1 /*- 2 * Copyright (c) 2001 The NetBSD Foundation, Inc. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to The NetBSD Foundation 6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the NetBSD 19 * Foundation, Inc. and its contributors. 20 * 4. Neither the name of The NetBSD Foundation nor the names of its 21 * contributors may be used to endorse or promote products derived 22 * from this software without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 * POSSIBILITY OF SUCH DAMAGE. 35 */ 36 /*- 37 * Copyright (C) 1995, 1996 Wolfgang Solfrank. 38 * Copyright (C) 1995, 1996 TooLs GmbH. 39 * All rights reserved. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. All advertising materials mentioning features or use of this software 50 * must display the following acknowledgement: 51 * This product includes software developed by TooLs GmbH. 52 * 4. The name of TooLs GmbH may not be used to endorse or promote products 53 * derived from this software without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 65 * 66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $ 67 */ 68 /*- 69 * Copyright (C) 2001 Benno Rice. 70 * All rights reserved. 71 * 72 * Redistribution and use in source and binary forms, with or without 73 * modification, are permitted provided that the following conditions 74 * are met: 75 * 1. Redistributions of source code must retain the above copyright 76 * notice, this list of conditions and the following disclaimer. 77 * 2. Redistributions in binary form must reproduce the above copyright 78 * notice, this list of conditions and the following disclaimer in the 79 * documentation and/or other materials provided with the distribution. 80 * 81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR 82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 91 */ 92 93 #include <sys/cdefs.h> 94 __FBSDID("$FreeBSD$"); 95 96 /* 97 * Manages physical address maps. 98 * 99 * Since the information managed by this module is also stored by the 100 * logical address mapping module, this module may throw away valid virtual 101 * to physical mappings at almost any time. However, invalidations of 102 * mappings must be done as requested. 103 * 104 * In order to cope with hardware architectures which make virtual to 105 * physical map invalidates expensive, this module may delay invalidate 106 * reduced protection operations until such time as they are actually 107 * necessary. This module is given full information as to which processors 108 * are currently using which maps, and to when physical maps must be made 109 * correct. 110 */ 111 112 #include "opt_kstack_pages.h" 113 114 #include <sys/param.h> 115 #include <sys/kernel.h> 116 #include <sys/queue.h> 117 #include <sys/cpuset.h> 118 #include <sys/ktr.h> 119 #include <sys/lock.h> 120 #include <sys/msgbuf.h> 121 #include <sys/mutex.h> 122 #include <sys/proc.h> 123 #include <sys/rwlock.h> 124 #include <sys/sched.h> 125 #include <sys/sysctl.h> 126 #include <sys/systm.h> 127 #include <sys/vmmeter.h> 128 129 #include <dev/ofw/openfirm.h> 130 131 #include <vm/vm.h> 132 #include <vm/vm_param.h> 133 #include <vm/vm_kern.h> 134 #include <vm/vm_page.h> 135 #include <vm/vm_map.h> 136 #include <vm/vm_object.h> 137 #include <vm/vm_extern.h> 138 #include <vm/vm_pageout.h> 139 #include <vm/uma.h> 140 141 #include <machine/cpu.h> 142 #include <machine/platform.h> 143 #include <machine/bat.h> 144 #include <machine/frame.h> 145 #include <machine/md_var.h> 146 #include <machine/psl.h> 147 #include <machine/pte.h> 148 #include <machine/smp.h> 149 #include <machine/sr.h> 150 #include <machine/mmuvar.h> 151 #include <machine/trap_aim.h> 152 153 #include "mmu_if.h" 154 155 #define MOEA_DEBUG 156 157 #define TODO panic("%s: not implemented", __func__); 158 159 #define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4)) 160 #define VSID_TO_SR(vsid) ((vsid) & 0xf) 161 #define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff) 162 163 struct ofw_map { 164 vm_offset_t om_va; 165 vm_size_t om_len; 166 vm_offset_t om_pa; 167 u_int om_mode; 168 }; 169 170 extern unsigned char _etext[]; 171 extern unsigned char _end[]; 172 173 extern int dumpsys_minidump; 174 175 /* 176 * Map of physical memory regions. 177 */ 178 static struct mem_region *regions; 179 static struct mem_region *pregions; 180 static u_int phys_avail_count; 181 static int regions_sz, pregions_sz; 182 static struct ofw_map *translations; 183 184 /* 185 * Lock for the pteg and pvo tables. 186 */ 187 struct mtx moea_table_mutex; 188 struct mtx moea_vsid_mutex; 189 190 /* tlbie instruction synchronization */ 191 static struct mtx tlbie_mtx; 192 193 /* 194 * PTEG data. 195 */ 196 static struct pteg *moea_pteg_table; 197 u_int moea_pteg_count; 198 u_int moea_pteg_mask; 199 200 /* 201 * PVO data. 202 */ 203 struct pvo_head *moea_pvo_table; /* pvo entries by pteg index */ 204 struct pvo_head moea_pvo_kunmanaged = 205 LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged); /* list of unmanaged pages */ 206 207 static struct rwlock_padalign pvh_global_lock; 208 209 uma_zone_t moea_upvo_zone; /* zone for pvo entries for unmanaged pages */ 210 uma_zone_t moea_mpvo_zone; /* zone for pvo entries for managed pages */ 211 212 #define BPVO_POOL_SIZE 32768 213 static struct pvo_entry *moea_bpvo_pool; 214 static int moea_bpvo_pool_index = 0; 215 216 #define VSID_NBPW (sizeof(u_int32_t) * 8) 217 static u_int moea_vsid_bitmap[NPMAPS / VSID_NBPW]; 218 219 static boolean_t moea_initialized = FALSE; 220 221 /* 222 * Statistics. 223 */ 224 u_int moea_pte_valid = 0; 225 u_int moea_pte_overflow = 0; 226 u_int moea_pte_replacements = 0; 227 u_int moea_pvo_entries = 0; 228 u_int moea_pvo_enter_calls = 0; 229 u_int moea_pvo_remove_calls = 0; 230 u_int moea_pte_spills = 0; 231 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid, 232 0, ""); 233 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD, 234 &moea_pte_overflow, 0, ""); 235 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD, 236 &moea_pte_replacements, 0, ""); 237 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries, 238 0, ""); 239 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD, 240 &moea_pvo_enter_calls, 0, ""); 241 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD, 242 &moea_pvo_remove_calls, 0, ""); 243 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD, 244 &moea_pte_spills, 0, ""); 245 246 /* 247 * Allocate physical memory for use in moea_bootstrap. 248 */ 249 static vm_offset_t moea_bootstrap_alloc(vm_size_t, u_int); 250 251 /* 252 * PTE calls. 253 */ 254 static int moea_pte_insert(u_int, struct pte *); 255 256 /* 257 * PVO calls. 258 */ 259 static int moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *, 260 vm_offset_t, vm_offset_t, u_int, int); 261 static void moea_pvo_remove(struct pvo_entry *, int); 262 static struct pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *); 263 static struct pte *moea_pvo_to_pte(const struct pvo_entry *, int); 264 265 /* 266 * Utility routines. 267 */ 268 static void moea_enter_locked(pmap_t, vm_offset_t, vm_page_t, 269 vm_prot_t, boolean_t); 270 static void moea_syncicache(vm_offset_t, vm_size_t); 271 static boolean_t moea_query_bit(vm_page_t, int); 272 static u_int moea_clear_bit(vm_page_t, int); 273 static void moea_kremove(mmu_t, vm_offset_t); 274 int moea_pte_spill(vm_offset_t); 275 276 /* 277 * Kernel MMU interface 278 */ 279 void moea_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t); 280 void moea_clear_modify(mmu_t, vm_page_t); 281 void moea_copy_page(mmu_t, vm_page_t, vm_page_t); 282 void moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, 283 vm_page_t *mb, vm_offset_t b_offset, int xfersize); 284 void moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t); 285 void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t, 286 vm_prot_t); 287 void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t); 288 vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t); 289 vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t); 290 void moea_init(mmu_t); 291 boolean_t moea_is_modified(mmu_t, vm_page_t); 292 boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t); 293 boolean_t moea_is_referenced(mmu_t, vm_page_t); 294 int moea_ts_referenced(mmu_t, vm_page_t); 295 vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int); 296 boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t); 297 int moea_page_wired_mappings(mmu_t, vm_page_t); 298 void moea_pinit(mmu_t, pmap_t); 299 void moea_pinit0(mmu_t, pmap_t); 300 void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t); 301 void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int); 302 void moea_qremove(mmu_t, vm_offset_t, int); 303 void moea_release(mmu_t, pmap_t); 304 void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t); 305 void moea_remove_all(mmu_t, vm_page_t); 306 void moea_remove_write(mmu_t, vm_page_t); 307 void moea_zero_page(mmu_t, vm_page_t); 308 void moea_zero_page_area(mmu_t, vm_page_t, int, int); 309 void moea_zero_page_idle(mmu_t, vm_page_t); 310 void moea_activate(mmu_t, struct thread *); 311 void moea_deactivate(mmu_t, struct thread *); 312 void moea_cpu_bootstrap(mmu_t, int); 313 void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t); 314 void *moea_mapdev(mmu_t, vm_paddr_t, vm_size_t); 315 void *moea_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t); 316 void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t); 317 vm_paddr_t moea_kextract(mmu_t, vm_offset_t); 318 void moea_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t); 319 void moea_kenter(mmu_t, vm_offset_t, vm_paddr_t); 320 void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma); 321 boolean_t moea_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t); 322 static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t); 323 vm_offset_t moea_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs, 324 vm_size_t *sz); 325 struct pmap_md * moea_scan_md(mmu_t mmu, struct pmap_md *prev); 326 327 static mmu_method_t moea_methods[] = { 328 MMUMETHOD(mmu_change_wiring, moea_change_wiring), 329 MMUMETHOD(mmu_clear_modify, moea_clear_modify), 330 MMUMETHOD(mmu_copy_page, moea_copy_page), 331 MMUMETHOD(mmu_copy_pages, moea_copy_pages), 332 MMUMETHOD(mmu_enter, moea_enter), 333 MMUMETHOD(mmu_enter_object, moea_enter_object), 334 MMUMETHOD(mmu_enter_quick, moea_enter_quick), 335 MMUMETHOD(mmu_extract, moea_extract), 336 MMUMETHOD(mmu_extract_and_hold, moea_extract_and_hold), 337 MMUMETHOD(mmu_init, moea_init), 338 MMUMETHOD(mmu_is_modified, moea_is_modified), 339 MMUMETHOD(mmu_is_prefaultable, moea_is_prefaultable), 340 MMUMETHOD(mmu_is_referenced, moea_is_referenced), 341 MMUMETHOD(mmu_ts_referenced, moea_ts_referenced), 342 MMUMETHOD(mmu_map, moea_map), 343 MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick), 344 MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings), 345 MMUMETHOD(mmu_pinit, moea_pinit), 346 MMUMETHOD(mmu_pinit0, moea_pinit0), 347 MMUMETHOD(mmu_protect, moea_protect), 348 MMUMETHOD(mmu_qenter, moea_qenter), 349 MMUMETHOD(mmu_qremove, moea_qremove), 350 MMUMETHOD(mmu_release, moea_release), 351 MMUMETHOD(mmu_remove, moea_remove), 352 MMUMETHOD(mmu_remove_all, moea_remove_all), 353 MMUMETHOD(mmu_remove_write, moea_remove_write), 354 MMUMETHOD(mmu_sync_icache, moea_sync_icache), 355 MMUMETHOD(mmu_zero_page, moea_zero_page), 356 MMUMETHOD(mmu_zero_page_area, moea_zero_page_area), 357 MMUMETHOD(mmu_zero_page_idle, moea_zero_page_idle), 358 MMUMETHOD(mmu_activate, moea_activate), 359 MMUMETHOD(mmu_deactivate, moea_deactivate), 360 MMUMETHOD(mmu_page_set_memattr, moea_page_set_memattr), 361 362 /* Internal interfaces */ 363 MMUMETHOD(mmu_bootstrap, moea_bootstrap), 364 MMUMETHOD(mmu_cpu_bootstrap, moea_cpu_bootstrap), 365 MMUMETHOD(mmu_mapdev_attr, moea_mapdev_attr), 366 MMUMETHOD(mmu_mapdev, moea_mapdev), 367 MMUMETHOD(mmu_unmapdev, moea_unmapdev), 368 MMUMETHOD(mmu_kextract, moea_kextract), 369 MMUMETHOD(mmu_kenter, moea_kenter), 370 MMUMETHOD(mmu_kenter_attr, moea_kenter_attr), 371 MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped), 372 MMUMETHOD(mmu_scan_md, moea_scan_md), 373 MMUMETHOD(mmu_dumpsys_map, moea_dumpsys_map), 374 375 { 0, 0 } 376 }; 377 378 MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0); 379 380 static __inline uint32_t 381 moea_calc_wimg(vm_offset_t pa, vm_memattr_t ma) 382 { 383 uint32_t pte_lo; 384 int i; 385 386 if (ma != VM_MEMATTR_DEFAULT) { 387 switch (ma) { 388 case VM_MEMATTR_UNCACHEABLE: 389 return (PTE_I | PTE_G); 390 case VM_MEMATTR_WRITE_COMBINING: 391 case VM_MEMATTR_WRITE_BACK: 392 case VM_MEMATTR_PREFETCHABLE: 393 return (PTE_I); 394 case VM_MEMATTR_WRITE_THROUGH: 395 return (PTE_W | PTE_M); 396 } 397 } 398 399 /* 400 * Assume the page is cache inhibited and access is guarded unless 401 * it's in our available memory array. 402 */ 403 pte_lo = PTE_I | PTE_G; 404 for (i = 0; i < pregions_sz; i++) { 405 if ((pa >= pregions[i].mr_start) && 406 (pa < (pregions[i].mr_start + pregions[i].mr_size))) { 407 pte_lo = PTE_M; 408 break; 409 } 410 } 411 412 return pte_lo; 413 } 414 415 static void 416 tlbie(vm_offset_t va) 417 { 418 419 mtx_lock_spin(&tlbie_mtx); 420 __asm __volatile("ptesync"); 421 __asm __volatile("tlbie %0" :: "r"(va)); 422 __asm __volatile("eieio; tlbsync; ptesync"); 423 mtx_unlock_spin(&tlbie_mtx); 424 } 425 426 static void 427 tlbia(void) 428 { 429 vm_offset_t va; 430 431 for (va = 0; va < 0x00040000; va += 0x00001000) { 432 __asm __volatile("tlbie %0" :: "r"(va)); 433 powerpc_sync(); 434 } 435 __asm __volatile("tlbsync"); 436 powerpc_sync(); 437 } 438 439 static __inline int 440 va_to_sr(u_int *sr, vm_offset_t va) 441 { 442 return (sr[(uintptr_t)va >> ADDR_SR_SHFT]); 443 } 444 445 static __inline u_int 446 va_to_pteg(u_int sr, vm_offset_t addr) 447 { 448 u_int hash; 449 450 hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >> 451 ADDR_PIDX_SHFT); 452 return (hash & moea_pteg_mask); 453 } 454 455 static __inline struct pvo_head * 456 vm_page_to_pvoh(vm_page_t m) 457 { 458 459 return (&m->md.mdpg_pvoh); 460 } 461 462 static __inline void 463 moea_attr_clear(vm_page_t m, int ptebit) 464 { 465 466 rw_assert(&pvh_global_lock, RA_WLOCKED); 467 m->md.mdpg_attrs &= ~ptebit; 468 } 469 470 static __inline int 471 moea_attr_fetch(vm_page_t m) 472 { 473 474 return (m->md.mdpg_attrs); 475 } 476 477 static __inline void 478 moea_attr_save(vm_page_t m, int ptebit) 479 { 480 481 rw_assert(&pvh_global_lock, RA_WLOCKED); 482 m->md.mdpg_attrs |= ptebit; 483 } 484 485 static __inline int 486 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt) 487 { 488 if (pt->pte_hi == pvo_pt->pte_hi) 489 return (1); 490 491 return (0); 492 } 493 494 static __inline int 495 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which) 496 { 497 return (pt->pte_hi & ~PTE_VALID) == 498 (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) | 499 ((va >> ADDR_API_SHFT) & PTE_API) | which); 500 } 501 502 static __inline void 503 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo) 504 { 505 506 mtx_assert(&moea_table_mutex, MA_OWNED); 507 508 /* 509 * Construct a PTE. Default to IMB initially. Valid bit only gets 510 * set when the real pte is set in memory. 511 * 512 * Note: Don't set the valid bit for correct operation of tlb update. 513 */ 514 pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) | 515 (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API); 516 pt->pte_lo = pte_lo; 517 } 518 519 static __inline void 520 moea_pte_synch(struct pte *pt, struct pte *pvo_pt) 521 { 522 523 mtx_assert(&moea_table_mutex, MA_OWNED); 524 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG); 525 } 526 527 static __inline void 528 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit) 529 { 530 531 mtx_assert(&moea_table_mutex, MA_OWNED); 532 533 /* 534 * As shown in Section 7.6.3.2.3 535 */ 536 pt->pte_lo &= ~ptebit; 537 tlbie(va); 538 } 539 540 static __inline void 541 moea_pte_set(struct pte *pt, struct pte *pvo_pt) 542 { 543 544 mtx_assert(&moea_table_mutex, MA_OWNED); 545 pvo_pt->pte_hi |= PTE_VALID; 546 547 /* 548 * Update the PTE as defined in section 7.6.3.1. 549 * Note that the REF/CHG bits are from pvo_pt and thus should have 550 * been saved so this routine can restore them (if desired). 551 */ 552 pt->pte_lo = pvo_pt->pte_lo; 553 powerpc_sync(); 554 pt->pte_hi = pvo_pt->pte_hi; 555 powerpc_sync(); 556 moea_pte_valid++; 557 } 558 559 static __inline void 560 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va) 561 { 562 563 mtx_assert(&moea_table_mutex, MA_OWNED); 564 pvo_pt->pte_hi &= ~PTE_VALID; 565 566 /* 567 * Force the reg & chg bits back into the PTEs. 568 */ 569 powerpc_sync(); 570 571 /* 572 * Invalidate the pte. 573 */ 574 pt->pte_hi &= ~PTE_VALID; 575 576 tlbie(va); 577 578 /* 579 * Save the reg & chg bits. 580 */ 581 moea_pte_synch(pt, pvo_pt); 582 moea_pte_valid--; 583 } 584 585 static __inline void 586 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va) 587 { 588 589 /* 590 * Invalidate the PTE 591 */ 592 moea_pte_unset(pt, pvo_pt, va); 593 moea_pte_set(pt, pvo_pt); 594 } 595 596 /* 597 * Quick sort callout for comparing memory regions. 598 */ 599 static int om_cmp(const void *a, const void *b); 600 601 static int 602 om_cmp(const void *a, const void *b) 603 { 604 const struct ofw_map *mapa; 605 const struct ofw_map *mapb; 606 607 mapa = a; 608 mapb = b; 609 if (mapa->om_pa < mapb->om_pa) 610 return (-1); 611 else if (mapa->om_pa > mapb->om_pa) 612 return (1); 613 else 614 return (0); 615 } 616 617 void 618 moea_cpu_bootstrap(mmu_t mmup, int ap) 619 { 620 u_int sdr; 621 int i; 622 623 if (ap) { 624 powerpc_sync(); 625 __asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu)); 626 __asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl)); 627 isync(); 628 __asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu)); 629 __asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl)); 630 isync(); 631 } 632 633 #ifdef WII 634 /* 635 * Special case for the Wii: don't install the PCI BAT. 636 */ 637 if (strcmp(installed_platform(), "wii") != 0) { 638 #endif 639 __asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu)); 640 __asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl)); 641 #ifdef WII 642 } 643 #endif 644 isync(); 645 646 __asm __volatile("mtibatu 1,%0" :: "r"(0)); 647 __asm __volatile("mtdbatu 2,%0" :: "r"(0)); 648 __asm __volatile("mtibatu 2,%0" :: "r"(0)); 649 __asm __volatile("mtdbatu 3,%0" :: "r"(0)); 650 __asm __volatile("mtibatu 3,%0" :: "r"(0)); 651 isync(); 652 653 for (i = 0; i < 16; i++) 654 mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]); 655 powerpc_sync(); 656 657 sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10); 658 __asm __volatile("mtsdr1 %0" :: "r"(sdr)); 659 isync(); 660 661 tlbia(); 662 } 663 664 void 665 moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) 666 { 667 ihandle_t mmui; 668 phandle_t chosen, mmu; 669 int sz; 670 int i, j; 671 vm_size_t size, physsz, hwphyssz; 672 vm_offset_t pa, va, off; 673 void *dpcpu; 674 register_t msr; 675 676 /* 677 * Set up BAT0 to map the lowest 256 MB area 678 */ 679 battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW); 680 battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs); 681 682 /* 683 * Map PCI memory space. 684 */ 685 battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW); 686 battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs); 687 688 battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW); 689 battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs); 690 691 battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW); 692 battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs); 693 694 battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW); 695 battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs); 696 697 /* 698 * Map obio devices. 699 */ 700 battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW); 701 battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs); 702 703 /* 704 * Use an IBAT and a DBAT to map the bottom segment of memory 705 * where we are. Turn off instruction relocation temporarily 706 * to prevent faults while reprogramming the IBAT. 707 */ 708 msr = mfmsr(); 709 mtmsr(msr & ~PSL_IR); 710 __asm (".balign 32; \n" 711 "mtibatu 0,%0; mtibatl 0,%1; isync; \n" 712 "mtdbatu 0,%0; mtdbatl 0,%1; isync" 713 :: "r"(battable[0].batu), "r"(battable[0].batl)); 714 mtmsr(msr); 715 716 #ifdef WII 717 if (strcmp(installed_platform(), "wii") != 0) { 718 #endif 719 /* map pci space */ 720 __asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu)); 721 __asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl)); 722 #ifdef WII 723 } 724 #endif 725 isync(); 726 727 /* set global direct map flag */ 728 hw_direct_map = 1; 729 730 mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); 731 CTR0(KTR_PMAP, "moea_bootstrap: physical memory"); 732 733 for (i = 0; i < pregions_sz; i++) { 734 vm_offset_t pa; 735 vm_offset_t end; 736 737 CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)", 738 pregions[i].mr_start, 739 pregions[i].mr_start + pregions[i].mr_size, 740 pregions[i].mr_size); 741 /* 742 * Install entries into the BAT table to allow all 743 * of physmem to be convered by on-demand BAT entries. 744 * The loop will sometimes set the same battable element 745 * twice, but that's fine since they won't be used for 746 * a while yet. 747 */ 748 pa = pregions[i].mr_start & 0xf0000000; 749 end = pregions[i].mr_start + pregions[i].mr_size; 750 do { 751 u_int n = pa >> ADDR_SR_SHFT; 752 753 battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW); 754 battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs); 755 pa += SEGMENT_LENGTH; 756 } while (pa < end); 757 } 758 759 if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz) 760 panic("moea_bootstrap: phys_avail too small"); 761 762 phys_avail_count = 0; 763 physsz = 0; 764 hwphyssz = 0; 765 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); 766 for (i = 0, j = 0; i < regions_sz; i++, j += 2) { 767 CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start, 768 regions[i].mr_start + regions[i].mr_size, 769 regions[i].mr_size); 770 if (hwphyssz != 0 && 771 (physsz + regions[i].mr_size) >= hwphyssz) { 772 if (physsz < hwphyssz) { 773 phys_avail[j] = regions[i].mr_start; 774 phys_avail[j + 1] = regions[i].mr_start + 775 hwphyssz - physsz; 776 physsz = hwphyssz; 777 phys_avail_count++; 778 } 779 break; 780 } 781 phys_avail[j] = regions[i].mr_start; 782 phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size; 783 phys_avail_count++; 784 physsz += regions[i].mr_size; 785 } 786 787 /* Check for overlap with the kernel and exception vectors */ 788 for (j = 0; j < 2*phys_avail_count; j+=2) { 789 if (phys_avail[j] < EXC_LAST) 790 phys_avail[j] += EXC_LAST; 791 792 if (kernelstart >= phys_avail[j] && 793 kernelstart < phys_avail[j+1]) { 794 if (kernelend < phys_avail[j+1]) { 795 phys_avail[2*phys_avail_count] = 796 (kernelend & ~PAGE_MASK) + PAGE_SIZE; 797 phys_avail[2*phys_avail_count + 1] = 798 phys_avail[j+1]; 799 phys_avail_count++; 800 } 801 802 phys_avail[j+1] = kernelstart & ~PAGE_MASK; 803 } 804 805 if (kernelend >= phys_avail[j] && 806 kernelend < phys_avail[j+1]) { 807 if (kernelstart > phys_avail[j]) { 808 phys_avail[2*phys_avail_count] = phys_avail[j]; 809 phys_avail[2*phys_avail_count + 1] = 810 kernelstart & ~PAGE_MASK; 811 phys_avail_count++; 812 } 813 814 phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE; 815 } 816 } 817 818 physmem = btoc(physsz); 819 820 /* 821 * Allocate PTEG table. 822 */ 823 #ifdef PTEGCOUNT 824 moea_pteg_count = PTEGCOUNT; 825 #else 826 moea_pteg_count = 0x1000; 827 828 while (moea_pteg_count < physmem) 829 moea_pteg_count <<= 1; 830 831 moea_pteg_count >>= 1; 832 #endif /* PTEGCOUNT */ 833 834 size = moea_pteg_count * sizeof(struct pteg); 835 CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count, 836 size); 837 moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size); 838 CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table); 839 bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg)); 840 moea_pteg_mask = moea_pteg_count - 1; 841 842 /* 843 * Allocate pv/overflow lists. 844 */ 845 size = sizeof(struct pvo_head) * moea_pteg_count; 846 moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size, 847 PAGE_SIZE); 848 CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table); 849 for (i = 0; i < moea_pteg_count; i++) 850 LIST_INIT(&moea_pvo_table[i]); 851 852 /* 853 * Initialize the lock that synchronizes access to the pteg and pvo 854 * tables. 855 */ 856 mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF | 857 MTX_RECURSE); 858 mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF); 859 860 mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN); 861 862 /* 863 * Initialise the unmanaged pvo pool. 864 */ 865 moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc( 866 BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0); 867 moea_bpvo_pool_index = 0; 868 869 /* 870 * Make sure kernel vsid is allocated as well as VSID 0. 871 */ 872 moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW] 873 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW); 874 moea_vsid_bitmap[0] |= 1; 875 876 /* 877 * Initialize the kernel pmap (which is statically allocated). 878 */ 879 PMAP_LOCK_INIT(kernel_pmap); 880 for (i = 0; i < 16; i++) 881 kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i; 882 CPU_FILL(&kernel_pmap->pm_active); 883 RB_INIT(&kernel_pmap->pmap_pvo); 884 885 /* 886 * Initialize the global pv list lock. 887 */ 888 rw_init(&pvh_global_lock, "pmap pv global"); 889 890 /* 891 * Set up the Open Firmware mappings 892 */ 893 chosen = OF_finddevice("/chosen"); 894 if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 && 895 (mmu = OF_instance_to_package(mmui)) != -1 && 896 (sz = OF_getproplen(mmu, "translations")) != -1) { 897 translations = NULL; 898 for (i = 0; phys_avail[i] != 0; i += 2) { 899 if (phys_avail[i + 1] >= sz) { 900 translations = (struct ofw_map *)phys_avail[i]; 901 break; 902 } 903 } 904 if (translations == NULL) 905 panic("moea_bootstrap: no space to copy translations"); 906 bzero(translations, sz); 907 if (OF_getprop(mmu, "translations", translations, sz) == -1) 908 panic("moea_bootstrap: can't get ofw translations"); 909 CTR0(KTR_PMAP, "moea_bootstrap: translations"); 910 sz /= sizeof(*translations); 911 qsort(translations, sz, sizeof (*translations), om_cmp); 912 for (i = 0; i < sz; i++) { 913 CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x", 914 translations[i].om_pa, translations[i].om_va, 915 translations[i].om_len); 916 917 /* 918 * If the mapping is 1:1, let the RAM and device 919 * on-demand BAT tables take care of the translation. 920 */ 921 if (translations[i].om_va == translations[i].om_pa) 922 continue; 923 924 /* Enter the pages */ 925 for (off = 0; off < translations[i].om_len; 926 off += PAGE_SIZE) 927 moea_kenter(mmup, translations[i].om_va + off, 928 translations[i].om_pa + off); 929 } 930 } 931 932 /* 933 * Calculate the last available physical address. 934 */ 935 for (i = 0; phys_avail[i + 2] != 0; i += 2) 936 ; 937 Maxmem = powerpc_btop(phys_avail[i + 1]); 938 939 moea_cpu_bootstrap(mmup,0); 940 941 pmap_bootstrapped++; 942 943 /* 944 * Set the start and end of kva. 945 */ 946 virtual_avail = VM_MIN_KERNEL_ADDRESS; 947 virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS; 948 949 /* 950 * Allocate a kernel stack with a guard page for thread0 and map it 951 * into the kernel page map. 952 */ 953 pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE); 954 va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; 955 virtual_avail = va + KSTACK_PAGES * PAGE_SIZE; 956 CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va); 957 thread0.td_kstack = va; 958 thread0.td_kstack_pages = KSTACK_PAGES; 959 for (i = 0; i < KSTACK_PAGES; i++) { 960 moea_kenter(mmup, va, pa); 961 pa += PAGE_SIZE; 962 va += PAGE_SIZE; 963 } 964 965 /* 966 * Allocate virtual address space for the message buffer. 967 */ 968 pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE); 969 msgbufp = (struct msgbuf *)virtual_avail; 970 va = virtual_avail; 971 virtual_avail += round_page(msgbufsize); 972 while (va < virtual_avail) { 973 moea_kenter(mmup, va, pa); 974 pa += PAGE_SIZE; 975 va += PAGE_SIZE; 976 } 977 978 /* 979 * Allocate virtual address space for the dynamic percpu area. 980 */ 981 pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE); 982 dpcpu = (void *)virtual_avail; 983 va = virtual_avail; 984 virtual_avail += DPCPU_SIZE; 985 while (va < virtual_avail) { 986 moea_kenter(mmup, va, pa); 987 pa += PAGE_SIZE; 988 va += PAGE_SIZE; 989 } 990 dpcpu_init(dpcpu, 0); 991 } 992 993 /* 994 * Activate a user pmap. The pmap must be activated before it's address 995 * space can be accessed in any way. 996 */ 997 void 998 moea_activate(mmu_t mmu, struct thread *td) 999 { 1000 pmap_t pm, pmr; 1001 1002 /* 1003 * Load all the data we need up front to encourage the compiler to 1004 * not issue any loads while we have interrupts disabled below. 1005 */ 1006 pm = &td->td_proc->p_vmspace->vm_pmap; 1007 pmr = pm->pmap_phys; 1008 1009 CPU_SET(PCPU_GET(cpuid), &pm->pm_active); 1010 PCPU_SET(curpmap, pmr); 1011 } 1012 1013 void 1014 moea_deactivate(mmu_t mmu, struct thread *td) 1015 { 1016 pmap_t pm; 1017 1018 pm = &td->td_proc->p_vmspace->vm_pmap; 1019 CPU_CLR(PCPU_GET(cpuid), &pm->pm_active); 1020 PCPU_SET(curpmap, NULL); 1021 } 1022 1023 void 1024 moea_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired) 1025 { 1026 struct pvo_entry *pvo; 1027 1028 PMAP_LOCK(pm); 1029 pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL); 1030 1031 if (pvo != NULL) { 1032 if (wired) { 1033 if ((pvo->pvo_vaddr & PVO_WIRED) == 0) 1034 pm->pm_stats.wired_count++; 1035 pvo->pvo_vaddr |= PVO_WIRED; 1036 } else { 1037 if ((pvo->pvo_vaddr & PVO_WIRED) != 0) 1038 pm->pm_stats.wired_count--; 1039 pvo->pvo_vaddr &= ~PVO_WIRED; 1040 } 1041 } 1042 PMAP_UNLOCK(pm); 1043 } 1044 1045 void 1046 moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst) 1047 { 1048 vm_offset_t dst; 1049 vm_offset_t src; 1050 1051 dst = VM_PAGE_TO_PHYS(mdst); 1052 src = VM_PAGE_TO_PHYS(msrc); 1053 1054 bcopy((void *)src, (void *)dst, PAGE_SIZE); 1055 } 1056 1057 void 1058 moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, 1059 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 1060 { 1061 void *a_cp, *b_cp; 1062 vm_offset_t a_pg_offset, b_pg_offset; 1063 int cnt; 1064 1065 while (xfersize > 0) { 1066 a_pg_offset = a_offset & PAGE_MASK; 1067 cnt = min(xfersize, PAGE_SIZE - a_pg_offset); 1068 a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) + 1069 a_pg_offset; 1070 b_pg_offset = b_offset & PAGE_MASK; 1071 cnt = min(cnt, PAGE_SIZE - b_pg_offset); 1072 b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) + 1073 b_pg_offset; 1074 bcopy(a_cp, b_cp, cnt); 1075 a_offset += cnt; 1076 b_offset += cnt; 1077 xfersize -= cnt; 1078 } 1079 } 1080 1081 /* 1082 * Zero a page of physical memory by temporarily mapping it into the tlb. 1083 */ 1084 void 1085 moea_zero_page(mmu_t mmu, vm_page_t m) 1086 { 1087 vm_offset_t pa = VM_PAGE_TO_PHYS(m); 1088 void *va = (void *)pa; 1089 1090 bzero(va, PAGE_SIZE); 1091 } 1092 1093 void 1094 moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) 1095 { 1096 vm_offset_t pa = VM_PAGE_TO_PHYS(m); 1097 void *va = (void *)(pa + off); 1098 1099 bzero(va, size); 1100 } 1101 1102 void 1103 moea_zero_page_idle(mmu_t mmu, vm_page_t m) 1104 { 1105 vm_offset_t pa = VM_PAGE_TO_PHYS(m); 1106 void *va = (void *)pa; 1107 1108 bzero(va, PAGE_SIZE); 1109 } 1110 1111 /* 1112 * Map the given physical page at the specified virtual address in the 1113 * target pmap with the protection requested. If specified the page 1114 * will be wired down. 1115 */ 1116 void 1117 moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, 1118 boolean_t wired) 1119 { 1120 1121 rw_wlock(&pvh_global_lock); 1122 PMAP_LOCK(pmap); 1123 moea_enter_locked(pmap, va, m, prot, wired); 1124 rw_wunlock(&pvh_global_lock); 1125 PMAP_UNLOCK(pmap); 1126 } 1127 1128 /* 1129 * Map the given physical page at the specified virtual address in the 1130 * target pmap with the protection requested. If specified the page 1131 * will be wired down. 1132 * 1133 * The page queues and pmap must be locked. 1134 */ 1135 static void 1136 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, 1137 boolean_t wired) 1138 { 1139 struct pvo_head *pvo_head; 1140 uma_zone_t zone; 1141 vm_page_t pg; 1142 u_int pte_lo, pvo_flags; 1143 int error; 1144 1145 if (!moea_initialized) { 1146 pvo_head = &moea_pvo_kunmanaged; 1147 zone = moea_upvo_zone; 1148 pvo_flags = 0; 1149 pg = NULL; 1150 } else { 1151 pvo_head = vm_page_to_pvoh(m); 1152 pg = m; 1153 zone = moea_mpvo_zone; 1154 pvo_flags = PVO_MANAGED; 1155 } 1156 if (pmap_bootstrapped) 1157 rw_assert(&pvh_global_lock, RA_WLOCKED); 1158 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 1159 if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m)) 1160 VM_OBJECT_ASSERT_LOCKED(m->object); 1161 1162 /* XXX change the pvo head for fake pages */ 1163 if ((m->oflags & VPO_UNMANAGED) != 0) { 1164 pvo_flags &= ~PVO_MANAGED; 1165 pvo_head = &moea_pvo_kunmanaged; 1166 zone = moea_upvo_zone; 1167 } 1168 1169 pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m)); 1170 1171 if (prot & VM_PROT_WRITE) { 1172 pte_lo |= PTE_BW; 1173 if (pmap_bootstrapped && 1174 (m->oflags & VPO_UNMANAGED) == 0) 1175 vm_page_aflag_set(m, PGA_WRITEABLE); 1176 } else 1177 pte_lo |= PTE_BR; 1178 1179 if (prot & VM_PROT_EXECUTE) 1180 pvo_flags |= PVO_EXECUTABLE; 1181 1182 if (wired) 1183 pvo_flags |= PVO_WIRED; 1184 1185 error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m), 1186 pte_lo, pvo_flags); 1187 1188 /* 1189 * Flush the real page from the instruction cache. This has be done 1190 * for all user mappings to prevent information leakage via the 1191 * instruction cache. moea_pvo_enter() returns ENOENT for the first 1192 * mapping for a page. 1193 */ 1194 if (pmap != kernel_pmap && error == ENOENT && 1195 (pte_lo & (PTE_I | PTE_G)) == 0) 1196 moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE); 1197 } 1198 1199 /* 1200 * Maps a sequence of resident pages belonging to the same object. 1201 * The sequence begins with the given page m_start. This page is 1202 * mapped at the given virtual address start. Each subsequent page is 1203 * mapped at a virtual address that is offset from start by the same 1204 * amount as the page is offset from m_start within the object. The 1205 * last page in the sequence is the page with the largest offset from 1206 * m_start that can be mapped at a virtual address less than the given 1207 * virtual address end. Not every virtual page between start and end 1208 * is mapped; only those for which a resident page exists with the 1209 * corresponding offset from m_start are mapped. 1210 */ 1211 void 1212 moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end, 1213 vm_page_t m_start, vm_prot_t prot) 1214 { 1215 vm_page_t m; 1216 vm_pindex_t diff, psize; 1217 1218 VM_OBJECT_ASSERT_LOCKED(m_start->object); 1219 1220 psize = atop(end - start); 1221 m = m_start; 1222 rw_wlock(&pvh_global_lock); 1223 PMAP_LOCK(pm); 1224 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { 1225 moea_enter_locked(pm, start + ptoa(diff), m, prot & 1226 (VM_PROT_READ | VM_PROT_EXECUTE), FALSE); 1227 m = TAILQ_NEXT(m, listq); 1228 } 1229 rw_wunlock(&pvh_global_lock); 1230 PMAP_UNLOCK(pm); 1231 } 1232 1233 void 1234 moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m, 1235 vm_prot_t prot) 1236 { 1237 1238 rw_wlock(&pvh_global_lock); 1239 PMAP_LOCK(pm); 1240 moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), 1241 FALSE); 1242 rw_wunlock(&pvh_global_lock); 1243 PMAP_UNLOCK(pm); 1244 } 1245 1246 vm_paddr_t 1247 moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va) 1248 { 1249 struct pvo_entry *pvo; 1250 vm_paddr_t pa; 1251 1252 PMAP_LOCK(pm); 1253 pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL); 1254 if (pvo == NULL) 1255 pa = 0; 1256 else 1257 pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF); 1258 PMAP_UNLOCK(pm); 1259 return (pa); 1260 } 1261 1262 /* 1263 * Atomically extract and hold the physical page with the given 1264 * pmap and virtual address pair if that mapping permits the given 1265 * protection. 1266 */ 1267 vm_page_t 1268 moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot) 1269 { 1270 struct pvo_entry *pvo; 1271 vm_page_t m; 1272 vm_paddr_t pa; 1273 1274 m = NULL; 1275 pa = 0; 1276 PMAP_LOCK(pmap); 1277 retry: 1278 pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL); 1279 if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) && 1280 ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW || 1281 (prot & VM_PROT_WRITE) == 0)) { 1282 if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa)) 1283 goto retry; 1284 m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN); 1285 vm_page_hold(m); 1286 } 1287 PA_UNLOCK_COND(pa); 1288 PMAP_UNLOCK(pmap); 1289 return (m); 1290 } 1291 1292 void 1293 moea_init(mmu_t mmu) 1294 { 1295 1296 moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry), 1297 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1298 UMA_ZONE_VM | UMA_ZONE_NOFREE); 1299 moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry), 1300 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1301 UMA_ZONE_VM | UMA_ZONE_NOFREE); 1302 moea_initialized = TRUE; 1303 } 1304 1305 boolean_t 1306 moea_is_referenced(mmu_t mmu, vm_page_t m) 1307 { 1308 boolean_t rv; 1309 1310 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1311 ("moea_is_referenced: page %p is not managed", m)); 1312 rw_wlock(&pvh_global_lock); 1313 rv = moea_query_bit(m, PTE_REF); 1314 rw_wunlock(&pvh_global_lock); 1315 return (rv); 1316 } 1317 1318 boolean_t 1319 moea_is_modified(mmu_t mmu, vm_page_t m) 1320 { 1321 boolean_t rv; 1322 1323 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1324 ("moea_is_modified: page %p is not managed", m)); 1325 1326 /* 1327 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be 1328 * concurrently set while the object is locked. Thus, if PGA_WRITEABLE 1329 * is clear, no PTEs can have PTE_CHG set. 1330 */ 1331 VM_OBJECT_ASSERT_WLOCKED(m->object); 1332 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) 1333 return (FALSE); 1334 rw_wlock(&pvh_global_lock); 1335 rv = moea_query_bit(m, PTE_CHG); 1336 rw_wunlock(&pvh_global_lock); 1337 return (rv); 1338 } 1339 1340 boolean_t 1341 moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va) 1342 { 1343 struct pvo_entry *pvo; 1344 boolean_t rv; 1345 1346 PMAP_LOCK(pmap); 1347 pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL); 1348 rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0; 1349 PMAP_UNLOCK(pmap); 1350 return (rv); 1351 } 1352 1353 void 1354 moea_clear_modify(mmu_t mmu, vm_page_t m) 1355 { 1356 1357 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1358 ("moea_clear_modify: page %p is not managed", m)); 1359 VM_OBJECT_ASSERT_WLOCKED(m->object); 1360 KASSERT(!vm_page_xbusied(m), 1361 ("moea_clear_modify: page %p is exclusive busy", m)); 1362 1363 /* 1364 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_CHG 1365 * set. If the object containing the page is locked and the page is 1366 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set. 1367 */ 1368 if ((m->aflags & PGA_WRITEABLE) == 0) 1369 return; 1370 rw_wlock(&pvh_global_lock); 1371 moea_clear_bit(m, PTE_CHG); 1372 rw_wunlock(&pvh_global_lock); 1373 } 1374 1375 /* 1376 * Clear the write and modified bits in each of the given page's mappings. 1377 */ 1378 void 1379 moea_remove_write(mmu_t mmu, vm_page_t m) 1380 { 1381 struct pvo_entry *pvo; 1382 struct pte *pt; 1383 pmap_t pmap; 1384 u_int lo; 1385 1386 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1387 ("moea_remove_write: page %p is not managed", m)); 1388 1389 /* 1390 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be 1391 * set by another thread while the object is locked. Thus, 1392 * if PGA_WRITEABLE is clear, no page table entries need updating. 1393 */ 1394 VM_OBJECT_ASSERT_WLOCKED(m->object); 1395 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) 1396 return; 1397 rw_wlock(&pvh_global_lock); 1398 lo = moea_attr_fetch(m); 1399 powerpc_sync(); 1400 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 1401 pmap = pvo->pvo_pmap; 1402 PMAP_LOCK(pmap); 1403 if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) { 1404 pt = moea_pvo_to_pte(pvo, -1); 1405 pvo->pvo_pte.pte.pte_lo &= ~PTE_PP; 1406 pvo->pvo_pte.pte.pte_lo |= PTE_BR; 1407 if (pt != NULL) { 1408 moea_pte_synch(pt, &pvo->pvo_pte.pte); 1409 lo |= pvo->pvo_pte.pte.pte_lo; 1410 pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG; 1411 moea_pte_change(pt, &pvo->pvo_pte.pte, 1412 pvo->pvo_vaddr); 1413 mtx_unlock(&moea_table_mutex); 1414 } 1415 } 1416 PMAP_UNLOCK(pmap); 1417 } 1418 if ((lo & PTE_CHG) != 0) { 1419 moea_attr_clear(m, PTE_CHG); 1420 vm_page_dirty(m); 1421 } 1422 vm_page_aflag_clear(m, PGA_WRITEABLE); 1423 rw_wunlock(&pvh_global_lock); 1424 } 1425 1426 /* 1427 * moea_ts_referenced: 1428 * 1429 * Return a count of reference bits for a page, clearing those bits. 1430 * It is not necessary for every reference bit to be cleared, but it 1431 * is necessary that 0 only be returned when there are truly no 1432 * reference bits set. 1433 * 1434 * XXX: The exact number of bits to check and clear is a matter that 1435 * should be tested and standardized at some point in the future for 1436 * optimal aging of shared pages. 1437 */ 1438 int 1439 moea_ts_referenced(mmu_t mmu, vm_page_t m) 1440 { 1441 int count; 1442 1443 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1444 ("moea_ts_referenced: page %p is not managed", m)); 1445 rw_wlock(&pvh_global_lock); 1446 count = moea_clear_bit(m, PTE_REF); 1447 rw_wunlock(&pvh_global_lock); 1448 return (count); 1449 } 1450 1451 /* 1452 * Modify the WIMG settings of all mappings for a page. 1453 */ 1454 void 1455 moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma) 1456 { 1457 struct pvo_entry *pvo; 1458 struct pvo_head *pvo_head; 1459 struct pte *pt; 1460 pmap_t pmap; 1461 u_int lo; 1462 1463 if ((m->oflags & VPO_UNMANAGED) != 0) { 1464 m->md.mdpg_cache_attrs = ma; 1465 return; 1466 } 1467 1468 rw_wlock(&pvh_global_lock); 1469 pvo_head = vm_page_to_pvoh(m); 1470 lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma); 1471 1472 LIST_FOREACH(pvo, pvo_head, pvo_vlink) { 1473 pmap = pvo->pvo_pmap; 1474 PMAP_LOCK(pmap); 1475 pt = moea_pvo_to_pte(pvo, -1); 1476 pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG; 1477 pvo->pvo_pte.pte.pte_lo |= lo; 1478 if (pt != NULL) { 1479 moea_pte_change(pt, &pvo->pvo_pte.pte, 1480 pvo->pvo_vaddr); 1481 if (pvo->pvo_pmap == kernel_pmap) 1482 isync(); 1483 } 1484 mtx_unlock(&moea_table_mutex); 1485 PMAP_UNLOCK(pmap); 1486 } 1487 m->md.mdpg_cache_attrs = ma; 1488 rw_wunlock(&pvh_global_lock); 1489 } 1490 1491 /* 1492 * Map a wired page into kernel virtual address space. 1493 */ 1494 void 1495 moea_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa) 1496 { 1497 1498 moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT); 1499 } 1500 1501 void 1502 moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma) 1503 { 1504 u_int pte_lo; 1505 int error; 1506 1507 #if 0 1508 if (va < VM_MIN_KERNEL_ADDRESS) 1509 panic("moea_kenter: attempt to enter non-kernel address %#x", 1510 va); 1511 #endif 1512 1513 pte_lo = moea_calc_wimg(pa, ma); 1514 1515 PMAP_LOCK(kernel_pmap); 1516 error = moea_pvo_enter(kernel_pmap, moea_upvo_zone, 1517 &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED); 1518 1519 if (error != 0 && error != ENOENT) 1520 panic("moea_kenter: failed to enter va %#x pa %#x: %d", va, 1521 pa, error); 1522 1523 PMAP_UNLOCK(kernel_pmap); 1524 } 1525 1526 /* 1527 * Extract the physical page address associated with the given kernel virtual 1528 * address. 1529 */ 1530 vm_paddr_t 1531 moea_kextract(mmu_t mmu, vm_offset_t va) 1532 { 1533 struct pvo_entry *pvo; 1534 vm_paddr_t pa; 1535 1536 /* 1537 * Allow direct mappings on 32-bit OEA 1538 */ 1539 if (va < VM_MIN_KERNEL_ADDRESS) { 1540 return (va); 1541 } 1542 1543 PMAP_LOCK(kernel_pmap); 1544 pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL); 1545 KASSERT(pvo != NULL, ("moea_kextract: no addr found")); 1546 pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF); 1547 PMAP_UNLOCK(kernel_pmap); 1548 return (pa); 1549 } 1550 1551 /* 1552 * Remove a wired page from kernel virtual address space. 1553 */ 1554 void 1555 moea_kremove(mmu_t mmu, vm_offset_t va) 1556 { 1557 1558 moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE); 1559 } 1560 1561 /* 1562 * Map a range of physical addresses into kernel virtual address space. 1563 * 1564 * The value passed in *virt is a suggested virtual address for the mapping. 1565 * Architectures which can support a direct-mapped physical to virtual region 1566 * can return the appropriate address within that region, leaving '*virt' 1567 * unchanged. We cannot and therefore do not; *virt is updated with the 1568 * first usable address after the mapped region. 1569 */ 1570 vm_offset_t 1571 moea_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start, 1572 vm_paddr_t pa_end, int prot) 1573 { 1574 vm_offset_t sva, va; 1575 1576 sva = *virt; 1577 va = sva; 1578 for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE) 1579 moea_kenter(mmu, va, pa_start); 1580 *virt = va; 1581 return (sva); 1582 } 1583 1584 /* 1585 * Returns true if the pmap's pv is one of the first 1586 * 16 pvs linked to from this page. This count may 1587 * be changed upwards or downwards in the future; it 1588 * is only necessary that true be returned for a small 1589 * subset of pmaps for proper page aging. 1590 */ 1591 boolean_t 1592 moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m) 1593 { 1594 int loops; 1595 struct pvo_entry *pvo; 1596 boolean_t rv; 1597 1598 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1599 ("moea_page_exists_quick: page %p is not managed", m)); 1600 loops = 0; 1601 rv = FALSE; 1602 rw_wlock(&pvh_global_lock); 1603 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 1604 if (pvo->pvo_pmap == pmap) { 1605 rv = TRUE; 1606 break; 1607 } 1608 if (++loops >= 16) 1609 break; 1610 } 1611 rw_wunlock(&pvh_global_lock); 1612 return (rv); 1613 } 1614 1615 /* 1616 * Return the number of managed mappings to the given physical page 1617 * that are wired. 1618 */ 1619 int 1620 moea_page_wired_mappings(mmu_t mmu, vm_page_t m) 1621 { 1622 struct pvo_entry *pvo; 1623 int count; 1624 1625 count = 0; 1626 if ((m->oflags & VPO_UNMANAGED) != 0) 1627 return (count); 1628 rw_wlock(&pvh_global_lock); 1629 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) 1630 if ((pvo->pvo_vaddr & PVO_WIRED) != 0) 1631 count++; 1632 rw_wunlock(&pvh_global_lock); 1633 return (count); 1634 } 1635 1636 static u_int moea_vsidcontext; 1637 1638 void 1639 moea_pinit(mmu_t mmu, pmap_t pmap) 1640 { 1641 int i, mask; 1642 u_int entropy; 1643 1644 KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap")); 1645 RB_INIT(&pmap->pmap_pvo); 1646 1647 entropy = 0; 1648 __asm __volatile("mftb %0" : "=r"(entropy)); 1649 1650 if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap)) 1651 == NULL) { 1652 pmap->pmap_phys = pmap; 1653 } 1654 1655 1656 mtx_lock(&moea_vsid_mutex); 1657 /* 1658 * Allocate some segment registers for this pmap. 1659 */ 1660 for (i = 0; i < NPMAPS; i += VSID_NBPW) { 1661 u_int hash, n; 1662 1663 /* 1664 * Create a new value by mutiplying by a prime and adding in 1665 * entropy from the timebase register. This is to make the 1666 * VSID more random so that the PT hash function collides 1667 * less often. (Note that the prime casues gcc to do shifts 1668 * instead of a multiply.) 1669 */ 1670 moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy; 1671 hash = moea_vsidcontext & (NPMAPS - 1); 1672 if (hash == 0) /* 0 is special, avoid it */ 1673 continue; 1674 n = hash >> 5; 1675 mask = 1 << (hash & (VSID_NBPW - 1)); 1676 hash = (moea_vsidcontext & 0xfffff); 1677 if (moea_vsid_bitmap[n] & mask) { /* collision? */ 1678 /* anything free in this bucket? */ 1679 if (moea_vsid_bitmap[n] == 0xffffffff) { 1680 entropy = (moea_vsidcontext >> 20); 1681 continue; 1682 } 1683 i = ffs(~moea_vsid_bitmap[n]) - 1; 1684 mask = 1 << i; 1685 hash &= 0xfffff & ~(VSID_NBPW - 1); 1686 hash |= i; 1687 } 1688 KASSERT(!(moea_vsid_bitmap[n] & mask), 1689 ("Allocating in-use VSID group %#x\n", hash)); 1690 moea_vsid_bitmap[n] |= mask; 1691 for (i = 0; i < 16; i++) 1692 pmap->pm_sr[i] = VSID_MAKE(i, hash); 1693 mtx_unlock(&moea_vsid_mutex); 1694 return; 1695 } 1696 1697 mtx_unlock(&moea_vsid_mutex); 1698 panic("moea_pinit: out of segments"); 1699 } 1700 1701 /* 1702 * Initialize the pmap associated with process 0. 1703 */ 1704 void 1705 moea_pinit0(mmu_t mmu, pmap_t pm) 1706 { 1707 1708 PMAP_LOCK_INIT(pm); 1709 moea_pinit(mmu, pm); 1710 bzero(&pm->pm_stats, sizeof(pm->pm_stats)); 1711 } 1712 1713 /* 1714 * Set the physical protection on the specified range of this map as requested. 1715 */ 1716 void 1717 moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva, 1718 vm_prot_t prot) 1719 { 1720 struct pvo_entry *pvo, *tpvo, key; 1721 struct pte *pt; 1722 1723 KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap, 1724 ("moea_protect: non current pmap")); 1725 1726 if ((prot & VM_PROT_READ) == VM_PROT_NONE) { 1727 moea_remove(mmu, pm, sva, eva); 1728 return; 1729 } 1730 1731 rw_wlock(&pvh_global_lock); 1732 PMAP_LOCK(pm); 1733 key.pvo_vaddr = sva; 1734 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 1735 pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { 1736 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); 1737 if ((prot & VM_PROT_EXECUTE) == 0) 1738 pvo->pvo_vaddr &= ~PVO_EXECUTABLE; 1739 1740 /* 1741 * Grab the PTE pointer before we diddle with the cached PTE 1742 * copy. 1743 */ 1744 pt = moea_pvo_to_pte(pvo, -1); 1745 /* 1746 * Change the protection of the page. 1747 */ 1748 pvo->pvo_pte.pte.pte_lo &= ~PTE_PP; 1749 pvo->pvo_pte.pte.pte_lo |= PTE_BR; 1750 1751 /* 1752 * If the PVO is in the page table, update that pte as well. 1753 */ 1754 if (pt != NULL) { 1755 moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr); 1756 mtx_unlock(&moea_table_mutex); 1757 } 1758 } 1759 rw_wunlock(&pvh_global_lock); 1760 PMAP_UNLOCK(pm); 1761 } 1762 1763 /* 1764 * Map a list of wired pages into kernel virtual address space. This is 1765 * intended for temporary mappings which do not need page modification or 1766 * references recorded. Existing mappings in the region are overwritten. 1767 */ 1768 void 1769 moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count) 1770 { 1771 vm_offset_t va; 1772 1773 va = sva; 1774 while (count-- > 0) { 1775 moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m)); 1776 va += PAGE_SIZE; 1777 m++; 1778 } 1779 } 1780 1781 /* 1782 * Remove page mappings from kernel virtual address space. Intended for 1783 * temporary mappings entered by moea_qenter. 1784 */ 1785 void 1786 moea_qremove(mmu_t mmu, vm_offset_t sva, int count) 1787 { 1788 vm_offset_t va; 1789 1790 va = sva; 1791 while (count-- > 0) { 1792 moea_kremove(mmu, va); 1793 va += PAGE_SIZE; 1794 } 1795 } 1796 1797 void 1798 moea_release(mmu_t mmu, pmap_t pmap) 1799 { 1800 int idx, mask; 1801 1802 /* 1803 * Free segment register's VSID 1804 */ 1805 if (pmap->pm_sr[0] == 0) 1806 panic("moea_release"); 1807 1808 mtx_lock(&moea_vsid_mutex); 1809 idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1); 1810 mask = 1 << (idx % VSID_NBPW); 1811 idx /= VSID_NBPW; 1812 moea_vsid_bitmap[idx] &= ~mask; 1813 mtx_unlock(&moea_vsid_mutex); 1814 } 1815 1816 /* 1817 * Remove the given range of addresses from the specified map. 1818 */ 1819 void 1820 moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva) 1821 { 1822 struct pvo_entry *pvo, *tpvo, key; 1823 1824 rw_wlock(&pvh_global_lock); 1825 PMAP_LOCK(pm); 1826 key.pvo_vaddr = sva; 1827 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 1828 pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { 1829 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); 1830 moea_pvo_remove(pvo, -1); 1831 } 1832 PMAP_UNLOCK(pm); 1833 rw_wunlock(&pvh_global_lock); 1834 } 1835 1836 /* 1837 * Remove physical page from all pmaps in which it resides. moea_pvo_remove() 1838 * will reflect changes in pte's back to the vm_page. 1839 */ 1840 void 1841 moea_remove_all(mmu_t mmu, vm_page_t m) 1842 { 1843 struct pvo_head *pvo_head; 1844 struct pvo_entry *pvo, *next_pvo; 1845 pmap_t pmap; 1846 1847 rw_wlock(&pvh_global_lock); 1848 pvo_head = vm_page_to_pvoh(m); 1849 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) { 1850 next_pvo = LIST_NEXT(pvo, pvo_vlink); 1851 1852 pmap = pvo->pvo_pmap; 1853 PMAP_LOCK(pmap); 1854 moea_pvo_remove(pvo, -1); 1855 PMAP_UNLOCK(pmap); 1856 } 1857 if ((m->aflags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) { 1858 moea_attr_clear(m, PTE_CHG); 1859 vm_page_dirty(m); 1860 } 1861 vm_page_aflag_clear(m, PGA_WRITEABLE); 1862 rw_wunlock(&pvh_global_lock); 1863 } 1864 1865 /* 1866 * Allocate a physical page of memory directly from the phys_avail map. 1867 * Can only be called from moea_bootstrap before avail start and end are 1868 * calculated. 1869 */ 1870 static vm_offset_t 1871 moea_bootstrap_alloc(vm_size_t size, u_int align) 1872 { 1873 vm_offset_t s, e; 1874 int i, j; 1875 1876 size = round_page(size); 1877 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 1878 if (align != 0) 1879 s = (phys_avail[i] + align - 1) & ~(align - 1); 1880 else 1881 s = phys_avail[i]; 1882 e = s + size; 1883 1884 if (s < phys_avail[i] || e > phys_avail[i + 1]) 1885 continue; 1886 1887 if (s == phys_avail[i]) { 1888 phys_avail[i] += size; 1889 } else if (e == phys_avail[i + 1]) { 1890 phys_avail[i + 1] -= size; 1891 } else { 1892 for (j = phys_avail_count * 2; j > i; j -= 2) { 1893 phys_avail[j] = phys_avail[j - 2]; 1894 phys_avail[j + 1] = phys_avail[j - 1]; 1895 } 1896 1897 phys_avail[i + 3] = phys_avail[i + 1]; 1898 phys_avail[i + 1] = s; 1899 phys_avail[i + 2] = e; 1900 phys_avail_count++; 1901 } 1902 1903 return (s); 1904 } 1905 panic("moea_bootstrap_alloc: could not allocate memory"); 1906 } 1907 1908 static void 1909 moea_syncicache(vm_offset_t pa, vm_size_t len) 1910 { 1911 __syncicache((void *)pa, len); 1912 } 1913 1914 static int 1915 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head, 1916 vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags) 1917 { 1918 struct pvo_entry *pvo; 1919 u_int sr; 1920 int first; 1921 u_int ptegidx; 1922 int i; 1923 int bootstrap; 1924 1925 moea_pvo_enter_calls++; 1926 first = 0; 1927 bootstrap = 0; 1928 1929 /* 1930 * Compute the PTE Group index. 1931 */ 1932 va &= ~ADDR_POFF; 1933 sr = va_to_sr(pm->pm_sr, va); 1934 ptegidx = va_to_pteg(sr, va); 1935 1936 /* 1937 * Remove any existing mapping for this page. Reuse the pvo entry if 1938 * there is a mapping. 1939 */ 1940 mtx_lock(&moea_table_mutex); 1941 LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) { 1942 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) { 1943 if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa && 1944 (pvo->pvo_pte.pte.pte_lo & PTE_PP) == 1945 (pte_lo & PTE_PP)) { 1946 mtx_unlock(&moea_table_mutex); 1947 return (0); 1948 } 1949 moea_pvo_remove(pvo, -1); 1950 break; 1951 } 1952 } 1953 1954 /* 1955 * If we aren't overwriting a mapping, try to allocate. 1956 */ 1957 if (moea_initialized) { 1958 pvo = uma_zalloc(zone, M_NOWAIT); 1959 } else { 1960 if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) { 1961 panic("moea_enter: bpvo pool exhausted, %d, %d, %d", 1962 moea_bpvo_pool_index, BPVO_POOL_SIZE, 1963 BPVO_POOL_SIZE * sizeof(struct pvo_entry)); 1964 } 1965 pvo = &moea_bpvo_pool[moea_bpvo_pool_index]; 1966 moea_bpvo_pool_index++; 1967 bootstrap = 1; 1968 } 1969 1970 if (pvo == NULL) { 1971 mtx_unlock(&moea_table_mutex); 1972 return (ENOMEM); 1973 } 1974 1975 moea_pvo_entries++; 1976 pvo->pvo_vaddr = va; 1977 pvo->pvo_pmap = pm; 1978 LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink); 1979 pvo->pvo_vaddr &= ~ADDR_POFF; 1980 if (flags & VM_PROT_EXECUTE) 1981 pvo->pvo_vaddr |= PVO_EXECUTABLE; 1982 if (flags & PVO_WIRED) 1983 pvo->pvo_vaddr |= PVO_WIRED; 1984 if (pvo_head != &moea_pvo_kunmanaged) 1985 pvo->pvo_vaddr |= PVO_MANAGED; 1986 if (bootstrap) 1987 pvo->pvo_vaddr |= PVO_BOOTSTRAP; 1988 1989 moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo); 1990 1991 /* 1992 * Add to pmap list 1993 */ 1994 RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo); 1995 1996 /* 1997 * Remember if the list was empty and therefore will be the first 1998 * item. 1999 */ 2000 if (LIST_FIRST(pvo_head) == NULL) 2001 first = 1; 2002 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink); 2003 2004 if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED) 2005 pm->pm_stats.wired_count++; 2006 pm->pm_stats.resident_count++; 2007 2008 i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte); 2009 KASSERT(i < 8, ("Invalid PTE index")); 2010 if (i >= 0) { 2011 PVO_PTEGIDX_SET(pvo, i); 2012 } else { 2013 panic("moea_pvo_enter: overflow"); 2014 moea_pte_overflow++; 2015 } 2016 mtx_unlock(&moea_table_mutex); 2017 2018 return (first ? ENOENT : 0); 2019 } 2020 2021 static void 2022 moea_pvo_remove(struct pvo_entry *pvo, int pteidx) 2023 { 2024 struct pte *pt; 2025 2026 /* 2027 * If there is an active pte entry, we need to deactivate it (and 2028 * save the ref & cfg bits). 2029 */ 2030 pt = moea_pvo_to_pte(pvo, pteidx); 2031 if (pt != NULL) { 2032 moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr); 2033 mtx_unlock(&moea_table_mutex); 2034 PVO_PTEGIDX_CLR(pvo); 2035 } else { 2036 moea_pte_overflow--; 2037 } 2038 2039 /* 2040 * Update our statistics. 2041 */ 2042 pvo->pvo_pmap->pm_stats.resident_count--; 2043 if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED) 2044 pvo->pvo_pmap->pm_stats.wired_count--; 2045 2046 /* 2047 * Save the REF/CHG bits into their cache if the page is managed. 2048 */ 2049 if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) { 2050 struct vm_page *pg; 2051 2052 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN); 2053 if (pg != NULL) { 2054 moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo & 2055 (PTE_REF | PTE_CHG)); 2056 } 2057 } 2058 2059 /* 2060 * Remove this PVO from the PV and pmap lists. 2061 */ 2062 LIST_REMOVE(pvo, pvo_vlink); 2063 RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo); 2064 2065 /* 2066 * Remove this from the overflow list and return it to the pool 2067 * if we aren't going to reuse it. 2068 */ 2069 LIST_REMOVE(pvo, pvo_olink); 2070 if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP)) 2071 uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone : 2072 moea_upvo_zone, pvo); 2073 moea_pvo_entries--; 2074 moea_pvo_remove_calls++; 2075 } 2076 2077 static __inline int 2078 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx) 2079 { 2080 int pteidx; 2081 2082 /* 2083 * We can find the actual pte entry without searching by grabbing 2084 * the PTEG index from 3 unused bits in pte_lo[11:9] and by 2085 * noticing the HID bit. 2086 */ 2087 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo); 2088 if (pvo->pvo_pte.pte.pte_hi & PTE_HID) 2089 pteidx ^= moea_pteg_mask * 8; 2090 2091 return (pteidx); 2092 } 2093 2094 static struct pvo_entry * 2095 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p) 2096 { 2097 struct pvo_entry *pvo; 2098 int ptegidx; 2099 u_int sr; 2100 2101 va &= ~ADDR_POFF; 2102 sr = va_to_sr(pm->pm_sr, va); 2103 ptegidx = va_to_pteg(sr, va); 2104 2105 mtx_lock(&moea_table_mutex); 2106 LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) { 2107 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) { 2108 if (pteidx_p) 2109 *pteidx_p = moea_pvo_pte_index(pvo, ptegidx); 2110 break; 2111 } 2112 } 2113 mtx_unlock(&moea_table_mutex); 2114 2115 return (pvo); 2116 } 2117 2118 static struct pte * 2119 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx) 2120 { 2121 struct pte *pt; 2122 2123 /* 2124 * If we haven't been supplied the ptegidx, calculate it. 2125 */ 2126 if (pteidx == -1) { 2127 int ptegidx; 2128 u_int sr; 2129 2130 sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr); 2131 ptegidx = va_to_pteg(sr, pvo->pvo_vaddr); 2132 pteidx = moea_pvo_pte_index(pvo, ptegidx); 2133 } 2134 2135 pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7]; 2136 mtx_lock(&moea_table_mutex); 2137 2138 if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) { 2139 panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no " 2140 "valid pte index", pvo); 2141 } 2142 2143 if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) { 2144 panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo " 2145 "pvo but no valid pte", pvo); 2146 } 2147 2148 if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) { 2149 if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) { 2150 panic("moea_pvo_to_pte: pvo %p has valid pte in " 2151 "moea_pteg_table %p but invalid in pvo", pvo, pt); 2152 } 2153 2154 if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF)) 2155 != 0) { 2156 panic("moea_pvo_to_pte: pvo %p pte does not match " 2157 "pte %p in moea_pteg_table", pvo, pt); 2158 } 2159 2160 mtx_assert(&moea_table_mutex, MA_OWNED); 2161 return (pt); 2162 } 2163 2164 if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) { 2165 panic("moea_pvo_to_pte: pvo %p has invalid pte %p in " 2166 "moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi); 2167 } 2168 2169 mtx_unlock(&moea_table_mutex); 2170 return (NULL); 2171 } 2172 2173 /* 2174 * XXX: THIS STUFF SHOULD BE IN pte.c? 2175 */ 2176 int 2177 moea_pte_spill(vm_offset_t addr) 2178 { 2179 struct pvo_entry *source_pvo, *victim_pvo; 2180 struct pvo_entry *pvo; 2181 int ptegidx, i, j; 2182 u_int sr; 2183 struct pteg *pteg; 2184 struct pte *pt; 2185 2186 moea_pte_spills++; 2187 2188 sr = mfsrin(addr); 2189 ptegidx = va_to_pteg(sr, addr); 2190 2191 /* 2192 * Have to substitute some entry. Use the primary hash for this. 2193 * Use low bits of timebase as random generator. 2194 */ 2195 pteg = &moea_pteg_table[ptegidx]; 2196 mtx_lock(&moea_table_mutex); 2197 __asm __volatile("mftb %0" : "=r"(i)); 2198 i &= 7; 2199 pt = &pteg->pt[i]; 2200 2201 source_pvo = NULL; 2202 victim_pvo = NULL; 2203 LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) { 2204 /* 2205 * We need to find a pvo entry for this address. 2206 */ 2207 if (source_pvo == NULL && 2208 moea_pte_match(&pvo->pvo_pte.pte, sr, addr, 2209 pvo->pvo_pte.pte.pte_hi & PTE_HID)) { 2210 /* 2211 * Now found an entry to be spilled into the pteg. 2212 * The PTE is now valid, so we know it's active. 2213 */ 2214 j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte); 2215 2216 if (j >= 0) { 2217 PVO_PTEGIDX_SET(pvo, j); 2218 moea_pte_overflow--; 2219 mtx_unlock(&moea_table_mutex); 2220 return (1); 2221 } 2222 2223 source_pvo = pvo; 2224 2225 if (victim_pvo != NULL) 2226 break; 2227 } 2228 2229 /* 2230 * We also need the pvo entry of the victim we are replacing 2231 * so save the R & C bits of the PTE. 2232 */ 2233 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL && 2234 moea_pte_compare(pt, &pvo->pvo_pte.pte)) { 2235 victim_pvo = pvo; 2236 if (source_pvo != NULL) 2237 break; 2238 } 2239 } 2240 2241 if (source_pvo == NULL) { 2242 mtx_unlock(&moea_table_mutex); 2243 return (0); 2244 } 2245 2246 if (victim_pvo == NULL) { 2247 if ((pt->pte_hi & PTE_HID) == 0) 2248 panic("moea_pte_spill: victim p-pte (%p) has no pvo" 2249 "entry", pt); 2250 2251 /* 2252 * If this is a secondary PTE, we need to search it's primary 2253 * pvo bucket for the matching PVO. 2254 */ 2255 LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask], 2256 pvo_olink) { 2257 /* 2258 * We also need the pvo entry of the victim we are 2259 * replacing so save the R & C bits of the PTE. 2260 */ 2261 if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) { 2262 victim_pvo = pvo; 2263 break; 2264 } 2265 } 2266 2267 if (victim_pvo == NULL) 2268 panic("moea_pte_spill: victim s-pte (%p) has no pvo" 2269 "entry", pt); 2270 } 2271 2272 /* 2273 * We are invalidating the TLB entry for the EA we are replacing even 2274 * though it's valid. If we don't, we lose any ref/chg bit changes 2275 * contained in the TLB entry. 2276 */ 2277 source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID; 2278 2279 moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr); 2280 moea_pte_set(pt, &source_pvo->pvo_pte.pte); 2281 2282 PVO_PTEGIDX_CLR(victim_pvo); 2283 PVO_PTEGIDX_SET(source_pvo, i); 2284 moea_pte_replacements++; 2285 2286 mtx_unlock(&moea_table_mutex); 2287 return (1); 2288 } 2289 2290 static __inline struct pvo_entry * 2291 moea_pte_spillable_ident(u_int ptegidx) 2292 { 2293 struct pte *pt; 2294 struct pvo_entry *pvo_walk, *pvo = NULL; 2295 2296 LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) { 2297 if (pvo_walk->pvo_vaddr & PVO_WIRED) 2298 continue; 2299 2300 if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID)) 2301 continue; 2302 2303 pt = moea_pvo_to_pte(pvo_walk, -1); 2304 2305 if (pt == NULL) 2306 continue; 2307 2308 pvo = pvo_walk; 2309 2310 mtx_unlock(&moea_table_mutex); 2311 if (!(pt->pte_lo & PTE_REF)) 2312 return (pvo_walk); 2313 } 2314 2315 return (pvo); 2316 } 2317 2318 static int 2319 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt) 2320 { 2321 struct pte *pt; 2322 struct pvo_entry *victim_pvo; 2323 int i; 2324 int victim_idx; 2325 u_int pteg_bkpidx = ptegidx; 2326 2327 mtx_assert(&moea_table_mutex, MA_OWNED); 2328 2329 /* 2330 * First try primary hash. 2331 */ 2332 for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) { 2333 if ((pt->pte_hi & PTE_VALID) == 0) { 2334 pvo_pt->pte_hi &= ~PTE_HID; 2335 moea_pte_set(pt, pvo_pt); 2336 return (i); 2337 } 2338 } 2339 2340 /* 2341 * Now try secondary hash. 2342 */ 2343 ptegidx ^= moea_pteg_mask; 2344 2345 for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) { 2346 if ((pt->pte_hi & PTE_VALID) == 0) { 2347 pvo_pt->pte_hi |= PTE_HID; 2348 moea_pte_set(pt, pvo_pt); 2349 return (i); 2350 } 2351 } 2352 2353 /* Try again, but this time try to force a PTE out. */ 2354 ptegidx = pteg_bkpidx; 2355 2356 victim_pvo = moea_pte_spillable_ident(ptegidx); 2357 if (victim_pvo == NULL) { 2358 ptegidx ^= moea_pteg_mask; 2359 victim_pvo = moea_pte_spillable_ident(ptegidx); 2360 } 2361 2362 if (victim_pvo == NULL) { 2363 panic("moea_pte_insert: overflow"); 2364 return (-1); 2365 } 2366 2367 victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx); 2368 2369 if (pteg_bkpidx == ptegidx) 2370 pvo_pt->pte_hi &= ~PTE_HID; 2371 else 2372 pvo_pt->pte_hi |= PTE_HID; 2373 2374 /* 2375 * Synchronize the sacrifice PTE with its PVO, then mark both 2376 * invalid. The PVO will be reused when/if the VM system comes 2377 * here after a fault. 2378 */ 2379 pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7]; 2380 2381 if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi) 2382 panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi); 2383 2384 /* 2385 * Set the new PTE. 2386 */ 2387 moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr); 2388 PVO_PTEGIDX_CLR(victim_pvo); 2389 moea_pte_overflow++; 2390 moea_pte_set(pt, pvo_pt); 2391 2392 return (victim_idx & 7); 2393 } 2394 2395 static boolean_t 2396 moea_query_bit(vm_page_t m, int ptebit) 2397 { 2398 struct pvo_entry *pvo; 2399 struct pte *pt; 2400 2401 rw_assert(&pvh_global_lock, RA_WLOCKED); 2402 if (moea_attr_fetch(m) & ptebit) 2403 return (TRUE); 2404 2405 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2406 2407 /* 2408 * See if we saved the bit off. If so, cache it and return 2409 * success. 2410 */ 2411 if (pvo->pvo_pte.pte.pte_lo & ptebit) { 2412 moea_attr_save(m, ptebit); 2413 return (TRUE); 2414 } 2415 } 2416 2417 /* 2418 * No luck, now go through the hard part of looking at the PTEs 2419 * themselves. Sync so that any pending REF/CHG bits are flushed to 2420 * the PTEs. 2421 */ 2422 powerpc_sync(); 2423 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2424 2425 /* 2426 * See if this pvo has a valid PTE. if so, fetch the 2427 * REF/CHG bits from the valid PTE. If the appropriate 2428 * ptebit is set, cache it and return success. 2429 */ 2430 pt = moea_pvo_to_pte(pvo, -1); 2431 if (pt != NULL) { 2432 moea_pte_synch(pt, &pvo->pvo_pte.pte); 2433 mtx_unlock(&moea_table_mutex); 2434 if (pvo->pvo_pte.pte.pte_lo & ptebit) { 2435 moea_attr_save(m, ptebit); 2436 return (TRUE); 2437 } 2438 } 2439 } 2440 2441 return (FALSE); 2442 } 2443 2444 static u_int 2445 moea_clear_bit(vm_page_t m, int ptebit) 2446 { 2447 u_int count; 2448 struct pvo_entry *pvo; 2449 struct pte *pt; 2450 2451 rw_assert(&pvh_global_lock, RA_WLOCKED); 2452 2453 /* 2454 * Clear the cached value. 2455 */ 2456 moea_attr_clear(m, ptebit); 2457 2458 /* 2459 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so 2460 * we can reset the right ones). note that since the pvo entries and 2461 * list heads are accessed via BAT0 and are never placed in the page 2462 * table, we don't have to worry about further accesses setting the 2463 * REF/CHG bits. 2464 */ 2465 powerpc_sync(); 2466 2467 /* 2468 * For each pvo entry, clear the pvo's ptebit. If this pvo has a 2469 * valid pte clear the ptebit from the valid pte. 2470 */ 2471 count = 0; 2472 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2473 pt = moea_pvo_to_pte(pvo, -1); 2474 if (pt != NULL) { 2475 moea_pte_synch(pt, &pvo->pvo_pte.pte); 2476 if (pvo->pvo_pte.pte.pte_lo & ptebit) { 2477 count++; 2478 moea_pte_clear(pt, PVO_VADDR(pvo), ptebit); 2479 } 2480 mtx_unlock(&moea_table_mutex); 2481 } 2482 pvo->pvo_pte.pte.pte_lo &= ~ptebit; 2483 } 2484 2485 return (count); 2486 } 2487 2488 /* 2489 * Return true if the physical range is encompassed by the battable[idx] 2490 */ 2491 static int 2492 moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size) 2493 { 2494 u_int prot; 2495 u_int32_t start; 2496 u_int32_t end; 2497 u_int32_t bat_ble; 2498 2499 /* 2500 * Return immediately if not a valid mapping 2501 */ 2502 if (!(battable[idx].batu & BAT_Vs)) 2503 return (EINVAL); 2504 2505 /* 2506 * The BAT entry must be cache-inhibited, guarded, and r/w 2507 * so it can function as an i/o page 2508 */ 2509 prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW); 2510 if (prot != (BAT_I|BAT_G|BAT_PP_RW)) 2511 return (EPERM); 2512 2513 /* 2514 * The address should be within the BAT range. Assume that the 2515 * start address in the BAT has the correct alignment (thus 2516 * not requiring masking) 2517 */ 2518 start = battable[idx].batl & BAT_PBS; 2519 bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03; 2520 end = start | (bat_ble << 15) | 0x7fff; 2521 2522 if ((pa < start) || ((pa + size) > end)) 2523 return (ERANGE); 2524 2525 return (0); 2526 } 2527 2528 boolean_t 2529 moea_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 2530 { 2531 int i; 2532 2533 /* 2534 * This currently does not work for entries that 2535 * overlap 256M BAT segments. 2536 */ 2537 2538 for(i = 0; i < 16; i++) 2539 if (moea_bat_mapped(i, pa, size) == 0) 2540 return (0); 2541 2542 return (EFAULT); 2543 } 2544 2545 /* 2546 * Map a set of physical memory pages into the kernel virtual 2547 * address space. Return a pointer to where it is mapped. This 2548 * routine is intended to be used for mapping device memory, 2549 * NOT real memory. 2550 */ 2551 void * 2552 moea_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 2553 { 2554 2555 return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT)); 2556 } 2557 2558 void * 2559 moea_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma) 2560 { 2561 vm_offset_t va, tmpva, ppa, offset; 2562 int i; 2563 2564 ppa = trunc_page(pa); 2565 offset = pa & PAGE_MASK; 2566 size = roundup(offset + size, PAGE_SIZE); 2567 2568 /* 2569 * If the physical address lies within a valid BAT table entry, 2570 * return the 1:1 mapping. This currently doesn't work 2571 * for regions that overlap 256M BAT segments. 2572 */ 2573 for (i = 0; i < 16; i++) { 2574 if (moea_bat_mapped(i, pa, size) == 0) 2575 return ((void *) pa); 2576 } 2577 2578 va = kva_alloc(size); 2579 if (!va) 2580 panic("moea_mapdev: Couldn't alloc kernel virtual memory"); 2581 2582 for (tmpva = va; size > 0;) { 2583 moea_kenter_attr(mmu, tmpva, ppa, ma); 2584 tlbie(tmpva); 2585 size -= PAGE_SIZE; 2586 tmpva += PAGE_SIZE; 2587 ppa += PAGE_SIZE; 2588 } 2589 2590 return ((void *)(va + offset)); 2591 } 2592 2593 void 2594 moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size) 2595 { 2596 vm_offset_t base, offset; 2597 2598 /* 2599 * If this is outside kernel virtual space, then it's a 2600 * battable entry and doesn't require unmapping 2601 */ 2602 if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) { 2603 base = trunc_page(va); 2604 offset = va & PAGE_MASK; 2605 size = roundup(offset + size, PAGE_SIZE); 2606 kva_free(base, size); 2607 } 2608 } 2609 2610 static void 2611 moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz) 2612 { 2613 struct pvo_entry *pvo; 2614 vm_offset_t lim; 2615 vm_paddr_t pa; 2616 vm_size_t len; 2617 2618 PMAP_LOCK(pm); 2619 while (sz > 0) { 2620 lim = round_page(va); 2621 len = MIN(lim - va, sz); 2622 pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL); 2623 if (pvo != NULL) { 2624 pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | 2625 (va & ADDR_POFF); 2626 moea_syncicache(pa, len); 2627 } 2628 va += len; 2629 sz -= len; 2630 } 2631 PMAP_UNLOCK(pm); 2632 } 2633 2634 vm_offset_t 2635 moea_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs, 2636 vm_size_t *sz) 2637 { 2638 if (md->md_vaddr == ~0UL) 2639 return (md->md_paddr + ofs); 2640 else 2641 return (md->md_vaddr + ofs); 2642 } 2643 2644 struct pmap_md * 2645 moea_scan_md(mmu_t mmu, struct pmap_md *prev) 2646 { 2647 static struct pmap_md md; 2648 struct pvo_entry *pvo; 2649 vm_offset_t va; 2650 2651 if (dumpsys_minidump) { 2652 md.md_paddr = ~0UL; /* Minidumps use virtual addresses. */ 2653 if (prev == NULL) { 2654 /* 1st: kernel .data and .bss. */ 2655 md.md_index = 1; 2656 md.md_vaddr = trunc_page((uintptr_t)_etext); 2657 md.md_size = round_page((uintptr_t)_end) - md.md_vaddr; 2658 return (&md); 2659 } 2660 switch (prev->md_index) { 2661 case 1: 2662 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ 2663 md.md_index = 2; 2664 md.md_vaddr = (vm_offset_t)msgbufp->msg_ptr; 2665 md.md_size = round_page(msgbufp->msg_size); 2666 break; 2667 case 2: 2668 /* 3rd: kernel VM. */ 2669 va = prev->md_vaddr + prev->md_size; 2670 /* Find start of next chunk (from va). */ 2671 while (va < virtual_end) { 2672 /* Don't dump the buffer cache. */ 2673 if (va >= kmi.buffer_sva && 2674 va < kmi.buffer_eva) { 2675 va = kmi.buffer_eva; 2676 continue; 2677 } 2678 pvo = moea_pvo_find_va(kernel_pmap, 2679 va & ~ADDR_POFF, NULL); 2680 if (pvo != NULL && 2681 (pvo->pvo_pte.pte.pte_hi & PTE_VALID)) 2682 break; 2683 va += PAGE_SIZE; 2684 } 2685 if (va < virtual_end) { 2686 md.md_vaddr = va; 2687 va += PAGE_SIZE; 2688 /* Find last page in chunk. */ 2689 while (va < virtual_end) { 2690 /* Don't run into the buffer cache. */ 2691 if (va == kmi.buffer_sva) 2692 break; 2693 pvo = moea_pvo_find_va(kernel_pmap, 2694 va & ~ADDR_POFF, NULL); 2695 if (pvo == NULL || 2696 !(pvo->pvo_pte.pte.pte_hi & PTE_VALID)) 2697 break; 2698 va += PAGE_SIZE; 2699 } 2700 md.md_size = va - md.md_vaddr; 2701 break; 2702 } 2703 md.md_index = 3; 2704 /* FALLTHROUGH */ 2705 default: 2706 return (NULL); 2707 } 2708 } else { /* minidumps */ 2709 mem_regions(&pregions, &pregions_sz, 2710 ®ions, ®ions_sz); 2711 2712 if (prev == NULL) { 2713 /* first physical chunk. */ 2714 md.md_paddr = pregions[0].mr_start; 2715 md.md_size = pregions[0].mr_size; 2716 md.md_vaddr = ~0UL; 2717 md.md_index = 1; 2718 } else if (md.md_index < pregions_sz) { 2719 md.md_paddr = pregions[md.md_index].mr_start; 2720 md.md_size = pregions[md.md_index].mr_size; 2721 md.md_vaddr = ~0UL; 2722 md.md_index++; 2723 } else { 2724 /* There's no next physical chunk. */ 2725 return (NULL); 2726 } 2727 } 2728 2729 return (&md); 2730 } 2731