xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision d65cd7a57bf0600b722afc770838a5d0c1c3a8e1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD AND BSD-4-Clause
3  *
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*-
32  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
33  * Copyright (C) 1995, 1996 TooLs GmbH.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgement:
46  *	This product includes software developed by TooLs GmbH.
47  * 4. The name of TooLs GmbH may not be used to endorse or promote products
48  *    derived from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
51  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
52  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
53  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
54  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
55  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
56  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
57  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
58  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
59  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
60  *
61  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
62  */
63 /*-
64  * Copyright (C) 2001 Benno Rice.
65  * All rights reserved.
66  *
67  * Redistribution and use in source and binary forms, with or without
68  * modification, are permitted provided that the following conditions
69  * are met:
70  * 1. Redistributions of source code must retain the above copyright
71  *    notice, this list of conditions and the following disclaimer.
72  * 2. Redistributions in binary form must reproduce the above copyright
73  *    notice, this list of conditions and the following disclaimer in the
74  *    documentation and/or other materials provided with the distribution.
75  *
76  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
77  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
78  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
79  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
80  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
81  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
82  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
83  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
84  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
85  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
86  */
87 
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90 
91 /*
92  * Manages physical address maps.
93  *
94  * Since the information managed by this module is also stored by the
95  * logical address mapping module, this module may throw away valid virtual
96  * to physical mappings at almost any time.  However, invalidations of
97  * mappings must be done as requested.
98  *
99  * In order to cope with hardware architectures which make virtual to
100  * physical map invalidates expensive, this module may delay invalidate
101  * reduced protection operations until such time as they are actually
102  * necessary.  This module is given full information as to which processors
103  * are currently using which maps, and to when physical maps must be made
104  * correct.
105  */
106 
107 #include "opt_kstack_pages.h"
108 
109 #include <sys/param.h>
110 #include <sys/kernel.h>
111 #include <sys/conf.h>
112 #include <sys/queue.h>
113 #include <sys/cpuset.h>
114 #include <sys/kerneldump.h>
115 #include <sys/ktr.h>
116 #include <sys/lock.h>
117 #include <sys/msgbuf.h>
118 #include <sys/mutex.h>
119 #include <sys/proc.h>
120 #include <sys/rwlock.h>
121 #include <sys/sched.h>
122 #include <sys/sysctl.h>
123 #include <sys/systm.h>
124 #include <sys/vmmeter.h>
125 
126 #include <dev/ofw/openfirm.h>
127 
128 #include <vm/vm.h>
129 #include <vm/vm_param.h>
130 #include <vm/vm_kern.h>
131 #include <vm/vm_page.h>
132 #include <vm/vm_map.h>
133 #include <vm/vm_object.h>
134 #include <vm/vm_extern.h>
135 #include <vm/vm_page.h>
136 #include <vm/vm_phys.h>
137 #include <vm/vm_pageout.h>
138 #include <vm/uma.h>
139 
140 #include <machine/cpu.h>
141 #include <machine/platform.h>
142 #include <machine/bat.h>
143 #include <machine/frame.h>
144 #include <machine/md_var.h>
145 #include <machine/psl.h>
146 #include <machine/pte.h>
147 #include <machine/smp.h>
148 #include <machine/sr.h>
149 #include <machine/mmuvar.h>
150 #include <machine/trap.h>
151 
152 #include "mmu_if.h"
153 
154 #define	MOEA_DEBUG
155 
156 #define TODO	panic("%s: not implemented", __func__);
157 
158 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
159 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
160 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
161 
162 struct ofw_map {
163 	vm_offset_t	om_va;
164 	vm_size_t	om_len;
165 	vm_offset_t	om_pa;
166 	u_int		om_mode;
167 };
168 
169 extern unsigned char _etext[];
170 extern unsigned char _end[];
171 
172 /*
173  * Map of physical memory regions.
174  */
175 static struct	mem_region *regions;
176 static struct	mem_region *pregions;
177 static u_int    phys_avail_count;
178 static int	regions_sz, pregions_sz;
179 static struct	ofw_map *translations;
180 
181 /*
182  * Lock for the pteg and pvo tables.
183  */
184 struct mtx	moea_table_mutex;
185 struct mtx	moea_vsid_mutex;
186 
187 /* tlbie instruction synchronization */
188 static struct mtx tlbie_mtx;
189 
190 /*
191  * PTEG data.
192  */
193 static struct	pteg *moea_pteg_table;
194 u_int		moea_pteg_count;
195 u_int		moea_pteg_mask;
196 
197 /*
198  * PVO data.
199  */
200 struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
201 struct	pvo_head moea_pvo_kunmanaged =
202     LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
203 
204 static struct rwlock_padalign pvh_global_lock;
205 
206 uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
207 uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
208 
209 #define	BPVO_POOL_SIZE	32768
210 static struct	pvo_entry *moea_bpvo_pool;
211 static int	moea_bpvo_pool_index = 0;
212 
213 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
214 static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
215 
216 static boolean_t moea_initialized = FALSE;
217 
218 /*
219  * Statistics.
220  */
221 u_int	moea_pte_valid = 0;
222 u_int	moea_pte_overflow = 0;
223 u_int	moea_pte_replacements = 0;
224 u_int	moea_pvo_entries = 0;
225 u_int	moea_pvo_enter_calls = 0;
226 u_int	moea_pvo_remove_calls = 0;
227 u_int	moea_pte_spills = 0;
228 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
229     0, "");
230 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
231     &moea_pte_overflow, 0, "");
232 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
233     &moea_pte_replacements, 0, "");
234 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
235     0, "");
236 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
237     &moea_pvo_enter_calls, 0, "");
238 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
239     &moea_pvo_remove_calls, 0, "");
240 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
241     &moea_pte_spills, 0, "");
242 
243 /*
244  * Allocate physical memory for use in moea_bootstrap.
245  */
246 static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
247 
248 /*
249  * PTE calls.
250  */
251 static int		moea_pte_insert(u_int, struct pte *);
252 
253 /*
254  * PVO calls.
255  */
256 static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
257 		    vm_offset_t, vm_paddr_t, u_int, int);
258 static void	moea_pvo_remove(struct pvo_entry *, int);
259 static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
260 static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
261 
262 /*
263  * Utility routines.
264  */
265 static int		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
266 			    vm_prot_t, u_int, int8_t);
267 static void		moea_syncicache(vm_paddr_t, vm_size_t);
268 static boolean_t	moea_query_bit(vm_page_t, int);
269 static u_int		moea_clear_bit(vm_page_t, int);
270 static void		moea_kremove(mmu_t, vm_offset_t);
271 int		moea_pte_spill(vm_offset_t);
272 
273 /*
274  * Kernel MMU interface
275  */
276 void moea_clear_modify(mmu_t, vm_page_t);
277 void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
278 void moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
279     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
280 int moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int,
281     int8_t);
282 void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
283     vm_prot_t);
284 void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
285 vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
286 vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
287 void moea_init(mmu_t);
288 boolean_t moea_is_modified(mmu_t, vm_page_t);
289 boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
290 boolean_t moea_is_referenced(mmu_t, vm_page_t);
291 int moea_ts_referenced(mmu_t, vm_page_t);
292 vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
293 boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
294 void moea_page_init(mmu_t, vm_page_t);
295 int moea_page_wired_mappings(mmu_t, vm_page_t);
296 void moea_pinit(mmu_t, pmap_t);
297 void moea_pinit0(mmu_t, pmap_t);
298 void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
299 void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
300 void moea_qremove(mmu_t, vm_offset_t, int);
301 void moea_release(mmu_t, pmap_t);
302 void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
303 void moea_remove_all(mmu_t, vm_page_t);
304 void moea_remove_write(mmu_t, vm_page_t);
305 void moea_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
306 void moea_zero_page(mmu_t, vm_page_t);
307 void moea_zero_page_area(mmu_t, vm_page_t, int, int);
308 void moea_activate(mmu_t, struct thread *);
309 void moea_deactivate(mmu_t, struct thread *);
310 void moea_cpu_bootstrap(mmu_t, int);
311 void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
312 void *moea_mapdev(mmu_t, vm_paddr_t, vm_size_t);
313 void *moea_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
314 void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
315 vm_paddr_t moea_kextract(mmu_t, vm_offset_t);
316 void moea_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
317 void moea_kenter(mmu_t, vm_offset_t, vm_paddr_t);
318 void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
319 boolean_t moea_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
320 static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
321 void moea_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va);
322 void moea_scan_init(mmu_t mmu);
323 vm_offset_t moea_quick_enter_page(mmu_t mmu, vm_page_t m);
324 void moea_quick_remove_page(mmu_t mmu, vm_offset_t addr);
325 boolean_t moea_page_is_mapped(mmu_t mmu, vm_page_t m);
326 static int moea_map_user_ptr(mmu_t mmu, pmap_t pm,
327     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
328 static int moea_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr,
329     int *is_user, vm_offset_t *decoded_addr);
330 
331 
332 static mmu_method_t moea_methods[] = {
333 	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
334 	MMUMETHOD(mmu_copy_page,	moea_copy_page),
335 	MMUMETHOD(mmu_copy_pages,	moea_copy_pages),
336 	MMUMETHOD(mmu_enter,		moea_enter),
337 	MMUMETHOD(mmu_enter_object,	moea_enter_object),
338 	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
339 	MMUMETHOD(mmu_extract,		moea_extract),
340 	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
341 	MMUMETHOD(mmu_init,		moea_init),
342 	MMUMETHOD(mmu_is_modified,	moea_is_modified),
343 	MMUMETHOD(mmu_is_prefaultable,	moea_is_prefaultable),
344 	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
345 	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
346 	MMUMETHOD(mmu_map,     		moea_map),
347 	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
348 	MMUMETHOD(mmu_page_init,	moea_page_init),
349 	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
350 	MMUMETHOD(mmu_pinit,		moea_pinit),
351 	MMUMETHOD(mmu_pinit0,		moea_pinit0),
352 	MMUMETHOD(mmu_protect,		moea_protect),
353 	MMUMETHOD(mmu_qenter,		moea_qenter),
354 	MMUMETHOD(mmu_qremove,		moea_qremove),
355 	MMUMETHOD(mmu_release,		moea_release),
356 	MMUMETHOD(mmu_remove,		moea_remove),
357 	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
358 	MMUMETHOD(mmu_remove_write,	moea_remove_write),
359 	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
360 	MMUMETHOD(mmu_unwire,		moea_unwire),
361 	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
362 	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
363 	MMUMETHOD(mmu_activate,		moea_activate),
364 	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
365 	MMUMETHOD(mmu_page_set_memattr,	moea_page_set_memattr),
366 	MMUMETHOD(mmu_quick_enter_page, moea_quick_enter_page),
367 	MMUMETHOD(mmu_quick_remove_page, moea_quick_remove_page),
368 	MMUMETHOD(mmu_page_is_mapped,	moea_page_is_mapped),
369 
370 	/* Internal interfaces */
371 	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
372 	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
373 	MMUMETHOD(mmu_mapdev_attr,	moea_mapdev_attr),
374 	MMUMETHOD(mmu_mapdev,		moea_mapdev),
375 	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
376 	MMUMETHOD(mmu_kextract,		moea_kextract),
377 	MMUMETHOD(mmu_kenter,		moea_kenter),
378 	MMUMETHOD(mmu_kenter_attr,	moea_kenter_attr),
379 	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
380 	MMUMETHOD(mmu_scan_init,	moea_scan_init),
381 	MMUMETHOD(mmu_dumpsys_map,	moea_dumpsys_map),
382 	MMUMETHOD(mmu_map_user_ptr,	moea_map_user_ptr),
383 	MMUMETHOD(mmu_decode_kernel_ptr, moea_decode_kernel_ptr),
384 
385 	{ 0, 0 }
386 };
387 
388 MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
389 
390 static __inline uint32_t
391 moea_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
392 {
393 	uint32_t pte_lo;
394 	int i;
395 
396 	if (ma != VM_MEMATTR_DEFAULT) {
397 		switch (ma) {
398 		case VM_MEMATTR_UNCACHEABLE:
399 			return (PTE_I | PTE_G);
400 		case VM_MEMATTR_CACHEABLE:
401 			return (PTE_M);
402 		case VM_MEMATTR_WRITE_COMBINING:
403 		case VM_MEMATTR_WRITE_BACK:
404 		case VM_MEMATTR_PREFETCHABLE:
405 			return (PTE_I);
406 		case VM_MEMATTR_WRITE_THROUGH:
407 			return (PTE_W | PTE_M);
408 		}
409 	}
410 
411 	/*
412 	 * Assume the page is cache inhibited and access is guarded unless
413 	 * it's in our available memory array.
414 	 */
415 	pte_lo = PTE_I | PTE_G;
416 	for (i = 0; i < pregions_sz; i++) {
417 		if ((pa >= pregions[i].mr_start) &&
418 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
419 			pte_lo = PTE_M;
420 			break;
421 		}
422 	}
423 
424 	return pte_lo;
425 }
426 
427 static void
428 tlbie(vm_offset_t va)
429 {
430 
431 	mtx_lock_spin(&tlbie_mtx);
432 	__asm __volatile("ptesync");
433 	__asm __volatile("tlbie %0" :: "r"(va));
434 	__asm __volatile("eieio; tlbsync; ptesync");
435 	mtx_unlock_spin(&tlbie_mtx);
436 }
437 
438 static void
439 tlbia(void)
440 {
441 	vm_offset_t va;
442 
443 	for (va = 0; va < 0x00040000; va += 0x00001000) {
444 		__asm __volatile("tlbie %0" :: "r"(va));
445 		powerpc_sync();
446 	}
447 	__asm __volatile("tlbsync");
448 	powerpc_sync();
449 }
450 
451 static __inline int
452 va_to_sr(u_int *sr, vm_offset_t va)
453 {
454 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
455 }
456 
457 static __inline u_int
458 va_to_pteg(u_int sr, vm_offset_t addr)
459 {
460 	u_int hash;
461 
462 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
463 	    ADDR_PIDX_SHFT);
464 	return (hash & moea_pteg_mask);
465 }
466 
467 static __inline struct pvo_head *
468 vm_page_to_pvoh(vm_page_t m)
469 {
470 
471 	return (&m->md.mdpg_pvoh);
472 }
473 
474 static __inline void
475 moea_attr_clear(vm_page_t m, int ptebit)
476 {
477 
478 	rw_assert(&pvh_global_lock, RA_WLOCKED);
479 	m->md.mdpg_attrs &= ~ptebit;
480 }
481 
482 static __inline int
483 moea_attr_fetch(vm_page_t m)
484 {
485 
486 	return (m->md.mdpg_attrs);
487 }
488 
489 static __inline void
490 moea_attr_save(vm_page_t m, int ptebit)
491 {
492 
493 	rw_assert(&pvh_global_lock, RA_WLOCKED);
494 	m->md.mdpg_attrs |= ptebit;
495 }
496 
497 static __inline int
498 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
499 {
500 	if (pt->pte_hi == pvo_pt->pte_hi)
501 		return (1);
502 
503 	return (0);
504 }
505 
506 static __inline int
507 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
508 {
509 	return (pt->pte_hi & ~PTE_VALID) ==
510 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
511 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
512 }
513 
514 static __inline void
515 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
516 {
517 
518 	mtx_assert(&moea_table_mutex, MA_OWNED);
519 
520 	/*
521 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
522 	 * set when the real pte is set in memory.
523 	 *
524 	 * Note: Don't set the valid bit for correct operation of tlb update.
525 	 */
526 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
527 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
528 	pt->pte_lo = pte_lo;
529 }
530 
531 static __inline void
532 moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
533 {
534 
535 	mtx_assert(&moea_table_mutex, MA_OWNED);
536 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
537 }
538 
539 static __inline void
540 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
541 {
542 
543 	mtx_assert(&moea_table_mutex, MA_OWNED);
544 
545 	/*
546 	 * As shown in Section 7.6.3.2.3
547 	 */
548 	pt->pte_lo &= ~ptebit;
549 	tlbie(va);
550 }
551 
552 static __inline void
553 moea_pte_set(struct pte *pt, struct pte *pvo_pt)
554 {
555 
556 	mtx_assert(&moea_table_mutex, MA_OWNED);
557 	pvo_pt->pte_hi |= PTE_VALID;
558 
559 	/*
560 	 * Update the PTE as defined in section 7.6.3.1.
561 	 * Note that the REF/CHG bits are from pvo_pt and thus should have
562 	 * been saved so this routine can restore them (if desired).
563 	 */
564 	pt->pte_lo = pvo_pt->pte_lo;
565 	powerpc_sync();
566 	pt->pte_hi = pvo_pt->pte_hi;
567 	powerpc_sync();
568 	moea_pte_valid++;
569 }
570 
571 static __inline void
572 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
573 {
574 
575 	mtx_assert(&moea_table_mutex, MA_OWNED);
576 	pvo_pt->pte_hi &= ~PTE_VALID;
577 
578 	/*
579 	 * Force the reg & chg bits back into the PTEs.
580 	 */
581 	powerpc_sync();
582 
583 	/*
584 	 * Invalidate the pte.
585 	 */
586 	pt->pte_hi &= ~PTE_VALID;
587 
588 	tlbie(va);
589 
590 	/*
591 	 * Save the reg & chg bits.
592 	 */
593 	moea_pte_synch(pt, pvo_pt);
594 	moea_pte_valid--;
595 }
596 
597 static __inline void
598 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
599 {
600 
601 	/*
602 	 * Invalidate the PTE
603 	 */
604 	moea_pte_unset(pt, pvo_pt, va);
605 	moea_pte_set(pt, pvo_pt);
606 }
607 
608 /*
609  * Quick sort callout for comparing memory regions.
610  */
611 static int	om_cmp(const void *a, const void *b);
612 
613 static int
614 om_cmp(const void *a, const void *b)
615 {
616 	const struct	ofw_map *mapa;
617 	const struct	ofw_map *mapb;
618 
619 	mapa = a;
620 	mapb = b;
621 	if (mapa->om_pa < mapb->om_pa)
622 		return (-1);
623 	else if (mapa->om_pa > mapb->om_pa)
624 		return (1);
625 	else
626 		return (0);
627 }
628 
629 void
630 moea_cpu_bootstrap(mmu_t mmup, int ap)
631 {
632 	u_int sdr;
633 	int i;
634 
635 	if (ap) {
636 		powerpc_sync();
637 		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
638 		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
639 		isync();
640 		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
641 		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
642 		isync();
643 	}
644 
645 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
646 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
647 	isync();
648 
649 	__asm __volatile("mtibatu 1,%0" :: "r"(0));
650 	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
651 	__asm __volatile("mtibatu 2,%0" :: "r"(0));
652 	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
653 	__asm __volatile("mtibatu 3,%0" :: "r"(0));
654 	isync();
655 
656 	for (i = 0; i < 16; i++)
657 		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
658 	powerpc_sync();
659 
660 	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
661 	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
662 	isync();
663 
664 	tlbia();
665 }
666 
667 void
668 moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
669 {
670 	ihandle_t	mmui;
671 	phandle_t	chosen, mmu;
672 	int		sz;
673 	int		i, j;
674 	vm_size_t	size, physsz, hwphyssz;
675 	vm_offset_t	pa, va, off;
676 	void		*dpcpu;
677 	register_t	msr;
678 
679         /*
680          * Set up BAT0 to map the lowest 256 MB area
681          */
682         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
683         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
684 
685 	/*
686 	 * Map PCI memory space.
687 	 */
688 	battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
689 	battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
690 
691 	battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
692 	battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
693 
694 	battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
695 	battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
696 
697 	battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
698 	battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
699 
700 	/*
701 	 * Map obio devices.
702 	 */
703 	battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
704 	battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
705 
706 	/*
707 	 * Use an IBAT and a DBAT to map the bottom segment of memory
708 	 * where we are. Turn off instruction relocation temporarily
709 	 * to prevent faults while reprogramming the IBAT.
710 	 */
711 	msr = mfmsr();
712 	mtmsr(msr & ~PSL_IR);
713 	__asm (".balign 32; \n"
714 	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
715 	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
716 	    :: "r"(battable[0].batu), "r"(battable[0].batl));
717 	mtmsr(msr);
718 
719 	/* map pci space */
720 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
721 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
722 	isync();
723 
724 	/* set global direct map flag */
725 	hw_direct_map = 1;
726 
727 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
728 	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
729 
730 	for (i = 0; i < pregions_sz; i++) {
731 		vm_offset_t pa;
732 		vm_offset_t end;
733 
734 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
735 			pregions[i].mr_start,
736 			pregions[i].mr_start + pregions[i].mr_size,
737 			pregions[i].mr_size);
738 		/*
739 		 * Install entries into the BAT table to allow all
740 		 * of physmem to be convered by on-demand BAT entries.
741 		 * The loop will sometimes set the same battable element
742 		 * twice, but that's fine since they won't be used for
743 		 * a while yet.
744 		 */
745 		pa = pregions[i].mr_start & 0xf0000000;
746 		end = pregions[i].mr_start + pregions[i].mr_size;
747 		do {
748                         u_int n = pa >> ADDR_SR_SHFT;
749 
750 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
751 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
752 			pa += SEGMENT_LENGTH;
753 		} while (pa < end);
754 	}
755 
756 	if (PHYS_AVAIL_ENTRIES < regions_sz)
757 		panic("moea_bootstrap: phys_avail too small");
758 
759 	phys_avail_count = 0;
760 	physsz = 0;
761 	hwphyssz = 0;
762 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
763 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
764 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
765 		    regions[i].mr_start + regions[i].mr_size,
766 		    regions[i].mr_size);
767 		if (hwphyssz != 0 &&
768 		    (physsz + regions[i].mr_size) >= hwphyssz) {
769 			if (physsz < hwphyssz) {
770 				phys_avail[j] = regions[i].mr_start;
771 				phys_avail[j + 1] = regions[i].mr_start +
772 				    hwphyssz - physsz;
773 				physsz = hwphyssz;
774 				phys_avail_count++;
775 			}
776 			break;
777 		}
778 		phys_avail[j] = regions[i].mr_start;
779 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
780 		phys_avail_count++;
781 		physsz += regions[i].mr_size;
782 	}
783 
784 	/* Check for overlap with the kernel and exception vectors */
785 	for (j = 0; j < 2*phys_avail_count; j+=2) {
786 		if (phys_avail[j] < EXC_LAST)
787 			phys_avail[j] += EXC_LAST;
788 
789 		if (kernelstart >= phys_avail[j] &&
790 		    kernelstart < phys_avail[j+1]) {
791 			if (kernelend < phys_avail[j+1]) {
792 				phys_avail[2*phys_avail_count] =
793 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
794 				phys_avail[2*phys_avail_count + 1] =
795 				    phys_avail[j+1];
796 				phys_avail_count++;
797 			}
798 
799 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
800 		}
801 
802 		if (kernelend >= phys_avail[j] &&
803 		    kernelend < phys_avail[j+1]) {
804 			if (kernelstart > phys_avail[j]) {
805 				phys_avail[2*phys_avail_count] = phys_avail[j];
806 				phys_avail[2*phys_avail_count + 1] =
807 				    kernelstart & ~PAGE_MASK;
808 				phys_avail_count++;
809 			}
810 
811 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
812 		}
813 	}
814 
815 	physmem = btoc(physsz);
816 
817 	/*
818 	 * Allocate PTEG table.
819 	 */
820 #ifdef PTEGCOUNT
821 	moea_pteg_count = PTEGCOUNT;
822 #else
823 	moea_pteg_count = 0x1000;
824 
825 	while (moea_pteg_count < physmem)
826 		moea_pteg_count <<= 1;
827 
828 	moea_pteg_count >>= 1;
829 #endif /* PTEGCOUNT */
830 
831 	size = moea_pteg_count * sizeof(struct pteg);
832 	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
833 	    size);
834 	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
835 	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
836 	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
837 	moea_pteg_mask = moea_pteg_count - 1;
838 
839 	/*
840 	 * Allocate pv/overflow lists.
841 	 */
842 	size = sizeof(struct pvo_head) * moea_pteg_count;
843 	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
844 	    PAGE_SIZE);
845 	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
846 	for (i = 0; i < moea_pteg_count; i++)
847 		LIST_INIT(&moea_pvo_table[i]);
848 
849 	/*
850 	 * Initialize the lock that synchronizes access to the pteg and pvo
851 	 * tables.
852 	 */
853 	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
854 	    MTX_RECURSE);
855 	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
856 
857 	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
858 
859 	/*
860 	 * Initialise the unmanaged pvo pool.
861 	 */
862 	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
863 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
864 	moea_bpvo_pool_index = 0;
865 
866 	/*
867 	 * Make sure kernel vsid is allocated as well as VSID 0.
868 	 */
869 	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
870 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
871 	moea_vsid_bitmap[0] |= 1;
872 
873 	/*
874 	 * Initialize the kernel pmap (which is statically allocated).
875 	 */
876 	PMAP_LOCK_INIT(kernel_pmap);
877 	for (i = 0; i < 16; i++)
878 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
879 	CPU_FILL(&kernel_pmap->pm_active);
880 	RB_INIT(&kernel_pmap->pmap_pvo);
881 
882  	/*
883 	 * Initialize the global pv list lock.
884 	 */
885 	rw_init(&pvh_global_lock, "pmap pv global");
886 
887 	/*
888 	 * Set up the Open Firmware mappings
889 	 */
890 	chosen = OF_finddevice("/chosen");
891 	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
892 	    (mmu = OF_instance_to_package(mmui)) != -1 &&
893 	    (sz = OF_getproplen(mmu, "translations")) != -1) {
894 		translations = NULL;
895 		for (i = 0; phys_avail[i] != 0; i += 2) {
896 			if (phys_avail[i + 1] >= sz) {
897 				translations = (struct ofw_map *)phys_avail[i];
898 				break;
899 			}
900 		}
901 		if (translations == NULL)
902 			panic("moea_bootstrap: no space to copy translations");
903 		bzero(translations, sz);
904 		if (OF_getprop(mmu, "translations", translations, sz) == -1)
905 			panic("moea_bootstrap: can't get ofw translations");
906 		CTR0(KTR_PMAP, "moea_bootstrap: translations");
907 		sz /= sizeof(*translations);
908 		qsort(translations, sz, sizeof (*translations), om_cmp);
909 		for (i = 0; i < sz; i++) {
910 			CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
911 			    translations[i].om_pa, translations[i].om_va,
912 			    translations[i].om_len);
913 
914 			/*
915 			 * If the mapping is 1:1, let the RAM and device
916 			 * on-demand BAT tables take care of the translation.
917 			 */
918 			if (translations[i].om_va == translations[i].om_pa)
919 				continue;
920 
921 			/* Enter the pages */
922 			for (off = 0; off < translations[i].om_len;
923 			    off += PAGE_SIZE)
924 				moea_kenter(mmup, translations[i].om_va + off,
925 					    translations[i].om_pa + off);
926 		}
927 	}
928 
929 	/*
930 	 * Calculate the last available physical address.
931 	 */
932 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
933 		;
934 	Maxmem = powerpc_btop(phys_avail[i + 1]);
935 
936 	moea_cpu_bootstrap(mmup,0);
937 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
938 	pmap_bootstrapped++;
939 
940 	/*
941 	 * Set the start and end of kva.
942 	 */
943 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
944 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
945 
946 	/*
947 	 * Allocate a kernel stack with a guard page for thread0 and map it
948 	 * into the kernel page map.
949 	 */
950 	pa = moea_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
951 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
952 	virtual_avail = va + kstack_pages * PAGE_SIZE;
953 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
954 	thread0.td_kstack = va;
955 	thread0.td_kstack_pages = kstack_pages;
956 	for (i = 0; i < kstack_pages; i++) {
957 		moea_kenter(mmup, va, pa);
958 		pa += PAGE_SIZE;
959 		va += PAGE_SIZE;
960 	}
961 
962 	/*
963 	 * Allocate virtual address space for the message buffer.
964 	 */
965 	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
966 	msgbufp = (struct msgbuf *)virtual_avail;
967 	va = virtual_avail;
968 	virtual_avail += round_page(msgbufsize);
969 	while (va < virtual_avail) {
970 		moea_kenter(mmup, va, pa);
971 		pa += PAGE_SIZE;
972 		va += PAGE_SIZE;
973 	}
974 
975 	/*
976 	 * Allocate virtual address space for the dynamic percpu area.
977 	 */
978 	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
979 	dpcpu = (void *)virtual_avail;
980 	va = virtual_avail;
981 	virtual_avail += DPCPU_SIZE;
982 	while (va < virtual_avail) {
983 		moea_kenter(mmup, va, pa);
984 		pa += PAGE_SIZE;
985 		va += PAGE_SIZE;
986 	}
987 	dpcpu_init(dpcpu, 0);
988 }
989 
990 /*
991  * Activate a user pmap.  The pmap must be activated before it's address
992  * space can be accessed in any way.
993  */
994 void
995 moea_activate(mmu_t mmu, struct thread *td)
996 {
997 	pmap_t	pm, pmr;
998 
999 	/*
1000 	 * Load all the data we need up front to encourage the compiler to
1001 	 * not issue any loads while we have interrupts disabled below.
1002 	 */
1003 	pm = &td->td_proc->p_vmspace->vm_pmap;
1004 	pmr = pm->pmap_phys;
1005 
1006 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1007 	PCPU_SET(curpmap, pmr);
1008 
1009 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1010 }
1011 
1012 void
1013 moea_deactivate(mmu_t mmu, struct thread *td)
1014 {
1015 	pmap_t	pm;
1016 
1017 	pm = &td->td_proc->p_vmspace->vm_pmap;
1018 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1019 	PCPU_SET(curpmap, NULL);
1020 }
1021 
1022 void
1023 moea_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1024 {
1025 	struct	pvo_entry key, *pvo;
1026 
1027 	PMAP_LOCK(pm);
1028 	key.pvo_vaddr = sva;
1029 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1030 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1031 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1032 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1033 			panic("moea_unwire: pvo %p is missing PVO_WIRED", pvo);
1034 		pvo->pvo_vaddr &= ~PVO_WIRED;
1035 		pm->pm_stats.wired_count--;
1036 	}
1037 	PMAP_UNLOCK(pm);
1038 }
1039 
1040 void
1041 moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1042 {
1043 	vm_offset_t	dst;
1044 	vm_offset_t	src;
1045 
1046 	dst = VM_PAGE_TO_PHYS(mdst);
1047 	src = VM_PAGE_TO_PHYS(msrc);
1048 
1049 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
1050 }
1051 
1052 void
1053 moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1054     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1055 {
1056 	void *a_cp, *b_cp;
1057 	vm_offset_t a_pg_offset, b_pg_offset;
1058 	int cnt;
1059 
1060 	while (xfersize > 0) {
1061 		a_pg_offset = a_offset & PAGE_MASK;
1062 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1063 		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1064 		    a_pg_offset;
1065 		b_pg_offset = b_offset & PAGE_MASK;
1066 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1067 		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1068 		    b_pg_offset;
1069 		bcopy(a_cp, b_cp, cnt);
1070 		a_offset += cnt;
1071 		b_offset += cnt;
1072 		xfersize -= cnt;
1073 	}
1074 }
1075 
1076 /*
1077  * Zero a page of physical memory by temporarily mapping it into the tlb.
1078  */
1079 void
1080 moea_zero_page(mmu_t mmu, vm_page_t m)
1081 {
1082 	vm_offset_t off, pa = VM_PAGE_TO_PHYS(m);
1083 
1084 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1085 		__asm __volatile("dcbz 0,%0" :: "r"(pa + off));
1086 }
1087 
1088 void
1089 moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1090 {
1091 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1092 	void *va = (void *)(pa + off);
1093 
1094 	bzero(va, size);
1095 }
1096 
1097 vm_offset_t
1098 moea_quick_enter_page(mmu_t mmu, vm_page_t m)
1099 {
1100 
1101 	return (VM_PAGE_TO_PHYS(m));
1102 }
1103 
1104 void
1105 moea_quick_remove_page(mmu_t mmu, vm_offset_t addr)
1106 {
1107 }
1108 
1109 boolean_t
1110 moea_page_is_mapped(mmu_t mmu, vm_page_t m)
1111 {
1112 	return (!LIST_EMPTY(&(m)->md.mdpg_pvoh));
1113 }
1114 
1115 /*
1116  * Map the given physical page at the specified virtual address in the
1117  * target pmap with the protection requested.  If specified the page
1118  * will be wired down.
1119  */
1120 int
1121 moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1122     u_int flags, int8_t psind)
1123 {
1124 	int error;
1125 
1126 	for (;;) {
1127 		rw_wlock(&pvh_global_lock);
1128 		PMAP_LOCK(pmap);
1129 		error = moea_enter_locked(pmap, va, m, prot, flags, psind);
1130 		rw_wunlock(&pvh_global_lock);
1131 		PMAP_UNLOCK(pmap);
1132 		if (error != ENOMEM)
1133 			return (KERN_SUCCESS);
1134 		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1135 			return (KERN_RESOURCE_SHORTAGE);
1136 		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1137 		vm_wait(NULL);
1138 	}
1139 }
1140 
1141 /*
1142  * Map the given physical page at the specified virtual address in the
1143  * target pmap with the protection requested.  If specified the page
1144  * will be wired down.
1145  *
1146  * The global pvh and pmap must be locked.
1147  */
1148 static int
1149 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1150     u_int flags, int8_t psind __unused)
1151 {
1152 	struct		pvo_head *pvo_head;
1153 	uma_zone_t	zone;
1154 	u_int		pte_lo, pvo_flags;
1155 	int		error;
1156 
1157 	if (pmap_bootstrapped)
1158 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1159 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1160 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1161 		if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1162 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1163 		else
1164 			VM_OBJECT_ASSERT_LOCKED(m->object);
1165 	}
1166 
1167 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea_initialized) {
1168 		pvo_head = &moea_pvo_kunmanaged;
1169 		zone = moea_upvo_zone;
1170 		pvo_flags = 0;
1171 	} else {
1172 		pvo_head = vm_page_to_pvoh(m);
1173 		zone = moea_mpvo_zone;
1174 		pvo_flags = PVO_MANAGED;
1175 	}
1176 
1177 	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1178 
1179 	if (prot & VM_PROT_WRITE) {
1180 		pte_lo |= PTE_BW;
1181 		if (pmap_bootstrapped &&
1182 		    (m->oflags & VPO_UNMANAGED) == 0)
1183 			vm_page_aflag_set(m, PGA_WRITEABLE);
1184 	} else
1185 		pte_lo |= PTE_BR;
1186 
1187 	if ((flags & PMAP_ENTER_WIRED) != 0)
1188 		pvo_flags |= PVO_WIRED;
1189 
1190 	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1191 	    pte_lo, pvo_flags);
1192 
1193 	/*
1194 	 * Flush the real page from the instruction cache. This has be done
1195 	 * for all user mappings to prevent information leakage via the
1196 	 * instruction cache. moea_pvo_enter() returns ENOENT for the first
1197 	 * mapping for a page.
1198 	 */
1199 	if (pmap != kernel_pmap && error == ENOENT &&
1200 	    (pte_lo & (PTE_I | PTE_G)) == 0)
1201 		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1202 
1203 	return (error);
1204 }
1205 
1206 /*
1207  * Maps a sequence of resident pages belonging to the same object.
1208  * The sequence begins with the given page m_start.  This page is
1209  * mapped at the given virtual address start.  Each subsequent page is
1210  * mapped at a virtual address that is offset from start by the same
1211  * amount as the page is offset from m_start within the object.  The
1212  * last page in the sequence is the page with the largest offset from
1213  * m_start that can be mapped at a virtual address less than the given
1214  * virtual address end.  Not every virtual page between start and end
1215  * is mapped; only those for which a resident page exists with the
1216  * corresponding offset from m_start are mapped.
1217  */
1218 void
1219 moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1220     vm_page_t m_start, vm_prot_t prot)
1221 {
1222 	vm_page_t m;
1223 	vm_pindex_t diff, psize;
1224 
1225 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1226 
1227 	psize = atop(end - start);
1228 	m = m_start;
1229 	rw_wlock(&pvh_global_lock);
1230 	PMAP_LOCK(pm);
1231 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1232 		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1233 		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_QUICK_LOCKED,
1234 		    0);
1235 		m = TAILQ_NEXT(m, listq);
1236 	}
1237 	rw_wunlock(&pvh_global_lock);
1238 	PMAP_UNLOCK(pm);
1239 }
1240 
1241 void
1242 moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1243     vm_prot_t prot)
1244 {
1245 
1246 	rw_wlock(&pvh_global_lock);
1247 	PMAP_LOCK(pm);
1248 	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1249 	    PMAP_ENTER_QUICK_LOCKED, 0);
1250 	rw_wunlock(&pvh_global_lock);
1251 	PMAP_UNLOCK(pm);
1252 }
1253 
1254 vm_paddr_t
1255 moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1256 {
1257 	struct	pvo_entry *pvo;
1258 	vm_paddr_t pa;
1259 
1260 	PMAP_LOCK(pm);
1261 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1262 	if (pvo == NULL)
1263 		pa = 0;
1264 	else
1265 		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1266 	PMAP_UNLOCK(pm);
1267 	return (pa);
1268 }
1269 
1270 /*
1271  * Atomically extract and hold the physical page with the given
1272  * pmap and virtual address pair if that mapping permits the given
1273  * protection.
1274  */
1275 vm_page_t
1276 moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1277 {
1278 	struct	pvo_entry *pvo;
1279 	vm_page_t m;
1280 
1281 	m = NULL;
1282 	PMAP_LOCK(pmap);
1283 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1284 	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1285 	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1286 	     (prot & VM_PROT_WRITE) == 0)) {
1287 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1288 		if (!vm_page_wire_mapped(m))
1289 			m = NULL;
1290 	}
1291 	PMAP_UNLOCK(pmap);
1292 	return (m);
1293 }
1294 
1295 void
1296 moea_init(mmu_t mmu)
1297 {
1298 
1299 	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1300 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1301 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1302 	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1303 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1304 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1305 	moea_initialized = TRUE;
1306 }
1307 
1308 boolean_t
1309 moea_is_referenced(mmu_t mmu, vm_page_t m)
1310 {
1311 	boolean_t rv;
1312 
1313 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1314 	    ("moea_is_referenced: page %p is not managed", m));
1315 	rw_wlock(&pvh_global_lock);
1316 	rv = moea_query_bit(m, PTE_REF);
1317 	rw_wunlock(&pvh_global_lock);
1318 	return (rv);
1319 }
1320 
1321 boolean_t
1322 moea_is_modified(mmu_t mmu, vm_page_t m)
1323 {
1324 	boolean_t rv;
1325 
1326 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1327 	    ("moea_is_modified: page %p is not managed", m));
1328 
1329 	/*
1330 	 * If the page is not busied then this check is racy.
1331 	 */
1332 	if (!pmap_page_is_write_mapped(m))
1333 		return (FALSE);
1334 
1335 	rw_wlock(&pvh_global_lock);
1336 	rv = moea_query_bit(m, PTE_CHG);
1337 	rw_wunlock(&pvh_global_lock);
1338 	return (rv);
1339 }
1340 
1341 boolean_t
1342 moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1343 {
1344 	struct pvo_entry *pvo;
1345 	boolean_t rv;
1346 
1347 	PMAP_LOCK(pmap);
1348 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1349 	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1350 	PMAP_UNLOCK(pmap);
1351 	return (rv);
1352 }
1353 
1354 void
1355 moea_clear_modify(mmu_t mmu, vm_page_t m)
1356 {
1357 
1358 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1359 	    ("moea_clear_modify: page %p is not managed", m));
1360 	vm_page_assert_busied(m);
1361 
1362 	if (!pmap_page_is_write_mapped(m))
1363 		return;
1364 	rw_wlock(&pvh_global_lock);
1365 	moea_clear_bit(m, PTE_CHG);
1366 	rw_wunlock(&pvh_global_lock);
1367 }
1368 
1369 /*
1370  * Clear the write and modified bits in each of the given page's mappings.
1371  */
1372 void
1373 moea_remove_write(mmu_t mmu, vm_page_t m)
1374 {
1375 	struct	pvo_entry *pvo;
1376 	struct	pte *pt;
1377 	pmap_t	pmap;
1378 	u_int	lo;
1379 
1380 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1381 	    ("moea_remove_write: page %p is not managed", m));
1382 	vm_page_assert_busied(m);
1383 
1384 	if (!pmap_page_is_write_mapped(m))
1385 		return;
1386 	rw_wlock(&pvh_global_lock);
1387 	lo = moea_attr_fetch(m);
1388 	powerpc_sync();
1389 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1390 		pmap = pvo->pvo_pmap;
1391 		PMAP_LOCK(pmap);
1392 		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1393 			pt = moea_pvo_to_pte(pvo, -1);
1394 			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1395 			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1396 			if (pt != NULL) {
1397 				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1398 				lo |= pvo->pvo_pte.pte.pte_lo;
1399 				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1400 				moea_pte_change(pt, &pvo->pvo_pte.pte,
1401 				    pvo->pvo_vaddr);
1402 				mtx_unlock(&moea_table_mutex);
1403 			}
1404 		}
1405 		PMAP_UNLOCK(pmap);
1406 	}
1407 	if ((lo & PTE_CHG) != 0) {
1408 		moea_attr_clear(m, PTE_CHG);
1409 		vm_page_dirty(m);
1410 	}
1411 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1412 	rw_wunlock(&pvh_global_lock);
1413 }
1414 
1415 /*
1416  *	moea_ts_referenced:
1417  *
1418  *	Return a count of reference bits for a page, clearing those bits.
1419  *	It is not necessary for every reference bit to be cleared, but it
1420  *	is necessary that 0 only be returned when there are truly no
1421  *	reference bits set.
1422  *
1423  *	XXX: The exact number of bits to check and clear is a matter that
1424  *	should be tested and standardized at some point in the future for
1425  *	optimal aging of shared pages.
1426  */
1427 int
1428 moea_ts_referenced(mmu_t mmu, vm_page_t m)
1429 {
1430 	int count;
1431 
1432 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1433 	    ("moea_ts_referenced: page %p is not managed", m));
1434 	rw_wlock(&pvh_global_lock);
1435 	count = moea_clear_bit(m, PTE_REF);
1436 	rw_wunlock(&pvh_global_lock);
1437 	return (count);
1438 }
1439 
1440 /*
1441  * Modify the WIMG settings of all mappings for a page.
1442  */
1443 void
1444 moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1445 {
1446 	struct	pvo_entry *pvo;
1447 	struct	pvo_head *pvo_head;
1448 	struct	pte *pt;
1449 	pmap_t	pmap;
1450 	u_int	lo;
1451 
1452 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1453 		m->md.mdpg_cache_attrs = ma;
1454 		return;
1455 	}
1456 
1457 	rw_wlock(&pvh_global_lock);
1458 	pvo_head = vm_page_to_pvoh(m);
1459 	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1460 
1461 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1462 		pmap = pvo->pvo_pmap;
1463 		PMAP_LOCK(pmap);
1464 		pt = moea_pvo_to_pte(pvo, -1);
1465 		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1466 		pvo->pvo_pte.pte.pte_lo |= lo;
1467 		if (pt != NULL) {
1468 			moea_pte_change(pt, &pvo->pvo_pte.pte,
1469 			    pvo->pvo_vaddr);
1470 			if (pvo->pvo_pmap == kernel_pmap)
1471 				isync();
1472 		}
1473 		mtx_unlock(&moea_table_mutex);
1474 		PMAP_UNLOCK(pmap);
1475 	}
1476 	m->md.mdpg_cache_attrs = ma;
1477 	rw_wunlock(&pvh_global_lock);
1478 }
1479 
1480 /*
1481  * Map a wired page into kernel virtual address space.
1482  */
1483 void
1484 moea_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1485 {
1486 
1487 	moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1488 }
1489 
1490 void
1491 moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1492 {
1493 	u_int		pte_lo;
1494 	int		error;
1495 
1496 #if 0
1497 	if (va < VM_MIN_KERNEL_ADDRESS)
1498 		panic("moea_kenter: attempt to enter non-kernel address %#x",
1499 		    va);
1500 #endif
1501 
1502 	pte_lo = moea_calc_wimg(pa, ma);
1503 
1504 	PMAP_LOCK(kernel_pmap);
1505 	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1506 	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1507 
1508 	if (error != 0 && error != ENOENT)
1509 		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1510 		    pa, error);
1511 
1512 	PMAP_UNLOCK(kernel_pmap);
1513 }
1514 
1515 /*
1516  * Extract the physical page address associated with the given kernel virtual
1517  * address.
1518  */
1519 vm_paddr_t
1520 moea_kextract(mmu_t mmu, vm_offset_t va)
1521 {
1522 	struct		pvo_entry *pvo;
1523 	vm_paddr_t pa;
1524 
1525 	/*
1526 	 * Allow direct mappings on 32-bit OEA
1527 	 */
1528 	if (va < VM_MIN_KERNEL_ADDRESS) {
1529 		return (va);
1530 	}
1531 
1532 	PMAP_LOCK(kernel_pmap);
1533 	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1534 	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1535 	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1536 	PMAP_UNLOCK(kernel_pmap);
1537 	return (pa);
1538 }
1539 
1540 /*
1541  * Remove a wired page from kernel virtual address space.
1542  */
1543 void
1544 moea_kremove(mmu_t mmu, vm_offset_t va)
1545 {
1546 
1547 	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1548 }
1549 
1550 /*
1551  * Provide a kernel pointer corresponding to a given userland pointer.
1552  * The returned pointer is valid until the next time this function is
1553  * called in this thread. This is used internally in copyin/copyout.
1554  */
1555 int
1556 moea_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr,
1557     void **kaddr, size_t ulen, size_t *klen)
1558 {
1559 	size_t l;
1560 	register_t vsid;
1561 
1562 	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
1563 	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
1564 	if (l > ulen)
1565 		l = ulen;
1566 	if (klen)
1567 		*klen = l;
1568 	else if (l != ulen)
1569 		return (EFAULT);
1570 
1571 	vsid = va_to_vsid(pm, (vm_offset_t)uaddr);
1572 
1573 	/* Mark segment no-execute */
1574 	vsid |= SR_N;
1575 
1576 	/* If we have already set this VSID, we can just return */
1577 	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == vsid)
1578 		return (0);
1579 
1580 	__asm __volatile("isync");
1581 	curthread->td_pcb->pcb_cpu.aim.usr_segm =
1582 	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
1583 	curthread->td_pcb->pcb_cpu.aim.usr_vsid = vsid;
1584 	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(vsid));
1585 
1586 	return (0);
1587 }
1588 
1589 /*
1590  * Figure out where a given kernel pointer (usually in a fault) points
1591  * to from the VM's perspective, potentially remapping into userland's
1592  * address space.
1593  */
1594 static int
1595 moea_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, int *is_user,
1596     vm_offset_t *decoded_addr)
1597 {
1598 	vm_offset_t user_sr;
1599 
1600 	if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
1601 		user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
1602 		addr &= ADDR_PIDX | ADDR_POFF;
1603 		addr |= user_sr << ADDR_SR_SHFT;
1604 		*decoded_addr = addr;
1605 		*is_user = 1;
1606 	} else {
1607 		*decoded_addr = addr;
1608 		*is_user = 0;
1609 	}
1610 
1611 	return (0);
1612 }
1613 
1614 /*
1615  * Map a range of physical addresses into kernel virtual address space.
1616  *
1617  * The value passed in *virt is a suggested virtual address for the mapping.
1618  * Architectures which can support a direct-mapped physical to virtual region
1619  * can return the appropriate address within that region, leaving '*virt'
1620  * unchanged.  We cannot and therefore do not; *virt is updated with the
1621  * first usable address after the mapped region.
1622  */
1623 vm_offset_t
1624 moea_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1625     vm_paddr_t pa_end, int prot)
1626 {
1627 	vm_offset_t	sva, va;
1628 
1629 	sva = *virt;
1630 	va = sva;
1631 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1632 		moea_kenter(mmu, va, pa_start);
1633 	*virt = va;
1634 	return (sva);
1635 }
1636 
1637 /*
1638  * Returns true if the pmap's pv is one of the first
1639  * 16 pvs linked to from this page.  This count may
1640  * be changed upwards or downwards in the future; it
1641  * is only necessary that true be returned for a small
1642  * subset of pmaps for proper page aging.
1643  */
1644 boolean_t
1645 moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1646 {
1647         int loops;
1648 	struct pvo_entry *pvo;
1649 	boolean_t rv;
1650 
1651 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1652 	    ("moea_page_exists_quick: page %p is not managed", m));
1653 	loops = 0;
1654 	rv = FALSE;
1655 	rw_wlock(&pvh_global_lock);
1656 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1657 		if (pvo->pvo_pmap == pmap) {
1658 			rv = TRUE;
1659 			break;
1660 		}
1661 		if (++loops >= 16)
1662 			break;
1663 	}
1664 	rw_wunlock(&pvh_global_lock);
1665 	return (rv);
1666 }
1667 
1668 void
1669 moea_page_init(mmu_t mmu __unused, vm_page_t m)
1670 {
1671 
1672 	m->md.mdpg_attrs = 0;
1673 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
1674 	LIST_INIT(&m->md.mdpg_pvoh);
1675 }
1676 
1677 /*
1678  * Return the number of managed mappings to the given physical page
1679  * that are wired.
1680  */
1681 int
1682 moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1683 {
1684 	struct pvo_entry *pvo;
1685 	int count;
1686 
1687 	count = 0;
1688 	if ((m->oflags & VPO_UNMANAGED) != 0)
1689 		return (count);
1690 	rw_wlock(&pvh_global_lock);
1691 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1692 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1693 			count++;
1694 	rw_wunlock(&pvh_global_lock);
1695 	return (count);
1696 }
1697 
1698 static u_int	moea_vsidcontext;
1699 
1700 void
1701 moea_pinit(mmu_t mmu, pmap_t pmap)
1702 {
1703 	int	i, mask;
1704 	u_int	entropy;
1705 
1706 	RB_INIT(&pmap->pmap_pvo);
1707 
1708 	entropy = 0;
1709 	__asm __volatile("mftb %0" : "=r"(entropy));
1710 
1711 	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1712 	    == NULL) {
1713 		pmap->pmap_phys = pmap;
1714 	}
1715 
1716 
1717 	mtx_lock(&moea_vsid_mutex);
1718 	/*
1719 	 * Allocate some segment registers for this pmap.
1720 	 */
1721 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1722 		u_int	hash, n;
1723 
1724 		/*
1725 		 * Create a new value by mutiplying by a prime and adding in
1726 		 * entropy from the timebase register.  This is to make the
1727 		 * VSID more random so that the PT hash function collides
1728 		 * less often.  (Note that the prime casues gcc to do shifts
1729 		 * instead of a multiply.)
1730 		 */
1731 		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1732 		hash = moea_vsidcontext & (NPMAPS - 1);
1733 		if (hash == 0)		/* 0 is special, avoid it */
1734 			continue;
1735 		n = hash >> 5;
1736 		mask = 1 << (hash & (VSID_NBPW - 1));
1737 		hash = (moea_vsidcontext & 0xfffff);
1738 		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1739 			/* anything free in this bucket? */
1740 			if (moea_vsid_bitmap[n] == 0xffffffff) {
1741 				entropy = (moea_vsidcontext >> 20);
1742 				continue;
1743 			}
1744 			i = ffs(~moea_vsid_bitmap[n]) - 1;
1745 			mask = 1 << i;
1746 			hash &= rounddown2(0xfffff, VSID_NBPW);
1747 			hash |= i;
1748 		}
1749 		KASSERT(!(moea_vsid_bitmap[n] & mask),
1750 		    ("Allocating in-use VSID group %#x\n", hash));
1751 		moea_vsid_bitmap[n] |= mask;
1752 		for (i = 0; i < 16; i++)
1753 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1754 		mtx_unlock(&moea_vsid_mutex);
1755 		return;
1756 	}
1757 
1758 	mtx_unlock(&moea_vsid_mutex);
1759 	panic("moea_pinit: out of segments");
1760 }
1761 
1762 /*
1763  * Initialize the pmap associated with process 0.
1764  */
1765 void
1766 moea_pinit0(mmu_t mmu, pmap_t pm)
1767 {
1768 
1769 	PMAP_LOCK_INIT(pm);
1770 	moea_pinit(mmu, pm);
1771 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1772 }
1773 
1774 /*
1775  * Set the physical protection on the specified range of this map as requested.
1776  */
1777 void
1778 moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1779     vm_prot_t prot)
1780 {
1781 	struct	pvo_entry *pvo, *tpvo, key;
1782 	struct	pte *pt;
1783 
1784 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1785 	    ("moea_protect: non current pmap"));
1786 
1787 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1788 		moea_remove(mmu, pm, sva, eva);
1789 		return;
1790 	}
1791 
1792 	rw_wlock(&pvh_global_lock);
1793 	PMAP_LOCK(pm);
1794 	key.pvo_vaddr = sva;
1795 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1796 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1797 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1798 
1799 		/*
1800 		 * Grab the PTE pointer before we diddle with the cached PTE
1801 		 * copy.
1802 		 */
1803 		pt = moea_pvo_to_pte(pvo, -1);
1804 		/*
1805 		 * Change the protection of the page.
1806 		 */
1807 		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1808 		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1809 
1810 		/*
1811 		 * If the PVO is in the page table, update that pte as well.
1812 		 */
1813 		if (pt != NULL) {
1814 			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1815 			mtx_unlock(&moea_table_mutex);
1816 		}
1817 	}
1818 	rw_wunlock(&pvh_global_lock);
1819 	PMAP_UNLOCK(pm);
1820 }
1821 
1822 /*
1823  * Map a list of wired pages into kernel virtual address space.  This is
1824  * intended for temporary mappings which do not need page modification or
1825  * references recorded.  Existing mappings in the region are overwritten.
1826  */
1827 void
1828 moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1829 {
1830 	vm_offset_t va;
1831 
1832 	va = sva;
1833 	while (count-- > 0) {
1834 		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1835 		va += PAGE_SIZE;
1836 		m++;
1837 	}
1838 }
1839 
1840 /*
1841  * Remove page mappings from kernel virtual address space.  Intended for
1842  * temporary mappings entered by moea_qenter.
1843  */
1844 void
1845 moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1846 {
1847 	vm_offset_t va;
1848 
1849 	va = sva;
1850 	while (count-- > 0) {
1851 		moea_kremove(mmu, va);
1852 		va += PAGE_SIZE;
1853 	}
1854 }
1855 
1856 void
1857 moea_release(mmu_t mmu, pmap_t pmap)
1858 {
1859         int idx, mask;
1860 
1861 	/*
1862 	 * Free segment register's VSID
1863 	 */
1864         if (pmap->pm_sr[0] == 0)
1865                 panic("moea_release");
1866 
1867 	mtx_lock(&moea_vsid_mutex);
1868         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1869         mask = 1 << (idx % VSID_NBPW);
1870         idx /= VSID_NBPW;
1871         moea_vsid_bitmap[idx] &= ~mask;
1872 	mtx_unlock(&moea_vsid_mutex);
1873 }
1874 
1875 /*
1876  * Remove the given range of addresses from the specified map.
1877  */
1878 void
1879 moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1880 {
1881 	struct	pvo_entry *pvo, *tpvo, key;
1882 
1883 	rw_wlock(&pvh_global_lock);
1884 	PMAP_LOCK(pm);
1885 	key.pvo_vaddr = sva;
1886 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1887 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1888 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1889 		moea_pvo_remove(pvo, -1);
1890 	}
1891 	PMAP_UNLOCK(pm);
1892 	rw_wunlock(&pvh_global_lock);
1893 }
1894 
1895 /*
1896  * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1897  * will reflect changes in pte's back to the vm_page.
1898  */
1899 void
1900 moea_remove_all(mmu_t mmu, vm_page_t m)
1901 {
1902 	struct  pvo_head *pvo_head;
1903 	struct	pvo_entry *pvo, *next_pvo;
1904 	pmap_t	pmap;
1905 
1906 	rw_wlock(&pvh_global_lock);
1907 	pvo_head = vm_page_to_pvoh(m);
1908 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1909 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1910 
1911 		pmap = pvo->pvo_pmap;
1912 		PMAP_LOCK(pmap);
1913 		moea_pvo_remove(pvo, -1);
1914 		PMAP_UNLOCK(pmap);
1915 	}
1916 	if ((m->a.flags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
1917 		moea_attr_clear(m, PTE_CHG);
1918 		vm_page_dirty(m);
1919 	}
1920 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1921 	rw_wunlock(&pvh_global_lock);
1922 }
1923 
1924 /*
1925  * Allocate a physical page of memory directly from the phys_avail map.
1926  * Can only be called from moea_bootstrap before avail start and end are
1927  * calculated.
1928  */
1929 static vm_offset_t
1930 moea_bootstrap_alloc(vm_size_t size, u_int align)
1931 {
1932 	vm_offset_t	s, e;
1933 	int		i, j;
1934 
1935 	size = round_page(size);
1936 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1937 		if (align != 0)
1938 			s = roundup2(phys_avail[i], align);
1939 		else
1940 			s = phys_avail[i];
1941 		e = s + size;
1942 
1943 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1944 			continue;
1945 
1946 		if (s == phys_avail[i]) {
1947 			phys_avail[i] += size;
1948 		} else if (e == phys_avail[i + 1]) {
1949 			phys_avail[i + 1] -= size;
1950 		} else {
1951 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1952 				phys_avail[j] = phys_avail[j - 2];
1953 				phys_avail[j + 1] = phys_avail[j - 1];
1954 			}
1955 
1956 			phys_avail[i + 3] = phys_avail[i + 1];
1957 			phys_avail[i + 1] = s;
1958 			phys_avail[i + 2] = e;
1959 			phys_avail_count++;
1960 		}
1961 
1962 		return (s);
1963 	}
1964 	panic("moea_bootstrap_alloc: could not allocate memory");
1965 }
1966 
1967 static void
1968 moea_syncicache(vm_paddr_t pa, vm_size_t len)
1969 {
1970 	__syncicache((void *)pa, len);
1971 }
1972 
1973 static int
1974 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1975     vm_offset_t va, vm_paddr_t pa, u_int pte_lo, int flags)
1976 {
1977 	struct	pvo_entry *pvo;
1978 	u_int	sr;
1979 	int	first;
1980 	u_int	ptegidx;
1981 	int	i;
1982 	int     bootstrap;
1983 
1984 	moea_pvo_enter_calls++;
1985 	first = 0;
1986 	bootstrap = 0;
1987 
1988 	/*
1989 	 * Compute the PTE Group index.
1990 	 */
1991 	va &= ~ADDR_POFF;
1992 	sr = va_to_sr(pm->pm_sr, va);
1993 	ptegidx = va_to_pteg(sr, va);
1994 
1995 	/*
1996 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1997 	 * there is a mapping.
1998 	 */
1999 	mtx_lock(&moea_table_mutex);
2000 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2001 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2002 			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
2003 			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
2004 			    (pte_lo & PTE_PP)) {
2005 				/*
2006 				 * The PTE is not changing.  Instead, this may
2007 				 * be a request to change the mapping's wired
2008 				 * attribute.
2009 				 */
2010 				mtx_unlock(&moea_table_mutex);
2011 				if ((flags & PVO_WIRED) != 0 &&
2012 				    (pvo->pvo_vaddr & PVO_WIRED) == 0) {
2013 					pvo->pvo_vaddr |= PVO_WIRED;
2014 					pm->pm_stats.wired_count++;
2015 				} else if ((flags & PVO_WIRED) == 0 &&
2016 				    (pvo->pvo_vaddr & PVO_WIRED) != 0) {
2017 					pvo->pvo_vaddr &= ~PVO_WIRED;
2018 					pm->pm_stats.wired_count--;
2019 				}
2020 				return (0);
2021 			}
2022 			moea_pvo_remove(pvo, -1);
2023 			break;
2024 		}
2025 	}
2026 
2027 	/*
2028 	 * If we aren't overwriting a mapping, try to allocate.
2029 	 */
2030 	if (moea_initialized) {
2031 		pvo = uma_zalloc(zone, M_NOWAIT);
2032 	} else {
2033 		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
2034 			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
2035 			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
2036 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2037 		}
2038 		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
2039 		moea_bpvo_pool_index++;
2040 		bootstrap = 1;
2041 	}
2042 
2043 	if (pvo == NULL) {
2044 		mtx_unlock(&moea_table_mutex);
2045 		return (ENOMEM);
2046 	}
2047 
2048 	moea_pvo_entries++;
2049 	pvo->pvo_vaddr = va;
2050 	pvo->pvo_pmap = pm;
2051 	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
2052 	pvo->pvo_vaddr &= ~ADDR_POFF;
2053 	if (flags & PVO_WIRED)
2054 		pvo->pvo_vaddr |= PVO_WIRED;
2055 	if (pvo_head != &moea_pvo_kunmanaged)
2056 		pvo->pvo_vaddr |= PVO_MANAGED;
2057 	if (bootstrap)
2058 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2059 
2060 	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
2061 
2062 	/*
2063 	 * Add to pmap list
2064 	 */
2065 	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2066 
2067 	/*
2068 	 * Remember if the list was empty and therefore will be the first
2069 	 * item.
2070 	 */
2071 	if (LIST_FIRST(pvo_head) == NULL)
2072 		first = 1;
2073 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2074 
2075 	if (pvo->pvo_vaddr & PVO_WIRED)
2076 		pm->pm_stats.wired_count++;
2077 	pm->pm_stats.resident_count++;
2078 
2079 	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2080 	KASSERT(i < 8, ("Invalid PTE index"));
2081 	if (i >= 0) {
2082 		PVO_PTEGIDX_SET(pvo, i);
2083 	} else {
2084 		panic("moea_pvo_enter: overflow");
2085 		moea_pte_overflow++;
2086 	}
2087 	mtx_unlock(&moea_table_mutex);
2088 
2089 	return (first ? ENOENT : 0);
2090 }
2091 
2092 static void
2093 moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
2094 {
2095 	struct	pte *pt;
2096 
2097 	/*
2098 	 * If there is an active pte entry, we need to deactivate it (and
2099 	 * save the ref & cfg bits).
2100 	 */
2101 	pt = moea_pvo_to_pte(pvo, pteidx);
2102 	if (pt != NULL) {
2103 		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2104 		mtx_unlock(&moea_table_mutex);
2105 		PVO_PTEGIDX_CLR(pvo);
2106 	} else {
2107 		moea_pte_overflow--;
2108 	}
2109 
2110 	/*
2111 	 * Update our statistics.
2112 	 */
2113 	pvo->pvo_pmap->pm_stats.resident_count--;
2114 	if (pvo->pvo_vaddr & PVO_WIRED)
2115 		pvo->pvo_pmap->pm_stats.wired_count--;
2116 
2117 	/*
2118 	 * Remove this PVO from the PV and pmap lists.
2119 	 */
2120 	LIST_REMOVE(pvo, pvo_vlink);
2121 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2122 
2123 	/*
2124 	 * Save the REF/CHG bits into their cache if the page is managed.
2125 	 * Clear PGA_WRITEABLE if all mappings of the page have been removed.
2126 	 */
2127 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2128 		struct vm_page *pg;
2129 
2130 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
2131 		if (pg != NULL) {
2132 			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2133 			    (PTE_REF | PTE_CHG));
2134 			if (LIST_EMPTY(&pg->md.mdpg_pvoh))
2135 				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2136 		}
2137 	}
2138 
2139 	/*
2140 	 * Remove this from the overflow list and return it to the pool
2141 	 * if we aren't going to reuse it.
2142 	 */
2143 	LIST_REMOVE(pvo, pvo_olink);
2144 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2145 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2146 		    moea_upvo_zone, pvo);
2147 	moea_pvo_entries--;
2148 	moea_pvo_remove_calls++;
2149 }
2150 
2151 static __inline int
2152 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2153 {
2154 	int	pteidx;
2155 
2156 	/*
2157 	 * We can find the actual pte entry without searching by grabbing
2158 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2159 	 * noticing the HID bit.
2160 	 */
2161 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2162 	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2163 		pteidx ^= moea_pteg_mask * 8;
2164 
2165 	return (pteidx);
2166 }
2167 
2168 static struct pvo_entry *
2169 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2170 {
2171 	struct	pvo_entry *pvo;
2172 	int	ptegidx;
2173 	u_int	sr;
2174 
2175 	va &= ~ADDR_POFF;
2176 	sr = va_to_sr(pm->pm_sr, va);
2177 	ptegidx = va_to_pteg(sr, va);
2178 
2179 	mtx_lock(&moea_table_mutex);
2180 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2181 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2182 			if (pteidx_p)
2183 				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2184 			break;
2185 		}
2186 	}
2187 	mtx_unlock(&moea_table_mutex);
2188 
2189 	return (pvo);
2190 }
2191 
2192 static struct pte *
2193 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2194 {
2195 	struct	pte *pt;
2196 
2197 	/*
2198 	 * If we haven't been supplied the ptegidx, calculate it.
2199 	 */
2200 	if (pteidx == -1) {
2201 		int	ptegidx;
2202 		u_int	sr;
2203 
2204 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2205 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2206 		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2207 	}
2208 
2209 	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2210 	mtx_lock(&moea_table_mutex);
2211 
2212 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2213 		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2214 		    "valid pte index", pvo);
2215 	}
2216 
2217 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2218 		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2219 		    "pvo but no valid pte", pvo);
2220 	}
2221 
2222 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2223 		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2224 			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2225 			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2226 		}
2227 
2228 		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2229 		    != 0) {
2230 			panic("moea_pvo_to_pte: pvo %p pte does not match "
2231 			    "pte %p in moea_pteg_table", pvo, pt);
2232 		}
2233 
2234 		mtx_assert(&moea_table_mutex, MA_OWNED);
2235 		return (pt);
2236 	}
2237 
2238 	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2239 		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2240 		    "moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2241 	}
2242 
2243 	mtx_unlock(&moea_table_mutex);
2244 	return (NULL);
2245 }
2246 
2247 /*
2248  * XXX: THIS STUFF SHOULD BE IN pte.c?
2249  */
2250 int
2251 moea_pte_spill(vm_offset_t addr)
2252 {
2253 	struct	pvo_entry *source_pvo, *victim_pvo;
2254 	struct	pvo_entry *pvo;
2255 	int	ptegidx, i, j;
2256 	u_int	sr;
2257 	struct	pteg *pteg;
2258 	struct	pte *pt;
2259 
2260 	moea_pte_spills++;
2261 
2262 	sr = mfsrin(addr);
2263 	ptegidx = va_to_pteg(sr, addr);
2264 
2265 	/*
2266 	 * Have to substitute some entry.  Use the primary hash for this.
2267 	 * Use low bits of timebase as random generator.
2268 	 */
2269 	pteg = &moea_pteg_table[ptegidx];
2270 	mtx_lock(&moea_table_mutex);
2271 	__asm __volatile("mftb %0" : "=r"(i));
2272 	i &= 7;
2273 	pt = &pteg->pt[i];
2274 
2275 	source_pvo = NULL;
2276 	victim_pvo = NULL;
2277 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2278 		/*
2279 		 * We need to find a pvo entry for this address.
2280 		 */
2281 		if (source_pvo == NULL &&
2282 		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2283 		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2284 			/*
2285 			 * Now found an entry to be spilled into the pteg.
2286 			 * The PTE is now valid, so we know it's active.
2287 			 */
2288 			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2289 
2290 			if (j >= 0) {
2291 				PVO_PTEGIDX_SET(pvo, j);
2292 				moea_pte_overflow--;
2293 				mtx_unlock(&moea_table_mutex);
2294 				return (1);
2295 			}
2296 
2297 			source_pvo = pvo;
2298 
2299 			if (victim_pvo != NULL)
2300 				break;
2301 		}
2302 
2303 		/*
2304 		 * We also need the pvo entry of the victim we are replacing
2305 		 * so save the R & C bits of the PTE.
2306 		 */
2307 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2308 		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2309 			victim_pvo = pvo;
2310 			if (source_pvo != NULL)
2311 				break;
2312 		}
2313 	}
2314 
2315 	if (source_pvo == NULL) {
2316 		mtx_unlock(&moea_table_mutex);
2317 		return (0);
2318 	}
2319 
2320 	if (victim_pvo == NULL) {
2321 		if ((pt->pte_hi & PTE_HID) == 0)
2322 			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2323 			    "entry", pt);
2324 
2325 		/*
2326 		 * If this is a secondary PTE, we need to search it's primary
2327 		 * pvo bucket for the matching PVO.
2328 		 */
2329 		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2330 		    pvo_olink) {
2331 			/*
2332 			 * We also need the pvo entry of the victim we are
2333 			 * replacing so save the R & C bits of the PTE.
2334 			 */
2335 			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2336 				victim_pvo = pvo;
2337 				break;
2338 			}
2339 		}
2340 
2341 		if (victim_pvo == NULL)
2342 			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2343 			    "entry", pt);
2344 	}
2345 
2346 	/*
2347 	 * We are invalidating the TLB entry for the EA we are replacing even
2348 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2349 	 * contained in the TLB entry.
2350 	 */
2351 	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2352 
2353 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2354 	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2355 
2356 	PVO_PTEGIDX_CLR(victim_pvo);
2357 	PVO_PTEGIDX_SET(source_pvo, i);
2358 	moea_pte_replacements++;
2359 
2360 	mtx_unlock(&moea_table_mutex);
2361 	return (1);
2362 }
2363 
2364 static __inline struct pvo_entry *
2365 moea_pte_spillable_ident(u_int ptegidx)
2366 {
2367 	struct	pte *pt;
2368 	struct	pvo_entry *pvo_walk, *pvo = NULL;
2369 
2370 	LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) {
2371 		if (pvo_walk->pvo_vaddr & PVO_WIRED)
2372 			continue;
2373 
2374 		if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID))
2375 			continue;
2376 
2377 		pt = moea_pvo_to_pte(pvo_walk, -1);
2378 
2379 		if (pt == NULL)
2380 			continue;
2381 
2382 		pvo = pvo_walk;
2383 
2384 		mtx_unlock(&moea_table_mutex);
2385 		if (!(pt->pte_lo & PTE_REF))
2386 			return (pvo_walk);
2387 	}
2388 
2389 	return (pvo);
2390 }
2391 
2392 static int
2393 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2394 {
2395 	struct	pte *pt;
2396 	struct	pvo_entry *victim_pvo;
2397 	int	i;
2398 	int	victim_idx;
2399 	u_int	pteg_bkpidx = ptegidx;
2400 
2401 	mtx_assert(&moea_table_mutex, MA_OWNED);
2402 
2403 	/*
2404 	 * First try primary hash.
2405 	 */
2406 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2407 		if ((pt->pte_hi & PTE_VALID) == 0) {
2408 			pvo_pt->pte_hi &= ~PTE_HID;
2409 			moea_pte_set(pt, pvo_pt);
2410 			return (i);
2411 		}
2412 	}
2413 
2414 	/*
2415 	 * Now try secondary hash.
2416 	 */
2417 	ptegidx ^= moea_pteg_mask;
2418 
2419 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2420 		if ((pt->pte_hi & PTE_VALID) == 0) {
2421 			pvo_pt->pte_hi |= PTE_HID;
2422 			moea_pte_set(pt, pvo_pt);
2423 			return (i);
2424 		}
2425 	}
2426 
2427 	/* Try again, but this time try to force a PTE out. */
2428 	ptegidx = pteg_bkpidx;
2429 
2430 	victim_pvo = moea_pte_spillable_ident(ptegidx);
2431 	if (victim_pvo == NULL) {
2432 		ptegidx ^= moea_pteg_mask;
2433 		victim_pvo = moea_pte_spillable_ident(ptegidx);
2434 	}
2435 
2436 	if (victim_pvo == NULL) {
2437 		panic("moea_pte_insert: overflow");
2438 		return (-1);
2439 	}
2440 
2441 	victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx);
2442 
2443 	if (pteg_bkpidx == ptegidx)
2444 		pvo_pt->pte_hi &= ~PTE_HID;
2445 	else
2446 		pvo_pt->pte_hi |= PTE_HID;
2447 
2448 	/*
2449 	 * Synchronize the sacrifice PTE with its PVO, then mark both
2450 	 * invalid. The PVO will be reused when/if the VM system comes
2451 	 * here after a fault.
2452 	 */
2453 	pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7];
2454 
2455 	if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi)
2456 	    panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2457 
2458 	/*
2459 	 * Set the new PTE.
2460 	 */
2461 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2462 	PVO_PTEGIDX_CLR(victim_pvo);
2463 	moea_pte_overflow++;
2464 	moea_pte_set(pt, pvo_pt);
2465 
2466 	return (victim_idx & 7);
2467 }
2468 
2469 static boolean_t
2470 moea_query_bit(vm_page_t m, int ptebit)
2471 {
2472 	struct	pvo_entry *pvo;
2473 	struct	pte *pt;
2474 
2475 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2476 	if (moea_attr_fetch(m) & ptebit)
2477 		return (TRUE);
2478 
2479 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2480 
2481 		/*
2482 		 * See if we saved the bit off.  If so, cache it and return
2483 		 * success.
2484 		 */
2485 		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2486 			moea_attr_save(m, ptebit);
2487 			return (TRUE);
2488 		}
2489 	}
2490 
2491 	/*
2492 	 * No luck, now go through the hard part of looking at the PTEs
2493 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2494 	 * the PTEs.
2495 	 */
2496 	powerpc_sync();
2497 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2498 
2499 		/*
2500 		 * See if this pvo has a valid PTE.  if so, fetch the
2501 		 * REF/CHG bits from the valid PTE.  If the appropriate
2502 		 * ptebit is set, cache it and return success.
2503 		 */
2504 		pt = moea_pvo_to_pte(pvo, -1);
2505 		if (pt != NULL) {
2506 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2507 			mtx_unlock(&moea_table_mutex);
2508 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2509 				moea_attr_save(m, ptebit);
2510 				return (TRUE);
2511 			}
2512 		}
2513 	}
2514 
2515 	return (FALSE);
2516 }
2517 
2518 static u_int
2519 moea_clear_bit(vm_page_t m, int ptebit)
2520 {
2521 	u_int	count;
2522 	struct	pvo_entry *pvo;
2523 	struct	pte *pt;
2524 
2525 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2526 
2527 	/*
2528 	 * Clear the cached value.
2529 	 */
2530 	moea_attr_clear(m, ptebit);
2531 
2532 	/*
2533 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2534 	 * we can reset the right ones).  note that since the pvo entries and
2535 	 * list heads are accessed via BAT0 and are never placed in the page
2536 	 * table, we don't have to worry about further accesses setting the
2537 	 * REF/CHG bits.
2538 	 */
2539 	powerpc_sync();
2540 
2541 	/*
2542 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2543 	 * valid pte clear the ptebit from the valid pte.
2544 	 */
2545 	count = 0;
2546 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2547 		pt = moea_pvo_to_pte(pvo, -1);
2548 		if (pt != NULL) {
2549 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2550 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2551 				count++;
2552 				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2553 			}
2554 			mtx_unlock(&moea_table_mutex);
2555 		}
2556 		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2557 	}
2558 
2559 	return (count);
2560 }
2561 
2562 /*
2563  * Return true if the physical range is encompassed by the battable[idx]
2564  */
2565 static int
2566 moea_bat_mapped(int idx, vm_paddr_t pa, vm_size_t size)
2567 {
2568 	u_int prot;
2569 	u_int32_t start;
2570 	u_int32_t end;
2571 	u_int32_t bat_ble;
2572 
2573 	/*
2574 	 * Return immediately if not a valid mapping
2575 	 */
2576 	if (!(battable[idx].batu & BAT_Vs))
2577 		return (EINVAL);
2578 
2579 	/*
2580 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2581 	 * so it can function as an i/o page
2582 	 */
2583 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2584 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2585 		return (EPERM);
2586 
2587 	/*
2588 	 * The address should be within the BAT range. Assume that the
2589 	 * start address in the BAT has the correct alignment (thus
2590 	 * not requiring masking)
2591 	 */
2592 	start = battable[idx].batl & BAT_PBS;
2593 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2594 	end = start | (bat_ble << 15) | 0x7fff;
2595 
2596 	if ((pa < start) || ((pa + size) > end))
2597 		return (ERANGE);
2598 
2599 	return (0);
2600 }
2601 
2602 boolean_t
2603 moea_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2604 {
2605 	int i;
2606 
2607 	/*
2608 	 * This currently does not work for entries that
2609 	 * overlap 256M BAT segments.
2610 	 */
2611 
2612 	for(i = 0; i < 16; i++)
2613 		if (moea_bat_mapped(i, pa, size) == 0)
2614 			return (0);
2615 
2616 	return (EFAULT);
2617 }
2618 
2619 /*
2620  * Map a set of physical memory pages into the kernel virtual
2621  * address space. Return a pointer to where it is mapped. This
2622  * routine is intended to be used for mapping device memory,
2623  * NOT real memory.
2624  */
2625 void *
2626 moea_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2627 {
2628 
2629 	return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2630 }
2631 
2632 void *
2633 moea_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2634 {
2635 	vm_offset_t va, tmpva, ppa, offset;
2636 	int i;
2637 
2638 	ppa = trunc_page(pa);
2639 	offset = pa & PAGE_MASK;
2640 	size = roundup(offset + size, PAGE_SIZE);
2641 
2642 	/*
2643 	 * If the physical address lies within a valid BAT table entry,
2644 	 * return the 1:1 mapping. This currently doesn't work
2645 	 * for regions that overlap 256M BAT segments.
2646 	 */
2647 	for (i = 0; i < 16; i++) {
2648 		if (moea_bat_mapped(i, pa, size) == 0)
2649 			return ((void *) pa);
2650 	}
2651 
2652 	va = kva_alloc(size);
2653 	if (!va)
2654 		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2655 
2656 	for (tmpva = va; size > 0;) {
2657 		moea_kenter_attr(mmu, tmpva, ppa, ma);
2658 		tlbie(tmpva);
2659 		size -= PAGE_SIZE;
2660 		tmpva += PAGE_SIZE;
2661 		ppa += PAGE_SIZE;
2662 	}
2663 
2664 	return ((void *)(va + offset));
2665 }
2666 
2667 void
2668 moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2669 {
2670 	vm_offset_t base, offset;
2671 
2672 	/*
2673 	 * If this is outside kernel virtual space, then it's a
2674 	 * battable entry and doesn't require unmapping
2675 	 */
2676 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2677 		base = trunc_page(va);
2678 		offset = va & PAGE_MASK;
2679 		size = roundup(offset + size, PAGE_SIZE);
2680 		kva_free(base, size);
2681 	}
2682 }
2683 
2684 static void
2685 moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2686 {
2687 	struct pvo_entry *pvo;
2688 	vm_offset_t lim;
2689 	vm_paddr_t pa;
2690 	vm_size_t len;
2691 
2692 	PMAP_LOCK(pm);
2693 	while (sz > 0) {
2694 		lim = round_page(va + 1);
2695 		len = MIN(lim - va, sz);
2696 		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2697 		if (pvo != NULL) {
2698 			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2699 			    (va & ADDR_POFF);
2700 			moea_syncicache(pa, len);
2701 		}
2702 		va += len;
2703 		sz -= len;
2704 	}
2705 	PMAP_UNLOCK(pm);
2706 }
2707 
2708 void
2709 moea_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2710 {
2711 
2712 	*va = (void *)pa;
2713 }
2714 
2715 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2716 
2717 void
2718 moea_scan_init(mmu_t mmu)
2719 {
2720 	struct pvo_entry *pvo;
2721 	vm_offset_t va;
2722 	int i;
2723 
2724 	if (!do_minidump) {
2725 		/* Initialize phys. segments for dumpsys(). */
2726 		memset(&dump_map, 0, sizeof(dump_map));
2727 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2728 		for (i = 0; i < pregions_sz; i++) {
2729 			dump_map[i].pa_start = pregions[i].mr_start;
2730 			dump_map[i].pa_size = pregions[i].mr_size;
2731 		}
2732 		return;
2733 	}
2734 
2735 	/* Virtual segments for minidumps: */
2736 	memset(&dump_map, 0, sizeof(dump_map));
2737 
2738 	/* 1st: kernel .data and .bss. */
2739 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2740 	dump_map[0].pa_size =
2741 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2742 
2743 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2744 	dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
2745 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2746 
2747 	/* 3rd: kernel VM. */
2748 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2749 	/* Find start of next chunk (from va). */
2750 	while (va < virtual_end) {
2751 		/* Don't dump the buffer cache. */
2752 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2753 			va = kmi.buffer_eva;
2754 			continue;
2755 		}
2756 		pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
2757 		if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2758 			break;
2759 		va += PAGE_SIZE;
2760 	}
2761 	if (va < virtual_end) {
2762 		dump_map[2].pa_start = va;
2763 		va += PAGE_SIZE;
2764 		/* Find last page in chunk. */
2765 		while (va < virtual_end) {
2766 			/* Don't run into the buffer cache. */
2767 			if (va == kmi.buffer_sva)
2768 				break;
2769 			pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF,
2770 			    NULL);
2771 			if (pvo == NULL ||
2772 			    !(pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2773 				break;
2774 			va += PAGE_SIZE;
2775 		}
2776 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2777 	}
2778 }
2779