1 /* 2 * Copyright (c) 2001 The NetBSD Foundation, Inc. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to The NetBSD Foundation 6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the NetBSD 19 * Foundation, Inc. and its contributors. 20 * 4. Neither the name of The NetBSD Foundation nor the names of its 21 * contributors may be used to endorse or promote products derived 22 * from this software without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 * POSSIBILITY OF SUCH DAMAGE. 35 */ 36 /* 37 * Copyright (C) 1995, 1996 Wolfgang Solfrank. 38 * Copyright (C) 1995, 1996 TooLs GmbH. 39 * All rights reserved. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. All advertising materials mentioning features or use of this software 50 * must display the following acknowledgement: 51 * This product includes software developed by TooLs GmbH. 52 * 4. The name of TooLs GmbH may not be used to endorse or promote products 53 * derived from this software without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 65 * 66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $ 67 */ 68 /* 69 * Copyright (C) 2001 Benno Rice. 70 * All rights reserved. 71 * 72 * Redistribution and use in source and binary forms, with or without 73 * modification, are permitted provided that the following conditions 74 * are met: 75 * 1. Redistributions of source code must retain the above copyright 76 * notice, this list of conditions and the following disclaimer. 77 * 2. Redistributions in binary form must reproduce the above copyright 78 * notice, this list of conditions and the following disclaimer in the 79 * documentation and/or other materials provided with the distribution. 80 * 81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR 82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 91 */ 92 93 #ifndef lint 94 static const char rcsid[] = 95 "$FreeBSD$"; 96 #endif /* not lint */ 97 98 /* 99 * Manages physical address maps. 100 * 101 * In addition to hardware address maps, this module is called upon to 102 * provide software-use-only maps which may or may not be stored in the 103 * same form as hardware maps. These pseudo-maps are used to store 104 * intermediate results from copy operations to and from address spaces. 105 * 106 * Since the information managed by this module is also stored by the 107 * logical address mapping module, this module may throw away valid virtual 108 * to physical mappings at almost any time. However, invalidations of 109 * mappings must be done as requested. 110 * 111 * In order to cope with hardware architectures which make virtual to 112 * physical map invalidates expensive, this module may delay invalidate 113 * reduced protection operations until such time as they are actually 114 * necessary. This module is given full information as to which processors 115 * are currently using which maps, and to when physical maps must be made 116 * correct. 117 */ 118 119 #include <sys/param.h> 120 #include <sys/kernel.h> 121 #include <sys/ktr.h> 122 #include <sys/lock.h> 123 #include <sys/msgbuf.h> 124 #include <sys/mutex.h> 125 #include <sys/proc.h> 126 #include <sys/sysctl.h> 127 #include <sys/systm.h> 128 #include <sys/vmmeter.h> 129 130 #include <dev/ofw/openfirm.h> 131 132 #include <vm/vm.h> 133 #include <vm/vm_param.h> 134 #include <vm/vm_kern.h> 135 #include <vm/vm_page.h> 136 #include <vm/vm_map.h> 137 #include <vm/vm_object.h> 138 #include <vm/vm_extern.h> 139 #include <vm/vm_pageout.h> 140 #include <vm/vm_pager.h> 141 #include <vm/vm_zone.h> 142 143 #include <machine/bat.h> 144 #include <machine/frame.h> 145 #include <machine/md_var.h> 146 #include <machine/psl.h> 147 #include <machine/pte.h> 148 #include <machine/sr.h> 149 150 #define PMAP_DEBUG 151 152 #define TODO panic("%s: not implemented", __func__); 153 154 #define PMAP_LOCK(pm) 155 #define PMAP_UNLOCK(pm) 156 157 #define TLBIE(va) __asm __volatile("tlbie %0" :: "r"(va)) 158 #define TLBSYNC() __asm __volatile("tlbsync"); 159 #define SYNC() __asm __volatile("sync"); 160 #define EIEIO() __asm __volatile("eieio"); 161 162 #define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4)) 163 #define VSID_TO_SR(vsid) ((vsid) & 0xf) 164 #define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff) 165 166 #define PVO_PTEGIDX_MASK 0x0007 /* which PTEG slot */ 167 #define PVO_PTEGIDX_VALID 0x0008 /* slot is valid */ 168 #define PVO_WIRED 0x0010 /* PVO entry is wired */ 169 #define PVO_MANAGED 0x0020 /* PVO entry is managed */ 170 #define PVO_EXECUTABLE 0x0040 /* PVO entry is executable */ 171 #define PVO_VADDR(pvo) ((pvo)->pvo_vaddr & ~ADDR_POFF) 172 #define PVO_ISEXECUTABLE(pvo) ((pvo)->pvo_vaddr & PVO_EXECUTABLE) 173 #define PVO_PTEGIDX_GET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK) 174 #define PVO_PTEGIDX_ISSET(pvo) ((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID) 175 #define PVO_PTEGIDX_CLR(pvo) \ 176 ((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK))) 177 #define PVO_PTEGIDX_SET(pvo, i) \ 178 ((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID)) 179 180 #define PMAP_PVO_CHECK(pvo) 181 182 struct mem_region { 183 vm_offset_t mr_start; 184 vm_offset_t mr_size; 185 }; 186 187 struct ofw_map { 188 vm_offset_t om_va; 189 vm_size_t om_len; 190 vm_offset_t om_pa; 191 u_int om_mode; 192 }; 193 194 int pmap_bootstrapped = 0; 195 196 /* 197 * Virtual and physical address of message buffer. 198 */ 199 struct msgbuf *msgbufp; 200 vm_offset_t msgbuf_phys; 201 202 /* 203 * Physical addresses of first and last available physical page. 204 */ 205 vm_offset_t avail_start; 206 vm_offset_t avail_end; 207 208 /* 209 * Map of physical memory regions. 210 */ 211 vm_offset_t phys_avail[128]; 212 u_int phys_avail_count; 213 static struct mem_region regions[128]; 214 static struct ofw_map translations[128]; 215 static int translations_size; 216 217 /* 218 * First and last available kernel virtual addresses. 219 */ 220 vm_offset_t virtual_avail; 221 vm_offset_t virtual_end; 222 vm_offset_t kernel_vm_end; 223 224 /* 225 * Kernel pmap. 226 */ 227 struct pmap kernel_pmap_store; 228 extern struct pmap ofw_pmap; 229 230 /* 231 * PTEG data. 232 */ 233 static struct pteg *pmap_pteg_table; 234 u_int pmap_pteg_count; 235 u_int pmap_pteg_mask; 236 237 /* 238 * PVO data. 239 */ 240 struct pvo_head *pmap_pvo_table; /* pvo entries by pteg index */ 241 struct pvo_head pmap_pvo_kunmanaged = 242 LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged); /* list of unmanaged pages */ 243 struct pvo_head pmap_pvo_unmanaged = 244 LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged); /* list of unmanaged pages */ 245 246 vm_zone_t pmap_upvo_zone; /* zone for pvo entries for unmanaged pages */ 247 vm_zone_t pmap_mpvo_zone; /* zone for pvo entries for managed pages */ 248 struct vm_zone pmap_upvo_zone_store; 249 struct vm_zone pmap_mpvo_zone_store; 250 struct vm_object pmap_upvo_zone_obj; 251 struct vm_object pmap_mpvo_zone_obj; 252 253 #define PMAP_PVO_SIZE 1024 254 struct pvo_entry pmap_upvo_pool[PMAP_PVO_SIZE]; 255 256 #define VSID_NBPW (sizeof(u_int32_t) * 8) 257 static u_int pmap_vsid_bitmap[NPMAPS / VSID_NBPW]; 258 259 static boolean_t pmap_initialized = FALSE; 260 261 /* 262 * Statistics. 263 */ 264 u_int pmap_pte_valid = 0; 265 u_int pmap_pte_overflow = 0; 266 u_int pmap_pte_replacements = 0; 267 u_int pmap_pvo_entries = 0; 268 u_int pmap_pvo_enter_calls = 0; 269 u_int pmap_pvo_remove_calls = 0; 270 u_int pmap_pte_spills = 0; 271 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid, 272 0, ""); 273 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD, 274 &pmap_pte_overflow, 0, ""); 275 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD, 276 &pmap_pte_replacements, 0, ""); 277 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries, 278 0, ""); 279 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD, 280 &pmap_pvo_enter_calls, 0, ""); 281 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD, 282 &pmap_pvo_remove_calls, 0, ""); 283 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD, 284 &pmap_pte_spills, 0, ""); 285 286 struct pvo_entry *pmap_pvo_zeropage; 287 288 vm_offset_t pmap_rkva_start = VM_MIN_KERNEL_ADDRESS; 289 u_int pmap_rkva_count = 4; 290 291 /* 292 * Allocate physical memory for use in pmap_bootstrap. 293 */ 294 static vm_offset_t pmap_bootstrap_alloc(vm_size_t, u_int); 295 296 /* 297 * PTE calls. 298 */ 299 static int pmap_pte_insert(u_int, struct pte *); 300 301 /* 302 * PVO calls. 303 */ 304 static int pmap_pvo_enter(pmap_t, vm_zone_t, struct pvo_head *, 305 vm_offset_t, vm_offset_t, u_int, int); 306 static void pmap_pvo_remove(struct pvo_entry *, int); 307 static struct pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *); 308 static struct pte *pmap_pvo_to_pte(const struct pvo_entry *, int); 309 310 /* 311 * Utility routines. 312 */ 313 static struct pvo_entry *pmap_rkva_alloc(void); 314 static void pmap_pa_map(struct pvo_entry *, vm_offset_t, 315 struct pte *, int *); 316 static void pmap_pa_unmap(struct pvo_entry *, struct pte *, int *); 317 static void pmap_syncicache(vm_offset_t, vm_size_t); 318 static boolean_t pmap_query_bit(vm_page_t, int); 319 static boolean_t pmap_clear_bit(vm_page_t, int); 320 static void tlbia(void); 321 322 static __inline int 323 va_to_sr(u_int *sr, vm_offset_t va) 324 { 325 return (sr[(uintptr_t)va >> ADDR_SR_SHFT]); 326 } 327 328 static __inline u_int 329 va_to_pteg(u_int sr, vm_offset_t addr) 330 { 331 u_int hash; 332 333 hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >> 334 ADDR_PIDX_SHFT); 335 return (hash & pmap_pteg_mask); 336 } 337 338 static __inline struct pvo_head * 339 pa_to_pvoh(vm_offset_t pa) 340 { 341 struct vm_page *pg; 342 343 pg = PHYS_TO_VM_PAGE(pa); 344 345 if (pg == NULL) 346 return (&pmap_pvo_unmanaged); 347 348 return (&pg->md.mdpg_pvoh); 349 } 350 351 static __inline struct pvo_head * 352 vm_page_to_pvoh(vm_page_t m) 353 { 354 355 return (&m->md.mdpg_pvoh); 356 } 357 358 static __inline void 359 pmap_attr_clear(vm_page_t m, int ptebit) 360 { 361 362 m->md.mdpg_attrs &= ~ptebit; 363 } 364 365 static __inline int 366 pmap_attr_fetch(vm_page_t m) 367 { 368 369 return (m->md.mdpg_attrs); 370 } 371 372 static __inline void 373 pmap_attr_save(vm_page_t m, int ptebit) 374 { 375 376 m->md.mdpg_attrs |= ptebit; 377 } 378 379 static __inline int 380 pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt) 381 { 382 if (pt->pte_hi == pvo_pt->pte_hi) 383 return (1); 384 385 return (0); 386 } 387 388 static __inline int 389 pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which) 390 { 391 return (pt->pte_hi & ~PTE_VALID) == 392 (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) | 393 ((va >> ADDR_API_SHFT) & PTE_API) | which); 394 } 395 396 static __inline void 397 pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo) 398 { 399 /* 400 * Construct a PTE. Default to IMB initially. Valid bit only gets 401 * set when the real pte is set in memory. 402 * 403 * Note: Don't set the valid bit for correct operation of tlb update. 404 */ 405 pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) | 406 (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API); 407 pt->pte_lo = pte_lo; 408 } 409 410 static __inline void 411 pmap_pte_synch(struct pte *pt, struct pte *pvo_pt) 412 { 413 414 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG); 415 } 416 417 static __inline void 418 pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit) 419 { 420 421 /* 422 * As shown in Section 7.6.3.2.3 423 */ 424 pt->pte_lo &= ~ptebit; 425 TLBIE(va); 426 EIEIO(); 427 TLBSYNC(); 428 SYNC(); 429 } 430 431 static __inline void 432 pmap_pte_set(struct pte *pt, struct pte *pvo_pt) 433 { 434 435 pvo_pt->pte_hi |= PTE_VALID; 436 437 /* 438 * Update the PTE as defined in section 7.6.3.1. 439 * Note that the REF/CHG bits are from pvo_pt and thus should havce 440 * been saved so this routine can restore them (if desired). 441 */ 442 pt->pte_lo = pvo_pt->pte_lo; 443 EIEIO(); 444 pt->pte_hi = pvo_pt->pte_hi; 445 SYNC(); 446 pmap_pte_valid++; 447 } 448 449 static __inline void 450 pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va) 451 { 452 453 pvo_pt->pte_hi &= ~PTE_VALID; 454 455 /* 456 * Force the reg & chg bits back into the PTEs. 457 */ 458 SYNC(); 459 460 /* 461 * Invalidate the pte. 462 */ 463 pt->pte_hi &= ~PTE_VALID; 464 465 SYNC(); 466 TLBIE(va); 467 EIEIO(); 468 TLBSYNC(); 469 SYNC(); 470 471 /* 472 * Save the reg & chg bits. 473 */ 474 pmap_pte_synch(pt, pvo_pt); 475 pmap_pte_valid--; 476 } 477 478 static __inline void 479 pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va) 480 { 481 482 /* 483 * Invalidate the PTE 484 */ 485 pmap_pte_unset(pt, pvo_pt, va); 486 pmap_pte_set(pt, pvo_pt); 487 } 488 489 /* 490 * Quick sort callout for comparing memory regions. 491 */ 492 static int mr_cmp(const void *a, const void *b); 493 static int om_cmp(const void *a, const void *b); 494 495 static int 496 mr_cmp(const void *a, const void *b) 497 { 498 const struct mem_region *regiona; 499 const struct mem_region *regionb; 500 501 regiona = a; 502 regionb = b; 503 if (regiona->mr_start < regionb->mr_start) 504 return (-1); 505 else if (regiona->mr_start > regionb->mr_start) 506 return (1); 507 else 508 return (0); 509 } 510 511 static int 512 om_cmp(const void *a, const void *b) 513 { 514 const struct ofw_map *mapa; 515 const struct ofw_map *mapb; 516 517 mapa = a; 518 mapb = b; 519 if (mapa->om_pa < mapb->om_pa) 520 return (-1); 521 else if (mapa->om_pa > mapb->om_pa) 522 return (1); 523 else 524 return (0); 525 } 526 527 void 528 pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend) 529 { 530 ihandle_t pmem, mmui; 531 phandle_t chosen, mmu; 532 int sz; 533 int i, j; 534 vm_size_t size; 535 vm_offset_t pa, va, off; 536 u_int batl, batu; 537 538 /* 539 * Use an IBAT and a DBAT to map the bottom segment of memory 540 * where we are. 541 */ 542 batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs); 543 batl = BATL(0x00000000, BAT_M, BAT_PP_RW); 544 __asm ("mtibatu 0,%0; mtibatl 0,%1; mtdbatu 0,%0; mtdbatl 0,%1" 545 :: "r"(batu), "r"(batl)); 546 #if 0 547 batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs); 548 batl = BATL(0x80000000, BAT_M, BAT_PP_RW); 549 __asm ("mtibatu 1,%0; mtibatl 1,%1; mtdbatu 1,%0; mtdbatl 1,%1" 550 :: "r"(batu), "r"(batl)); 551 #endif 552 553 /* 554 * Set the start and end of kva. 555 */ 556 virtual_avail = VM_MIN_KERNEL_ADDRESS; 557 virtual_end = VM_MAX_KERNEL_ADDRESS; 558 559 if ((pmem = OF_finddevice("/memory")) == -1) 560 panic("pmap_bootstrap: can't locate memory device"); 561 if ((sz = OF_getproplen(pmem, "available")) == -1) 562 panic("pmap_bootstrap: can't get length of available memory"); 563 if (sizeof(phys_avail) < sz) 564 panic("pmap_bootstrap: phys_avail too small"); 565 if (sizeof(regions) < sz) 566 panic("pmap_bootstrap: regions too small"); 567 bzero(regions, sz); 568 if (OF_getprop(pmem, "available", regions, sz) == -1) 569 panic("pmap_bootstrap: can't get available memory"); 570 sz /= sizeof(*regions); 571 CTR0(KTR_PMAP, "pmap_bootstrap: physical memory"); 572 qsort(regions, sz, sizeof(*regions), mr_cmp); 573 phys_avail_count = 0; 574 for (i = 0, j = 0; i < sz; i++, j += 2) { 575 CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start, 576 regions[i].mr_start + regions[i].mr_size, 577 regions[i].mr_size); 578 phys_avail[j] = regions[i].mr_start; 579 phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size; 580 phys_avail_count++; 581 } 582 583 /* 584 * Allocate PTEG table. 585 */ 586 #ifdef PTEGCOUNT 587 pmap_pteg_count = PTEGCOUNT; 588 #else 589 pmap_pteg_count = 0x1000; 590 591 while (pmap_pteg_count < physmem) 592 pmap_pteg_count <<= 1; 593 594 pmap_pteg_count >>= 1; 595 #endif /* PTEGCOUNT */ 596 597 size = pmap_pteg_count * sizeof(struct pteg); 598 CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count, 599 size); 600 pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size); 601 CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table); 602 bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg)); 603 pmap_pteg_mask = pmap_pteg_count - 1; 604 605 /* 606 * Allocate PTE overflow lists. 607 */ 608 size = sizeof(struct pvo_head) * pmap_pteg_count; 609 pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size, 610 PAGE_SIZE); 611 CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table); 612 for (i = 0; i < pmap_pteg_count; i++) 613 LIST_INIT(&pmap_pvo_table[i]); 614 615 /* 616 * Allocate the message buffer. 617 */ 618 msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0); 619 620 /* 621 * Initialise the unmanaged pvo pool. 622 */ 623 pmap_upvo_zone = &pmap_upvo_zone_store; 624 zbootinit(pmap_upvo_zone, "unmanaged pvo", sizeof (struct pvo_entry), 625 pmap_upvo_pool, PMAP_PVO_SIZE); 626 627 /* 628 * Make sure kernel vsid is allocated as well as VSID 0. 629 */ 630 pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW] 631 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW); 632 pmap_vsid_bitmap[0] |= 1; 633 634 /* 635 * Set up the OpenFirmware pmap and add it's mappings. 636 */ 637 pmap_pinit(&ofw_pmap); 638 ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT; 639 if ((chosen = OF_finddevice("/chosen")) == -1) 640 panic("pmap_bootstrap: can't find /chosen"); 641 OF_getprop(chosen, "mmu", &mmui, 4); 642 if ((mmu = OF_instance_to_package(mmui)) == -1) 643 panic("pmap_bootstrap: can't get mmu package"); 644 if ((sz = OF_getproplen(mmu, "translations")) == -1) 645 panic("pmap_bootstrap: can't get ofw translation count"); 646 if (sizeof(translations) < sz) 647 panic("pmap_bootstrap: translations too small"); 648 bzero(translations, sz); 649 if (OF_getprop(mmu, "translations", translations, sz) == -1) 650 panic("pmap_bootstrap: can't get ofw translations"); 651 CTR0(KTR_PMAP, "pmap_bootstrap: translations"); 652 qsort(translations, sz, sizeof (*translations), om_cmp); 653 for (i = 0; i < sz; i++) { 654 CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x", 655 translations[i].om_pa, translations[i].om_va, 656 translations[i].om_len); 657 658 /* Drop stuff below something? */ 659 660 /* Enter the pages? */ 661 for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) { 662 struct vm_page m; 663 664 m.phys_addr = translations[i].om_pa + off; 665 pmap_enter(&ofw_pmap, translations[i].om_va + off, &m, 666 VM_PROT_ALL, 1); 667 } 668 } 669 #ifdef SMP 670 TLBSYNC(); 671 #endif 672 673 /* 674 * Initialize the kernel pmap (which is statically allocated). 675 */ 676 for (i = 0; i < 16; i++) { 677 kernel_pmap->pm_sr[i] = EMPTY_SEGMENT; 678 } 679 kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT; 680 kernel_pmap->pm_active = ~0; 681 kernel_pmap->pm_count = 1; 682 683 /* 684 * Allocate a kernel stack with a guard page for thread0 and map it 685 * into the kernel page map. 686 */ 687 pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0); 688 kstack0_phys = pa; 689 kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE); 690 CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys, 691 kstack0); 692 virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE; 693 for (i = 0; i < KSTACK_PAGES; i++) { 694 pa = kstack0_phys + i * PAGE_SIZE; 695 va = kstack0 + i * PAGE_SIZE; 696 pmap_kenter(va, pa); 697 TLBIE(va); 698 } 699 700 /* 701 * Calculate the first and last available physical addresses. 702 */ 703 avail_start = phys_avail[0]; 704 for (i = 0; phys_avail[i + 2] != 0; i += 2) 705 ; 706 avail_end = phys_avail[i + 1]; 707 Maxmem = powerpc_btop(avail_end); 708 709 /* 710 * Allocate virtual address space for the message buffer. 711 */ 712 msgbufp = (struct msgbuf *)virtual_avail; 713 virtual_avail += round_page(MSGBUF_SIZE); 714 715 /* 716 * Initialize hardware. 717 */ 718 for (i = 0; i < 16; i++) { 719 __asm __volatile("mtsrin %0,%1" 720 :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT)); 721 } 722 __asm __volatile ("mtsr %0,%1" 723 :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT)); 724 __asm __volatile ("sync; mtsdr1 %0; isync" 725 :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10))); 726 tlbia(); 727 728 pmap_bootstrapped++; 729 } 730 731 /* 732 * Activate a user pmap. The pmap must be activated before it's address 733 * space can be accessed in any way. 734 */ 735 void 736 pmap_activate(struct thread *td) 737 { 738 pmap_t pm; 739 int i; 740 741 /* 742 * Load all the data we need up front to encourasge the compiler to 743 * not issue any loads while we have interrupts disabled below. 744 */ 745 pm = &td->td_proc->p_vmspace->vm_pmap; 746 747 KASSERT(pm->pm_active == 0, ("pmap_activate: pmap already active?")); 748 749 pm->pm_active |= PCPU_GET(cpumask); 750 751 /* 752 * XXX: Address this again later? 753 */ 754 critical_enter(); 755 756 for (i = 0; i < 16; i++) { 757 __asm __volatile("mtsr %0,%1" :: "r"(i), "r"(pm->pm_sr[i])); 758 } 759 __asm __volatile("sync; isync"); 760 761 critical_exit(); 762 } 763 764 vm_offset_t 765 pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size) 766 { 767 TODO; 768 return (0); 769 } 770 771 void 772 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired) 773 { 774 TODO; 775 } 776 777 void 778 pmap_clear_modify(vm_page_t m) 779 { 780 781 if (m->flags * PG_FICTITIOUS) 782 return; 783 pmap_clear_bit(m, PTE_CHG); 784 } 785 786 void 787 pmap_collect(void) 788 { 789 TODO; 790 } 791 792 void 793 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, 794 vm_size_t len, vm_offset_t src_addr) 795 { 796 TODO; 797 } 798 799 void 800 pmap_copy_page(vm_offset_t src, vm_offset_t dst) 801 { 802 TODO; 803 } 804 805 /* 806 * Zero a page of physical memory by temporarily mapping it into the tlb. 807 */ 808 void 809 pmap_zero_page(vm_offset_t pa) 810 { 811 caddr_t va; 812 int i; 813 814 if (pa < SEGMENT_LENGTH) { 815 va = (caddr_t) pa; 816 } else if (pmap_initialized) { 817 if (pmap_pvo_zeropage == NULL) 818 pmap_pvo_zeropage = pmap_rkva_alloc(); 819 pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL); 820 va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage); 821 } else { 822 panic("pmap_zero_page: can't zero pa %#x", pa); 823 } 824 825 bzero(va, PAGE_SIZE); 826 827 for (i = PAGE_SIZE / CACHELINESIZE; i > 0; i--) { 828 __asm __volatile("dcbz 0,%0" :: "r"(va)); 829 va += CACHELINESIZE; 830 } 831 832 if (pa >= SEGMENT_LENGTH) 833 pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL); 834 } 835 836 void 837 pmap_zero_page_area(vm_offset_t pa, int off, int size) 838 { 839 TODO; 840 } 841 842 /* 843 * Map the given physical page at the specified virtual address in the 844 * target pmap with the protection requested. If specified the page 845 * will be wired down. 846 */ 847 void 848 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, 849 boolean_t wired) 850 { 851 struct pvo_head *pvo_head; 852 vm_zone_t zone; 853 u_int pte_lo, pvo_flags; 854 int error; 855 856 if (!pmap_initialized) { 857 pvo_head = &pmap_pvo_kunmanaged; 858 zone = pmap_upvo_zone; 859 pvo_flags = 0; 860 } else { 861 pvo_head = pa_to_pvoh(m->phys_addr); 862 zone = pmap_mpvo_zone; 863 pvo_flags = PVO_MANAGED; 864 } 865 866 pte_lo = PTE_I | PTE_G; 867 868 if (prot & VM_PROT_WRITE) 869 pte_lo |= PTE_BW; 870 else 871 pte_lo |= PTE_BR; 872 873 if (prot & VM_PROT_EXECUTE) 874 pvo_flags |= PVO_EXECUTABLE; 875 876 if (wired) 877 pvo_flags |= PVO_WIRED; 878 879 critical_enter(); 880 881 error = pmap_pvo_enter(pmap, zone, pvo_head, va, m->phys_addr, pte_lo, 882 pvo_flags); 883 884 critical_exit(); 885 886 if (error == ENOENT) { 887 /* 888 * Flush the real memory from the cache. 889 */ 890 if ((pvo_flags & PVO_EXECUTABLE) && (pte_lo & PTE_I) == 0) { 891 pmap_syncicache(m->phys_addr, PAGE_SIZE); 892 } 893 } 894 } 895 896 vm_offset_t 897 pmap_extract(pmap_t pmap, vm_offset_t va) 898 { 899 TODO; 900 return (0); 901 } 902 903 /* 904 * Grow the number of kernel page table entries. Unneeded. 905 */ 906 void 907 pmap_growkernel(vm_offset_t addr) 908 { 909 } 910 911 void 912 pmap_init(vm_offset_t phys_start, vm_offset_t phys_end) 913 { 914 915 CTR(KTR_PMAP, "pmap_init"); 916 } 917 918 void 919 pmap_init2(void) 920 { 921 922 CTR(KTR_PMAP, "pmap_init2"); 923 zinitna(pmap_upvo_zone, &pmap_upvo_zone_obj, NULL, 0, PMAP_PVO_SIZE, 924 ZONE_INTERRUPT, 1); 925 pmap_mpvo_zone = zinit("managed pvo", sizeof(struct pvo_entry), 926 PMAP_PVO_SIZE, ZONE_INTERRUPT, 1); 927 pmap_initialized = TRUE; 928 } 929 930 boolean_t 931 pmap_is_modified(vm_page_t m) 932 { 933 TODO; 934 return (0); 935 } 936 937 void 938 pmap_clear_reference(vm_page_t m) 939 { 940 TODO; 941 } 942 943 int 944 pmap_ts_referenced(vm_page_t m) 945 { 946 TODO; 947 return (0); 948 } 949 950 /* 951 * Map a wired page into kernel virtual address space. 952 */ 953 void 954 pmap_kenter(vm_offset_t va, vm_offset_t pa) 955 { 956 u_int pte_lo; 957 int error; 958 int i; 959 960 #if 0 961 if (va < VM_MIN_KERNEL_ADDRESS) 962 panic("pmap_kenter: attempt to enter non-kernel address %#x", 963 va); 964 #endif 965 966 pte_lo = PTE_I | PTE_G | PTE_BW; 967 for (i = 0; phys_avail[i + 2] != 0; i += 2) { 968 if (pa >= phys_avail[i] && pa < phys_avail[i + 1]) { 969 pte_lo &= ~(PTE_I | PTE_G); 970 break; 971 } 972 } 973 974 critical_enter(); 975 976 error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone, 977 &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED); 978 979 critical_exit(); 980 981 if (error != 0 && error != ENOENT) 982 panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va, 983 pa, error); 984 985 /* 986 * Flush the real memory from the instruction cache. 987 */ 988 if ((pte_lo & (PTE_I | PTE_G)) == 0) { 989 pmap_syncicache(pa, PAGE_SIZE); 990 } 991 } 992 993 vm_offset_t 994 pmap_kextract(vm_offset_t va) 995 { 996 TODO; 997 return (0); 998 } 999 1000 void 1001 pmap_kremove(vm_offset_t va) 1002 { 1003 TODO; 1004 } 1005 1006 /* 1007 * Map a range of physical addresses into kernel virtual address space. 1008 * 1009 * The value passed in *virt is a suggested virtual address for the mapping. 1010 * Architectures which can support a direct-mapped physical to virtual region 1011 * can return the appropriate address within that region, leaving '*virt' 1012 * unchanged. We cannot and therefore do not; *virt is updated with the 1013 * first usable address after the mapped region. 1014 */ 1015 vm_offset_t 1016 pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot) 1017 { 1018 vm_offset_t sva, va; 1019 1020 sva = *virt; 1021 va = sva; 1022 for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE) 1023 pmap_kenter(va, pa_start); 1024 *virt = va; 1025 return (sva); 1026 } 1027 1028 int 1029 pmap_mincore(pmap_t pmap, vm_offset_t addr) 1030 { 1031 TODO; 1032 return (0); 1033 } 1034 1035 /* 1036 * Create the uarea for a new process. 1037 * This routine directly affects the fork perf for a process. 1038 */ 1039 void 1040 pmap_new_proc(struct proc *p) 1041 { 1042 vm_object_t upobj; 1043 vm_offset_t up; 1044 vm_page_t m; 1045 u_int i; 1046 1047 /* 1048 * Allocate the object for the upages. 1049 */ 1050 upobj = p->p_upages_obj; 1051 if (upobj == NULL) { 1052 upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES); 1053 p->p_upages_obj = upobj; 1054 } 1055 1056 /* 1057 * Get a kernel virtual address for the uarea for this process. 1058 */ 1059 up = (vm_offset_t)p->p_uarea; 1060 if (up == 0) { 1061 up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE); 1062 if (up == 0) 1063 panic("pmap_new_proc: upage allocation failed"); 1064 p->p_uarea = (struct user *)up; 1065 } 1066 1067 for (i = 0; i < UAREA_PAGES; i++) { 1068 /* 1069 * Get a uarea page. 1070 */ 1071 m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 1072 1073 /* 1074 * Wire the page. 1075 */ 1076 m->wire_count++; 1077 1078 /* 1079 * Enter the page into the kernel address space. 1080 */ 1081 pmap_kenter(up + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m)); 1082 1083 vm_page_wakeup(m); 1084 vm_page_flag_clear(m, PG_ZERO); 1085 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE); 1086 m->valid = VM_PAGE_BITS_ALL; 1087 } 1088 } 1089 1090 void 1091 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object, 1092 vm_pindex_t pindex, vm_size_t size, int limit) 1093 { 1094 TODO; 1095 } 1096 1097 /* 1098 * Lower the permission for all mappings to a given page. 1099 */ 1100 void 1101 pmap_page_protect(vm_page_t m, vm_prot_t prot) 1102 { 1103 struct pvo_head *pvo_head; 1104 struct pvo_entry *pvo, *next_pvo; 1105 struct pte *pt; 1106 1107 /* 1108 * Since the routine only downgrades protection, if the 1109 * maximal protection is desired, there isn't any change 1110 * to be made. 1111 */ 1112 if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) == 1113 (VM_PROT_READ|VM_PROT_WRITE)) 1114 return; 1115 1116 critical_enter(); 1117 1118 pvo_head = vm_page_to_pvoh(m); 1119 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) { 1120 next_pvo = LIST_NEXT(pvo, pvo_vlink); 1121 PMAP_PVO_CHECK(pvo); /* sanity check */ 1122 1123 /* 1124 * Downgrading to no mapping at all, we just remove the entry. 1125 */ 1126 if ((prot & VM_PROT_READ) == 0) { 1127 pmap_pvo_remove(pvo, -1); 1128 continue; 1129 } 1130 1131 /* 1132 * If EXEC permission is being revoked, just clear the flag 1133 * in the PVO. 1134 */ 1135 if ((prot & VM_PROT_EXECUTE) == 0) 1136 pvo->pvo_vaddr &= ~PVO_EXECUTABLE; 1137 1138 /* 1139 * If this entry is already RO, don't diddle with the page 1140 * table. 1141 */ 1142 if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) { 1143 PMAP_PVO_CHECK(pvo); 1144 continue; 1145 } 1146 1147 /* 1148 * Grab the PTE before we diddle the bits so pvo_to_pte can 1149 * verify the pte contents are as expected. 1150 */ 1151 pt = pmap_pvo_to_pte(pvo, -1); 1152 pvo->pvo_pte.pte_lo &= ~PTE_PP; 1153 pvo->pvo_pte.pte_lo |= PTE_BR; 1154 if (pt != NULL) 1155 pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr); 1156 PMAP_PVO_CHECK(pvo); /* sanity check */ 1157 } 1158 1159 critical_exit(); 1160 } 1161 1162 /* 1163 * Make the specified page pageable (or not). Unneeded. 1164 */ 1165 void 1166 pmap_pageable(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, 1167 boolean_t pageable) 1168 { 1169 } 1170 1171 boolean_t 1172 pmap_page_exists(pmap_t pmap, vm_page_t m) 1173 { 1174 TODO; 1175 return (0); 1176 } 1177 1178 static u_int pmap_vsidcontext; 1179 1180 void 1181 pmap_pinit(pmap_t pmap) 1182 { 1183 int i, mask; 1184 u_int entropy; 1185 1186 entropy = 0; 1187 __asm __volatile("mftb %0" : "=r"(entropy)); 1188 1189 /* 1190 * Allocate some segment registers for this pmap. 1191 */ 1192 pmap->pm_count = 1; 1193 for (i = 0; i < NPMAPS; i += VSID_NBPW) { 1194 u_int hash, n; 1195 1196 /* 1197 * Create a new value by mutiplying by a prime and adding in 1198 * entropy from the timebase register. This is to make the 1199 * VSID more random so that the PT hash function collides 1200 * less often. (Note that the prime casues gcc to do shifts 1201 * instead of a multiply.) 1202 */ 1203 pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy; 1204 hash = pmap_vsidcontext & (NPMAPS - 1); 1205 if (hash == 0) /* 0 is special, avoid it */ 1206 continue; 1207 n = hash >> 5; 1208 mask = 1 << (hash & (VSID_NBPW - 1)); 1209 hash = (pmap_vsidcontext & 0xfffff); 1210 if (pmap_vsid_bitmap[n] & mask) { /* collision? */ 1211 /* anything free in this bucket? */ 1212 if (pmap_vsid_bitmap[n] == 0xffffffff) { 1213 entropy = (pmap_vsidcontext >> 20); 1214 continue; 1215 } 1216 i = ffs(~pmap_vsid_bitmap[i]) - 1; 1217 mask = 1 << i; 1218 hash &= 0xfffff & ~(VSID_NBPW - 1); 1219 hash |= i; 1220 } 1221 pmap_vsid_bitmap[n] |= mask; 1222 for (i = 0; i < 16; i++) 1223 pmap->pm_sr[i] = VSID_MAKE(i, hash); 1224 return; 1225 } 1226 1227 panic("pmap_pinit: out of segments"); 1228 } 1229 1230 /* 1231 * Initialize the pmap associated with process 0. 1232 */ 1233 void 1234 pmap_pinit0(pmap_t pm) 1235 { 1236 1237 pmap_pinit(pm); 1238 bzero(&pm->pm_stats, sizeof(pm->pm_stats)); 1239 } 1240 1241 void 1242 pmap_pinit2(pmap_t pmap) 1243 { 1244 /* XXX: Remove this stub when no longer called */ 1245 } 1246 1247 void 1248 pmap_prefault(pmap_t pmap, vm_offset_t va, vm_map_entry_t entry) 1249 { 1250 TODO; 1251 } 1252 1253 void 1254 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot) 1255 { 1256 TODO; 1257 } 1258 1259 vm_offset_t 1260 pmap_phys_address(int ppn) 1261 { 1262 TODO; 1263 return (0); 1264 } 1265 1266 void 1267 pmap_qenter(vm_offset_t va, vm_page_t *m, int count) 1268 { 1269 int i; 1270 1271 for (i = 0; i < count; i++, va += PAGE_SIZE) 1272 pmap_kenter(va, VM_PAGE_TO_PHYS(m[i])); 1273 } 1274 1275 void 1276 pmap_qremove(vm_offset_t va, int count) 1277 { 1278 TODO; 1279 } 1280 1281 /* 1282 * Add a reference to the specified pmap. 1283 */ 1284 void 1285 pmap_reference(pmap_t pm) 1286 { 1287 1288 if (pm != NULL) 1289 pm->pm_count++; 1290 } 1291 1292 void 1293 pmap_release(pmap_t pmap) 1294 { 1295 TODO; 1296 } 1297 1298 void 1299 pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) 1300 { 1301 TODO; 1302 } 1303 1304 void 1305 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva) 1306 { 1307 TODO; 1308 } 1309 1310 void 1311 pmap_swapin_proc(struct proc *p) 1312 { 1313 TODO; 1314 } 1315 1316 void 1317 pmap_swapout_proc(struct proc *p) 1318 { 1319 TODO; 1320 } 1321 1322 /* 1323 * Create the kernel stack and pcb for a new thread. 1324 * This routine directly affects the fork perf for a process and 1325 * create performance for a thread. 1326 */ 1327 void 1328 pmap_new_thread(struct thread *td) 1329 { 1330 vm_object_t ksobj; 1331 vm_offset_t ks; 1332 vm_page_t m; 1333 u_int i; 1334 1335 /* 1336 * Allocate object for the kstack. 1337 */ 1338 ksobj = td->td_kstack_obj; 1339 if (ksobj == NULL) { 1340 ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES); 1341 td->td_kstack_obj = ksobj; 1342 } 1343 1344 /* 1345 * Get a kernel virtual address for the kstack for this thread. 1346 */ 1347 ks = td->td_kstack; 1348 if (ks == 0) { 1349 ks = kmem_alloc_nofault(kernel_map, 1350 (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE); 1351 if (ks == 0) 1352 panic("pmap_new_thread: kstack allocation failed"); 1353 TLBIE(ks); 1354 ks += KSTACK_GUARD_PAGES * PAGE_SIZE; 1355 td->td_kstack = ks; 1356 } 1357 1358 for (i = 0; i < KSTACK_PAGES; i++) { 1359 /* 1360 * Get a kernel stack page. 1361 */ 1362 m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 1363 1364 /* 1365 * Wire the page. 1366 */ 1367 m->wire_count++; 1368 1369 /* 1370 * Enter the page into the kernel address space. 1371 */ 1372 pmap_kenter(ks + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m)); 1373 1374 vm_page_wakeup(m); 1375 vm_page_flag_clear(m, PG_ZERO); 1376 vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE); 1377 m->valid = VM_PAGE_BITS_ALL; 1378 } 1379 } 1380 1381 void 1382 pmap_dispose_proc(struct proc *p) 1383 { 1384 TODO; 1385 } 1386 1387 void 1388 pmap_dispose_thread(struct thread *td) 1389 { 1390 TODO; 1391 } 1392 1393 void 1394 pmap_swapin_thread(struct thread *td) 1395 { 1396 TODO; 1397 } 1398 1399 void 1400 pmap_swapout_thread(struct thread *td) 1401 { 1402 TODO; 1403 } 1404 1405 /* 1406 * Allocate a physical page of memory directly from the phys_avail map. 1407 * Can only be called from pmap_bootstrap before avail start and end are 1408 * calculated. 1409 */ 1410 static vm_offset_t 1411 pmap_bootstrap_alloc(vm_size_t size, u_int align) 1412 { 1413 vm_offset_t s, e; 1414 int i, j; 1415 1416 size = round_page(size); 1417 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 1418 if (align != 0) 1419 s = (phys_avail[i] + align - 1) & ~(align - 1); 1420 else 1421 s = phys_avail[i]; 1422 e = s + size; 1423 1424 if (s < phys_avail[i] || e > phys_avail[i + 1]) 1425 continue; 1426 1427 if (s == phys_avail[i]) { 1428 phys_avail[i] += size; 1429 } else if (e == phys_avail[i + 1]) { 1430 phys_avail[i + 1] -= size; 1431 } else { 1432 for (j = phys_avail_count * 2; j > i; j -= 2) { 1433 phys_avail[j] = phys_avail[j - 2]; 1434 phys_avail[j + 1] = phys_avail[j - 1]; 1435 } 1436 1437 phys_avail[i + 3] = phys_avail[i + 1]; 1438 phys_avail[i + 1] = s; 1439 phys_avail[i + 2] = e; 1440 phys_avail_count++; 1441 } 1442 1443 return (s); 1444 } 1445 panic("pmap_bootstrap_alloc: could not allocate memory"); 1446 } 1447 1448 /* 1449 * Return an unmapped pvo for a kernel virtual address. 1450 * Used by pmap functions that operate on physical pages. 1451 */ 1452 static struct pvo_entry * 1453 pmap_rkva_alloc(void) 1454 { 1455 struct pvo_entry *pvo; 1456 struct pte *pt; 1457 vm_offset_t kva; 1458 int pteidx; 1459 1460 if (pmap_rkva_count == 0) 1461 panic("pmap_rkva_alloc: no more reserved KVAs"); 1462 1463 kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count); 1464 pmap_kenter(kva, 0); 1465 1466 pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx); 1467 1468 if (pvo == NULL) 1469 panic("pmap_kva_alloc: pmap_pvo_find_va failed"); 1470 1471 pt = pmap_pvo_to_pte(pvo, pteidx); 1472 1473 if (pt == NULL) 1474 panic("pmap_kva_alloc: pmap_pvo_to_pte failed"); 1475 1476 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr); 1477 PVO_PTEGIDX_CLR(pvo); 1478 1479 pmap_pte_overflow++; 1480 1481 return (pvo); 1482 } 1483 1484 static void 1485 pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt, 1486 int *depth_p) 1487 { 1488 struct pte *pt; 1489 1490 critical_enter(); 1491 1492 /* 1493 * If this pvo already has a valid pte, we need to save it so it can 1494 * be restored later. We then just reload the new PTE over the old 1495 * slot. 1496 */ 1497 if (saved_pt != NULL) { 1498 pt = pmap_pvo_to_pte(pvo, -1); 1499 1500 if (pt != NULL) { 1501 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr); 1502 PVO_PTEGIDX_CLR(pvo); 1503 pmap_pte_overflow++; 1504 } 1505 1506 *saved_pt = pvo->pvo_pte; 1507 1508 pvo->pvo_pte.pte_lo &= ~PTE_RPGN; 1509 } 1510 1511 pvo->pvo_pte.pte_lo |= pa; 1512 1513 if (!pmap_pte_spill(pvo->pvo_vaddr)) 1514 panic("pmap_pa_map: could not spill pvo %p", pvo); 1515 1516 if (depth_p != NULL) 1517 (*depth_p)++; 1518 1519 critical_exit(); 1520 } 1521 1522 static void 1523 pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p) 1524 { 1525 struct pte *pt; 1526 1527 critical_enter(); 1528 1529 pt = pmap_pvo_to_pte(pvo, -1); 1530 1531 if (pt != NULL) { 1532 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr); 1533 PVO_PTEGIDX_CLR(pvo); 1534 pmap_pte_overflow++; 1535 } 1536 1537 pvo->pvo_pte.pte_lo &= ~PTE_RPGN; 1538 1539 /* 1540 * If there is a saved PTE and it's valid, restore it and return. 1541 */ 1542 if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) { 1543 if (depth_p != NULL && --(*depth_p) == 0) 1544 panic("pmap_pa_unmap: restoring but depth == 0"); 1545 1546 pvo->pvo_pte = *saved_pt; 1547 1548 if (!pmap_pte_spill(pvo->pvo_vaddr)) 1549 panic("pmap_pa_unmap: could not spill pvo %p", pvo); 1550 } 1551 1552 critical_exit(); 1553 } 1554 1555 static void 1556 pmap_syncicache(vm_offset_t pa, vm_size_t len) 1557 { 1558 __syncicache((void *)pa, len); 1559 } 1560 1561 static void 1562 tlbia(void) 1563 { 1564 caddr_t i; 1565 1566 SYNC(); 1567 for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) { 1568 TLBIE(i); 1569 EIEIO(); 1570 } 1571 TLBSYNC(); 1572 SYNC(); 1573 } 1574 1575 static int 1576 pmap_pvo_enter(pmap_t pm, vm_zone_t zone, struct pvo_head *pvo_head, 1577 vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags) 1578 { 1579 struct pvo_entry *pvo; 1580 u_int sr; 1581 int first; 1582 u_int ptegidx; 1583 int i; 1584 1585 pmap_pvo_enter_calls++; 1586 1587 /* 1588 * Compute the PTE Group index. 1589 */ 1590 va &= ~ADDR_POFF; 1591 sr = va_to_sr(pm->pm_sr, va); 1592 ptegidx = va_to_pteg(sr, va); 1593 1594 critical_enter(); 1595 1596 /* 1597 * Remove any existing mapping for this page. Reuse the pvo entry if 1598 * there is a mapping. 1599 */ 1600 LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) { 1601 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) { 1602 pmap_pvo_remove(pvo, -1); 1603 break; 1604 } 1605 } 1606 1607 /* 1608 * If we aren't overwriting a mapping, try to allocate. 1609 */ 1610 critical_exit(); 1611 1612 pvo = zalloc(zone); 1613 1614 critical_enter(); 1615 1616 if (pvo == NULL) { 1617 critical_exit(); 1618 return (ENOMEM); 1619 } 1620 1621 pmap_pvo_entries++; 1622 pvo->pvo_vaddr = va; 1623 pvo->pvo_pmap = pm; 1624 LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink); 1625 pvo->pvo_vaddr &= ~ADDR_POFF; 1626 if (flags & VM_PROT_EXECUTE) 1627 pvo->pvo_vaddr |= PVO_EXECUTABLE; 1628 if (flags & PVO_WIRED) 1629 pvo->pvo_vaddr |= PVO_WIRED; 1630 if (pvo_head != &pmap_pvo_kunmanaged) 1631 pvo->pvo_vaddr |= PVO_MANAGED; 1632 pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo); 1633 1634 /* 1635 * Remember if the list was empty and therefore will be the first 1636 * item. 1637 */ 1638 first = LIST_FIRST(pvo_head) == NULL; 1639 1640 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink); 1641 if (pvo->pvo_pte.pte_lo & PVO_WIRED) 1642 pvo->pvo_pmap->pm_stats.wired_count++; 1643 pvo->pvo_pmap->pm_stats.resident_count++; 1644 1645 /* 1646 * We hope this succeeds but it isn't required. 1647 */ 1648 i = pmap_pte_insert(ptegidx, &pvo->pvo_pte); 1649 if (i >= 0) { 1650 PVO_PTEGIDX_SET(pvo, i); 1651 } else { 1652 panic("pmap_pvo_enter: overflow"); 1653 pmap_pte_overflow++; 1654 } 1655 1656 critical_exit(); 1657 1658 return (first ? ENOENT : 0); 1659 } 1660 1661 static void 1662 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx) 1663 { 1664 struct pte *pt; 1665 1666 /* 1667 * If there is an active pte entry, we need to deactivate it (and 1668 * save the ref & cfg bits). 1669 */ 1670 pt = pmap_pvo_to_pte(pvo, pteidx); 1671 if (pt != NULL) { 1672 pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr); 1673 PVO_PTEGIDX_CLR(pvo); 1674 } else { 1675 pmap_pte_overflow--; 1676 } 1677 1678 /* 1679 * Update our statistics. 1680 */ 1681 pvo->pvo_pmap->pm_stats.resident_count--; 1682 if (pvo->pvo_pte.pte_lo & PVO_WIRED) 1683 pvo->pvo_pmap->pm_stats.wired_count--; 1684 1685 /* 1686 * Save the REF/CHG bits into their cache if the page is managed. 1687 */ 1688 if (pvo->pvo_vaddr & PVO_MANAGED) { 1689 struct vm_page *pg; 1690 1691 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo * PTE_RPGN); 1692 if (pg != NULL) { 1693 pmap_attr_save(pg, pvo->pvo_pte.pte_lo & 1694 (PTE_REF | PTE_CHG)); 1695 } 1696 } 1697 1698 /* 1699 * Remove this PVO from the PV list. 1700 */ 1701 LIST_REMOVE(pvo, pvo_vlink); 1702 1703 /* 1704 * Remove this from the overflow list and return it to the pool 1705 * if we aren't going to reuse it. 1706 */ 1707 LIST_REMOVE(pvo, pvo_olink); 1708 zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone : pmap_upvo_zone, 1709 pvo); 1710 pmap_pvo_entries--; 1711 pmap_pvo_remove_calls++; 1712 } 1713 1714 static __inline int 1715 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx) 1716 { 1717 int pteidx; 1718 1719 /* 1720 * We can find the actual pte entry without searching by grabbing 1721 * the PTEG index from 3 unused bits in pte_lo[11:9] and by 1722 * noticing the HID bit. 1723 */ 1724 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo); 1725 if (pvo->pvo_pte.pte_hi & PTE_HID) 1726 pteidx ^= pmap_pteg_mask * 8; 1727 1728 return (pteidx); 1729 } 1730 1731 static struct pvo_entry * 1732 pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p) 1733 { 1734 struct pvo_entry *pvo; 1735 int ptegidx; 1736 u_int sr; 1737 1738 va &= ~ADDR_POFF; 1739 sr = va_to_sr(pm->pm_sr, va); 1740 ptegidx = va_to_pteg(sr, va); 1741 1742 LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) { 1743 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) { 1744 if (pteidx_p) 1745 *pteidx_p = pmap_pvo_pte_index(pvo, ptegidx); 1746 return (pvo); 1747 } 1748 } 1749 1750 return (NULL); 1751 } 1752 1753 static struct pte * 1754 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx) 1755 { 1756 struct pte *pt; 1757 1758 /* 1759 * If we haven't been supplied the ptegidx, calculate it. 1760 */ 1761 if (pteidx == -1) { 1762 int ptegidx; 1763 u_int sr; 1764 1765 sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr); 1766 ptegidx = va_to_pteg(sr, pvo->pvo_vaddr); 1767 pteidx = pmap_pvo_pte_index(pvo, ptegidx); 1768 } 1769 1770 pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7]; 1771 1772 if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) { 1773 panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no " 1774 "valid pte index", pvo); 1775 } 1776 1777 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) { 1778 panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo " 1779 "pvo but no valid pte", pvo); 1780 } 1781 1782 if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) { 1783 if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) { 1784 panic("pmap_pvo_to_pte: pvo %p has valid pte in " 1785 "pmap_pteg_table %p but invalid in pvo", pvo, pt); 1786 } 1787 1788 if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF)) 1789 != 0) { 1790 panic("pmap_pvo_to_pte: pvo %p pte does not match " 1791 "pte %p in pmap_pteg_table", pvo, pt); 1792 } 1793 1794 return (pt); 1795 } 1796 1797 if (pvo->pvo_pte.pte_hi & PTE_VALID) { 1798 panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in " 1799 "pmap_pteg_table but valid in pvo", pvo, pt); 1800 } 1801 1802 return (NULL); 1803 } 1804 1805 /* 1806 * XXX: THIS STUFF SHOULD BE IN pte.c? 1807 */ 1808 int 1809 pmap_pte_spill(vm_offset_t addr) 1810 { 1811 struct pvo_entry *source_pvo, *victim_pvo; 1812 struct pvo_entry *pvo; 1813 int ptegidx, i, j; 1814 u_int sr; 1815 struct pteg *pteg; 1816 struct pte *pt; 1817 1818 pmap_pte_spills++; 1819 1820 __asm __volatile("mfsrin %0,%1" : "=r"(sr) : "r"(addr)); 1821 ptegidx = va_to_pteg(sr, addr); 1822 1823 /* 1824 * Have to substitute some entry. Use the primary hash for this. 1825 * Use low bits of timebase as random generator. 1826 */ 1827 pteg = &pmap_pteg_table[ptegidx]; 1828 __asm __volatile("mftb %0" : "=r"(i)); 1829 i &= 7; 1830 pt = &pteg->pt[i]; 1831 1832 source_pvo = NULL; 1833 victim_pvo = NULL; 1834 LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) { 1835 /* 1836 * We need to find a pvo entry for this address. 1837 */ 1838 PMAP_PVO_CHECK(pvo); 1839 if (source_pvo == NULL && 1840 pmap_pte_match(&pvo->pvo_pte, sr, addr, 1841 pvo->pvo_pte.pte_hi & PTE_HID)) { 1842 /* 1843 * Now found an entry to be spilled into the pteg. 1844 * The PTE is now valid, so we know it's active. 1845 */ 1846 j = pmap_pte_insert(ptegidx, &pvo->pvo_pte); 1847 1848 if (j >= 0) { 1849 PVO_PTEGIDX_SET(pvo, j); 1850 pmap_pte_overflow--; 1851 PMAP_PVO_CHECK(pvo); 1852 return (1); 1853 } 1854 1855 source_pvo = pvo; 1856 1857 if (victim_pvo != NULL) 1858 break; 1859 } 1860 1861 /* 1862 * We also need the pvo entry of the victim we are replacing 1863 * so save the R & C bits of the PTE. 1864 */ 1865 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL && 1866 pmap_pte_compare(pt, &pvo->pvo_pte)) { 1867 victim_pvo = pvo; 1868 if (source_pvo != NULL) 1869 break; 1870 } 1871 } 1872 1873 if (source_pvo == NULL) 1874 return (0); 1875 1876 if (victim_pvo == NULL) { 1877 if ((pt->pte_hi & PTE_HID) == 0) 1878 panic("pmap_pte_spill: victim p-pte (%p) has no pvo" 1879 "entry", pt); 1880 1881 /* 1882 * If this is a secondary PTE, we need to search it's primary 1883 * pvo bucket for the matching PVO. 1884 */ 1885 LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask], 1886 pvo_olink) { 1887 PMAP_PVO_CHECK(pvo); 1888 /* 1889 * We also need the pvo entry of the victim we are 1890 * replacing so save the R & C bits of the PTE. 1891 */ 1892 if (pmap_pte_compare(pt, &pvo->pvo_pte)) { 1893 victim_pvo = pvo; 1894 break; 1895 } 1896 } 1897 1898 if (victim_pvo == NULL) 1899 panic("pmap_pte_spill: victim s-pte (%p) has no pvo" 1900 "entry", pt); 1901 } 1902 1903 /* 1904 * We are invalidating the TLB entry for the EA we are replacing even 1905 * though it's valid. If we don't, we lose any ref/chg bit changes 1906 * contained in the TLB entry. 1907 */ 1908 source_pvo->pvo_pte.pte_hi &= ~PTE_HID; 1909 1910 pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr); 1911 pmap_pte_set(pt, &source_pvo->pvo_pte); 1912 1913 PVO_PTEGIDX_CLR(victim_pvo); 1914 PVO_PTEGIDX_SET(source_pvo, i); 1915 pmap_pte_replacements++; 1916 1917 PMAP_PVO_CHECK(victim_pvo); 1918 PMAP_PVO_CHECK(source_pvo); 1919 1920 return (1); 1921 } 1922 1923 static int 1924 pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt) 1925 { 1926 struct pte *pt; 1927 int i; 1928 1929 /* 1930 * First try primary hash. 1931 */ 1932 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) { 1933 if ((pt->pte_hi & PTE_VALID) == 0) { 1934 pvo_pt->pte_hi &= ~PTE_HID; 1935 pmap_pte_set(pt, pvo_pt); 1936 return (i); 1937 } 1938 } 1939 1940 /* 1941 * Now try secondary hash. 1942 */ 1943 ptegidx ^= pmap_pteg_mask; 1944 ptegidx++; 1945 for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) { 1946 if ((pt->pte_hi & PTE_VALID) == 0) { 1947 pvo_pt->pte_hi |= PTE_HID; 1948 pmap_pte_set(pt, pvo_pt); 1949 return (i); 1950 } 1951 } 1952 1953 panic("pmap_pte_insert: overflow"); 1954 return (-1); 1955 } 1956 1957 static boolean_t 1958 pmap_query_bit(vm_page_t m, int ptebit) 1959 { 1960 struct pvo_entry *pvo; 1961 struct pte *pt; 1962 1963 if (pmap_attr_fetch(m) & ptebit) 1964 return (TRUE); 1965 1966 critical_enter(); 1967 1968 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 1969 PMAP_PVO_CHECK(pvo); /* sanity check */ 1970 1971 /* 1972 * See if we saved the bit off. If so, cache it and return 1973 * success. 1974 */ 1975 if (pvo->pvo_pte.pte_lo & ptebit) { 1976 pmap_attr_save(m, ptebit); 1977 PMAP_PVO_CHECK(pvo); /* sanity check */ 1978 critical_exit(); 1979 return (TRUE); 1980 } 1981 } 1982 1983 /* 1984 * No luck, now go through the hard part of looking at the PTEs 1985 * themselves. Sync so that any pending REF/CHG bits are flushed to 1986 * the PTEs. 1987 */ 1988 SYNC(); 1989 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 1990 PMAP_PVO_CHECK(pvo); /* sanity check */ 1991 1992 /* 1993 * See if this pvo has a valid PTE. if so, fetch the 1994 * REF/CHG bits from the valid PTE. If the appropriate 1995 * ptebit is set, cache it and return success. 1996 */ 1997 pt = pmap_pvo_to_pte(pvo, -1); 1998 if (pt != NULL) { 1999 pmap_pte_synch(pt, &pvo->pvo_pte); 2000 if (pvo->pvo_pte.pte_lo & ptebit) { 2001 pmap_attr_save(m, ptebit); 2002 PMAP_PVO_CHECK(pvo); /* sanity check */ 2003 critical_exit(); 2004 return (TRUE); 2005 } 2006 } 2007 } 2008 2009 critical_exit(); 2010 return (TRUE); 2011 } 2012 2013 static boolean_t 2014 pmap_clear_bit(vm_page_t m, int ptebit) 2015 { 2016 struct pvo_entry *pvo; 2017 struct pte *pt; 2018 int rv; 2019 2020 critical_enter(); 2021 2022 /* 2023 * Clear the cached value. 2024 */ 2025 rv = pmap_attr_fetch(m); 2026 pmap_attr_clear(m, ptebit); 2027 2028 /* 2029 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so 2030 * we can reset the right ones). note that since the pvo entries and 2031 * list heads are accessed via BAT0 and are never placed in the page 2032 * table, we don't have to worry about further accesses setting the 2033 * REF/CHG bits. 2034 */ 2035 SYNC(); 2036 2037 /* 2038 * For each pvo entry, clear the pvo's ptebit. If this pvo has a 2039 * valid pte clear the ptebit from the valid pte. 2040 */ 2041 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2042 PMAP_PVO_CHECK(pvo); /* sanity check */ 2043 pt = pmap_pvo_to_pte(pvo, -1); 2044 if (pt != NULL) { 2045 pmap_pte_synch(pt, &pvo->pvo_pte); 2046 if (pvo->pvo_pte.pte_lo & ptebit) 2047 pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit); 2048 } 2049 rv |= pvo->pvo_pte.pte_lo; 2050 pvo->pvo_pte.pte_lo &= ~ptebit; 2051 PMAP_PVO_CHECK(pvo); /* sanity check */ 2052 } 2053 2054 critical_exit(); 2055 return ((rv & ptebit) != 0); 2056 } 2057