, vm_page_t);
296 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
297 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
298 boolean_t moea64_ts_referenced(mmu_t, vm_page_t);
299 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
300 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
301 int moea64_page_wired_mappings(mmu_t, vm_page_t);
302 void moea64_pinit(mmu_t, pmap_t);
303 void moea64_pinit0(mmu_t, pmap_t);
304 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
305 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
306 void moea64_qremove(mmu_t, vm_offset_t, int);
307 void moea64_release(mmu_t, pmap_t);
308 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
309 void moea64_remove_all(mmu_t, vm_page_t);
310 void moea64_remove_write(mmu_t, vm_page_t);
311 void moea64_zero_page(mmu_t, vm_page_t);
312 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
313 void moea64_zero_page_idle(mmu_t, vm_page_t);
314 void moea64_activate(mmu_t, struct thread *);
315 void moea64_deactivate(mmu_t, struct thread *);
316 void *moea64_mapdev(mmu_t, vm_offset_t, vm_size_t);
317 void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
318 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
319 vm_offset_t moea64_kextract(mmu_t, vm_offset_t);
320 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
321 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
322 void moea64_kenter(mmu_t, vm_offset_t, vm_offset_t);
323 boolean_t moea64_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
324 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
325 
326 static mmu_method_t moea64_methods[] = {
327 	MMUMETHOD(mmu_change_wiring,	moea64_change_wiring),
328 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
329 	MMUMETHOD(mmu_clear_reference,	moea64_clear_reference),
330 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
331 	MMUMETHOD(mmu_enter,		moea64_enter),
332 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
333 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
334 	MMUMETHOD(mmu_extract,		moea64_extract),
335 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
336 	MMUMETHOD(mmu_init,		moea64_init),
337 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
338 	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
339 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
340 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
341 	MMUMETHOD(mmu_map,     		moea64_map),
342 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
343 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
344 	MMUMETHOD(mmu_pinit,		moea64_pinit),
345 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
346 	MMUMETHOD(mmu_protect,		moea64_protect),
347 	MMUMETHOD(mmu_qenter,		moea64_qenter),
348 	MMUMETHOD(mmu_qremove,		moea64_qremove),
349 	MMUMETHOD(mmu_release,		moea64_release),
350 	MMUMETHOD(mmu_remove,		moea64_remove),
351 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
352 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
353 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
354 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
355 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
356 	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
357 	MMUMETHOD(mmu_activate,		moea64_activate),
358 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
359 	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
360 
361 	/* Internal interfaces */
362 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
363 	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
364 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
365 	MMUMETHOD(mmu_kextract,		moea64_kextract),
366 	MMUMETHOD(mmu_kenter,		moea64_kenter),
367 	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
368 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
369 
370 	{ 0, 0 }
371 };
372 
373 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
374 
375 static __inline u_int
376 va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
377 {
378 	uint64_t hash;
379 	int shift;
380 
381 	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
382 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
383 	    shift);
384 	return (hash & moea64_pteg_mask);
385 }
386 
387 static __inline struct pvo_head *
388 vm_page_to_pvoh(vm_page_t m)
389 {
390 
391 	return (&m->md.mdpg_pvoh);
392 }
393 
394 static __inline void
395 moea64_attr_clear(vm_page_t m, u_int64_t ptebit)
396 {
397 
398 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
399 	m->md.mdpg_attrs &= ~ptebit;
400 }
401 
402 static __inline u_int64_t
403 moea64_attr_fetch(vm_page_t m)
404 {
405 
406 	return (m->md.mdpg_attrs);
407 }
408 
409 static __inline void
410 moea64_attr_save(vm_page_t m, u_int64_t ptebit)
411 {
412 
413 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
414 	m->md.mdpg_attrs |= ptebit;
415 }
416 
417 static __inline void
418 moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
419     uint64_t pte_lo, int flags)
420 {
421 
422 	ASSERT_TABLE_LOCK();
423 
424 	/*
425 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
426 	 * set when the real pte is set in memory.
427 	 *
428 	 * Note: Don't set the valid bit for correct operation of tlb update.
429 	 */
430 	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
431 	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
432 
433 	if (flags & PVO_LARGE)
434 		pt->pte_hi |= LPTE_BIG;
435 
436 	pt->pte_lo = pte_lo;
437 }
438 
439 static __inline uint64_t
440 moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
441 {
442 	uint64_t pte_lo;
443 	int i;
444 
445 	if (ma != VM_MEMATTR_DEFAULT) {
446 		switch (ma) {
447 		case VM_MEMATTR_UNCACHEABLE:
448 			return (LPTE_I | LPTE_G);
449 		case VM_MEMATTR_WRITE_COMBINING:
450 		case VM_MEMATTR_WRITE_BACK:
451 		case VM_MEMATTR_PREFETCHABLE:
452 			return (LPTE_I);
453 		case VM_MEMATTR_WRITE_THROUGH:
454 			return (LPTE_W | LPTE_M);
455 		}
456 	}
457 
458 	/*
459 	 * Assume the page is cache inhibited and access is guarded unless
460 	 * it's in our available memory array.
461 	 */
462 	pte_lo = LPTE_I | LPTE_G;
463 	for (i = 0; i < pregions_sz; i++) {
464 		if ((pa >= pregions[i].mr_start) &&
465 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
466 			pte_lo &= ~(LPTE_I | LPTE_G);
467 			pte_lo |= LPTE_M;
468 			break;
469 		}
470 	}
471 
472 	return pte_lo;
473 }
474 
475 /*
476  * Quick sort callout for comparing memory regions.
477  */
478 static int	mr_cmp(const void *a, const void *b);
479 static int	om_cmp(const void *a, const void *b);
480 
481 static int
482 mr_cmp(const void *a, const void *b)
483 {
484 	const struct	mem_region *regiona;
485 	const struct	mem_region *regionb;
486 
487 	regiona = a;
488 	regionb = b;
489 	if (regiona->mr_start < regionb->mr_start)
490 		return (-1);
491 	else if (regiona->mr_start > regionb->mr_start)
492 		return (1);
493 	else
494 		return (0);
495 }
496 
497 static int
498 om_cmp(const void *a, const void *b)
499 {
500 	const struct	ofw_map *mapa;
501 	const struct	ofw_map *mapb;
502 
503 	mapa = a;
504 	mapb = b;
505 	if (mapa->om_pa_hi < mapb->om_pa_hi)
506 		return (-1);
507 	else if (mapa->om_pa_hi > mapb->om_pa_hi)
508 		return (1);
509 	else if (mapa->om_pa_lo < mapb->om_pa_lo)
510 		return (-1);
511 	else if (mapa->om_pa_lo > mapb->om_pa_lo)
512 		return (1);
513 	else
514 		return (0);
515 }
516 
517 static void
518 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
519 {
520 	struct ofw_map	translations[sz/sizeof(struct ofw_map)];
521 	register_t	msr;
522 	vm_offset_t	off;
523 	vm_paddr_t	pa_base;
524 	int		i;
525 
526 	bzero(translations, sz);
527 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
528 		panic("moea64_bootstrap: can't get ofw translations");
529 
530 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
531 	sz /= sizeof(*translations);
532 	qsort(translations, sz, sizeof (*translations), om_cmp);
533 
534 	for (i = 0; i < sz; i++) {
535 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
536 		    (uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
537 		    translations[i].om_len);
538 
539 		if (translations[i].om_pa_lo % PAGE_SIZE)
540 			panic("OFW translation not page-aligned!");
541 
542 		pa_base = translations[i].om_pa_lo;
543 
544 	      #ifdef __powerpc64__
545 		pa_base += (vm_offset_t)translations[i].om_pa_hi << 32;
546 	      #else
547 		if (translations[i].om_pa_hi)
548 			panic("OFW translations above 32-bit boundary!");
549 	      #endif
550 
551 		/* Now enter the pages for this mapping */
552 
553 		DISABLE_TRANS(msr);
554 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
555 			if (moea64_pvo_find_va(kernel_pmap,
556 			    translations[i].om_va + off) != NULL)
557 				continue;
558 
559 			moea64_kenter(mmup, translations[i].om_va + off,
560 			    pa_base + off);
561 		}
562 		ENABLE_TRANS(msr);
563 	}
564 }
565 
566 #ifdef __powerpc64__
567 static void
568 moea64_probe_large_page(void)
569 {
570 	uint16_t pvr = mfpvr() >> 16;
571 
572 	switch (pvr) {
573 	case IBM970:
574 	case IBM970FX:
575 	case IBM970MP:
576 		powerpc_sync(); isync();
577 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
578 		powerpc_sync(); isync();
579 
580 		/* FALLTHROUGH */
581 	case IBMCELLBE:
582 		moea64_large_page_size = 0x1000000; /* 16 MB */
583 		moea64_large_page_shift = 24;
584 		break;
585 	default:
586 		moea64_large_page_size = 0;
587 	}
588 
589 	moea64_large_page_mask = moea64_large_page_size - 1;
590 }
591 
592 static void
593 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
594 {
595 	struct slb *cache;
596 	struct slb entry;
597 	uint64_t esid, slbe;
598 	uint64_t i;
599 
600 	cache = PCPU_GET(slb);
601 	esid = va >> ADDR_SR_SHFT;
602 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
603 
604 	for (i = 0; i < 64; i++) {
605 		if (cache[i].slbe == (slbe | i))
606 			return;
607 	}
608 
609 	entry.slbe = slbe;
610 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
611 	if (large)
612 		entry.slbv |= SLBV_L;
613 
614 	slb_insert_kernel(entry.slbe, entry.slbv);
615 }
616 #endif
617 
618 static void
619 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
620     vm_offset_t kernelend)
621 {
622 	register_t msr;
623 	vm_paddr_t pa;
624 	vm_offset_t size, off;
625 	uint64_t pte_lo;
626 	int i;
627 
628 	if (moea64_large_page_size == 0)
629 		hw_direct_map = 0;
630 
631 	DISABLE_TRANS(msr);
632 	if (hw_direct_map) {
633 		PMAP_LOCK(kernel_pmap);
634 		for (i = 0; i < pregions_sz; i++) {
635 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
636 		     pregions[i].mr_size; pa += moea64_large_page_size) {
637 			pte_lo = LPTE_M;
638 
639 			/*
640 			 * Set memory access as guarded if prefetch within
641 			 * the page could exit the available physmem area.
642 			 */
643 			if (pa & moea64_large_page_mask) {
644 				pa &= moea64_large_page_mask;
645 				pte_lo |= LPTE_G;
646 			}
647 			if (pa + moea64_large_page_size >
648 			    pregions[i].mr_start + pregions[i].mr_size)
649 				pte_lo |= LPTE_G;
650 
651 			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
652 				    &moea64_pvo_kunmanaged, pa, pa,
653 				    pte_lo, PVO_WIRED | PVO_LARGE);
654 		  }
655 		}
656 		PMAP_UNLOCK(kernel_pmap);
657 	} else {
658 		size = sizeof(struct pvo_head) * moea64_pteg_count;
659 		off = (vm_offset_t)(moea64_pvo_table);
660 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
661 			moea64_kenter(mmup, pa, pa);
662 		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
663 		off = (vm_offset_t)(moea64_bpvo_pool);
664 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
665 		moea64_kenter(mmup, pa, pa);
666 
667 		/*
668 		 * Map certain important things, like ourselves.
669 		 *
670 		 * NOTE: We do not map the exception vector space. That code is
671 		 * used only in real mode, and leaving it unmapped allows us to
672 		 * catch NULL pointer deferences, instead of making NULL a valid
673 		 * address.
674 		 */
675 
676 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
677 		    pa += PAGE_SIZE)
678 			moea64_kenter(mmup, pa, pa);
679 	}
680 	ENABLE_TRANS(msr);
681 }
682 
683 void
684 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
685 {
686 	int		i, j;
687 	vm_size_t	physsz, hwphyssz;
688 
689 #ifndef __powerpc64__
690 	/* We don't have a direct map since there is no BAT */
691 	hw_direct_map = 0;
692 
693 	/* Make sure battable is zero, since we have no BAT */
694 	for (i = 0; i < 16; i++) {
695 		battable[i].batu = 0;
696 		battable[i].batl = 0;
697 	}
698 #else
699 	moea64_probe_large_page();
700 
701 	/* Use a direct map if we have large page support */
702 	if (moea64_large_page_size > 0)
703 		hw_direct_map = 1;
704 	else
705 		hw_direct_map = 0;
706 #endif
707 
708 	/* Get physical memory regions from firmware */
709 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
710 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
711 
712 	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
713 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
714 		panic("moea64_bootstrap: phys_avail too small");
715 	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
716 	phys_avail_count = 0;
717 	physsz = 0;
718 	hwphyssz = 0;
719 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
720 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
721 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
722 		    regions[i].mr_start + regions[i].mr_size,
723 		    regions[i].mr_size);
724 		if (hwphyssz != 0 &&
725 		    (physsz + regions[i].mr_size) >= hwphyssz) {
726 			if (physsz < hwphyssz) {
727 				phys_avail[j] = regions[i].mr_start;
728 				phys_avail[j + 1] = regions[i].mr_start +
729 				    hwphyssz - physsz;
730 				physsz = hwphyssz;
731 				phys_avail_count++;
732 			}
733 			break;
734 		}
735 		phys_avail[j] = regions[i].mr_start;
736 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
737 		phys_avail_count++;
738 		physsz += regions[i].mr_size;
739 	}
740 
741 	/* Check for overlap with the kernel and exception vectors */
742 	for (j = 0; j < 2*phys_avail_count; j+=2) {
743 		if (phys_avail[j] < EXC_LAST)
744 			phys_avail[j] += EXC_LAST;
745 
746 		if (kernelstart >= phys_avail[j] &&
747 		    kernelstart < phys_avail[j+1]) {
748 			if (kernelend < phys_avail[j+1]) {
749 				phys_avail[2*phys_avail_count] =
750 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
751 				phys_avail[2*phys_avail_count + 1] =
752 				    phys_avail[j+1];
753 				phys_avail_count++;
754 			}
755 
756 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
757 		}
758 
759 		if (kernelend >= phys_avail[j] &&
760 		    kernelend < phys_avail[j+1]) {
761 			if (kernelstart > phys_avail[j]) {
762 				phys_avail[2*phys_avail_count] = phys_avail[j];
763 				phys_avail[2*phys_avail_count + 1] =
764 				    kernelstart & ~PAGE_MASK;
765 				phys_avail_count++;
766 			}
767 
768 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
769 		}
770 	}
771 
772 	physmem = btoc(physsz);
773 
774 #ifdef PTEGCOUNT
775 	moea64_pteg_count = PTEGCOUNT;
776 #else
777 	moea64_pteg_count = 0x1000;
778 
779 	while (moea64_pteg_count < physmem)
780 		moea64_pteg_count <<= 1;
781 
782 	moea64_pteg_count >>= 1;
783 #endif /* PTEGCOUNT */
784 }
785 
786 void
787 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
788 {
789 	vm_size_t	size;
790 	register_t	msr;
791 	int		i;
792 
793 	/*
794 	 * Set PTEG mask
795 	 */
796 	moea64_pteg_mask = moea64_pteg_count - 1;
797 
798 	/*
799 	 * Allocate pv/overflow lists.
800 	 */
801 	size = sizeof(struct pvo_head) * moea64_pteg_count;
802 
803 	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
804 	    PAGE_SIZE);
805 	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
806 
807 	DISABLE_TRANS(msr);
808 	for (i = 0; i < moea64_pteg_count; i++)
809 		LIST_INIT(&moea64_pvo_table[i]);
810 	ENABLE_TRANS(msr);
811 
812 	/*
813 	 * Initialize the lock that synchronizes access to the pteg and pvo
814 	 * tables.
815 	 */
816 	mtx_init(&moea64_table_mutex, "pmap table", NULL, MTX_DEF |
817 	    MTX_RECURSE);
818 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
819 
820 	/*
821 	 * Initialise the unmanaged pvo pool.
822 	 */
823 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
824 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
825 	moea64_bpvo_pool_index = 0;
826 
827 	/*
828 	 * Make sure kernel vsid is allocated as well as VSID 0.
829 	 */
830 	#ifndef __powerpc64__
831 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
832 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
833 	moea64_vsid_bitmap[0] |= 1;
834 	#endif
835 
836 	/*
837 	 * Initialize the kernel pmap (which is statically allocated).
838 	 */
839 	#ifdef __powerpc64__
840 	for (i = 0; i < 64; i++) {
841 		pcpup->pc_slb[i].slbv = 0;
842 		pcpup->pc_slb[i].slbe = 0;
843 	}
844 	#else
845 	for (i = 0; i < 16; i++)
846 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
847 	#endif
848 
849 	kernel_pmap->pmap_phys = kernel_pmap;
850 	kernel_pmap->pm_active = ~0;
851 
852 	PMAP_LOCK_INIT(kernel_pmap);
853 
854 	/*
855 	 * Now map in all the other buffers we allocated earlier
856 	 */
857 
858 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
859 }
860 
861 void
862 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
863 {
864 	ihandle_t	mmui;
865 	phandle_t	chosen;
866 	phandle_t	mmu;
867 	size_t		sz;
868 	int		i;
869 	vm_offset_t	pa, va;
870 	void		*dpcpu;
871 
872 	/*
873 	 * Set up the Open Firmware pmap and add its mappings if not in real
874 	 * mode.
875 	 */
876 
877 	chosen = OF_finddevice("/chosen");
878 	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
879 	    mmu = OF_instance_to_package(mmui);
880 	    if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
881 		sz = 0;
882 	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
883 		panic("moea64_bootstrap: too many ofw translations");
884 
885 	    if (sz > 0)
886 		moea64_add_ofw_mappings(mmup, mmu, sz);
887 	}
888 
889 	/*
890 	 * Calculate the last available physical address.
891 	 */
892 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
893 		;
894 	Maxmem = powerpc_btop(phys_avail[i + 1]);
895 
896 	/*
897 	 * Initialize MMU and remap early physical mappings
898 	 */
899 	MMU_CPU_BOOTSTRAP(mmup,0);
900 	mtmsr(mfmsr() | PSL_DR | PSL_IR); isync();
901 	pmap_bootstrapped++;
902 	bs_remap_earlyboot();
903 
904 	/*
905 	 * Set the start and end of kva.
906 	 */
907 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
908 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
909 
910 	/*
911 	 * Map the entire KVA range into the SLB. We must not fault there.
912 	 */
913 	#ifdef __powerpc64__
914 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
915 		moea64_bootstrap_slb_prefault(va, 0);
916 	#endif
917 
918 	/*
919 	 * Figure out how far we can extend virtual_end into segment 16
920 	 * without running into existing mappings. Segment 16 is guaranteed
921 	 * to contain neither RAM nor devices (at least on Apple hardware),
922 	 * but will generally contain some OFW mappings we should not
923 	 * step on.
924 	 */
925 
926 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
927 	PMAP_LOCK(kernel_pmap);
928 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
929 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
930 		virtual_end += PAGE_SIZE;
931 	PMAP_UNLOCK(kernel_pmap);
932 	#endif
933 
934 	/*
935 	 * Allocate a kernel stack with a guard page for thread0 and map it
936 	 * into the kernel page map.
937 	 */
938 	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
939 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
940 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
941 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
942 	thread0.td_kstack = va;
943 	thread0.td_kstack_pages = KSTACK_PAGES;
944 	for (i = 0; i < KSTACK_PAGES; i++) {
945 		moea64_kenter(mmup, va, pa);
946 		pa += PAGE_SIZE;
947 		va += PAGE_SIZE;
948 	}
949 
950 	/*
951 	 * Allocate virtual address space for the message buffer.
952 	 */
953 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
954 	msgbufp = (struct msgbuf *)virtual_avail;
955 	va = virtual_avail;
956 	virtual_avail += round_page(msgbufsize);
957 	while (va < virtual_avail) {
958 		moea64_kenter(mmup, va, pa);
959 		pa += PAGE_SIZE;
960 		va += PAGE_SIZE;
961 	}
962 
963 	/*
964 	 * Allocate virtual address space for the dynamic percpu area.
965 	 */
966 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
967 	dpcpu = (void *)virtual_avail;
968 	va = virtual_avail;
969 	virtual_avail += DPCPU_SIZE;
970 	while (va < virtual_avail) {
971 		moea64_kenter(mmup, va, pa);
972 		pa += PAGE_SIZE;
973 		va += PAGE_SIZE;
974 	}
975 	dpcpu_init(dpcpu, 0);
976 
977 	/*
978 	 * Allocate some things for page zeroing. We put this directly
979 	 * in the page table, marked with LPTE_LOCKED, to avoid any
980 	 * of the PVO book-keeping or other parts of the VM system
981 	 * from even knowing that this hack exists.
982 	 */
983 
984 	if (!hw_direct_map) {
985 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
986 		    MTX_DEF);
987 		for (i = 0; i < 2; i++) {
988 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
989 			virtual_end -= PAGE_SIZE;
990 
991 			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
992 
993 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
994 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
995 			LOCK_TABLE();
996 			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
997 			    mmup, moea64_scratchpage_pvo[i]);
998 			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
999 			    |= LPTE_LOCKED;
1000 			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
1001 			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
1002 			    moea64_scratchpage_pvo[i]->pvo_vpn);
1003 			UNLOCK_TABLE();
1004 		}
1005 	}
1006 }
1007 
1008 /*
1009  * Activate a user pmap.  The pmap must be activated before its address
1010  * space can be accessed in any way.
1011  */
1012 void
1013 moea64_activate(mmu_t mmu, struct thread *td)
1014 {
1015 	pmap_t	pm;
1016 
1017 	pm = &td->td_proc->p_vmspace->vm_pmap;
1018 	pm->pm_active |= PCPU_GET(cpumask);
1019 
1020 	#ifdef __powerpc64__
1021 	PCPU_SET(userslb, pm->pm_slb);
1022 	#else
1023 	PCPU_SET(curpmap, pm->pmap_phys);
1024 	#endif
1025 }
1026 
1027 void
1028 moea64_deactivate(mmu_t mmu, struct thread *td)
1029 {
1030 	pmap_t	pm;
1031 
1032 	pm = &td->td_proc->p_vmspace->vm_pmap;
1033 	pm->pm_active &= ~(PCPU_GET(cpumask));
1034 	#ifdef __powerpc64__
1035 	PCPU_SET(userslb, NULL);
1036 	#else
1037 	PCPU_SET(curpmap, NULL);
1038 	#endif
1039 }
1040 
1041 void
1042 moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1043 {
1044 	struct	pvo_entry *pvo;
1045 	uintptr_t pt;
1046 	uint64_t vsid;
1047 	int	i, ptegidx;
1048 
1049 	PMAP_LOCK(pm);
1050 	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
1051 
1052 	if (pvo != NULL) {
1053 		LOCK_TABLE();
1054 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1055 
1056 		if (wired) {
1057 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1058 				pm->pm_stats.wired_count++;
1059 			pvo->pvo_vaddr |= PVO_WIRED;
1060 			pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
1061 		} else {
1062 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1063 				pm->pm_stats.wired_count--;
1064 			pvo->pvo_vaddr &= ~PVO_WIRED;
1065 			pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1066 		}
1067 
1068 		if (pt != -1) {
1069 			/* Update wiring flag in page table. */
1070 			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1071 			    pvo->pvo_vpn);
1072 		} else if (wired) {
1073 			/*
1074 			 * If we are wiring the page, and it wasn't in the
1075 			 * page table before, add it.
1076 			 */
1077 			vsid = PVO_VSID(pvo);
1078 			ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
1079 			    pvo->pvo_vaddr & PVO_LARGE);
1080 
1081 			i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
1082 
1083 			if (i >= 0) {
1084 				PVO_PTEGIDX_CLR(pvo);
1085 				PVO_PTEGIDX_SET(pvo, i);
1086 			}
1087 		}
1088 
1089 		UNLOCK_TABLE();
1090 	}
1091 	PMAP_UNLOCK(pm);
1092 }
1093 
1094 /*
1095  * This goes through and sets the physical address of our
1096  * special scratch PTE to the PA we want to zero or copy. Because
1097  * of locking issues (this can get called in pvo_enter() by
1098  * the UMA allocator), we can't use most other utility functions here
1099  */
1100 
1101 static __inline
1102 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1103 
1104 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1105 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1106 
1107 	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1108 	    ~(LPTE_WIMG | LPTE_RPGN);
1109 	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1110 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1111 	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1112 	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1113 	    moea64_scratchpage_pvo[which]->pvo_vpn);
1114 	isync();
1115 }
1116 
1117 void
1118 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1119 {
1120 	vm_offset_t	dst;
1121 	vm_offset_t	src;
1122 
1123 	dst = VM_PAGE_TO_PHYS(mdst);
1124 	src = VM_PAGE_TO_PHYS(msrc);
1125 
1126 	if (hw_direct_map) {
1127 		kcopy((void *)src, (void *)dst, PAGE_SIZE);
1128 	} else {
1129 		mtx_lock(&moea64_scratchpage_mtx);
1130 
1131 		moea64_set_scratchpage_pa(mmu, 0, src);
1132 		moea64_set_scratchpage_pa(mmu, 1, dst);
1133 
1134 		kcopy((void *)moea64_scratchpage_va[0],
1135 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1136 
1137 		mtx_unlock(&moea64_scratchpage_mtx);
1138 	}
1139 }
1140 
1141 void
1142 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1143 {
1144 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1145 
1146 	if (!moea64_initialized)
1147 		panic("moea64_zero_page: can't zero pa %#" PRIxPTR, pa);
1148 	if (size + off > PAGE_SIZE)
1149 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1150 
1151 	if (hw_direct_map) {
1152 		bzero((caddr_t)pa + off, size);
1153 	} else {
1154 		mtx_lock(&moea64_scratchpage_mtx);
1155 		moea64_set_scratchpage_pa(mmu, 0, pa);
1156 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1157 		mtx_unlock(&moea64_scratchpage_mtx);
1158 	}
1159 }
1160 
1161 /*
1162  * Zero a page of physical memory by temporarily mapping it
1163  */
1164 void
1165 moea64_zero_page(mmu_t mmu, vm_page_t m)
1166 {
1167 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1168 	vm_offset_t va, off;
1169 
1170 	if (!moea64_initialized)
1171 		panic("moea64_zero_page: can't zero pa %#zx", pa);
1172 
1173 	if (!hw_direct_map) {
1174 		mtx_lock(&moea64_scratchpage_mtx);
1175 
1176 		moea64_set_scratchpage_pa(mmu, 0, pa);
1177 		va = moea64_scratchpage_va[0];
1178 	} else {
1179 		va = pa;
1180 	}
1181 
1182 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1183 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1184 
1185 	if (!hw_direct_map)
1186 		mtx_unlock(&moea64_scratchpage_mtx);
1187 }
1188 
1189 void
1190 moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1191 {
1192 
1193 	moea64_zero_page(mmu, m);
1194 }
1195 
1196 /*
1197  * Map the given physical page at the specified virtual address in the
1198  * target pmap with the protection requested.  If specified the page
1199  * will be wired down.
1200  */
1201 void
1202 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1203     vm_prot_t prot, boolean_t wired)
1204 {
1205 
1206 	vm_page_lock_queues();
1207 	PMAP_LOCK(pmap);
1208 	moea64_enter_locked(mmu, pmap, va, m, prot, wired);
1209 	vm_page_unlock_queues();
1210 	PMAP_UNLOCK(pmap);
1211 }
1212 
1213 /*
1214  * Map the given physical page at the specified virtual address in the
1215  * target pmap with the protection requested.  If specified the page
1216  * will be wired down.
1217  *
1218  * The page queues and pmap must be locked.
1219  */
1220 
1221 static void
1222 moea64_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1223     vm_prot_t prot, boolean_t wired)
1224 {
1225 	struct		pvo_head *pvo_head;
1226 	uma_zone_t	zone;
1227 	vm_page_t	pg;
1228 	uint64_t	pte_lo;
1229 	u_int		pvo_flags;
1230 	int		error;
1231 
1232 	if (!moea64_initialized) {
1233 		pvo_head = &moea64_pvo_kunmanaged;
1234 		pg = NULL;
1235 		zone = moea64_upvo_zone;
1236 		pvo_flags = 0;
1237 	} else {
1238 		pvo_head = vm_page_to_pvoh(m);
1239 		pg = m;
1240 		zone = moea64_mpvo_zone;
1241 		pvo_flags = PVO_MANAGED;
1242 	}
1243 
1244 	if (pmap_bootstrapped)
1245 		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1246 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1247 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1248 	    (m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
1249 	    ("moea64_enter_locked: page %p is not busy", m));
1250 
1251 	/* XXX change the pvo head for fake pages */
1252 	if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS) {
1253 		pvo_flags &= ~PVO_MANAGED;
1254 		pvo_head = &moea64_pvo_kunmanaged;
1255 		zone = moea64_upvo_zone;
1256 	}
1257 
1258 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1259 
1260 	if (prot & VM_PROT_WRITE) {
1261 		pte_lo |= LPTE_BW;
1262 		if (pmap_bootstrapped &&
1263 		    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
1264 			vm_page_flag_set(m, PG_WRITEABLE);
1265 	} else
1266 		pte_lo |= LPTE_BR;
1267 
1268 	if ((prot & VM_PROT_EXECUTE) == 0)
1269 		pte_lo |= LPTE_NOEXEC;
1270 
1271 	if (wired)
1272 		pvo_flags |= PVO_WIRED;
1273 
1274 	if ((m->flags & PG_FICTITIOUS) != 0)
1275 		pvo_flags |= PVO_FAKE;
1276 
1277 	error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1278 	    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags);
1279 
1280 	/*
1281 	 * Flush the page from the instruction cache if this page is
1282 	 * mapped executable and cacheable.
1283 	 */
1284 	if ((pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0)
1285 		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1286 }
1287 
1288 static void
1289 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1290     vm_size_t sz)
1291 {
1292 
1293 	/*
1294 	 * This is much trickier than on older systems because
1295 	 * we can't sync the icache on physical addresses directly
1296 	 * without a direct map. Instead we check a couple of cases
1297 	 * where the memory is already mapped in and, failing that,
1298 	 * use the same trick we use for page zeroing to create
1299 	 * a temporary mapping for this physical address.
1300 	 */
1301 
1302 	if (!pmap_bootstrapped) {
1303 		/*
1304 		 * If PMAP is not bootstrapped, we are likely to be
1305 		 * in real mode.
1306 		 */
1307 		__syncicache((void *)pa, sz);
1308 	} else if (pmap == kernel_pmap) {
1309 		__syncicache((void *)va, sz);
1310 	} else if (hw_direct_map) {
1311 		__syncicache((void *)pa, sz);
1312 	} else {
1313 		/* Use the scratch page to set up a temp mapping */
1314 
1315 		mtx_lock(&moea64_scratchpage_mtx);
1316 
1317 		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1318 		__syncicache((void *)(moea64_scratchpage_va[1] +
1319 		    (va & ADDR_POFF)), sz);
1320 
1321 		mtx_unlock(&moea64_scratchpage_mtx);
1322 	}
1323 }
1324 
1325 /*
1326  * Maps a sequence of resident pages belonging to the same object.
1327  * The sequence begins with the given page m_start.  This page is
1328  * mapped at the given virtual address start.  Each subsequent page is
1329  * mapped at a virtual address that is offset from start by the same
1330  * amount as the page is offset from m_start within the object.  The
1331  * last page in the sequence is the page with the largest offset from
1332  * m_start that can be mapped at a virtual address less than the given
1333  * virtual address end.  Not every virtual page between start and end
1334  * is mapped; only those for which a resident page exists with the
1335  * corresponding offset from m_start are mapped.
1336  */
1337 void
1338 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1339     vm_page_t m_start, vm_prot_t prot)
1340 {
1341 	vm_page_t m;
1342 	vm_pindex_t diff, psize;
1343 
1344 	psize = atop(end - start);
1345 	m = m_start;
1346 	vm_page_lock_queues();
1347 	PMAP_LOCK(pm);
1348 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1349 		moea64_enter_locked(mmu, pm, start + ptoa(diff), m, prot &
1350 		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1351 		m = TAILQ_NEXT(m, listq);
1352 	}
1353 	vm_page_unlock_queues();
1354 	PMAP_UNLOCK(pm);
1355 }
1356 
1357 void
1358 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1359     vm_prot_t prot)
1360 {
1361 
1362 	vm_page_lock_queues();
1363 	PMAP_LOCK(pm);
1364 	moea64_enter_locked(mmu, pm, va, m,
1365 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1366 	vm_page_unlock_queues();
1367 	PMAP_UNLOCK(pm);
1368 }
1369 
1370 vm_paddr_t
1371 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1372 {
1373 	struct	pvo_entry *pvo;
1374 	vm_paddr_t pa;
1375 
1376 	PMAP_LOCK(pm);
1377 	pvo = moea64_pvo_find_va(pm, va);
1378 	if (pvo == NULL)
1379 		pa = 0;
1380 	else
1381 		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1382 		    (va - PVO_VADDR(pvo));
1383 	PMAP_UNLOCK(pm);
1384 	return (pa);
1385 }
1386 
1387 /*
1388  * Atomically extract and hold the physical page with the given
1389  * pmap and virtual address pair if that mapping permits the given
1390  * protection.
1391  */
1392 vm_page_t
1393 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1394 {
1395 	struct	pvo_entry *pvo;
1396 	vm_page_t m;
1397         vm_paddr_t pa;
1398 
1399 	m = NULL;
1400 	pa = 0;
1401 	PMAP_LOCK(pmap);
1402 retry:
1403 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1404 	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1405 	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1406 	     (prot & VM_PROT_WRITE) == 0)) {
1407 		if (vm_page_pa_tryrelock(pmap,
1408 			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1409 			goto retry;
1410 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1411 		vm_page_hold(m);
1412 	}
1413 	PA_UNLOCK_COND(pa);
1414 	PMAP_UNLOCK(pmap);
1415 	return (m);
1416 }
1417 
1418 static mmu_t installed_mmu;
1419 
1420 static void *
1421 moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1422 {
1423 	/*
1424 	 * This entire routine is a horrible hack to avoid bothering kmem
1425 	 * for new KVA addresses. Because this can get called from inside
1426 	 * kmem allocation routines, calling kmem for a new address here
1427 	 * can lead to multiply locking non-recursive mutexes.
1428 	 */
1429 	static vm_pindex_t color;
1430         vm_offset_t va;
1431 
1432         vm_page_t m;
1433         int pflags, needed_lock;
1434 
1435 	*flags = UMA_SLAB_PRIV;
1436 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1437 
1438 	if (needed_lock)
1439 		PMAP_LOCK(kernel_pmap);
1440 
1441         if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
1442                 pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
1443         else
1444                 pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
1445         if (wait & M_ZERO)
1446                 pflags |= VM_ALLOC_ZERO;
1447 
1448         for (;;) {
1449                 m = vm_page_alloc(NULL, color++, pflags | VM_ALLOC_NOOBJ);
1450                 if (m == NULL) {
1451                         if (wait & M_NOWAIT)
1452                                 return (NULL);
1453                         VM_WAIT;
1454                 } else
1455                         break;
1456         }
1457 
1458 	va = VM_PAGE_TO_PHYS(m);
1459 
1460 	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1461 	    &moea64_pvo_kunmanaged, va, VM_PAGE_TO_PHYS(m), LPTE_M,
1462 	    PVO_WIRED | PVO_BOOTSTRAP);
1463 
1464 	if (needed_lock)
1465 		PMAP_UNLOCK(kernel_pmap);
1466 
1467 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1468                 bzero((void *)va, PAGE_SIZE);
1469 
1470 	return (void *)va;
1471 }
1472 
1473 void
1474 moea64_init(mmu_t mmu)
1475 {
1476 
1477 	CTR0(KTR_PMAP, "moea64_init");
1478 
1479 	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1480 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1481 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1482 	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1483 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1484 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1485 
1486 	if (!hw_direct_map) {
1487 		installed_mmu = mmu;
1488 		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1489 		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1490 	}
1491 
1492 	moea64_initialized = TRUE;
1493 }
1494 
1495 boolean_t
1496 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1497 {
1498 
1499 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1500 	    ("moea64_is_referenced: page %p is not managed", m));
1501 	return (moea64_query_bit(mmu, m, PTE_REF));
1502 }
1503 
1504 boolean_t
1505 moea64_is_modified(mmu_t mmu, vm_page_t m)
1506 {
1507 
1508 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1509 	    ("moea64_is_modified: page %p is not managed", m));
1510 
1511 	/*
1512 	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
1513 	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
1514 	 * is clear, no PTEs can have LPTE_CHG set.
1515 	 */
1516 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1517 	if ((m->oflags & VPO_BUSY) == 0 &&
1518 	    (m->flags & PG_WRITEABLE) == 0)
1519 		return (FALSE);
1520 	return (moea64_query_bit(mmu, m, LPTE_CHG));
1521 }
1522 
1523 boolean_t
1524 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1525 {
1526 	struct pvo_entry *pvo;
1527 	boolean_t rv;
1528 
1529 	PMAP_LOCK(pmap);
1530 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1531 	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1532 	PMAP_UNLOCK(pmap);
1533 	return (rv);
1534 }
1535 
1536 void
1537 moea64_clear_reference(mmu_t mmu, vm_page_t m)
1538 {
1539 
1540 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1541 	    ("moea64_clear_reference: page %p is not managed", m));
1542 	moea64_clear_bit(mmu, m, LPTE_REF);
1543 }
1544 
1545 void
1546 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1547 {
1548 
1549 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1550 	    ("moea64_clear_modify: page %p is not managed", m));
1551 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1552 	KASSERT((m->oflags & VPO_BUSY) == 0,
1553 	    ("moea64_clear_modify: page %p is busy", m));
1554 
1555 	/*
1556 	 * If the page is not PG_WRITEABLE, then no PTEs can have LPTE_CHG
1557 	 * set.  If the object containing the page is locked and the page is
1558 	 * not VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
1559 	 */
1560 	if ((m->flags & PG_WRITEABLE) == 0)
1561 		return;
1562 	moea64_clear_bit(mmu, m, LPTE_CHG);
1563 }
1564 
1565 /*
1566  * Clear the write and modified bits in each of the given page's mappings.
1567  */
1568 void
1569 moea64_remove_write(mmu_t mmu, vm_page_t m)
1570 {
1571 	struct	pvo_entry *pvo;
1572 	uintptr_t pt;
1573 	pmap_t	pmap;
1574 	uint64_t lo;
1575 
1576 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1577 	    ("moea64_remove_write: page %p is not managed", m));
1578 
1579 	/*
1580 	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
1581 	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
1582 	 * is clear, no page table entries need updating.
1583 	 */
1584 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1585 	if ((m->oflags & VPO_BUSY) == 0 &&
1586 	    (m->flags & PG_WRITEABLE) == 0)
1587 		return;
1588 	vm_page_lock_queues();
1589 	lo = moea64_attr_fetch(m);
1590 	powerpc_sync();
1591 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1592 		pmap = pvo->pvo_pmap;
1593 		PMAP_LOCK(pmap);
1594 		LOCK_TABLE();
1595 		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1596 			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1597 			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1598 			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1599 			if (pt != -1) {
1600 				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1601 				lo |= pvo->pvo_pte.lpte.pte_lo;
1602 				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1603 				MOEA64_PTE_CHANGE(mmu, pt,
1604 				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1605 				if (pvo->pvo_pmap == kernel_pmap)
1606 					isync();
1607 			}
1608 		}
1609 		UNLOCK_TABLE();
1610 		PMAP_UNLOCK(pmap);
1611 	}
1612 	if ((lo & LPTE_CHG) != 0) {
1613 		moea64_attr_clear(m, LPTE_CHG);
1614 		vm_page_dirty(m);
1615 	}
1616 	vm_page_flag_clear(m, PG_WRITEABLE);
1617 	vm_page_unlock_queues();
1618 }
1619 
1620 /*
1621  *	moea64_ts_referenced:
1622  *
1623  *	Return a count of reference bits for a page, clearing those bits.
1624  *	It is not necessary for every reference bit to be cleared, but it
1625  *	is necessary that 0 only be returned when there are truly no
1626  *	reference bits set.
1627  *
1628  *	XXX: The exact number of bits to check and clear is a matter that
1629  *	should be tested and standardized at some point in the future for
1630  *	optimal aging of shared pages.
1631  */
1632 boolean_t
1633 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1634 {
1635 
1636 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1637 	    ("moea64_ts_referenced: page %p is not managed", m));
1638 	return (moea64_clear_bit(mmu, m, LPTE_REF));
1639 }
1640 
1641 /*
1642  * Modify the WIMG settings of all mappings for a page.
1643  */
1644 void
1645 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1646 {
1647 	struct	pvo_entry *pvo;
1648 	struct  pvo_head *pvo_head;
1649 	uintptr_t pt;
1650 	pmap_t	pmap;
1651 	uint64_t lo;
1652 
1653 	if (m->flags & PG_FICTITIOUS) {
1654 		m->md.mdpg_cache_attrs = ma;
1655 		return;
1656 	}
1657 
1658 	vm_page_lock_queues();
1659 	pvo_head = vm_page_to_pvoh(m);
1660 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1661 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1662 		pmap = pvo->pvo_pmap;
1663 		PMAP_LOCK(pmap);
1664 		LOCK_TABLE();
1665 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1666 		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1667 		pvo->pvo_pte.lpte.pte_lo |= lo;
1668 		if (pt != -1) {
1669 			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1670 			    pvo->pvo_vpn);
1671 			if (pvo->pvo_pmap == kernel_pmap)
1672 				isync();
1673 		}
1674 		UNLOCK_TABLE();
1675 		PMAP_UNLOCK(pmap);
1676 	}
1677 	m->md.mdpg_cache_attrs = ma;
1678 	vm_page_unlock_queues();
1679 }
1680 
1681 /*
1682  * Map a wired page into kernel virtual address space.
1683  */
1684 void
1685 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1686 {
1687 	uint64_t	pte_lo;
1688 	int		error;
1689 
1690 	pte_lo = moea64_calc_wimg(pa, ma);
1691 
1692 	PMAP_LOCK(kernel_pmap);
1693 	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1694 	    &moea64_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1695 
1696 	if (error != 0 && error != ENOENT)
1697 		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1698 		    pa, error);
1699 
1700 	/*
1701 	 * Flush the memory from the instruction cache.
1702 	 */
1703 	if ((pte_lo & (LPTE_I | LPTE_G)) == 0)
1704 		__syncicache((void *)va, PAGE_SIZE);
1705 	PMAP_UNLOCK(kernel_pmap);
1706 }
1707 
1708 void
1709 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1710 {
1711 
1712 	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1713 }
1714 
1715 /*
1716  * Extract the physical page address associated with the given kernel virtual
1717  * address.
1718  */
1719 vm_offset_t
1720 moea64_kextract(mmu_t mmu, vm_offset_t va)
1721 {
1722 	struct		pvo_entry *pvo;
1723 	vm_paddr_t pa;
1724 
1725 	/*
1726 	 * Shortcut the direct-mapped case when applicable.  We never put
1727 	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1728 	 */
1729 	if (va < VM_MIN_KERNEL_ADDRESS)
1730 		return (va);
1731 
1732 	PMAP_LOCK(kernel_pmap);
1733 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1734 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1735 	    va));
1736 	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) + (va - PVO_VADDR(pvo));
1737 	PMAP_UNLOCK(kernel_pmap);
1738 	return (pa);
1739 }
1740 
1741 /*
1742  * Remove a wired page from kernel virtual address space.
1743  */
1744 void
1745 moea64_kremove(mmu_t mmu, vm_offset_t va)
1746 {
1747 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1748 }
1749 
1750 /*
1751  * Map a range of physical addresses into kernel virtual address space.
1752  *
1753  * The value passed in *virt is a suggested virtual address for the mapping.
1754  * Architectures which can support a direct-mapped physical to virtual region
1755  * can return the appropriate address within that region, leaving '*virt'
1756  * unchanged.  We cannot and therefore do not; *virt is updated with the
1757  * first usable address after the mapped region.
1758  */
1759 vm_offset_t
1760 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1761     vm_offset_t pa_end, int prot)
1762 {
1763 	vm_offset_t	sva, va;
1764 
1765 	sva = *virt;
1766 	va = sva;
1767 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1768 		moea64_kenter(mmu, va, pa_start);
1769 	*virt = va;
1770 
1771 	return (sva);
1772 }
1773 
1774 /*
1775  * Returns true if the pmap's pv is one of the first
1776  * 16 pvs linked to from this page.  This count may
1777  * be changed upwards or downwards in the future; it
1778  * is only necessary that true be returned for a small
1779  * subset of pmaps for proper page aging.
1780  */
1781 boolean_t
1782 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1783 {
1784         int loops;
1785 	struct pvo_entry *pvo;
1786 	boolean_t rv;
1787 
1788 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1789 	    ("moea64_page_exists_quick: page %p is not managed", m));
1790 	loops = 0;
1791 	rv = FALSE;
1792 	vm_page_lock_queues();
1793 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1794 		if (pvo->pvo_pmap == pmap) {
1795 			rv = TRUE;
1796 			break;
1797 		}
1798 		if (++loops >= 16)
1799 			break;
1800 	}
1801 	vm_page_unlock_queues();
1802 	return (rv);
1803 }
1804 
1805 /*
1806  * Return the number of managed mappings to the given physical page
1807  * that are wired.
1808  */
1809 int
1810 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1811 {
1812 	struct pvo_entry *pvo;
1813 	int count;
1814 
1815 	count = 0;
1816 	if ((m->flags & PG_FICTITIOUS) != 0)
1817 		return (count);
1818 	vm_page_lock_queues();
1819 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1820 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1821 			count++;
1822 	vm_page_unlock_queues();
1823 	return (count);
1824 }
1825 
1826 static uintptr_t	moea64_vsidcontext;
1827 
1828 uintptr_t
1829 moea64_get_unique_vsid(void) {
1830 	u_int entropy;
1831 	register_t hash;
1832 	uint32_t mask;
1833 	int i;
1834 
1835 	entropy = 0;
1836 	__asm __volatile("mftb %0" : "=r"(entropy));
1837 
1838 	mtx_lock(&moea64_slb_mutex);
1839 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1840 		u_int	n;
1841 
1842 		/*
1843 		 * Create a new value by mutiplying by a prime and adding in
1844 		 * entropy from the timebase register.  This is to make the
1845 		 * VSID more random so that the PT hash function collides
1846 		 * less often.  (Note that the prime casues gcc to do shifts
1847 		 * instead of a multiply.)
1848 		 */
1849 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1850 		hash = moea64_vsidcontext & (NVSIDS - 1);
1851 		if (hash == 0)		/* 0 is special, avoid it */
1852 			continue;
1853 		n = hash >> 5;
1854 		mask = 1 << (hash & (VSID_NBPW - 1));
1855 		hash = (moea64_vsidcontext & VSID_HASHMASK);
1856 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1857 			/* anything free in this bucket? */
1858 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1859 				entropy = (moea64_vsidcontext >> 20);
1860 				continue;
1861 			}
1862 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1863 			mask = 1 << i;
1864 			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1865 			hash |= i;
1866 		}
1867 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1868 		    ("Allocating in-use VSID %#zx\n", hash));
1869 		moea64_vsid_bitmap[n] |= mask;
1870 		mtx_unlock(&moea64_slb_mutex);
1871 		return (hash);
1872 	}
1873 
1874 	mtx_unlock(&moea64_slb_mutex);
1875 	panic("%s: out of segments",__func__);
1876 }
1877 
1878 #ifdef __powerpc64__
1879 void
1880 moea64_pinit(mmu_t mmu, pmap_t pmap)
1881 {
1882 	PMAP_LOCK_INIT(pmap);
1883 
1884 	pmap->pm_slb_tree_root = slb_alloc_tree();
1885 	pmap->pm_slb = slb_alloc_user_cache();
1886 	pmap->pm_slb_len = 0;
1887 }
1888 #else
1889 void
1890 moea64_pinit(mmu_t mmu, pmap_t pmap)
1891 {
1892 	int	i;
1893 	uint32_t hash;
1894 
1895 	PMAP_LOCK_INIT(pmap);
1896 
1897 	if (pmap_bootstrapped)
1898 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1899 		    (vm_offset_t)pmap);
1900 	else
1901 		pmap->pmap_phys = pmap;
1902 
1903 	/*
1904 	 * Allocate some segment registers for this pmap.
1905 	 */
1906 	hash = moea64_get_unique_vsid();
1907 
1908 	for (i = 0; i < 16; i++)
1909 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1910 
1911 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1912 }
1913 #endif
1914 
1915 /*
1916  * Initialize the pmap associated with process 0.
1917  */
1918 void
1919 moea64_pinit0(mmu_t mmu, pmap_t pm)
1920 {
1921 	moea64_pinit(mmu, pm);
1922 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1923 }
1924 
1925 /*
1926  * Set the physical protection on the specified range of this map as requested.
1927  */
1928 void
1929 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1930     vm_prot_t prot)
1931 {
1932 	struct	pvo_entry *pvo;
1933 	uintptr_t pt;
1934 
1935 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1936 	    eva, prot);
1937 
1938 
1939 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1940 	    ("moea64_protect: non current pmap"));
1941 
1942 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1943 		moea64_remove(mmu, pm, sva, eva);
1944 		return;
1945 	}
1946 
1947 	vm_page_lock_queues();
1948 	PMAP_LOCK(pm);
1949 	for (; sva < eva; sva += PAGE_SIZE) {
1950 		pvo = moea64_pvo_find_va(pm, sva);
1951 		if (pvo == NULL)
1952 			continue;
1953 
1954 		/*
1955 		 * Grab the PTE pointer before we diddle with the cached PTE
1956 		 * copy.
1957 		 */
1958 		LOCK_TABLE();
1959 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1960 
1961 		/*
1962 		 * Change the protection of the page.
1963 		 */
1964 		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1965 		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1966 		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1967 		if ((prot & VM_PROT_EXECUTE) == 0)
1968 			pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1969 
1970 		/*
1971 		 * If the PVO is in the page table, update that pte as well.
1972 		 */
1973 		if (pt != -1) {
1974 			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1975 			    pvo->pvo_vpn);
1976 			if ((pvo->pvo_pte.lpte.pte_lo &
1977 			    (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1978 				moea64_syncicache(mmu, pm, sva,
1979 				    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN,
1980 				    PAGE_SIZE);
1981 			}
1982 		}
1983 		UNLOCK_TABLE();
1984 	}
1985 	vm_page_unlock_queues();
1986 	PMAP_UNLOCK(pm);
1987 }
1988 
1989 /*
1990  * Map a list of wired pages into kernel virtual address space.  This is
1991  * intended for temporary mappings which do not need page modification or
1992  * references recorded.  Existing mappings in the region are overwritten.
1993  */
1994 void
1995 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
1996 {
1997 	while (count-- > 0) {
1998 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1999 		va += PAGE_SIZE;
2000 		m++;
2001 	}
2002 }
2003 
2004 /*
2005  * Remove page mappings from kernel virtual address space.  Intended for
2006  * temporary mappings entered by moea64_qenter.
2007  */
2008 void
2009 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2010 {
2011 	while (count-- > 0) {
2012 		moea64_kremove(mmu, va);
2013 		va += PAGE_SIZE;
2014 	}
2015 }
2016 
2017 void
2018 moea64_release_vsid(uint64_t vsid)
2019 {
2020 	int idx, mask;
2021 
2022 	mtx_lock(&moea64_slb_mutex);
2023 	idx = vsid & (NVSIDS-1);
2024 	mask = 1 << (idx % VSID_NBPW);
2025 	idx /= VSID_NBPW;
2026 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2027 	    ("Freeing unallocated VSID %#jx", vsid));
2028 	moea64_vsid_bitmap[idx] &= ~mask;
2029 	mtx_unlock(&moea64_slb_mutex);
2030 }
2031 
2032 
2033 void
2034 moea64_release(mmu_t mmu, pmap_t pmap)
2035 {
2036 
2037 	/*
2038 	 * Free segment registers' VSIDs
2039 	 */
2040     #ifdef __powerpc64__
2041 	slb_free_tree(pmap);
2042 	slb_free_user_cache(pmap->pm_slb);
2043     #else
2044 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2045 
2046 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2047     #endif
2048 
2049 	PMAP_LOCK_DESTROY(pmap);
2050 }
2051 
2052 /*
2053  * Remove the given range of addresses from the specified map.
2054  */
2055 void
2056 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2057 {
2058 	struct	pvo_entry *pvo;
2059 
2060 	vm_page_lock_queues();
2061 	PMAP_LOCK(pm);
2062 	for (; sva < eva; sva += PAGE_SIZE) {
2063 		pvo = moea64_pvo_find_va(pm, sva);
2064 		if (pvo != NULL)
2065 			moea64_pvo_remove(mmu, pvo);
2066 	}
2067 	vm_page_unlock_queues();
2068 	PMAP_UNLOCK(pm);
2069 }
2070 
2071 /*
2072  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2073  * will reflect changes in pte's back to the vm_page.
2074  */
2075 void
2076 moea64_remove_all(mmu_t mmu, vm_page_t m)
2077 {
2078 	struct  pvo_head *pvo_head;
2079 	struct	pvo_entry *pvo, *next_pvo;
2080 	pmap_t	pmap;
2081 
2082 	vm_page_lock_queues();
2083 	pvo_head = vm_page_to_pvoh(m);
2084 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2085 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
2086 
2087 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2088 		pmap = pvo->pvo_pmap;
2089 		PMAP_LOCK(pmap);
2090 		moea64_pvo_remove(mmu, pvo);
2091 		PMAP_UNLOCK(pmap);
2092 	}
2093 	if ((m->flags & PG_WRITEABLE) && moea64_is_modified(mmu, m)) {
2094 		moea64_attr_clear(m, LPTE_CHG);
2095 		vm_page_dirty(m);
2096 	}
2097 	vm_page_flag_clear(m, PG_WRITEABLE);
2098 	vm_page_unlock_queues();
2099 }
2100 
2101 /*
2102  * Allocate a physical page of memory directly from the phys_avail map.
2103  * Can only be called from moea64_bootstrap before avail start and end are
2104  * calculated.
2105  */
2106 vm_offset_t
2107 moea64_bootstrap_alloc(vm_size_t size, u_int align)
2108 {
2109 	vm_offset_t	s, e;
2110 	int		i, j;
2111 
2112 	size = round_page(size);
2113 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2114 		if (align != 0)
2115 			s = (phys_avail[i] + align - 1) & ~(align - 1);
2116 		else
2117 			s = phys_avail[i];
2118 		e = s + size;
2119 
2120 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2121 			continue;
2122 
2123 		if (s + size > platform_real_maxaddr())
2124 			continue;
2125 
2126 		if (s == phys_avail[i]) {
2127 			phys_avail[i] += size;
2128 		} else if (e == phys_avail[i + 1]) {
2129 			phys_avail[i + 1] -= size;
2130 		} else {
2131 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2132 				phys_avail[j] = phys_avail[j - 2];
2133 				phys_avail[j + 1] = phys_avail[j - 1];
2134 			}
2135 
2136 			phys_avail[i + 3] = phys_avail[i + 1];
2137 			phys_avail[i + 1] = s;
2138 			phys_avail[i + 2] = e;
2139 			phys_avail_count++;
2140 		}
2141 
2142 		return (s);
2143 	}
2144 	panic("moea64_bootstrap_alloc: could not allocate memory");
2145 }
2146 
2147 static int
2148 moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2149     struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2150     uint64_t pte_lo, int flags)
2151 {
2152 	struct	 pvo_entry *pvo;
2153 	uint64_t vsid;
2154 	int	 first;
2155 	u_int	 ptegidx;
2156 	int	 i;
2157 	int      bootstrap;
2158 
2159 	/*
2160 	 * One nasty thing that can happen here is that the UMA calls to
2161 	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2162 	 * which calls UMA...
2163 	 *
2164 	 * We break the loop by detecting recursion and allocating out of
2165 	 * the bootstrap pool.
2166 	 */
2167 
2168 	first = 0;
2169 	bootstrap = (flags & PVO_BOOTSTRAP);
2170 
2171 	if (!moea64_initialized)
2172 		bootstrap = 1;
2173 
2174 	/*
2175 	 * Compute the PTE Group index.
2176 	 */
2177 	va &= ~ADDR_POFF;
2178 	vsid = va_to_vsid(pm, va);
2179 	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2180 
2181 	/*
2182 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2183 	 * there is a mapping.
2184 	 */
2185 	LOCK_TABLE();
2186 
2187 	moea64_pvo_enter_calls++;
2188 
2189 	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2190 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2191 			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2192 			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2193 			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2194 			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2195 					/* Re-insert if spilled */
2196 					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2197 					    &pvo->pvo_pte.lpte);
2198 					if (i >= 0)
2199 						PVO_PTEGIDX_SET(pvo, i);
2200 					moea64_pte_overflow--;
2201 				}
2202 				UNLOCK_TABLE();
2203 				return (0);
2204 			}
2205 			moea64_pvo_remove(mmu, pvo);
2206 			break;
2207 		}
2208 	}
2209 
2210 	/*
2211 	 * If we aren't overwriting a mapping, try to allocate.
2212 	 */
2213 	if (bootstrap) {
2214 		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2215 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2216 			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2217 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2218 		}
2219 		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2220 		moea64_bpvo_pool_index++;
2221 		bootstrap = 1;
2222 	} else {
2223 		/*
2224 		 * Note: drop the table lock around the UMA allocation in
2225 		 * case the UMA allocator needs to manipulate the page
2226 		 * table. The mapping we are working with is already
2227 		 * protected by the PMAP lock.
2228 		 */
2229 		UNLOCK_TABLE();
2230 		pvo = uma_zalloc(zone, M_NOWAIT);
2231 		LOCK_TABLE();
2232 	}
2233 
2234 	if (pvo == NULL) {
2235 		UNLOCK_TABLE();
2236 		return (ENOMEM);
2237 	}
2238 
2239 	moea64_pvo_entries++;
2240 	pvo->pvo_vaddr = va;
2241 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2242 	    | (vsid << 16);
2243 	pvo->pvo_pmap = pm;
2244 	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2245 	pvo->pvo_vaddr &= ~ADDR_POFF;
2246 
2247 	if (flags & PVO_WIRED)
2248 		pvo->pvo_vaddr |= PVO_WIRED;
2249 	if (pvo_head != &moea64_pvo_kunmanaged)
2250 		pvo->pvo_vaddr |= PVO_MANAGED;
2251 	if (bootstrap)
2252 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2253 	if (flags & PVO_FAKE)
2254 		pvo->pvo_vaddr |= PVO_FAKE;
2255 	if (flags & PVO_LARGE)
2256 		pvo->pvo_vaddr |= PVO_LARGE;
2257 
2258 	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2259 	    (uint64_t)(pa) | pte_lo, flags);
2260 
2261 	/*
2262 	 * Remember if the list was empty and therefore will be the first
2263 	 * item.
2264 	 */
2265 	if (LIST_FIRST(pvo_head) == NULL)
2266 		first = 1;
2267 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2268 
2269 	if (pvo->pvo_vaddr & PVO_WIRED) {
2270 		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2271 		pm->pm_stats.wired_count++;
2272 	}
2273 	pm->pm_stats.resident_count++;
2274 
2275 	/*
2276 	 * We hope this succeeds but it isn't required.
2277 	 */
2278 	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2279 	if (i >= 0) {
2280 		PVO_PTEGIDX_SET(pvo, i);
2281 	} else {
2282 		panic("moea64_pvo_enter: overflow");
2283 		moea64_pte_overflow++;
2284 	}
2285 
2286 	if (pm == kernel_pmap)
2287 		isync();
2288 
2289 	UNLOCK_TABLE();
2290 
2291 #ifdef __powerpc64__
2292 	/*
2293 	 * Make sure all our bootstrap mappings are in the SLB as soon
2294 	 * as virtual memory is switched on.
2295 	 */
2296 	if (!pmap_bootstrapped)
2297 		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2298 #endif
2299 
2300 	return (first ? ENOENT : 0);
2301 }
2302 
2303 static void
2304 moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2305 {
2306 	uintptr_t pt;
2307 
2308 	/*
2309 	 * If there is an active pte entry, we need to deactivate it (and
2310 	 * save the ref & cfg bits).
2311 	 */
2312 	LOCK_TABLE();
2313 	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2314 	if (pt != -1) {
2315 		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2316 		PVO_PTEGIDX_CLR(pvo);
2317 	} else {
2318 		moea64_pte_overflow--;
2319 	}
2320 
2321 	/*
2322 	 * Update our statistics.
2323 	 */
2324 	pvo->pvo_pmap->pm_stats.resident_count--;
2325 	if (pvo->pvo_vaddr & PVO_WIRED)
2326 		pvo->pvo_pmap->pm_stats.wired_count--;
2327 
2328 	/*
2329 	 * Save the REF/CHG bits into their cache if the page is managed.
2330 	 */
2331 	if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
2332 		struct	vm_page *pg;
2333 
2334 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2335 		if (pg != NULL) {
2336 			moea64_attr_save(pg, pvo->pvo_pte.lpte.pte_lo &
2337 			    (LPTE_REF | LPTE_CHG));
2338 		}
2339 	}
2340 
2341 	/*
2342 	 * Remove this PVO from the PV list.
2343 	 */
2344 	LIST_REMOVE(pvo, pvo_vlink);
2345 
2346 	/*
2347 	 * Remove this from the overflow list and return it to the pool
2348 	 * if we aren't going to reuse it.
2349 	 */
2350 	LIST_REMOVE(pvo, pvo_olink);
2351 
2352 	moea64_pvo_entries--;
2353 	moea64_pvo_remove_calls++;
2354 
2355 	UNLOCK_TABLE();
2356 
2357 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2358 		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2359 		    moea64_upvo_zone, pvo);
2360 }
2361 
2362 static struct pvo_entry *
2363 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2364 {
2365 	struct		pvo_entry *pvo;
2366 	int		ptegidx;
2367 	uint64_t	vsid;
2368 	#ifdef __powerpc64__
2369 	uint64_t	slbv;
2370 
2371 	if (pm == kernel_pmap) {
2372 		slbv = kernel_va_to_slbv(va);
2373 	} else {
2374 		struct slb *slb;
2375 		slb = user_va_to_slb_entry(pm, va);
2376 		/* The page is not mapped if the segment isn't */
2377 		if (slb == NULL)
2378 			return NULL;
2379 		slbv = slb->slbv;
2380 	}
2381 
2382 	vsid = (slbv & SLBV_VSID_MASK) >> SLBV_VSID_SHIFT;
2383 	if (slbv & SLBV_L)
2384 		va &= ~moea64_large_page_mask;
2385 	else
2386 		va &= ~ADDR_POFF;
2387 	ptegidx = va_to_pteg(vsid, va, slbv & SLBV_L);
2388 	#else
2389 	va &= ~ADDR_POFF;
2390 	vsid = va_to_vsid(pm, va);
2391 	ptegidx = va_to_pteg(vsid, va, 0);
2392 	#endif
2393 
2394 	LOCK_TABLE();
2395 	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2396 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va)
2397 			break;
2398 	}
2399 	UNLOCK_TABLE();
2400 
2401 	return (pvo);
2402 }
2403 
2404 static boolean_t
2405 moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2406 {
2407 	struct	pvo_entry *pvo;
2408 	uintptr_t pt;
2409 
2410 	if (moea64_attr_fetch(m) & ptebit)
2411 		return (TRUE);
2412 
2413 	vm_page_lock_queues();
2414 
2415 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2416 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2417 
2418 		/*
2419 		 * See if we saved the bit off.  If so, cache it and return
2420 		 * success.
2421 		 */
2422 		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2423 			moea64_attr_save(m, ptebit);
2424 			MOEA_PVO_CHECK(pvo);	/* sanity check */
2425 			vm_page_unlock_queues();
2426 			return (TRUE);
2427 		}
2428 	}
2429 
2430 	/*
2431 	 * No luck, now go through the hard part of looking at the PTEs
2432 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2433 	 * the PTEs.
2434 	 */
2435 	powerpc_sync();
2436 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2437 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2438 
2439 		/*
2440 		 * See if this pvo has a valid PTE.  if so, fetch the
2441 		 * REF/CHG bits from the valid PTE.  If the appropriate
2442 		 * ptebit is set, cache it and return success.
2443 		 */
2444 		LOCK_TABLE();
2445 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2446 		if (pt != -1) {
2447 			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2448 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2449 				UNLOCK_TABLE();
2450 
2451 				moea64_attr_save(m, ptebit);
2452 				MOEA_PVO_CHECK(pvo);	/* sanity check */
2453 				vm_page_unlock_queues();
2454 				return (TRUE);
2455 			}
2456 		}
2457 		UNLOCK_TABLE();
2458 	}
2459 
2460 	vm_page_unlock_queues();
2461 	return (FALSE);
2462 }
2463 
2464 static u_int
2465 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2466 {
2467 	u_int	count;
2468 	struct	pvo_entry *pvo;
2469 	uintptr_t pt;
2470 
2471 	vm_page_lock_queues();
2472 
2473 	/*
2474 	 * Clear the cached value.
2475 	 */
2476 	moea64_attr_clear(m, ptebit);
2477 
2478 	/*
2479 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2480 	 * we can reset the right ones).  note that since the pvo entries and
2481 	 * list heads are accessed via BAT0 and are never placed in the page
2482 	 * table, we don't have to worry about further accesses setting the
2483 	 * REF/CHG bits.
2484 	 */
2485 	powerpc_sync();
2486 
2487 	/*
2488 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2489 	 * valid pte clear the ptebit from the valid pte.
2490 	 */
2491 	count = 0;
2492 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2493 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2494 
2495 		LOCK_TABLE();
2496 		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2497 		if (pt != -1) {
2498 			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2499 			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2500 				count++;
2501 				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2502 				    pvo->pvo_vpn, ptebit);
2503 			}
2504 		}
2505 		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2506 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2507 		UNLOCK_TABLE();
2508 	}
2509 
2510 	vm_page_unlock_queues();
2511 	return (count);
2512 }
2513 
2514 boolean_t
2515 moea64_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2516 {
2517 	struct pvo_entry *pvo;
2518 	vm_offset_t ppa;
2519 	int error = 0;
2520 
2521 	PMAP_LOCK(kernel_pmap);
2522 	for (ppa = pa & ~ADDR_POFF; ppa < pa + size; ppa += PAGE_SIZE) {
2523 		pvo = moea64_pvo_find_va(kernel_pmap, ppa);
2524 		if (pvo == NULL ||
2525 		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2526 			error = EFAULT;
2527 			break;
2528 		}
2529 	}
2530 	PMAP_UNLOCK(kernel_pmap);
2531 
2532 	return (error);
2533 }
2534 
2535 /*
2536  * Map a set of physical memory pages into the kernel virtual
2537  * address space. Return a pointer to where it is mapped. This
2538  * routine is intended to be used for mapping device memory,
2539  * NOT real memory.
2540  */
2541 void *
2542 moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2543 {
2544 	vm_offset_t va, tmpva, ppa, offset;
2545 
2546 	ppa = trunc_page(pa);
2547 	offset = pa & PAGE_MASK;
2548 	size = roundup(offset + size, PAGE_SIZE);
2549 
2550 	va = kmem_alloc_nofault(kernel_map, size);
2551 
2552 	if (!va)
2553 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2554 
2555 	for (tmpva = va; size > 0;) {
2556 		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2557 		size -= PAGE_SIZE;
2558 		tmpva += PAGE_SIZE;
2559 		ppa += PAGE_SIZE;
2560 	}
2561 
2562 	return ((void *)(va + offset));
2563 }
2564 
2565 void *
2566 moea64_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2567 {
2568 
2569 	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2570 }
2571 
2572 void
2573 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2574 {
2575 	vm_offset_t base, offset;
2576 
2577 	base = trunc_page(va);
2578 	offset = va & PAGE_MASK;
2579 	size = roundup(offset + size, PAGE_SIZE);
2580 
2581 	kmem_free(kernel_map, base, size);
2582 }
2583 
2584 void
2585 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2586 {
2587 	struct pvo_entry *pvo;
2588 	vm_offset_t lim;
2589 	vm_paddr_t pa;
2590 	vm_size_t len;
2591 
2592 	PMAP_LOCK(pm);
2593 	while (sz > 0) {
2594 		lim = round_page(va);
2595 		len = MIN(lim - va, sz);
2596 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2597 		if (pvo != NULL) {
2598 			pa = (pvo->pvo_pte.pte.pte_lo & LPTE_RPGN) |
2599 			    (va & ADDR_POFF);
2600 			moea64_syncicache(mmu, pm, va, pa, len);
2601 		}
2602 		va += len;
2603 		sz -= len;
2604 	}
2605 	PMAP_UNLOCK(pm);
2606 }
2607