1 /*- 2 * Copyright (c) 2001 The NetBSD Foundation, Inc. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to The NetBSD Foundation 6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 * POSSIBILITY OF SUCH DAMAGE. 28 */ 29 /*- 30 * Copyright (C) 1995, 1996 Wolfgang Solfrank. 31 * Copyright (C) 1995, 1996 TooLs GmbH. 32 * All rights reserved. 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 3. All advertising materials mentioning features or use of this software 43 * must display the following acknowledgement: 44 * This product includes software developed by TooLs GmbH. 45 * 4. The name of TooLs GmbH may not be used to endorse or promote products 46 * derived from this software without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 49 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 50 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 51 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 53 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 54 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 55 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 56 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 57 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 58 * 59 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $ 60 */ 61 /*- 62 * Copyright (C) 2001 Benno Rice. 63 * All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 74 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR 75 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 76 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 77 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 78 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 79 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 80 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 81 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 82 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 83 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 84 */ 85 86 #include <sys/cdefs.h> 87 __FBSDID("$FreeBSD$"); 88 89 /* 90 * Manages physical address maps. 91 * 92 * Since the information managed by this module is also stored by the 93 * logical address mapping module, this module may throw away valid virtual 94 * to physical mappings at almost any time. However, invalidations of 95 * mappings must be done as requested. 96 * 97 * In order to cope with hardware architectures which make virtual to 98 * physical map invalidates expensive, this module may delay invalidate 99 * reduced protection operations until such time as they are actually 100 * necessary. This module is given full information as to which processors 101 * are currently using which maps, and to when physical maps must be made 102 * correct. 103 */ 104 105 #include "opt_compat.h" 106 #include "opt_kstack_pages.h" 107 108 #include <sys/param.h> 109 #include <sys/kernel.h> 110 #include <sys/queue.h> 111 #include <sys/cpuset.h> 112 #include <sys/ktr.h> 113 #include <sys/lock.h> 114 #include <sys/msgbuf.h> 115 #include <sys/malloc.h> 116 #include <sys/mutex.h> 117 #include <sys/proc.h> 118 #include <sys/rwlock.h> 119 #include <sys/sched.h> 120 #include <sys/sysctl.h> 121 #include <sys/systm.h> 122 #include <sys/vmmeter.h> 123 124 #include <sys/kdb.h> 125 126 #include <dev/ofw/openfirm.h> 127 128 #include <vm/vm.h> 129 #include <vm/vm_param.h> 130 #include <vm/vm_kern.h> 131 #include <vm/vm_page.h> 132 #include <vm/vm_map.h> 133 #include <vm/vm_object.h> 134 #include <vm/vm_extern.h> 135 #include <vm/vm_pageout.h> 136 #include <vm/uma.h> 137 138 #include <machine/_inttypes.h> 139 #include <machine/cpu.h> 140 #include <machine/platform.h> 141 #include <machine/frame.h> 142 #include <machine/md_var.h> 143 #include <machine/psl.h> 144 #include <machine/bat.h> 145 #include <machine/hid.h> 146 #include <machine/pte.h> 147 #include <machine/sr.h> 148 #include <machine/trap.h> 149 #include <machine/mmuvar.h> 150 151 #include "mmu_oea64.h" 152 #include "mmu_if.h" 153 #include "moea64_if.h" 154 155 void moea64_release_vsid(uint64_t vsid); 156 uintptr_t moea64_get_unique_vsid(void); 157 158 #define DISABLE_TRANS(msr) msr = mfmsr(); mtmsr(msr & ~PSL_DR) 159 #define ENABLE_TRANS(msr) mtmsr(msr) 160 161 #define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4)) 162 #define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff) 163 #define VSID_HASH_MASK 0x0000007fffffffffULL 164 165 /* 166 * Locking semantics: 167 * -- Read lock: if no modifications are being made to either the PVO lists 168 * or page table or if any modifications being made result in internal 169 * changes (e.g. wiring, protection) such that the existence of the PVOs 170 * is unchanged and they remain associated with the same pmap (in which 171 * case the changes should be protected by the pmap lock) 172 * -- Write lock: required if PTEs/PVOs are being inserted or removed. 173 */ 174 175 #define LOCK_TABLE_RD() rw_rlock(&moea64_table_lock) 176 #define UNLOCK_TABLE_RD() rw_runlock(&moea64_table_lock) 177 #define LOCK_TABLE_WR() rw_wlock(&moea64_table_lock) 178 #define UNLOCK_TABLE_WR() rw_wunlock(&moea64_table_lock) 179 180 struct ofw_map { 181 cell_t om_va; 182 cell_t om_len; 183 uint64_t om_pa; 184 cell_t om_mode; 185 }; 186 187 extern unsigned char _etext[]; 188 extern unsigned char _end[]; 189 190 extern int dumpsys_minidump; 191 192 /* 193 * Map of physical memory regions. 194 */ 195 static struct mem_region *regions; 196 static struct mem_region *pregions; 197 static u_int phys_avail_count; 198 static int regions_sz, pregions_sz; 199 200 extern void bs_remap_earlyboot(void); 201 202 /* 203 * Lock for the pteg and pvo tables. 204 */ 205 struct rwlock moea64_table_lock; 206 struct mtx moea64_slb_mutex; 207 208 /* 209 * PTEG data. 210 */ 211 u_int moea64_pteg_count; 212 u_int moea64_pteg_mask; 213 214 /* 215 * PVO data. 216 */ 217 struct pvo_head *moea64_pvo_table; /* pvo entries by pteg index */ 218 219 uma_zone_t moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */ 220 uma_zone_t moea64_mpvo_zone; /* zone for pvo entries for managed pages */ 221 222 #define BPVO_POOL_SIZE 327680 223 static struct pvo_entry *moea64_bpvo_pool; 224 static int moea64_bpvo_pool_index = 0; 225 226 #define VSID_NBPW (sizeof(u_int32_t) * 8) 227 #ifdef __powerpc64__ 228 #define NVSIDS (NPMAPS * 16) 229 #define VSID_HASHMASK 0xffffffffUL 230 #else 231 #define NVSIDS NPMAPS 232 #define VSID_HASHMASK 0xfffffUL 233 #endif 234 static u_int moea64_vsid_bitmap[NVSIDS / VSID_NBPW]; 235 236 static boolean_t moea64_initialized = FALSE; 237 238 /* 239 * Statistics. 240 */ 241 u_int moea64_pte_valid = 0; 242 u_int moea64_pte_overflow = 0; 243 u_int moea64_pvo_entries = 0; 244 u_int moea64_pvo_enter_calls = 0; 245 u_int moea64_pvo_remove_calls = 0; 246 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD, 247 &moea64_pte_valid, 0, ""); 248 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD, 249 &moea64_pte_overflow, 0, ""); 250 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD, 251 &moea64_pvo_entries, 0, ""); 252 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD, 253 &moea64_pvo_enter_calls, 0, ""); 254 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD, 255 &moea64_pvo_remove_calls, 0, ""); 256 257 vm_offset_t moea64_scratchpage_va[2]; 258 struct pvo_entry *moea64_scratchpage_pvo[2]; 259 uintptr_t moea64_scratchpage_pte[2]; 260 struct mtx moea64_scratchpage_mtx; 261 262 uint64_t moea64_large_page_mask = 0; 263 uint64_t moea64_large_page_size = 0; 264 int moea64_large_page_shift = 0; 265 266 /* 267 * PVO calls. 268 */ 269 static int moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *, 270 vm_offset_t, vm_offset_t, uint64_t, int); 271 static void moea64_pvo_remove(mmu_t, struct pvo_entry *); 272 static struct pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t); 273 274 /* 275 * Utility routines. 276 */ 277 static boolean_t moea64_query_bit(mmu_t, vm_page_t, u_int64_t); 278 static u_int moea64_clear_bit(mmu_t, vm_page_t, u_int64_t); 279 static void moea64_kremove(mmu_t, vm_offset_t); 280 static void moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va, 281 vm_offset_t pa, vm_size_t sz); 282 283 /* 284 * Kernel MMU interface 285 */ 286 void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t); 287 void moea64_clear_modify(mmu_t, vm_page_t); 288 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t); 289 void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, 290 vm_page_t *mb, vm_offset_t b_offset, int xfersize); 291 void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t); 292 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t, 293 vm_prot_t); 294 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t); 295 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t); 296 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t); 297 void moea64_init(mmu_t); 298 boolean_t moea64_is_modified(mmu_t, vm_page_t); 299 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t); 300 boolean_t moea64_is_referenced(mmu_t, vm_page_t); 301 int moea64_ts_referenced(mmu_t, vm_page_t); 302 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int); 303 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t); 304 int moea64_page_wired_mappings(mmu_t, vm_page_t); 305 void moea64_pinit(mmu_t, pmap_t); 306 void moea64_pinit0(mmu_t, pmap_t); 307 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t); 308 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int); 309 void moea64_qremove(mmu_t, vm_offset_t, int); 310 void moea64_release(mmu_t, pmap_t); 311 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t); 312 void moea64_remove_pages(mmu_t, pmap_t); 313 void moea64_remove_all(mmu_t, vm_page_t); 314 void moea64_remove_write(mmu_t, vm_page_t); 315 void moea64_zero_page(mmu_t, vm_page_t); 316 void moea64_zero_page_area(mmu_t, vm_page_t, int, int); 317 void moea64_zero_page_idle(mmu_t, vm_page_t); 318 void moea64_activate(mmu_t, struct thread *); 319 void moea64_deactivate(mmu_t, struct thread *); 320 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t); 321 void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t); 322 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t); 323 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t); 324 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma); 325 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma); 326 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t); 327 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t); 328 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t); 329 vm_offset_t moea64_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs, 330 vm_size_t *sz); 331 struct pmap_md * moea64_scan_md(mmu_t mmu, struct pmap_md *prev); 332 333 static mmu_method_t moea64_methods[] = { 334 MMUMETHOD(mmu_change_wiring, moea64_change_wiring), 335 MMUMETHOD(mmu_clear_modify, moea64_clear_modify), 336 MMUMETHOD(mmu_copy_page, moea64_copy_page), 337 MMUMETHOD(mmu_copy_pages, moea64_copy_pages), 338 MMUMETHOD(mmu_enter, moea64_enter), 339 MMUMETHOD(mmu_enter_object, moea64_enter_object), 340 MMUMETHOD(mmu_enter_quick, moea64_enter_quick), 341 MMUMETHOD(mmu_extract, moea64_extract), 342 MMUMETHOD(mmu_extract_and_hold, moea64_extract_and_hold), 343 MMUMETHOD(mmu_init, moea64_init), 344 MMUMETHOD(mmu_is_modified, moea64_is_modified), 345 MMUMETHOD(mmu_is_prefaultable, moea64_is_prefaultable), 346 MMUMETHOD(mmu_is_referenced, moea64_is_referenced), 347 MMUMETHOD(mmu_ts_referenced, moea64_ts_referenced), 348 MMUMETHOD(mmu_map, moea64_map), 349 MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick), 350 MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings), 351 MMUMETHOD(mmu_pinit, moea64_pinit), 352 MMUMETHOD(mmu_pinit0, moea64_pinit0), 353 MMUMETHOD(mmu_protect, moea64_protect), 354 MMUMETHOD(mmu_qenter, moea64_qenter), 355 MMUMETHOD(mmu_qremove, moea64_qremove), 356 MMUMETHOD(mmu_release, moea64_release), 357 MMUMETHOD(mmu_remove, moea64_remove), 358 MMUMETHOD(mmu_remove_pages, moea64_remove_pages), 359 MMUMETHOD(mmu_remove_all, moea64_remove_all), 360 MMUMETHOD(mmu_remove_write, moea64_remove_write), 361 MMUMETHOD(mmu_sync_icache, moea64_sync_icache), 362 MMUMETHOD(mmu_zero_page, moea64_zero_page), 363 MMUMETHOD(mmu_zero_page_area, moea64_zero_page_area), 364 MMUMETHOD(mmu_zero_page_idle, moea64_zero_page_idle), 365 MMUMETHOD(mmu_activate, moea64_activate), 366 MMUMETHOD(mmu_deactivate, moea64_deactivate), 367 MMUMETHOD(mmu_page_set_memattr, moea64_page_set_memattr), 368 369 /* Internal interfaces */ 370 MMUMETHOD(mmu_mapdev, moea64_mapdev), 371 MMUMETHOD(mmu_mapdev_attr, moea64_mapdev_attr), 372 MMUMETHOD(mmu_unmapdev, moea64_unmapdev), 373 MMUMETHOD(mmu_kextract, moea64_kextract), 374 MMUMETHOD(mmu_kenter, moea64_kenter), 375 MMUMETHOD(mmu_kenter_attr, moea64_kenter_attr), 376 MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped), 377 MMUMETHOD(mmu_scan_md, moea64_scan_md), 378 MMUMETHOD(mmu_dumpsys_map, moea64_dumpsys_map), 379 380 { 0, 0 } 381 }; 382 383 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0); 384 385 static __inline u_int 386 va_to_pteg(uint64_t vsid, vm_offset_t addr, int large) 387 { 388 uint64_t hash; 389 int shift; 390 391 shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT; 392 hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >> 393 shift); 394 return (hash & moea64_pteg_mask); 395 } 396 397 static __inline struct pvo_head * 398 vm_page_to_pvoh(vm_page_t m) 399 { 400 401 return (&m->md.mdpg_pvoh); 402 } 403 404 static __inline void 405 moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va, 406 uint64_t pte_lo, int flags) 407 { 408 409 /* 410 * Construct a PTE. Default to IMB initially. Valid bit only gets 411 * set when the real pte is set in memory. 412 * 413 * Note: Don't set the valid bit for correct operation of tlb update. 414 */ 415 pt->pte_hi = (vsid << LPTE_VSID_SHIFT) | 416 (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API); 417 418 if (flags & PVO_LARGE) 419 pt->pte_hi |= LPTE_BIG; 420 421 pt->pte_lo = pte_lo; 422 } 423 424 static __inline uint64_t 425 moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma) 426 { 427 uint64_t pte_lo; 428 int i; 429 430 if (ma != VM_MEMATTR_DEFAULT) { 431 switch (ma) { 432 case VM_MEMATTR_UNCACHEABLE: 433 return (LPTE_I | LPTE_G); 434 case VM_MEMATTR_WRITE_COMBINING: 435 case VM_MEMATTR_WRITE_BACK: 436 case VM_MEMATTR_PREFETCHABLE: 437 return (LPTE_I); 438 case VM_MEMATTR_WRITE_THROUGH: 439 return (LPTE_W | LPTE_M); 440 } 441 } 442 443 /* 444 * Assume the page is cache inhibited and access is guarded unless 445 * it's in our available memory array. 446 */ 447 pte_lo = LPTE_I | LPTE_G; 448 for (i = 0; i < pregions_sz; i++) { 449 if ((pa >= pregions[i].mr_start) && 450 (pa < (pregions[i].mr_start + pregions[i].mr_size))) { 451 pte_lo &= ~(LPTE_I | LPTE_G); 452 pte_lo |= LPTE_M; 453 break; 454 } 455 } 456 457 return pte_lo; 458 } 459 460 /* 461 * Quick sort callout for comparing memory regions. 462 */ 463 static int om_cmp(const void *a, const void *b); 464 465 static int 466 om_cmp(const void *a, const void *b) 467 { 468 const struct ofw_map *mapa; 469 const struct ofw_map *mapb; 470 471 mapa = a; 472 mapb = b; 473 if (mapa->om_pa < mapb->om_pa) 474 return (-1); 475 else if (mapa->om_pa > mapb->om_pa) 476 return (1); 477 else 478 return (0); 479 } 480 481 static void 482 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz) 483 { 484 struct ofw_map translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */ 485 pcell_t acells, trans_cells[sz/sizeof(cell_t)]; 486 register_t msr; 487 vm_offset_t off; 488 vm_paddr_t pa_base; 489 int i, j; 490 491 bzero(translations, sz); 492 OF_getprop(OF_finddevice("/"), "#address-cells", &acells, 493 sizeof(acells)); 494 if (OF_getprop(mmu, "translations", trans_cells, sz) == -1) 495 panic("moea64_bootstrap: can't get ofw translations"); 496 497 CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations"); 498 sz /= sizeof(cell_t); 499 for (i = 0, j = 0; i < sz; j++) { 500 translations[j].om_va = trans_cells[i++]; 501 translations[j].om_len = trans_cells[i++]; 502 translations[j].om_pa = trans_cells[i++]; 503 if (acells == 2) { 504 translations[j].om_pa <<= 32; 505 translations[j].om_pa |= trans_cells[i++]; 506 } 507 translations[j].om_mode = trans_cells[i++]; 508 } 509 KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)", 510 i, sz)); 511 512 sz = j; 513 qsort(translations, sz, sizeof (*translations), om_cmp); 514 515 for (i = 0; i < sz; i++) { 516 pa_base = translations[i].om_pa; 517 #ifndef __powerpc64__ 518 if ((translations[i].om_pa >> 32) != 0) 519 panic("OFW translations above 32-bit boundary!"); 520 #endif 521 522 if (pa_base % PAGE_SIZE) 523 panic("OFW translation not page-aligned (phys)!"); 524 if (translations[i].om_va % PAGE_SIZE) 525 panic("OFW translation not page-aligned (virt)!"); 526 527 CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x", 528 pa_base, translations[i].om_va, translations[i].om_len); 529 530 /* Now enter the pages for this mapping */ 531 532 DISABLE_TRANS(msr); 533 for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) { 534 if (moea64_pvo_find_va(kernel_pmap, 535 translations[i].om_va + off) != NULL) 536 continue; 537 538 moea64_kenter(mmup, translations[i].om_va + off, 539 pa_base + off); 540 } 541 ENABLE_TRANS(msr); 542 } 543 } 544 545 #ifdef __powerpc64__ 546 static void 547 moea64_probe_large_page(void) 548 { 549 uint16_t pvr = mfpvr() >> 16; 550 551 switch (pvr) { 552 case IBM970: 553 case IBM970FX: 554 case IBM970MP: 555 powerpc_sync(); isync(); 556 mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG); 557 powerpc_sync(); isync(); 558 559 /* FALLTHROUGH */ 560 default: 561 moea64_large_page_size = 0x1000000; /* 16 MB */ 562 moea64_large_page_shift = 24; 563 } 564 565 moea64_large_page_mask = moea64_large_page_size - 1; 566 } 567 568 static void 569 moea64_bootstrap_slb_prefault(vm_offset_t va, int large) 570 { 571 struct slb *cache; 572 struct slb entry; 573 uint64_t esid, slbe; 574 uint64_t i; 575 576 cache = PCPU_GET(slb); 577 esid = va >> ADDR_SR_SHFT; 578 slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID; 579 580 for (i = 0; i < 64; i++) { 581 if (cache[i].slbe == (slbe | i)) 582 return; 583 } 584 585 entry.slbe = slbe; 586 entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT; 587 if (large) 588 entry.slbv |= SLBV_L; 589 590 slb_insert_kernel(entry.slbe, entry.slbv); 591 } 592 #endif 593 594 static void 595 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart, 596 vm_offset_t kernelend) 597 { 598 register_t msr; 599 vm_paddr_t pa; 600 vm_offset_t size, off; 601 uint64_t pte_lo; 602 int i; 603 604 if (moea64_large_page_size == 0) 605 hw_direct_map = 0; 606 607 DISABLE_TRANS(msr); 608 if (hw_direct_map) { 609 LOCK_TABLE_WR(); 610 PMAP_LOCK(kernel_pmap); 611 for (i = 0; i < pregions_sz; i++) { 612 for (pa = pregions[i].mr_start; pa < pregions[i].mr_start + 613 pregions[i].mr_size; pa += moea64_large_page_size) { 614 pte_lo = LPTE_M; 615 616 /* 617 * Set memory access as guarded if prefetch within 618 * the page could exit the available physmem area. 619 */ 620 if (pa & moea64_large_page_mask) { 621 pa &= moea64_large_page_mask; 622 pte_lo |= LPTE_G; 623 } 624 if (pa + moea64_large_page_size > 625 pregions[i].mr_start + pregions[i].mr_size) 626 pte_lo |= LPTE_G; 627 628 moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone, 629 NULL, pa, pa, pte_lo, 630 PVO_WIRED | PVO_LARGE); 631 } 632 } 633 PMAP_UNLOCK(kernel_pmap); 634 UNLOCK_TABLE_WR(); 635 } else { 636 size = sizeof(struct pvo_head) * moea64_pteg_count; 637 off = (vm_offset_t)(moea64_pvo_table); 638 for (pa = off; pa < off + size; pa += PAGE_SIZE) 639 moea64_kenter(mmup, pa, pa); 640 size = BPVO_POOL_SIZE*sizeof(struct pvo_entry); 641 off = (vm_offset_t)(moea64_bpvo_pool); 642 for (pa = off; pa < off + size; pa += PAGE_SIZE) 643 moea64_kenter(mmup, pa, pa); 644 645 /* 646 * Map certain important things, like ourselves. 647 * 648 * NOTE: We do not map the exception vector space. That code is 649 * used only in real mode, and leaving it unmapped allows us to 650 * catch NULL pointer deferences, instead of making NULL a valid 651 * address. 652 */ 653 654 for (pa = kernelstart & ~PAGE_MASK; pa < kernelend; 655 pa += PAGE_SIZE) 656 moea64_kenter(mmup, pa, pa); 657 } 658 ENABLE_TRANS(msr); 659 660 /* 661 * Allow user to override unmapped_buf_allowed for testing. 662 * XXXKIB Only direct map implementation was tested. 663 */ 664 if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed", 665 &unmapped_buf_allowed)) 666 unmapped_buf_allowed = hw_direct_map; 667 } 668 669 void 670 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) 671 { 672 int i, j; 673 vm_size_t physsz, hwphyssz; 674 675 #ifndef __powerpc64__ 676 /* We don't have a direct map since there is no BAT */ 677 hw_direct_map = 0; 678 679 /* Make sure battable is zero, since we have no BAT */ 680 for (i = 0; i < 16; i++) { 681 battable[i].batu = 0; 682 battable[i].batl = 0; 683 } 684 #else 685 moea64_probe_large_page(); 686 687 /* Use a direct map if we have large page support */ 688 if (moea64_large_page_size > 0) 689 hw_direct_map = 1; 690 else 691 hw_direct_map = 0; 692 #endif 693 694 /* Get physical memory regions from firmware */ 695 mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); 696 CTR0(KTR_PMAP, "moea64_bootstrap: physical memory"); 697 698 if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz) 699 panic("moea64_bootstrap: phys_avail too small"); 700 701 phys_avail_count = 0; 702 physsz = 0; 703 hwphyssz = 0; 704 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); 705 for (i = 0, j = 0; i < regions_sz; i++, j += 2) { 706 CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)", 707 regions[i].mr_start, regions[i].mr_start + 708 regions[i].mr_size, regions[i].mr_size); 709 if (hwphyssz != 0 && 710 (physsz + regions[i].mr_size) >= hwphyssz) { 711 if (physsz < hwphyssz) { 712 phys_avail[j] = regions[i].mr_start; 713 phys_avail[j + 1] = regions[i].mr_start + 714 hwphyssz - physsz; 715 physsz = hwphyssz; 716 phys_avail_count++; 717 } 718 break; 719 } 720 phys_avail[j] = regions[i].mr_start; 721 phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size; 722 phys_avail_count++; 723 physsz += regions[i].mr_size; 724 } 725 726 /* Check for overlap with the kernel and exception vectors */ 727 for (j = 0; j < 2*phys_avail_count; j+=2) { 728 if (phys_avail[j] < EXC_LAST) 729 phys_avail[j] += EXC_LAST; 730 731 if (kernelstart >= phys_avail[j] && 732 kernelstart < phys_avail[j+1]) { 733 if (kernelend < phys_avail[j+1]) { 734 phys_avail[2*phys_avail_count] = 735 (kernelend & ~PAGE_MASK) + PAGE_SIZE; 736 phys_avail[2*phys_avail_count + 1] = 737 phys_avail[j+1]; 738 phys_avail_count++; 739 } 740 741 phys_avail[j+1] = kernelstart & ~PAGE_MASK; 742 } 743 744 if (kernelend >= phys_avail[j] && 745 kernelend < phys_avail[j+1]) { 746 if (kernelstart > phys_avail[j]) { 747 phys_avail[2*phys_avail_count] = phys_avail[j]; 748 phys_avail[2*phys_avail_count + 1] = 749 kernelstart & ~PAGE_MASK; 750 phys_avail_count++; 751 } 752 753 phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE; 754 } 755 } 756 757 physmem = btoc(physsz); 758 759 #ifdef PTEGCOUNT 760 moea64_pteg_count = PTEGCOUNT; 761 #else 762 moea64_pteg_count = 0x1000; 763 764 while (moea64_pteg_count < physmem) 765 moea64_pteg_count <<= 1; 766 767 moea64_pteg_count >>= 1; 768 #endif /* PTEGCOUNT */ 769 } 770 771 void 772 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) 773 { 774 vm_size_t size; 775 register_t msr; 776 int i; 777 778 /* 779 * Set PTEG mask 780 */ 781 moea64_pteg_mask = moea64_pteg_count - 1; 782 783 /* 784 * Allocate pv/overflow lists. 785 */ 786 size = sizeof(struct pvo_head) * moea64_pteg_count; 787 788 moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size, 789 PAGE_SIZE); 790 CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table); 791 792 DISABLE_TRANS(msr); 793 for (i = 0; i < moea64_pteg_count; i++) 794 LIST_INIT(&moea64_pvo_table[i]); 795 ENABLE_TRANS(msr); 796 797 /* 798 * Initialize the lock that synchronizes access to the pteg and pvo 799 * tables. 800 */ 801 rw_init_flags(&moea64_table_lock, "pmap tables", RW_RECURSE); 802 mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF); 803 804 /* 805 * Initialise the unmanaged pvo pool. 806 */ 807 moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc( 808 BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0); 809 moea64_bpvo_pool_index = 0; 810 811 /* 812 * Make sure kernel vsid is allocated as well as VSID 0. 813 */ 814 #ifndef __powerpc64__ 815 moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW] 816 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW); 817 moea64_vsid_bitmap[0] |= 1; 818 #endif 819 820 /* 821 * Initialize the kernel pmap (which is statically allocated). 822 */ 823 #ifdef __powerpc64__ 824 for (i = 0; i < 64; i++) { 825 pcpup->pc_slb[i].slbv = 0; 826 pcpup->pc_slb[i].slbe = 0; 827 } 828 #else 829 for (i = 0; i < 16; i++) 830 kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i; 831 #endif 832 833 kernel_pmap->pmap_phys = kernel_pmap; 834 CPU_FILL(&kernel_pmap->pm_active); 835 RB_INIT(&kernel_pmap->pmap_pvo); 836 837 PMAP_LOCK_INIT(kernel_pmap); 838 839 /* 840 * Now map in all the other buffers we allocated earlier 841 */ 842 843 moea64_setup_direct_map(mmup, kernelstart, kernelend); 844 } 845 846 void 847 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) 848 { 849 ihandle_t mmui; 850 phandle_t chosen; 851 phandle_t mmu; 852 size_t sz; 853 int i; 854 vm_offset_t pa, va; 855 void *dpcpu; 856 857 /* 858 * Set up the Open Firmware pmap and add its mappings if not in real 859 * mode. 860 */ 861 862 chosen = OF_finddevice("/chosen"); 863 if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) { 864 mmu = OF_instance_to_package(mmui); 865 if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1) 866 sz = 0; 867 if (sz > 6144 /* tmpstksz - 2 KB headroom */) 868 panic("moea64_bootstrap: too many ofw translations"); 869 870 if (sz > 0) 871 moea64_add_ofw_mappings(mmup, mmu, sz); 872 } 873 874 /* 875 * Calculate the last available physical address. 876 */ 877 for (i = 0; phys_avail[i + 2] != 0; i += 2) 878 ; 879 Maxmem = powerpc_btop(phys_avail[i + 1]); 880 881 /* 882 * Initialize MMU and remap early physical mappings 883 */ 884 MMU_CPU_BOOTSTRAP(mmup,0); 885 mtmsr(mfmsr() | PSL_DR | PSL_IR); 886 pmap_bootstrapped++; 887 bs_remap_earlyboot(); 888 889 /* 890 * Set the start and end of kva. 891 */ 892 virtual_avail = VM_MIN_KERNEL_ADDRESS; 893 virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS; 894 895 /* 896 * Map the entire KVA range into the SLB. We must not fault there. 897 */ 898 #ifdef __powerpc64__ 899 for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH) 900 moea64_bootstrap_slb_prefault(va, 0); 901 #endif 902 903 /* 904 * Figure out how far we can extend virtual_end into segment 16 905 * without running into existing mappings. Segment 16 is guaranteed 906 * to contain neither RAM nor devices (at least on Apple hardware), 907 * but will generally contain some OFW mappings we should not 908 * step on. 909 */ 910 911 #ifndef __powerpc64__ /* KVA is in high memory on PPC64 */ 912 PMAP_LOCK(kernel_pmap); 913 while (virtual_end < VM_MAX_KERNEL_ADDRESS && 914 moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL) 915 virtual_end += PAGE_SIZE; 916 PMAP_UNLOCK(kernel_pmap); 917 #endif 918 919 /* 920 * Allocate a kernel stack with a guard page for thread0 and map it 921 * into the kernel page map. 922 */ 923 pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE); 924 va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; 925 virtual_avail = va + KSTACK_PAGES * PAGE_SIZE; 926 CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va); 927 thread0.td_kstack = va; 928 thread0.td_kstack_pages = KSTACK_PAGES; 929 for (i = 0; i < KSTACK_PAGES; i++) { 930 moea64_kenter(mmup, va, pa); 931 pa += PAGE_SIZE; 932 va += PAGE_SIZE; 933 } 934 935 /* 936 * Allocate virtual address space for the message buffer. 937 */ 938 pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE); 939 msgbufp = (struct msgbuf *)virtual_avail; 940 va = virtual_avail; 941 virtual_avail += round_page(msgbufsize); 942 while (va < virtual_avail) { 943 moea64_kenter(mmup, va, pa); 944 pa += PAGE_SIZE; 945 va += PAGE_SIZE; 946 } 947 948 /* 949 * Allocate virtual address space for the dynamic percpu area. 950 */ 951 pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE); 952 dpcpu = (void *)virtual_avail; 953 va = virtual_avail; 954 virtual_avail += DPCPU_SIZE; 955 while (va < virtual_avail) { 956 moea64_kenter(mmup, va, pa); 957 pa += PAGE_SIZE; 958 va += PAGE_SIZE; 959 } 960 dpcpu_init(dpcpu, 0); 961 962 /* 963 * Allocate some things for page zeroing. We put this directly 964 * in the page table, marked with LPTE_LOCKED, to avoid any 965 * of the PVO book-keeping or other parts of the VM system 966 * from even knowing that this hack exists. 967 */ 968 969 if (!hw_direct_map) { 970 mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL, 971 MTX_DEF); 972 for (i = 0; i < 2; i++) { 973 moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE; 974 virtual_end -= PAGE_SIZE; 975 976 moea64_kenter(mmup, moea64_scratchpage_va[i], 0); 977 978 moea64_scratchpage_pvo[i] = moea64_pvo_find_va( 979 kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]); 980 LOCK_TABLE_RD(); 981 moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE( 982 mmup, moea64_scratchpage_pvo[i]); 983 moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi 984 |= LPTE_LOCKED; 985 MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i], 986 &moea64_scratchpage_pvo[i]->pvo_pte.lpte, 987 moea64_scratchpage_pvo[i]->pvo_vpn); 988 UNLOCK_TABLE_RD(); 989 } 990 } 991 } 992 993 /* 994 * Activate a user pmap. The pmap must be activated before its address 995 * space can be accessed in any way. 996 */ 997 void 998 moea64_activate(mmu_t mmu, struct thread *td) 999 { 1000 pmap_t pm; 1001 1002 pm = &td->td_proc->p_vmspace->vm_pmap; 1003 CPU_SET(PCPU_GET(cpuid), &pm->pm_active); 1004 1005 #ifdef __powerpc64__ 1006 PCPU_SET(userslb, pm->pm_slb); 1007 #else 1008 PCPU_SET(curpmap, pm->pmap_phys); 1009 #endif 1010 } 1011 1012 void 1013 moea64_deactivate(mmu_t mmu, struct thread *td) 1014 { 1015 pmap_t pm; 1016 1017 pm = &td->td_proc->p_vmspace->vm_pmap; 1018 CPU_CLR(PCPU_GET(cpuid), &pm->pm_active); 1019 #ifdef __powerpc64__ 1020 PCPU_SET(userslb, NULL); 1021 #else 1022 PCPU_SET(curpmap, NULL); 1023 #endif 1024 } 1025 1026 void 1027 moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired) 1028 { 1029 struct pvo_entry *pvo; 1030 uintptr_t pt; 1031 uint64_t vsid; 1032 int i, ptegidx; 1033 1034 LOCK_TABLE_WR(); 1035 PMAP_LOCK(pm); 1036 pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF); 1037 1038 if (pvo != NULL) { 1039 pt = MOEA64_PVO_TO_PTE(mmu, pvo); 1040 1041 if (wired) { 1042 if ((pvo->pvo_vaddr & PVO_WIRED) == 0) 1043 pm->pm_stats.wired_count++; 1044 pvo->pvo_vaddr |= PVO_WIRED; 1045 pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED; 1046 } else { 1047 if ((pvo->pvo_vaddr & PVO_WIRED) != 0) 1048 pm->pm_stats.wired_count--; 1049 pvo->pvo_vaddr &= ~PVO_WIRED; 1050 pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED; 1051 } 1052 1053 if (pt != -1) { 1054 /* Update wiring flag in page table. */ 1055 MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte, 1056 pvo->pvo_vpn); 1057 } else if (wired) { 1058 /* 1059 * If we are wiring the page, and it wasn't in the 1060 * page table before, add it. 1061 */ 1062 vsid = PVO_VSID(pvo); 1063 ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo), 1064 pvo->pvo_vaddr & PVO_LARGE); 1065 1066 i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte); 1067 1068 if (i >= 0) { 1069 PVO_PTEGIDX_CLR(pvo); 1070 PVO_PTEGIDX_SET(pvo, i); 1071 } 1072 } 1073 1074 } 1075 UNLOCK_TABLE_WR(); 1076 PMAP_UNLOCK(pm); 1077 } 1078 1079 /* 1080 * This goes through and sets the physical address of our 1081 * special scratch PTE to the PA we want to zero or copy. Because 1082 * of locking issues (this can get called in pvo_enter() by 1083 * the UMA allocator), we can't use most other utility functions here 1084 */ 1085 1086 static __inline 1087 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) { 1088 1089 KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!")); 1090 mtx_assert(&moea64_scratchpage_mtx, MA_OWNED); 1091 1092 moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &= 1093 ~(LPTE_WIMG | LPTE_RPGN); 1094 moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |= 1095 moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa; 1096 MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which], 1097 &moea64_scratchpage_pvo[which]->pvo_pte.lpte, 1098 moea64_scratchpage_pvo[which]->pvo_vpn); 1099 isync(); 1100 } 1101 1102 void 1103 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst) 1104 { 1105 vm_offset_t dst; 1106 vm_offset_t src; 1107 1108 dst = VM_PAGE_TO_PHYS(mdst); 1109 src = VM_PAGE_TO_PHYS(msrc); 1110 1111 if (hw_direct_map) { 1112 bcopy((void *)src, (void *)dst, PAGE_SIZE); 1113 } else { 1114 mtx_lock(&moea64_scratchpage_mtx); 1115 1116 moea64_set_scratchpage_pa(mmu, 0, src); 1117 moea64_set_scratchpage_pa(mmu, 1, dst); 1118 1119 bcopy((void *)moea64_scratchpage_va[0], 1120 (void *)moea64_scratchpage_va[1], PAGE_SIZE); 1121 1122 mtx_unlock(&moea64_scratchpage_mtx); 1123 } 1124 } 1125 1126 static inline void 1127 moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, 1128 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 1129 { 1130 void *a_cp, *b_cp; 1131 vm_offset_t a_pg_offset, b_pg_offset; 1132 int cnt; 1133 1134 while (xfersize > 0) { 1135 a_pg_offset = a_offset & PAGE_MASK; 1136 cnt = min(xfersize, PAGE_SIZE - a_pg_offset); 1137 a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) + 1138 a_pg_offset; 1139 b_pg_offset = b_offset & PAGE_MASK; 1140 cnt = min(cnt, PAGE_SIZE - b_pg_offset); 1141 b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) + 1142 b_pg_offset; 1143 bcopy(a_cp, b_cp, cnt); 1144 a_offset += cnt; 1145 b_offset += cnt; 1146 xfersize -= cnt; 1147 } 1148 } 1149 1150 static inline void 1151 moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, 1152 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 1153 { 1154 void *a_cp, *b_cp; 1155 vm_offset_t a_pg_offset, b_pg_offset; 1156 int cnt; 1157 1158 mtx_lock(&moea64_scratchpage_mtx); 1159 while (xfersize > 0) { 1160 a_pg_offset = a_offset & PAGE_MASK; 1161 cnt = min(xfersize, PAGE_SIZE - a_pg_offset); 1162 moea64_set_scratchpage_pa(mmu, 0, 1163 VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT])); 1164 a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset; 1165 b_pg_offset = b_offset & PAGE_MASK; 1166 cnt = min(cnt, PAGE_SIZE - b_pg_offset); 1167 moea64_set_scratchpage_pa(mmu, 1, 1168 VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT])); 1169 b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset; 1170 bcopy(a_cp, b_cp, cnt); 1171 a_offset += cnt; 1172 b_offset += cnt; 1173 xfersize -= cnt; 1174 } 1175 mtx_unlock(&moea64_scratchpage_mtx); 1176 } 1177 1178 void 1179 moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, 1180 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 1181 { 1182 1183 if (hw_direct_map) { 1184 moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset, 1185 xfersize); 1186 } else { 1187 moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset, 1188 xfersize); 1189 } 1190 } 1191 1192 void 1193 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) 1194 { 1195 vm_offset_t pa = VM_PAGE_TO_PHYS(m); 1196 1197 if (size + off > PAGE_SIZE) 1198 panic("moea64_zero_page: size + off > PAGE_SIZE"); 1199 1200 if (hw_direct_map) { 1201 bzero((caddr_t)pa + off, size); 1202 } else { 1203 mtx_lock(&moea64_scratchpage_mtx); 1204 moea64_set_scratchpage_pa(mmu, 0, pa); 1205 bzero((caddr_t)moea64_scratchpage_va[0] + off, size); 1206 mtx_unlock(&moea64_scratchpage_mtx); 1207 } 1208 } 1209 1210 /* 1211 * Zero a page of physical memory by temporarily mapping it 1212 */ 1213 void 1214 moea64_zero_page(mmu_t mmu, vm_page_t m) 1215 { 1216 vm_offset_t pa = VM_PAGE_TO_PHYS(m); 1217 vm_offset_t va, off; 1218 1219 if (!hw_direct_map) { 1220 mtx_lock(&moea64_scratchpage_mtx); 1221 1222 moea64_set_scratchpage_pa(mmu, 0, pa); 1223 va = moea64_scratchpage_va[0]; 1224 } else { 1225 va = pa; 1226 } 1227 1228 for (off = 0; off < PAGE_SIZE; off += cacheline_size) 1229 __asm __volatile("dcbz 0,%0" :: "r"(va + off)); 1230 1231 if (!hw_direct_map) 1232 mtx_unlock(&moea64_scratchpage_mtx); 1233 } 1234 1235 void 1236 moea64_zero_page_idle(mmu_t mmu, vm_page_t m) 1237 { 1238 1239 moea64_zero_page(mmu, m); 1240 } 1241 1242 /* 1243 * Map the given physical page at the specified virtual address in the 1244 * target pmap with the protection requested. If specified the page 1245 * will be wired down. 1246 */ 1247 1248 void 1249 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, 1250 vm_prot_t prot, boolean_t wired) 1251 { 1252 struct pvo_head *pvo_head; 1253 uma_zone_t zone; 1254 vm_page_t pg; 1255 uint64_t pte_lo; 1256 u_int pvo_flags; 1257 int error; 1258 1259 if (!moea64_initialized) { 1260 pvo_head = NULL; 1261 pg = NULL; 1262 zone = moea64_upvo_zone; 1263 pvo_flags = 0; 1264 } else { 1265 pvo_head = vm_page_to_pvoh(m); 1266 pg = m; 1267 zone = moea64_mpvo_zone; 1268 pvo_flags = PVO_MANAGED; 1269 } 1270 1271 if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m)) 1272 VM_OBJECT_ASSERT_LOCKED(m->object); 1273 1274 /* XXX change the pvo head for fake pages */ 1275 if ((m->oflags & VPO_UNMANAGED) != 0) { 1276 pvo_flags &= ~PVO_MANAGED; 1277 pvo_head = NULL; 1278 zone = moea64_upvo_zone; 1279 } 1280 1281 pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m)); 1282 1283 if (prot & VM_PROT_WRITE) { 1284 pte_lo |= LPTE_BW; 1285 if (pmap_bootstrapped && 1286 (m->oflags & VPO_UNMANAGED) == 0) 1287 vm_page_aflag_set(m, PGA_WRITEABLE); 1288 } else 1289 pte_lo |= LPTE_BR; 1290 1291 if ((prot & VM_PROT_EXECUTE) == 0) 1292 pte_lo |= LPTE_NOEXEC; 1293 1294 if (wired) 1295 pvo_flags |= PVO_WIRED; 1296 1297 LOCK_TABLE_WR(); 1298 PMAP_LOCK(pmap); 1299 error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va, 1300 VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags); 1301 PMAP_UNLOCK(pmap); 1302 UNLOCK_TABLE_WR(); 1303 1304 /* 1305 * Flush the page from the instruction cache if this page is 1306 * mapped executable and cacheable. 1307 */ 1308 if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) && 1309 (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { 1310 vm_page_aflag_set(m, PGA_EXECUTABLE); 1311 moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE); 1312 } 1313 } 1314 1315 static void 1316 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa, 1317 vm_size_t sz) 1318 { 1319 1320 /* 1321 * This is much trickier than on older systems because 1322 * we can't sync the icache on physical addresses directly 1323 * without a direct map. Instead we check a couple of cases 1324 * where the memory is already mapped in and, failing that, 1325 * use the same trick we use for page zeroing to create 1326 * a temporary mapping for this physical address. 1327 */ 1328 1329 if (!pmap_bootstrapped) { 1330 /* 1331 * If PMAP is not bootstrapped, we are likely to be 1332 * in real mode. 1333 */ 1334 __syncicache((void *)pa, sz); 1335 } else if (pmap == kernel_pmap) { 1336 __syncicache((void *)va, sz); 1337 } else if (hw_direct_map) { 1338 __syncicache((void *)pa, sz); 1339 } else { 1340 /* Use the scratch page to set up a temp mapping */ 1341 1342 mtx_lock(&moea64_scratchpage_mtx); 1343 1344 moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF); 1345 __syncicache((void *)(moea64_scratchpage_va[1] + 1346 (va & ADDR_POFF)), sz); 1347 1348 mtx_unlock(&moea64_scratchpage_mtx); 1349 } 1350 } 1351 1352 /* 1353 * Maps a sequence of resident pages belonging to the same object. 1354 * The sequence begins with the given page m_start. This page is 1355 * mapped at the given virtual address start. Each subsequent page is 1356 * mapped at a virtual address that is offset from start by the same 1357 * amount as the page is offset from m_start within the object. The 1358 * last page in the sequence is the page with the largest offset from 1359 * m_start that can be mapped at a virtual address less than the given 1360 * virtual address end. Not every virtual page between start and end 1361 * is mapped; only those for which a resident page exists with the 1362 * corresponding offset from m_start are mapped. 1363 */ 1364 void 1365 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end, 1366 vm_page_t m_start, vm_prot_t prot) 1367 { 1368 vm_page_t m; 1369 vm_pindex_t diff, psize; 1370 1371 VM_OBJECT_ASSERT_LOCKED(m_start->object); 1372 1373 psize = atop(end - start); 1374 m = m_start; 1375 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { 1376 moea64_enter(mmu, pm, start + ptoa(diff), m, prot & 1377 (VM_PROT_READ | VM_PROT_EXECUTE), FALSE); 1378 m = TAILQ_NEXT(m, listq); 1379 } 1380 } 1381 1382 void 1383 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m, 1384 vm_prot_t prot) 1385 { 1386 1387 moea64_enter(mmu, pm, va, m, 1388 prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE); 1389 } 1390 1391 vm_paddr_t 1392 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va) 1393 { 1394 struct pvo_entry *pvo; 1395 vm_paddr_t pa; 1396 1397 PMAP_LOCK(pm); 1398 pvo = moea64_pvo_find_va(pm, va); 1399 if (pvo == NULL) 1400 pa = 0; 1401 else 1402 pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | 1403 (va - PVO_VADDR(pvo)); 1404 PMAP_UNLOCK(pm); 1405 return (pa); 1406 } 1407 1408 /* 1409 * Atomically extract and hold the physical page with the given 1410 * pmap and virtual address pair if that mapping permits the given 1411 * protection. 1412 */ 1413 vm_page_t 1414 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot) 1415 { 1416 struct pvo_entry *pvo; 1417 vm_page_t m; 1418 vm_paddr_t pa; 1419 1420 m = NULL; 1421 pa = 0; 1422 PMAP_LOCK(pmap); 1423 retry: 1424 pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF); 1425 if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) && 1426 ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW || 1427 (prot & VM_PROT_WRITE) == 0)) { 1428 if (vm_page_pa_tryrelock(pmap, 1429 pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa)) 1430 goto retry; 1431 m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN); 1432 vm_page_hold(m); 1433 } 1434 PA_UNLOCK_COND(pa); 1435 PMAP_UNLOCK(pmap); 1436 return (m); 1437 } 1438 1439 static mmu_t installed_mmu; 1440 1441 static void * 1442 moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait) 1443 { 1444 /* 1445 * This entire routine is a horrible hack to avoid bothering kmem 1446 * for new KVA addresses. Because this can get called from inside 1447 * kmem allocation routines, calling kmem for a new address here 1448 * can lead to multiply locking non-recursive mutexes. 1449 */ 1450 vm_offset_t va; 1451 1452 vm_page_t m; 1453 int pflags, needed_lock; 1454 1455 *flags = UMA_SLAB_PRIV; 1456 needed_lock = !PMAP_LOCKED(kernel_pmap); 1457 pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED; 1458 1459 for (;;) { 1460 m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ); 1461 if (m == NULL) { 1462 if (wait & M_NOWAIT) 1463 return (NULL); 1464 VM_WAIT; 1465 } else 1466 break; 1467 } 1468 1469 va = VM_PAGE_TO_PHYS(m); 1470 1471 LOCK_TABLE_WR(); 1472 if (needed_lock) 1473 PMAP_LOCK(kernel_pmap); 1474 1475 moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone, 1476 NULL, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP); 1477 1478 if (needed_lock) 1479 PMAP_UNLOCK(kernel_pmap); 1480 UNLOCK_TABLE_WR(); 1481 1482 if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0) 1483 bzero((void *)va, PAGE_SIZE); 1484 1485 return (void *)va; 1486 } 1487 1488 extern int elf32_nxstack; 1489 1490 void 1491 moea64_init(mmu_t mmu) 1492 { 1493 1494 CTR0(KTR_PMAP, "moea64_init"); 1495 1496 moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry), 1497 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1498 UMA_ZONE_VM | UMA_ZONE_NOFREE); 1499 moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry), 1500 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1501 UMA_ZONE_VM | UMA_ZONE_NOFREE); 1502 1503 if (!hw_direct_map) { 1504 installed_mmu = mmu; 1505 uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc); 1506 uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc); 1507 } 1508 1509 #ifdef COMPAT_FREEBSD32 1510 elf32_nxstack = 1; 1511 #endif 1512 1513 moea64_initialized = TRUE; 1514 } 1515 1516 boolean_t 1517 moea64_is_referenced(mmu_t mmu, vm_page_t m) 1518 { 1519 1520 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1521 ("moea64_is_referenced: page %p is not managed", m)); 1522 return (moea64_query_bit(mmu, m, PTE_REF)); 1523 } 1524 1525 boolean_t 1526 moea64_is_modified(mmu_t mmu, vm_page_t m) 1527 { 1528 1529 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1530 ("moea64_is_modified: page %p is not managed", m)); 1531 1532 /* 1533 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be 1534 * concurrently set while the object is locked. Thus, if PGA_WRITEABLE 1535 * is clear, no PTEs can have LPTE_CHG set. 1536 */ 1537 VM_OBJECT_ASSERT_LOCKED(m->object); 1538 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) 1539 return (FALSE); 1540 return (moea64_query_bit(mmu, m, LPTE_CHG)); 1541 } 1542 1543 boolean_t 1544 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va) 1545 { 1546 struct pvo_entry *pvo; 1547 boolean_t rv; 1548 1549 PMAP_LOCK(pmap); 1550 pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF); 1551 rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0; 1552 PMAP_UNLOCK(pmap); 1553 return (rv); 1554 } 1555 1556 void 1557 moea64_clear_modify(mmu_t mmu, vm_page_t m) 1558 { 1559 1560 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1561 ("moea64_clear_modify: page %p is not managed", m)); 1562 VM_OBJECT_ASSERT_WLOCKED(m->object); 1563 KASSERT(!vm_page_xbusied(m), 1564 ("moea64_clear_modify: page %p is exclusive busied", m)); 1565 1566 /* 1567 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG 1568 * set. If the object containing the page is locked and the page is 1569 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set. 1570 */ 1571 if ((m->aflags & PGA_WRITEABLE) == 0) 1572 return; 1573 moea64_clear_bit(mmu, m, LPTE_CHG); 1574 } 1575 1576 /* 1577 * Clear the write and modified bits in each of the given page's mappings. 1578 */ 1579 void 1580 moea64_remove_write(mmu_t mmu, vm_page_t m) 1581 { 1582 struct pvo_entry *pvo; 1583 uintptr_t pt; 1584 pmap_t pmap; 1585 uint64_t lo = 0; 1586 1587 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1588 ("moea64_remove_write: page %p is not managed", m)); 1589 1590 /* 1591 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be 1592 * set by another thread while the object is locked. Thus, 1593 * if PGA_WRITEABLE is clear, no page table entries need updating. 1594 */ 1595 VM_OBJECT_ASSERT_WLOCKED(m->object); 1596 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) 1597 return; 1598 powerpc_sync(); 1599 LOCK_TABLE_RD(); 1600 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 1601 pmap = pvo->pvo_pmap; 1602 PMAP_LOCK(pmap); 1603 if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) { 1604 pt = MOEA64_PVO_TO_PTE(mmu, pvo); 1605 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP; 1606 pvo->pvo_pte.lpte.pte_lo |= LPTE_BR; 1607 if (pt != -1) { 1608 MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte); 1609 lo |= pvo->pvo_pte.lpte.pte_lo; 1610 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG; 1611 MOEA64_PTE_CHANGE(mmu, pt, 1612 &pvo->pvo_pte.lpte, pvo->pvo_vpn); 1613 if (pvo->pvo_pmap == kernel_pmap) 1614 isync(); 1615 } 1616 } 1617 if ((lo & LPTE_CHG) != 0) 1618 vm_page_dirty(m); 1619 PMAP_UNLOCK(pmap); 1620 } 1621 UNLOCK_TABLE_RD(); 1622 vm_page_aflag_clear(m, PGA_WRITEABLE); 1623 } 1624 1625 /* 1626 * moea64_ts_referenced: 1627 * 1628 * Return a count of reference bits for a page, clearing those bits. 1629 * It is not necessary for every reference bit to be cleared, but it 1630 * is necessary that 0 only be returned when there are truly no 1631 * reference bits set. 1632 * 1633 * XXX: The exact number of bits to check and clear is a matter that 1634 * should be tested and standardized at some point in the future for 1635 * optimal aging of shared pages. 1636 */ 1637 int 1638 moea64_ts_referenced(mmu_t mmu, vm_page_t m) 1639 { 1640 1641 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1642 ("moea64_ts_referenced: page %p is not managed", m)); 1643 return (moea64_clear_bit(mmu, m, LPTE_REF)); 1644 } 1645 1646 /* 1647 * Modify the WIMG settings of all mappings for a page. 1648 */ 1649 void 1650 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma) 1651 { 1652 struct pvo_entry *pvo; 1653 struct pvo_head *pvo_head; 1654 uintptr_t pt; 1655 pmap_t pmap; 1656 uint64_t lo; 1657 1658 if ((m->oflags & VPO_UNMANAGED) != 0) { 1659 m->md.mdpg_cache_attrs = ma; 1660 return; 1661 } 1662 1663 pvo_head = vm_page_to_pvoh(m); 1664 lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma); 1665 LOCK_TABLE_RD(); 1666 LIST_FOREACH(pvo, pvo_head, pvo_vlink) { 1667 pmap = pvo->pvo_pmap; 1668 PMAP_LOCK(pmap); 1669 pt = MOEA64_PVO_TO_PTE(mmu, pvo); 1670 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG; 1671 pvo->pvo_pte.lpte.pte_lo |= lo; 1672 if (pt != -1) { 1673 MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte, 1674 pvo->pvo_vpn); 1675 if (pvo->pvo_pmap == kernel_pmap) 1676 isync(); 1677 } 1678 PMAP_UNLOCK(pmap); 1679 } 1680 UNLOCK_TABLE_RD(); 1681 m->md.mdpg_cache_attrs = ma; 1682 } 1683 1684 /* 1685 * Map a wired page into kernel virtual address space. 1686 */ 1687 void 1688 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma) 1689 { 1690 uint64_t pte_lo; 1691 int error; 1692 1693 pte_lo = moea64_calc_wimg(pa, ma); 1694 1695 LOCK_TABLE_WR(); 1696 PMAP_LOCK(kernel_pmap); 1697 error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone, 1698 NULL, va, pa, pte_lo, PVO_WIRED); 1699 PMAP_UNLOCK(kernel_pmap); 1700 UNLOCK_TABLE_WR(); 1701 1702 if (error != 0 && error != ENOENT) 1703 panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va, 1704 pa, error); 1705 } 1706 1707 void 1708 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa) 1709 { 1710 1711 moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT); 1712 } 1713 1714 /* 1715 * Extract the physical page address associated with the given kernel virtual 1716 * address. 1717 */ 1718 vm_paddr_t 1719 moea64_kextract(mmu_t mmu, vm_offset_t va) 1720 { 1721 struct pvo_entry *pvo; 1722 vm_paddr_t pa; 1723 1724 /* 1725 * Shortcut the direct-mapped case when applicable. We never put 1726 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS. 1727 */ 1728 if (va < VM_MIN_KERNEL_ADDRESS) 1729 return (va); 1730 1731 PMAP_LOCK(kernel_pmap); 1732 pvo = moea64_pvo_find_va(kernel_pmap, va); 1733 KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR, 1734 va)); 1735 pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo)); 1736 PMAP_UNLOCK(kernel_pmap); 1737 return (pa); 1738 } 1739 1740 /* 1741 * Remove a wired page from kernel virtual address space. 1742 */ 1743 void 1744 moea64_kremove(mmu_t mmu, vm_offset_t va) 1745 { 1746 moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE); 1747 } 1748 1749 /* 1750 * Map a range of physical addresses into kernel virtual address space. 1751 * 1752 * The value passed in *virt is a suggested virtual address for the mapping. 1753 * Architectures which can support a direct-mapped physical to virtual region 1754 * can return the appropriate address within that region, leaving '*virt' 1755 * unchanged. We cannot and therefore do not; *virt is updated with the 1756 * first usable address after the mapped region. 1757 */ 1758 vm_offset_t 1759 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start, 1760 vm_paddr_t pa_end, int prot) 1761 { 1762 vm_offset_t sva, va; 1763 1764 sva = *virt; 1765 va = sva; 1766 for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE) 1767 moea64_kenter(mmu, va, pa_start); 1768 *virt = va; 1769 1770 return (sva); 1771 } 1772 1773 /* 1774 * Returns true if the pmap's pv is one of the first 1775 * 16 pvs linked to from this page. This count may 1776 * be changed upwards or downwards in the future; it 1777 * is only necessary that true be returned for a small 1778 * subset of pmaps for proper page aging. 1779 */ 1780 boolean_t 1781 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m) 1782 { 1783 int loops; 1784 struct pvo_entry *pvo; 1785 boolean_t rv; 1786 1787 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1788 ("moea64_page_exists_quick: page %p is not managed", m)); 1789 loops = 0; 1790 rv = FALSE; 1791 LOCK_TABLE_RD(); 1792 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 1793 if (pvo->pvo_pmap == pmap) { 1794 rv = TRUE; 1795 break; 1796 } 1797 if (++loops >= 16) 1798 break; 1799 } 1800 UNLOCK_TABLE_RD(); 1801 return (rv); 1802 } 1803 1804 /* 1805 * Return the number of managed mappings to the given physical page 1806 * that are wired. 1807 */ 1808 int 1809 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m) 1810 { 1811 struct pvo_entry *pvo; 1812 int count; 1813 1814 count = 0; 1815 if ((m->oflags & VPO_UNMANAGED) != 0) 1816 return (count); 1817 LOCK_TABLE_RD(); 1818 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) 1819 if ((pvo->pvo_vaddr & PVO_WIRED) != 0) 1820 count++; 1821 UNLOCK_TABLE_RD(); 1822 return (count); 1823 } 1824 1825 static uintptr_t moea64_vsidcontext; 1826 1827 uintptr_t 1828 moea64_get_unique_vsid(void) { 1829 u_int entropy; 1830 register_t hash; 1831 uint32_t mask; 1832 int i; 1833 1834 entropy = 0; 1835 __asm __volatile("mftb %0" : "=r"(entropy)); 1836 1837 mtx_lock(&moea64_slb_mutex); 1838 for (i = 0; i < NVSIDS; i += VSID_NBPW) { 1839 u_int n; 1840 1841 /* 1842 * Create a new value by mutiplying by a prime and adding in 1843 * entropy from the timebase register. This is to make the 1844 * VSID more random so that the PT hash function collides 1845 * less often. (Note that the prime casues gcc to do shifts 1846 * instead of a multiply.) 1847 */ 1848 moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy; 1849 hash = moea64_vsidcontext & (NVSIDS - 1); 1850 if (hash == 0) /* 0 is special, avoid it */ 1851 continue; 1852 n = hash >> 5; 1853 mask = 1 << (hash & (VSID_NBPW - 1)); 1854 hash = (moea64_vsidcontext & VSID_HASHMASK); 1855 if (moea64_vsid_bitmap[n] & mask) { /* collision? */ 1856 /* anything free in this bucket? */ 1857 if (moea64_vsid_bitmap[n] == 0xffffffff) { 1858 entropy = (moea64_vsidcontext >> 20); 1859 continue; 1860 } 1861 i = ffs(~moea64_vsid_bitmap[n]) - 1; 1862 mask = 1 << i; 1863 hash &= VSID_HASHMASK & ~(VSID_NBPW - 1); 1864 hash |= i; 1865 } 1866 KASSERT(!(moea64_vsid_bitmap[n] & mask), 1867 ("Allocating in-use VSID %#zx\n", hash)); 1868 moea64_vsid_bitmap[n] |= mask; 1869 mtx_unlock(&moea64_slb_mutex); 1870 return (hash); 1871 } 1872 1873 mtx_unlock(&moea64_slb_mutex); 1874 panic("%s: out of segments",__func__); 1875 } 1876 1877 #ifdef __powerpc64__ 1878 void 1879 moea64_pinit(mmu_t mmu, pmap_t pmap) 1880 { 1881 1882 RB_INIT(&pmap->pmap_pvo); 1883 1884 pmap->pm_slb_tree_root = slb_alloc_tree(); 1885 pmap->pm_slb = slb_alloc_user_cache(); 1886 pmap->pm_slb_len = 0; 1887 } 1888 #else 1889 void 1890 moea64_pinit(mmu_t mmu, pmap_t pmap) 1891 { 1892 int i; 1893 uint32_t hash; 1894 1895 RB_INIT(&pmap->pmap_pvo); 1896 1897 if (pmap_bootstrapped) 1898 pmap->pmap_phys = (pmap_t)moea64_kextract(mmu, 1899 (vm_offset_t)pmap); 1900 else 1901 pmap->pmap_phys = pmap; 1902 1903 /* 1904 * Allocate some segment registers for this pmap. 1905 */ 1906 hash = moea64_get_unique_vsid(); 1907 1908 for (i = 0; i < 16; i++) 1909 pmap->pm_sr[i] = VSID_MAKE(i, hash); 1910 1911 KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0")); 1912 } 1913 #endif 1914 1915 /* 1916 * Initialize the pmap associated with process 0. 1917 */ 1918 void 1919 moea64_pinit0(mmu_t mmu, pmap_t pm) 1920 { 1921 1922 PMAP_LOCK_INIT(pm); 1923 moea64_pinit(mmu, pm); 1924 bzero(&pm->pm_stats, sizeof(pm->pm_stats)); 1925 } 1926 1927 /* 1928 * Set the physical protection on the specified range of this map as requested. 1929 */ 1930 static void 1931 moea64_pvo_protect(mmu_t mmu, pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot) 1932 { 1933 uintptr_t pt; 1934 struct vm_page *pg; 1935 uint64_t oldlo; 1936 1937 PMAP_LOCK_ASSERT(pm, MA_OWNED); 1938 1939 /* 1940 * Grab the PTE pointer before we diddle with the cached PTE 1941 * copy. 1942 */ 1943 pt = MOEA64_PVO_TO_PTE(mmu, pvo); 1944 1945 /* 1946 * Change the protection of the page. 1947 */ 1948 oldlo = pvo->pvo_pte.lpte.pte_lo; 1949 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP; 1950 pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC; 1951 if ((prot & VM_PROT_EXECUTE) == 0) 1952 pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC; 1953 if (prot & VM_PROT_WRITE) 1954 pvo->pvo_pte.lpte.pte_lo |= LPTE_BW; 1955 else 1956 pvo->pvo_pte.lpte.pte_lo |= LPTE_BR; 1957 1958 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN); 1959 1960 /* 1961 * If the PVO is in the page table, update that pte as well. 1962 */ 1963 if (pt != -1) 1964 MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte, 1965 pvo->pvo_vpn); 1966 if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) && 1967 (pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) { 1968 if ((pg->oflags & VPO_UNMANAGED) == 0) 1969 vm_page_aflag_set(pg, PGA_EXECUTABLE); 1970 moea64_syncicache(mmu, pm, PVO_VADDR(pvo), 1971 pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, PAGE_SIZE); 1972 } 1973 1974 /* 1975 * Update vm about the REF/CHG bits if the page is managed and we have 1976 * removed write access. 1977 */ 1978 if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && 1979 (oldlo & LPTE_PP) != LPTE_BR && !(prot & VM_PROT_WRITE)) { 1980 if (pg != NULL) { 1981 if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG) 1982 vm_page_dirty(pg); 1983 if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF) 1984 vm_page_aflag_set(pg, PGA_REFERENCED); 1985 } 1986 } 1987 } 1988 1989 void 1990 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva, 1991 vm_prot_t prot) 1992 { 1993 struct pvo_entry *pvo, *tpvo, key; 1994 1995 CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, 1996 sva, eva, prot); 1997 1998 KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap, 1999 ("moea64_protect: non current pmap")); 2000 2001 if ((prot & VM_PROT_READ) == VM_PROT_NONE) { 2002 moea64_remove(mmu, pm, sva, eva); 2003 return; 2004 } 2005 2006 LOCK_TABLE_RD(); 2007 PMAP_LOCK(pm); 2008 key.pvo_vaddr = sva; 2009 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 2010 pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { 2011 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); 2012 moea64_pvo_protect(mmu, pm, pvo, prot); 2013 } 2014 UNLOCK_TABLE_RD(); 2015 PMAP_UNLOCK(pm); 2016 } 2017 2018 /* 2019 * Map a list of wired pages into kernel virtual address space. This is 2020 * intended for temporary mappings which do not need page modification or 2021 * references recorded. Existing mappings in the region are overwritten. 2022 */ 2023 void 2024 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count) 2025 { 2026 while (count-- > 0) { 2027 moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m)); 2028 va += PAGE_SIZE; 2029 m++; 2030 } 2031 } 2032 2033 /* 2034 * Remove page mappings from kernel virtual address space. Intended for 2035 * temporary mappings entered by moea64_qenter. 2036 */ 2037 void 2038 moea64_qremove(mmu_t mmu, vm_offset_t va, int count) 2039 { 2040 while (count-- > 0) { 2041 moea64_kremove(mmu, va); 2042 va += PAGE_SIZE; 2043 } 2044 } 2045 2046 void 2047 moea64_release_vsid(uint64_t vsid) 2048 { 2049 int idx, mask; 2050 2051 mtx_lock(&moea64_slb_mutex); 2052 idx = vsid & (NVSIDS-1); 2053 mask = 1 << (idx % VSID_NBPW); 2054 idx /= VSID_NBPW; 2055 KASSERT(moea64_vsid_bitmap[idx] & mask, 2056 ("Freeing unallocated VSID %#jx", vsid)); 2057 moea64_vsid_bitmap[idx] &= ~mask; 2058 mtx_unlock(&moea64_slb_mutex); 2059 } 2060 2061 2062 void 2063 moea64_release(mmu_t mmu, pmap_t pmap) 2064 { 2065 2066 /* 2067 * Free segment registers' VSIDs 2068 */ 2069 #ifdef __powerpc64__ 2070 slb_free_tree(pmap); 2071 slb_free_user_cache(pmap->pm_slb); 2072 #else 2073 KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0")); 2074 2075 moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0])); 2076 #endif 2077 } 2078 2079 /* 2080 * Remove all pages mapped by the specified pmap 2081 */ 2082 void 2083 moea64_remove_pages(mmu_t mmu, pmap_t pm) 2084 { 2085 struct pvo_entry *pvo, *tpvo; 2086 2087 LOCK_TABLE_WR(); 2088 PMAP_LOCK(pm); 2089 RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) { 2090 if (!(pvo->pvo_vaddr & PVO_WIRED)) 2091 moea64_pvo_remove(mmu, pvo); 2092 } 2093 UNLOCK_TABLE_WR(); 2094 PMAP_UNLOCK(pm); 2095 } 2096 2097 /* 2098 * Remove the given range of addresses from the specified map. 2099 */ 2100 void 2101 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva) 2102 { 2103 struct pvo_entry *pvo, *tpvo, key; 2104 2105 /* 2106 * Perform an unsynchronized read. This is, however, safe. 2107 */ 2108 if (pm->pm_stats.resident_count == 0) 2109 return; 2110 2111 LOCK_TABLE_WR(); 2112 PMAP_LOCK(pm); 2113 key.pvo_vaddr = sva; 2114 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 2115 pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { 2116 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); 2117 moea64_pvo_remove(mmu, pvo); 2118 } 2119 UNLOCK_TABLE_WR(); 2120 PMAP_UNLOCK(pm); 2121 } 2122 2123 /* 2124 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove() 2125 * will reflect changes in pte's back to the vm_page. 2126 */ 2127 void 2128 moea64_remove_all(mmu_t mmu, vm_page_t m) 2129 { 2130 struct pvo_entry *pvo, *next_pvo; 2131 pmap_t pmap; 2132 2133 LOCK_TABLE_WR(); 2134 LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) { 2135 pmap = pvo->pvo_pmap; 2136 PMAP_LOCK(pmap); 2137 moea64_pvo_remove(mmu, pvo); 2138 PMAP_UNLOCK(pmap); 2139 } 2140 UNLOCK_TABLE_WR(); 2141 if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m)) 2142 vm_page_dirty(m); 2143 vm_page_aflag_clear(m, PGA_WRITEABLE); 2144 vm_page_aflag_clear(m, PGA_EXECUTABLE); 2145 } 2146 2147 /* 2148 * Allocate a physical page of memory directly from the phys_avail map. 2149 * Can only be called from moea64_bootstrap before avail start and end are 2150 * calculated. 2151 */ 2152 vm_offset_t 2153 moea64_bootstrap_alloc(vm_size_t size, u_int align) 2154 { 2155 vm_offset_t s, e; 2156 int i, j; 2157 2158 size = round_page(size); 2159 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 2160 if (align != 0) 2161 s = (phys_avail[i] + align - 1) & ~(align - 1); 2162 else 2163 s = phys_avail[i]; 2164 e = s + size; 2165 2166 if (s < phys_avail[i] || e > phys_avail[i + 1]) 2167 continue; 2168 2169 if (s + size > platform_real_maxaddr()) 2170 continue; 2171 2172 if (s == phys_avail[i]) { 2173 phys_avail[i] += size; 2174 } else if (e == phys_avail[i + 1]) { 2175 phys_avail[i + 1] -= size; 2176 } else { 2177 for (j = phys_avail_count * 2; j > i; j -= 2) { 2178 phys_avail[j] = phys_avail[j - 2]; 2179 phys_avail[j + 1] = phys_avail[j - 1]; 2180 } 2181 2182 phys_avail[i + 3] = phys_avail[i + 1]; 2183 phys_avail[i + 1] = s; 2184 phys_avail[i + 2] = e; 2185 phys_avail_count++; 2186 } 2187 2188 return (s); 2189 } 2190 panic("moea64_bootstrap_alloc: could not allocate memory"); 2191 } 2192 2193 static int 2194 moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone, 2195 struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa, 2196 uint64_t pte_lo, int flags) 2197 { 2198 struct pvo_entry *pvo; 2199 uint64_t vsid; 2200 int first; 2201 u_int ptegidx; 2202 int i; 2203 int bootstrap; 2204 2205 /* 2206 * One nasty thing that can happen here is that the UMA calls to 2207 * allocate new PVOs need to map more memory, which calls pvo_enter(), 2208 * which calls UMA... 2209 * 2210 * We break the loop by detecting recursion and allocating out of 2211 * the bootstrap pool. 2212 */ 2213 2214 first = 0; 2215 bootstrap = (flags & PVO_BOOTSTRAP); 2216 2217 if (!moea64_initialized) 2218 bootstrap = 1; 2219 2220 PMAP_LOCK_ASSERT(pm, MA_OWNED); 2221 rw_assert(&moea64_table_lock, RA_WLOCKED); 2222 2223 /* 2224 * Compute the PTE Group index. 2225 */ 2226 va &= ~ADDR_POFF; 2227 vsid = va_to_vsid(pm, va); 2228 ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE); 2229 2230 /* 2231 * Remove any existing mapping for this page. Reuse the pvo entry if 2232 * there is a mapping. 2233 */ 2234 moea64_pvo_enter_calls++; 2235 2236 LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) { 2237 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) { 2238 if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa && 2239 (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP)) 2240 == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) { 2241 if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) { 2242 /* Re-insert if spilled */ 2243 i = MOEA64_PTE_INSERT(mmu, ptegidx, 2244 &pvo->pvo_pte.lpte); 2245 if (i >= 0) 2246 PVO_PTEGIDX_SET(pvo, i); 2247 moea64_pte_overflow--; 2248 } 2249 return (0); 2250 } 2251 moea64_pvo_remove(mmu, pvo); 2252 break; 2253 } 2254 } 2255 2256 /* 2257 * If we aren't overwriting a mapping, try to allocate. 2258 */ 2259 if (bootstrap) { 2260 if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) { 2261 panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd", 2262 moea64_bpvo_pool_index, BPVO_POOL_SIZE, 2263 BPVO_POOL_SIZE * sizeof(struct pvo_entry)); 2264 } 2265 pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index]; 2266 moea64_bpvo_pool_index++; 2267 bootstrap = 1; 2268 } else { 2269 pvo = uma_zalloc(zone, M_NOWAIT); 2270 } 2271 2272 if (pvo == NULL) 2273 return (ENOMEM); 2274 2275 moea64_pvo_entries++; 2276 pvo->pvo_vaddr = va; 2277 pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT) 2278 | (vsid << 16); 2279 pvo->pvo_pmap = pm; 2280 LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink); 2281 pvo->pvo_vaddr &= ~ADDR_POFF; 2282 2283 if (flags & PVO_WIRED) 2284 pvo->pvo_vaddr |= PVO_WIRED; 2285 if (pvo_head != NULL) 2286 pvo->pvo_vaddr |= PVO_MANAGED; 2287 if (bootstrap) 2288 pvo->pvo_vaddr |= PVO_BOOTSTRAP; 2289 if (flags & PVO_LARGE) 2290 pvo->pvo_vaddr |= PVO_LARGE; 2291 2292 moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va, 2293 (uint64_t)(pa) | pte_lo, flags); 2294 2295 /* 2296 * Add to pmap list 2297 */ 2298 RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo); 2299 2300 /* 2301 * Remember if the list was empty and therefore will be the first 2302 * item. 2303 */ 2304 if (pvo_head != NULL) { 2305 if (LIST_FIRST(pvo_head) == NULL) 2306 first = 1; 2307 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink); 2308 } 2309 2310 if (pvo->pvo_vaddr & PVO_WIRED) { 2311 pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED; 2312 pm->pm_stats.wired_count++; 2313 } 2314 pm->pm_stats.resident_count++; 2315 2316 /* 2317 * We hope this succeeds but it isn't required. 2318 */ 2319 i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte); 2320 if (i >= 0) { 2321 PVO_PTEGIDX_SET(pvo, i); 2322 } else { 2323 panic("moea64_pvo_enter: overflow"); 2324 moea64_pte_overflow++; 2325 } 2326 2327 if (pm == kernel_pmap) 2328 isync(); 2329 2330 #ifdef __powerpc64__ 2331 /* 2332 * Make sure all our bootstrap mappings are in the SLB as soon 2333 * as virtual memory is switched on. 2334 */ 2335 if (!pmap_bootstrapped) 2336 moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE); 2337 #endif 2338 2339 return (first ? ENOENT : 0); 2340 } 2341 2342 static void 2343 moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo) 2344 { 2345 struct vm_page *pg; 2346 uintptr_t pt; 2347 2348 PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED); 2349 rw_assert(&moea64_table_lock, RA_WLOCKED); 2350 2351 /* 2352 * If there is an active pte entry, we need to deactivate it (and 2353 * save the ref & cfg bits). 2354 */ 2355 pt = MOEA64_PVO_TO_PTE(mmu, pvo); 2356 if (pt != -1) { 2357 MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn); 2358 PVO_PTEGIDX_CLR(pvo); 2359 } else { 2360 moea64_pte_overflow--; 2361 } 2362 2363 /* 2364 * Update our statistics. 2365 */ 2366 pvo->pvo_pmap->pm_stats.resident_count--; 2367 if (pvo->pvo_vaddr & PVO_WIRED) 2368 pvo->pvo_pmap->pm_stats.wired_count--; 2369 2370 /* 2371 * Remove this PVO from the pmap list. 2372 */ 2373 RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo); 2374 2375 /* 2376 * Remove this from the overflow list and return it to the pool 2377 * if we aren't going to reuse it. 2378 */ 2379 LIST_REMOVE(pvo, pvo_olink); 2380 2381 /* 2382 * Update vm about the REF/CHG bits if the page is managed. 2383 */ 2384 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN); 2385 2386 if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && pg != NULL) { 2387 LIST_REMOVE(pvo, pvo_vlink); 2388 if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) { 2389 if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG) 2390 vm_page_dirty(pg); 2391 if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF) 2392 vm_page_aflag_set(pg, PGA_REFERENCED); 2393 if (LIST_EMPTY(vm_page_to_pvoh(pg))) 2394 vm_page_aflag_clear(pg, PGA_WRITEABLE); 2395 } 2396 if (LIST_EMPTY(vm_page_to_pvoh(pg))) 2397 vm_page_aflag_clear(pg, PGA_EXECUTABLE); 2398 } 2399 2400 moea64_pvo_entries--; 2401 moea64_pvo_remove_calls++; 2402 2403 if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP)) 2404 uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone : 2405 moea64_upvo_zone, pvo); 2406 } 2407 2408 static struct pvo_entry * 2409 moea64_pvo_find_va(pmap_t pm, vm_offset_t va) 2410 { 2411 struct pvo_entry key; 2412 2413 key.pvo_vaddr = va & ~ADDR_POFF; 2414 return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key)); 2415 } 2416 2417 static boolean_t 2418 moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit) 2419 { 2420 struct pvo_entry *pvo; 2421 uintptr_t pt; 2422 2423 LOCK_TABLE_RD(); 2424 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2425 /* 2426 * See if we saved the bit off. If so, return success. 2427 */ 2428 if (pvo->pvo_pte.lpte.pte_lo & ptebit) { 2429 UNLOCK_TABLE_RD(); 2430 return (TRUE); 2431 } 2432 } 2433 2434 /* 2435 * No luck, now go through the hard part of looking at the PTEs 2436 * themselves. Sync so that any pending REF/CHG bits are flushed to 2437 * the PTEs. 2438 */ 2439 powerpc_sync(); 2440 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2441 2442 /* 2443 * See if this pvo has a valid PTE. if so, fetch the 2444 * REF/CHG bits from the valid PTE. If the appropriate 2445 * ptebit is set, return success. 2446 */ 2447 PMAP_LOCK(pvo->pvo_pmap); 2448 pt = MOEA64_PVO_TO_PTE(mmu, pvo); 2449 if (pt != -1) { 2450 MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte); 2451 if (pvo->pvo_pte.lpte.pte_lo & ptebit) { 2452 PMAP_UNLOCK(pvo->pvo_pmap); 2453 UNLOCK_TABLE_RD(); 2454 return (TRUE); 2455 } 2456 } 2457 PMAP_UNLOCK(pvo->pvo_pmap); 2458 } 2459 2460 UNLOCK_TABLE_RD(); 2461 return (FALSE); 2462 } 2463 2464 static u_int 2465 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit) 2466 { 2467 u_int count; 2468 struct pvo_entry *pvo; 2469 uintptr_t pt; 2470 2471 /* 2472 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so 2473 * we can reset the right ones). note that since the pvo entries and 2474 * list heads are accessed via BAT0 and are never placed in the page 2475 * table, we don't have to worry about further accesses setting the 2476 * REF/CHG bits. 2477 */ 2478 powerpc_sync(); 2479 2480 /* 2481 * For each pvo entry, clear the pvo's ptebit. If this pvo has a 2482 * valid pte clear the ptebit from the valid pte. 2483 */ 2484 count = 0; 2485 LOCK_TABLE_RD(); 2486 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2487 PMAP_LOCK(pvo->pvo_pmap); 2488 pt = MOEA64_PVO_TO_PTE(mmu, pvo); 2489 if (pt != -1) { 2490 MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte); 2491 if (pvo->pvo_pte.lpte.pte_lo & ptebit) { 2492 count++; 2493 MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte, 2494 pvo->pvo_vpn, ptebit); 2495 } 2496 } 2497 pvo->pvo_pte.lpte.pte_lo &= ~ptebit; 2498 PMAP_UNLOCK(pvo->pvo_pmap); 2499 } 2500 2501 UNLOCK_TABLE_RD(); 2502 return (count); 2503 } 2504 2505 boolean_t 2506 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 2507 { 2508 struct pvo_entry *pvo, key; 2509 vm_offset_t ppa; 2510 int error = 0; 2511 2512 PMAP_LOCK(kernel_pmap); 2513 key.pvo_vaddr = ppa = pa & ~ADDR_POFF; 2514 for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key); 2515 ppa < pa + size; ppa += PAGE_SIZE, 2516 pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) { 2517 if (pvo == NULL || 2518 (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) { 2519 error = EFAULT; 2520 break; 2521 } 2522 } 2523 PMAP_UNLOCK(kernel_pmap); 2524 2525 return (error); 2526 } 2527 2528 /* 2529 * Map a set of physical memory pages into the kernel virtual 2530 * address space. Return a pointer to where it is mapped. This 2531 * routine is intended to be used for mapping device memory, 2532 * NOT real memory. 2533 */ 2534 void * 2535 moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma) 2536 { 2537 vm_offset_t va, tmpva, ppa, offset; 2538 2539 ppa = trunc_page(pa); 2540 offset = pa & PAGE_MASK; 2541 size = roundup2(offset + size, PAGE_SIZE); 2542 2543 va = kva_alloc(size); 2544 2545 if (!va) 2546 panic("moea64_mapdev: Couldn't alloc kernel virtual memory"); 2547 2548 for (tmpva = va; size > 0;) { 2549 moea64_kenter_attr(mmu, tmpva, ppa, ma); 2550 size -= PAGE_SIZE; 2551 tmpva += PAGE_SIZE; 2552 ppa += PAGE_SIZE; 2553 } 2554 2555 return ((void *)(va + offset)); 2556 } 2557 2558 void * 2559 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 2560 { 2561 2562 return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT); 2563 } 2564 2565 void 2566 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size) 2567 { 2568 vm_offset_t base, offset; 2569 2570 base = trunc_page(va); 2571 offset = va & PAGE_MASK; 2572 size = roundup2(offset + size, PAGE_SIZE); 2573 2574 kva_free(base, size); 2575 } 2576 2577 void 2578 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz) 2579 { 2580 struct pvo_entry *pvo; 2581 vm_offset_t lim; 2582 vm_paddr_t pa; 2583 vm_size_t len; 2584 2585 PMAP_LOCK(pm); 2586 while (sz > 0) { 2587 lim = round_page(va); 2588 len = MIN(lim - va, sz); 2589 pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF); 2590 if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) { 2591 pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | 2592 (va & ADDR_POFF); 2593 moea64_syncicache(mmu, pm, va, pa, len); 2594 } 2595 va += len; 2596 sz -= len; 2597 } 2598 PMAP_UNLOCK(pm); 2599 } 2600 2601 vm_offset_t 2602 moea64_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs, 2603 vm_size_t *sz) 2604 { 2605 if (md->md_vaddr == ~0UL) 2606 return (md->md_paddr + ofs); 2607 else 2608 return (md->md_vaddr + ofs); 2609 } 2610 2611 struct pmap_md * 2612 moea64_scan_md(mmu_t mmu, struct pmap_md *prev) 2613 { 2614 static struct pmap_md md; 2615 struct pvo_entry *pvo; 2616 vm_offset_t va; 2617 2618 if (dumpsys_minidump) { 2619 md.md_paddr = ~0UL; /* Minidumps use virtual addresses. */ 2620 if (prev == NULL) { 2621 /* 1st: kernel .data and .bss. */ 2622 md.md_index = 1; 2623 md.md_vaddr = trunc_page((uintptr_t)_etext); 2624 md.md_size = round_page((uintptr_t)_end) - md.md_vaddr; 2625 return (&md); 2626 } 2627 switch (prev->md_index) { 2628 case 1: 2629 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ 2630 md.md_index = 2; 2631 md.md_vaddr = (vm_offset_t)msgbufp->msg_ptr; 2632 md.md_size = round_page(msgbufp->msg_size); 2633 break; 2634 case 2: 2635 /* 3rd: kernel VM. */ 2636 va = prev->md_vaddr + prev->md_size; 2637 /* Find start of next chunk (from va). */ 2638 while (va < virtual_end) { 2639 /* Don't dump the buffer cache. */ 2640 if (va >= kmi.buffer_sva && 2641 va < kmi.buffer_eva) { 2642 va = kmi.buffer_eva; 2643 continue; 2644 } 2645 pvo = moea64_pvo_find_va(kernel_pmap, 2646 va & ~ADDR_POFF); 2647 if (pvo != NULL && 2648 (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) 2649 break; 2650 va += PAGE_SIZE; 2651 } 2652 if (va < virtual_end) { 2653 md.md_vaddr = va; 2654 va += PAGE_SIZE; 2655 /* Find last page in chunk. */ 2656 while (va < virtual_end) { 2657 /* Don't run into the buffer cache. */ 2658 if (va == kmi.buffer_sva) 2659 break; 2660 pvo = moea64_pvo_find_va(kernel_pmap, 2661 va & ~ADDR_POFF); 2662 if (pvo == NULL || 2663 !(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) 2664 break; 2665 va += PAGE_SIZE; 2666 } 2667 md.md_size = va - md.md_vaddr; 2668 break; 2669 } 2670 md.md_index = 3; 2671 /* FALLTHROUGH */ 2672 default: 2673 return (NULL); 2674 } 2675 } else { /* minidumps */ 2676 if (prev == NULL) { 2677 /* first physical chunk. */ 2678 md.md_paddr = pregions[0].mr_start; 2679 md.md_size = pregions[0].mr_size; 2680 md.md_vaddr = ~0UL; 2681 md.md_index = 1; 2682 } else if (md.md_index < pregions_sz) { 2683 md.md_paddr = pregions[md.md_index].mr_start; 2684 md.md_size = pregions[md.md_index].mr_size; 2685 md.md_vaddr = ~0UL; 2686 md.md_index++; 2687 } else { 2688 /* There's no next physical chunk. */ 2689 return (NULL); 2690 } 2691 } 2692 2693 return (&md); 2694 } 2695