xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision e0c27215058b5786c78fcfb3963eebe61a989511)
1 /*
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 /*
97  * Manages physical address maps.
98  *
99  * In addition to hardware address maps, this module is called upon to
100  * provide software-use-only maps which may or may not be stored in the
101  * same form as hardware maps.  These pseudo-maps are used to store
102  * intermediate results from copy operations to and from address spaces.
103  *
104  * Since the information managed by this module is also stored by the
105  * logical address mapping module, this module may throw away valid virtual
106  * to physical mappings at almost any time.  However, invalidations of
107  * mappings must be done as requested.
108  *
109  * In order to cope with hardware architectures which make virtual to
110  * physical map invalidates expensive, this module may delay invalidate
111  * reduced protection operations until such time as they are actually
112  * necessary.  This module is given full information as to which processors
113  * are currently using which maps, and to when physical maps must be made
114  * correct.
115  */
116 
117 #include <sys/param.h>
118 #include <sys/kernel.h>
119 #include <sys/ktr.h>
120 #include <sys/lock.h>
121 #include <sys/msgbuf.h>
122 #include <sys/mutex.h>
123 #include <sys/proc.h>
124 #include <sys/sysctl.h>
125 #include <sys/systm.h>
126 #include <sys/vmmeter.h>
127 
128 #include <dev/ofw/openfirm.h>
129 
130 #include <vm/vm.h>
131 #include <vm/vm_param.h>
132 #include <vm/vm_kern.h>
133 #include <vm/vm_page.h>
134 #include <vm/vm_map.h>
135 #include <vm/vm_object.h>
136 #include <vm/vm_extern.h>
137 #include <vm/vm_pageout.h>
138 #include <vm/vm_pager.h>
139 #include <vm/uma.h>
140 
141 #include <machine/powerpc.h>
142 #include <machine/bat.h>
143 #include <machine/frame.h>
144 #include <machine/md_var.h>
145 #include <machine/psl.h>
146 #include <machine/pte.h>
147 #include <machine/sr.h>
148 
149 #define	PMAP_DEBUG
150 
151 #define TODO	panic("%s: not implemented", __func__);
152 
153 #define	PMAP_LOCK(pm)
154 #define	PMAP_UNLOCK(pm)
155 
156 #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
157 #define	TLBSYNC()	__asm __volatile("tlbsync");
158 #define	SYNC()		__asm __volatile("sync");
159 #define	EIEIO()		__asm __volatile("eieio");
160 
161 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
162 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
163 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
164 
165 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
166 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
167 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
168 #define	PVO_MANAGED		0x0020		/* PVO entry is managed */
169 #define	PVO_EXECUTABLE		0x0040		/* PVO entry is executable */
170 #define	PVO_BOOTSTRAP		0x0080		/* PVO entry allocated during
171 						   bootstrap */
172 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
173 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
174 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
175 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
176 #define	PVO_PTEGIDX_CLR(pvo)	\
177 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
178 #define	PVO_PTEGIDX_SET(pvo, i)	\
179 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
180 
181 #define	PMAP_PVO_CHECK(pvo)
182 
183 struct ofw_map {
184 	vm_offset_t	om_va;
185 	vm_size_t	om_len;
186 	vm_offset_t	om_pa;
187 	u_int		om_mode;
188 };
189 
190 int	pmap_bootstrapped = 0;
191 
192 /*
193  * Virtual and physical address of message buffer.
194  */
195 struct		msgbuf *msgbufp;
196 vm_offset_t	msgbuf_phys;
197 
198 /*
199  * Physical addresses of first and last available physical page.
200  */
201 vm_offset_t avail_start;
202 vm_offset_t avail_end;
203 
204 int pmap_pagedaemon_waken;
205 
206 /*
207  * Map of physical memory regions.
208  */
209 vm_offset_t	phys_avail[128];
210 u_int		phys_avail_count;
211 static struct	mem_region *regions;
212 static struct	mem_region *pregions;
213 int		regions_sz, pregions_sz;
214 static struct	ofw_map *translations;
215 
216 /*
217  * First and last available kernel virtual addresses.
218  */
219 vm_offset_t virtual_avail;
220 vm_offset_t virtual_end;
221 vm_offset_t kernel_vm_end;
222 
223 /*
224  * Kernel pmap.
225  */
226 struct pmap kernel_pmap_store;
227 extern struct pmap ofw_pmap;
228 
229 /*
230  * PTEG data.
231  */
232 static struct	pteg *pmap_pteg_table;
233 u_int		pmap_pteg_count;
234 u_int		pmap_pteg_mask;
235 
236 /*
237  * PVO data.
238  */
239 struct	pvo_head *pmap_pvo_table;		/* pvo entries by pteg index */
240 struct	pvo_head pmap_pvo_kunmanaged =
241     LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
242 struct	pvo_head pmap_pvo_unmanaged =
243     LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
244 
245 uma_zone_t	pmap_upvo_zone;	/* zone for pvo entries for unmanaged pages */
246 uma_zone_t	pmap_mpvo_zone;	/* zone for pvo entries for managed pages */
247 struct		vm_object pmap_upvo_zone_obj;
248 struct		vm_object pmap_mpvo_zone_obj;
249 static vm_object_t	pmap_pvo_obj;
250 static u_int		pmap_pvo_count;
251 
252 #define	BPVO_POOL_SIZE	32768
253 static struct	pvo_entry *pmap_bpvo_pool;
254 static int	pmap_bpvo_pool_index = 0;
255 
256 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
257 static u_int	pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
258 
259 static boolean_t pmap_initialized = FALSE;
260 
261 /*
262  * Statistics.
263  */
264 u_int	pmap_pte_valid = 0;
265 u_int	pmap_pte_overflow = 0;
266 u_int	pmap_pte_replacements = 0;
267 u_int	pmap_pvo_entries = 0;
268 u_int	pmap_pvo_enter_calls = 0;
269 u_int	pmap_pvo_remove_calls = 0;
270 u_int	pmap_pte_spills = 0;
271 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
272     0, "");
273 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
274     &pmap_pte_overflow, 0, "");
275 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
276     &pmap_pte_replacements, 0, "");
277 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
278     0, "");
279 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
280     &pmap_pvo_enter_calls, 0, "");
281 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
282     &pmap_pvo_remove_calls, 0, "");
283 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
284     &pmap_pte_spills, 0, "");
285 
286 struct	pvo_entry *pmap_pvo_zeropage;
287 
288 vm_offset_t	pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
289 u_int		pmap_rkva_count = 4;
290 
291 /*
292  * Allocate physical memory for use in pmap_bootstrap.
293  */
294 static vm_offset_t	pmap_bootstrap_alloc(vm_size_t, u_int);
295 
296 /*
297  * PTE calls.
298  */
299 static int		pmap_pte_insert(u_int, struct pte *);
300 
301 /*
302  * PVO calls.
303  */
304 static int	pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
305 		    vm_offset_t, vm_offset_t, u_int, int);
306 static void	pmap_pvo_remove(struct pvo_entry *, int);
307 static struct	pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
308 static struct	pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
309 
310 /*
311  * Utility routines.
312  */
313 static void *		pmap_pvo_allocf(uma_zone_t, int, u_int8_t *, int);
314 static struct		pvo_entry *pmap_rkva_alloc(void);
315 static void		pmap_pa_map(struct pvo_entry *, vm_offset_t,
316 			    struct pte *, int *);
317 static void		pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
318 static void		pmap_syncicache(vm_offset_t, vm_size_t);
319 static boolean_t	pmap_query_bit(vm_page_t, int);
320 static u_int		pmap_clear_bit(vm_page_t, int, int *);
321 static void		tlbia(void);
322 
323 static __inline int
324 va_to_sr(u_int *sr, vm_offset_t va)
325 {
326 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
327 }
328 
329 static __inline u_int
330 va_to_pteg(u_int sr, vm_offset_t addr)
331 {
332 	u_int hash;
333 
334 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
335 	    ADDR_PIDX_SHFT);
336 	return (hash & pmap_pteg_mask);
337 }
338 
339 static __inline struct pvo_head *
340 pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
341 {
342 	struct	vm_page *pg;
343 
344 	pg = PHYS_TO_VM_PAGE(pa);
345 
346 	if (pg_p != NULL)
347 		*pg_p = pg;
348 
349 	if (pg == NULL)
350 		return (&pmap_pvo_unmanaged);
351 
352 	return (&pg->md.mdpg_pvoh);
353 }
354 
355 static __inline struct pvo_head *
356 vm_page_to_pvoh(vm_page_t m)
357 {
358 
359 	return (&m->md.mdpg_pvoh);
360 }
361 
362 static __inline void
363 pmap_attr_clear(vm_page_t m, int ptebit)
364 {
365 
366 	m->md.mdpg_attrs &= ~ptebit;
367 }
368 
369 static __inline int
370 pmap_attr_fetch(vm_page_t m)
371 {
372 
373 	return (m->md.mdpg_attrs);
374 }
375 
376 static __inline void
377 pmap_attr_save(vm_page_t m, int ptebit)
378 {
379 
380 	m->md.mdpg_attrs |= ptebit;
381 }
382 
383 static __inline int
384 pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
385 {
386 	if (pt->pte_hi == pvo_pt->pte_hi)
387 		return (1);
388 
389 	return (0);
390 }
391 
392 static __inline int
393 pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
394 {
395 	return (pt->pte_hi & ~PTE_VALID) ==
396 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
397 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
398 }
399 
400 static __inline void
401 pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
402 {
403 	/*
404 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
405 	 * set when the real pte is set in memory.
406 	 *
407 	 * Note: Don't set the valid bit for correct operation of tlb update.
408 	 */
409 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
410 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
411 	pt->pte_lo = pte_lo;
412 }
413 
414 static __inline void
415 pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
416 {
417 
418 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
419 }
420 
421 static __inline void
422 pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
423 {
424 
425 	/*
426 	 * As shown in Section 7.6.3.2.3
427 	 */
428 	pt->pte_lo &= ~ptebit;
429 	TLBIE(va);
430 	EIEIO();
431 	TLBSYNC();
432 	SYNC();
433 }
434 
435 static __inline void
436 pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
437 {
438 
439 	pvo_pt->pte_hi |= PTE_VALID;
440 
441 	/*
442 	 * Update the PTE as defined in section 7.6.3.1.
443 	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
444 	 * been saved so this routine can restore them (if desired).
445 	 */
446 	pt->pte_lo = pvo_pt->pte_lo;
447 	EIEIO();
448 	pt->pte_hi = pvo_pt->pte_hi;
449 	SYNC();
450 	pmap_pte_valid++;
451 }
452 
453 static __inline void
454 pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
455 {
456 
457 	pvo_pt->pte_hi &= ~PTE_VALID;
458 
459 	/*
460 	 * Force the reg & chg bits back into the PTEs.
461 	 */
462 	SYNC();
463 
464 	/*
465 	 * Invalidate the pte.
466 	 */
467 	pt->pte_hi &= ~PTE_VALID;
468 
469 	SYNC();
470 	TLBIE(va);
471 	EIEIO();
472 	TLBSYNC();
473 	SYNC();
474 
475 	/*
476 	 * Save the reg & chg bits.
477 	 */
478 	pmap_pte_synch(pt, pvo_pt);
479 	pmap_pte_valid--;
480 }
481 
482 static __inline void
483 pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
484 {
485 
486 	/*
487 	 * Invalidate the PTE
488 	 */
489 	pmap_pte_unset(pt, pvo_pt, va);
490 	pmap_pte_set(pt, pvo_pt);
491 }
492 
493 /*
494  * Quick sort callout for comparing memory regions.
495  */
496 static int	mr_cmp(const void *a, const void *b);
497 static int	om_cmp(const void *a, const void *b);
498 
499 static int
500 mr_cmp(const void *a, const void *b)
501 {
502 	const struct	mem_region *regiona;
503 	const struct	mem_region *regionb;
504 
505 	regiona = a;
506 	regionb = b;
507 	if (regiona->mr_start < regionb->mr_start)
508 		return (-1);
509 	else if (regiona->mr_start > regionb->mr_start)
510 		return (1);
511 	else
512 		return (0);
513 }
514 
515 static int
516 om_cmp(const void *a, const void *b)
517 {
518 	const struct	ofw_map *mapa;
519 	const struct	ofw_map *mapb;
520 
521 	mapa = a;
522 	mapb = b;
523 	if (mapa->om_pa < mapb->om_pa)
524 		return (-1);
525 	else if (mapa->om_pa > mapb->om_pa)
526 		return (1);
527 	else
528 		return (0);
529 }
530 
531 void
532 pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
533 {
534 	ihandle_t	mmui;
535 	phandle_t	chosen, mmu;
536 	int		sz;
537 	int		i, j;
538 	int		ofw_mappings;
539 	vm_size_t	size, physsz;
540 	vm_offset_t	pa, va, off;
541 	u_int		batl, batu;
542 
543         /*
544          * Set up BAT0 to map the lowest 256 MB area
545          */
546         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
547         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
548 
549         /*
550          * Map PCI memory space.
551          */
552         battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
553         battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
554 
555         battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
556         battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
557 
558         battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
559         battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
560 
561         battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
562         battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
563 
564         /*
565          * Map obio devices.
566          */
567         battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
568         battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
569 
570 	/*
571 	 * Use an IBAT and a DBAT to map the bottom segment of memory
572 	 * where we are.
573 	 */
574 	batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
575 	batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
576 	__asm ("mtibatu 0,%0; mtibatl 0,%1; mtdbatu 0,%0; mtdbatl 0,%1"
577 	    :: "r"(batu), "r"(batl));
578 
579 #if 0
580 	/* map frame buffer */
581 	batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
582 	batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
583 	__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
584 	    :: "r"(batu), "r"(batl));
585 #endif
586 
587 #if 1
588 	/* map pci space */
589 	batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
590 	batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
591 	__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
592 	    :: "r"(batu), "r"(batl));
593 #endif
594 
595 	/*
596 	 * Set the start and end of kva.
597 	 */
598 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
599 	virtual_end = VM_MAX_KERNEL_ADDRESS;
600 
601 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
602 	CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
603 
604 	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
605 	for (i = 0; i < pregions_sz; i++) {
606 		vm_offset_t pa;
607 		vm_offset_t end;
608 
609 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
610 			pregions[i].mr_start,
611 			pregions[i].mr_start + pregions[i].mr_size,
612 			pregions[i].mr_size);
613 		/*
614 		 * Install entries into the BAT table to allow all
615 		 * of physmem to be convered by on-demand BAT entries.
616 		 * The loop will sometimes set the same battable element
617 		 * twice, but that's fine since they won't be used for
618 		 * a while yet.
619 		 */
620 		pa = pregions[i].mr_start & 0xf0000000;
621 		end = pregions[i].mr_start + pregions[i].mr_size;
622 		do {
623                         u_int n = pa >> ADDR_SR_SHFT;
624 
625 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
626 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
627 			pa += SEGMENT_LENGTH;
628 		} while (pa < end);
629 	}
630 
631 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
632 		panic("pmap_bootstrap: phys_avail too small");
633 	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
634 	phys_avail_count = 0;
635 	physsz = 0;
636 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
637 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
638 		    regions[i].mr_start + regions[i].mr_size,
639 		    regions[i].mr_size);
640 		phys_avail[j] = regions[i].mr_start;
641 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
642 		phys_avail_count++;
643 		physsz += regions[i].mr_size;
644 	}
645 	physmem = btoc(physsz);
646 
647 	/*
648 	 * Allocate PTEG table.
649 	 */
650 #ifdef PTEGCOUNT
651 	pmap_pteg_count = PTEGCOUNT;
652 #else
653 	pmap_pteg_count = 0x1000;
654 
655 	while (pmap_pteg_count < physmem)
656 		pmap_pteg_count <<= 1;
657 
658 	pmap_pteg_count >>= 1;
659 #endif /* PTEGCOUNT */
660 
661 	size = pmap_pteg_count * sizeof(struct pteg);
662 	CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
663 	    size);
664 	pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
665 	CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
666 	bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
667 	pmap_pteg_mask = pmap_pteg_count - 1;
668 
669 	/*
670 	 * Allocate pv/overflow lists.
671 	 */
672 	size = sizeof(struct pvo_head) * pmap_pteg_count;
673 	pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
674 	    PAGE_SIZE);
675 	CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
676 	for (i = 0; i < pmap_pteg_count; i++)
677 		LIST_INIT(&pmap_pvo_table[i]);
678 
679 	/*
680 	 * Allocate the message buffer.
681 	 */
682 	msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
683 
684 	/*
685 	 * Initialise the unmanaged pvo pool.
686 	 */
687 	pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(
688 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
689 	pmap_bpvo_pool_index = 0;
690 
691 	/*
692 	 * Make sure kernel vsid is allocated as well as VSID 0.
693 	 */
694 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
695 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
696 	pmap_vsid_bitmap[0] |= 1;
697 
698 	/*
699 	 * Set up the OpenFirmware pmap and add it's mappings.
700 	 */
701 	pmap_pinit(&ofw_pmap);
702 	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
703 	if ((chosen = OF_finddevice("/chosen")) == -1)
704 		panic("pmap_bootstrap: can't find /chosen");
705 	OF_getprop(chosen, "mmu", &mmui, 4);
706 	if ((mmu = OF_instance_to_package(mmui)) == -1)
707 		panic("pmap_bootstrap: can't get mmu package");
708 	if ((sz = OF_getproplen(mmu, "translations")) == -1)
709 		panic("pmap_bootstrap: can't get ofw translation count");
710 	translations = NULL;
711 	for (i = 0; phys_avail[i + 2] != 0; i += 2) {
712 		if (phys_avail[i + 1] >= sz)
713 			translations = (struct ofw_map *)phys_avail[i];
714 	}
715 	if (translations == NULL)
716 		panic("pmap_bootstrap: no space to copy translations");
717 	bzero(translations, sz);
718 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
719 		panic("pmap_bootstrap: can't get ofw translations");
720 	CTR0(KTR_PMAP, "pmap_bootstrap: translations");
721 	sz /= sizeof(*translations);
722 	qsort(translations, sz, sizeof (*translations), om_cmp);
723 	for (i = 0, ofw_mappings = 0; i < sz; i++) {
724 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
725 		    translations[i].om_pa, translations[i].om_va,
726 		    translations[i].om_len);
727 
728 		/*
729 		 * If the mapping is 1:1, let the RAM and device on-demand
730 		 * BAT tables take care of the translation.
731 		 */
732 		if (translations[i].om_va == translations[i].om_pa)
733 			continue;
734 
735 		/* Enter the pages */
736 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
737 			struct	vm_page m;
738 
739 			m.phys_addr = translations[i].om_pa + off;
740 			pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
741 				   VM_PROT_ALL, 1);
742 			ofw_mappings++;
743 		}
744 	}
745 #ifdef SMP
746 	TLBSYNC();
747 #endif
748 
749 	/*
750 	 * Initialize the kernel pmap (which is statically allocated).
751 	 */
752 	for (i = 0; i < 16; i++) {
753 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
754 	}
755 	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
756 	kernel_pmap->pm_active = ~0;
757 
758 	/*
759 	 * Allocate a kernel stack with a guard page for thread0 and map it
760 	 * into the kernel page map.
761 	 */
762 	pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
763 	kstack0_phys = pa;
764 	kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
765 	CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
766 	    kstack0);
767 	virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
768 	for (i = 0; i < KSTACK_PAGES; i++) {
769 		pa = kstack0_phys + i * PAGE_SIZE;
770 		va = kstack0 + i * PAGE_SIZE;
771 		pmap_kenter(va, pa);
772 		TLBIE(va);
773 	}
774 
775 	/*
776 	 * Calculate the first and last available physical addresses.
777 	 */
778 	avail_start = phys_avail[0];
779 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
780 		;
781 	avail_end = phys_avail[i + 1];
782 	Maxmem = powerpc_btop(avail_end);
783 
784 	/*
785 	 * Allocate virtual address space for the message buffer.
786 	 */
787 	msgbufp = (struct msgbuf *)virtual_avail;
788 	virtual_avail += round_page(MSGBUF_SIZE);
789 
790 	/*
791 	 * Initialize hardware.
792 	 */
793 	for (i = 0; i < 16; i++) {
794 		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
795 	}
796 	__asm __volatile ("mtsr %0,%1"
797 	    :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
798 	__asm __volatile ("sync; mtsdr1 %0; isync"
799 	    :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
800 	tlbia();
801 
802 	pmap_bootstrapped++;
803 }
804 
805 /*
806  * Activate a user pmap.  The pmap must be activated before it's address
807  * space can be accessed in any way.
808  */
809 void
810 pmap_activate(struct thread *td)
811 {
812 	pmap_t	pm, pmr;
813 
814 	/*
815 	 * Load all the data we need up front to encourage the compiler to
816 	 * not issue any loads while we have interrupts disabled below.
817 	 */
818 	pm = &td->td_proc->p_vmspace->vm_pmap;
819 
820 	if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL)
821 		pmr = pm;
822 
823 	pm->pm_active |= PCPU_GET(cpumask);
824 	PCPU_SET(curpmap, pmr);
825 }
826 
827 void
828 pmap_deactivate(struct thread *td)
829 {
830 	pmap_t	pm;
831 
832 	pm = &td->td_proc->p_vmspace->vm_pmap;
833 	pm->pm_active &= ~(PCPU_GET(cpumask));
834 	PCPU_SET(curpmap, NULL);
835 }
836 
837 vm_offset_t
838 pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
839 {
840 
841 	return (va);
842 }
843 
844 void
845 pmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired)
846 {
847 	struct	pvo_entry *pvo;
848 
849 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
850 
851 	if (pvo != NULL) {
852 		if (wired) {
853 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
854 				pm->pm_stats.wired_count++;
855 			pvo->pvo_vaddr |= PVO_WIRED;
856 		} else {
857 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
858 				pm->pm_stats.wired_count--;
859 			pvo->pvo_vaddr &= ~PVO_WIRED;
860 		}
861 	}
862 }
863 
864 void
865 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
866 	  vm_size_t len, vm_offset_t src_addr)
867 {
868 
869 	/*
870 	 * This is not needed as it's mainly an optimisation.
871 	 * It may want to be implemented later though.
872 	 */
873 }
874 
875 void
876 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
877 {
878 	vm_offset_t	dst;
879 	vm_offset_t	src;
880 
881 	dst = VM_PAGE_TO_PHYS(mdst);
882 	src = VM_PAGE_TO_PHYS(msrc);
883 
884 	kcopy((void *)src, (void *)dst, PAGE_SIZE);
885 }
886 
887 /*
888  * Zero a page of physical memory by temporarily mapping it into the tlb.
889  */
890 void
891 pmap_zero_page(vm_page_t m)
892 {
893 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
894 	caddr_t va;
895 
896 	if (pa < SEGMENT_LENGTH) {
897 		va = (caddr_t) pa;
898 	} else if (pmap_initialized) {
899 		if (pmap_pvo_zeropage == NULL)
900 			pmap_pvo_zeropage = pmap_rkva_alloc();
901 		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
902 		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
903 	} else {
904 		panic("pmap_zero_page: can't zero pa %#x", pa);
905 	}
906 
907 	bzero(va, PAGE_SIZE);
908 
909 	if (pa >= SEGMENT_LENGTH)
910 		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
911 }
912 
913 void
914 pmap_zero_page_area(vm_page_t m, int off, int size)
915 {
916 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
917 	caddr_t va;
918 
919 	if (pa < SEGMENT_LENGTH) {
920 		va = (caddr_t) pa;
921 	} else if (pmap_initialized) {
922 		if (pmap_pvo_zeropage == NULL)
923 			pmap_pvo_zeropage = pmap_rkva_alloc();
924 		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
925 		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
926 	} else {
927 		panic("pmap_zero_page: can't zero pa %#x", pa);
928 	}
929 
930 	bzero(va + off, size);
931 
932 	if (pa >= SEGMENT_LENGTH)
933 		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
934 }
935 
936 void
937 pmap_zero_page_idle(vm_page_t m)
938 {
939 
940 	/* XXX this is called outside of Giant, is pmap_zero_page safe? */
941 	/* XXX maybe have a dedicated mapping for this to avoid the problem? */
942 	mtx_lock(&Giant);
943 	pmap_zero_page(m);
944 	mtx_unlock(&Giant);
945 }
946 
947 /*
948  * Map the given physical page at the specified virtual address in the
949  * target pmap with the protection requested.  If specified the page
950  * will be wired down.
951  */
952 void
953 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
954 	   boolean_t wired)
955 {
956 	struct		pvo_head *pvo_head;
957 	uma_zone_t	zone;
958 	vm_page_t	pg;
959 	u_int		pte_lo, pvo_flags, was_exec, i;
960 	int		error;
961 
962 	if (!pmap_initialized) {
963 		pvo_head = &pmap_pvo_kunmanaged;
964 		zone = pmap_upvo_zone;
965 		pvo_flags = 0;
966 		pg = NULL;
967 		was_exec = PTE_EXEC;
968 	} else {
969 		pvo_head = vm_page_to_pvoh(m);
970 		pg = m;
971 		zone = pmap_mpvo_zone;
972 		pvo_flags = PVO_MANAGED;
973 		was_exec = 0;
974 	}
975 
976 	/*
977 	 * If this is a managed page, and it's the first reference to the page,
978 	 * clear the execness of the page.  Otherwise fetch the execness.
979 	 */
980 	if (pg != NULL) {
981 		if (LIST_EMPTY(pvo_head)) {
982 			pmap_attr_clear(pg, PTE_EXEC);
983 		} else {
984 			was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
985 		}
986 	}
987 
988 
989 	/*
990 	 * Assume the page is cache inhibited and access is guarded unless
991 	 * it's in our available memory array.
992 	 */
993 	pte_lo = PTE_I | PTE_G;
994 	for (i = 0; i < pregions_sz; i++) {
995 		if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
996 		    (VM_PAGE_TO_PHYS(m) <
997 			(pregions[i].mr_start + pregions[i].mr_size))) {
998 			pte_lo &= ~(PTE_I | PTE_G);
999 			break;
1000 		}
1001 	}
1002 
1003 	if (prot & VM_PROT_WRITE)
1004 		pte_lo |= PTE_BW;
1005 	else
1006 		pte_lo |= PTE_BR;
1007 
1008 	pvo_flags |= (prot & VM_PROT_EXECUTE);
1009 
1010 	if (wired)
1011 		pvo_flags |= PVO_WIRED;
1012 
1013 	error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1014 	    pte_lo, pvo_flags);
1015 
1016 	/*
1017 	 * Flush the real page from the instruction cache if this page is
1018 	 * mapped executable and cacheable and was not previously mapped (or
1019 	 * was not mapped executable).
1020 	 */
1021 	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1022 	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1023 		/*
1024 		 * Flush the real memory from the cache.
1025 		 */
1026 		pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1027 		if (pg != NULL)
1028 			pmap_attr_save(pg, PTE_EXEC);
1029 	}
1030 
1031 	/* XXX syncicache always until problems are sorted */
1032 	pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1033 }
1034 
1035 vm_page_t
1036 pmap_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m, vm_page_t mpte)
1037 {
1038 
1039 	pmap_enter(pm, va, m, VM_PROT_READ | VM_PROT_EXECUTE, FALSE);
1040 	return (NULL);
1041 }
1042 
1043 vm_offset_t
1044 pmap_extract(pmap_t pm, vm_offset_t va)
1045 {
1046 	struct	pvo_entry *pvo;
1047 
1048 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1049 
1050 	if (pvo != NULL) {
1051 		return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1052 	}
1053 
1054 	return (0);
1055 }
1056 
1057 /*
1058  * Grow the number of kernel page table entries.  Unneeded.
1059  */
1060 void
1061 pmap_growkernel(vm_offset_t addr)
1062 {
1063 }
1064 
1065 void
1066 pmap_init(vm_offset_t phys_start, vm_offset_t phys_end)
1067 {
1068 
1069 	CTR0(KTR_PMAP, "pmap_init");
1070 
1071 	pmap_pvo_obj = vm_object_allocate(OBJT_PHYS, 16);
1072 	pmap_pvo_count = 0;
1073 	pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1074 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
1075 	uma_zone_set_allocf(pmap_upvo_zone, pmap_pvo_allocf);
1076 	pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1077 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
1078 	uma_zone_set_allocf(pmap_mpvo_zone, pmap_pvo_allocf);
1079 	pmap_initialized = TRUE;
1080 }
1081 
1082 void
1083 pmap_init2(void)
1084 {
1085 
1086 	CTR0(KTR_PMAP, "pmap_init2");
1087 }
1088 
1089 boolean_t
1090 pmap_is_modified(vm_page_t m)
1091 {
1092 
1093 	if ((m->flags & (PG_FICTITIOUS |PG_UNMANAGED)) != 0)
1094 		return (FALSE);
1095 
1096 	return (pmap_query_bit(m, PTE_CHG));
1097 }
1098 
1099 void
1100 pmap_clear_reference(vm_page_t m)
1101 {
1102 
1103 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1104 		return;
1105 	pmap_clear_bit(m, PTE_REF, NULL);
1106 }
1107 
1108 void
1109 pmap_clear_modify(vm_page_t m)
1110 {
1111 
1112 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1113 		return;
1114 	pmap_clear_bit(m, PTE_CHG, NULL);
1115 }
1116 
1117 /*
1118  *	pmap_ts_referenced:
1119  *
1120  *	Return a count of reference bits for a page, clearing those bits.
1121  *	It is not necessary for every reference bit to be cleared, but it
1122  *	is necessary that 0 only be returned when there are truly no
1123  *	reference bits set.
1124  *
1125  *	XXX: The exact number of bits to check and clear is a matter that
1126  *	should be tested and standardized at some point in the future for
1127  *	optimal aging of shared pages.
1128  */
1129 int
1130 pmap_ts_referenced(vm_page_t m)
1131 {
1132 	int count;
1133 
1134 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1135 		return (0);
1136 
1137 	count = pmap_clear_bit(m, PTE_REF, NULL);
1138 
1139 	return (count);
1140 }
1141 
1142 /*
1143  * Map a wired page into kernel virtual address space.
1144  */
1145 void
1146 pmap_kenter(vm_offset_t va, vm_offset_t pa)
1147 {
1148 	u_int		pte_lo;
1149 	int		error;
1150 	int		i;
1151 
1152 #if 0
1153 	if (va < VM_MIN_KERNEL_ADDRESS)
1154 		panic("pmap_kenter: attempt to enter non-kernel address %#x",
1155 		    va);
1156 #endif
1157 
1158 	pte_lo = PTE_I | PTE_G;
1159 	for (i = 0; i < pregions_sz; i++) {
1160 		if ((pa >= pregions[i].mr_start) &&
1161 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
1162 			pte_lo &= ~(PTE_I | PTE_G);
1163 			break;
1164 		}
1165 	}
1166 
1167 	error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
1168 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1169 
1170 	if (error != 0 && error != ENOENT)
1171 		panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
1172 		    pa, error);
1173 
1174 	/*
1175 	 * Flush the real memory from the instruction cache.
1176 	 */
1177 	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1178 		pmap_syncicache(pa, PAGE_SIZE);
1179 	}
1180 }
1181 
1182 /*
1183  * Extract the physical page address associated with the given kernel virtual
1184  * address.
1185  */
1186 vm_offset_t
1187 pmap_kextract(vm_offset_t va)
1188 {
1189 	struct		pvo_entry *pvo;
1190 
1191 	pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1192 	if (pvo == NULL) {
1193 		return (0);
1194 	}
1195 
1196 	return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1197 }
1198 
1199 /*
1200  * Remove a wired page from kernel virtual address space.
1201  */
1202 void
1203 pmap_kremove(vm_offset_t va)
1204 {
1205 
1206 	pmap_remove(kernel_pmap, va, va + PAGE_SIZE);
1207 }
1208 
1209 /*
1210  * Map a range of physical addresses into kernel virtual address space.
1211  *
1212  * The value passed in *virt is a suggested virtual address for the mapping.
1213  * Architectures which can support a direct-mapped physical to virtual region
1214  * can return the appropriate address within that region, leaving '*virt'
1215  * unchanged.  We cannot and therefore do not; *virt is updated with the
1216  * first usable address after the mapped region.
1217  */
1218 vm_offset_t
1219 pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
1220 {
1221 	vm_offset_t	sva, va;
1222 
1223 	sva = *virt;
1224 	va = sva;
1225 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1226 		pmap_kenter(va, pa_start);
1227 	*virt = va;
1228 	return (sva);
1229 }
1230 
1231 int
1232 pmap_mincore(pmap_t pmap, vm_offset_t addr)
1233 {
1234 	TODO;
1235 	return (0);
1236 }
1237 
1238 void
1239 pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
1240 		    vm_pindex_t pindex, vm_size_t size)
1241 {
1242 
1243 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1244 	KASSERT(object->type == OBJT_DEVICE,
1245 	    ("pmap_object_init_pt: non-device object"));
1246 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1247 	    ("pmap_object_init_pt: non current pmap"));
1248 }
1249 
1250 /*
1251  * Lower the permission for all mappings to a given page.
1252  */
1253 void
1254 pmap_page_protect(vm_page_t m, vm_prot_t prot)
1255 {
1256 	struct	pvo_head *pvo_head;
1257 	struct	pvo_entry *pvo, *next_pvo;
1258 	struct	pte *pt;
1259 
1260 	/*
1261 	 * Since the routine only downgrades protection, if the
1262 	 * maximal protection is desired, there isn't any change
1263 	 * to be made.
1264 	 */
1265 	if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
1266 	    (VM_PROT_READ|VM_PROT_WRITE))
1267 		return;
1268 
1269 	pvo_head = vm_page_to_pvoh(m);
1270 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1271 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1272 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1273 
1274 		/*
1275 		 * Downgrading to no mapping at all, we just remove the entry.
1276 		 */
1277 		if ((prot & VM_PROT_READ) == 0) {
1278 			pmap_pvo_remove(pvo, -1);
1279 			continue;
1280 		}
1281 
1282 		/*
1283 		 * If EXEC permission is being revoked, just clear the flag
1284 		 * in the PVO.
1285 		 */
1286 		if ((prot & VM_PROT_EXECUTE) == 0)
1287 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1288 
1289 		/*
1290 		 * If this entry is already RO, don't diddle with the page
1291 		 * table.
1292 		 */
1293 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
1294 			PMAP_PVO_CHECK(pvo);
1295 			continue;
1296 		}
1297 
1298 		/*
1299 		 * Grab the PTE before we diddle the bits so pvo_to_pte can
1300 		 * verify the pte contents are as expected.
1301 		 */
1302 		pt = pmap_pvo_to_pte(pvo, -1);
1303 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1304 		pvo->pvo_pte.pte_lo |= PTE_BR;
1305 		if (pt != NULL)
1306 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1307 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1308 	}
1309 }
1310 
1311 /*
1312  * Returns true if the pmap's pv is one of the first
1313  * 16 pvs linked to from this page.  This count may
1314  * be changed upwards or downwards in the future; it
1315  * is only necessary that true be returned for a small
1316  * subset of pmaps for proper page aging.
1317  */
1318 boolean_t
1319 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
1320 {
1321         int loops;
1322 	struct pvo_entry *pvo;
1323 
1324         if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
1325                 return FALSE;
1326 
1327 	loops = 0;
1328 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1329 		if (pvo->pvo_pmap == pmap)
1330 			return (TRUE);
1331 		if (++loops >= 16)
1332 			break;
1333 	}
1334 
1335 	return (FALSE);
1336 }
1337 
1338 static u_int	pmap_vsidcontext;
1339 
1340 void
1341 pmap_pinit(pmap_t pmap)
1342 {
1343 	int	i, mask;
1344 	u_int	entropy;
1345 
1346 	entropy = 0;
1347 	__asm __volatile("mftb %0" : "=r"(entropy));
1348 
1349 	/*
1350 	 * Allocate some segment registers for this pmap.
1351 	 */
1352 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1353 		u_int	hash, n;
1354 
1355 		/*
1356 		 * Create a new value by mutiplying by a prime and adding in
1357 		 * entropy from the timebase register.  This is to make the
1358 		 * VSID more random so that the PT hash function collides
1359 		 * less often.  (Note that the prime casues gcc to do shifts
1360 		 * instead of a multiply.)
1361 		 */
1362 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1363 		hash = pmap_vsidcontext & (NPMAPS - 1);
1364 		if (hash == 0)		/* 0 is special, avoid it */
1365 			continue;
1366 		n = hash >> 5;
1367 		mask = 1 << (hash & (VSID_NBPW - 1));
1368 		hash = (pmap_vsidcontext & 0xfffff);
1369 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1370 			/* anything free in this bucket? */
1371 			if (pmap_vsid_bitmap[n] == 0xffffffff) {
1372 				entropy = (pmap_vsidcontext >> 20);
1373 				continue;
1374 			}
1375 			i = ffs(~pmap_vsid_bitmap[i]) - 1;
1376 			mask = 1 << i;
1377 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1378 			hash |= i;
1379 		}
1380 		pmap_vsid_bitmap[n] |= mask;
1381 		for (i = 0; i < 16; i++)
1382 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1383 		return;
1384 	}
1385 
1386 	panic("pmap_pinit: out of segments");
1387 }
1388 
1389 /*
1390  * Initialize the pmap associated with process 0.
1391  */
1392 void
1393 pmap_pinit0(pmap_t pm)
1394 {
1395 
1396 	pmap_pinit(pm);
1397 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1398 }
1399 
1400 void
1401 pmap_pinit2(pmap_t pmap)
1402 {
1403 	/* XXX: Remove this stub when no longer called */
1404 }
1405 
1406 void
1407 pmap_prefault(pmap_t pm, vm_offset_t va, vm_map_entry_t entry)
1408 {
1409 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1410 	    ("pmap_prefault: non current pmap"));
1411 	/* XXX */
1412 }
1413 
1414 /*
1415  * Set the physical protection on the specified range of this map as requested.
1416  */
1417 void
1418 pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1419 {
1420 	struct	pvo_entry *pvo;
1421 	struct	pte *pt;
1422 	int	pteidx;
1423 
1424 	CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1425 	    eva, prot);
1426 
1427 
1428 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1429 	    ("pmap_protect: non current pmap"));
1430 
1431 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1432 		pmap_remove(pm, sva, eva);
1433 		return;
1434 	}
1435 
1436 	for (; sva < eva; sva += PAGE_SIZE) {
1437 		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1438 		if (pvo == NULL)
1439 			continue;
1440 
1441 		if ((prot & VM_PROT_EXECUTE) == 0)
1442 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1443 
1444 		/*
1445 		 * Grab the PTE pointer before we diddle with the cached PTE
1446 		 * copy.
1447 		 */
1448 		pt = pmap_pvo_to_pte(pvo, pteidx);
1449 		/*
1450 		 * Change the protection of the page.
1451 		 */
1452 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1453 		pvo->pvo_pte.pte_lo |= PTE_BR;
1454 
1455 		/*
1456 		 * If the PVO is in the page table, update that pte as well.
1457 		 */
1458 		if (pt != NULL)
1459 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1460 	}
1461 }
1462 
1463 /*
1464  * Map a list of wired pages into kernel virtual address space.  This is
1465  * intended for temporary mappings which do not need page modification or
1466  * references recorded.  Existing mappings in the region are overwritten.
1467  */
1468 void
1469 pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
1470 {
1471 	vm_offset_t va;
1472 
1473 	va = sva;
1474 	while (count-- > 0) {
1475 		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
1476 		va += PAGE_SIZE;
1477 		m++;
1478 	}
1479 }
1480 
1481 /*
1482  * Remove page mappings from kernel virtual address space.  Intended for
1483  * temporary mappings entered by pmap_qenter.
1484  */
1485 void
1486 pmap_qremove(vm_offset_t sva, int count)
1487 {
1488 	vm_offset_t va;
1489 
1490 	va = sva;
1491 	while (count-- > 0) {
1492 		pmap_kremove(va);
1493 		va += PAGE_SIZE;
1494 	}
1495 }
1496 
1497 void
1498 pmap_release(pmap_t pmap)
1499 {
1500         int idx, mask;
1501 
1502 	/*
1503 	 * Free segment register's VSID
1504 	 */
1505         if (pmap->pm_sr[0] == 0)
1506                 panic("pmap_release");
1507 
1508         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1509         mask = 1 << (idx % VSID_NBPW);
1510         idx /= VSID_NBPW;
1511         pmap_vsid_bitmap[idx] &= ~mask;
1512 }
1513 
1514 /*
1515  * Remove the given range of addresses from the specified map.
1516  */
1517 void
1518 pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1519 {
1520 	struct	pvo_entry *pvo;
1521 	int	pteidx;
1522 
1523 	for (; sva < eva; sva += PAGE_SIZE) {
1524 		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1525 		if (pvo != NULL) {
1526 			pmap_pvo_remove(pvo, pteidx);
1527 		}
1528 	}
1529 }
1530 
1531 /*
1532  * Remove physical page from all pmaps in which it resides. pmap_pvo_remove()
1533  * will reflect changes in pte's back to the vm_page.
1534  */
1535 void
1536 pmap_remove_all(vm_page_t m)
1537 {
1538 	struct  pvo_head *pvo_head;
1539 	struct	pvo_entry *pvo, *next_pvo;
1540 
1541 	KASSERT((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0,
1542 	    ("pv_remove_all: illegal for unmanaged page %#x",
1543 	    VM_PAGE_TO_PHYS(m)));
1544 
1545 	pvo_head = vm_page_to_pvoh(m);
1546 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1547 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1548 
1549 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1550 		pmap_pvo_remove(pvo, -1);
1551 	}
1552 	vm_page_flag_clear(m, PG_WRITEABLE);
1553 }
1554 
1555 /*
1556  * Remove all pages from specified address space, this aids process exit
1557  * speeds.  This is much faster than pmap_remove in the case of running down
1558  * an entire address space.  Only works for the current pmap.
1559  */
1560 void
1561 pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1562 {
1563 
1564 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1565 	    ("pmap_remove_pages: non current pmap"));
1566 	pmap_remove(pm, sva, eva);
1567 }
1568 
1569 /*
1570  * Allocate a physical page of memory directly from the phys_avail map.
1571  * Can only be called from pmap_bootstrap before avail start and end are
1572  * calculated.
1573  */
1574 static vm_offset_t
1575 pmap_bootstrap_alloc(vm_size_t size, u_int align)
1576 {
1577 	vm_offset_t	s, e;
1578 	int		i, j;
1579 
1580 	size = round_page(size);
1581 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1582 		if (align != 0)
1583 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1584 		else
1585 			s = phys_avail[i];
1586 		e = s + size;
1587 
1588 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1589 			continue;
1590 
1591 		if (s == phys_avail[i]) {
1592 			phys_avail[i] += size;
1593 		} else if (e == phys_avail[i + 1]) {
1594 			phys_avail[i + 1] -= size;
1595 		} else {
1596 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1597 				phys_avail[j] = phys_avail[j - 2];
1598 				phys_avail[j + 1] = phys_avail[j - 1];
1599 			}
1600 
1601 			phys_avail[i + 3] = phys_avail[i + 1];
1602 			phys_avail[i + 1] = s;
1603 			phys_avail[i + 2] = e;
1604 			phys_avail_count++;
1605 		}
1606 
1607 		return (s);
1608 	}
1609 	panic("pmap_bootstrap_alloc: could not allocate memory");
1610 }
1611 
1612 /*
1613  * Return an unmapped pvo for a kernel virtual address.
1614  * Used by pmap functions that operate on physical pages.
1615  */
1616 static struct pvo_entry *
1617 pmap_rkva_alloc(void)
1618 {
1619 	struct		pvo_entry *pvo;
1620 	struct		pte *pt;
1621 	vm_offset_t	kva;
1622 	int		pteidx;
1623 
1624 	if (pmap_rkva_count == 0)
1625 		panic("pmap_rkva_alloc: no more reserved KVAs");
1626 
1627 	kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
1628 	pmap_kenter(kva, 0);
1629 
1630 	pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
1631 
1632 	if (pvo == NULL)
1633 		panic("pmap_kva_alloc: pmap_pvo_find_va failed");
1634 
1635 	pt = pmap_pvo_to_pte(pvo, pteidx);
1636 
1637 	if (pt == NULL)
1638 		panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
1639 
1640 	pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1641 	PVO_PTEGIDX_CLR(pvo);
1642 
1643 	pmap_pte_overflow++;
1644 
1645 	return (pvo);
1646 }
1647 
1648 static void
1649 pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1650     int *depth_p)
1651 {
1652 	struct	pte *pt;
1653 
1654 	/*
1655 	 * If this pvo already has a valid pte, we need to save it so it can
1656 	 * be restored later.  We then just reload the new PTE over the old
1657 	 * slot.
1658 	 */
1659 	if (saved_pt != NULL) {
1660 		pt = pmap_pvo_to_pte(pvo, -1);
1661 
1662 		if (pt != NULL) {
1663 			pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1664 			PVO_PTEGIDX_CLR(pvo);
1665 			pmap_pte_overflow++;
1666 		}
1667 
1668 		*saved_pt = pvo->pvo_pte;
1669 
1670 		pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1671 	}
1672 
1673 	pvo->pvo_pte.pte_lo |= pa;
1674 
1675 	if (!pmap_pte_spill(pvo->pvo_vaddr))
1676 		panic("pmap_pa_map: could not spill pvo %p", pvo);
1677 
1678 	if (depth_p != NULL)
1679 		(*depth_p)++;
1680 }
1681 
1682 static void
1683 pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1684 {
1685 	struct	pte *pt;
1686 
1687 	pt = pmap_pvo_to_pte(pvo, -1);
1688 
1689 	if (pt != NULL) {
1690 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1691 		PVO_PTEGIDX_CLR(pvo);
1692 		pmap_pte_overflow++;
1693 	}
1694 
1695 	pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1696 
1697 	/*
1698 	 * If there is a saved PTE and it's valid, restore it and return.
1699 	 */
1700 	if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1701 		if (depth_p != NULL && --(*depth_p) == 0)
1702 			panic("pmap_pa_unmap: restoring but depth == 0");
1703 
1704 		pvo->pvo_pte = *saved_pt;
1705 
1706 		if (!pmap_pte_spill(pvo->pvo_vaddr))
1707 			panic("pmap_pa_unmap: could not spill pvo %p", pvo);
1708 	}
1709 }
1710 
1711 static void
1712 pmap_syncicache(vm_offset_t pa, vm_size_t len)
1713 {
1714 	__syncicache((void *)pa, len);
1715 }
1716 
1717 static void
1718 tlbia(void)
1719 {
1720 	caddr_t	i;
1721 
1722 	SYNC();
1723 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1724 		TLBIE(i);
1725 		EIEIO();
1726 	}
1727 	TLBSYNC();
1728 	SYNC();
1729 }
1730 
1731 static int
1732 pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1733     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1734 {
1735 	struct	pvo_entry *pvo;
1736 	u_int	sr;
1737 	int	first;
1738 	u_int	ptegidx;
1739 	int	i;
1740 	int     bootstrap;
1741 
1742 	pmap_pvo_enter_calls++;
1743 	first = 0;
1744 
1745 	bootstrap = 0;
1746 
1747 	/*
1748 	 * Compute the PTE Group index.
1749 	 */
1750 	va &= ~ADDR_POFF;
1751 	sr = va_to_sr(pm->pm_sr, va);
1752 	ptegidx = va_to_pteg(sr, va);
1753 
1754 	/*
1755 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1756 	 * there is a mapping.
1757 	 */
1758 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1759 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1760 			if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
1761 			    (pvo->pvo_pte.pte_lo & PTE_PP) ==
1762 			    (pte_lo & PTE_PP)) {
1763 				return (0);
1764 			}
1765 			pmap_pvo_remove(pvo, -1);
1766 			break;
1767 		}
1768 	}
1769 
1770 	/*
1771 	 * If we aren't overwriting a mapping, try to allocate.
1772 	 */
1773 	if (pmap_initialized) {
1774 		pvo = uma_zalloc(zone, M_NOWAIT);
1775 	} else {
1776 		if (pmap_bpvo_pool_index >= BPVO_POOL_SIZE) {
1777 			panic("pmap_enter: bpvo pool exhausted, %d, %d, %d",
1778 			      pmap_bpvo_pool_index, BPVO_POOL_SIZE,
1779 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1780 		}
1781 		pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
1782 		pmap_bpvo_pool_index++;
1783 		bootstrap = 1;
1784 	}
1785 
1786 	if (pvo == NULL) {
1787 		return (ENOMEM);
1788 	}
1789 
1790 	pmap_pvo_entries++;
1791 	pvo->pvo_vaddr = va;
1792 	pvo->pvo_pmap = pm;
1793 	LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1794 	pvo->pvo_vaddr &= ~ADDR_POFF;
1795 	if (flags & VM_PROT_EXECUTE)
1796 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1797 	if (flags & PVO_WIRED)
1798 		pvo->pvo_vaddr |= PVO_WIRED;
1799 	if (pvo_head != &pmap_pvo_kunmanaged)
1800 		pvo->pvo_vaddr |= PVO_MANAGED;
1801 	if (bootstrap)
1802 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1803 	pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1804 
1805 	/*
1806 	 * Remember if the list was empty and therefore will be the first
1807 	 * item.
1808 	 */
1809 	if (LIST_FIRST(pvo_head) == NULL)
1810 		first = 1;
1811 
1812 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1813 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1814 		pvo->pvo_pmap->pm_stats.wired_count++;
1815 	pvo->pvo_pmap->pm_stats.resident_count++;
1816 
1817 	/*
1818 	 * We hope this succeeds but it isn't required.
1819 	 */
1820 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1821 	if (i >= 0) {
1822 		PVO_PTEGIDX_SET(pvo, i);
1823 	} else {
1824 		panic("pmap_pvo_enter: overflow");
1825 		pmap_pte_overflow++;
1826 	}
1827 
1828 	return (first ? ENOENT : 0);
1829 }
1830 
1831 static void
1832 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1833 {
1834 	struct	pte *pt;
1835 
1836 	/*
1837 	 * If there is an active pte entry, we need to deactivate it (and
1838 	 * save the ref & cfg bits).
1839 	 */
1840 	pt = pmap_pvo_to_pte(pvo, pteidx);
1841 	if (pt != NULL) {
1842 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1843 		PVO_PTEGIDX_CLR(pvo);
1844 	} else {
1845 		pmap_pte_overflow--;
1846 	}
1847 
1848 	/*
1849 	 * Update our statistics.
1850 	 */
1851 	pvo->pvo_pmap->pm_stats.resident_count--;
1852 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1853 		pvo->pvo_pmap->pm_stats.wired_count--;
1854 
1855 	/*
1856 	 * Save the REF/CHG bits into their cache if the page is managed.
1857 	 */
1858 	if (pvo->pvo_vaddr & PVO_MANAGED) {
1859 		struct	vm_page *pg;
1860 
1861 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1862 		if (pg != NULL) {
1863 			pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
1864 			    (PTE_REF | PTE_CHG));
1865 		}
1866 	}
1867 
1868 	/*
1869 	 * Remove this PVO from the PV list.
1870 	 */
1871 	LIST_REMOVE(pvo, pvo_vlink);
1872 
1873 	/*
1874 	 * Remove this from the overflow list and return it to the pool
1875 	 * if we aren't going to reuse it.
1876 	 */
1877 	LIST_REMOVE(pvo, pvo_olink);
1878 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
1879 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
1880 		    pmap_upvo_zone, pvo);
1881 	pmap_pvo_entries--;
1882 	pmap_pvo_remove_calls++;
1883 }
1884 
1885 static __inline int
1886 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1887 {
1888 	int	pteidx;
1889 
1890 	/*
1891 	 * We can find the actual pte entry without searching by grabbing
1892 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
1893 	 * noticing the HID bit.
1894 	 */
1895 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1896 	if (pvo->pvo_pte.pte_hi & PTE_HID)
1897 		pteidx ^= pmap_pteg_mask * 8;
1898 
1899 	return (pteidx);
1900 }
1901 
1902 static struct pvo_entry *
1903 pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
1904 {
1905 	struct	pvo_entry *pvo;
1906 	int	ptegidx;
1907 	u_int	sr;
1908 
1909 	va &= ~ADDR_POFF;
1910 	sr = va_to_sr(pm->pm_sr, va);
1911 	ptegidx = va_to_pteg(sr, va);
1912 
1913 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1914 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1915 			if (pteidx_p)
1916 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1917 			return (pvo);
1918 		}
1919 	}
1920 
1921 	return (NULL);
1922 }
1923 
1924 static struct pte *
1925 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1926 {
1927 	struct	pte *pt;
1928 
1929 	/*
1930 	 * If we haven't been supplied the ptegidx, calculate it.
1931 	 */
1932 	if (pteidx == -1) {
1933 		int	ptegidx;
1934 		u_int	sr;
1935 
1936 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
1937 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
1938 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1939 	}
1940 
1941 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1942 
1943 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1944 		panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
1945 		    "valid pte index", pvo);
1946 	}
1947 
1948 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1949 		panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
1950 		    "pvo but no valid pte", pvo);
1951 	}
1952 
1953 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1954 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1955 			panic("pmap_pvo_to_pte: pvo %p has valid pte in "
1956 			    "pmap_pteg_table %p but invalid in pvo", pvo, pt);
1957 		}
1958 
1959 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
1960 		    != 0) {
1961 			panic("pmap_pvo_to_pte: pvo %p pte does not match "
1962 			    "pte %p in pmap_pteg_table", pvo, pt);
1963 		}
1964 
1965 		return (pt);
1966 	}
1967 
1968 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1969 		panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
1970 		    "pmap_pteg_table but valid in pvo", pvo, pt);
1971 	}
1972 
1973 	return (NULL);
1974 }
1975 
1976 static void *
1977 pmap_pvo_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1978 {
1979 	vm_page_t	m;
1980 
1981 	if (bytes != PAGE_SIZE)
1982 		panic("pmap_pvo_allocf: benno was shortsighted.  hit him.");
1983 
1984 	*flags = UMA_SLAB_PRIV;
1985 	m = vm_page_alloc(pmap_pvo_obj, pmap_pvo_count, VM_ALLOC_SYSTEM);
1986 	if (m == NULL)
1987 		return (NULL);
1988 	pmap_pvo_count++;
1989 	return ((void *)VM_PAGE_TO_PHYS(m));
1990 }
1991 
1992 /*
1993  * XXX: THIS STUFF SHOULD BE IN pte.c?
1994  */
1995 int
1996 pmap_pte_spill(vm_offset_t addr)
1997 {
1998 	struct	pvo_entry *source_pvo, *victim_pvo;
1999 	struct	pvo_entry *pvo;
2000 	int	ptegidx, i, j;
2001 	u_int	sr;
2002 	struct	pteg *pteg;
2003 	struct	pte *pt;
2004 
2005 	pmap_pte_spills++;
2006 
2007 	sr = mfsrin(addr);
2008 	ptegidx = va_to_pteg(sr, addr);
2009 
2010 	/*
2011 	 * Have to substitute some entry.  Use the primary hash for this.
2012 	 * Use low bits of timebase as random generator.
2013 	 */
2014 	pteg = &pmap_pteg_table[ptegidx];
2015 	__asm __volatile("mftb %0" : "=r"(i));
2016 	i &= 7;
2017 	pt = &pteg->pt[i];
2018 
2019 	source_pvo = NULL;
2020 	victim_pvo = NULL;
2021 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2022 		/*
2023 		 * We need to find a pvo entry for this address.
2024 		 */
2025 		PMAP_PVO_CHECK(pvo);
2026 		if (source_pvo == NULL &&
2027 		    pmap_pte_match(&pvo->pvo_pte, sr, addr,
2028 		    pvo->pvo_pte.pte_hi & PTE_HID)) {
2029 			/*
2030 			 * Now found an entry to be spilled into the pteg.
2031 			 * The PTE is now valid, so we know it's active.
2032 			 */
2033 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
2034 
2035 			if (j >= 0) {
2036 				PVO_PTEGIDX_SET(pvo, j);
2037 				pmap_pte_overflow--;
2038 				PMAP_PVO_CHECK(pvo);
2039 				return (1);
2040 			}
2041 
2042 			source_pvo = pvo;
2043 
2044 			if (victim_pvo != NULL)
2045 				break;
2046 		}
2047 
2048 		/*
2049 		 * We also need the pvo entry of the victim we are replacing
2050 		 * so save the R & C bits of the PTE.
2051 		 */
2052 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2053 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
2054 			victim_pvo = pvo;
2055 			if (source_pvo != NULL)
2056 				break;
2057 		}
2058 	}
2059 
2060 	if (source_pvo == NULL)
2061 		return (0);
2062 
2063 	if (victim_pvo == NULL) {
2064 		if ((pt->pte_hi & PTE_HID) == 0)
2065 			panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
2066 			    "entry", pt);
2067 
2068 		/*
2069 		 * If this is a secondary PTE, we need to search it's primary
2070 		 * pvo bucket for the matching PVO.
2071 		 */
2072 		LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
2073 		    pvo_olink) {
2074 			PMAP_PVO_CHECK(pvo);
2075 			/*
2076 			 * We also need the pvo entry of the victim we are
2077 			 * replacing so save the R & C bits of the PTE.
2078 			 */
2079 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
2080 				victim_pvo = pvo;
2081 				break;
2082 			}
2083 		}
2084 
2085 		if (victim_pvo == NULL)
2086 			panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
2087 			    "entry", pt);
2088 	}
2089 
2090 	/*
2091 	 * We are invalidating the TLB entry for the EA we are replacing even
2092 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2093 	 * contained in the TLB entry.
2094 	 */
2095 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
2096 
2097 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
2098 	pmap_pte_set(pt, &source_pvo->pvo_pte);
2099 
2100 	PVO_PTEGIDX_CLR(victim_pvo);
2101 	PVO_PTEGIDX_SET(source_pvo, i);
2102 	pmap_pte_replacements++;
2103 
2104 	PMAP_PVO_CHECK(victim_pvo);
2105 	PMAP_PVO_CHECK(source_pvo);
2106 
2107 	return (1);
2108 }
2109 
2110 static int
2111 pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2112 {
2113 	struct	pte *pt;
2114 	int	i;
2115 
2116 	/*
2117 	 * First try primary hash.
2118 	 */
2119 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2120 		if ((pt->pte_hi & PTE_VALID) == 0) {
2121 			pvo_pt->pte_hi &= ~PTE_HID;
2122 			pmap_pte_set(pt, pvo_pt);
2123 			return (i);
2124 		}
2125 	}
2126 
2127 	/*
2128 	 * Now try secondary hash.
2129 	 */
2130 	ptegidx ^= pmap_pteg_mask;
2131 	ptegidx++;
2132 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2133 		if ((pt->pte_hi & PTE_VALID) == 0) {
2134 			pvo_pt->pte_hi |= PTE_HID;
2135 			pmap_pte_set(pt, pvo_pt);
2136 			return (i);
2137 		}
2138 	}
2139 
2140 	panic("pmap_pte_insert: overflow");
2141 	return (-1);
2142 }
2143 
2144 static boolean_t
2145 pmap_query_bit(vm_page_t m, int ptebit)
2146 {
2147 	struct	pvo_entry *pvo;
2148 	struct	pte *pt;
2149 
2150 	if (pmap_attr_fetch(m) & ptebit)
2151 		return (TRUE);
2152 
2153 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2154 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2155 
2156 		/*
2157 		 * See if we saved the bit off.  If so, cache it and return
2158 		 * success.
2159 		 */
2160 		if (pvo->pvo_pte.pte_lo & ptebit) {
2161 			pmap_attr_save(m, ptebit);
2162 			PMAP_PVO_CHECK(pvo);	/* sanity check */
2163 			return (TRUE);
2164 		}
2165 	}
2166 
2167 	/*
2168 	 * No luck, now go through the hard part of looking at the PTEs
2169 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2170 	 * the PTEs.
2171 	 */
2172 	SYNC();
2173 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2174 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2175 
2176 		/*
2177 		 * See if this pvo has a valid PTE.  if so, fetch the
2178 		 * REF/CHG bits from the valid PTE.  If the appropriate
2179 		 * ptebit is set, cache it and return success.
2180 		 */
2181 		pt = pmap_pvo_to_pte(pvo, -1);
2182 		if (pt != NULL) {
2183 			pmap_pte_synch(pt, &pvo->pvo_pte);
2184 			if (pvo->pvo_pte.pte_lo & ptebit) {
2185 				pmap_attr_save(m, ptebit);
2186 				PMAP_PVO_CHECK(pvo);	/* sanity check */
2187 				return (TRUE);
2188 			}
2189 		}
2190 	}
2191 
2192 	return (TRUE);
2193 }
2194 
2195 static u_int
2196 pmap_clear_bit(vm_page_t m, int ptebit, int *origbit)
2197 {
2198 	u_int	count;
2199 	struct	pvo_entry *pvo;
2200 	struct	pte *pt;
2201 	int	rv;
2202 
2203 	/*
2204 	 * Clear the cached value.
2205 	 */
2206 	rv = pmap_attr_fetch(m);
2207 	pmap_attr_clear(m, ptebit);
2208 
2209 	/*
2210 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2211 	 * we can reset the right ones).  note that since the pvo entries and
2212 	 * list heads are accessed via BAT0 and are never placed in the page
2213 	 * table, we don't have to worry about further accesses setting the
2214 	 * REF/CHG bits.
2215 	 */
2216 	SYNC();
2217 
2218 	/*
2219 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2220 	 * valid pte clear the ptebit from the valid pte.
2221 	 */
2222 	count = 0;
2223 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2224 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2225 		pt = pmap_pvo_to_pte(pvo, -1);
2226 		if (pt != NULL) {
2227 			pmap_pte_synch(pt, &pvo->pvo_pte);
2228 			if (pvo->pvo_pte.pte_lo & ptebit) {
2229 				count++;
2230 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2231 			}
2232 		}
2233 		rv |= pvo->pvo_pte.pte_lo;
2234 		pvo->pvo_pte.pte_lo &= ~ptebit;
2235 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2236 	}
2237 
2238 	if (origbit != NULL) {
2239 		*origbit = rv;
2240 	}
2241 
2242 	return (count);
2243 }
2244 
2245 /*
2246  * Return true if the physical range is encompassed by the battable[idx]
2247  */
2248 static int
2249 pmap_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2250 {
2251 	u_int prot;
2252 	u_int32_t start;
2253 	u_int32_t end;
2254 	u_int32_t bat_ble;
2255 
2256 	/*
2257 	 * Return immediately if not a valid mapping
2258 	 */
2259 	if (!battable[idx].batu & BAT_Vs)
2260 		return (EINVAL);
2261 
2262 	/*
2263 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2264 	 * so it can function as an i/o page
2265 	 */
2266 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2267 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2268 		return (EPERM);
2269 
2270 	/*
2271 	 * The address should be within the BAT range. Assume that the
2272 	 * start address in the BAT has the correct alignment (thus
2273 	 * not requiring masking)
2274 	 */
2275 	start = battable[idx].batl & BAT_PBS;
2276 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2277 	end = start | (bat_ble << 15) | 0x7fff;
2278 
2279 	if ((pa < start) || ((pa + size) > end))
2280 		return (ERANGE);
2281 
2282 	return (0);
2283 }
2284 
2285 
2286 /*
2287  * Map a set of physical memory pages into the kernel virtual
2288  * address space. Return a pointer to where it is mapped. This
2289  * routine is intended to be used for mapping device memory,
2290  * NOT real memory.
2291  */
2292 void *
2293 pmap_mapdev(vm_offset_t pa, vm_size_t size)
2294 {
2295 	vm_offset_t va, tmpva, ppa, offset;
2296 	int i;
2297 
2298 	ppa = trunc_page(pa);
2299 	offset = pa & PAGE_MASK;
2300 	size = roundup(offset + size, PAGE_SIZE);
2301 
2302 	GIANT_REQUIRED;
2303 
2304 	/*
2305 	 * If the physical address lies within a valid BAT table entry,
2306 	 * return the 1:1 mapping. This currently doesn't work
2307 	 * for regions that overlap 256M BAT segments.
2308 	 */
2309 	for (i = 0; i < 16; i++) {
2310 		if (pmap_bat_mapped(i, pa, size) == 0)
2311 			return ((void *) pa);
2312 	}
2313 
2314 	va = kmem_alloc_pageable(kernel_map, size);
2315 	if (!va)
2316 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2317 
2318 	for (tmpva = va; size > 0;) {
2319 		pmap_kenter(tmpva, ppa);
2320 		TLBIE(tmpva); /* XXX or should it be invalidate-all ? */
2321 		size -= PAGE_SIZE;
2322 		tmpva += PAGE_SIZE;
2323 		ppa += PAGE_SIZE;
2324 	}
2325 
2326 	return ((void *)(va + offset));
2327 }
2328 
2329 void
2330 pmap_unmapdev(vm_offset_t va, vm_size_t size)
2331 {
2332 	vm_offset_t base, offset;
2333 
2334 	/*
2335 	 * If this is outside kernel virtual space, then it's a
2336 	 * battable entry and doesn't require unmapping
2337 	 */
2338 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2339 		base = trunc_page(va);
2340 		offset = va & PAGE_MASK;
2341 		size = roundup(offset + size, PAGE_SIZE);
2342 		kmem_free(kernel_map, base, size);
2343 	}
2344 }
2345