xref: /freebsd/sys/powerpc/aim/mmu_oea64.c (revision 01b792f1f535c12a1a14000cf3360ef6c36cee2d)
1 /*-
2  * Copyright (c) 2008-2015 Nathan Whitehorn
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * Manages physical address maps.
32  *
33  * Since the information managed by this module is also stored by the
34  * logical address mapping module, this module may throw away valid virtual
35  * to physical mappings at almost any time.  However, invalidations of
36  * mappings must be done as requested.
37  *
38  * In order to cope with hardware architectures which make virtual to
39  * physical map invalidates expensive, this module may delay invalidate
40  * reduced protection operations until such time as they are actually
41  * necessary.  This module is given full information as to which processors
42  * are currently using which maps, and to when physical maps must be made
43  * correct.
44  */
45 
46 #include "opt_compat.h"
47 #include "opt_kstack_pages.h"
48 
49 #include <sys/param.h>
50 #include <sys/kernel.h>
51 #include <sys/conf.h>
52 #include <sys/queue.h>
53 #include <sys/cpuset.h>
54 #include <sys/kerneldump.h>
55 #include <sys/ktr.h>
56 #include <sys/lock.h>
57 #include <sys/msgbuf.h>
58 #include <sys/malloc.h>
59 #include <sys/mutex.h>
60 #include <sys/proc.h>
61 #include <sys/rwlock.h>
62 #include <sys/sched.h>
63 #include <sys/sysctl.h>
64 #include <sys/systm.h>
65 #include <sys/vmmeter.h>
66 
67 #include <sys/kdb.h>
68 
69 #include <dev/ofw/openfirm.h>
70 
71 #include <vm/vm.h>
72 #include <vm/vm_param.h>
73 #include <vm/vm_kern.h>
74 #include <vm/vm_page.h>
75 #include <vm/vm_map.h>
76 #include <vm/vm_object.h>
77 #include <vm/vm_extern.h>
78 #include <vm/vm_pageout.h>
79 #include <vm/uma.h>
80 
81 #include <machine/_inttypes.h>
82 #include <machine/cpu.h>
83 #include <machine/platform.h>
84 #include <machine/frame.h>
85 #include <machine/md_var.h>
86 #include <machine/psl.h>
87 #include <machine/bat.h>
88 #include <machine/hid.h>
89 #include <machine/pte.h>
90 #include <machine/sr.h>
91 #include <machine/trap.h>
92 #include <machine/mmuvar.h>
93 
94 #include "mmu_oea64.h"
95 #include "mmu_if.h"
96 #include "moea64_if.h"
97 
98 void moea64_release_vsid(uint64_t vsid);
99 uintptr_t moea64_get_unique_vsid(void);
100 
101 #define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
102 #define ENABLE_TRANS(msr)	mtmsr(msr)
103 
104 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
105 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
106 #define	VSID_HASH_MASK		0x0000007fffffffffULL
107 
108 /*
109  * Locking semantics:
110  *
111  * There are two locks of interest: the page locks and the pmap locks, which
112  * protect their individual PVO lists and are locked in that order. The contents
113  * of all PVO entries are protected by the locks of their respective pmaps.
114  * The pmap of any PVO is guaranteed not to change so long as the PVO is linked
115  * into any list.
116  *
117  */
118 
119 #define PV_LOCK_COUNT	PA_LOCK_COUNT*3
120 static struct mtx_padalign pv_lock[PV_LOCK_COUNT];
121 
122 #define PV_LOCKPTR(pa)	((struct mtx *)(&pv_lock[pa_index(pa) % PV_LOCK_COUNT]))
123 #define PV_LOCK(pa)		mtx_lock(PV_LOCKPTR(pa))
124 #define PV_UNLOCK(pa)		mtx_unlock(PV_LOCKPTR(pa))
125 #define PV_LOCKASSERT(pa) 	mtx_assert(PV_LOCKPTR(pa), MA_OWNED)
126 #define PV_PAGE_LOCK(m)		PV_LOCK(VM_PAGE_TO_PHYS(m))
127 #define PV_PAGE_UNLOCK(m)	PV_UNLOCK(VM_PAGE_TO_PHYS(m))
128 #define PV_PAGE_LOCKASSERT(m)	PV_LOCKASSERT(VM_PAGE_TO_PHYS(m))
129 
130 struct ofw_map {
131 	cell_t	om_va;
132 	cell_t	om_len;
133 	uint64_t om_pa;
134 	cell_t	om_mode;
135 };
136 
137 extern unsigned char _etext[];
138 extern unsigned char _end[];
139 
140 extern int ofw_real_mode;
141 
142 /*
143  * Map of physical memory regions.
144  */
145 static struct	mem_region *regions;
146 static struct	mem_region *pregions;
147 static u_int	phys_avail_count;
148 static int	regions_sz, pregions_sz;
149 
150 extern void bs_remap_earlyboot(void);
151 
152 /*
153  * Lock for the SLB tables.
154  */
155 struct mtx	moea64_slb_mutex;
156 
157 /*
158  * PTEG data.
159  */
160 u_int		moea64_pteg_count;
161 u_int		moea64_pteg_mask;
162 
163 /*
164  * PVO data.
165  */
166 
167 uma_zone_t	moea64_pvo_zone; /* zone for pvo entries */
168 
169 static struct	pvo_entry *moea64_bpvo_pool;
170 static int	moea64_bpvo_pool_index = 0;
171 static int	moea64_bpvo_pool_size = 327680;
172 TUNABLE_INT("machdep.moea64_bpvo_pool_size", &moea64_bpvo_pool_size);
173 SYSCTL_INT(_machdep, OID_AUTO, moea64_allocated_bpvo_entries, CTLFLAG_RD,
174     &moea64_bpvo_pool_index, 0, "");
175 
176 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
177 #ifdef __powerpc64__
178 #define	NVSIDS		(NPMAPS * 16)
179 #define VSID_HASHMASK	0xffffffffUL
180 #else
181 #define NVSIDS		NPMAPS
182 #define VSID_HASHMASK	0xfffffUL
183 #endif
184 static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
185 
186 static boolean_t moea64_initialized = FALSE;
187 
188 /*
189  * Statistics.
190  */
191 u_int	moea64_pte_valid = 0;
192 u_int	moea64_pte_overflow = 0;
193 u_int	moea64_pvo_entries = 0;
194 u_int	moea64_pvo_enter_calls = 0;
195 u_int	moea64_pvo_remove_calls = 0;
196 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
197     &moea64_pte_valid, 0, "");
198 SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
199     &moea64_pte_overflow, 0, "");
200 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
201     &moea64_pvo_entries, 0, "");
202 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
203     &moea64_pvo_enter_calls, 0, "");
204 SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
205     &moea64_pvo_remove_calls, 0, "");
206 
207 vm_offset_t	moea64_scratchpage_va[2];
208 struct pvo_entry *moea64_scratchpage_pvo[2];
209 struct	mtx	moea64_scratchpage_mtx;
210 
211 uint64_t 	moea64_large_page_mask = 0;
212 uint64_t	moea64_large_page_size = 0;
213 int		moea64_large_page_shift = 0;
214 
215 /*
216  * PVO calls.
217  */
218 static int	moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo,
219 		    struct pvo_head *pvo_head);
220 static void	moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo);
221 static void	moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo);
222 static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
223 
224 /*
225  * Utility routines.
226  */
227 static boolean_t	moea64_query_bit(mmu_t, vm_page_t, uint64_t);
228 static u_int		moea64_clear_bit(mmu_t, vm_page_t, uint64_t);
229 static void		moea64_kremove(mmu_t, vm_offset_t);
230 static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
231 			    vm_offset_t pa, vm_size_t sz);
232 
233 /*
234  * Kernel MMU interface
235  */
236 void moea64_clear_modify(mmu_t, vm_page_t);
237 void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
238 void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
239     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
240 int moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t,
241     u_int flags, int8_t psind);
242 void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
243     vm_prot_t);
244 void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
245 vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
246 vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
247 void moea64_init(mmu_t);
248 boolean_t moea64_is_modified(mmu_t, vm_page_t);
249 boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
250 boolean_t moea64_is_referenced(mmu_t, vm_page_t);
251 int moea64_ts_referenced(mmu_t, vm_page_t);
252 vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
253 boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
254 int moea64_page_wired_mappings(mmu_t, vm_page_t);
255 void moea64_pinit(mmu_t, pmap_t);
256 void moea64_pinit0(mmu_t, pmap_t);
257 void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
258 void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
259 void moea64_qremove(mmu_t, vm_offset_t, int);
260 void moea64_release(mmu_t, pmap_t);
261 void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
262 void moea64_remove_pages(mmu_t, pmap_t);
263 void moea64_remove_all(mmu_t, vm_page_t);
264 void moea64_remove_write(mmu_t, vm_page_t);
265 void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
266 void moea64_zero_page(mmu_t, vm_page_t);
267 void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
268 void moea64_zero_page_idle(mmu_t, vm_page_t);
269 void moea64_activate(mmu_t, struct thread *);
270 void moea64_deactivate(mmu_t, struct thread *);
271 void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
272 void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
273 void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
274 vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
275 void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
276 void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
277 void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
278 boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
279 static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
280 void moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz,
281     void **va);
282 void moea64_scan_init(mmu_t mmu);
283 
284 static mmu_method_t moea64_methods[] = {
285 	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
286 	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
287 	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
288 	MMUMETHOD(mmu_enter,		moea64_enter),
289 	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
290 	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
291 	MMUMETHOD(mmu_extract,		moea64_extract),
292 	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
293 	MMUMETHOD(mmu_init,		moea64_init),
294 	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
295 	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
296 	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
297 	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
298 	MMUMETHOD(mmu_map,     		moea64_map),
299 	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
300 	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
301 	MMUMETHOD(mmu_pinit,		moea64_pinit),
302 	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
303 	MMUMETHOD(mmu_protect,		moea64_protect),
304 	MMUMETHOD(mmu_qenter,		moea64_qenter),
305 	MMUMETHOD(mmu_qremove,		moea64_qremove),
306 	MMUMETHOD(mmu_release,		moea64_release),
307 	MMUMETHOD(mmu_remove,		moea64_remove),
308 	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
309 	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
310 	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
311 	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
312 	MMUMETHOD(mmu_unwire,		moea64_unwire),
313 	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
314 	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
315 	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
316 	MMUMETHOD(mmu_activate,		moea64_activate),
317 	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
318 	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
319 
320 	/* Internal interfaces */
321 	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
322 	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
323 	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
324 	MMUMETHOD(mmu_kextract,		moea64_kextract),
325 	MMUMETHOD(mmu_kenter,		moea64_kenter),
326 	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
327 	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
328 	MMUMETHOD(mmu_scan_init,	moea64_scan_init),
329 	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
330 
331 	{ 0, 0 }
332 };
333 
334 MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
335 
336 static struct pvo_head *
337 vm_page_to_pvoh(vm_page_t m)
338 {
339 
340 	mtx_assert(PV_LOCKPTR(VM_PAGE_TO_PHYS(m)), MA_OWNED);
341 	return (&m->md.mdpg_pvoh);
342 }
343 
344 static struct pvo_entry *
345 alloc_pvo_entry(int bootstrap)
346 {
347 	struct pvo_entry *pvo;
348 
349 	if (!moea64_initialized || bootstrap) {
350 		if (moea64_bpvo_pool_index >= moea64_bpvo_pool_size) {
351 			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
352 			      moea64_bpvo_pool_index, moea64_bpvo_pool_size,
353 			      moea64_bpvo_pool_size * sizeof(struct pvo_entry));
354 		}
355 		pvo = &moea64_bpvo_pool[
356 		    atomic_fetchadd_int(&moea64_bpvo_pool_index, 1)];
357 		bzero(pvo, sizeof(*pvo));
358 		pvo->pvo_vaddr = PVO_BOOTSTRAP;
359 	} else {
360 		pvo = uma_zalloc(moea64_pvo_zone, M_NOWAIT);
361 		bzero(pvo, sizeof(*pvo));
362 	}
363 
364 	return (pvo);
365 }
366 
367 
368 static void
369 init_pvo_entry(struct pvo_entry *pvo, pmap_t pmap, vm_offset_t va)
370 {
371 	uint64_t vsid;
372 	uint64_t hash;
373 	int shift;
374 
375 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
376 
377 	pvo->pvo_pmap = pmap;
378 	va &= ~ADDR_POFF;
379 	pvo->pvo_vaddr |= va;
380 	vsid = va_to_vsid(pmap, va);
381 	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
382 	    | (vsid << 16);
383 
384 	shift = (pvo->pvo_vaddr & PVO_LARGE) ? moea64_large_page_shift :
385 	    ADDR_PIDX_SHFT;
386 	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)va & ADDR_PIDX) >> shift);
387 	pvo->pvo_pte.slot = (hash & moea64_pteg_mask) << 3;
388 }
389 
390 static void
391 free_pvo_entry(struct pvo_entry *pvo)
392 {
393 
394 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
395 		uma_zfree(moea64_pvo_zone, pvo);
396 }
397 
398 void
399 moea64_pte_from_pvo(const struct pvo_entry *pvo, struct lpte *lpte)
400 {
401 
402 	lpte->pte_hi = (pvo->pvo_vpn >> (ADDR_API_SHFT64 - ADDR_PIDX_SHFT)) &
403 	    LPTE_AVPN_MASK;
404 	lpte->pte_hi |= LPTE_VALID;
405 
406 	if (pvo->pvo_vaddr & PVO_LARGE)
407 		lpte->pte_hi |= LPTE_BIG;
408 	if (pvo->pvo_vaddr & PVO_WIRED)
409 		lpte->pte_hi |= LPTE_WIRED;
410 	if (pvo->pvo_vaddr & PVO_HID)
411 		lpte->pte_hi |= LPTE_HID;
412 
413 	lpte->pte_lo = pvo->pvo_pte.pa; /* Includes WIMG bits */
414 	if (pvo->pvo_pte.prot & VM_PROT_WRITE)
415 		lpte->pte_lo |= LPTE_BW;
416 	else
417 		lpte->pte_lo |= LPTE_BR;
418 
419 	if (!(pvo->pvo_pte.prot & VM_PROT_EXECUTE))
420 		lpte->pte_lo |= LPTE_NOEXEC;
421 }
422 
423 static __inline uint64_t
424 moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
425 {
426 	uint64_t pte_lo;
427 	int i;
428 
429 	if (ma != VM_MEMATTR_DEFAULT) {
430 		switch (ma) {
431 		case VM_MEMATTR_UNCACHEABLE:
432 			return (LPTE_I | LPTE_G);
433 		case VM_MEMATTR_WRITE_COMBINING:
434 		case VM_MEMATTR_WRITE_BACK:
435 		case VM_MEMATTR_PREFETCHABLE:
436 			return (LPTE_I);
437 		case VM_MEMATTR_WRITE_THROUGH:
438 			return (LPTE_W | LPTE_M);
439 		}
440 	}
441 
442 	/*
443 	 * Assume the page is cache inhibited and access is guarded unless
444 	 * it's in our available memory array.
445 	 */
446 	pte_lo = LPTE_I | LPTE_G;
447 	for (i = 0; i < pregions_sz; i++) {
448 		if ((pa >= pregions[i].mr_start) &&
449 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
450 			pte_lo &= ~(LPTE_I | LPTE_G);
451 			pte_lo |= LPTE_M;
452 			break;
453 		}
454 	}
455 
456 	return pte_lo;
457 }
458 
459 /*
460  * Quick sort callout for comparing memory regions.
461  */
462 static int	om_cmp(const void *a, const void *b);
463 
464 static int
465 om_cmp(const void *a, const void *b)
466 {
467 	const struct	ofw_map *mapa;
468 	const struct	ofw_map *mapb;
469 
470 	mapa = a;
471 	mapb = b;
472 	if (mapa->om_pa < mapb->om_pa)
473 		return (-1);
474 	else if (mapa->om_pa > mapb->om_pa)
475 		return (1);
476 	else
477 		return (0);
478 }
479 
480 static void
481 moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
482 {
483 	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
484 	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
485 	struct pvo_entry *pvo;
486 	register_t	msr;
487 	vm_offset_t	off;
488 	vm_paddr_t	pa_base;
489 	int		i, j;
490 
491 	bzero(translations, sz);
492 	OF_getprop(OF_finddevice("/"), "#address-cells", &acells,
493 	    sizeof(acells));
494 	if (OF_getprop(mmu, "translations", trans_cells, sz) == -1)
495 		panic("moea64_bootstrap: can't get ofw translations");
496 
497 	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
498 	sz /= sizeof(cell_t);
499 	for (i = 0, j = 0; i < sz; j++) {
500 		translations[j].om_va = trans_cells[i++];
501 		translations[j].om_len = trans_cells[i++];
502 		translations[j].om_pa = trans_cells[i++];
503 		if (acells == 2) {
504 			translations[j].om_pa <<= 32;
505 			translations[j].om_pa |= trans_cells[i++];
506 		}
507 		translations[j].om_mode = trans_cells[i++];
508 	}
509 	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
510 	    i, sz));
511 
512 	sz = j;
513 	qsort(translations, sz, sizeof (*translations), om_cmp);
514 
515 	for (i = 0; i < sz; i++) {
516 		pa_base = translations[i].om_pa;
517 	      #ifndef __powerpc64__
518 		if ((translations[i].om_pa >> 32) != 0)
519 			panic("OFW translations above 32-bit boundary!");
520 	      #endif
521 
522 		if (pa_base % PAGE_SIZE)
523 			panic("OFW translation not page-aligned (phys)!");
524 		if (translations[i].om_va % PAGE_SIZE)
525 			panic("OFW translation not page-aligned (virt)!");
526 
527 		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
528 		    pa_base, translations[i].om_va, translations[i].om_len);
529 
530 		/* Now enter the pages for this mapping */
531 
532 		DISABLE_TRANS(msr);
533 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
534 			/* If this address is direct-mapped, skip remapping */
535 			if (hw_direct_map && translations[i].om_va == pa_base &&
536 			    moea64_calc_wimg(pa_base + off, VM_MEMATTR_DEFAULT) 			    == LPTE_M)
537 				continue;
538 
539 			PMAP_LOCK(kernel_pmap);
540 			pvo = moea64_pvo_find_va(kernel_pmap,
541 			    translations[i].om_va + off);
542 			PMAP_UNLOCK(kernel_pmap);
543 			if (pvo != NULL)
544 				continue;
545 
546 			moea64_kenter(mmup, translations[i].om_va + off,
547 			    pa_base + off);
548 		}
549 		ENABLE_TRANS(msr);
550 	}
551 }
552 
553 #ifdef __powerpc64__
554 static void
555 moea64_probe_large_page(void)
556 {
557 	uint16_t pvr = mfpvr() >> 16;
558 
559 	switch (pvr) {
560 	case IBM970:
561 	case IBM970FX:
562 	case IBM970MP:
563 		powerpc_sync(); isync();
564 		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
565 		powerpc_sync(); isync();
566 
567 		/* FALLTHROUGH */
568 	default:
569 		moea64_large_page_size = 0x1000000; /* 16 MB */
570 		moea64_large_page_shift = 24;
571 	}
572 
573 	moea64_large_page_mask = moea64_large_page_size - 1;
574 }
575 
576 static void
577 moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
578 {
579 	struct slb *cache;
580 	struct slb entry;
581 	uint64_t esid, slbe;
582 	uint64_t i;
583 
584 	cache = PCPU_GET(slb);
585 	esid = va >> ADDR_SR_SHFT;
586 	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
587 
588 	for (i = 0; i < 64; i++) {
589 		if (cache[i].slbe == (slbe | i))
590 			return;
591 	}
592 
593 	entry.slbe = slbe;
594 	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
595 	if (large)
596 		entry.slbv |= SLBV_L;
597 
598 	slb_insert_kernel(entry.slbe, entry.slbv);
599 }
600 #endif
601 
602 static void
603 moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
604     vm_offset_t kernelend)
605 {
606 	struct pvo_entry *pvo;
607 	register_t msr;
608 	vm_paddr_t pa;
609 	vm_offset_t size, off;
610 	uint64_t pte_lo;
611 	int i;
612 
613 	if (moea64_large_page_size == 0)
614 		hw_direct_map = 0;
615 
616 	DISABLE_TRANS(msr);
617 	if (hw_direct_map) {
618 		PMAP_LOCK(kernel_pmap);
619 		for (i = 0; i < pregions_sz; i++) {
620 		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
621 		     pregions[i].mr_size; pa += moea64_large_page_size) {
622 			pte_lo = LPTE_M;
623 
624 			pvo = alloc_pvo_entry(1 /* bootstrap */);
625 			pvo->pvo_vaddr |= PVO_WIRED | PVO_LARGE;
626 			init_pvo_entry(pvo, kernel_pmap, pa);
627 
628 			/*
629 			 * Set memory access as guarded if prefetch within
630 			 * the page could exit the available physmem area.
631 			 */
632 			if (pa & moea64_large_page_mask) {
633 				pa &= moea64_large_page_mask;
634 				pte_lo |= LPTE_G;
635 			}
636 			if (pa + moea64_large_page_size >
637 			    pregions[i].mr_start + pregions[i].mr_size)
638 				pte_lo |= LPTE_G;
639 
640 			pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE |
641 			    VM_PROT_EXECUTE;
642 			pvo->pvo_pte.pa = pa | pte_lo;
643 			moea64_pvo_enter(mmup, pvo, NULL);
644 		  }
645 		}
646 		PMAP_UNLOCK(kernel_pmap);
647 	} else {
648 		size = moea64_bpvo_pool_size*sizeof(struct pvo_entry);
649 		off = (vm_offset_t)(moea64_bpvo_pool);
650 		for (pa = off; pa < off + size; pa += PAGE_SIZE)
651 		moea64_kenter(mmup, pa, pa);
652 
653 		/*
654 		 * Map certain important things, like ourselves.
655 		 *
656 		 * NOTE: We do not map the exception vector space. That code is
657 		 * used only in real mode, and leaving it unmapped allows us to
658 		 * catch NULL pointer deferences, instead of making NULL a valid
659 		 * address.
660 		 */
661 
662 		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
663 		    pa += PAGE_SIZE)
664 			moea64_kenter(mmup, pa, pa);
665 	}
666 	ENABLE_TRANS(msr);
667 
668 	/*
669 	 * Allow user to override unmapped_buf_allowed for testing.
670 	 * XXXKIB Only direct map implementation was tested.
671 	 */
672 	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
673 	    &unmapped_buf_allowed))
674 		unmapped_buf_allowed = hw_direct_map;
675 }
676 
677 void
678 moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
679 {
680 	int		i, j;
681 	vm_size_t	physsz, hwphyssz;
682 
683 #ifndef __powerpc64__
684 	/* We don't have a direct map since there is no BAT */
685 	hw_direct_map = 0;
686 
687 	/* Make sure battable is zero, since we have no BAT */
688 	for (i = 0; i < 16; i++) {
689 		battable[i].batu = 0;
690 		battable[i].batl = 0;
691 	}
692 #else
693 	moea64_probe_large_page();
694 
695 	/* Use a direct map if we have large page support */
696 	if (moea64_large_page_size > 0)
697 		hw_direct_map = 1;
698 	else
699 		hw_direct_map = 0;
700 #endif
701 
702 	/* Get physical memory regions from firmware */
703 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
704 	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
705 
706 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
707 		panic("moea64_bootstrap: phys_avail too small");
708 
709 	phys_avail_count = 0;
710 	physsz = 0;
711 	hwphyssz = 0;
712 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
713 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
714 		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
715 		    regions[i].mr_start, regions[i].mr_start +
716 		    regions[i].mr_size, regions[i].mr_size);
717 		if (hwphyssz != 0 &&
718 		    (physsz + regions[i].mr_size) >= hwphyssz) {
719 			if (physsz < hwphyssz) {
720 				phys_avail[j] = regions[i].mr_start;
721 				phys_avail[j + 1] = regions[i].mr_start +
722 				    hwphyssz - physsz;
723 				physsz = hwphyssz;
724 				phys_avail_count++;
725 			}
726 			break;
727 		}
728 		phys_avail[j] = regions[i].mr_start;
729 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
730 		phys_avail_count++;
731 		physsz += regions[i].mr_size;
732 	}
733 
734 	/* Check for overlap with the kernel and exception vectors */
735 	for (j = 0; j < 2*phys_avail_count; j+=2) {
736 		if (phys_avail[j] < EXC_LAST)
737 			phys_avail[j] += EXC_LAST;
738 
739 		if (kernelstart >= phys_avail[j] &&
740 		    kernelstart < phys_avail[j+1]) {
741 			if (kernelend < phys_avail[j+1]) {
742 				phys_avail[2*phys_avail_count] =
743 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
744 				phys_avail[2*phys_avail_count + 1] =
745 				    phys_avail[j+1];
746 				phys_avail_count++;
747 			}
748 
749 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
750 		}
751 
752 		if (kernelend >= phys_avail[j] &&
753 		    kernelend < phys_avail[j+1]) {
754 			if (kernelstart > phys_avail[j]) {
755 				phys_avail[2*phys_avail_count] = phys_avail[j];
756 				phys_avail[2*phys_avail_count + 1] =
757 				    kernelstart & ~PAGE_MASK;
758 				phys_avail_count++;
759 			}
760 
761 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
762 		}
763 	}
764 
765 	physmem = btoc(physsz);
766 
767 #ifdef PTEGCOUNT
768 	moea64_pteg_count = PTEGCOUNT;
769 #else
770 	moea64_pteg_count = 0x1000;
771 
772 	while (moea64_pteg_count < physmem)
773 		moea64_pteg_count <<= 1;
774 
775 	moea64_pteg_count >>= 1;
776 #endif /* PTEGCOUNT */
777 }
778 
779 void
780 moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
781 {
782 	int		i;
783 
784 	/*
785 	 * Set PTEG mask
786 	 */
787 	moea64_pteg_mask = moea64_pteg_count - 1;
788 
789 	/*
790 	 * Initialize SLB table lock and page locks
791 	 */
792 	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
793 	for (i = 0; i < PV_LOCK_COUNT; i++)
794 		mtx_init(&pv_lock[i], "page pv", NULL, MTX_DEF);
795 
796 	/*
797 	 * Initialise the bootstrap pvo pool.
798 	 */
799 	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
800 		moea64_bpvo_pool_size*sizeof(struct pvo_entry), 0);
801 	moea64_bpvo_pool_index = 0;
802 
803 	/*
804 	 * Make sure kernel vsid is allocated as well as VSID 0.
805 	 */
806 	#ifndef __powerpc64__
807 	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
808 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
809 	moea64_vsid_bitmap[0] |= 1;
810 	#endif
811 
812 	/*
813 	 * Initialize the kernel pmap (which is statically allocated).
814 	 */
815 	#ifdef __powerpc64__
816 	for (i = 0; i < 64; i++) {
817 		pcpup->pc_slb[i].slbv = 0;
818 		pcpup->pc_slb[i].slbe = 0;
819 	}
820 	#else
821 	for (i = 0; i < 16; i++)
822 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
823 	#endif
824 
825 	kernel_pmap->pmap_phys = kernel_pmap;
826 	CPU_FILL(&kernel_pmap->pm_active);
827 	RB_INIT(&kernel_pmap->pmap_pvo);
828 
829 	PMAP_LOCK_INIT(kernel_pmap);
830 
831 	/*
832 	 * Now map in all the other buffers we allocated earlier
833 	 */
834 
835 	moea64_setup_direct_map(mmup, kernelstart, kernelend);
836 }
837 
838 void
839 moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
840 {
841 	ihandle_t	mmui;
842 	phandle_t	chosen;
843 	phandle_t	mmu;
844 	ssize_t		sz;
845 	int		i;
846 	vm_offset_t	pa, va;
847 	void		*dpcpu;
848 
849 	/*
850 	 * Set up the Open Firmware pmap and add its mappings if not in real
851 	 * mode.
852 	 */
853 
854 	chosen = OF_finddevice("/chosen");
855 	if (!ofw_real_mode && chosen != -1 &&
856 	    OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
857 		mmu = OF_instance_to_package(mmui);
858 		if (mmu == -1 ||
859 		    (sz = OF_getproplen(mmu, "translations")) == -1)
860 			sz = 0;
861 		if (sz > 6144 /* tmpstksz - 2 KB headroom */)
862 			panic("moea64_bootstrap: too many ofw translations");
863 
864 		if (sz > 0)
865 			moea64_add_ofw_mappings(mmup, mmu, sz);
866 	}
867 
868 	/*
869 	 * Calculate the last available physical address.
870 	 */
871 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
872 		;
873 	Maxmem = powerpc_btop(phys_avail[i + 1]);
874 
875 	/*
876 	 * Initialize MMU and remap early physical mappings
877 	 */
878 	MMU_CPU_BOOTSTRAP(mmup,0);
879 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
880 	pmap_bootstrapped++;
881 	bs_remap_earlyboot();
882 
883 	/*
884 	 * Set the start and end of kva.
885 	 */
886 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
887 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
888 
889 	/*
890 	 * Map the entire KVA range into the SLB. We must not fault there.
891 	 */
892 	#ifdef __powerpc64__
893 	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
894 		moea64_bootstrap_slb_prefault(va, 0);
895 	#endif
896 
897 	/*
898 	 * Figure out how far we can extend virtual_end into segment 16
899 	 * without running into existing mappings. Segment 16 is guaranteed
900 	 * to contain neither RAM nor devices (at least on Apple hardware),
901 	 * but will generally contain some OFW mappings we should not
902 	 * step on.
903 	 */
904 
905 	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
906 	PMAP_LOCK(kernel_pmap);
907 	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
908 	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
909 		virtual_end += PAGE_SIZE;
910 	PMAP_UNLOCK(kernel_pmap);
911 	#endif
912 
913 	/*
914 	 * Allocate a kernel stack with a guard page for thread0 and map it
915 	 * into the kernel page map.
916 	 */
917 	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
918 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
919 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
920 	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
921 	thread0.td_kstack = va;
922 	thread0.td_kstack_pages = KSTACK_PAGES;
923 	for (i = 0; i < KSTACK_PAGES; i++) {
924 		moea64_kenter(mmup, va, pa);
925 		pa += PAGE_SIZE;
926 		va += PAGE_SIZE;
927 	}
928 
929 	/*
930 	 * Allocate virtual address space for the message buffer.
931 	 */
932 	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
933 	msgbufp = (struct msgbuf *)virtual_avail;
934 	va = virtual_avail;
935 	virtual_avail += round_page(msgbufsize);
936 	while (va < virtual_avail) {
937 		moea64_kenter(mmup, va, pa);
938 		pa += PAGE_SIZE;
939 		va += PAGE_SIZE;
940 	}
941 
942 	/*
943 	 * Allocate virtual address space for the dynamic percpu area.
944 	 */
945 	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
946 	dpcpu = (void *)virtual_avail;
947 	va = virtual_avail;
948 	virtual_avail += DPCPU_SIZE;
949 	while (va < virtual_avail) {
950 		moea64_kenter(mmup, va, pa);
951 		pa += PAGE_SIZE;
952 		va += PAGE_SIZE;
953 	}
954 	dpcpu_init(dpcpu, 0);
955 
956 	/*
957 	 * Allocate some things for page zeroing. We put this directly
958 	 * in the page table and use MOEA64_PTE_REPLACE to avoid any
959 	 * of the PVO book-keeping or other parts of the VM system
960 	 * from even knowing that this hack exists.
961 	 */
962 
963 	if (!hw_direct_map) {
964 		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
965 		    MTX_DEF);
966 		for (i = 0; i < 2; i++) {
967 			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
968 			virtual_end -= PAGE_SIZE;
969 
970 			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
971 
972 			PMAP_LOCK(kernel_pmap);
973 			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
974 			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
975 			PMAP_UNLOCK(kernel_pmap);
976 		}
977 	}
978 }
979 
980 /*
981  * Activate a user pmap.  This mostly involves setting some non-CPU
982  * state.
983  */
984 void
985 moea64_activate(mmu_t mmu, struct thread *td)
986 {
987 	pmap_t	pm;
988 
989 	pm = &td->td_proc->p_vmspace->vm_pmap;
990 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
991 
992 	#ifdef __powerpc64__
993 	PCPU_SET(userslb, pm->pm_slb);
994 	#else
995 	PCPU_SET(curpmap, pm->pmap_phys);
996 	#endif
997 }
998 
999 void
1000 moea64_deactivate(mmu_t mmu, struct thread *td)
1001 {
1002 	pmap_t	pm;
1003 
1004 	pm = &td->td_proc->p_vmspace->vm_pmap;
1005 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1006 	#ifdef __powerpc64__
1007 	PCPU_SET(userslb, NULL);
1008 	#else
1009 	PCPU_SET(curpmap, NULL);
1010 	#endif
1011 }
1012 
1013 void
1014 moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1015 {
1016 	struct	pvo_entry key, *pvo;
1017 	vm_page_t m;
1018 	int64_t	refchg;
1019 
1020 	key.pvo_vaddr = sva;
1021 	PMAP_LOCK(pm);
1022 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1023 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1024 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1025 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1026 			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1027 			    pvo);
1028 		pvo->pvo_vaddr &= ~PVO_WIRED;
1029 		refchg = MOEA64_PTE_REPLACE(mmu, pvo, 0 /* No invalidation */);
1030 		if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1031 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1032 			if (refchg < 0)
1033 				refchg = LPTE_CHG;
1034 			m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1035 
1036 			refchg |= atomic_readandclear_32(&m->md.mdpg_attrs);
1037 			if (refchg & LPTE_CHG)
1038 				vm_page_dirty(m);
1039 			if (refchg & LPTE_REF)
1040 				vm_page_aflag_set(m, PGA_REFERENCED);
1041 		}
1042 		pm->pm_stats.wired_count--;
1043 	}
1044 	PMAP_UNLOCK(pm);
1045 }
1046 
1047 /*
1048  * This goes through and sets the physical address of our
1049  * special scratch PTE to the PA we want to zero or copy. Because
1050  * of locking issues (this can get called in pvo_enter() by
1051  * the UMA allocator), we can't use most other utility functions here
1052  */
1053 
1054 static __inline
1055 void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1056 
1057 	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1058 	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1059 
1060 	moea64_scratchpage_pvo[which]->pvo_pte.pa =
1061 	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1062 	MOEA64_PTE_REPLACE(mmup, moea64_scratchpage_pvo[which],
1063 	    MOEA64_PTE_INVALIDATE);
1064 	isync();
1065 }
1066 
1067 void
1068 moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1069 {
1070 	vm_offset_t	dst;
1071 	vm_offset_t	src;
1072 
1073 	dst = VM_PAGE_TO_PHYS(mdst);
1074 	src = VM_PAGE_TO_PHYS(msrc);
1075 
1076 	if (hw_direct_map) {
1077 		bcopy((void *)src, (void *)dst, PAGE_SIZE);
1078 	} else {
1079 		mtx_lock(&moea64_scratchpage_mtx);
1080 
1081 		moea64_set_scratchpage_pa(mmu, 0, src);
1082 		moea64_set_scratchpage_pa(mmu, 1, dst);
1083 
1084 		bcopy((void *)moea64_scratchpage_va[0],
1085 		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1086 
1087 		mtx_unlock(&moea64_scratchpage_mtx);
1088 	}
1089 }
1090 
1091 static inline void
1092 moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1093     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1094 {
1095 	void *a_cp, *b_cp;
1096 	vm_offset_t a_pg_offset, b_pg_offset;
1097 	int cnt;
1098 
1099 	while (xfersize > 0) {
1100 		a_pg_offset = a_offset & PAGE_MASK;
1101 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1102 		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1103 		    a_pg_offset;
1104 		b_pg_offset = b_offset & PAGE_MASK;
1105 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1106 		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1107 		    b_pg_offset;
1108 		bcopy(a_cp, b_cp, cnt);
1109 		a_offset += cnt;
1110 		b_offset += cnt;
1111 		xfersize -= cnt;
1112 	}
1113 }
1114 
1115 static inline void
1116 moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1117     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1118 {
1119 	void *a_cp, *b_cp;
1120 	vm_offset_t a_pg_offset, b_pg_offset;
1121 	int cnt;
1122 
1123 	mtx_lock(&moea64_scratchpage_mtx);
1124 	while (xfersize > 0) {
1125 		a_pg_offset = a_offset & PAGE_MASK;
1126 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1127 		moea64_set_scratchpage_pa(mmu, 0,
1128 		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1129 		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1130 		b_pg_offset = b_offset & PAGE_MASK;
1131 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1132 		moea64_set_scratchpage_pa(mmu, 1,
1133 		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1134 		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1135 		bcopy(a_cp, b_cp, cnt);
1136 		a_offset += cnt;
1137 		b_offset += cnt;
1138 		xfersize -= cnt;
1139 	}
1140 	mtx_unlock(&moea64_scratchpage_mtx);
1141 }
1142 
1143 void
1144 moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1145     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1146 {
1147 
1148 	if (hw_direct_map) {
1149 		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1150 		    xfersize);
1151 	} else {
1152 		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1153 		    xfersize);
1154 	}
1155 }
1156 
1157 void
1158 moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1159 {
1160 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1161 
1162 	if (size + off > PAGE_SIZE)
1163 		panic("moea64_zero_page: size + off > PAGE_SIZE");
1164 
1165 	if (hw_direct_map) {
1166 		bzero((caddr_t)pa + off, size);
1167 	} else {
1168 		mtx_lock(&moea64_scratchpage_mtx);
1169 		moea64_set_scratchpage_pa(mmu, 0, pa);
1170 		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1171 		mtx_unlock(&moea64_scratchpage_mtx);
1172 	}
1173 }
1174 
1175 /*
1176  * Zero a page of physical memory by temporarily mapping it
1177  */
1178 void
1179 moea64_zero_page(mmu_t mmu, vm_page_t m)
1180 {
1181 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1182 	vm_offset_t va, off;
1183 
1184 	if (!hw_direct_map) {
1185 		mtx_lock(&moea64_scratchpage_mtx);
1186 
1187 		moea64_set_scratchpage_pa(mmu, 0, pa);
1188 		va = moea64_scratchpage_va[0];
1189 	} else {
1190 		va = pa;
1191 	}
1192 
1193 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1194 		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1195 
1196 	if (!hw_direct_map)
1197 		mtx_unlock(&moea64_scratchpage_mtx);
1198 }
1199 
1200 void
1201 moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1202 {
1203 
1204 	moea64_zero_page(mmu, m);
1205 }
1206 
1207 /*
1208  * Map the given physical page at the specified virtual address in the
1209  * target pmap with the protection requested.  If specified the page
1210  * will be wired down.
1211  */
1212 
1213 int
1214 moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1215     vm_prot_t prot, u_int flags, int8_t psind)
1216 {
1217 	struct		pvo_entry *pvo, *oldpvo;
1218 	struct		pvo_head *pvo_head;
1219 	uint64_t	pte_lo;
1220 	int		error;
1221 
1222 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1223 		VM_OBJECT_ASSERT_LOCKED(m->object);
1224 
1225 	pvo = alloc_pvo_entry(0);
1226 	pvo->pvo_pmap = NULL; /* to be filled in later */
1227 	pvo->pvo_pte.prot = prot;
1228 
1229 	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1230 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | pte_lo;
1231 
1232 	if ((flags & PMAP_ENTER_WIRED) != 0)
1233 		pvo->pvo_vaddr |= PVO_WIRED;
1234 
1235 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1236 		pvo_head = NULL;
1237 	} else {
1238 		pvo_head = &m->md.mdpg_pvoh;
1239 		pvo->pvo_vaddr |= PVO_MANAGED;
1240 	}
1241 
1242 	for (;;) {
1243 		PV_PAGE_LOCK(m);
1244 		PMAP_LOCK(pmap);
1245 		if (pvo->pvo_pmap == NULL)
1246 			init_pvo_entry(pvo, pmap, va);
1247 		if (prot & VM_PROT_WRITE)
1248 			if (pmap_bootstrapped &&
1249 			    (m->oflags & VPO_UNMANAGED) == 0)
1250 				vm_page_aflag_set(m, PGA_WRITEABLE);
1251 
1252 		oldpvo = moea64_pvo_find_va(pmap, va);
1253 		if (oldpvo != NULL) {
1254 			if (oldpvo->pvo_vaddr == pvo->pvo_vaddr &&
1255 			    oldpvo->pvo_pte.pa == pvo->pvo_pte.pa &&
1256 			    oldpvo->pvo_pte.prot == prot) {
1257 				/* Identical mapping already exists */
1258 				error = 0;
1259 
1260 				/* If not in page table, reinsert it */
1261 				if (MOEA64_PTE_SYNCH(mmu, oldpvo) < 0) {
1262 					moea64_pte_overflow--;
1263 					MOEA64_PTE_INSERT(mmu, oldpvo);
1264 				}
1265 
1266 				/* Then just clean up and go home */
1267 				PV_PAGE_UNLOCK(m);
1268 				PMAP_UNLOCK(pmap);
1269 				free_pvo_entry(pvo);
1270 				break;
1271 			}
1272 
1273 			/* Otherwise, need to kill it first */
1274 			KASSERT(oldpvo->pvo_pmap == pmap, ("pmap of old "
1275 			    "mapping does not match new mapping"));
1276 			moea64_pvo_remove_from_pmap(mmu, oldpvo);
1277 		}
1278 		error = moea64_pvo_enter(mmu, pvo, pvo_head);
1279 		PV_PAGE_UNLOCK(m);
1280 		PMAP_UNLOCK(pmap);
1281 
1282 		/* Free any dead pages */
1283 		if (oldpvo != NULL) {
1284 			PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1285 			moea64_pvo_remove_from_page(mmu, oldpvo);
1286 			PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1287 			free_pvo_entry(oldpvo);
1288 		}
1289 
1290 		if (error != ENOMEM)
1291 			break;
1292 		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1293 			return (KERN_RESOURCE_SHORTAGE);
1294 		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1295 		VM_WAIT;
1296 	}
1297 
1298 	/*
1299 	 * Flush the page from the instruction cache if this page is
1300 	 * mapped executable and cacheable.
1301 	 */
1302 	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1303 	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1304 		vm_page_aflag_set(m, PGA_EXECUTABLE);
1305 		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1306 	}
1307 	return (KERN_SUCCESS);
1308 }
1309 
1310 static void
1311 moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1312     vm_size_t sz)
1313 {
1314 
1315 	/*
1316 	 * This is much trickier than on older systems because
1317 	 * we can't sync the icache on physical addresses directly
1318 	 * without a direct map. Instead we check a couple of cases
1319 	 * where the memory is already mapped in and, failing that,
1320 	 * use the same trick we use for page zeroing to create
1321 	 * a temporary mapping for this physical address.
1322 	 */
1323 
1324 	if (!pmap_bootstrapped) {
1325 		/*
1326 		 * If PMAP is not bootstrapped, we are likely to be
1327 		 * in real mode.
1328 		 */
1329 		__syncicache((void *)pa, sz);
1330 	} else if (pmap == kernel_pmap) {
1331 		__syncicache((void *)va, sz);
1332 	} else if (hw_direct_map) {
1333 		__syncicache((void *)pa, sz);
1334 	} else {
1335 		/* Use the scratch page to set up a temp mapping */
1336 
1337 		mtx_lock(&moea64_scratchpage_mtx);
1338 
1339 		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1340 		__syncicache((void *)(moea64_scratchpage_va[1] +
1341 		    (va & ADDR_POFF)), sz);
1342 
1343 		mtx_unlock(&moea64_scratchpage_mtx);
1344 	}
1345 }
1346 
1347 /*
1348  * Maps a sequence of resident pages belonging to the same object.
1349  * The sequence begins with the given page m_start.  This page is
1350  * mapped at the given virtual address start.  Each subsequent page is
1351  * mapped at a virtual address that is offset from start by the same
1352  * amount as the page is offset from m_start within the object.  The
1353  * last page in the sequence is the page with the largest offset from
1354  * m_start that can be mapped at a virtual address less than the given
1355  * virtual address end.  Not every virtual page between start and end
1356  * is mapped; only those for which a resident page exists with the
1357  * corresponding offset from m_start are mapped.
1358  */
1359 void
1360 moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1361     vm_page_t m_start, vm_prot_t prot)
1362 {
1363 	vm_page_t m;
1364 	vm_pindex_t diff, psize;
1365 
1366 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1367 
1368 	psize = atop(end - start);
1369 	m = m_start;
1370 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1371 		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1372 		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP, 0);
1373 		m = TAILQ_NEXT(m, listq);
1374 	}
1375 }
1376 
1377 void
1378 moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1379     vm_prot_t prot)
1380 {
1381 
1382 	moea64_enter(mmu, pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1383 	    PMAP_ENTER_NOSLEEP, 0);
1384 }
1385 
1386 vm_paddr_t
1387 moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1388 {
1389 	struct	pvo_entry *pvo;
1390 	vm_paddr_t pa;
1391 
1392 	PMAP_LOCK(pm);
1393 	pvo = moea64_pvo_find_va(pm, va);
1394 	if (pvo == NULL)
1395 		pa = 0;
1396 	else
1397 		pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1398 	PMAP_UNLOCK(pm);
1399 
1400 	return (pa);
1401 }
1402 
1403 /*
1404  * Atomically extract and hold the physical page with the given
1405  * pmap and virtual address pair if that mapping permits the given
1406  * protection.
1407  */
1408 vm_page_t
1409 moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1410 {
1411 	struct	pvo_entry *pvo;
1412 	vm_page_t m;
1413         vm_paddr_t pa;
1414 
1415 	m = NULL;
1416 	pa = 0;
1417 	PMAP_LOCK(pmap);
1418 retry:
1419 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1420 	if (pvo != NULL && (pvo->pvo_pte.prot & prot) == prot) {
1421 		if (vm_page_pa_tryrelock(pmap,
1422 		    pvo->pvo_pte.pa & LPTE_RPGN, &pa))
1423 			goto retry;
1424 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1425 		vm_page_hold(m);
1426 	}
1427 	PA_UNLOCK_COND(pa);
1428 	PMAP_UNLOCK(pmap);
1429 	return (m);
1430 }
1431 
1432 static mmu_t installed_mmu;
1433 
1434 static void *
1435 moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1436 {
1437 	struct pvo_entry *pvo;
1438         vm_offset_t va;
1439         vm_page_t m;
1440         int pflags, needed_lock;
1441 
1442 	/*
1443 	 * This entire routine is a horrible hack to avoid bothering kmem
1444 	 * for new KVA addresses. Because this can get called from inside
1445 	 * kmem allocation routines, calling kmem for a new address here
1446 	 * can lead to multiply locking non-recursive mutexes.
1447 	 */
1448 
1449 	*flags = UMA_SLAB_PRIV;
1450 	needed_lock = !PMAP_LOCKED(kernel_pmap);
1451 	pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
1452 
1453         for (;;) {
1454                 m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1455                 if (m == NULL) {
1456                         if (wait & M_NOWAIT)
1457                                 return (NULL);
1458                         VM_WAIT;
1459                 } else
1460                         break;
1461         }
1462 
1463 	va = VM_PAGE_TO_PHYS(m);
1464 
1465 	pvo = alloc_pvo_entry(1 /* bootstrap */);
1466 
1467 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE;
1468 	pvo->pvo_pte.pa = VM_PAGE_TO_PHYS(m) | LPTE_M;
1469 
1470 	if (needed_lock)
1471 		PMAP_LOCK(kernel_pmap);
1472 
1473 	init_pvo_entry(pvo, kernel_pmap, va);
1474 	pvo->pvo_vaddr |= PVO_WIRED;
1475 
1476 	moea64_pvo_enter(installed_mmu, pvo, NULL);
1477 
1478 	if (needed_lock)
1479 		PMAP_UNLOCK(kernel_pmap);
1480 
1481 	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1482                 bzero((void *)va, PAGE_SIZE);
1483 
1484 	return (void *)va;
1485 }
1486 
1487 extern int elf32_nxstack;
1488 
1489 void
1490 moea64_init(mmu_t mmu)
1491 {
1492 
1493 	CTR0(KTR_PMAP, "moea64_init");
1494 
1495 	moea64_pvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1496 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1497 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1498 
1499 	if (!hw_direct_map) {
1500 		installed_mmu = mmu;
1501 		uma_zone_set_allocf(moea64_pvo_zone,moea64_uma_page_alloc);
1502 	}
1503 
1504 #ifdef COMPAT_FREEBSD32
1505 	elf32_nxstack = 1;
1506 #endif
1507 
1508 	moea64_initialized = TRUE;
1509 }
1510 
1511 boolean_t
1512 moea64_is_referenced(mmu_t mmu, vm_page_t m)
1513 {
1514 
1515 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1516 	    ("moea64_is_referenced: page %p is not managed", m));
1517 
1518 	return (moea64_query_bit(mmu, m, LPTE_REF));
1519 }
1520 
1521 boolean_t
1522 moea64_is_modified(mmu_t mmu, vm_page_t m)
1523 {
1524 
1525 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1526 	    ("moea64_is_modified: page %p is not managed", m));
1527 
1528 	/*
1529 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1530 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1531 	 * is clear, no PTEs can have LPTE_CHG set.
1532 	 */
1533 	VM_OBJECT_ASSERT_LOCKED(m->object);
1534 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1535 		return (FALSE);
1536 	return (moea64_query_bit(mmu, m, LPTE_CHG));
1537 }
1538 
1539 boolean_t
1540 moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1541 {
1542 	struct pvo_entry *pvo;
1543 	boolean_t rv = TRUE;
1544 
1545 	PMAP_LOCK(pmap);
1546 	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1547 	if (pvo != NULL)
1548 		rv = FALSE;
1549 	PMAP_UNLOCK(pmap);
1550 	return (rv);
1551 }
1552 
1553 void
1554 moea64_clear_modify(mmu_t mmu, vm_page_t m)
1555 {
1556 
1557 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1558 	    ("moea64_clear_modify: page %p is not managed", m));
1559 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1560 	KASSERT(!vm_page_xbusied(m),
1561 	    ("moea64_clear_modify: page %p is exclusive busied", m));
1562 
1563 	/*
1564 	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1565 	 * set.  If the object containing the page is locked and the page is
1566 	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1567 	 */
1568 	if ((m->aflags & PGA_WRITEABLE) == 0)
1569 		return;
1570 	moea64_clear_bit(mmu, m, LPTE_CHG);
1571 }
1572 
1573 /*
1574  * Clear the write and modified bits in each of the given page's mappings.
1575  */
1576 void
1577 moea64_remove_write(mmu_t mmu, vm_page_t m)
1578 {
1579 	struct	pvo_entry *pvo;
1580 	int64_t	refchg, ret;
1581 	pmap_t	pmap;
1582 
1583 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1584 	    ("moea64_remove_write: page %p is not managed", m));
1585 
1586 	/*
1587 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1588 	 * set by another thread while the object is locked.  Thus,
1589 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1590 	 */
1591 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1592 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1593 		return;
1594 	powerpc_sync();
1595 	PV_PAGE_LOCK(m);
1596 	refchg = 0;
1597 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1598 		pmap = pvo->pvo_pmap;
1599 		PMAP_LOCK(pmap);
1600 		if (!(pvo->pvo_vaddr & PVO_DEAD) &&
1601 		    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1602 			pvo->pvo_pte.prot &= ~VM_PROT_WRITE;
1603 			ret = MOEA64_PTE_REPLACE(mmu, pvo,
1604 			    MOEA64_PTE_PROT_UPDATE);
1605 			if (ret < 0)
1606 				ret = LPTE_CHG;
1607 			refchg |= ret;
1608 			if (pvo->pvo_pmap == kernel_pmap)
1609 				isync();
1610 		}
1611 		PMAP_UNLOCK(pmap);
1612 	}
1613 	if ((refchg | atomic_readandclear_32(&m->md.mdpg_attrs)) & LPTE_CHG)
1614 		vm_page_dirty(m);
1615 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1616 	PV_PAGE_UNLOCK(m);
1617 }
1618 
1619 /*
1620  *	moea64_ts_referenced:
1621  *
1622  *	Return a count of reference bits for a page, clearing those bits.
1623  *	It is not necessary for every reference bit to be cleared, but it
1624  *	is necessary that 0 only be returned when there are truly no
1625  *	reference bits set.
1626  *
1627  *	XXX: The exact number of bits to check and clear is a matter that
1628  *	should be tested and standardized at some point in the future for
1629  *	optimal aging of shared pages.
1630  */
1631 int
1632 moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1633 {
1634 
1635 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1636 	    ("moea64_ts_referenced: page %p is not managed", m));
1637 	return (moea64_clear_bit(mmu, m, LPTE_REF));
1638 }
1639 
1640 /*
1641  * Modify the WIMG settings of all mappings for a page.
1642  */
1643 void
1644 moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1645 {
1646 	struct	pvo_entry *pvo;
1647 	int64_t	refchg;
1648 	pmap_t	pmap;
1649 	uint64_t lo;
1650 
1651 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1652 		m->md.mdpg_cache_attrs = ma;
1653 		return;
1654 	}
1655 
1656 	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1657 
1658 	PV_PAGE_LOCK(m);
1659 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1660 		pmap = pvo->pvo_pmap;
1661 		PMAP_LOCK(pmap);
1662 		if (!(pvo->pvo_vaddr & PVO_DEAD)) {
1663 			pvo->pvo_pte.pa &= ~LPTE_WIMG;
1664 			pvo->pvo_pte.pa |= lo;
1665 			refchg = MOEA64_PTE_REPLACE(mmu, pvo,
1666 			    MOEA64_PTE_INVALIDATE);
1667 			if (refchg < 0)
1668 				refchg = (pvo->pvo_pte.prot & VM_PROT_WRITE) ?
1669 				    LPTE_CHG : 0;
1670 			if ((pvo->pvo_vaddr & PVO_MANAGED) &&
1671 			    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
1672 				refchg |=
1673 				    atomic_readandclear_32(&m->md.mdpg_attrs);
1674 				if (refchg & LPTE_CHG)
1675 					vm_page_dirty(m);
1676 				if (refchg & LPTE_REF)
1677 					vm_page_aflag_set(m, PGA_REFERENCED);
1678 			}
1679 			if (pvo->pvo_pmap == kernel_pmap)
1680 				isync();
1681 		}
1682 		PMAP_UNLOCK(pmap);
1683 	}
1684 	m->md.mdpg_cache_attrs = ma;
1685 	PV_PAGE_UNLOCK(m);
1686 }
1687 
1688 /*
1689  * Map a wired page into kernel virtual address space.
1690  */
1691 void
1692 moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1693 {
1694 	int		error;
1695 	struct pvo_entry *pvo, *oldpvo;
1696 
1697 	pvo = alloc_pvo_entry(0);
1698 	pvo->pvo_pte.prot = VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
1699 	pvo->pvo_pte.pa = (pa & ~ADDR_POFF) | moea64_calc_wimg(pa, ma);
1700 	pvo->pvo_vaddr |= PVO_WIRED;
1701 
1702 	PMAP_LOCK(kernel_pmap);
1703 	oldpvo = moea64_pvo_find_va(kernel_pmap, va);
1704 	if (oldpvo != NULL)
1705 		moea64_pvo_remove_from_pmap(mmu, oldpvo);
1706 	init_pvo_entry(pvo, kernel_pmap, va);
1707 	error = moea64_pvo_enter(mmu, pvo, NULL);
1708 	PMAP_UNLOCK(kernel_pmap);
1709 
1710 	/* Free any dead pages */
1711 	if (oldpvo != NULL) {
1712 		PV_LOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1713 		moea64_pvo_remove_from_page(mmu, oldpvo);
1714 		PV_UNLOCK(oldpvo->pvo_pte.pa & LPTE_RPGN);
1715 		free_pvo_entry(oldpvo);
1716 	}
1717 
1718 	if (error != 0 && error != ENOENT)
1719 		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1720 		    pa, error);
1721 }
1722 
1723 void
1724 moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1725 {
1726 
1727 	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1728 }
1729 
1730 /*
1731  * Extract the physical page address associated with the given kernel virtual
1732  * address.
1733  */
1734 vm_paddr_t
1735 moea64_kextract(mmu_t mmu, vm_offset_t va)
1736 {
1737 	struct		pvo_entry *pvo;
1738 	vm_paddr_t pa;
1739 
1740 	/*
1741 	 * Shortcut the direct-mapped case when applicable.  We never put
1742 	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1743 	 */
1744 	if (va < VM_MIN_KERNEL_ADDRESS)
1745 		return (va);
1746 
1747 	PMAP_LOCK(kernel_pmap);
1748 	pvo = moea64_pvo_find_va(kernel_pmap, va);
1749 	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1750 	    va));
1751 	pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1752 	PMAP_UNLOCK(kernel_pmap);
1753 	return (pa);
1754 }
1755 
1756 /*
1757  * Remove a wired page from kernel virtual address space.
1758  */
1759 void
1760 moea64_kremove(mmu_t mmu, vm_offset_t va)
1761 {
1762 	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1763 }
1764 
1765 /*
1766  * Map a range of physical addresses into kernel virtual address space.
1767  *
1768  * The value passed in *virt is a suggested virtual address for the mapping.
1769  * Architectures which can support a direct-mapped physical to virtual region
1770  * can return the appropriate address within that region, leaving '*virt'
1771  * unchanged.  Other architectures should map the pages starting at '*virt' and
1772  * update '*virt' with the first usable address after the mapped region.
1773  */
1774 vm_offset_t
1775 moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1776     vm_paddr_t pa_end, int prot)
1777 {
1778 	vm_offset_t	sva, va;
1779 
1780 	if (hw_direct_map) {
1781 		/*
1782 		 * Check if every page in the region is covered by the direct
1783 		 * map. The direct map covers all of physical memory. Use
1784 		 * moea64_calc_wimg() as a shortcut to see if the page is in
1785 		 * physical memory as a way to see if the direct map covers it.
1786 		 */
1787 		for (va = pa_start; va < pa_end; va += PAGE_SIZE)
1788 			if (moea64_calc_wimg(va, VM_MEMATTR_DEFAULT) != LPTE_M)
1789 				break;
1790 		if (va == pa_end)
1791 			return (pa_start);
1792 	}
1793 	sva = *virt;
1794 	va = sva;
1795 	/* XXX respect prot argument */
1796 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1797 		moea64_kenter(mmu, va, pa_start);
1798 	*virt = va;
1799 
1800 	return (sva);
1801 }
1802 
1803 /*
1804  * Returns true if the pmap's pv is one of the first
1805  * 16 pvs linked to from this page.  This count may
1806  * be changed upwards or downwards in the future; it
1807  * is only necessary that true be returned for a small
1808  * subset of pmaps for proper page aging.
1809  */
1810 boolean_t
1811 moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1812 {
1813         int loops;
1814 	struct pvo_entry *pvo;
1815 	boolean_t rv;
1816 
1817 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1818 	    ("moea64_page_exists_quick: page %p is not managed", m));
1819 	loops = 0;
1820 	rv = FALSE;
1821 	PV_PAGE_LOCK(m);
1822 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1823 		if (!(pvo->pvo_vaddr & PVO_DEAD) && pvo->pvo_pmap == pmap) {
1824 			rv = TRUE;
1825 			break;
1826 		}
1827 		if (++loops >= 16)
1828 			break;
1829 	}
1830 	PV_PAGE_UNLOCK(m);
1831 	return (rv);
1832 }
1833 
1834 /*
1835  * Return the number of managed mappings to the given physical page
1836  * that are wired.
1837  */
1838 int
1839 moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1840 {
1841 	struct pvo_entry *pvo;
1842 	int count;
1843 
1844 	count = 0;
1845 	if ((m->oflags & VPO_UNMANAGED) != 0)
1846 		return (count);
1847 	PV_PAGE_LOCK(m);
1848 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1849 		if ((pvo->pvo_vaddr & (PVO_DEAD | PVO_WIRED)) == PVO_WIRED)
1850 			count++;
1851 	PV_PAGE_UNLOCK(m);
1852 	return (count);
1853 }
1854 
1855 static uintptr_t	moea64_vsidcontext;
1856 
1857 uintptr_t
1858 moea64_get_unique_vsid(void) {
1859 	u_int entropy;
1860 	register_t hash;
1861 	uint32_t mask;
1862 	int i;
1863 
1864 	entropy = 0;
1865 	__asm __volatile("mftb %0" : "=r"(entropy));
1866 
1867 	mtx_lock(&moea64_slb_mutex);
1868 	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1869 		u_int	n;
1870 
1871 		/*
1872 		 * Create a new value by mutiplying by a prime and adding in
1873 		 * entropy from the timebase register.  This is to make the
1874 		 * VSID more random so that the PT hash function collides
1875 		 * less often.  (Note that the prime casues gcc to do shifts
1876 		 * instead of a multiply.)
1877 		 */
1878 		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1879 		hash = moea64_vsidcontext & (NVSIDS - 1);
1880 		if (hash == 0)		/* 0 is special, avoid it */
1881 			continue;
1882 		n = hash >> 5;
1883 		mask = 1 << (hash & (VSID_NBPW - 1));
1884 		hash = (moea64_vsidcontext & VSID_HASHMASK);
1885 		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1886 			/* anything free in this bucket? */
1887 			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1888 				entropy = (moea64_vsidcontext >> 20);
1889 				continue;
1890 			}
1891 			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1892 			mask = 1 << i;
1893 			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1894 			hash |= i;
1895 		}
1896 		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1897 		    ("Allocating in-use VSID %#zx\n", hash));
1898 		moea64_vsid_bitmap[n] |= mask;
1899 		mtx_unlock(&moea64_slb_mutex);
1900 		return (hash);
1901 	}
1902 
1903 	mtx_unlock(&moea64_slb_mutex);
1904 	panic("%s: out of segments",__func__);
1905 }
1906 
1907 #ifdef __powerpc64__
1908 void
1909 moea64_pinit(mmu_t mmu, pmap_t pmap)
1910 {
1911 
1912 	RB_INIT(&pmap->pmap_pvo);
1913 
1914 	pmap->pm_slb_tree_root = slb_alloc_tree();
1915 	pmap->pm_slb = slb_alloc_user_cache();
1916 	pmap->pm_slb_len = 0;
1917 }
1918 #else
1919 void
1920 moea64_pinit(mmu_t mmu, pmap_t pmap)
1921 {
1922 	int	i;
1923 	uint32_t hash;
1924 
1925 	RB_INIT(&pmap->pmap_pvo);
1926 
1927 	if (pmap_bootstrapped)
1928 		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1929 		    (vm_offset_t)pmap);
1930 	else
1931 		pmap->pmap_phys = pmap;
1932 
1933 	/*
1934 	 * Allocate some segment registers for this pmap.
1935 	 */
1936 	hash = moea64_get_unique_vsid();
1937 
1938 	for (i = 0; i < 16; i++)
1939 		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1940 
1941 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1942 }
1943 #endif
1944 
1945 /*
1946  * Initialize the pmap associated with process 0.
1947  */
1948 void
1949 moea64_pinit0(mmu_t mmu, pmap_t pm)
1950 {
1951 
1952 	PMAP_LOCK_INIT(pm);
1953 	moea64_pinit(mmu, pm);
1954 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1955 }
1956 
1957 /*
1958  * Set the physical protection on the specified range of this map as requested.
1959  */
1960 static void
1961 moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1962 {
1963 	struct vm_page *pg;
1964 	vm_prot_t oldprot;
1965 	int32_t refchg;
1966 
1967 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
1968 
1969 	/*
1970 	 * Change the protection of the page.
1971 	 */
1972 	oldprot = pvo->pvo_pte.prot;
1973 	pvo->pvo_pte.prot = prot;
1974 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
1975 
1976 	/*
1977 	 * If the PVO is in the page table, update mapping
1978 	 */
1979 	refchg = MOEA64_PTE_REPLACE(mmu, pvo, MOEA64_PTE_PROT_UPDATE);
1980 	if (refchg < 0)
1981 		refchg = (oldprot & VM_PROT_WRITE) ? LPTE_CHG : 0;
1982 
1983 	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
1984 	    (pvo->pvo_pte.pa & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1985 		if ((pg->oflags & VPO_UNMANAGED) == 0)
1986 			vm_page_aflag_set(pg, PGA_EXECUTABLE);
1987 		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1988 		    pvo->pvo_pte.pa & LPTE_RPGN, PAGE_SIZE);
1989 	}
1990 
1991 	/*
1992 	 * Update vm about the REF/CHG bits if the page is managed and we have
1993 	 * removed write access.
1994 	 */
1995 	if (pg != NULL && (pvo->pvo_vaddr & PVO_MANAGED) &&
1996 	    (oldprot & VM_PROT_WRITE)) {
1997 		refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
1998 		if (refchg & LPTE_CHG)
1999 			vm_page_dirty(pg);
2000 		if (refchg & LPTE_REF)
2001 			vm_page_aflag_set(pg, PGA_REFERENCED);
2002 	}
2003 }
2004 
2005 void
2006 moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2007     vm_prot_t prot)
2008 {
2009 	struct	pvo_entry *pvo, *tpvo, key;
2010 
2011 	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2012 	    sva, eva, prot);
2013 
2014 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2015 	    ("moea64_protect: non current pmap"));
2016 
2017 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2018 		moea64_remove(mmu, pm, sva, eva);
2019 		return;
2020 	}
2021 
2022 	PMAP_LOCK(pm);
2023 	key.pvo_vaddr = sva;
2024 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2025 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2026 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2027 		moea64_pvo_protect(mmu, pm, pvo, prot);
2028 	}
2029 	PMAP_UNLOCK(pm);
2030 }
2031 
2032 /*
2033  * Map a list of wired pages into kernel virtual address space.  This is
2034  * intended for temporary mappings which do not need page modification or
2035  * references recorded.  Existing mappings in the region are overwritten.
2036  */
2037 void
2038 moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2039 {
2040 	while (count-- > 0) {
2041 		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2042 		va += PAGE_SIZE;
2043 		m++;
2044 	}
2045 }
2046 
2047 /*
2048  * Remove page mappings from kernel virtual address space.  Intended for
2049  * temporary mappings entered by moea64_qenter.
2050  */
2051 void
2052 moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2053 {
2054 	while (count-- > 0) {
2055 		moea64_kremove(mmu, va);
2056 		va += PAGE_SIZE;
2057 	}
2058 }
2059 
2060 void
2061 moea64_release_vsid(uint64_t vsid)
2062 {
2063 	int idx, mask;
2064 
2065 	mtx_lock(&moea64_slb_mutex);
2066 	idx = vsid & (NVSIDS-1);
2067 	mask = 1 << (idx % VSID_NBPW);
2068 	idx /= VSID_NBPW;
2069 	KASSERT(moea64_vsid_bitmap[idx] & mask,
2070 	    ("Freeing unallocated VSID %#jx", vsid));
2071 	moea64_vsid_bitmap[idx] &= ~mask;
2072 	mtx_unlock(&moea64_slb_mutex);
2073 }
2074 
2075 
2076 void
2077 moea64_release(mmu_t mmu, pmap_t pmap)
2078 {
2079 
2080 	/*
2081 	 * Free segment registers' VSIDs
2082 	 */
2083     #ifdef __powerpc64__
2084 	slb_free_tree(pmap);
2085 	slb_free_user_cache(pmap->pm_slb);
2086     #else
2087 	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2088 
2089 	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2090     #endif
2091 }
2092 
2093 /*
2094  * Remove all pages mapped by the specified pmap
2095  */
2096 void
2097 moea64_remove_pages(mmu_t mmu, pmap_t pm)
2098 {
2099 	struct pvo_entry *pvo, *tpvo;
2100 	struct pvo_tree tofree;
2101 
2102 	RB_INIT(&tofree);
2103 
2104 	PMAP_LOCK(pm);
2105 	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2106 		if (pvo->pvo_vaddr & PVO_WIRED)
2107 			continue;
2108 
2109 		/*
2110 		 * For locking reasons, remove this from the page table and
2111 		 * pmap, but save delinking from the vm_page for a second
2112 		 * pass
2113 		 */
2114 		moea64_pvo_remove_from_pmap(mmu, pvo);
2115 		RB_INSERT(pvo_tree, &tofree, pvo);
2116 	}
2117 	PMAP_UNLOCK(pm);
2118 
2119 	RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) {
2120 		PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2121 		moea64_pvo_remove_from_page(mmu, pvo);
2122 		PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2123 		RB_REMOVE(pvo_tree, &tofree, pvo);
2124 		free_pvo_entry(pvo);
2125 	}
2126 }
2127 
2128 /*
2129  * Remove the given range of addresses from the specified map.
2130  */
2131 void
2132 moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2133 {
2134 	struct  pvo_entry *pvo, *tpvo, key;
2135 	struct pvo_tree tofree;
2136 
2137 	/*
2138 	 * Perform an unsynchronized read.  This is, however, safe.
2139 	 */
2140 	if (pm->pm_stats.resident_count == 0)
2141 		return;
2142 
2143 	key.pvo_vaddr = sva;
2144 
2145 	RB_INIT(&tofree);
2146 
2147 	PMAP_LOCK(pm);
2148 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2149 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2150 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2151 
2152 		/*
2153 		 * For locking reasons, remove this from the page table and
2154 		 * pmap, but save delinking from the vm_page for a second
2155 		 * pass
2156 		 */
2157 		moea64_pvo_remove_from_pmap(mmu, pvo);
2158 		RB_INSERT(pvo_tree, &tofree, pvo);
2159 	}
2160 	PMAP_UNLOCK(pm);
2161 
2162 	RB_FOREACH_SAFE(pvo, pvo_tree, &tofree, tpvo) {
2163 		PV_LOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2164 		moea64_pvo_remove_from_page(mmu, pvo);
2165 		PV_UNLOCK(pvo->pvo_pte.pa & LPTE_RPGN);
2166 		RB_REMOVE(pvo_tree, &tofree, pvo);
2167 		free_pvo_entry(pvo);
2168 	}
2169 }
2170 
2171 /*
2172  * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2173  * will reflect changes in pte's back to the vm_page.
2174  */
2175 void
2176 moea64_remove_all(mmu_t mmu, vm_page_t m)
2177 {
2178 	struct	pvo_entry *pvo, *next_pvo;
2179 	struct	pvo_head freequeue;
2180 	int	wasdead;
2181 	pmap_t	pmap;
2182 
2183 	LIST_INIT(&freequeue);
2184 
2185 	PV_PAGE_LOCK(m);
2186 	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2187 		pmap = pvo->pvo_pmap;
2188 		PMAP_LOCK(pmap);
2189 		wasdead = (pvo->pvo_vaddr & PVO_DEAD);
2190 		if (!wasdead)
2191 			moea64_pvo_remove_from_pmap(mmu, pvo);
2192 		moea64_pvo_remove_from_page(mmu, pvo);
2193 		if (!wasdead)
2194 			LIST_INSERT_HEAD(&freequeue, pvo, pvo_vlink);
2195 		PMAP_UNLOCK(pmap);
2196 
2197 	}
2198 	KASSERT(!pmap_page_is_mapped(m), ("Page still has mappings"));
2199 	KASSERT(!(m->aflags & PGA_WRITEABLE), ("Page still writable"));
2200 	PV_PAGE_UNLOCK(m);
2201 
2202 	/* Clean up UMA allocations */
2203 	LIST_FOREACH_SAFE(pvo, &freequeue, pvo_vlink, next_pvo)
2204 		free_pvo_entry(pvo);
2205 }
2206 
2207 /*
2208  * Allocate a physical page of memory directly from the phys_avail map.
2209  * Can only be called from moea64_bootstrap before avail start and end are
2210  * calculated.
2211  */
2212 vm_offset_t
2213 moea64_bootstrap_alloc(vm_size_t size, u_int align)
2214 {
2215 	vm_offset_t	s, e;
2216 	int		i, j;
2217 
2218 	size = round_page(size);
2219 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2220 		if (align != 0)
2221 			s = (phys_avail[i] + align - 1) & ~(align - 1);
2222 		else
2223 			s = phys_avail[i];
2224 		e = s + size;
2225 
2226 		if (s < phys_avail[i] || e > phys_avail[i + 1])
2227 			continue;
2228 
2229 		if (s + size > platform_real_maxaddr())
2230 			continue;
2231 
2232 		if (s == phys_avail[i]) {
2233 			phys_avail[i] += size;
2234 		} else if (e == phys_avail[i + 1]) {
2235 			phys_avail[i + 1] -= size;
2236 		} else {
2237 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2238 				phys_avail[j] = phys_avail[j - 2];
2239 				phys_avail[j + 1] = phys_avail[j - 1];
2240 			}
2241 
2242 			phys_avail[i + 3] = phys_avail[i + 1];
2243 			phys_avail[i + 1] = s;
2244 			phys_avail[i + 2] = e;
2245 			phys_avail_count++;
2246 		}
2247 
2248 		return (s);
2249 	}
2250 	panic("moea64_bootstrap_alloc: could not allocate memory");
2251 }
2252 
2253 static int
2254 moea64_pvo_enter(mmu_t mmu, struct pvo_entry *pvo, struct pvo_head *pvo_head)
2255 {
2256 	int first, err;
2257 
2258 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2259 	KASSERT(moea64_pvo_find_va(pvo->pvo_pmap, PVO_VADDR(pvo)) == NULL,
2260 	    ("Existing mapping for VA %#jx", (uintmax_t)PVO_VADDR(pvo)));
2261 
2262 	moea64_pvo_enter_calls++;
2263 
2264 	/*
2265 	 * Add to pmap list
2266 	 */
2267 	RB_INSERT(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2268 
2269 	/*
2270 	 * Remember if the list was empty and therefore will be the first
2271 	 * item.
2272 	 */
2273 	if (pvo_head != NULL) {
2274 		if (LIST_FIRST(pvo_head) == NULL)
2275 			first = 1;
2276 		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2277 	}
2278 
2279 	if (pvo->pvo_vaddr & PVO_WIRED)
2280 		pvo->pvo_pmap->pm_stats.wired_count++;
2281 	pvo->pvo_pmap->pm_stats.resident_count++;
2282 
2283 	/*
2284 	 * Insert it into the hardware page table
2285 	 */
2286 	err = MOEA64_PTE_INSERT(mmu, pvo);
2287 	if (err != 0) {
2288 		panic("moea64_pvo_enter: overflow");
2289 	}
2290 
2291 	moea64_pvo_entries++;
2292 
2293 	if (pvo->pvo_pmap == kernel_pmap)
2294 		isync();
2295 
2296 #ifdef __powerpc64__
2297 	/*
2298 	 * Make sure all our bootstrap mappings are in the SLB as soon
2299 	 * as virtual memory is switched on.
2300 	 */
2301 	if (!pmap_bootstrapped)
2302 		moea64_bootstrap_slb_prefault(PVO_VADDR(pvo),
2303 		    pvo->pvo_vaddr & PVO_LARGE);
2304 #endif
2305 
2306 	return (first ? ENOENT : 0);
2307 }
2308 
2309 static void
2310 moea64_pvo_remove_from_pmap(mmu_t mmu, struct pvo_entry *pvo)
2311 {
2312 	struct	vm_page *pg;
2313 	int32_t refchg;
2314 
2315 	KASSERT(pvo->pvo_pmap != NULL, ("Trying to remove PVO with no pmap"));
2316 	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2317 	KASSERT(!(pvo->pvo_vaddr & PVO_DEAD), ("Trying to remove dead PVO"));
2318 
2319 	/*
2320 	 * If there is an active pte entry, we need to deactivate it
2321 	 */
2322 	refchg = MOEA64_PTE_UNSET(mmu, pvo);
2323 	if (refchg < 0) {
2324 		/*
2325 		 * If it was evicted from the page table, be pessimistic and
2326 		 * dirty the page.
2327 		 */
2328 		if (pvo->pvo_pte.prot & VM_PROT_WRITE)
2329 			refchg = LPTE_CHG;
2330 		else
2331 			refchg = 0;
2332 	}
2333 
2334 	/*
2335 	 * Update our statistics.
2336 	 */
2337 	pvo->pvo_pmap->pm_stats.resident_count--;
2338 	if (pvo->pvo_vaddr & PVO_WIRED)
2339 		pvo->pvo_pmap->pm_stats.wired_count--;
2340 
2341 	/*
2342 	 * Remove this PVO from the pmap list.
2343 	 */
2344 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2345 
2346 	/*
2347 	 * Mark this for the next sweep
2348 	 */
2349 	pvo->pvo_vaddr |= PVO_DEAD;
2350 
2351 	/* Send RC bits to VM */
2352 	if ((pvo->pvo_vaddr & PVO_MANAGED) &&
2353 	    (pvo->pvo_pte.prot & VM_PROT_WRITE)) {
2354 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2355 		if (pg != NULL) {
2356 			refchg |= atomic_readandclear_32(&pg->md.mdpg_attrs);
2357 			if (refchg & LPTE_CHG)
2358 				vm_page_dirty(pg);
2359 			if (refchg & LPTE_REF)
2360 				vm_page_aflag_set(pg, PGA_REFERENCED);
2361 		}
2362 	}
2363 }
2364 
2365 static void
2366 moea64_pvo_remove_from_page(mmu_t mmu, struct pvo_entry *pvo)
2367 {
2368 	struct	vm_page *pg;
2369 
2370 	KASSERT(pvo->pvo_vaddr & PVO_DEAD, ("Trying to delink live page"));
2371 
2372 	/* Use NULL pmaps as a sentinel for races in page deletion */
2373 	if (pvo->pvo_pmap == NULL)
2374 		return;
2375 	pvo->pvo_pmap = NULL;
2376 
2377 	/*
2378 	 * Update vm about page writeability/executability if managed
2379 	 */
2380 	PV_LOCKASSERT(pvo->pvo_pte.pa & LPTE_RPGN);
2381 	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pa & LPTE_RPGN);
2382 
2383 	if ((pvo->pvo_vaddr & PVO_MANAGED) && pg != NULL) {
2384 		LIST_REMOVE(pvo, pvo_vlink);
2385 		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2386 			vm_page_aflag_clear(pg, PGA_WRITEABLE | PGA_EXECUTABLE);
2387 	}
2388 
2389 	moea64_pvo_entries--;
2390 	moea64_pvo_remove_calls++;
2391 }
2392 
2393 static struct pvo_entry *
2394 moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2395 {
2396 	struct pvo_entry key;
2397 
2398 	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2399 
2400 	key.pvo_vaddr = va & ~ADDR_POFF;
2401 	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2402 }
2403 
2404 static boolean_t
2405 moea64_query_bit(mmu_t mmu, vm_page_t m, uint64_t ptebit)
2406 {
2407 	struct	pvo_entry *pvo;
2408 	int64_t ret;
2409 	boolean_t rv;
2410 
2411 	/*
2412 	 * See if this bit is stored in the page already.
2413 	 */
2414 	if (m->md.mdpg_attrs & ptebit)
2415 		return (TRUE);
2416 
2417 	/*
2418 	 * Examine each PTE.  Sync so that any pending REF/CHG bits are
2419 	 * flushed to the PTEs.
2420 	 */
2421 	rv = FALSE;
2422 	powerpc_sync();
2423 	PV_PAGE_LOCK(m);
2424 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2425 		ret = 0;
2426 
2427 		/*
2428 		 * See if this pvo has a valid PTE.  if so, fetch the
2429 		 * REF/CHG bits from the valid PTE.  If the appropriate
2430 		 * ptebit is set, return success.
2431 		 */
2432 		PMAP_LOCK(pvo->pvo_pmap);
2433 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2434 			ret = MOEA64_PTE_SYNCH(mmu, pvo);
2435 		PMAP_UNLOCK(pvo->pvo_pmap);
2436 
2437 		if (ret > 0) {
2438 			atomic_set_32(&m->md.mdpg_attrs,
2439 			    ret & (LPTE_CHG | LPTE_REF));
2440 			if (ret & ptebit) {
2441 				rv = TRUE;
2442 				break;
2443 			}
2444 		}
2445 	}
2446 	PV_PAGE_UNLOCK(m);
2447 
2448 	return (rv);
2449 }
2450 
2451 static u_int
2452 moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2453 {
2454 	u_int	count;
2455 	struct	pvo_entry *pvo;
2456 	int64_t ret;
2457 
2458 	/*
2459 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2460 	 * we can reset the right ones).
2461 	 */
2462 	powerpc_sync();
2463 
2464 	/*
2465 	 * For each pvo entry, clear the pte's ptebit.
2466 	 */
2467 	count = 0;
2468 	PV_PAGE_LOCK(m);
2469 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2470 		ret = 0;
2471 
2472 		PMAP_LOCK(pvo->pvo_pmap);
2473 		if (!(pvo->pvo_vaddr & PVO_DEAD))
2474 			ret = MOEA64_PTE_CLEAR(mmu, pvo, ptebit);
2475 		PMAP_UNLOCK(pvo->pvo_pmap);
2476 
2477 		if (ret > 0 && (ret & ptebit))
2478 			count++;
2479 	}
2480 	atomic_clear_32(&m->md.mdpg_attrs, ptebit);
2481 	PV_PAGE_UNLOCK(m);
2482 
2483 	return (count);
2484 }
2485 
2486 boolean_t
2487 moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2488 {
2489 	struct pvo_entry *pvo, key;
2490 	vm_offset_t ppa;
2491 	int error = 0;
2492 
2493 	PMAP_LOCK(kernel_pmap);
2494 	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2495 	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2496 	    ppa < pa + size; ppa += PAGE_SIZE,
2497 	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2498 		if (pvo == NULL || (pvo->pvo_pte.pa & LPTE_RPGN) != ppa) {
2499 			error = EFAULT;
2500 			break;
2501 		}
2502 	}
2503 	PMAP_UNLOCK(kernel_pmap);
2504 
2505 	return (error);
2506 }
2507 
2508 /*
2509  * Map a set of physical memory pages into the kernel virtual
2510  * address space. Return a pointer to where it is mapped. This
2511  * routine is intended to be used for mapping device memory,
2512  * NOT real memory.
2513  */
2514 void *
2515 moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2516 {
2517 	vm_offset_t va, tmpva, ppa, offset;
2518 
2519 	ppa = trunc_page(pa);
2520 	offset = pa & PAGE_MASK;
2521 	size = roundup2(offset + size, PAGE_SIZE);
2522 
2523 	va = kva_alloc(size);
2524 
2525 	if (!va)
2526 		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2527 
2528 	for (tmpva = va; size > 0;) {
2529 		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2530 		size -= PAGE_SIZE;
2531 		tmpva += PAGE_SIZE;
2532 		ppa += PAGE_SIZE;
2533 	}
2534 
2535 	return ((void *)(va + offset));
2536 }
2537 
2538 void *
2539 moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2540 {
2541 
2542 	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2543 }
2544 
2545 void
2546 moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2547 {
2548 	vm_offset_t base, offset;
2549 
2550 	base = trunc_page(va);
2551 	offset = va & PAGE_MASK;
2552 	size = roundup2(offset + size, PAGE_SIZE);
2553 
2554 	kva_free(base, size);
2555 }
2556 
2557 void
2558 moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2559 {
2560 	struct pvo_entry *pvo;
2561 	vm_offset_t lim;
2562 	vm_paddr_t pa;
2563 	vm_size_t len;
2564 
2565 	PMAP_LOCK(pm);
2566 	while (sz > 0) {
2567 		lim = round_page(va);
2568 		len = MIN(lim - va, sz);
2569 		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2570 		if (pvo != NULL && !(pvo->pvo_pte.pa & LPTE_I)) {
2571 			pa = (pvo->pvo_pte.pa & LPTE_RPGN) | (va & ADDR_POFF);
2572 			moea64_syncicache(mmu, pm, va, pa, len);
2573 		}
2574 		va += len;
2575 		sz -= len;
2576 	}
2577 	PMAP_UNLOCK(pm);
2578 }
2579 
2580 void
2581 moea64_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2582 {
2583 
2584 	*va = (void *)pa;
2585 }
2586 
2587 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2588 
2589 void
2590 moea64_scan_init(mmu_t mmu)
2591 {
2592 	struct pvo_entry *pvo;
2593 	vm_offset_t va;
2594 	int i;
2595 
2596 	if (!do_minidump) {
2597 		/* Initialize phys. segments for dumpsys(). */
2598 		memset(&dump_map, 0, sizeof(dump_map));
2599 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2600 		for (i = 0; i < pregions_sz; i++) {
2601 			dump_map[i].pa_start = pregions[i].mr_start;
2602 			dump_map[i].pa_size = pregions[i].mr_size;
2603 		}
2604 		return;
2605 	}
2606 
2607 	/* Virtual segments for minidumps: */
2608 	memset(&dump_map, 0, sizeof(dump_map));
2609 
2610 	/* 1st: kernel .data and .bss. */
2611 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2612 	dump_map[0].pa_size = round_page((uintptr_t)_end) -
2613 	    dump_map[0].pa_start;
2614 
2615 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2616 	dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
2617 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2618 
2619 	/* 3rd: kernel VM. */
2620 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2621 	/* Find start of next chunk (from va). */
2622 	while (va < virtual_end) {
2623 		/* Don't dump the buffer cache. */
2624 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2625 			va = kmi.buffer_eva;
2626 			continue;
2627 		}
2628 		pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2629 		if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2630 			break;
2631 		va += PAGE_SIZE;
2632 	}
2633 	if (va < virtual_end) {
2634 		dump_map[2].pa_start = va;
2635 		va += PAGE_SIZE;
2636 		/* Find last page in chunk. */
2637 		while (va < virtual_end) {
2638 			/* Don't run into the buffer cache. */
2639 			if (va == kmi.buffer_sva)
2640 				break;
2641 			pvo = moea64_pvo_find_va(kernel_pmap, va & ~ADDR_POFF);
2642 			if (pvo != NULL && !(pvo->pvo_vaddr & PVO_DEAD))
2643 				break;
2644 			va += PAGE_SIZE;
2645 		}
2646 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2647 	}
2648 }
2649 
2650