xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision db3cb3640f547c063293e9fdc4db69e9dc120951)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27  * POSSIBILITY OF SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
31  * Copyright (C) 1995, 1996 TooLs GmbH.
32  * All rights reserved.
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. All advertising materials mentioning features or use of this software
43  *    must display the following acknowledgement:
44  *	This product includes software developed by TooLs GmbH.
45  * 4. The name of TooLs GmbH may not be used to endorse or promote products
46  *    derived from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
49  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
50  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
51  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
53  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
54  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
55  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
56  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
57  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
58  *
59  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
60  */
61 /*-
62  * Copyright (C) 2001 Benno Rice.
63  * All rights reserved.
64  *
65  * Redistribution and use in source and binary forms, with or without
66  * modification, are permitted provided that the following conditions
67  * are met:
68  * 1. Redistributions of source code must retain the above copyright
69  *    notice, this list of conditions and the following disclaimer.
70  * 2. Redistributions in binary form must reproduce the above copyright
71  *    notice, this list of conditions and the following disclaimer in the
72  *    documentation and/or other materials provided with the distribution.
73  *
74  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
75  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
76  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
77  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
78  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
79  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
80  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
81  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
82  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
83  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
84  */
85 
86 #include <sys/cdefs.h>
87 __FBSDID("$FreeBSD$");
88 
89 /*
90  * Manages physical address maps.
91  *
92  * Since the information managed by this module is also stored by the
93  * logical address mapping module, this module may throw away valid virtual
94  * to physical mappings at almost any time.  However, invalidations of
95  * mappings must be done as requested.
96  *
97  * In order to cope with hardware architectures which make virtual to
98  * physical map invalidates expensive, this module may delay invalidate
99  * reduced protection operations until such time as they are actually
100  * necessary.  This module is given full information as to which processors
101  * are currently using which maps, and to when physical maps must be made
102  * correct.
103  */
104 
105 #include "opt_kstack_pages.h"
106 
107 #include <sys/param.h>
108 #include <sys/kernel.h>
109 #include <sys/conf.h>
110 #include <sys/queue.h>
111 #include <sys/cpuset.h>
112 #include <sys/kerneldump.h>
113 #include <sys/ktr.h>
114 #include <sys/lock.h>
115 #include <sys/msgbuf.h>
116 #include <sys/mutex.h>
117 #include <sys/proc.h>
118 #include <sys/rwlock.h>
119 #include <sys/sched.h>
120 #include <sys/sysctl.h>
121 #include <sys/systm.h>
122 #include <sys/vmmeter.h>
123 
124 #include <dev/ofw/openfirm.h>
125 
126 #include <vm/vm.h>
127 #include <vm/vm_param.h>
128 #include <vm/vm_kern.h>
129 #include <vm/vm_page.h>
130 #include <vm/vm_map.h>
131 #include <vm/vm_object.h>
132 #include <vm/vm_extern.h>
133 #include <vm/vm_pageout.h>
134 #include <vm/uma.h>
135 
136 #include <machine/cpu.h>
137 #include <machine/platform.h>
138 #include <machine/bat.h>
139 #include <machine/frame.h>
140 #include <machine/md_var.h>
141 #include <machine/psl.h>
142 #include <machine/pte.h>
143 #include <machine/smp.h>
144 #include <machine/sr.h>
145 #include <machine/mmuvar.h>
146 #include <machine/trap.h>
147 
148 #include "mmu_if.h"
149 
150 #define	MOEA_DEBUG
151 
152 #define TODO	panic("%s: not implemented", __func__);
153 
154 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
155 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
156 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
157 
158 struct ofw_map {
159 	vm_offset_t	om_va;
160 	vm_size_t	om_len;
161 	vm_offset_t	om_pa;
162 	u_int		om_mode;
163 };
164 
165 extern unsigned char _etext[];
166 extern unsigned char _end[];
167 
168 /*
169  * Map of physical memory regions.
170  */
171 static struct	mem_region *regions;
172 static struct	mem_region *pregions;
173 static u_int    phys_avail_count;
174 static int	regions_sz, pregions_sz;
175 static struct	ofw_map *translations;
176 
177 /*
178  * Lock for the pteg and pvo tables.
179  */
180 struct mtx	moea_table_mutex;
181 struct mtx	moea_vsid_mutex;
182 
183 /* tlbie instruction synchronization */
184 static struct mtx tlbie_mtx;
185 
186 /*
187  * PTEG data.
188  */
189 static struct	pteg *moea_pteg_table;
190 u_int		moea_pteg_count;
191 u_int		moea_pteg_mask;
192 
193 /*
194  * PVO data.
195  */
196 struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
197 struct	pvo_head moea_pvo_kunmanaged =
198     LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
199 
200 static struct rwlock_padalign pvh_global_lock;
201 
202 uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
203 uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
204 
205 #define	BPVO_POOL_SIZE	32768
206 static struct	pvo_entry *moea_bpvo_pool;
207 static int	moea_bpvo_pool_index = 0;
208 
209 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
210 static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
211 
212 static boolean_t moea_initialized = FALSE;
213 
214 /*
215  * Statistics.
216  */
217 u_int	moea_pte_valid = 0;
218 u_int	moea_pte_overflow = 0;
219 u_int	moea_pte_replacements = 0;
220 u_int	moea_pvo_entries = 0;
221 u_int	moea_pvo_enter_calls = 0;
222 u_int	moea_pvo_remove_calls = 0;
223 u_int	moea_pte_spills = 0;
224 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
225     0, "");
226 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
227     &moea_pte_overflow, 0, "");
228 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
229     &moea_pte_replacements, 0, "");
230 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
231     0, "");
232 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
233     &moea_pvo_enter_calls, 0, "");
234 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
235     &moea_pvo_remove_calls, 0, "");
236 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
237     &moea_pte_spills, 0, "");
238 
239 /*
240  * Allocate physical memory for use in moea_bootstrap.
241  */
242 static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
243 
244 /*
245  * PTE calls.
246  */
247 static int		moea_pte_insert(u_int, struct pte *);
248 
249 /*
250  * PVO calls.
251  */
252 static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
253 		    vm_offset_t, vm_offset_t, u_int, int);
254 static void	moea_pvo_remove(struct pvo_entry *, int);
255 static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
256 static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
257 
258 /*
259  * Utility routines.
260  */
261 static int		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
262 			    vm_prot_t, u_int, int8_t);
263 static void		moea_syncicache(vm_offset_t, vm_size_t);
264 static boolean_t	moea_query_bit(vm_page_t, int);
265 static u_int		moea_clear_bit(vm_page_t, int);
266 static void		moea_kremove(mmu_t, vm_offset_t);
267 int		moea_pte_spill(vm_offset_t);
268 
269 /*
270  * Kernel MMU interface
271  */
272 void moea_clear_modify(mmu_t, vm_page_t);
273 void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
274 void moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
275     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
276 int moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int,
277     int8_t);
278 void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
279     vm_prot_t);
280 void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
281 vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
282 vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
283 void moea_init(mmu_t);
284 boolean_t moea_is_modified(mmu_t, vm_page_t);
285 boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
286 boolean_t moea_is_referenced(mmu_t, vm_page_t);
287 int moea_ts_referenced(mmu_t, vm_page_t);
288 vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
289 boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
290 int moea_page_wired_mappings(mmu_t, vm_page_t);
291 void moea_pinit(mmu_t, pmap_t);
292 void moea_pinit0(mmu_t, pmap_t);
293 void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
294 void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
295 void moea_qremove(mmu_t, vm_offset_t, int);
296 void moea_release(mmu_t, pmap_t);
297 void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
298 void moea_remove_all(mmu_t, vm_page_t);
299 void moea_remove_write(mmu_t, vm_page_t);
300 void moea_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
301 void moea_zero_page(mmu_t, vm_page_t);
302 void moea_zero_page_area(mmu_t, vm_page_t, int, int);
303 void moea_zero_page_idle(mmu_t, vm_page_t);
304 void moea_activate(mmu_t, struct thread *);
305 void moea_deactivate(mmu_t, struct thread *);
306 void moea_cpu_bootstrap(mmu_t, int);
307 void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
308 void *moea_mapdev(mmu_t, vm_paddr_t, vm_size_t);
309 void *moea_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
310 void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
311 vm_paddr_t moea_kextract(mmu_t, vm_offset_t);
312 void moea_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t);
313 void moea_kenter(mmu_t, vm_offset_t, vm_paddr_t);
314 void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
315 boolean_t moea_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
316 static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
317 void moea_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va);
318 void moea_scan_init(mmu_t mmu);
319 
320 static mmu_method_t moea_methods[] = {
321 	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
322 	MMUMETHOD(mmu_copy_page,	moea_copy_page),
323 	MMUMETHOD(mmu_copy_pages,	moea_copy_pages),
324 	MMUMETHOD(mmu_enter,		moea_enter),
325 	MMUMETHOD(mmu_enter_object,	moea_enter_object),
326 	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
327 	MMUMETHOD(mmu_extract,		moea_extract),
328 	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
329 	MMUMETHOD(mmu_init,		moea_init),
330 	MMUMETHOD(mmu_is_modified,	moea_is_modified),
331 	MMUMETHOD(mmu_is_prefaultable,	moea_is_prefaultable),
332 	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
333 	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
334 	MMUMETHOD(mmu_map,     		moea_map),
335 	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
336 	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
337 	MMUMETHOD(mmu_pinit,		moea_pinit),
338 	MMUMETHOD(mmu_pinit0,		moea_pinit0),
339 	MMUMETHOD(mmu_protect,		moea_protect),
340 	MMUMETHOD(mmu_qenter,		moea_qenter),
341 	MMUMETHOD(mmu_qremove,		moea_qremove),
342 	MMUMETHOD(mmu_release,		moea_release),
343 	MMUMETHOD(mmu_remove,		moea_remove),
344 	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
345 	MMUMETHOD(mmu_remove_write,	moea_remove_write),
346 	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
347 	MMUMETHOD(mmu_unwire,		moea_unwire),
348 	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
349 	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
350 	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
351 	MMUMETHOD(mmu_activate,		moea_activate),
352 	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
353 	MMUMETHOD(mmu_page_set_memattr,	moea_page_set_memattr),
354 
355 	/* Internal interfaces */
356 	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
357 	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
358 	MMUMETHOD(mmu_mapdev_attr,	moea_mapdev_attr),
359 	MMUMETHOD(mmu_mapdev,		moea_mapdev),
360 	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
361 	MMUMETHOD(mmu_kextract,		moea_kextract),
362 	MMUMETHOD(mmu_kenter,		moea_kenter),
363 	MMUMETHOD(mmu_kenter_attr,	moea_kenter_attr),
364 	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
365 	MMUMETHOD(mmu_scan_init,	moea_scan_init),
366 	MMUMETHOD(mmu_dumpsys_map,	moea_dumpsys_map),
367 
368 	{ 0, 0 }
369 };
370 
371 MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
372 
373 static __inline uint32_t
374 moea_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
375 {
376 	uint32_t pte_lo;
377 	int i;
378 
379 	if (ma != VM_MEMATTR_DEFAULT) {
380 		switch (ma) {
381 		case VM_MEMATTR_UNCACHEABLE:
382 			return (PTE_I | PTE_G);
383 		case VM_MEMATTR_WRITE_COMBINING:
384 		case VM_MEMATTR_WRITE_BACK:
385 		case VM_MEMATTR_PREFETCHABLE:
386 			return (PTE_I);
387 		case VM_MEMATTR_WRITE_THROUGH:
388 			return (PTE_W | PTE_M);
389 		}
390 	}
391 
392 	/*
393 	 * Assume the page is cache inhibited and access is guarded unless
394 	 * it's in our available memory array.
395 	 */
396 	pte_lo = PTE_I | PTE_G;
397 	for (i = 0; i < pregions_sz; i++) {
398 		if ((pa >= pregions[i].mr_start) &&
399 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
400 			pte_lo = PTE_M;
401 			break;
402 		}
403 	}
404 
405 	return pte_lo;
406 }
407 
408 static void
409 tlbie(vm_offset_t va)
410 {
411 
412 	mtx_lock_spin(&tlbie_mtx);
413 	__asm __volatile("ptesync");
414 	__asm __volatile("tlbie %0" :: "r"(va));
415 	__asm __volatile("eieio; tlbsync; ptesync");
416 	mtx_unlock_spin(&tlbie_mtx);
417 }
418 
419 static void
420 tlbia(void)
421 {
422 	vm_offset_t va;
423 
424 	for (va = 0; va < 0x00040000; va += 0x00001000) {
425 		__asm __volatile("tlbie %0" :: "r"(va));
426 		powerpc_sync();
427 	}
428 	__asm __volatile("tlbsync");
429 	powerpc_sync();
430 }
431 
432 static __inline int
433 va_to_sr(u_int *sr, vm_offset_t va)
434 {
435 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
436 }
437 
438 static __inline u_int
439 va_to_pteg(u_int sr, vm_offset_t addr)
440 {
441 	u_int hash;
442 
443 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
444 	    ADDR_PIDX_SHFT);
445 	return (hash & moea_pteg_mask);
446 }
447 
448 static __inline struct pvo_head *
449 vm_page_to_pvoh(vm_page_t m)
450 {
451 
452 	return (&m->md.mdpg_pvoh);
453 }
454 
455 static __inline void
456 moea_attr_clear(vm_page_t m, int ptebit)
457 {
458 
459 	rw_assert(&pvh_global_lock, RA_WLOCKED);
460 	m->md.mdpg_attrs &= ~ptebit;
461 }
462 
463 static __inline int
464 moea_attr_fetch(vm_page_t m)
465 {
466 
467 	return (m->md.mdpg_attrs);
468 }
469 
470 static __inline void
471 moea_attr_save(vm_page_t m, int ptebit)
472 {
473 
474 	rw_assert(&pvh_global_lock, RA_WLOCKED);
475 	m->md.mdpg_attrs |= ptebit;
476 }
477 
478 static __inline int
479 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
480 {
481 	if (pt->pte_hi == pvo_pt->pte_hi)
482 		return (1);
483 
484 	return (0);
485 }
486 
487 static __inline int
488 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
489 {
490 	return (pt->pte_hi & ~PTE_VALID) ==
491 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
492 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
493 }
494 
495 static __inline void
496 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
497 {
498 
499 	mtx_assert(&moea_table_mutex, MA_OWNED);
500 
501 	/*
502 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
503 	 * set when the real pte is set in memory.
504 	 *
505 	 * Note: Don't set the valid bit for correct operation of tlb update.
506 	 */
507 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
508 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
509 	pt->pte_lo = pte_lo;
510 }
511 
512 static __inline void
513 moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
514 {
515 
516 	mtx_assert(&moea_table_mutex, MA_OWNED);
517 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
518 }
519 
520 static __inline void
521 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
522 {
523 
524 	mtx_assert(&moea_table_mutex, MA_OWNED);
525 
526 	/*
527 	 * As shown in Section 7.6.3.2.3
528 	 */
529 	pt->pte_lo &= ~ptebit;
530 	tlbie(va);
531 }
532 
533 static __inline void
534 moea_pte_set(struct pte *pt, struct pte *pvo_pt)
535 {
536 
537 	mtx_assert(&moea_table_mutex, MA_OWNED);
538 	pvo_pt->pte_hi |= PTE_VALID;
539 
540 	/*
541 	 * Update the PTE as defined in section 7.6.3.1.
542 	 * Note that the REF/CHG bits are from pvo_pt and thus should have
543 	 * been saved so this routine can restore them (if desired).
544 	 */
545 	pt->pte_lo = pvo_pt->pte_lo;
546 	powerpc_sync();
547 	pt->pte_hi = pvo_pt->pte_hi;
548 	powerpc_sync();
549 	moea_pte_valid++;
550 }
551 
552 static __inline void
553 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
554 {
555 
556 	mtx_assert(&moea_table_mutex, MA_OWNED);
557 	pvo_pt->pte_hi &= ~PTE_VALID;
558 
559 	/*
560 	 * Force the reg & chg bits back into the PTEs.
561 	 */
562 	powerpc_sync();
563 
564 	/*
565 	 * Invalidate the pte.
566 	 */
567 	pt->pte_hi &= ~PTE_VALID;
568 
569 	tlbie(va);
570 
571 	/*
572 	 * Save the reg & chg bits.
573 	 */
574 	moea_pte_synch(pt, pvo_pt);
575 	moea_pte_valid--;
576 }
577 
578 static __inline void
579 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
580 {
581 
582 	/*
583 	 * Invalidate the PTE
584 	 */
585 	moea_pte_unset(pt, pvo_pt, va);
586 	moea_pte_set(pt, pvo_pt);
587 }
588 
589 /*
590  * Quick sort callout for comparing memory regions.
591  */
592 static int	om_cmp(const void *a, const void *b);
593 
594 static int
595 om_cmp(const void *a, const void *b)
596 {
597 	const struct	ofw_map *mapa;
598 	const struct	ofw_map *mapb;
599 
600 	mapa = a;
601 	mapb = b;
602 	if (mapa->om_pa < mapb->om_pa)
603 		return (-1);
604 	else if (mapa->om_pa > mapb->om_pa)
605 		return (1);
606 	else
607 		return (0);
608 }
609 
610 void
611 moea_cpu_bootstrap(mmu_t mmup, int ap)
612 {
613 	u_int sdr;
614 	int i;
615 
616 	if (ap) {
617 		powerpc_sync();
618 		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
619 		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
620 		isync();
621 		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
622 		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
623 		isync();
624 	}
625 
626 #ifdef WII
627 	/*
628 	 * Special case for the Wii: don't install the PCI BAT.
629 	 */
630 	if (strcmp(installed_platform(), "wii") != 0) {
631 #endif
632 		__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
633 		__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
634 #ifdef WII
635 	}
636 #endif
637 	isync();
638 
639 	__asm __volatile("mtibatu 1,%0" :: "r"(0));
640 	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
641 	__asm __volatile("mtibatu 2,%0" :: "r"(0));
642 	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
643 	__asm __volatile("mtibatu 3,%0" :: "r"(0));
644 	isync();
645 
646 	for (i = 0; i < 16; i++)
647 		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
648 	powerpc_sync();
649 
650 	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
651 	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
652 	isync();
653 
654 	tlbia();
655 }
656 
657 void
658 moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
659 {
660 	ihandle_t	mmui;
661 	phandle_t	chosen, mmu;
662 	int		sz;
663 	int		i, j;
664 	vm_size_t	size, physsz, hwphyssz;
665 	vm_offset_t	pa, va, off;
666 	void		*dpcpu;
667 	register_t	msr;
668 
669         /*
670          * Set up BAT0 to map the lowest 256 MB area
671          */
672         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
673         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
674 
675 	/*
676 	 * Map PCI memory space.
677 	 */
678 	battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
679 	battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
680 
681 	battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
682 	battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
683 
684 	battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
685 	battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
686 
687 	battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
688 	battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
689 
690 	/*
691 	 * Map obio devices.
692 	 */
693 	battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
694 	battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
695 
696 	/*
697 	 * Use an IBAT and a DBAT to map the bottom segment of memory
698 	 * where we are. Turn off instruction relocation temporarily
699 	 * to prevent faults while reprogramming the IBAT.
700 	 */
701 	msr = mfmsr();
702 	mtmsr(msr & ~PSL_IR);
703 	__asm (".balign 32; \n"
704 	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
705 	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
706 	    :: "r"(battable[0].batu), "r"(battable[0].batl));
707 	mtmsr(msr);
708 
709 #ifdef WII
710         if (strcmp(installed_platform(), "wii") != 0) {
711 #endif
712 		/* map pci space */
713 		__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
714 		__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
715 #ifdef WII
716 	}
717 #endif
718 	isync();
719 
720 	/* set global direct map flag */
721 	hw_direct_map = 1;
722 
723 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
724 	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
725 
726 	for (i = 0; i < pregions_sz; i++) {
727 		vm_offset_t pa;
728 		vm_offset_t end;
729 
730 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
731 			pregions[i].mr_start,
732 			pregions[i].mr_start + pregions[i].mr_size,
733 			pregions[i].mr_size);
734 		/*
735 		 * Install entries into the BAT table to allow all
736 		 * of physmem to be convered by on-demand BAT entries.
737 		 * The loop will sometimes set the same battable element
738 		 * twice, but that's fine since they won't be used for
739 		 * a while yet.
740 		 */
741 		pa = pregions[i].mr_start & 0xf0000000;
742 		end = pregions[i].mr_start + pregions[i].mr_size;
743 		do {
744                         u_int n = pa >> ADDR_SR_SHFT;
745 
746 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
747 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
748 			pa += SEGMENT_LENGTH;
749 		} while (pa < end);
750 	}
751 
752 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
753 		panic("moea_bootstrap: phys_avail too small");
754 
755 	phys_avail_count = 0;
756 	physsz = 0;
757 	hwphyssz = 0;
758 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
759 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
760 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
761 		    regions[i].mr_start + regions[i].mr_size,
762 		    regions[i].mr_size);
763 		if (hwphyssz != 0 &&
764 		    (physsz + regions[i].mr_size) >= hwphyssz) {
765 			if (physsz < hwphyssz) {
766 				phys_avail[j] = regions[i].mr_start;
767 				phys_avail[j + 1] = regions[i].mr_start +
768 				    hwphyssz - physsz;
769 				physsz = hwphyssz;
770 				phys_avail_count++;
771 			}
772 			break;
773 		}
774 		phys_avail[j] = regions[i].mr_start;
775 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
776 		phys_avail_count++;
777 		physsz += regions[i].mr_size;
778 	}
779 
780 	/* Check for overlap with the kernel and exception vectors */
781 	for (j = 0; j < 2*phys_avail_count; j+=2) {
782 		if (phys_avail[j] < EXC_LAST)
783 			phys_avail[j] += EXC_LAST;
784 
785 		if (kernelstart >= phys_avail[j] &&
786 		    kernelstart < phys_avail[j+1]) {
787 			if (kernelend < phys_avail[j+1]) {
788 				phys_avail[2*phys_avail_count] =
789 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
790 				phys_avail[2*phys_avail_count + 1] =
791 				    phys_avail[j+1];
792 				phys_avail_count++;
793 			}
794 
795 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
796 		}
797 
798 		if (kernelend >= phys_avail[j] &&
799 		    kernelend < phys_avail[j+1]) {
800 			if (kernelstart > phys_avail[j]) {
801 				phys_avail[2*phys_avail_count] = phys_avail[j];
802 				phys_avail[2*phys_avail_count + 1] =
803 				    kernelstart & ~PAGE_MASK;
804 				phys_avail_count++;
805 			}
806 
807 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
808 		}
809 	}
810 
811 	physmem = btoc(physsz);
812 
813 	/*
814 	 * Allocate PTEG table.
815 	 */
816 #ifdef PTEGCOUNT
817 	moea_pteg_count = PTEGCOUNT;
818 #else
819 	moea_pteg_count = 0x1000;
820 
821 	while (moea_pteg_count < physmem)
822 		moea_pteg_count <<= 1;
823 
824 	moea_pteg_count >>= 1;
825 #endif /* PTEGCOUNT */
826 
827 	size = moea_pteg_count * sizeof(struct pteg);
828 	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
829 	    size);
830 	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
831 	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
832 	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
833 	moea_pteg_mask = moea_pteg_count - 1;
834 
835 	/*
836 	 * Allocate pv/overflow lists.
837 	 */
838 	size = sizeof(struct pvo_head) * moea_pteg_count;
839 	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
840 	    PAGE_SIZE);
841 	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
842 	for (i = 0; i < moea_pteg_count; i++)
843 		LIST_INIT(&moea_pvo_table[i]);
844 
845 	/*
846 	 * Initialize the lock that synchronizes access to the pteg and pvo
847 	 * tables.
848 	 */
849 	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
850 	    MTX_RECURSE);
851 	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
852 
853 	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
854 
855 	/*
856 	 * Initialise the unmanaged pvo pool.
857 	 */
858 	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
859 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
860 	moea_bpvo_pool_index = 0;
861 
862 	/*
863 	 * Make sure kernel vsid is allocated as well as VSID 0.
864 	 */
865 	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
866 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
867 	moea_vsid_bitmap[0] |= 1;
868 
869 	/*
870 	 * Initialize the kernel pmap (which is statically allocated).
871 	 */
872 	PMAP_LOCK_INIT(kernel_pmap);
873 	for (i = 0; i < 16; i++)
874 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
875 	CPU_FILL(&kernel_pmap->pm_active);
876 	RB_INIT(&kernel_pmap->pmap_pvo);
877 
878  	/*
879 	 * Initialize the global pv list lock.
880 	 */
881 	rw_init(&pvh_global_lock, "pmap pv global");
882 
883 	/*
884 	 * Set up the Open Firmware mappings
885 	 */
886 	chosen = OF_finddevice("/chosen");
887 	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
888 	    (mmu = OF_instance_to_package(mmui)) != -1 &&
889 	    (sz = OF_getproplen(mmu, "translations")) != -1) {
890 		translations = NULL;
891 		for (i = 0; phys_avail[i] != 0; i += 2) {
892 			if (phys_avail[i + 1] >= sz) {
893 				translations = (struct ofw_map *)phys_avail[i];
894 				break;
895 			}
896 		}
897 		if (translations == NULL)
898 			panic("moea_bootstrap: no space to copy translations");
899 		bzero(translations, sz);
900 		if (OF_getprop(mmu, "translations", translations, sz) == -1)
901 			panic("moea_bootstrap: can't get ofw translations");
902 		CTR0(KTR_PMAP, "moea_bootstrap: translations");
903 		sz /= sizeof(*translations);
904 		qsort(translations, sz, sizeof (*translations), om_cmp);
905 		for (i = 0; i < sz; i++) {
906 			CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
907 			    translations[i].om_pa, translations[i].om_va,
908 			    translations[i].om_len);
909 
910 			/*
911 			 * If the mapping is 1:1, let the RAM and device
912 			 * on-demand BAT tables take care of the translation.
913 			 */
914 			if (translations[i].om_va == translations[i].om_pa)
915 				continue;
916 
917 			/* Enter the pages */
918 			for (off = 0; off < translations[i].om_len;
919 			    off += PAGE_SIZE)
920 				moea_kenter(mmup, translations[i].om_va + off,
921 					    translations[i].om_pa + off);
922 		}
923 	}
924 
925 	/*
926 	 * Calculate the last available physical address.
927 	 */
928 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
929 		;
930 	Maxmem = powerpc_btop(phys_avail[i + 1]);
931 
932 	moea_cpu_bootstrap(mmup,0);
933 
934 	pmap_bootstrapped++;
935 
936 	/*
937 	 * Set the start and end of kva.
938 	 */
939 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
940 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
941 
942 	/*
943 	 * Allocate a kernel stack with a guard page for thread0 and map it
944 	 * into the kernel page map.
945 	 */
946 	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
947 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
948 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
949 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
950 	thread0.td_kstack = va;
951 	thread0.td_kstack_pages = KSTACK_PAGES;
952 	for (i = 0; i < KSTACK_PAGES; i++) {
953 		moea_kenter(mmup, va, pa);
954 		pa += PAGE_SIZE;
955 		va += PAGE_SIZE;
956 	}
957 
958 	/*
959 	 * Allocate virtual address space for the message buffer.
960 	 */
961 	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
962 	msgbufp = (struct msgbuf *)virtual_avail;
963 	va = virtual_avail;
964 	virtual_avail += round_page(msgbufsize);
965 	while (va < virtual_avail) {
966 		moea_kenter(mmup, va, pa);
967 		pa += PAGE_SIZE;
968 		va += PAGE_SIZE;
969 	}
970 
971 	/*
972 	 * Allocate virtual address space for the dynamic percpu area.
973 	 */
974 	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
975 	dpcpu = (void *)virtual_avail;
976 	va = virtual_avail;
977 	virtual_avail += DPCPU_SIZE;
978 	while (va < virtual_avail) {
979 		moea_kenter(mmup, va, pa);
980 		pa += PAGE_SIZE;
981 		va += PAGE_SIZE;
982 	}
983 	dpcpu_init(dpcpu, 0);
984 }
985 
986 /*
987  * Activate a user pmap.  The pmap must be activated before it's address
988  * space can be accessed in any way.
989  */
990 void
991 moea_activate(mmu_t mmu, struct thread *td)
992 {
993 	pmap_t	pm, pmr;
994 
995 	/*
996 	 * Load all the data we need up front to encourage the compiler to
997 	 * not issue any loads while we have interrupts disabled below.
998 	 */
999 	pm = &td->td_proc->p_vmspace->vm_pmap;
1000 	pmr = pm->pmap_phys;
1001 
1002 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1003 	PCPU_SET(curpmap, pmr);
1004 }
1005 
1006 void
1007 moea_deactivate(mmu_t mmu, struct thread *td)
1008 {
1009 	pmap_t	pm;
1010 
1011 	pm = &td->td_proc->p_vmspace->vm_pmap;
1012 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1013 	PCPU_SET(curpmap, NULL);
1014 }
1015 
1016 void
1017 moea_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1018 {
1019 	struct	pvo_entry key, *pvo;
1020 
1021 	PMAP_LOCK(pm);
1022 	key.pvo_vaddr = sva;
1023 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1024 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1025 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1026 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1027 			panic("moea_unwire: pvo %p is missing PVO_WIRED", pvo);
1028 		pvo->pvo_vaddr &= ~PVO_WIRED;
1029 		pm->pm_stats.wired_count--;
1030 	}
1031 	PMAP_UNLOCK(pm);
1032 }
1033 
1034 void
1035 moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1036 {
1037 	vm_offset_t	dst;
1038 	vm_offset_t	src;
1039 
1040 	dst = VM_PAGE_TO_PHYS(mdst);
1041 	src = VM_PAGE_TO_PHYS(msrc);
1042 
1043 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
1044 }
1045 
1046 void
1047 moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1048     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1049 {
1050 	void *a_cp, *b_cp;
1051 	vm_offset_t a_pg_offset, b_pg_offset;
1052 	int cnt;
1053 
1054 	while (xfersize > 0) {
1055 		a_pg_offset = a_offset & PAGE_MASK;
1056 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1057 		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1058 		    a_pg_offset;
1059 		b_pg_offset = b_offset & PAGE_MASK;
1060 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1061 		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1062 		    b_pg_offset;
1063 		bcopy(a_cp, b_cp, cnt);
1064 		a_offset += cnt;
1065 		b_offset += cnt;
1066 		xfersize -= cnt;
1067 	}
1068 }
1069 
1070 /*
1071  * Zero a page of physical memory by temporarily mapping it into the tlb.
1072  */
1073 void
1074 moea_zero_page(mmu_t mmu, vm_page_t m)
1075 {
1076 	vm_offset_t off, pa = VM_PAGE_TO_PHYS(m);
1077 
1078 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1079 		__asm __volatile("dcbz 0,%0" :: "r"(pa + off));
1080 }
1081 
1082 void
1083 moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1084 {
1085 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1086 	void *va = (void *)(pa + off);
1087 
1088 	bzero(va, size);
1089 }
1090 
1091 void
1092 moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1093 {
1094 
1095 	moea_zero_page(mmu, m);
1096 }
1097 
1098 /*
1099  * Map the given physical page at the specified virtual address in the
1100  * target pmap with the protection requested.  If specified the page
1101  * will be wired down.
1102  */
1103 int
1104 moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1105     u_int flags, int8_t psind)
1106 {
1107 	int error;
1108 
1109 	for (;;) {
1110 		rw_wlock(&pvh_global_lock);
1111 		PMAP_LOCK(pmap);
1112 		error = moea_enter_locked(pmap, va, m, prot, flags, psind);
1113 		rw_wunlock(&pvh_global_lock);
1114 		PMAP_UNLOCK(pmap);
1115 		if (error != ENOMEM)
1116 			return (KERN_SUCCESS);
1117 		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1118 			return (KERN_RESOURCE_SHORTAGE);
1119 		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1120 		VM_WAIT;
1121 	}
1122 }
1123 
1124 /*
1125  * Map the given physical page at the specified virtual address in the
1126  * target pmap with the protection requested.  If specified the page
1127  * will be wired down.
1128  *
1129  * The global pvh and pmap must be locked.
1130  */
1131 static int
1132 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1133     u_int flags, int8_t psind __unused)
1134 {
1135 	struct		pvo_head *pvo_head;
1136 	uma_zone_t	zone;
1137 	u_int		pte_lo, pvo_flags;
1138 	int		error;
1139 
1140 	if (pmap_bootstrapped)
1141 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1142 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1143 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1144 		VM_OBJECT_ASSERT_LOCKED(m->object);
1145 
1146 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea_initialized) {
1147 		pvo_head = &moea_pvo_kunmanaged;
1148 		zone = moea_upvo_zone;
1149 		pvo_flags = 0;
1150 	} else {
1151 		pvo_head = vm_page_to_pvoh(m);
1152 		zone = moea_mpvo_zone;
1153 		pvo_flags = PVO_MANAGED;
1154 	}
1155 
1156 	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1157 
1158 	if (prot & VM_PROT_WRITE) {
1159 		pte_lo |= PTE_BW;
1160 		if (pmap_bootstrapped &&
1161 		    (m->oflags & VPO_UNMANAGED) == 0)
1162 			vm_page_aflag_set(m, PGA_WRITEABLE);
1163 	} else
1164 		pte_lo |= PTE_BR;
1165 
1166 	if ((flags & PMAP_ENTER_WIRED) != 0)
1167 		pvo_flags |= PVO_WIRED;
1168 
1169 	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1170 	    pte_lo, pvo_flags);
1171 
1172 	/*
1173 	 * Flush the real page from the instruction cache. This has be done
1174 	 * for all user mappings to prevent information leakage via the
1175 	 * instruction cache. moea_pvo_enter() returns ENOENT for the first
1176 	 * mapping for a page.
1177 	 */
1178 	if (pmap != kernel_pmap && error == ENOENT &&
1179 	    (pte_lo & (PTE_I | PTE_G)) == 0)
1180 		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1181 
1182 	return (error);
1183 }
1184 
1185 /*
1186  * Maps a sequence of resident pages belonging to the same object.
1187  * The sequence begins with the given page m_start.  This page is
1188  * mapped at the given virtual address start.  Each subsequent page is
1189  * mapped at a virtual address that is offset from start by the same
1190  * amount as the page is offset from m_start within the object.  The
1191  * last page in the sequence is the page with the largest offset from
1192  * m_start that can be mapped at a virtual address less than the given
1193  * virtual address end.  Not every virtual page between start and end
1194  * is mapped; only those for which a resident page exists with the
1195  * corresponding offset from m_start are mapped.
1196  */
1197 void
1198 moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1199     vm_page_t m_start, vm_prot_t prot)
1200 {
1201 	vm_page_t m;
1202 	vm_pindex_t diff, psize;
1203 
1204 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1205 
1206 	psize = atop(end - start);
1207 	m = m_start;
1208 	rw_wlock(&pvh_global_lock);
1209 	PMAP_LOCK(pm);
1210 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1211 		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1212 		    (VM_PROT_READ | VM_PROT_EXECUTE), 0, 0);
1213 		m = TAILQ_NEXT(m, listq);
1214 	}
1215 	rw_wunlock(&pvh_global_lock);
1216 	PMAP_UNLOCK(pm);
1217 }
1218 
1219 void
1220 moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1221     vm_prot_t prot)
1222 {
1223 
1224 	rw_wlock(&pvh_global_lock);
1225 	PMAP_LOCK(pm);
1226 	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1227 	    0, 0);
1228 	rw_wunlock(&pvh_global_lock);
1229 	PMAP_UNLOCK(pm);
1230 }
1231 
1232 vm_paddr_t
1233 moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1234 {
1235 	struct	pvo_entry *pvo;
1236 	vm_paddr_t pa;
1237 
1238 	PMAP_LOCK(pm);
1239 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1240 	if (pvo == NULL)
1241 		pa = 0;
1242 	else
1243 		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1244 	PMAP_UNLOCK(pm);
1245 	return (pa);
1246 }
1247 
1248 /*
1249  * Atomically extract and hold the physical page with the given
1250  * pmap and virtual address pair if that mapping permits the given
1251  * protection.
1252  */
1253 vm_page_t
1254 moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1255 {
1256 	struct	pvo_entry *pvo;
1257 	vm_page_t m;
1258         vm_paddr_t pa;
1259 
1260 	m = NULL;
1261 	pa = 0;
1262 	PMAP_LOCK(pmap);
1263 retry:
1264 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1265 	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1266 	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1267 	     (prot & VM_PROT_WRITE) == 0)) {
1268 		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1269 			goto retry;
1270 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1271 		vm_page_hold(m);
1272 	}
1273 	PA_UNLOCK_COND(pa);
1274 	PMAP_UNLOCK(pmap);
1275 	return (m);
1276 }
1277 
1278 void
1279 moea_init(mmu_t mmu)
1280 {
1281 
1282 	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1283 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1284 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1285 	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1286 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1287 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1288 	moea_initialized = TRUE;
1289 }
1290 
1291 boolean_t
1292 moea_is_referenced(mmu_t mmu, vm_page_t m)
1293 {
1294 	boolean_t rv;
1295 
1296 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1297 	    ("moea_is_referenced: page %p is not managed", m));
1298 	rw_wlock(&pvh_global_lock);
1299 	rv = moea_query_bit(m, PTE_REF);
1300 	rw_wunlock(&pvh_global_lock);
1301 	return (rv);
1302 }
1303 
1304 boolean_t
1305 moea_is_modified(mmu_t mmu, vm_page_t m)
1306 {
1307 	boolean_t rv;
1308 
1309 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1310 	    ("moea_is_modified: page %p is not managed", m));
1311 
1312 	/*
1313 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1314 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1315 	 * is clear, no PTEs can have PTE_CHG set.
1316 	 */
1317 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1318 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1319 		return (FALSE);
1320 	rw_wlock(&pvh_global_lock);
1321 	rv = moea_query_bit(m, PTE_CHG);
1322 	rw_wunlock(&pvh_global_lock);
1323 	return (rv);
1324 }
1325 
1326 boolean_t
1327 moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1328 {
1329 	struct pvo_entry *pvo;
1330 	boolean_t rv;
1331 
1332 	PMAP_LOCK(pmap);
1333 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1334 	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1335 	PMAP_UNLOCK(pmap);
1336 	return (rv);
1337 }
1338 
1339 void
1340 moea_clear_modify(mmu_t mmu, vm_page_t m)
1341 {
1342 
1343 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1344 	    ("moea_clear_modify: page %p is not managed", m));
1345 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1346 	KASSERT(!vm_page_xbusied(m),
1347 	    ("moea_clear_modify: page %p is exclusive busy", m));
1348 
1349 	/*
1350 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_CHG
1351 	 * set.  If the object containing the page is locked and the page is
1352 	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1353 	 */
1354 	if ((m->aflags & PGA_WRITEABLE) == 0)
1355 		return;
1356 	rw_wlock(&pvh_global_lock);
1357 	moea_clear_bit(m, PTE_CHG);
1358 	rw_wunlock(&pvh_global_lock);
1359 }
1360 
1361 /*
1362  * Clear the write and modified bits in each of the given page's mappings.
1363  */
1364 void
1365 moea_remove_write(mmu_t mmu, vm_page_t m)
1366 {
1367 	struct	pvo_entry *pvo;
1368 	struct	pte *pt;
1369 	pmap_t	pmap;
1370 	u_int	lo;
1371 
1372 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1373 	    ("moea_remove_write: page %p is not managed", m));
1374 
1375 	/*
1376 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1377 	 * set by another thread while the object is locked.  Thus,
1378 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1379 	 */
1380 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1381 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1382 		return;
1383 	rw_wlock(&pvh_global_lock);
1384 	lo = moea_attr_fetch(m);
1385 	powerpc_sync();
1386 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1387 		pmap = pvo->pvo_pmap;
1388 		PMAP_LOCK(pmap);
1389 		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1390 			pt = moea_pvo_to_pte(pvo, -1);
1391 			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1392 			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1393 			if (pt != NULL) {
1394 				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1395 				lo |= pvo->pvo_pte.pte.pte_lo;
1396 				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1397 				moea_pte_change(pt, &pvo->pvo_pte.pte,
1398 				    pvo->pvo_vaddr);
1399 				mtx_unlock(&moea_table_mutex);
1400 			}
1401 		}
1402 		PMAP_UNLOCK(pmap);
1403 	}
1404 	if ((lo & PTE_CHG) != 0) {
1405 		moea_attr_clear(m, PTE_CHG);
1406 		vm_page_dirty(m);
1407 	}
1408 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1409 	rw_wunlock(&pvh_global_lock);
1410 }
1411 
1412 /*
1413  *	moea_ts_referenced:
1414  *
1415  *	Return a count of reference bits for a page, clearing those bits.
1416  *	It is not necessary for every reference bit to be cleared, but it
1417  *	is necessary that 0 only be returned when there are truly no
1418  *	reference bits set.
1419  *
1420  *	XXX: The exact number of bits to check and clear is a matter that
1421  *	should be tested and standardized at some point in the future for
1422  *	optimal aging of shared pages.
1423  */
1424 int
1425 moea_ts_referenced(mmu_t mmu, vm_page_t m)
1426 {
1427 	int count;
1428 
1429 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1430 	    ("moea_ts_referenced: page %p is not managed", m));
1431 	rw_wlock(&pvh_global_lock);
1432 	count = moea_clear_bit(m, PTE_REF);
1433 	rw_wunlock(&pvh_global_lock);
1434 	return (count);
1435 }
1436 
1437 /*
1438  * Modify the WIMG settings of all mappings for a page.
1439  */
1440 void
1441 moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1442 {
1443 	struct	pvo_entry *pvo;
1444 	struct	pvo_head *pvo_head;
1445 	struct	pte *pt;
1446 	pmap_t	pmap;
1447 	u_int	lo;
1448 
1449 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1450 		m->md.mdpg_cache_attrs = ma;
1451 		return;
1452 	}
1453 
1454 	rw_wlock(&pvh_global_lock);
1455 	pvo_head = vm_page_to_pvoh(m);
1456 	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1457 
1458 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1459 		pmap = pvo->pvo_pmap;
1460 		PMAP_LOCK(pmap);
1461 		pt = moea_pvo_to_pte(pvo, -1);
1462 		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1463 		pvo->pvo_pte.pte.pte_lo |= lo;
1464 		if (pt != NULL) {
1465 			moea_pte_change(pt, &pvo->pvo_pte.pte,
1466 			    pvo->pvo_vaddr);
1467 			if (pvo->pvo_pmap == kernel_pmap)
1468 				isync();
1469 		}
1470 		mtx_unlock(&moea_table_mutex);
1471 		PMAP_UNLOCK(pmap);
1472 	}
1473 	m->md.mdpg_cache_attrs = ma;
1474 	rw_wunlock(&pvh_global_lock);
1475 }
1476 
1477 /*
1478  * Map a wired page into kernel virtual address space.
1479  */
1480 void
1481 moea_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1482 {
1483 
1484 	moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1485 }
1486 
1487 void
1488 moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1489 {
1490 	u_int		pte_lo;
1491 	int		error;
1492 
1493 #if 0
1494 	if (va < VM_MIN_KERNEL_ADDRESS)
1495 		panic("moea_kenter: attempt to enter non-kernel address %#x",
1496 		    va);
1497 #endif
1498 
1499 	pte_lo = moea_calc_wimg(pa, ma);
1500 
1501 	PMAP_LOCK(kernel_pmap);
1502 	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1503 	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1504 
1505 	if (error != 0 && error != ENOENT)
1506 		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1507 		    pa, error);
1508 
1509 	PMAP_UNLOCK(kernel_pmap);
1510 }
1511 
1512 /*
1513  * Extract the physical page address associated with the given kernel virtual
1514  * address.
1515  */
1516 vm_paddr_t
1517 moea_kextract(mmu_t mmu, vm_offset_t va)
1518 {
1519 	struct		pvo_entry *pvo;
1520 	vm_paddr_t pa;
1521 
1522 	/*
1523 	 * Allow direct mappings on 32-bit OEA
1524 	 */
1525 	if (va < VM_MIN_KERNEL_ADDRESS) {
1526 		return (va);
1527 	}
1528 
1529 	PMAP_LOCK(kernel_pmap);
1530 	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1531 	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1532 	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1533 	PMAP_UNLOCK(kernel_pmap);
1534 	return (pa);
1535 }
1536 
1537 /*
1538  * Remove a wired page from kernel virtual address space.
1539  */
1540 void
1541 moea_kremove(mmu_t mmu, vm_offset_t va)
1542 {
1543 
1544 	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1545 }
1546 
1547 /*
1548  * Map a range of physical addresses into kernel virtual address space.
1549  *
1550  * The value passed in *virt is a suggested virtual address for the mapping.
1551  * Architectures which can support a direct-mapped physical to virtual region
1552  * can return the appropriate address within that region, leaving '*virt'
1553  * unchanged.  We cannot and therefore do not; *virt is updated with the
1554  * first usable address after the mapped region.
1555  */
1556 vm_offset_t
1557 moea_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1558     vm_paddr_t pa_end, int prot)
1559 {
1560 	vm_offset_t	sva, va;
1561 
1562 	sva = *virt;
1563 	va = sva;
1564 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1565 		moea_kenter(mmu, va, pa_start);
1566 	*virt = va;
1567 	return (sva);
1568 }
1569 
1570 /*
1571  * Returns true if the pmap's pv is one of the first
1572  * 16 pvs linked to from this page.  This count may
1573  * be changed upwards or downwards in the future; it
1574  * is only necessary that true be returned for a small
1575  * subset of pmaps for proper page aging.
1576  */
1577 boolean_t
1578 moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1579 {
1580         int loops;
1581 	struct pvo_entry *pvo;
1582 	boolean_t rv;
1583 
1584 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1585 	    ("moea_page_exists_quick: page %p is not managed", m));
1586 	loops = 0;
1587 	rv = FALSE;
1588 	rw_wlock(&pvh_global_lock);
1589 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1590 		if (pvo->pvo_pmap == pmap) {
1591 			rv = TRUE;
1592 			break;
1593 		}
1594 		if (++loops >= 16)
1595 			break;
1596 	}
1597 	rw_wunlock(&pvh_global_lock);
1598 	return (rv);
1599 }
1600 
1601 /*
1602  * Return the number of managed mappings to the given physical page
1603  * that are wired.
1604  */
1605 int
1606 moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1607 {
1608 	struct pvo_entry *pvo;
1609 	int count;
1610 
1611 	count = 0;
1612 	if ((m->oflags & VPO_UNMANAGED) != 0)
1613 		return (count);
1614 	rw_wlock(&pvh_global_lock);
1615 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1616 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1617 			count++;
1618 	rw_wunlock(&pvh_global_lock);
1619 	return (count);
1620 }
1621 
1622 static u_int	moea_vsidcontext;
1623 
1624 void
1625 moea_pinit(mmu_t mmu, pmap_t pmap)
1626 {
1627 	int	i, mask;
1628 	u_int	entropy;
1629 
1630 	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1631 	RB_INIT(&pmap->pmap_pvo);
1632 
1633 	entropy = 0;
1634 	__asm __volatile("mftb %0" : "=r"(entropy));
1635 
1636 	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1637 	    == NULL) {
1638 		pmap->pmap_phys = pmap;
1639 	}
1640 
1641 
1642 	mtx_lock(&moea_vsid_mutex);
1643 	/*
1644 	 * Allocate some segment registers for this pmap.
1645 	 */
1646 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1647 		u_int	hash, n;
1648 
1649 		/*
1650 		 * Create a new value by mutiplying by a prime and adding in
1651 		 * entropy from the timebase register.  This is to make the
1652 		 * VSID more random so that the PT hash function collides
1653 		 * less often.  (Note that the prime casues gcc to do shifts
1654 		 * instead of a multiply.)
1655 		 */
1656 		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1657 		hash = moea_vsidcontext & (NPMAPS - 1);
1658 		if (hash == 0)		/* 0 is special, avoid it */
1659 			continue;
1660 		n = hash >> 5;
1661 		mask = 1 << (hash & (VSID_NBPW - 1));
1662 		hash = (moea_vsidcontext & 0xfffff);
1663 		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1664 			/* anything free in this bucket? */
1665 			if (moea_vsid_bitmap[n] == 0xffffffff) {
1666 				entropy = (moea_vsidcontext >> 20);
1667 				continue;
1668 			}
1669 			i = ffs(~moea_vsid_bitmap[n]) - 1;
1670 			mask = 1 << i;
1671 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1672 			hash |= i;
1673 		}
1674 		KASSERT(!(moea_vsid_bitmap[n] & mask),
1675 		    ("Allocating in-use VSID group %#x\n", hash));
1676 		moea_vsid_bitmap[n] |= mask;
1677 		for (i = 0; i < 16; i++)
1678 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1679 		mtx_unlock(&moea_vsid_mutex);
1680 		return;
1681 	}
1682 
1683 	mtx_unlock(&moea_vsid_mutex);
1684 	panic("moea_pinit: out of segments");
1685 }
1686 
1687 /*
1688  * Initialize the pmap associated with process 0.
1689  */
1690 void
1691 moea_pinit0(mmu_t mmu, pmap_t pm)
1692 {
1693 
1694 	PMAP_LOCK_INIT(pm);
1695 	moea_pinit(mmu, pm);
1696 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1697 }
1698 
1699 /*
1700  * Set the physical protection on the specified range of this map as requested.
1701  */
1702 void
1703 moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1704     vm_prot_t prot)
1705 {
1706 	struct	pvo_entry *pvo, *tpvo, key;
1707 	struct	pte *pt;
1708 
1709 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1710 	    ("moea_protect: non current pmap"));
1711 
1712 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1713 		moea_remove(mmu, pm, sva, eva);
1714 		return;
1715 	}
1716 
1717 	rw_wlock(&pvh_global_lock);
1718 	PMAP_LOCK(pm);
1719 	key.pvo_vaddr = sva;
1720 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1721 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1722 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1723 
1724 		/*
1725 		 * Grab the PTE pointer before we diddle with the cached PTE
1726 		 * copy.
1727 		 */
1728 		pt = moea_pvo_to_pte(pvo, -1);
1729 		/*
1730 		 * Change the protection of the page.
1731 		 */
1732 		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1733 		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1734 
1735 		/*
1736 		 * If the PVO is in the page table, update that pte as well.
1737 		 */
1738 		if (pt != NULL) {
1739 			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1740 			mtx_unlock(&moea_table_mutex);
1741 		}
1742 	}
1743 	rw_wunlock(&pvh_global_lock);
1744 	PMAP_UNLOCK(pm);
1745 }
1746 
1747 /*
1748  * Map a list of wired pages into kernel virtual address space.  This is
1749  * intended for temporary mappings which do not need page modification or
1750  * references recorded.  Existing mappings in the region are overwritten.
1751  */
1752 void
1753 moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1754 {
1755 	vm_offset_t va;
1756 
1757 	va = sva;
1758 	while (count-- > 0) {
1759 		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1760 		va += PAGE_SIZE;
1761 		m++;
1762 	}
1763 }
1764 
1765 /*
1766  * Remove page mappings from kernel virtual address space.  Intended for
1767  * temporary mappings entered by moea_qenter.
1768  */
1769 void
1770 moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1771 {
1772 	vm_offset_t va;
1773 
1774 	va = sva;
1775 	while (count-- > 0) {
1776 		moea_kremove(mmu, va);
1777 		va += PAGE_SIZE;
1778 	}
1779 }
1780 
1781 void
1782 moea_release(mmu_t mmu, pmap_t pmap)
1783 {
1784         int idx, mask;
1785 
1786 	/*
1787 	 * Free segment register's VSID
1788 	 */
1789         if (pmap->pm_sr[0] == 0)
1790                 panic("moea_release");
1791 
1792 	mtx_lock(&moea_vsid_mutex);
1793         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1794         mask = 1 << (idx % VSID_NBPW);
1795         idx /= VSID_NBPW;
1796         moea_vsid_bitmap[idx] &= ~mask;
1797 	mtx_unlock(&moea_vsid_mutex);
1798 }
1799 
1800 /*
1801  * Remove the given range of addresses from the specified map.
1802  */
1803 void
1804 moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1805 {
1806 	struct	pvo_entry *pvo, *tpvo, key;
1807 
1808 	rw_wlock(&pvh_global_lock);
1809 	PMAP_LOCK(pm);
1810 	key.pvo_vaddr = sva;
1811 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1812 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1813 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1814 		moea_pvo_remove(pvo, -1);
1815 	}
1816 	PMAP_UNLOCK(pm);
1817 	rw_wunlock(&pvh_global_lock);
1818 }
1819 
1820 /*
1821  * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1822  * will reflect changes in pte's back to the vm_page.
1823  */
1824 void
1825 moea_remove_all(mmu_t mmu, vm_page_t m)
1826 {
1827 	struct  pvo_head *pvo_head;
1828 	struct	pvo_entry *pvo, *next_pvo;
1829 	pmap_t	pmap;
1830 
1831 	rw_wlock(&pvh_global_lock);
1832 	pvo_head = vm_page_to_pvoh(m);
1833 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1834 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1835 
1836 		pmap = pvo->pvo_pmap;
1837 		PMAP_LOCK(pmap);
1838 		moea_pvo_remove(pvo, -1);
1839 		PMAP_UNLOCK(pmap);
1840 	}
1841 	if ((m->aflags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
1842 		moea_attr_clear(m, PTE_CHG);
1843 		vm_page_dirty(m);
1844 	}
1845 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1846 	rw_wunlock(&pvh_global_lock);
1847 }
1848 
1849 /*
1850  * Allocate a physical page of memory directly from the phys_avail map.
1851  * Can only be called from moea_bootstrap before avail start and end are
1852  * calculated.
1853  */
1854 static vm_offset_t
1855 moea_bootstrap_alloc(vm_size_t size, u_int align)
1856 {
1857 	vm_offset_t	s, e;
1858 	int		i, j;
1859 
1860 	size = round_page(size);
1861 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1862 		if (align != 0)
1863 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1864 		else
1865 			s = phys_avail[i];
1866 		e = s + size;
1867 
1868 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1869 			continue;
1870 
1871 		if (s == phys_avail[i]) {
1872 			phys_avail[i] += size;
1873 		} else if (e == phys_avail[i + 1]) {
1874 			phys_avail[i + 1] -= size;
1875 		} else {
1876 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1877 				phys_avail[j] = phys_avail[j - 2];
1878 				phys_avail[j + 1] = phys_avail[j - 1];
1879 			}
1880 
1881 			phys_avail[i + 3] = phys_avail[i + 1];
1882 			phys_avail[i + 1] = s;
1883 			phys_avail[i + 2] = e;
1884 			phys_avail_count++;
1885 		}
1886 
1887 		return (s);
1888 	}
1889 	panic("moea_bootstrap_alloc: could not allocate memory");
1890 }
1891 
1892 static void
1893 moea_syncicache(vm_offset_t pa, vm_size_t len)
1894 {
1895 	__syncicache((void *)pa, len);
1896 }
1897 
1898 static int
1899 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1900     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1901 {
1902 	struct	pvo_entry *pvo;
1903 	u_int	sr;
1904 	int	first;
1905 	u_int	ptegidx;
1906 	int	i;
1907 	int     bootstrap;
1908 
1909 	moea_pvo_enter_calls++;
1910 	first = 0;
1911 	bootstrap = 0;
1912 
1913 	/*
1914 	 * Compute the PTE Group index.
1915 	 */
1916 	va &= ~ADDR_POFF;
1917 	sr = va_to_sr(pm->pm_sr, va);
1918 	ptegidx = va_to_pteg(sr, va);
1919 
1920 	/*
1921 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1922 	 * there is a mapping.
1923 	 */
1924 	mtx_lock(&moea_table_mutex);
1925 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1926 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1927 			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
1928 			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
1929 			    (pte_lo & PTE_PP)) {
1930 				/*
1931 				 * The PTE is not changing.  Instead, this may
1932 				 * be a request to change the mapping's wired
1933 				 * attribute.
1934 				 */
1935 				mtx_unlock(&moea_table_mutex);
1936 				if ((flags & PVO_WIRED) != 0 &&
1937 				    (pvo->pvo_vaddr & PVO_WIRED) == 0) {
1938 					pvo->pvo_vaddr |= PVO_WIRED;
1939 					pm->pm_stats.wired_count++;
1940 				} else if ((flags & PVO_WIRED) == 0 &&
1941 				    (pvo->pvo_vaddr & PVO_WIRED) != 0) {
1942 					pvo->pvo_vaddr &= ~PVO_WIRED;
1943 					pm->pm_stats.wired_count--;
1944 				}
1945 				return (0);
1946 			}
1947 			moea_pvo_remove(pvo, -1);
1948 			break;
1949 		}
1950 	}
1951 
1952 	/*
1953 	 * If we aren't overwriting a mapping, try to allocate.
1954 	 */
1955 	if (moea_initialized) {
1956 		pvo = uma_zalloc(zone, M_NOWAIT);
1957 	} else {
1958 		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1959 			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1960 			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1961 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1962 		}
1963 		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1964 		moea_bpvo_pool_index++;
1965 		bootstrap = 1;
1966 	}
1967 
1968 	if (pvo == NULL) {
1969 		mtx_unlock(&moea_table_mutex);
1970 		return (ENOMEM);
1971 	}
1972 
1973 	moea_pvo_entries++;
1974 	pvo->pvo_vaddr = va;
1975 	pvo->pvo_pmap = pm;
1976 	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1977 	pvo->pvo_vaddr &= ~ADDR_POFF;
1978 	if (flags & PVO_WIRED)
1979 		pvo->pvo_vaddr |= PVO_WIRED;
1980 	if (pvo_head != &moea_pvo_kunmanaged)
1981 		pvo->pvo_vaddr |= PVO_MANAGED;
1982 	if (bootstrap)
1983 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1984 
1985 	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
1986 
1987 	/*
1988 	 * Add to pmap list
1989 	 */
1990 	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
1991 
1992 	/*
1993 	 * Remember if the list was empty and therefore will be the first
1994 	 * item.
1995 	 */
1996 	if (LIST_FIRST(pvo_head) == NULL)
1997 		first = 1;
1998 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1999 
2000 	if (pvo->pvo_vaddr & PVO_WIRED)
2001 		pm->pm_stats.wired_count++;
2002 	pm->pm_stats.resident_count++;
2003 
2004 	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2005 	KASSERT(i < 8, ("Invalid PTE index"));
2006 	if (i >= 0) {
2007 		PVO_PTEGIDX_SET(pvo, i);
2008 	} else {
2009 		panic("moea_pvo_enter: overflow");
2010 		moea_pte_overflow++;
2011 	}
2012 	mtx_unlock(&moea_table_mutex);
2013 
2014 	return (first ? ENOENT : 0);
2015 }
2016 
2017 static void
2018 moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
2019 {
2020 	struct	pte *pt;
2021 
2022 	/*
2023 	 * If there is an active pte entry, we need to deactivate it (and
2024 	 * save the ref & cfg bits).
2025 	 */
2026 	pt = moea_pvo_to_pte(pvo, pteidx);
2027 	if (pt != NULL) {
2028 		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2029 		mtx_unlock(&moea_table_mutex);
2030 		PVO_PTEGIDX_CLR(pvo);
2031 	} else {
2032 		moea_pte_overflow--;
2033 	}
2034 
2035 	/*
2036 	 * Update our statistics.
2037 	 */
2038 	pvo->pvo_pmap->pm_stats.resident_count--;
2039 	if (pvo->pvo_vaddr & PVO_WIRED)
2040 		pvo->pvo_pmap->pm_stats.wired_count--;
2041 
2042 	/*
2043 	 * Save the REF/CHG bits into their cache if the page is managed.
2044 	 */
2045 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2046 		struct	vm_page *pg;
2047 
2048 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
2049 		if (pg != NULL) {
2050 			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2051 			    (PTE_REF | PTE_CHG));
2052 		}
2053 	}
2054 
2055 	/*
2056 	 * Remove this PVO from the PV and pmap lists.
2057 	 */
2058 	LIST_REMOVE(pvo, pvo_vlink);
2059 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2060 
2061 	/*
2062 	 * Remove this from the overflow list and return it to the pool
2063 	 * if we aren't going to reuse it.
2064 	 */
2065 	LIST_REMOVE(pvo, pvo_olink);
2066 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2067 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2068 		    moea_upvo_zone, pvo);
2069 	moea_pvo_entries--;
2070 	moea_pvo_remove_calls++;
2071 }
2072 
2073 static __inline int
2074 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2075 {
2076 	int	pteidx;
2077 
2078 	/*
2079 	 * We can find the actual pte entry without searching by grabbing
2080 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2081 	 * noticing the HID bit.
2082 	 */
2083 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2084 	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2085 		pteidx ^= moea_pteg_mask * 8;
2086 
2087 	return (pteidx);
2088 }
2089 
2090 static struct pvo_entry *
2091 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2092 {
2093 	struct	pvo_entry *pvo;
2094 	int	ptegidx;
2095 	u_int	sr;
2096 
2097 	va &= ~ADDR_POFF;
2098 	sr = va_to_sr(pm->pm_sr, va);
2099 	ptegidx = va_to_pteg(sr, va);
2100 
2101 	mtx_lock(&moea_table_mutex);
2102 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2103 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2104 			if (pteidx_p)
2105 				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2106 			break;
2107 		}
2108 	}
2109 	mtx_unlock(&moea_table_mutex);
2110 
2111 	return (pvo);
2112 }
2113 
2114 static struct pte *
2115 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2116 {
2117 	struct	pte *pt;
2118 
2119 	/*
2120 	 * If we haven't been supplied the ptegidx, calculate it.
2121 	 */
2122 	if (pteidx == -1) {
2123 		int	ptegidx;
2124 		u_int	sr;
2125 
2126 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2127 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2128 		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2129 	}
2130 
2131 	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2132 	mtx_lock(&moea_table_mutex);
2133 
2134 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2135 		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2136 		    "valid pte index", pvo);
2137 	}
2138 
2139 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2140 		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2141 		    "pvo but no valid pte", pvo);
2142 	}
2143 
2144 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2145 		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2146 			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2147 			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2148 		}
2149 
2150 		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2151 		    != 0) {
2152 			panic("moea_pvo_to_pte: pvo %p pte does not match "
2153 			    "pte %p in moea_pteg_table", pvo, pt);
2154 		}
2155 
2156 		mtx_assert(&moea_table_mutex, MA_OWNED);
2157 		return (pt);
2158 	}
2159 
2160 	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2161 		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2162 		    "moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2163 	}
2164 
2165 	mtx_unlock(&moea_table_mutex);
2166 	return (NULL);
2167 }
2168 
2169 /*
2170  * XXX: THIS STUFF SHOULD BE IN pte.c?
2171  */
2172 int
2173 moea_pte_spill(vm_offset_t addr)
2174 {
2175 	struct	pvo_entry *source_pvo, *victim_pvo;
2176 	struct	pvo_entry *pvo;
2177 	int	ptegidx, i, j;
2178 	u_int	sr;
2179 	struct	pteg *pteg;
2180 	struct	pte *pt;
2181 
2182 	moea_pte_spills++;
2183 
2184 	sr = mfsrin(addr);
2185 	ptegidx = va_to_pteg(sr, addr);
2186 
2187 	/*
2188 	 * Have to substitute some entry.  Use the primary hash for this.
2189 	 * Use low bits of timebase as random generator.
2190 	 */
2191 	pteg = &moea_pteg_table[ptegidx];
2192 	mtx_lock(&moea_table_mutex);
2193 	__asm __volatile("mftb %0" : "=r"(i));
2194 	i &= 7;
2195 	pt = &pteg->pt[i];
2196 
2197 	source_pvo = NULL;
2198 	victim_pvo = NULL;
2199 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2200 		/*
2201 		 * We need to find a pvo entry for this address.
2202 		 */
2203 		if (source_pvo == NULL &&
2204 		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2205 		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2206 			/*
2207 			 * Now found an entry to be spilled into the pteg.
2208 			 * The PTE is now valid, so we know it's active.
2209 			 */
2210 			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2211 
2212 			if (j >= 0) {
2213 				PVO_PTEGIDX_SET(pvo, j);
2214 				moea_pte_overflow--;
2215 				mtx_unlock(&moea_table_mutex);
2216 				return (1);
2217 			}
2218 
2219 			source_pvo = pvo;
2220 
2221 			if (victim_pvo != NULL)
2222 				break;
2223 		}
2224 
2225 		/*
2226 		 * We also need the pvo entry of the victim we are replacing
2227 		 * so save the R & C bits of the PTE.
2228 		 */
2229 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2230 		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2231 			victim_pvo = pvo;
2232 			if (source_pvo != NULL)
2233 				break;
2234 		}
2235 	}
2236 
2237 	if (source_pvo == NULL) {
2238 		mtx_unlock(&moea_table_mutex);
2239 		return (0);
2240 	}
2241 
2242 	if (victim_pvo == NULL) {
2243 		if ((pt->pte_hi & PTE_HID) == 0)
2244 			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2245 			    "entry", pt);
2246 
2247 		/*
2248 		 * If this is a secondary PTE, we need to search it's primary
2249 		 * pvo bucket for the matching PVO.
2250 		 */
2251 		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2252 		    pvo_olink) {
2253 			/*
2254 			 * We also need the pvo entry of the victim we are
2255 			 * replacing so save the R & C bits of the PTE.
2256 			 */
2257 			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2258 				victim_pvo = pvo;
2259 				break;
2260 			}
2261 		}
2262 
2263 		if (victim_pvo == NULL)
2264 			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2265 			    "entry", pt);
2266 	}
2267 
2268 	/*
2269 	 * We are invalidating the TLB entry for the EA we are replacing even
2270 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2271 	 * contained in the TLB entry.
2272 	 */
2273 	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2274 
2275 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2276 	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2277 
2278 	PVO_PTEGIDX_CLR(victim_pvo);
2279 	PVO_PTEGIDX_SET(source_pvo, i);
2280 	moea_pte_replacements++;
2281 
2282 	mtx_unlock(&moea_table_mutex);
2283 	return (1);
2284 }
2285 
2286 static __inline struct pvo_entry *
2287 moea_pte_spillable_ident(u_int ptegidx)
2288 {
2289 	struct	pte *pt;
2290 	struct	pvo_entry *pvo_walk, *pvo = NULL;
2291 
2292 	LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) {
2293 		if (pvo_walk->pvo_vaddr & PVO_WIRED)
2294 			continue;
2295 
2296 		if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID))
2297 			continue;
2298 
2299 		pt = moea_pvo_to_pte(pvo_walk, -1);
2300 
2301 		if (pt == NULL)
2302 			continue;
2303 
2304 		pvo = pvo_walk;
2305 
2306 		mtx_unlock(&moea_table_mutex);
2307 		if (!(pt->pte_lo & PTE_REF))
2308 			return (pvo_walk);
2309 	}
2310 
2311 	return (pvo);
2312 }
2313 
2314 static int
2315 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2316 {
2317 	struct	pte *pt;
2318 	struct	pvo_entry *victim_pvo;
2319 	int	i;
2320 	int	victim_idx;
2321 	u_int	pteg_bkpidx = ptegidx;
2322 
2323 	mtx_assert(&moea_table_mutex, MA_OWNED);
2324 
2325 	/*
2326 	 * First try primary hash.
2327 	 */
2328 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2329 		if ((pt->pte_hi & PTE_VALID) == 0) {
2330 			pvo_pt->pte_hi &= ~PTE_HID;
2331 			moea_pte_set(pt, pvo_pt);
2332 			return (i);
2333 		}
2334 	}
2335 
2336 	/*
2337 	 * Now try secondary hash.
2338 	 */
2339 	ptegidx ^= moea_pteg_mask;
2340 
2341 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2342 		if ((pt->pte_hi & PTE_VALID) == 0) {
2343 			pvo_pt->pte_hi |= PTE_HID;
2344 			moea_pte_set(pt, pvo_pt);
2345 			return (i);
2346 		}
2347 	}
2348 
2349 	/* Try again, but this time try to force a PTE out. */
2350 	ptegidx = pteg_bkpidx;
2351 
2352 	victim_pvo = moea_pte_spillable_ident(ptegidx);
2353 	if (victim_pvo == NULL) {
2354 		ptegidx ^= moea_pteg_mask;
2355 		victim_pvo = moea_pte_spillable_ident(ptegidx);
2356 	}
2357 
2358 	if (victim_pvo == NULL) {
2359 		panic("moea_pte_insert: overflow");
2360 		return (-1);
2361 	}
2362 
2363 	victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx);
2364 
2365 	if (pteg_bkpidx == ptegidx)
2366 		pvo_pt->pte_hi &= ~PTE_HID;
2367 	else
2368 		pvo_pt->pte_hi |= PTE_HID;
2369 
2370 	/*
2371 	 * Synchronize the sacrifice PTE with its PVO, then mark both
2372 	 * invalid. The PVO will be reused when/if the VM system comes
2373 	 * here after a fault.
2374 	 */
2375 	pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7];
2376 
2377 	if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi)
2378 	    panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2379 
2380 	/*
2381 	 * Set the new PTE.
2382 	 */
2383 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2384 	PVO_PTEGIDX_CLR(victim_pvo);
2385 	moea_pte_overflow++;
2386 	moea_pte_set(pt, pvo_pt);
2387 
2388 	return (victim_idx & 7);
2389 }
2390 
2391 static boolean_t
2392 moea_query_bit(vm_page_t m, int ptebit)
2393 {
2394 	struct	pvo_entry *pvo;
2395 	struct	pte *pt;
2396 
2397 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2398 	if (moea_attr_fetch(m) & ptebit)
2399 		return (TRUE);
2400 
2401 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2402 
2403 		/*
2404 		 * See if we saved the bit off.  If so, cache it and return
2405 		 * success.
2406 		 */
2407 		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2408 			moea_attr_save(m, ptebit);
2409 			return (TRUE);
2410 		}
2411 	}
2412 
2413 	/*
2414 	 * No luck, now go through the hard part of looking at the PTEs
2415 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2416 	 * the PTEs.
2417 	 */
2418 	powerpc_sync();
2419 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2420 
2421 		/*
2422 		 * See if this pvo has a valid PTE.  if so, fetch the
2423 		 * REF/CHG bits from the valid PTE.  If the appropriate
2424 		 * ptebit is set, cache it and return success.
2425 		 */
2426 		pt = moea_pvo_to_pte(pvo, -1);
2427 		if (pt != NULL) {
2428 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2429 			mtx_unlock(&moea_table_mutex);
2430 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2431 				moea_attr_save(m, ptebit);
2432 				return (TRUE);
2433 			}
2434 		}
2435 	}
2436 
2437 	return (FALSE);
2438 }
2439 
2440 static u_int
2441 moea_clear_bit(vm_page_t m, int ptebit)
2442 {
2443 	u_int	count;
2444 	struct	pvo_entry *pvo;
2445 	struct	pte *pt;
2446 
2447 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2448 
2449 	/*
2450 	 * Clear the cached value.
2451 	 */
2452 	moea_attr_clear(m, ptebit);
2453 
2454 	/*
2455 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2456 	 * we can reset the right ones).  note that since the pvo entries and
2457 	 * list heads are accessed via BAT0 and are never placed in the page
2458 	 * table, we don't have to worry about further accesses setting the
2459 	 * REF/CHG bits.
2460 	 */
2461 	powerpc_sync();
2462 
2463 	/*
2464 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2465 	 * valid pte clear the ptebit from the valid pte.
2466 	 */
2467 	count = 0;
2468 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2469 		pt = moea_pvo_to_pte(pvo, -1);
2470 		if (pt != NULL) {
2471 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2472 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2473 				count++;
2474 				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2475 			}
2476 			mtx_unlock(&moea_table_mutex);
2477 		}
2478 		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2479 	}
2480 
2481 	return (count);
2482 }
2483 
2484 /*
2485  * Return true if the physical range is encompassed by the battable[idx]
2486  */
2487 static int
2488 moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2489 {
2490 	u_int prot;
2491 	u_int32_t start;
2492 	u_int32_t end;
2493 	u_int32_t bat_ble;
2494 
2495 	/*
2496 	 * Return immediately if not a valid mapping
2497 	 */
2498 	if (!(battable[idx].batu & BAT_Vs))
2499 		return (EINVAL);
2500 
2501 	/*
2502 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2503 	 * so it can function as an i/o page
2504 	 */
2505 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2506 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2507 		return (EPERM);
2508 
2509 	/*
2510 	 * The address should be within the BAT range. Assume that the
2511 	 * start address in the BAT has the correct alignment (thus
2512 	 * not requiring masking)
2513 	 */
2514 	start = battable[idx].batl & BAT_PBS;
2515 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2516 	end = start | (bat_ble << 15) | 0x7fff;
2517 
2518 	if ((pa < start) || ((pa + size) > end))
2519 		return (ERANGE);
2520 
2521 	return (0);
2522 }
2523 
2524 boolean_t
2525 moea_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2526 {
2527 	int i;
2528 
2529 	/*
2530 	 * This currently does not work for entries that
2531 	 * overlap 256M BAT segments.
2532 	 */
2533 
2534 	for(i = 0; i < 16; i++)
2535 		if (moea_bat_mapped(i, pa, size) == 0)
2536 			return (0);
2537 
2538 	return (EFAULT);
2539 }
2540 
2541 /*
2542  * Map a set of physical memory pages into the kernel virtual
2543  * address space. Return a pointer to where it is mapped. This
2544  * routine is intended to be used for mapping device memory,
2545  * NOT real memory.
2546  */
2547 void *
2548 moea_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2549 {
2550 
2551 	return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2552 }
2553 
2554 void *
2555 moea_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2556 {
2557 	vm_offset_t va, tmpva, ppa, offset;
2558 	int i;
2559 
2560 	ppa = trunc_page(pa);
2561 	offset = pa & PAGE_MASK;
2562 	size = roundup(offset + size, PAGE_SIZE);
2563 
2564 	/*
2565 	 * If the physical address lies within a valid BAT table entry,
2566 	 * return the 1:1 mapping. This currently doesn't work
2567 	 * for regions that overlap 256M BAT segments.
2568 	 */
2569 	for (i = 0; i < 16; i++) {
2570 		if (moea_bat_mapped(i, pa, size) == 0)
2571 			return ((void *) pa);
2572 	}
2573 
2574 	va = kva_alloc(size);
2575 	if (!va)
2576 		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2577 
2578 	for (tmpva = va; size > 0;) {
2579 		moea_kenter_attr(mmu, tmpva, ppa, ma);
2580 		tlbie(tmpva);
2581 		size -= PAGE_SIZE;
2582 		tmpva += PAGE_SIZE;
2583 		ppa += PAGE_SIZE;
2584 	}
2585 
2586 	return ((void *)(va + offset));
2587 }
2588 
2589 void
2590 moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2591 {
2592 	vm_offset_t base, offset;
2593 
2594 	/*
2595 	 * If this is outside kernel virtual space, then it's a
2596 	 * battable entry and doesn't require unmapping
2597 	 */
2598 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2599 		base = trunc_page(va);
2600 		offset = va & PAGE_MASK;
2601 		size = roundup(offset + size, PAGE_SIZE);
2602 		kva_free(base, size);
2603 	}
2604 }
2605 
2606 static void
2607 moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2608 {
2609 	struct pvo_entry *pvo;
2610 	vm_offset_t lim;
2611 	vm_paddr_t pa;
2612 	vm_size_t len;
2613 
2614 	PMAP_LOCK(pm);
2615 	while (sz > 0) {
2616 		lim = round_page(va);
2617 		len = MIN(lim - va, sz);
2618 		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2619 		if (pvo != NULL) {
2620 			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2621 			    (va & ADDR_POFF);
2622 			moea_syncicache(pa, len);
2623 		}
2624 		va += len;
2625 		sz -= len;
2626 	}
2627 	PMAP_UNLOCK(pm);
2628 }
2629 
2630 void
2631 moea_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2632 {
2633 
2634 	*va = (void *)pa;
2635 }
2636 
2637 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2638 
2639 void
2640 moea_scan_init(mmu_t mmu)
2641 {
2642 	struct pvo_entry *pvo;
2643 	vm_offset_t va;
2644 	int i;
2645 
2646 	if (!do_minidump) {
2647 		/* Initialize phys. segments for dumpsys(). */
2648 		memset(&dump_map, 0, sizeof(dump_map));
2649 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2650 		for (i = 0; i < pregions_sz; i++) {
2651 			dump_map[i].pa_start = pregions[i].mr_start;
2652 			dump_map[i].pa_size = pregions[i].mr_size;
2653 		}
2654 		return;
2655 	}
2656 
2657 	/* Virtual segments for minidumps: */
2658 	memset(&dump_map, 0, sizeof(dump_map));
2659 
2660 	/* 1st: kernel .data and .bss. */
2661 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2662 	dump_map[0].pa_size =
2663 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2664 
2665 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2666 	dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
2667 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2668 
2669 	/* 3rd: kernel VM. */
2670 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2671 	/* Find start of next chunk (from va). */
2672 	while (va < virtual_end) {
2673 		/* Don't dump the buffer cache. */
2674 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2675 			va = kmi.buffer_eva;
2676 			continue;
2677 		}
2678 		pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
2679 		if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2680 			break;
2681 		va += PAGE_SIZE;
2682 	}
2683 	if (va < virtual_end) {
2684 		dump_map[2].pa_start = va;
2685 		va += PAGE_SIZE;
2686 		/* Find last page in chunk. */
2687 		while (va < virtual_end) {
2688 			/* Don't run into the buffer cache. */
2689 			if (va == kmi.buffer_sva)
2690 				break;
2691 			pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF,
2692 			    NULL);
2693 			if (pvo == NULL ||
2694 			    !(pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2695 				break;
2696 			va += PAGE_SIZE;
2697 		}
2698 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2699 	}
2700 }
2701