xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision 09a53ad8f1318c5daae6cfb19d97f4f6459f0013)
1 /*-
2  * Copyright (c) 2008-2015 Nathan Whitehorn
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * Manages physical address maps.
32  *
33  * Since the information managed by this module is also stored by the
34  * logical address mapping module, this module may throw away valid virtual
35  * to physical mappings at almost any time.  However, invalidations of
36  * mappings must be done as requested.
37  *
38  * In order to cope with hardware architectures which make virtual to
39  * physical map invalidates expensive, this module may delay invalidate
40  * reduced protection operations until such time as they are actually
41  * necessary.  This module is given full information as to which processors
42  * are currently using which maps, and to when physical maps must be made
43  * correct.
44  */
45 
46 #include "opt_compat.h"
47 #include "opt_kstack_pages.h"
48 
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51 #include <sys/conf.h>
52 #include <sys/queue.h>
53 #include <sys/cpuset.h>
54 #include <sys/kerneldump.h>
55 #include <sys/ktr.h>
56 #include <sys/lock.h>
57 #include <sys/msgbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/proc.h>
61 #include <sys/rwlock.h>
62 #include <sys/sched.h>
63 #include <sys/sysctl.h>
64 #include <sys/systm.h>
65 #include <sys/vmmeter.h>
66 #include <sys/smp.h>
67 
68 #include <sys/kdb.h>
69 
70 #include <dev/ofw/openfirm.h>
71 
72 #include <vm/vm.h>
73 #include <vm/vm_param.h>
74 #include <vm/vm_kern.h>
75 #include <vm/vm_page.h>
76 #include <vm/vm_map.h>
77 #include <vm/vm_object.h>
78 #include <vm/vm_extern.h>
79 #include <vm/vm_pageout.h>
80 #include <vm/uma.h>
81 
82 #include <machine/_inttypes.h>
83 #include <machine/cpu.h>
84 #include <machine/platform.h>
85 #include <machine/frame.h>
86 #include <machine/md_var.h>
87 #include <machine/psl.h>
88 #include <machine/bat.h>
89 #include <machine/hid.h>
90 #include <machine/pte.h>
91 #include <machine/sr.h>
92 #include <machine/trap.h>
93 #include <machine/mmuvar.h>
94 
95 #include "mmu_oea64.h"
96 #include "mmu_if.h"
97 #include "moea64_if.h"
98 
99 void moea64_release_vsid(uint64_t vsid);
100 uintptr_t moea64_get_unique_vsid(void);
101 
102 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
103 #define ENABLE_TRANS(msr)	mtmsr(msr)
104 
105 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
106 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
107 #define	VSID_HASH_MASK		0x0000007fffffffffULL
108 
109 /*
110  * Locking semantics:
111  *
112  * There are two locks of interest: the page locks and the pmap locks, which
113  * protect their individual PVO lists and are locked in that order. The contents
114  * of all PVO entries are protected by the locks of their respective pmaps.
115  * The pmap of any PVO is guaranteed not to change so long as the PVO is linked
116  * into any list.
117  *
118  */
119 
120 #define PV_LOCK_COUNT	PA_LOCK_COUNT*3
121 static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
122 
123 #define PV_LOCKPTR(pa)	((struct mtx *)(&pv_lock[pa_index(pa) % PV_LOCK_COUNT]))
124 #define PV_LOCK(pa)		mtx_lock(PV_LOCKPTR(pa))
125 #define PV_UNLOCK(pa)		mtx_unlock(PV_LOCKPTR(pa))
126 #define PV_LOCKASSERT(pa) 	mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
127 #define PV_PAGE_LOCK(m)		PV_LOCK(VM_PAGE_TO_PHYS(m))
128 #define PV_PAGE_UNLOCK(m)	PV_UNLOCK(VM_PAGE_TO_PHYS(m))
129 #define PV_PAGE_LOCKASSERT(m)	PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
130 
131 struct ofw_map {
132 	cell_t	om_va;
133 	cell_t	om_len;
134 	uint64_t om_pa;
135 	cell_t	om_mode;
136 };
137 
138 extern unsigned char _etext[];
139 extern unsigned char _end[];
140 
141 /*
142  * Map of physical memory regions.
143  */
144 static struct	mem_region *regions;
145 static struct	mem_region *pregions;
146 static u_int	phys_avail_count;
147 static int	regions_sz, pregions_sz;
148 
149 extern void bs_remap_earlyboot(void);
150 
151 /*
152  * Lock for the SLB tables.
153  */
154 struct mtx	moea64_slb_mutex;
155 
156 /*
157  * PTEG data.
158  */
159 u_int		moea64_pteg_count;
160 u_int		moea64_pteg_mask;
161 
162 /*
163  * PVO data.
164  */
165 
166 uma_zone_t	moea64_pvo_zone; /* zone for pvo entries */
167 
168 static struct	pvo_entry *moea64_bpvo_pool;
169 static int	moea64_bpvo_pool_index = 0;
170 static int	moea64_bpvo_pool_size = 327680;
171 TUNABLE_INT("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
172 SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
173     &moea64_bpvo_pool_index, 0, "");
174 
175 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
176 #ifdef __powerpc64__
177 #define	NVSIDS		(NPMAPS * 16)
178 #define VSID_HASHMASK	0xffffffffUL
179 #else
180 #define NVSIDS		NPMAPS
181 #define VSID_HASHMASK	0xfffffUL
182 #endif
183 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
184 
185 static boolean_t moea64_initialized = FALSE;
186 
187 /*
188  * Statistics.
189  */
190 u_int	moea64_pte_valid = 0;
191 u_int	moea64_pte_overflow = 0;
192 u_int	moea64_pvo_entries = 0;
193 u_int	moea64_pvo_enter_calls = 0;
194 u_int	moea64_pvo_remove_calls = 0;
195 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
196     &moea64_pte_valid, 0, "");
197 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
198     &moea64_pte_overflow, 0, "");
199 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
200     &moea64_pvo_entries, 0, "");
201 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
202     &moea64_pvo_enter_calls, 0, "");
203 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
204     &moea64_pvo_remove_calls, 0, "");
205 
206 vm_offset_t	moea64_scratchpage_va[2];
207 struct pvo_entry *moea64_scratchpage_pvo[2];
208 struct	mtx	moea64_scratchpage_mtx;
209 
210 uint64_t 	moea64_large_page_mask = 0;
211 uint64_t	moea64_large_page_size = 0;
212 int		moea64_large_page_shift = 0;
213 
214 /*
215  * PVO calls.
216  */
217 static int	moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo,
218 		    struct pvo_head *pvo_head);
219 static void	moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo);
220 static void	moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo);
221 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
222 
223 /*
224  * Utility routines.
225  */
226 static boolean_t	moea64_query_bit(mmu_t, vm_page_t, uint64_t);
227 static u_int		moea64_clear_bit(mmu_t, vm_page_t, uint64_t);
228 static void		moea64_kremove(mmu_t, vm_offset_t);
229 static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
230 			    vm_paddr_t pa, vm_size_t sz);
231 static void		moea64_pmap_init_qpages(void);
232 
233 /*
234  * Kernel MMU interface
235  */
236 void moea64_clear_modify(mmu_t, vm_page_t);
237 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
238 void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
239     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
240 int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
241     u_int flags, int8_t psind);
242 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
243     vm_prot_t);
244 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
245 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
246 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
247 void moea64_init(mmu_t);
248 boolean_t moea64_is_modified(mmu_t, vm_page_t);
249 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
250 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
251 int moea64_ts_referenced(mmu_t, vm_page_t);
252 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
253 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
254 int moea64_page_wired_mappings(mmu_t, vm_page_t);
255 void moea64_pinit(mmu_t, pmap_t);
256 void moea64_pinit0(mmu_t, pmap_t);
257 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
258 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
259 void moea64_qremove(mmu_t, vm_offset_t, int);
260 void moea64_release(mmu_t, pmap_t);
261 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
262 void moea64_remove_pages(mmu_t, pmap_t);
263 void moea64_remove_all(mmu_t, vm_page_t);
264 void moea64_remove_write(mmu_t, vm_page_t);
265 void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
266 void moea64_zero_page(mmu_t, vm_page_t);
267 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
268 void moea64_activate(mmu_t, struct thread *);
269 void moea64_deactivate(mmu_t, struct thread *);
270 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
271 void *moea64_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
272 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
273 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
274 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
275 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t ma);
276 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
277 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
278 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
279 void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz,
280     void **va);
281 void moea64_scan_init(mmu_t mmu);
282 vm_offset_t moea64_quick_enter_page(mmu_t mmu, vm_page_t m);
283 void moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr);
284 
285 static mmu_method_t moea64_methods[] = {
286 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
287 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
288 	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
289 	MMUMETHOD(mmu_enter,		moea64_enter),
290 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
291 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
292 	MMUMETHOD(mmu_extract,		moea64_extract),
293 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
294 	MMUMETHOD(mmu_init,		moea64_init),
295 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
296 	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
297 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
298 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
299 	MMUMETHOD(mmu_map,     		moea64_map),
300 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
301 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
302 	MMUMETHOD(mmu_pinit,		moea64_pinit),
303 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
304 	MMUMETHOD(mmu_protect,		moea64_protect),
305 	MMUMETHOD(mmu_qenter,		moea64_qenter),
306 	MMUMETHOD(mmu_qremove,		moea64_qremove),
307 	MMUMETHOD(mmu_release,		moea64_release),
308 	MMUMETHOD(mmu_remove,		moea64_remove),
309 	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
310 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
311 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
312 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
313 	MMUMETHOD(mmu_unwire,		moea64_unwire),
314 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
315 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
316 	MMUMETHOD(mmu_activate,		moea64_activate),
317 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
318 	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
319 	MMUMETHOD(mmu_quick_enter_page, moea64_quick_enter_page),
320 	MMUMETHOD(mmu_quick_remove_page, moea64_quick_remove_page),
321 
322 	/* Internal interfaces */
323 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
324 	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
325 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
326 	MMUMETHOD(mmu_kextract,		moea64_kextract),
327 	MMUMETHOD(mmu_kenter,		moea64_kenter),
328 	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
329 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
330 	MMUMETHOD(mmu_scan_init,	moea64_scan_init),
331 	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
332 
333 	{ 0, 0 }
334 };
335 
336 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
337 
338 static struct pvo_head *
339 vm_page_to_pvoh(vm_page_t m)
340 {
341 
342 	mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
343 	return (&m->md.mdpg_pvoh);
344 }
345 
346 static struct pvo_entry *
347 alloc_pvo_entry(int bootstrap)
348 {
349 	struct pvo_entry *pvo;
350 
351 	if (!moea64_initialized || bootstrap) {
352 		if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
353 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
354 			      moea64_bpvo_pool_index, moea64_bpvo_pool_size,
355 			      moea64_bpvo_pool_size * sizeof(struct pvo_entry));
356 		}
357 		pvo = &moea64_bpvo_pool[
358 		    atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
359 		bzero(pvo, sizeof(*pvo));
360 		pvo->pvo_vaddr = PVO_BOOTSTRAP;
361 	} else {
362 		pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT);
363 		bzero(pvo, sizeof(*pvo));
364 	}
365 
366 	return (pvo);
367 }
368 
369 
370 static void
371 init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
372 {
373 	uint64_t vsid;
374 	uint64_t hash;
375 	int shift;
376 
377 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
378 
379 	pvo->pvo_pmap = pmap;
380 	va &= ~ADDR_POFF;
381 	pvo->pvo_vaddr |= va;
382 	vsid = va_to_vsid(pmap, va);
383 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
384 	    | (vsid << 16);
385 
386 	shift = (pvo->pvo_vaddr & PVO_LARGE) ? moea64_large_page_shift :
387 	    ADDR_PIDX_SHFT;
388 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
389 	pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
390 }
391 
392 static void
393 free_pvo_entry(struct pvo_entry *pvo)
394 {
395 
396 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
397 		uma_zfree(moea64_pvo_zone, pvo);
398 }
399 
400 void
401 moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
402 {
403 
404 	lpte->pte_hi = (pvo->pvo_vpn >> (ADDR_API_SHFT64 - ADDR_PIDX_SHFT)) &
405 	    LPTE_AVPN_MASK;
406 	lpte->pte_hi |= LPTE_VALID;
407 
408 	if (pvo->pvo_vaddr & PVO_LARGE)
409 		lpte->pte_hi |= LPTE_BIG;
410 	if (pvo->pvo_vaddr & PVO_WIRED)
411 		lpte->pte_hi |= LPTE_WIRED;
412 	if (pvo->pvo_vaddr & PVO_HID)
413 		lpte->pte_hi |= LPTE_HID;
414 
415 	lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
416 	if (pvo->pvo_pte.prot & VM_PROT_WRITE)
417 		lpte->pte_lo |= LPTE_BW;
418 	else
419 		lpte->pte_lo |= LPTE_BR;
420 
421 	if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
422 		lpte->pte_lo |= LPTE_NOEXEC;
423 }
424 
425 static __inline uint64_t
426 moea64_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
427 {
428 	uint64_t pte_lo;
429 	int i;
430 
431 	if (ma != VM_MEMATTR_DEFAULT) {
432 		switch (ma) {
433 		case VM_MEMATTR_UNCACHEABLE:
434 			return (LPTE_I | LPTE_G);
435 		case VM_MEMATTR_CACHEABLE:
436 			return (LPTE_M);
437 		case VM_MEMATTR_WRITE_COMBINING:
438 		case VM_MEMATTR_WRITE_BACK:
439 		case VM_MEMATTR_PREFETCHABLE:
440 			return (LPTE_I);
441 		case VM_MEMATTR_WRITE_THROUGH:
442 			return (LPTE_W | LPTE_M);
443 		}
444 	}
445 
446 	/*
447 	 * Assume the page is cache inhibited and access is guarded unless
448 	 * it's in our available memory array.
449 	 */
450 	pte_lo = LPTE_I | LPTE_G;
451 	for (i = 0; i < pregions_sz; i++) {
452 		if ((pa >= pregions[i].mr_start) &&
453 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
454 			pte_lo &= ~(LPTE_I | LPTE_G);
455 			pte_lo |= LPTE_M;
456 			break;
457 		}
458 	}
459 
460 	return pte_lo;
461 }
462 
463 /*
464  * Quick sort callout for comparing memory regions.
465  */
466 static int	om_cmp(const void *a, const void *b);
467 
468 static int
469 om_cmp(const void *a, const void *b)
470 {
471 	const struct	ofw_map *mapa;
472 	const struct	ofw_map *mapb;
473 
474 	mapa = a;
475 	mapb = b;
476 	if (mapa->om_pa < mapb->om_pa)
477 		return (-1);
478 	else if (mapa->om_pa > mapb->om_pa)
479 		return (1);
480 	else
481 		return (0);
482 }
483 
484 static void
485 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
486 {
487 	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
488 	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
489 	struct pvo_entry *pvo;
490 	register_t	msr;
491 	vm_offset_t	off;
492 	vm_paddr_t	pa_base;
493 	int		i, j;
494 
495 	bzero(translations, sz);
496 	OF_getencprop(OF_finddevice("/"), "#address-cells", &acells,
497 	    sizeof(acells));
498 	if (OF_getencprop(mmu, "translations", trans_cells, sz) == -1)
499 		panic("moea64_bootstrap: can't get ofw translations");
500 
501 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
502 	sz /= sizeof(cell_t);
503 	for (i = 0, j = 0; i < sz; j++) {
504 		translations[j].om_va = trans_cells[i++];
505 		translations[j].om_len = trans_cells[i++];
506 		translations[j].om_pa = trans_cells[i++];
507 		if (acells == 2) {
508 			translations[j].om_pa <<= 32;
509 			translations[j].om_pa |= trans_cells[i++];
510 		}
511 		translations[j].om_mode = trans_cells[i++];
512 	}
513 	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
514 	    i, sz));
515 
516 	sz = j;
517 	qsort(translations, sz, sizeof (*translations), om_cmp);
518 
519 	for (i = 0; i < sz; i++) {
520 		pa_base = translations[i].om_pa;
521 	      #ifndef __powerpc64__
522 		if ((translations[i].om_pa >> 32) != 0)
523 			panic("OFW translations above 32-bit boundary!");
524 	      #endif
525 
526 		if (pa_base % PAGE_SIZE)
527 			panic("OFW translation not page-aligned (phys)!");
528 		if (translations[i].om_va % PAGE_SIZE)
529 			panic("OFW translation not page-aligned (virt)!");
530 
531 		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
532 		    pa_base, translations[i].om_va, translations[i].om_len);
533 
534 		/* Now enter the pages for this mapping */
535 
536 		DISABLE_TRANS(msr);
537 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
538 			/* If this address is direct-mapped, skip remapping */
539 			if (hw_direct_map && translations[i].om_va == pa_base &&
540 			    moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT) 			    == LPTE_M)
541 				continue;
542 
543 			PMAP_LOCK(kernel_pmap);
544 			pvo = moea64_pvo_find_va(kernel_pmap,
545 			    translations[i].om_va + off);
546 			PMAP_UNLOCK(kernel_pmap);
547 			if (pvo != NULL)
548 				continue;
549 
550 			moea64_kenter(mmup, translations[i].om_va + off,
551 			    pa_base + off);
552 		}
553 		ENABLE_TRANS(msr);
554 	}
555 }
556 
557 #ifdef __powerpc64__
558 static void
559 moea64_probe_large_page(void)
560 {
561 	uint16_t pvr = mfpvr() >> 16;
562 
563 	switch (pvr) {
564 	case IBM970:
565 	case IBM970FX:
566 	case IBM970MP:
567 		powerpc_sync(); isync();
568 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
569 		powerpc_sync(); isync();
570 
571 		/* FALLTHROUGH */
572 	default:
573 		moea64_large_page_size = 0x1000000; /* 16 MB */
574 		moea64_large_page_shift = 24;
575 	}
576 
577 	moea64_large_page_mask = moea64_large_page_size - 1;
578 }
579 
580 static void
581 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
582 {
583 	struct slb *cache;
584 	struct slb entry;
585 	uint64_t esid, slbe;
586 	uint64_t i;
587 
588 	cache = PCPU_GET(slb);
589 	esid = va >> ADDR_SR_SHFT;
590 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
591 
592 	for (i = 0; i < 64; i++) {
593 		if (cache[i].slbe == (slbe | i))
594 			return;
595 	}
596 
597 	entry.slbe = slbe;
598 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
599 	if (large)
600 		entry.slbv |= SLBV_L;
601 
602 	slb_insert_kernel(entry.slbe, entry.slbv);
603 }
604 #endif
605 
606 static void
607 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
608     vm_offset_t kernelend)
609 {
610 	struct pvo_entry *pvo;
611 	register_t msr;
612 	vm_paddr_t pa;
613 	vm_offset_t size, off;
614 	uint64_t pte_lo;
615 	int i;
616 
617 	if (moea64_large_page_size == 0)
618 		hw_direct_map = 0;
619 
620 	DISABLE_TRANS(msr);
621 	if (hw_direct_map) {
622 		PMAP_LOCK(kernel_pmap);
623 		for (i = 0; i < pregions_sz; i++) {
624 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
625 		     pregions[i].mr_size; pa += moea64_large_page_size) {
626 			pte_lo = LPTE_M;
627 
628 			pvo = alloc_pvo_entry(1 /* bootstrap */);
629 			pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
630 			init_pvo_entry(pvo, kernel_pmap, pa);
631 
632 			/*
633 			 * Set memory access as guarded if prefetch within
634 			 * the page could exit the available physmem area.
635 			 */
636 			if (pa & moea64_large_page_mask) {
637 				pa &= moea64_large_page_mask;
638 				pte_lo |= LPTE_G;
639 			}
640 			if (pa + moea64_large_page_size >
641 			    pregions[i].mr_start + pregions[i].mr_size)
642 				pte_lo |= LPTE_G;
643 
644 			pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
645 			    VM_PROT_EXECUTE;
646 			pvo->pvo_pte.pa = pa | pte_lo;
647 			moea64_pvo_enter(mmup, pvo, NULL);
648 		  }
649 		}
650 		PMAP_UNLOCK(kernel_pmap);
651 	} else {
652 		size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
653 		off = (vm_offset_t)(moea64_bpvo_pool);
654 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
655 		moea64_kenter(mmup, pa, pa);
656 
657 		/*
658 		 * Map certain important things, like ourselves.
659 		 *
660 		 * NOTE: We do not map the exception vector space. That code is
661 		 * used only in real mode, and leaving it unmapped allows us to
662 		 * catch NULL pointer deferences, instead of making NULL a valid
663 		 * address.
664 		 */
665 
666 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
667 		    pa += PAGE_SIZE)
668 			moea64_kenter(mmup, pa, pa);
669 	}
670 	ENABLE_TRANS(msr);
671 
672 	/*
673 	 * Allow user to override unmapped_buf_allowed for testing.
674 	 * XXXKIB Only direct map implementation was tested.
675 	 */
676 	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
677 	    &unmapped_buf_allowed))
678 		unmapped_buf_allowed = hw_direct_map;
679 }
680 
681 void
682 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
683 {
684 	int		i, j;
685 	vm_size_t	physsz, hwphyssz;
686 
687 #ifndef __powerpc64__
688 	/* We don't have a direct map since there is no BAT */
689 	hw_direct_map = 0;
690 
691 	/* Make sure battable is zero, since we have no BAT */
692 	for (i = 0; i < 16; i++) {
693 		battable[i].batu = 0;
694 		battable[i].batl = 0;
695 	}
696 #else
697 	moea64_probe_large_page();
698 
699 	/* Use a direct map if we have large page support */
700 	if (moea64_large_page_size > 0)
701 		hw_direct_map = 1;
702 	else
703 		hw_direct_map = 0;
704 #endif
705 
706 	/* Get physical memory regions from firmware */
707 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
708 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
709 
710 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
711 		panic("moea64_bootstrap: phys_avail too small");
712 
713 	phys_avail_count = 0;
714 	physsz = 0;
715 	hwphyssz = 0;
716 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
717 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
718 		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
719 		    regions[i].mr_start, regions[i].mr_start +
720 		    regions[i].mr_size, regions[i].mr_size);
721 		if (hwphyssz != 0 &&
722 		    (physsz + regions[i].mr_size) >= hwphyssz) {
723 			if (physsz < hwphyssz) {
724 				phys_avail[j] = regions[i].mr_start;
725 				phys_avail[j + 1] = regions[i].mr_start +
726 				    hwphyssz - physsz;
727 				physsz = hwphyssz;
728 				phys_avail_count++;
729 			}
730 			break;
731 		}
732 		phys_avail[j] = regions[i].mr_start;
733 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
734 		phys_avail_count++;
735 		physsz += regions[i].mr_size;
736 	}
737 
738 	/* Check for overlap with the kernel and exception vectors */
739 	for (j = 0; j < 2*phys_avail_count; j+=2) {
740 		if (phys_avail[j] < EXC_LAST)
741 			phys_avail[j] += EXC_LAST;
742 
743 		if (kernelstart >= phys_avail[j] &&
744 		    kernelstart < phys_avail[j+1]) {
745 			if (kernelend < phys_avail[j+1]) {
746 				phys_avail[2*phys_avail_count] =
747 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
748 				phys_avail[2*phys_avail_count + 1] =
749 				    phys_avail[j+1];
750 				phys_avail_count++;
751 			}
752 
753 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
754 		}
755 
756 		if (kernelend >= phys_avail[j] &&
757 		    kernelend < phys_avail[j+1]) {
758 			if (kernelstart > phys_avail[j]) {
759 				phys_avail[2*phys_avail_count] = phys_avail[j];
760 				phys_avail[2*phys_avail_count + 1] =
761 				    kernelstart & ~PAGE_MASK;
762 				phys_avail_count++;
763 			}
764 
765 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
766 		}
767 	}
768 
769 	physmem = btoc(physsz);
770 
771 #ifdef PTEGCOUNT
772 	moea64_pteg_count = PTEGCOUNT;
773 #else
774 	moea64_pteg_count = 0x1000;
775 
776 	while (moea64_pteg_count < physmem)
777 		moea64_pteg_count <<= 1;
778 
779 	moea64_pteg_count >>= 1;
780 #endif /* PTEGCOUNT */
781 }
782 
783 void
784 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
785 {
786 	int		i;
787 
788 	/*
789 	 * Set PTEG mask
790 	 */
791 	moea64_pteg_mask = moea64_pteg_count - 1;
792 
793 	/*
794 	 * Initialize SLB table lock and page locks
795 	 */
796 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
797 	for (i = 0; i < PV_LOCK_COUNT; i++)
798 		mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
799 
800 	/*
801 	 * Initialise the bootstrap pvo pool.
802 	 */
803 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
804 		moea64_bpvo_pool_size*sizeof(struct pvo_entry), 0);
805 	moea64_bpvo_pool_index = 0;
806 
807 	/*
808 	 * Make sure kernel vsid is allocated as well as VSID 0.
809 	 */
810 	#ifndef __powerpc64__
811 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
812 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
813 	moea64_vsid_bitmap[0] |= 1;
814 	#endif
815 
816 	/*
817 	 * Initialize the kernel pmap (which is statically allocated).
818 	 */
819 	#ifdef __powerpc64__
820 	for (i = 0; i < 64; i++) {
821 		pcpup->pc_slb[i].slbv = 0;
822 		pcpup->pc_slb[i].slbe = 0;
823 	}
824 	#else
825 	for (i = 0; i < 16; i++)
826 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
827 	#endif
828 
829 	kernel_pmap->pmap_phys = kernel_pmap;
830 	CPU_FILL(&kernel_pmap->pm_active);
831 	RB_INIT(&kernel_pmap->pmap_pvo);
832 
833 	PMAP_LOCK_INIT(kernel_pmap);
834 
835 	/*
836 	 * Now map in all the other buffers we allocated earlier
837 	 */
838 
839 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
840 }
841 
842 void
843 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
844 {
845 	ihandle_t	mmui;
846 	phandle_t	chosen;
847 	phandle_t	mmu;
848 	ssize_t		sz;
849 	int		i;
850 	vm_offset_t	pa, va;
851 	void		*dpcpu;
852 
853 	/*
854 	 * Set up the Open Firmware pmap and add its mappings if not in real
855 	 * mode.
856 	 */
857 
858 	chosen = OF_finddevice("/chosen");
859 	if (chosen != -1 && OF_getencprop(chosen, "mmu", &mmui, 4) != -1) {
860 		mmu = OF_instance_to_package(mmui);
861 		if (mmu == -1 ||
862 		    (sz = OF_getproplen(mmu, "translations")) == -1)
863 			sz = 0;
864 		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
865 			panic("moea64_bootstrap: too many ofw translations");
866 
867 		if (sz > 0)
868 			moea64_add_ofw_mappings(mmup, mmu, sz);
869 	}
870 
871 	/*
872 	 * Calculate the last available physical address.
873 	 */
874 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
875 		;
876 	Maxmem = powerpc_btop(phys_avail[i + 1]);
877 
878 	/*
879 	 * Initialize MMU and remap early physical mappings
880 	 */
881 	MMU_CPU_BOOTSTRAP(mmup,0);
882 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
883 	pmap_bootstrapped++;
884 	bs_remap_earlyboot();
885 
886 	/*
887 	 * Set the start and end of kva.
888 	 */
889 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
890 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
891 
892 	/*
893 	 * Map the entire KVA range into the SLB. We must not fault there.
894 	 */
895 	#ifdef __powerpc64__
896 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
897 		moea64_bootstrap_slb_prefault(va, 0);
898 	#endif
899 
900 	/*
901 	 * Figure out how far we can extend virtual_end into segment 16
902 	 * without running into existing mappings. Segment 16 is guaranteed
903 	 * to contain neither RAM nor devices (at least on Apple hardware),
904 	 * but will generally contain some OFW mappings we should not
905 	 * step on.
906 	 */
907 
908 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
909 	PMAP_LOCK(kernel_pmap);
910 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
911 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
912 		virtual_end += PAGE_SIZE;
913 	PMAP_UNLOCK(kernel_pmap);
914 	#endif
915 
916 	/*
917 	 * Allocate a kernel stack with a guard page for thread0 and map it
918 	 * into the kernel page map.
919 	 */
920 	pa = moea64_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
921 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
922 	virtual_avail = va + kstack_pages * PAGE_SIZE;
923 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
924 	thread0.td_kstack = va;
925 	thread0.td_kstack_pages = kstack_pages;
926 	for (i = 0; i < kstack_pages; i++) {
927 		moea64_kenter(mmup, va, pa);
928 		pa += PAGE_SIZE;
929 		va += PAGE_SIZE;
930 	}
931 
932 	/*
933 	 * Allocate virtual address space for the message buffer.
934 	 */
935 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
936 	msgbufp = (struct msgbuf *)virtual_avail;
937 	va = virtual_avail;
938 	virtual_avail += round_page(msgbufsize);
939 	while (va < virtual_avail) {
940 		moea64_kenter(mmup, va, pa);
941 		pa += PAGE_SIZE;
942 		va += PAGE_SIZE;
943 	}
944 
945 	/*
946 	 * Allocate virtual address space for the dynamic percpu area.
947 	 */
948 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
949 	dpcpu = (void *)virtual_avail;
950 	va = virtual_avail;
951 	virtual_avail += DPCPU_SIZE;
952 	while (va < virtual_avail) {
953 		moea64_kenter(mmup, va, pa);
954 		pa += PAGE_SIZE;
955 		va += PAGE_SIZE;
956 	}
957 	dpcpu_init(dpcpu, 0);
958 
959 	/*
960 	 * Allocate some things for page zeroing. We put this directly
961 	 * in the page table and use MOEA64_PTE_REPLACE to avoid any
962 	 * of the PVO book-keeping or other parts of the VM system
963 	 * from even knowing that this hack exists.
964 	 */
965 
966 	if (!hw_direct_map) {
967 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
968 		    MTX_DEF);
969 		for (i = 0; i < 2; i++) {
970 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
971 			virtual_end -= PAGE_SIZE;
972 
973 			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
974 
975 			PMAP_LOCK(kernel_pmap);
976 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
977 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
978 			PMAP_UNLOCK(kernel_pmap);
979 		}
980 	}
981 }
982 
983 static void
984 moea64_pmap_init_qpages(void)
985 {
986 	struct pcpu *pc;
987 	int i;
988 
989 	if (hw_direct_map)
990 		return;
991 
992 	CPU_FOREACH(i) {
993 		pc = pcpu_find(i);
994 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
995 		if (pc->pc_qmap_addr == 0)
996 			panic("pmap_init_qpages: unable to allocate KVA");
997 		PMAP_LOCK(kernel_pmap);
998 		pc->pc_qmap_pvo = moea64_pvo_find_va(kernel_pmap, pc->pc_qmap_addr);
999 		PMAP_UNLOCK(kernel_pmap);
1000 		mtx_init(&pc->pc_qmap_lock, "qmap lock", NULL, MTX_DEF);
1001 	}
1002 }
1003 
1004 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, moea64_pmap_init_qpages, NULL);
1005 
1006 /*
1007  * Activate a user pmap.  This mostly involves setting some non-CPU
1008  * state.
1009  */
1010 void
1011 moea64_activate(mmu_t mmu, struct thread *td)
1012 {
1013 	pmap_t	pm;
1014 
1015 	pm = &td->td_proc->p_vmspace->vm_pmap;
1016 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1017 
1018 	#ifdef __powerpc64__
1019 	PCPU_SET(userslb, pm->pm_slb);
1020 	__asm __volatile("slbmte %0, %1; isync" ::
1021 	    "r"(td->td_pcb->pcb_cpu.aim.usr_vsid), "r"(USER_SLB_SLBE));
1022 	#else
1023 	PCPU_SET(curpmap, pm->pmap_phys);
1024 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1025 	#endif
1026 }
1027 
1028 void
1029 moea64_deactivate(mmu_t mmu, struct thread *td)
1030 {
1031 	pmap_t	pm;
1032 
1033 	__asm __volatile("isync; slbie %0" :: "r"(USER_ADDR));
1034 
1035 	pm = &td->td_proc->p_vmspace->vm_pmap;
1036 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1037 	#ifdef __powerpc64__
1038 	PCPU_SET(userslb, NULL);
1039 	#else
1040 	PCPU_SET(curpmap, NULL);
1041 	#endif
1042 }
1043 
1044 void
1045 moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1046 {
1047 	struct	pvo_entry key, *pvo;
1048 	vm_page_t m;
1049 	int64_t	refchg;
1050 
1051 	key.pvo_vaddr = sva;
1052 	PMAP_LOCK(pm);
1053 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1054 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1055 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1056 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1057 			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1058 			    pvo);
1059 		pvo->pvo_vaddr &= ~PVO_WIRED;
1060 		refchg = MOEA64_PTE_REPLACE(mmu, pvo, 0 /* No invalidation */);
1061 		if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1062 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1063 			if (refchg < 0)
1064 				refchg = LPTE_CHG;
1065 			m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1066 
1067 			refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
1068 			if (refchg & LPTE_CHG)
1069 				vm_page_dirty(m);
1070 			if (refchg & LPTE_REF)
1071 				vm_page_aflag_set(m, PGA_REFERENCED);
1072 		}
1073 		pm->pm_stats.wired_count--;
1074 	}
1075 	PMAP_UNLOCK(pm);
1076 }
1077 
1078 /*
1079  * This goes through and sets the physical address of our
1080  * special scratch PTE to the PA we want to zero or copy. Because
1081  * of locking issues (this can get called in pvo_enter() by
1082  * the UMA allocator), we can't use most other utility functions here
1083  */
1084 
1085 static __inline
1086 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_paddr_t pa) {
1087 
1088 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1089 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1090 
1091 	moea64_scratchpage_pvo[which]->pvo_pte.pa =
1092 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1093 	MOEA64_PTE_REPLACE(mmup, moea64_scratchpage_pvo[which],
1094 	    MOEA64_PTE_INVALIDATE);
1095 	isync();
1096 }
1097 
1098 void
1099 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1100 {
1101 	vm_offset_t	dst;
1102 	vm_offset_t	src;
1103 
1104 	dst = VM_PAGE_TO_PHYS(mdst);
1105 	src = VM_PAGE_TO_PHYS(msrc);
1106 
1107 	if (hw_direct_map) {
1108 		bcopy((void *)src, (void *)dst, PAGE_SIZE);
1109 	} else {
1110 		mtx_lock(&moea64_scratchpage_mtx);
1111 
1112 		moea64_set_scratchpage_pa(mmu, 0, src);
1113 		moea64_set_scratchpage_pa(mmu, 1, dst);
1114 
1115 		bcopy((void *)moea64_scratchpage_va[0],
1116 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1117 
1118 		mtx_unlock(&moea64_scratchpage_mtx);
1119 	}
1120 }
1121 
1122 static inline void
1123 moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1124     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1125 {
1126 	void *a_cp, *b_cp;
1127 	vm_offset_t a_pg_offset, b_pg_offset;
1128 	int cnt;
1129 
1130 	while (xfersize > 0) {
1131 		a_pg_offset = a_offset & PAGE_MASK;
1132 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1133 		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1134 		    a_pg_offset;
1135 		b_pg_offset = b_offset & PAGE_MASK;
1136 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1137 		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1138 		    b_pg_offset;
1139 		bcopy(a_cp, b_cp, cnt);
1140 		a_offset += cnt;
1141 		b_offset += cnt;
1142 		xfersize -= cnt;
1143 	}
1144 }
1145 
1146 static inline void
1147 moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1148     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1149 {
1150 	void *a_cp, *b_cp;
1151 	vm_offset_t a_pg_offset, b_pg_offset;
1152 	int cnt;
1153 
1154 	mtx_lock(&moea64_scratchpage_mtx);
1155 	while (xfersize > 0) {
1156 		a_pg_offset = a_offset & PAGE_MASK;
1157 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1158 		moea64_set_scratchpage_pa(mmu, 0,
1159 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1160 		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1161 		b_pg_offset = b_offset & PAGE_MASK;
1162 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1163 		moea64_set_scratchpage_pa(mmu, 1,
1164 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1165 		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1166 		bcopy(a_cp, b_cp, cnt);
1167 		a_offset += cnt;
1168 		b_offset += cnt;
1169 		xfersize -= cnt;
1170 	}
1171 	mtx_unlock(&moea64_scratchpage_mtx);
1172 }
1173 
1174 void
1175 moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1176     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1177 {
1178 
1179 	if (hw_direct_map) {
1180 		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1181 		    xfersize);
1182 	} else {
1183 		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1184 		    xfersize);
1185 	}
1186 }
1187 
1188 void
1189 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1190 {
1191 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1192 
1193 	if (size + off > PAGE_SIZE)
1194 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1195 
1196 	if (hw_direct_map) {
1197 		bzero((caddr_t)pa + off, size);
1198 	} else {
1199 		mtx_lock(&moea64_scratchpage_mtx);
1200 		moea64_set_scratchpage_pa(mmu, 0, pa);
1201 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1202 		mtx_unlock(&moea64_scratchpage_mtx);
1203 	}
1204 }
1205 
1206 /*
1207  * Zero a page of physical memory by temporarily mapping it
1208  */
1209 void
1210 moea64_zero_page(mmu_t mmu, vm_page_t m)
1211 {
1212 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1213 	vm_offset_t va, off;
1214 
1215 	if (!hw_direct_map) {
1216 		mtx_lock(&moea64_scratchpage_mtx);
1217 
1218 		moea64_set_scratchpage_pa(mmu, 0, pa);
1219 		va = moea64_scratchpage_va[0];
1220 	} else {
1221 		va = pa;
1222 	}
1223 
1224 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1225 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1226 
1227 	if (!hw_direct_map)
1228 		mtx_unlock(&moea64_scratchpage_mtx);
1229 }
1230 
1231 vm_offset_t
1232 moea64_quick_enter_page(mmu_t mmu, vm_page_t m)
1233 {
1234 	struct pvo_entry *pvo;
1235 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1236 
1237 	if (hw_direct_map)
1238 		return (pa);
1239 
1240 	/*
1241  	 * MOEA64_PTE_REPLACE does some locking, so we can't just grab
1242 	 * a critical section and access the PCPU data like on i386.
1243 	 * Instead, pin the thread and grab the PCPU lock to prevent
1244 	 * a preempting thread from using the same PCPU data.
1245 	 */
1246 	sched_pin();
1247 
1248 	mtx_assert(PCPU_PTR(qmap_lock), MA_NOTOWNED);
1249 	pvo = PCPU_GET(qmap_pvo);
1250 
1251 	mtx_lock(PCPU_PTR(qmap_lock));
1252 	pvo->pvo_pte.pa = moea64_calc_wimg(pa, pmap_page_get_memattr(m)) |
1253 	    (uint64_t)pa;
1254 	MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_INVALIDATE);
1255 	isync();
1256 
1257 	return (PCPU_GET(qmap_addr));
1258 }
1259 
1260 void
1261 moea64_quick_remove_page(mmu_t mmu, vm_offset_t addr)
1262 {
1263 	if (hw_direct_map)
1264 		return;
1265 
1266 	mtx_assert(PCPU_PTR(qmap_lock), MA_OWNED);
1267 	KASSERT(PCPU_GET(qmap_addr) == addr,
1268 	    ("moea64_quick_remove_page: invalid address"));
1269 	mtx_unlock(PCPU_PTR(qmap_lock));
1270 	sched_unpin();
1271 }
1272 
1273 /*
1274  * Map the given physical page at the specified virtual address in the
1275  * target pmap with the protection requested.  If specified the page
1276  * will be wired down.
1277  */
1278 
1279 int
1280 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1281     vm_prot_t prot, u_int flags, int8_t psind)
1282 {
1283 	struct		pvo_entry *pvo, *oldpvo;
1284 	struct		pvo_head *pvo_head;
1285 	uint64_t	pte_lo;
1286 	int		error;
1287 
1288 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1289 		VM_OBJECT_ASSERT_LOCKED(m->object);
1290 
1291 	pvo = alloc_pvo_entry(0);
1292 	pvo->pvo_pmap = NULL; /* to be filled in later */
1293 	pvo->pvo_pte.prot = prot;
1294 
1295 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1296 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | pte_lo;
1297 
1298 	if ((flags & PMAP_ENTER_WIRED) != 0)
1299 		pvo->pvo_vaddr |= PVO_WIRED;
1300 
1301 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1302 		pvo_head = NULL;
1303 	} else {
1304 		pvo_head = &m->md.mdpg_pvoh;
1305 		pvo->pvo_vaddr |= PVO_MANAGED;
1306 	}
1307 
1308 	for (;;) {
1309 		PV_PAGE_LOCK(m);
1310 		PMAP_LOCK(pmap);
1311 		if (pvo->pvo_pmap == NULL)
1312 			init_pvo_entry(pvo, pmap, va);
1313 		if (prot & VM_PROT_WRITE)
1314 			if (pmap_bootstrapped &&
1315 			    (m->oflags & VPO_UNMANAGED) == 0)
1316 				vm_page_aflag_set(m, PGA_WRITEABLE);
1317 
1318 		oldpvo = moea64_pvo_find_va(pmap, va);
1319 		if (oldpvo != NULL) {
1320 			if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
1321 			    oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
1322 			    oldpvo->pvo_pte.prot == prot) {
1323 				/* Identical mapping already exists */
1324 				error = 0;
1325 
1326 				/* If not in page table, reinsert it */
1327 				if (MOEA64_PTE_SYNCH(mmu, oldpvo) < 0) {
1328 					moea64_pte_overflow--;
1329 					MOEA64_PTE_INSERT(mmu, oldpvo);
1330 				}
1331 
1332 				/* Then just clean up and go home */
1333 				PV_PAGE_UNLOCK(m);
1334 				PMAP_UNLOCK(pmap);
1335 				free_pvo_entry(pvo);
1336 				break;
1337 			}
1338 
1339 			/* Otherwise, need to kill it first */
1340 			KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
1341 			    "mapping does not match new mapping"));
1342 			moea64_pvo_remove_from_pmap(mmu, oldpvo);
1343 		}
1344 		error = moea64_pvo_enter(mmu, pvo, pvo_head);
1345 		PV_PAGE_UNLOCK(m);
1346 		PMAP_UNLOCK(pmap);
1347 
1348 		/* Free any dead pages */
1349 		if (oldpvo != NULL) {
1350 			PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1351 			moea64_pvo_remove_from_page(mmu, oldpvo);
1352 			PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1353 			free_pvo_entry(oldpvo);
1354 		}
1355 
1356 		if (error != ENOMEM)
1357 			break;
1358 		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1359 			return (KERN_RESOURCE_SHORTAGE);
1360 		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1361 		VM_WAIT;
1362 	}
1363 
1364 	/*
1365 	 * Flush the page from the instruction cache if this page is
1366 	 * mapped executable and cacheable.
1367 	 */
1368 	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1369 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1370 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1371 		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1372 	}
1373 	return (KERN_SUCCESS);
1374 }
1375 
1376 static void
1377 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
1378     vm_size_t sz)
1379 {
1380 
1381 	/*
1382 	 * This is much trickier than on older systems because
1383 	 * we can't sync the icache on physical addresses directly
1384 	 * without a direct map. Instead we check a couple of cases
1385 	 * where the memory is already mapped in and, failing that,
1386 	 * use the same trick we use for page zeroing to create
1387 	 * a temporary mapping for this physical address.
1388 	 */
1389 
1390 	if (!pmap_bootstrapped) {
1391 		/*
1392 		 * If PMAP is not bootstrapped, we are likely to be
1393 		 * in real mode.
1394 		 */
1395 		__syncicache((void *)pa, sz);
1396 	} else if (pmap == kernel_pmap) {
1397 		__syncicache((void *)va, sz);
1398 	} else if (hw_direct_map) {
1399 		__syncicache((void *)pa, sz);
1400 	} else {
1401 		/* Use the scratch page to set up a temp mapping */
1402 
1403 		mtx_lock(&moea64_scratchpage_mtx);
1404 
1405 		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1406 		__syncicache((void *)(moea64_scratchpage_va[1] +
1407 		    (va & ADDR_POFF)), sz);
1408 
1409 		mtx_unlock(&moea64_scratchpage_mtx);
1410 	}
1411 }
1412 
1413 /*
1414  * Maps a sequence of resident pages belonging to the same object.
1415  * The sequence begins with the given page m_start.  This page is
1416  * mapped at the given virtual address start.  Each subsequent page is
1417  * mapped at a virtual address that is offset from start by the same
1418  * amount as the page is offset from m_start within the object.  The
1419  * last page in the sequence is the page with the largest offset from
1420  * m_start that can be mapped at a virtual address less than the given
1421  * virtual address end.  Not every virtual page between start and end
1422  * is mapped; only those for which a resident page exists with the
1423  * corresponding offset from m_start are mapped.
1424  */
1425 void
1426 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1427     vm_page_t m_start, vm_prot_t prot)
1428 {
1429 	vm_page_t m;
1430 	vm_pindex_t diff, psize;
1431 
1432 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1433 
1434 	psize = atop(end - start);
1435 	m = m_start;
1436 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1437 		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1438 		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0);
1439 		m = TAILQ_NEXT(m, listq);
1440 	}
1441 }
1442 
1443 void
1444 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1445     vm_prot_t prot)
1446 {
1447 
1448 	moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1449 	    PMAP_ENTER_NOSLEEP, 0);
1450 }
1451 
1452 vm_paddr_t
1453 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1454 {
1455 	struct	pvo_entry *pvo;
1456 	vm_paddr_t pa;
1457 
1458 	PMAP_LOCK(pm);
1459 	pvo = moea64_pvo_find_va(pm, va);
1460 	if (pvo == NULL)
1461 		pa = 0;
1462 	else
1463 		pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1464 	PMAP_UNLOCK(pm);
1465 
1466 	return (pa);
1467 }
1468 
1469 /*
1470  * Atomically extract and hold the physical page with the given
1471  * pmap and virtual address pair if that mapping permits the given
1472  * protection.
1473  */
1474 vm_page_t
1475 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1476 {
1477 	struct	pvo_entry *pvo;
1478 	vm_page_t m;
1479         vm_paddr_t pa;
1480 
1481 	m = NULL;
1482 	pa = 0;
1483 	PMAP_LOCK(pmap);
1484 retry:
1485 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1486 	if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
1487 		if (vm_page_pa_tryrelock(pmap,
1488 		    pvo->pvo_pte.pa & LPTE_RPGN, &pa))
1489 			goto retry;
1490 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1491 		vm_page_hold(m);
1492 	}
1493 	PA_UNLOCK_COND(pa);
1494 	PMAP_UNLOCK(pmap);
1495 	return (m);
1496 }
1497 
1498 static mmu_t installed_mmu;
1499 
1500 static void *
1501 moea64_uma_page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags,
1502     int wait)
1503 {
1504 	struct pvo_entry *pvo;
1505         vm_offset_t va;
1506         vm_page_t m;
1507         int pflags, needed_lock;
1508 
1509 	/*
1510 	 * This entire routine is a horrible hack to avoid bothering kmem
1511 	 * for new KVA addresses. Because this can get called from inside
1512 	 * kmem allocation routines, calling kmem for a new address here
1513 	 * can lead to multiply locking non-recursive mutexes.
1514 	 */
1515 
1516 	*flags = UMA_SLAB_PRIV;
1517 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1518 	pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
1519 
1520         for (;;) {
1521                 m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1522                 if (m == NULL) {
1523                         if (wait & M_NOWAIT)
1524                                 return (NULL);
1525                         VM_WAIT;
1526                 } else
1527                         break;
1528         }
1529 
1530 	va = VM_PAGE_TO_PHYS(m);
1531 
1532 	pvo = alloc_pvo_entry(1 /* bootstrap */);
1533 
1534 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
1535 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
1536 
1537 	if (needed_lock)
1538 		PMAP_LOCK(kernel_pmap);
1539 
1540 	init_pvo_entry(pvo, kernel_pmap, va);
1541 	pvo->pvo_vaddr |= PVO_WIRED;
1542 
1543 	moea64_pvo_enter(installed_mmu, pvo, NULL);
1544 
1545 	if (needed_lock)
1546 		PMAP_UNLOCK(kernel_pmap);
1547 
1548 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1549                 bzero((void *)va, PAGE_SIZE);
1550 
1551 	return (void *)va;
1552 }
1553 
1554 extern int elf32_nxstack;
1555 
1556 void
1557 moea64_init(mmu_t mmu)
1558 {
1559 
1560 	CTR0(KTR_PMAP, "moea64_init");
1561 
1562 	moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1563 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1564 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1565 
1566 	if (!hw_direct_map) {
1567 		installed_mmu = mmu;
1568 		uma_zone_set_allocf(moea64_pvo_zone,moea64_uma_page_alloc);
1569 	}
1570 
1571 #ifdef COMPAT_FREEBSD32
1572 	elf32_nxstack = 1;
1573 #endif
1574 
1575 	moea64_initialized = TRUE;
1576 }
1577 
1578 boolean_t
1579 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1580 {
1581 
1582 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1583 	    ("moea64_is_referenced: page %p is not managed", m));
1584 
1585 	return (moea64_query_bit(mmu, m, LPTE_REF));
1586 }
1587 
1588 boolean_t
1589 moea64_is_modified(mmu_t mmu, vm_page_t m)
1590 {
1591 
1592 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1593 	    ("moea64_is_modified: page %p is not managed", m));
1594 
1595 	/*
1596 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1597 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1598 	 * is clear, no PTEs can have LPTE_CHG set.
1599 	 */
1600 	VM_OBJECT_ASSERT_LOCKED(m->object);
1601 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1602 		return (FALSE);
1603 	return (moea64_query_bit(mmu, m, LPTE_CHG));
1604 }
1605 
1606 boolean_t
1607 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1608 {
1609 	struct pvo_entry *pvo;
1610 	boolean_t rv = TRUE;
1611 
1612 	PMAP_LOCK(pmap);
1613 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1614 	if (pvo != NULL)
1615 		rv = FALSE;
1616 	PMAP_UNLOCK(pmap);
1617 	return (rv);
1618 }
1619 
1620 void
1621 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1622 {
1623 
1624 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1625 	    ("moea64_clear_modify: page %p is not managed", m));
1626 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1627 	KASSERT(!vm_page_xbusied(m),
1628 	    ("moea64_clear_modify: page %p is exclusive busied", m));
1629 
1630 	/*
1631 	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1632 	 * set.  If the object containing the page is locked and the page is
1633 	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1634 	 */
1635 	if ((m->aflags & PGA_WRITEABLE) == 0)
1636 		return;
1637 	moea64_clear_bit(mmu, m, LPTE_CHG);
1638 }
1639 
1640 /*
1641  * Clear the write and modified bits in each of the given page's mappings.
1642  */
1643 void
1644 moea64_remove_write(mmu_t mmu, vm_page_t m)
1645 {
1646 	struct	pvo_entry *pvo;
1647 	int64_t	refchg, ret;
1648 	pmap_t	pmap;
1649 
1650 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1651 	    ("moea64_remove_write: page %p is not managed", m));
1652 
1653 	/*
1654 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1655 	 * set by another thread while the object is locked.  Thus,
1656 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1657 	 */
1658 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1659 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1660 		return;
1661 	powerpc_sync();
1662 	PV_PAGE_LOCK(m);
1663 	refchg = 0;
1664 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1665 		pmap = pvo->pvo_pmap;
1666 		PMAP_LOCK(pmap);
1667 		if (!(pvo->pvo_vaddr & PVO_DEAD) &&
1668 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1669 			pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
1670 			ret = MOEA64_PTE_REPLACE(mmu, pvo,
1671 			    MOEA64_PTE_PROT_UPDATE);
1672 			if (ret < 0)
1673 				ret = LPTE_CHG;
1674 			refchg |= ret;
1675 			if (pvo->pvo_pmap == kernel_pmap)
1676 				isync();
1677 		}
1678 		PMAP_UNLOCK(pmap);
1679 	}
1680 	if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
1681 		vm_page_dirty(m);
1682 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1683 	PV_PAGE_UNLOCK(m);
1684 }
1685 
1686 /*
1687  *	moea64_ts_referenced:
1688  *
1689  *	Return a count of reference bits for a page, clearing those bits.
1690  *	It is not necessary for every reference bit to be cleared, but it
1691  *	is necessary that 0 only be returned when there are truly no
1692  *	reference bits set.
1693  *
1694  *	XXX: The exact number of bits to check and clear is a matter that
1695  *	should be tested and standardized at some point in the future for
1696  *	optimal aging of shared pages.
1697  */
1698 int
1699 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1700 {
1701 
1702 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1703 	    ("moea64_ts_referenced: page %p is not managed", m));
1704 	return (moea64_clear_bit(mmu, m, LPTE_REF));
1705 }
1706 
1707 /*
1708  * Modify the WIMG settings of all mappings for a page.
1709  */
1710 void
1711 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1712 {
1713 	struct	pvo_entry *pvo;
1714 	int64_t	refchg;
1715 	pmap_t	pmap;
1716 	uint64_t lo;
1717 
1718 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1719 		m->md.mdpg_cache_attrs = ma;
1720 		return;
1721 	}
1722 
1723 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1724 
1725 	PV_PAGE_LOCK(m);
1726 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1727 		pmap = pvo->pvo_pmap;
1728 		PMAP_LOCK(pmap);
1729 		if (!(pvo->pvo_vaddr & PVO_DEAD)) {
1730 			pvo->pvo_pte.pa &= ~LPTE_WIMG;
1731 			pvo->pvo_pte.pa |= lo;
1732 			refchg = MOEA64_PTE_REPLACE(mmu, pvo,
1733 			    MOEA64_PTE_INVALIDATE);
1734 			if (refchg < 0)
1735 				refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
1736 				    LPTE_CHG : 0;
1737 			if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1738 			    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1739 				refchg |=
1740 				    atomic_readandclear_32(&m->md.mdpg_attrs);
1741 				if (refchg & LPTE_CHG)
1742 					vm_page_dirty(m);
1743 				if (refchg & LPTE_REF)
1744 					vm_page_aflag_set(m, PGA_REFERENCED);
1745 			}
1746 			if (pvo->pvo_pmap == kernel_pmap)
1747 				isync();
1748 		}
1749 		PMAP_UNLOCK(pmap);
1750 	}
1751 	m->md.mdpg_cache_attrs = ma;
1752 	PV_PAGE_UNLOCK(m);
1753 }
1754 
1755 /*
1756  * Map a wired page into kernel virtual address space.
1757  */
1758 void
1759 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1760 {
1761 	int		error;
1762 	struct pvo_entry *pvo, *oldpvo;
1763 
1764 	pvo = alloc_pvo_entry(0);
1765 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
1766 	pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
1767 	pvo->pvo_vaddr |= PVO_WIRED;
1768 
1769 	PMAP_LOCK(kernel_pmap);
1770 	oldpvo = moea64_pvo_find_va(kernel_pmap, va);
1771 	if (oldpvo != NULL)
1772 		moea64_pvo_remove_from_pmap(mmu, oldpvo);
1773 	init_pvo_entry(pvo, kernel_pmap, va);
1774 	error = moea64_pvo_enter(mmu, pvo, NULL);
1775 	PMAP_UNLOCK(kernel_pmap);
1776 
1777 	/* Free any dead pages */
1778 	if (oldpvo != NULL) {
1779 		PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1780 		moea64_pvo_remove_from_page(mmu, oldpvo);
1781 		PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1782 		free_pvo_entry(oldpvo);
1783 	}
1784 
1785 	if (error != 0 && error != ENOENT)
1786 		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1787 		    pa, error);
1788 }
1789 
1790 void
1791 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1792 {
1793 
1794 	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1795 }
1796 
1797 /*
1798  * Extract the physical page address associated with the given kernel virtual
1799  * address.
1800  */
1801 vm_paddr_t
1802 moea64_kextract(mmu_t mmu, vm_offset_t va)
1803 {
1804 	struct		pvo_entry *pvo;
1805 	vm_paddr_t pa;
1806 
1807 	/*
1808 	 * Shortcut the direct-mapped case when applicable.  We never put
1809 	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1810 	 */
1811 	if (va < VM_MIN_KERNEL_ADDRESS)
1812 		return (va);
1813 
1814 	PMAP_LOCK(kernel_pmap);
1815 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1816 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1817 	    va));
1818 	pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1819 	PMAP_UNLOCK(kernel_pmap);
1820 	return (pa);
1821 }
1822 
1823 /*
1824  * Remove a wired page from kernel virtual address space.
1825  */
1826 void
1827 moea64_kremove(mmu_t mmu, vm_offset_t va)
1828 {
1829 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1830 }
1831 
1832 /*
1833  * Map a range of physical addresses into kernel virtual address space.
1834  *
1835  * The value passed in *virt is a suggested virtual address for the mapping.
1836  * Architectures which can support a direct-mapped physical to virtual region
1837  * can return the appropriate address within that region, leaving '*virt'
1838  * unchanged.  Other architectures should map the pages starting at '*virt' and
1839  * update '*virt' with the first usable address after the mapped region.
1840  */
1841 vm_offset_t
1842 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1843     vm_paddr_t pa_end, int prot)
1844 {
1845 	vm_offset_t	sva, va;
1846 
1847 	if (hw_direct_map) {
1848 		/*
1849 		 * Check if every page in the region is covered by the direct
1850 		 * map. The direct map covers all of physical memory. Use
1851 		 * moea64_calc_wimg() as a shortcut to see if the page is in
1852 		 * physical memory as a way to see if the direct map covers it.
1853 		 */
1854 		for (va = pa_start; va < pa_end; va += PAGE_SIZE)
1855 			if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
1856 				break;
1857 		if (va == pa_end)
1858 			return (pa_start);
1859 	}
1860 	sva = *virt;
1861 	va = sva;
1862 	/* XXX respect prot argument */
1863 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1864 		moea64_kenter(mmu, va, pa_start);
1865 	*virt = va;
1866 
1867 	return (sva);
1868 }
1869 
1870 /*
1871  * Returns true if the pmap's pv is one of the first
1872  * 16 pvs linked to from this page.  This count may
1873  * be changed upwards or downwards in the future; it
1874  * is only necessary that true be returned for a small
1875  * subset of pmaps for proper page aging.
1876  */
1877 boolean_t
1878 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1879 {
1880         int loops;
1881 	struct pvo_entry *pvo;
1882 	boolean_t rv;
1883 
1884 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1885 	    ("moea64_page_exists_quick: page %p is not managed", m));
1886 	loops = 0;
1887 	rv = FALSE;
1888 	PV_PAGE_LOCK(m);
1889 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1890 		if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
1891 			rv = TRUE;
1892 			break;
1893 		}
1894 		if (++loops >= 16)
1895 			break;
1896 	}
1897 	PV_PAGE_UNLOCK(m);
1898 	return (rv);
1899 }
1900 
1901 /*
1902  * Return the number of managed mappings to the given physical page
1903  * that are wired.
1904  */
1905 int
1906 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1907 {
1908 	struct pvo_entry *pvo;
1909 	int count;
1910 
1911 	count = 0;
1912 	if ((m->oflags & VPO_UNMANAGED) != 0)
1913 		return (count);
1914 	PV_PAGE_LOCK(m);
1915 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1916 		if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
1917 			count++;
1918 	PV_PAGE_UNLOCK(m);
1919 	return (count);
1920 }
1921 
1922 static uintptr_t	moea64_vsidcontext;
1923 
1924 uintptr_t
1925 moea64_get_unique_vsid(void) {
1926 	u_int entropy;
1927 	register_t hash;
1928 	uint32_t mask;
1929 	int i;
1930 
1931 	entropy = 0;
1932 	__asm __volatile("mftb %0" : "=r"(entropy));
1933 
1934 	mtx_lock(&moea64_slb_mutex);
1935 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1936 		u_int	n;
1937 
1938 		/*
1939 		 * Create a new value by mutiplying by a prime and adding in
1940 		 * entropy from the timebase register.  This is to make the
1941 		 * VSID more random so that the PT hash function collides
1942 		 * less often.  (Note that the prime casues gcc to do shifts
1943 		 * instead of a multiply.)
1944 		 */
1945 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1946 		hash = moea64_vsidcontext & (NVSIDS - 1);
1947 		if (hash == 0)		/* 0 is special, avoid it */
1948 			continue;
1949 		n = hash >> 5;
1950 		mask = 1 << (hash & (VSID_NBPW - 1));
1951 		hash = (moea64_vsidcontext & VSID_HASHMASK);
1952 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1953 			/* anything free in this bucket? */
1954 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1955 				entropy = (moea64_vsidcontext >> 20);
1956 				continue;
1957 			}
1958 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1959 			mask = 1 << i;
1960 			hash &= rounddown2(VSID_HASHMASK, VSID_NBPW);
1961 			hash |= i;
1962 		}
1963 		if (hash == VSID_VRMA)	/* also special, avoid this too */
1964 			continue;
1965 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1966 		    ("Allocating in-use VSID %#zx\n", hash));
1967 		moea64_vsid_bitmap[n] |= mask;
1968 		mtx_unlock(&moea64_slb_mutex);
1969 		return (hash);
1970 	}
1971 
1972 	mtx_unlock(&moea64_slb_mutex);
1973 	panic("%s: out of segments",__func__);
1974 }
1975 
1976 #ifdef __powerpc64__
1977 void
1978 moea64_pinit(mmu_t mmu, pmap_t pmap)
1979 {
1980 
1981 	RB_INIT(&pmap->pmap_pvo);
1982 
1983 	pmap->pm_slb_tree_root = slb_alloc_tree();
1984 	pmap->pm_slb = slb_alloc_user_cache();
1985 	pmap->pm_slb_len = 0;
1986 }
1987 #else
1988 void
1989 moea64_pinit(mmu_t mmu, pmap_t pmap)
1990 {
1991 	int	i;
1992 	uint32_t hash;
1993 
1994 	RB_INIT(&pmap->pmap_pvo);
1995 
1996 	if (pmap_bootstrapped)
1997 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1998 		    (vm_offset_t)pmap);
1999 	else
2000 		pmap->pmap_phys = pmap;
2001 
2002 	/*
2003 	 * Allocate some segment registers for this pmap.
2004 	 */
2005 	hash = moea64_get_unique_vsid();
2006 
2007 	for (i = 0; i < 16; i++)
2008 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
2009 
2010 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
2011 }
2012 #endif
2013 
2014 /*
2015  * Initialize the pmap associated with process 0.
2016  */
2017 void
2018 moea64_pinit0(mmu_t mmu, pmap_t pm)
2019 {
2020 
2021 	PMAP_LOCK_INIT(pm);
2022 	moea64_pinit(mmu, pm);
2023 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
2024 }
2025 
2026 /*
2027  * Set the physical protection on the specified range of this map as requested.
2028  */
2029 static void
2030 moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
2031 {
2032 	struct vm_page *pg;
2033 	vm_prot_t oldprot;
2034 	int32_t refchg;
2035 
2036 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2037 
2038 	/*
2039 	 * Change the protection of the page.
2040 	 */
2041 	oldprot = pvo->pvo_pte.prot;
2042 	pvo->pvo_pte.prot = prot;
2043 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2044 
2045 	/*
2046 	 * If the PVO is in the page table, update mapping
2047 	 */
2048 	refchg = MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_PROT_UPDATE);
2049 	if (refchg < 0)
2050 		refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
2051 
2052 	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
2053 	    (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
2054 		if ((pg->oflags & VPO_UNMANAGED) == 0)
2055 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
2056 		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
2057 		    pvo->pvo_pte.pa & LPTE_RPGN, PAGE_SIZE);
2058 	}
2059 
2060 	/*
2061 	 * Update vm about the REF/CHG bits if the page is managed and we have
2062 	 * removed write access.
2063 	 */
2064 	if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
2065 	    (oldprot & VM_PROT_WRITE)) {
2066 		refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2067 		if (refchg & LPTE_CHG)
2068 			vm_page_dirty(pg);
2069 		if (refchg & LPTE_REF)
2070 			vm_page_aflag_set(pg, PGA_REFERENCED);
2071 	}
2072 }
2073 
2074 void
2075 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2076     vm_prot_t prot)
2077 {
2078 	struct	pvo_entry *pvo, *tpvo, key;
2079 
2080 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2081 	    sva, eva, prot);
2082 
2083 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2084 	    ("moea64_protect: non current pmap"));
2085 
2086 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2087 		moea64_remove(mmu, pm, sva, eva);
2088 		return;
2089 	}
2090 
2091 	PMAP_LOCK(pm);
2092 	key.pvo_vaddr = sva;
2093 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2094 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2095 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2096 		moea64_pvo_protect(mmu, pm, pvo, prot);
2097 	}
2098 	PMAP_UNLOCK(pm);
2099 }
2100 
2101 /*
2102  * Map a list of wired pages into kernel virtual address space.  This is
2103  * intended for temporary mappings which do not need page modification or
2104  * references recorded.  Existing mappings in the region are overwritten.
2105  */
2106 void
2107 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2108 {
2109 	while (count-- > 0) {
2110 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2111 		va += PAGE_SIZE;
2112 		m++;
2113 	}
2114 }
2115 
2116 /*
2117  * Remove page mappings from kernel virtual address space.  Intended for
2118  * temporary mappings entered by moea64_qenter.
2119  */
2120 void
2121 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2122 {
2123 	while (count-- > 0) {
2124 		moea64_kremove(mmu, va);
2125 		va += PAGE_SIZE;
2126 	}
2127 }
2128 
2129 void
2130 moea64_release_vsid(uint64_t vsid)
2131 {
2132 	int idx, mask;
2133 
2134 	mtx_lock(&moea64_slb_mutex);
2135 	idx = vsid & (NVSIDS-1);
2136 	mask = 1 << (idx % VSID_NBPW);
2137 	idx /= VSID_NBPW;
2138 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2139 	    ("Freeing unallocated VSID %#jx", vsid));
2140 	moea64_vsid_bitmap[idx] &= ~mask;
2141 	mtx_unlock(&moea64_slb_mutex);
2142 }
2143 
2144 
2145 void
2146 moea64_release(mmu_t mmu, pmap_t pmap)
2147 {
2148 
2149 	/*
2150 	 * Free segment registers' VSIDs
2151 	 */
2152     #ifdef __powerpc64__
2153 	slb_free_tree(pmap);
2154 	slb_free_user_cache(pmap->pm_slb);
2155     #else
2156 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2157 
2158 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2159     #endif
2160 }
2161 
2162 /*
2163  * Remove all pages mapped by the specified pmap
2164  */
2165 void
2166 moea64_remove_pages(mmu_t mmu, pmap_t pm)
2167 {
2168 	struct pvo_entry *pvo, *tpvo;
2169 	struct pvo_tree tofree;
2170 
2171 	RB_INIT(&tofree);
2172 
2173 	PMAP_LOCK(pm);
2174 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2175 		if (pvo->pvo_vaddr & PVO_WIRED)
2176 			continue;
2177 
2178 		/*
2179 		 * For locking reasons, remove this from the page table and
2180 		 * pmap, but save delinking from the vm_page for a second
2181 		 * pass
2182 		 */
2183 		moea64_pvo_remove_from_pmap(mmu, pvo);
2184 		RB_INSERT(pvo_tree, &tofree, pvo);
2185 	}
2186 	PMAP_UNLOCK(pm);
2187 
2188 	RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) {
2189 		PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2190 		moea64_pvo_remove_from_page(mmu, pvo);
2191 		PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2192 		RB_REMOVE(pvo_tree, &tofree, pvo);
2193 		free_pvo_entry(pvo);
2194 	}
2195 }
2196 
2197 /*
2198  * Remove the given range of addresses from the specified map.
2199  */
2200 void
2201 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2202 {
2203 	struct  pvo_entry *pvo, *tpvo, key;
2204 	struct pvo_tree tofree;
2205 
2206 	/*
2207 	 * Perform an unsynchronized read.  This is, however, safe.
2208 	 */
2209 	if (pm->pm_stats.resident_count == 0)
2210 		return;
2211 
2212 	key.pvo_vaddr = sva;
2213 
2214 	RB_INIT(&tofree);
2215 
2216 	PMAP_LOCK(pm);
2217 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2218 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2219 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2220 
2221 		/*
2222 		 * For locking reasons, remove this from the page table and
2223 		 * pmap, but save delinking from the vm_page for a second
2224 		 * pass
2225 		 */
2226 		moea64_pvo_remove_from_pmap(mmu, pvo);
2227 		RB_INSERT(pvo_tree, &tofree, pvo);
2228 	}
2229 	PMAP_UNLOCK(pm);
2230 
2231 	RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) {
2232 		PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2233 		moea64_pvo_remove_from_page(mmu, pvo);
2234 		PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2235 		RB_REMOVE(pvo_tree, &tofree, pvo);
2236 		free_pvo_entry(pvo);
2237 	}
2238 }
2239 
2240 /*
2241  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2242  * will reflect changes in pte's back to the vm_page.
2243  */
2244 void
2245 moea64_remove_all(mmu_t mmu, vm_page_t m)
2246 {
2247 	struct	pvo_entry *pvo, *next_pvo;
2248 	struct	pvo_head freequeue;
2249 	int	wasdead;
2250 	pmap_t	pmap;
2251 
2252 	LIST_INIT(&freequeue);
2253 
2254 	PV_PAGE_LOCK(m);
2255 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2256 		pmap = pvo->pvo_pmap;
2257 		PMAP_LOCK(pmap);
2258 		wasdead = (pvo->pvo_vaddr & PVO_DEAD);
2259 		if (!wasdead)
2260 			moea64_pvo_remove_from_pmap(mmu, pvo);
2261 		moea64_pvo_remove_from_page(mmu, pvo);
2262 		if (!wasdead)
2263 			LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
2264 		PMAP_UNLOCK(pmap);
2265 
2266 	}
2267 	KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
2268 	KASSERT(!(m->aflags & PGA_WRITEABLE), ("Page still writable"));
2269 	PV_PAGE_UNLOCK(m);
2270 
2271 	/* Clean up UMA allocations */
2272 	LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
2273 		free_pvo_entry(pvo);
2274 }
2275 
2276 /*
2277  * Allocate a physical page of memory directly from the phys_avail map.
2278  * Can only be called from moea64_bootstrap before avail start and end are
2279  * calculated.
2280  */
2281 vm_offset_t
2282 moea64_bootstrap_alloc(vm_size_t size, u_int align)
2283 {
2284 	vm_offset_t	s, e;
2285 	int		i, j;
2286 
2287 	size = round_page(size);
2288 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2289 		if (align != 0)
2290 			s = roundup2(phys_avail[i], align);
2291 		else
2292 			s = phys_avail[i];
2293 		e = s + size;
2294 
2295 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2296 			continue;
2297 
2298 		if (s + size > platform_real_maxaddr())
2299 			continue;
2300 
2301 		if (s == phys_avail[i]) {
2302 			phys_avail[i] += size;
2303 		} else if (e == phys_avail[i + 1]) {
2304 			phys_avail[i + 1] -= size;
2305 		} else {
2306 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2307 				phys_avail[j] = phys_avail[j - 2];
2308 				phys_avail[j + 1] = phys_avail[j - 1];
2309 			}
2310 
2311 			phys_avail[i + 3] = phys_avail[i + 1];
2312 			phys_avail[i + 1] = s;
2313 			phys_avail[i + 2] = e;
2314 			phys_avail_count++;
2315 		}
2316 
2317 		return (s);
2318 	}
2319 	panic("moea64_bootstrap_alloc: could not allocate memory");
2320 }
2321 
2322 static int
2323 moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo, struct pvo_head *pvo_head)
2324 {
2325 	int first, err;
2326 
2327 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2328 	KASSERT(moea64_pvo_find_va(pvo->pvo_pmap, PVO_VADDR(pvo)) == NULL,
2329 	    ("Existing mapping for VA %#jx", (uintmax_t)PVO_VADDR(pvo)));
2330 
2331 	moea64_pvo_enter_calls++;
2332 
2333 	/*
2334 	 * Add to pmap list
2335 	 */
2336 	RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2337 
2338 	/*
2339 	 * Remember if the list was empty and therefore will be the first
2340 	 * item.
2341 	 */
2342 	if (pvo_head != NULL) {
2343 		if (LIST_FIRST(pvo_head) == NULL)
2344 			first = 1;
2345 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2346 	}
2347 
2348 	if (pvo->pvo_vaddr & PVO_WIRED)
2349 		pvo->pvo_pmap->pm_stats.wired_count++;
2350 	pvo->pvo_pmap->pm_stats.resident_count++;
2351 
2352 	/*
2353 	 * Insert it into the hardware page table
2354 	 */
2355 	err = MOEA64_PTE_INSERT(mmu, pvo);
2356 	if (err != 0) {
2357 		panic("moea64_pvo_enter: overflow");
2358 	}
2359 
2360 	moea64_pvo_entries++;
2361 
2362 	if (pvo->pvo_pmap == kernel_pmap)
2363 		isync();
2364 
2365 #ifdef __powerpc64__
2366 	/*
2367 	 * Make sure all our bootstrap mappings are in the SLB as soon
2368 	 * as virtual memory is switched on.
2369 	 */
2370 	if (!pmap_bootstrapped)
2371 		moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
2372 		    pvo->pvo_vaddr & PVO_LARGE);
2373 #endif
2374 
2375 	return (first ? ENOENT : 0);
2376 }
2377 
2378 static void
2379 moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo)
2380 {
2381 	struct	vm_page *pg;
2382 	int32_t refchg;
2383 
2384 	KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
2385 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2386 	KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
2387 
2388 	/*
2389 	 * If there is an active pte entry, we need to deactivate it
2390 	 */
2391 	refchg = MOEA64_PTE_UNSET(mmu, pvo);
2392 	if (refchg < 0) {
2393 		/*
2394 		 * If it was evicted from the page table, be pessimistic and
2395 		 * dirty the page.
2396 		 */
2397 		if (pvo->pvo_pte.prot & VM_PROT_WRITE)
2398 			refchg = LPTE_CHG;
2399 		else
2400 			refchg = 0;
2401 	}
2402 
2403 	/*
2404 	 * Update our statistics.
2405 	 */
2406 	pvo->pvo_pmap->pm_stats.resident_count--;
2407 	if (pvo->pvo_vaddr & PVO_WIRED)
2408 		pvo->pvo_pmap->pm_stats.wired_count--;
2409 
2410 	/*
2411 	 * Remove this PVO from the pmap list.
2412 	 */
2413 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2414 
2415 	/*
2416 	 * Mark this for the next sweep
2417 	 */
2418 	pvo->pvo_vaddr |= PVO_DEAD;
2419 
2420 	/* Send RC bits to VM */
2421 	if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2422 	    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2423 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2424 		if (pg != NULL) {
2425 			refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2426 			if (refchg & LPTE_CHG)
2427 				vm_page_dirty(pg);
2428 			if (refchg & LPTE_REF)
2429 				vm_page_aflag_set(pg, PGA_REFERENCED);
2430 		}
2431 	}
2432 }
2433 
2434 static void
2435 moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo)
2436 {
2437 	struct	vm_page *pg;
2438 
2439 	KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
2440 
2441 	/* Use NULL pmaps as a sentinel for races in page deletion */
2442 	if (pvo->pvo_pmap == NULL)
2443 		return;
2444 	pvo->pvo_pmap = NULL;
2445 
2446 	/*
2447 	 * Update vm about page writeability/executability if managed
2448 	 */
2449 	PV_LOCKASSERT(pvo->pvo_pte.pa & LPTE_RPGN);
2450 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2451 
2452 	if ((pvo->pvo_vaddr & PVO_MANAGED) && pg != NULL) {
2453 		LIST_REMOVE(pvo, pvo_vlink);
2454 		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2455 			vm_page_aflag_clear(pg, PGA_WRITEABLE | PGA_EXECUTABLE);
2456 	}
2457 
2458 	moea64_pvo_entries--;
2459 	moea64_pvo_remove_calls++;
2460 }
2461 
2462 static struct pvo_entry *
2463 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2464 {
2465 	struct pvo_entry key;
2466 
2467 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2468 
2469 	key.pvo_vaddr = va & ~ADDR_POFF;
2470 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2471 }
2472 
2473 static boolean_t
2474 moea64_query_bit(mmu_t mmu, vm_page_t m, uint64_t ptebit)
2475 {
2476 	struct	pvo_entry *pvo;
2477 	int64_t ret;
2478 	boolean_t rv;
2479 
2480 	/*
2481 	 * See if this bit is stored in the page already.
2482 	 */
2483 	if (m->md.mdpg_attrs & ptebit)
2484 		return (TRUE);
2485 
2486 	/*
2487 	 * Examine each PTE.  Sync so that any pending REF/CHG bits are
2488 	 * flushed to the PTEs.
2489 	 */
2490 	rv = FALSE;
2491 	powerpc_sync();
2492 	PV_PAGE_LOCK(m);
2493 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2494 		ret = 0;
2495 
2496 		/*
2497 		 * See if this pvo has a valid PTE.  if so, fetch the
2498 		 * REF/CHG bits from the valid PTE.  If the appropriate
2499 		 * ptebit is set, return success.
2500 		 */
2501 		PMAP_LOCK(pvo->pvo_pmap);
2502 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2503 			ret = MOEA64_PTE_SYNCH(mmu, pvo);
2504 		PMAP_UNLOCK(pvo->pvo_pmap);
2505 
2506 		if (ret > 0) {
2507 			atomic_set_32(&m->md.mdpg_attrs,
2508 			    ret & (LPTE_CHG | LPTE_REF));
2509 			if (ret & ptebit) {
2510 				rv = TRUE;
2511 				break;
2512 			}
2513 		}
2514 	}
2515 	PV_PAGE_UNLOCK(m);
2516 
2517 	return (rv);
2518 }
2519 
2520 static u_int
2521 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2522 {
2523 	u_int	count;
2524 	struct	pvo_entry *pvo;
2525 	int64_t ret;
2526 
2527 	/*
2528 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2529 	 * we can reset the right ones).
2530 	 */
2531 	powerpc_sync();
2532 
2533 	/*
2534 	 * For each pvo entry, clear the pte's ptebit.
2535 	 */
2536 	count = 0;
2537 	PV_PAGE_LOCK(m);
2538 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2539 		ret = 0;
2540 
2541 		PMAP_LOCK(pvo->pvo_pmap);
2542 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2543 			ret = MOEA64_PTE_CLEAR(mmu, pvo, ptebit);
2544 		PMAP_UNLOCK(pvo->pvo_pmap);
2545 
2546 		if (ret > 0 && (ret & ptebit))
2547 			count++;
2548 	}
2549 	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
2550 	PV_PAGE_UNLOCK(m);
2551 
2552 	return (count);
2553 }
2554 
2555 boolean_t
2556 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2557 {
2558 	struct pvo_entry *pvo, key;
2559 	vm_offset_t ppa;
2560 	int error = 0;
2561 
2562 	PMAP_LOCK(kernel_pmap);
2563 	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2564 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2565 	    ppa < pa + size; ppa += PAGE_SIZE,
2566 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2567 		if (pvo == NULL || (pvo->pvo_pte.pa & LPTE_RPGN) != ppa) {
2568 			error = EFAULT;
2569 			break;
2570 		}
2571 	}
2572 	PMAP_UNLOCK(kernel_pmap);
2573 
2574 	return (error);
2575 }
2576 
2577 /*
2578  * Map a set of physical memory pages into the kernel virtual
2579  * address space. Return a pointer to where it is mapped. This
2580  * routine is intended to be used for mapping device memory,
2581  * NOT real memory.
2582  */
2583 void *
2584 moea64_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2585 {
2586 	vm_offset_t va, tmpva, ppa, offset;
2587 
2588 	ppa = trunc_page(pa);
2589 	offset = pa & PAGE_MASK;
2590 	size = roundup2(offset + size, PAGE_SIZE);
2591 
2592 	va = kva_alloc(size);
2593 
2594 	if (!va)
2595 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2596 
2597 	for (tmpva = va; size > 0;) {
2598 		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2599 		size -= PAGE_SIZE;
2600 		tmpva += PAGE_SIZE;
2601 		ppa += PAGE_SIZE;
2602 	}
2603 
2604 	return ((void *)(va + offset));
2605 }
2606 
2607 void *
2608 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2609 {
2610 
2611 	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2612 }
2613 
2614 void
2615 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2616 {
2617 	vm_offset_t base, offset;
2618 
2619 	base = trunc_page(va);
2620 	offset = va & PAGE_MASK;
2621 	size = roundup2(offset + size, PAGE_SIZE);
2622 
2623 	kva_free(base, size);
2624 }
2625 
2626 void
2627 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2628 {
2629 	struct pvo_entry *pvo;
2630 	vm_offset_t lim;
2631 	vm_paddr_t pa;
2632 	vm_size_t len;
2633 
2634 	PMAP_LOCK(pm);
2635 	while (sz > 0) {
2636 		lim = round_page(va);
2637 		len = MIN(lim - va, sz);
2638 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2639 		if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
2640 			pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va & ADDR_POFF);
2641 			moea64_syncicache(mmu, pm, va, pa, len);
2642 		}
2643 		va += len;
2644 		sz -= len;
2645 	}
2646 	PMAP_UNLOCK(pm);
2647 }
2648 
2649 void
2650 moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2651 {
2652 
2653 	*va = (void *)pa;
2654 }
2655 
2656 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2657 
2658 void
2659 moea64_scan_init(mmu_t mmu)
2660 {
2661 	struct pvo_entry *pvo;
2662 	vm_offset_t va;
2663 	int i;
2664 
2665 	if (!do_minidump) {
2666 		/* Initialize phys. segments for dumpsys(). */
2667 		memset(&dump_map, 0, sizeof(dump_map));
2668 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2669 		for (i = 0; i < pregions_sz; i++) {
2670 			dump_map[i].pa_start = pregions[i].mr_start;
2671 			dump_map[i].pa_size = pregions[i].mr_size;
2672 		}
2673 		return;
2674 	}
2675 
2676 	/* Virtual segments for minidumps: */
2677 	memset(&dump_map, 0, sizeof(dump_map));
2678 
2679 	/* 1st: kernel .data and .bss. */
2680 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2681 	dump_map[0].pa_size = round_page((uintptr_t)_end) -
2682 	    dump_map[0].pa_start;
2683 
2684 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2685 	dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
2686 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2687 
2688 	/* 3rd: kernel VM. */
2689 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2690 	/* Find start of next chunk (from va). */
2691 	while (va < virtual_end) {
2692 		/* Don't dump the buffer cache. */
2693 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2694 			va = kmi.buffer_eva;
2695 			continue;
2696 		}
2697 		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2698 		if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2699 			break;
2700 		va += PAGE_SIZE;
2701 	}
2702 	if (va < virtual_end) {
2703 		dump_map[2].pa_start = va;
2704 		va += PAGE_SIZE;
2705 		/* Find last page in chunk. */
2706 		while (va < virtual_end) {
2707 			/* Don't run into the buffer cache. */
2708 			if (va == kmi.buffer_sva)
2709 				break;
2710 			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2711 			if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2712 				break;
2713 			va += PAGE_SIZE;
2714 		}
2715 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2716 	}
2717 }
2718 
2719