xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision cec50dea12481dc578c0805c887ab2097e1c06c5)
1 /*
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 /*
97  * Manages physical address maps.
98  *
99  * In addition to hardware address maps, this module is called upon to
100  * provide software-use-only maps which may or may not be stored in the
101  * same form as hardware maps.  These pseudo-maps are used to store
102  * intermediate results from copy operations to and from address spaces.
103  *
104  * Since the information managed by this module is also stored by the
105  * logical address mapping module, this module may throw away valid virtual
106  * to physical mappings at almost any time.  However, invalidations of
107  * mappings must be done as requested.
108  *
109  * In order to cope with hardware architectures which make virtual to
110  * physical map invalidates expensive, this module may delay invalidate
111  * reduced protection operations until such time as they are actually
112  * necessary.  This module is given full information as to which processors
113  * are currently using which maps, and to when physical maps must be made
114  * correct.
115  */
116 
117 #include "opt_kstack_pages.h"
118 
119 #include <sys/param.h>
120 #include <sys/kernel.h>
121 #include <sys/ktr.h>
122 #include <sys/lock.h>
123 #include <sys/msgbuf.h>
124 #include <sys/mutex.h>
125 #include <sys/proc.h>
126 #include <sys/sysctl.h>
127 #include <sys/systm.h>
128 #include <sys/vmmeter.h>
129 
130 #include <dev/ofw/openfirm.h>
131 
132 #include <vm/vm.h>
133 #include <vm/vm_param.h>
134 #include <vm/vm_kern.h>
135 #include <vm/vm_page.h>
136 #include <vm/vm_map.h>
137 #include <vm/vm_object.h>
138 #include <vm/vm_extern.h>
139 #include <vm/vm_pageout.h>
140 #include <vm/vm_pager.h>
141 #include <vm/uma.h>
142 
143 #include <machine/cpu.h>
144 #include <machine/powerpc.h>
145 #include <machine/bat.h>
146 #include <machine/frame.h>
147 #include <machine/md_var.h>
148 #include <machine/psl.h>
149 #include <machine/pte.h>
150 #include <machine/sr.h>
151 
152 #define	PMAP_DEBUG
153 
154 #define TODO	panic("%s: not implemented", __func__);
155 
156 #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
157 #define	TLBSYNC()	__asm __volatile("tlbsync");
158 #define	SYNC()		__asm __volatile("sync");
159 #define	EIEIO()		__asm __volatile("eieio");
160 
161 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
162 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
163 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
164 
165 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
166 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
167 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
168 #define	PVO_MANAGED		0x0020		/* PVO entry is managed */
169 #define	PVO_EXECUTABLE		0x0040		/* PVO entry is executable */
170 #define	PVO_BOOTSTRAP		0x0080		/* PVO entry allocated during
171 						   bootstrap */
172 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
173 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
174 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
175 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
176 #define	PVO_PTEGIDX_CLR(pvo)	\
177 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
178 #define	PVO_PTEGIDX_SET(pvo, i)	\
179 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
180 
181 #define	PMAP_PVO_CHECK(pvo)
182 
183 struct ofw_map {
184 	vm_offset_t	om_va;
185 	vm_size_t	om_len;
186 	vm_offset_t	om_pa;
187 	u_int		om_mode;
188 };
189 
190 int	pmap_bootstrapped = 0;
191 
192 /*
193  * Virtual and physical address of message buffer.
194  */
195 struct		msgbuf *msgbufp;
196 vm_offset_t	msgbuf_phys;
197 
198 int pmap_pagedaemon_waken;
199 
200 /*
201  * Map of physical memory regions.
202  */
203 vm_offset_t	phys_avail[128];
204 u_int		phys_avail_count;
205 static struct	mem_region *regions;
206 static struct	mem_region *pregions;
207 int		regions_sz, pregions_sz;
208 static struct	ofw_map *translations;
209 
210 /*
211  * First and last available kernel virtual addresses.
212  */
213 vm_offset_t virtual_avail;
214 vm_offset_t virtual_end;
215 vm_offset_t kernel_vm_end;
216 
217 /*
218  * Kernel pmap.
219  */
220 struct pmap kernel_pmap_store;
221 extern struct pmap ofw_pmap;
222 
223 /*
224  * Lock for the pteg and pvo tables.
225  */
226 struct mtx	pmap_table_mutex;
227 
228 /*
229  * PTEG data.
230  */
231 static struct	pteg *pmap_pteg_table;
232 u_int		pmap_pteg_count;
233 u_int		pmap_pteg_mask;
234 
235 /*
236  * PVO data.
237  */
238 struct	pvo_head *pmap_pvo_table;		/* pvo entries by pteg index */
239 struct	pvo_head pmap_pvo_kunmanaged =
240     LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
241 struct	pvo_head pmap_pvo_unmanaged =
242     LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
243 
244 uma_zone_t	pmap_upvo_zone;	/* zone for pvo entries for unmanaged pages */
245 uma_zone_t	pmap_mpvo_zone;	/* zone for pvo entries for managed pages */
246 
247 #define	BPVO_POOL_SIZE	32768
248 static struct	pvo_entry *pmap_bpvo_pool;
249 static int	pmap_bpvo_pool_index = 0;
250 
251 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
252 static u_int	pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
253 
254 static boolean_t pmap_initialized = FALSE;
255 
256 /*
257  * Statistics.
258  */
259 u_int	pmap_pte_valid = 0;
260 u_int	pmap_pte_overflow = 0;
261 u_int	pmap_pte_replacements = 0;
262 u_int	pmap_pvo_entries = 0;
263 u_int	pmap_pvo_enter_calls = 0;
264 u_int	pmap_pvo_remove_calls = 0;
265 u_int	pmap_pte_spills = 0;
266 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
267     0, "");
268 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
269     &pmap_pte_overflow, 0, "");
270 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
271     &pmap_pte_replacements, 0, "");
272 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
273     0, "");
274 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
275     &pmap_pvo_enter_calls, 0, "");
276 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
277     &pmap_pvo_remove_calls, 0, "");
278 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
279     &pmap_pte_spills, 0, "");
280 
281 struct	pvo_entry *pmap_pvo_zeropage;
282 
283 vm_offset_t	pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
284 u_int		pmap_rkva_count = 4;
285 
286 /*
287  * Allocate physical memory for use in pmap_bootstrap.
288  */
289 static vm_offset_t	pmap_bootstrap_alloc(vm_size_t, u_int);
290 
291 /*
292  * PTE calls.
293  */
294 static int		pmap_pte_insert(u_int, struct pte *);
295 
296 /*
297  * PVO calls.
298  */
299 static int	pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
300 		    vm_offset_t, vm_offset_t, u_int, int);
301 static void	pmap_pvo_remove(struct pvo_entry *, int);
302 static struct	pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
303 static struct	pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
304 
305 /*
306  * Utility routines.
307  */
308 static struct		pvo_entry *pmap_rkva_alloc(void);
309 static void		pmap_pa_map(struct pvo_entry *, vm_offset_t,
310 			    struct pte *, int *);
311 static void		pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
312 static void		pmap_syncicache(vm_offset_t, vm_size_t);
313 static boolean_t	pmap_query_bit(vm_page_t, int);
314 static u_int		pmap_clear_bit(vm_page_t, int, int *);
315 static void		tlbia(void);
316 
317 static __inline int
318 va_to_sr(u_int *sr, vm_offset_t va)
319 {
320 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
321 }
322 
323 static __inline u_int
324 va_to_pteg(u_int sr, vm_offset_t addr)
325 {
326 	u_int hash;
327 
328 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
329 	    ADDR_PIDX_SHFT);
330 	return (hash & pmap_pteg_mask);
331 }
332 
333 static __inline struct pvo_head *
334 pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
335 {
336 	struct	vm_page *pg;
337 
338 	pg = PHYS_TO_VM_PAGE(pa);
339 
340 	if (pg_p != NULL)
341 		*pg_p = pg;
342 
343 	if (pg == NULL)
344 		return (&pmap_pvo_unmanaged);
345 
346 	return (&pg->md.mdpg_pvoh);
347 }
348 
349 static __inline struct pvo_head *
350 vm_page_to_pvoh(vm_page_t m)
351 {
352 
353 	return (&m->md.mdpg_pvoh);
354 }
355 
356 static __inline void
357 pmap_attr_clear(vm_page_t m, int ptebit)
358 {
359 
360 	m->md.mdpg_attrs &= ~ptebit;
361 }
362 
363 static __inline int
364 pmap_attr_fetch(vm_page_t m)
365 {
366 
367 	return (m->md.mdpg_attrs);
368 }
369 
370 static __inline void
371 pmap_attr_save(vm_page_t m, int ptebit)
372 {
373 
374 	m->md.mdpg_attrs |= ptebit;
375 }
376 
377 static __inline int
378 pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
379 {
380 	if (pt->pte_hi == pvo_pt->pte_hi)
381 		return (1);
382 
383 	return (0);
384 }
385 
386 static __inline int
387 pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
388 {
389 	return (pt->pte_hi & ~PTE_VALID) ==
390 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
391 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
392 }
393 
394 static __inline void
395 pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
396 {
397 	/*
398 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
399 	 * set when the real pte is set in memory.
400 	 *
401 	 * Note: Don't set the valid bit for correct operation of tlb update.
402 	 */
403 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
404 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
405 	pt->pte_lo = pte_lo;
406 }
407 
408 static __inline void
409 pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
410 {
411 
412 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
413 }
414 
415 static __inline void
416 pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
417 {
418 
419 	/*
420 	 * As shown in Section 7.6.3.2.3
421 	 */
422 	pt->pte_lo &= ~ptebit;
423 	TLBIE(va);
424 	EIEIO();
425 	TLBSYNC();
426 	SYNC();
427 }
428 
429 static __inline void
430 pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
431 {
432 
433 	pvo_pt->pte_hi |= PTE_VALID;
434 
435 	/*
436 	 * Update the PTE as defined in section 7.6.3.1.
437 	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
438 	 * been saved so this routine can restore them (if desired).
439 	 */
440 	pt->pte_lo = pvo_pt->pte_lo;
441 	EIEIO();
442 	pt->pte_hi = pvo_pt->pte_hi;
443 	SYNC();
444 	pmap_pte_valid++;
445 }
446 
447 static __inline void
448 pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
449 {
450 
451 	pvo_pt->pte_hi &= ~PTE_VALID;
452 
453 	/*
454 	 * Force the reg & chg bits back into the PTEs.
455 	 */
456 	SYNC();
457 
458 	/*
459 	 * Invalidate the pte.
460 	 */
461 	pt->pte_hi &= ~PTE_VALID;
462 
463 	SYNC();
464 	TLBIE(va);
465 	EIEIO();
466 	TLBSYNC();
467 	SYNC();
468 
469 	/*
470 	 * Save the reg & chg bits.
471 	 */
472 	pmap_pte_synch(pt, pvo_pt);
473 	pmap_pte_valid--;
474 }
475 
476 static __inline void
477 pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
478 {
479 
480 	/*
481 	 * Invalidate the PTE
482 	 */
483 	pmap_pte_unset(pt, pvo_pt, va);
484 	pmap_pte_set(pt, pvo_pt);
485 }
486 
487 /*
488  * Quick sort callout for comparing memory regions.
489  */
490 static int	mr_cmp(const void *a, const void *b);
491 static int	om_cmp(const void *a, const void *b);
492 
493 static int
494 mr_cmp(const void *a, const void *b)
495 {
496 	const struct	mem_region *regiona;
497 	const struct	mem_region *regionb;
498 
499 	regiona = a;
500 	regionb = b;
501 	if (regiona->mr_start < regionb->mr_start)
502 		return (-1);
503 	else if (regiona->mr_start > regionb->mr_start)
504 		return (1);
505 	else
506 		return (0);
507 }
508 
509 static int
510 om_cmp(const void *a, const void *b)
511 {
512 	const struct	ofw_map *mapa;
513 	const struct	ofw_map *mapb;
514 
515 	mapa = a;
516 	mapb = b;
517 	if (mapa->om_pa < mapb->om_pa)
518 		return (-1);
519 	else if (mapa->om_pa > mapb->om_pa)
520 		return (1);
521 	else
522 		return (0);
523 }
524 
525 void
526 pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
527 {
528 	ihandle_t	mmui;
529 	phandle_t	chosen, mmu;
530 	int		sz;
531 	int		i, j;
532 	int		ofw_mappings;
533 	vm_size_t	size, physsz;
534 	vm_offset_t	pa, va, off;
535 	u_int		batl, batu;
536 
537         /*
538          * Set up BAT0 to map the lowest 256 MB area
539          */
540         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
541         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
542 
543         /*
544          * Map PCI memory space.
545          */
546         battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
547         battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
548 
549         battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
550         battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
551 
552         battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
553         battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
554 
555         battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
556         battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
557 
558         /*
559          * Map obio devices.
560          */
561         battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
562         battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
563 
564 	/*
565 	 * Use an IBAT and a DBAT to map the bottom segment of memory
566 	 * where we are.
567 	 */
568 	batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
569 	batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
570 	__asm ("mtibatu 0,%0; mtibatl 0,%1; isync; \n"
571 	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
572 	    :: "r"(batu), "r"(batl));
573 
574 #if 0
575 	/* map frame buffer */
576 	batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
577 	batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
578 	__asm ("mtdbatu 1,%0; mtdbatl 1,%1; isync"
579 	    :: "r"(batu), "r"(batl));
580 #endif
581 
582 #if 1
583 	/* map pci space */
584 	batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
585 	batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
586 	__asm ("mtdbatu 1,%0; mtdbatl 1,%1; isync"
587 	    :: "r"(batu), "r"(batl));
588 #endif
589 
590 	/*
591 	 * Set the start and end of kva.
592 	 */
593 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
594 	virtual_end = VM_MAX_KERNEL_ADDRESS;
595 
596 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
597 	CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
598 
599 	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
600 	for (i = 0; i < pregions_sz; i++) {
601 		vm_offset_t pa;
602 		vm_offset_t end;
603 
604 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
605 			pregions[i].mr_start,
606 			pregions[i].mr_start + pregions[i].mr_size,
607 			pregions[i].mr_size);
608 		/*
609 		 * Install entries into the BAT table to allow all
610 		 * of physmem to be convered by on-demand BAT entries.
611 		 * The loop will sometimes set the same battable element
612 		 * twice, but that's fine since they won't be used for
613 		 * a while yet.
614 		 */
615 		pa = pregions[i].mr_start & 0xf0000000;
616 		end = pregions[i].mr_start + pregions[i].mr_size;
617 		do {
618                         u_int n = pa >> ADDR_SR_SHFT;
619 
620 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
621 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
622 			pa += SEGMENT_LENGTH;
623 		} while (pa < end);
624 	}
625 
626 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
627 		panic("pmap_bootstrap: phys_avail too small");
628 	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
629 	phys_avail_count = 0;
630 	physsz = 0;
631 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
632 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
633 		    regions[i].mr_start + regions[i].mr_size,
634 		    regions[i].mr_size);
635 		phys_avail[j] = regions[i].mr_start;
636 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
637 		phys_avail_count++;
638 		physsz += regions[i].mr_size;
639 	}
640 	physmem = btoc(physsz);
641 
642 	/*
643 	 * Allocate PTEG table.
644 	 */
645 #ifdef PTEGCOUNT
646 	pmap_pteg_count = PTEGCOUNT;
647 #else
648 	pmap_pteg_count = 0x1000;
649 
650 	while (pmap_pteg_count < physmem)
651 		pmap_pteg_count <<= 1;
652 
653 	pmap_pteg_count >>= 1;
654 #endif /* PTEGCOUNT */
655 
656 	size = pmap_pteg_count * sizeof(struct pteg);
657 	CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
658 	    size);
659 	pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
660 	CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
661 	bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
662 	pmap_pteg_mask = pmap_pteg_count - 1;
663 
664 	/*
665 	 * Allocate pv/overflow lists.
666 	 */
667 	size = sizeof(struct pvo_head) * pmap_pteg_count;
668 	pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
669 	    PAGE_SIZE);
670 	CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
671 	for (i = 0; i < pmap_pteg_count; i++)
672 		LIST_INIT(&pmap_pvo_table[i]);
673 
674 	/*
675 	 * Initialize the lock that synchronizes access to the pteg and pvo
676 	 * tables.
677 	 */
678 	mtx_init(&pmap_table_mutex, "pmap table", NULL, MTX_DEF);
679 
680 	/*
681 	 * Allocate the message buffer.
682 	 */
683 	msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
684 
685 	/*
686 	 * Initialise the unmanaged pvo pool.
687 	 */
688 	pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(
689 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
690 	pmap_bpvo_pool_index = 0;
691 
692 	/*
693 	 * Make sure kernel vsid is allocated as well as VSID 0.
694 	 */
695 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
696 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
697 	pmap_vsid_bitmap[0] |= 1;
698 
699 	/*
700 	 * Set up the Open Firmware pmap and add it's mappings.
701 	 */
702 	pmap_pinit(&ofw_pmap);
703 	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
704 	ofw_pmap.pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
705 	if ((chosen = OF_finddevice("/chosen")) == -1)
706 		panic("pmap_bootstrap: can't find /chosen");
707 	OF_getprop(chosen, "mmu", &mmui, 4);
708 	if ((mmu = OF_instance_to_package(mmui)) == -1)
709 		panic("pmap_bootstrap: can't get mmu package");
710 	if ((sz = OF_getproplen(mmu, "translations")) == -1)
711 		panic("pmap_bootstrap: can't get ofw translation count");
712 	translations = NULL;
713 	for (i = 0; phys_avail[i] != 0; i += 2) {
714 		if (phys_avail[i + 1] >= sz) {
715 			translations = (struct ofw_map *)phys_avail[i];
716 			break;
717 		}
718 	}
719 	if (translations == NULL)
720 		panic("pmap_bootstrap: no space to copy translations");
721 	bzero(translations, sz);
722 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
723 		panic("pmap_bootstrap: can't get ofw translations");
724 	CTR0(KTR_PMAP, "pmap_bootstrap: translations");
725 	sz /= sizeof(*translations);
726 	qsort(translations, sz, sizeof (*translations), om_cmp);
727 	for (i = 0, ofw_mappings = 0; i < sz; i++) {
728 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
729 		    translations[i].om_pa, translations[i].om_va,
730 		    translations[i].om_len);
731 
732 		/*
733 		 * If the mapping is 1:1, let the RAM and device on-demand
734 		 * BAT tables take care of the translation.
735 		 */
736 		if (translations[i].om_va == translations[i].om_pa)
737 			continue;
738 
739 		/* Enter the pages */
740 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
741 			struct	vm_page m;
742 
743 			m.phys_addr = translations[i].om_pa + off;
744 			pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
745 				   VM_PROT_ALL, 1);
746 			ofw_mappings++;
747 		}
748 	}
749 #ifdef SMP
750 	TLBSYNC();
751 #endif
752 
753 	/*
754 	 * Initialize the kernel pmap (which is statically allocated).
755 	 */
756 	PMAP_LOCK_INIT(kernel_pmap);
757 	for (i = 0; i < 16; i++) {
758 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
759 	}
760 	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
761 	kernel_pmap->pm_sr[KERNEL2_SR] = KERNEL_SEGMENT;
762 	kernel_pmap->pm_active = ~0;
763 
764 	/*
765 	 * Allocate a kernel stack with a guard page for thread0 and map it
766 	 * into the kernel page map.
767 	 */
768 	pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
769 	kstack0_phys = pa;
770 	kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
771 	CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
772 	    kstack0);
773 	virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
774 	for (i = 0; i < KSTACK_PAGES; i++) {
775 		pa = kstack0_phys + i * PAGE_SIZE;
776 		va = kstack0 + i * PAGE_SIZE;
777 		pmap_kenter(va, pa);
778 		TLBIE(va);
779 	}
780 
781 	/*
782 	 * Calculate the last available physical address.
783 	 */
784 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
785 		;
786 	Maxmem = powerpc_btop(phys_avail[i + 1]);
787 
788 	/*
789 	 * Allocate virtual address space for the message buffer.
790 	 */
791 	msgbufp = (struct msgbuf *)virtual_avail;
792 	virtual_avail += round_page(MSGBUF_SIZE);
793 
794 	/*
795 	 * Initialize hardware.
796 	 */
797 	for (i = 0; i < 16; i++) {
798 		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
799 	}
800 	__asm __volatile ("mtsr %0,%1"
801 	    :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
802 	__asm __volatile ("sync; mtsdr1 %0; isync"
803 	    :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
804 	tlbia();
805 
806 	pmap_bootstrapped++;
807 }
808 
809 /*
810  * Activate a user pmap.  The pmap must be activated before it's address
811  * space can be accessed in any way.
812  */
813 void
814 pmap_activate(struct thread *td)
815 {
816 	pmap_t	pm, pmr;
817 
818 	/*
819 	 * Load all the data we need up front to encourage the compiler to
820 	 * not issue any loads while we have interrupts disabled below.
821 	 */
822 	pm = &td->td_proc->p_vmspace->vm_pmap;
823 
824 	if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL)
825 		pmr = pm;
826 
827 	pm->pm_active |= PCPU_GET(cpumask);
828 	PCPU_SET(curpmap, pmr);
829 }
830 
831 void
832 pmap_deactivate(struct thread *td)
833 {
834 	pmap_t	pm;
835 
836 	pm = &td->td_proc->p_vmspace->vm_pmap;
837 	pm->pm_active &= ~(PCPU_GET(cpumask));
838 	PCPU_SET(curpmap, NULL);
839 }
840 
841 vm_offset_t
842 pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
843 {
844 
845 	return (va);
846 }
847 
848 void
849 pmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired)
850 {
851 	struct	pvo_entry *pvo;
852 
853 	PMAP_LOCK(pm);
854 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
855 
856 	if (pvo != NULL) {
857 		if (wired) {
858 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
859 				pm->pm_stats.wired_count++;
860 			pvo->pvo_vaddr |= PVO_WIRED;
861 		} else {
862 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
863 				pm->pm_stats.wired_count--;
864 			pvo->pvo_vaddr &= ~PVO_WIRED;
865 		}
866 	}
867 	PMAP_UNLOCK(pm);
868 }
869 
870 void
871 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
872 	  vm_size_t len, vm_offset_t src_addr)
873 {
874 
875 	/*
876 	 * This is not needed as it's mainly an optimisation.
877 	 * It may want to be implemented later though.
878 	 */
879 }
880 
881 void
882 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
883 {
884 	vm_offset_t	dst;
885 	vm_offset_t	src;
886 
887 	dst = VM_PAGE_TO_PHYS(mdst);
888 	src = VM_PAGE_TO_PHYS(msrc);
889 
890 	kcopy((void *)src, (void *)dst, PAGE_SIZE);
891 }
892 
893 /*
894  * Zero a page of physical memory by temporarily mapping it into the tlb.
895  */
896 void
897 pmap_zero_page(vm_page_t m)
898 {
899 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
900 	caddr_t va;
901 
902 	if (pa < SEGMENT_LENGTH) {
903 		va = (caddr_t) pa;
904 	} else if (pmap_initialized) {
905 		if (pmap_pvo_zeropage == NULL)
906 			pmap_pvo_zeropage = pmap_rkva_alloc();
907 		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
908 		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
909 	} else {
910 		panic("pmap_zero_page: can't zero pa %#x", pa);
911 	}
912 
913 	bzero(va, PAGE_SIZE);
914 
915 	if (pa >= SEGMENT_LENGTH)
916 		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
917 }
918 
919 void
920 pmap_zero_page_area(vm_page_t m, int off, int size)
921 {
922 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
923 	caddr_t va;
924 
925 	if (pa < SEGMENT_LENGTH) {
926 		va = (caddr_t) pa;
927 	} else if (pmap_initialized) {
928 		if (pmap_pvo_zeropage == NULL)
929 			pmap_pvo_zeropage = pmap_rkva_alloc();
930 		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
931 		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
932 	} else {
933 		panic("pmap_zero_page: can't zero pa %#x", pa);
934 	}
935 
936 	bzero(va + off, size);
937 
938 	if (pa >= SEGMENT_LENGTH)
939 		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
940 }
941 
942 void
943 pmap_zero_page_idle(vm_page_t m)
944 {
945 
946 	/* XXX this is called outside of Giant, is pmap_zero_page safe? */
947 	/* XXX maybe have a dedicated mapping for this to avoid the problem? */
948 	mtx_lock(&Giant);
949 	pmap_zero_page(m);
950 	mtx_unlock(&Giant);
951 }
952 
953 /*
954  * Map the given physical page at the specified virtual address in the
955  * target pmap with the protection requested.  If specified the page
956  * will be wired down.
957  */
958 void
959 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
960 	   boolean_t wired)
961 {
962 	struct		pvo_head *pvo_head;
963 	uma_zone_t	zone;
964 	vm_page_t	pg;
965 	u_int		pte_lo, pvo_flags, was_exec, i;
966 	int		error;
967 
968 	if (!pmap_initialized) {
969 		pvo_head = &pmap_pvo_kunmanaged;
970 		zone = pmap_upvo_zone;
971 		pvo_flags = 0;
972 		pg = NULL;
973 		was_exec = PTE_EXEC;
974 	} else {
975 		pvo_head = vm_page_to_pvoh(m);
976 		pg = m;
977 		zone = pmap_mpvo_zone;
978 		pvo_flags = PVO_MANAGED;
979 		was_exec = 0;
980 	}
981 	if (pmap_bootstrapped)
982 		vm_page_lock_queues();
983 	PMAP_LOCK(pmap);
984 
985 	/*
986 	 * If this is a managed page, and it's the first reference to the page,
987 	 * clear the execness of the page.  Otherwise fetch the execness.
988 	 */
989 	if (pg != NULL) {
990 		if (LIST_EMPTY(pvo_head)) {
991 			pmap_attr_clear(pg, PTE_EXEC);
992 		} else {
993 			was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
994 		}
995 	}
996 
997 
998 	/*
999 	 * Assume the page is cache inhibited and access is guarded unless
1000 	 * it's in our available memory array.
1001 	 */
1002 	pte_lo = PTE_I | PTE_G;
1003 	for (i = 0; i < pregions_sz; i++) {
1004 		if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
1005 		    (VM_PAGE_TO_PHYS(m) <
1006 			(pregions[i].mr_start + pregions[i].mr_size))) {
1007 			pte_lo &= ~(PTE_I | PTE_G);
1008 			break;
1009 		}
1010 	}
1011 
1012 	if (prot & VM_PROT_WRITE)
1013 		pte_lo |= PTE_BW;
1014 	else
1015 		pte_lo |= PTE_BR;
1016 
1017 	pvo_flags |= (prot & VM_PROT_EXECUTE);
1018 
1019 	if (wired)
1020 		pvo_flags |= PVO_WIRED;
1021 
1022 	error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1023 	    pte_lo, pvo_flags);
1024 
1025 	/*
1026 	 * Flush the real page from the instruction cache if this page is
1027 	 * mapped executable and cacheable and was not previously mapped (or
1028 	 * was not mapped executable).
1029 	 */
1030 	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1031 	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1032 		/*
1033 		 * Flush the real memory from the cache.
1034 		 */
1035 		pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1036 		if (pg != NULL)
1037 			pmap_attr_save(pg, PTE_EXEC);
1038 	}
1039 	if (pmap_bootstrapped)
1040 		vm_page_unlock_queues();
1041 
1042 	/* XXX syncicache always until problems are sorted */
1043 	pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1044 	PMAP_UNLOCK(pmap);
1045 }
1046 
1047 vm_page_t
1048 pmap_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m, vm_page_t mpte)
1049 {
1050 
1051 	mtx_lock(&Giant);
1052 	pmap_enter(pm, va, m, VM_PROT_READ | VM_PROT_EXECUTE, FALSE);
1053 	mtx_unlock(&Giant);
1054 	return (NULL);
1055 }
1056 
1057 vm_paddr_t
1058 pmap_extract(pmap_t pm, vm_offset_t va)
1059 {
1060 	struct	pvo_entry *pvo;
1061 	vm_paddr_t pa;
1062 
1063 	PMAP_LOCK(pm);
1064 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1065 	if (pvo == NULL)
1066 		pa = 0;
1067 	else
1068 		pa = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1069 	PMAP_UNLOCK(pm);
1070 	return (pa);
1071 }
1072 
1073 /*
1074  * Atomically extract and hold the physical page with the given
1075  * pmap and virtual address pair if that mapping permits the given
1076  * protection.
1077  */
1078 vm_page_t
1079 pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1080 {
1081 	struct	pvo_entry *pvo;
1082 	vm_page_t m;
1083 
1084 	m = NULL;
1085 	mtx_lock(&Giant);
1086 	vm_page_lock_queues();
1087 	PMAP_LOCK(pmap);
1088 	pvo = pmap_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1089 	if (pvo != NULL && (pvo->pvo_pte.pte_hi & PTE_VALID) &&
1090 	    ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_RW ||
1091 	     (prot & VM_PROT_WRITE) == 0)) {
1092 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1093 		vm_page_hold(m);
1094 	}
1095 	vm_page_unlock_queues();
1096 	PMAP_UNLOCK(pmap);
1097 	mtx_unlock(&Giant);
1098 	return (m);
1099 }
1100 
1101 /*
1102  * Grow the number of kernel page table entries.  Unneeded.
1103  */
1104 void
1105 pmap_growkernel(vm_offset_t addr)
1106 {
1107 }
1108 
1109 void
1110 pmap_init(void)
1111 {
1112 
1113 	CTR0(KTR_PMAP, "pmap_init");
1114 
1115 	pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1116 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1117 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1118 	pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1119 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1120 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1121 	pmap_initialized = TRUE;
1122 }
1123 
1124 void
1125 pmap_init2(void)
1126 {
1127 
1128 	CTR0(KTR_PMAP, "pmap_init2");
1129 }
1130 
1131 boolean_t
1132 pmap_is_modified(vm_page_t m)
1133 {
1134 
1135 	if ((m->flags & (PG_FICTITIOUS |PG_UNMANAGED)) != 0)
1136 		return (FALSE);
1137 
1138 	return (pmap_query_bit(m, PTE_CHG));
1139 }
1140 
1141 /*
1142  *	pmap_is_prefaultable:
1143  *
1144  *	Return whether or not the specified virtual address is elgible
1145  *	for prefault.
1146  */
1147 boolean_t
1148 pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
1149 {
1150 
1151 	return (FALSE);
1152 }
1153 
1154 void
1155 pmap_clear_reference(vm_page_t m)
1156 {
1157 
1158 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1159 		return;
1160 	pmap_clear_bit(m, PTE_REF, NULL);
1161 }
1162 
1163 void
1164 pmap_clear_modify(vm_page_t m)
1165 {
1166 
1167 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1168 		return;
1169 	pmap_clear_bit(m, PTE_CHG, NULL);
1170 }
1171 
1172 /*
1173  *	pmap_ts_referenced:
1174  *
1175  *	Return a count of reference bits for a page, clearing those bits.
1176  *	It is not necessary for every reference bit to be cleared, but it
1177  *	is necessary that 0 only be returned when there are truly no
1178  *	reference bits set.
1179  *
1180  *	XXX: The exact number of bits to check and clear is a matter that
1181  *	should be tested and standardized at some point in the future for
1182  *	optimal aging of shared pages.
1183  */
1184 int
1185 pmap_ts_referenced(vm_page_t m)
1186 {
1187 	int count;
1188 
1189 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1190 		return (0);
1191 
1192 	count = pmap_clear_bit(m, PTE_REF, NULL);
1193 
1194 	return (count);
1195 }
1196 
1197 /*
1198  * Map a wired page into kernel virtual address space.
1199  */
1200 void
1201 pmap_kenter(vm_offset_t va, vm_offset_t pa)
1202 {
1203 	u_int		pte_lo;
1204 	int		error;
1205 	int		i;
1206 
1207 #if 0
1208 	if (va < VM_MIN_KERNEL_ADDRESS)
1209 		panic("pmap_kenter: attempt to enter non-kernel address %#x",
1210 		    va);
1211 #endif
1212 
1213 	pte_lo = PTE_I | PTE_G;
1214 	for (i = 0; i < pregions_sz; i++) {
1215 		if ((pa >= pregions[i].mr_start) &&
1216 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
1217 			pte_lo &= ~(PTE_I | PTE_G);
1218 			break;
1219 		}
1220 	}
1221 
1222 	PMAP_LOCK(kernel_pmap);
1223 	error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
1224 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1225 
1226 	if (error != 0 && error != ENOENT)
1227 		panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
1228 		    pa, error);
1229 
1230 	/*
1231 	 * Flush the real memory from the instruction cache.
1232 	 */
1233 	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1234 		pmap_syncicache(pa, PAGE_SIZE);
1235 	}
1236 	PMAP_UNLOCK(kernel_pmap);
1237 }
1238 
1239 /*
1240  * Extract the physical page address associated with the given kernel virtual
1241  * address.
1242  */
1243 vm_offset_t
1244 pmap_kextract(vm_offset_t va)
1245 {
1246 	struct		pvo_entry *pvo;
1247 	vm_paddr_t pa;
1248 
1249 #ifdef UMA_MD_SMALL_ALLOC
1250 	/*
1251 	 * Allow direct mappings
1252 	 */
1253 	if (va < VM_MIN_KERNEL_ADDRESS) {
1254 		return (va);
1255 	}
1256 #endif
1257 
1258 	PMAP_LOCK(kernel_pmap);
1259 	pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1260 	KASSERT(pvo != NULL, ("pmap_kextract: no addr found"));
1261 	pa = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1262 	PMAP_UNLOCK(kernel_pmap);
1263 	return (pa);
1264 }
1265 
1266 /*
1267  * Remove a wired page from kernel virtual address space.
1268  */
1269 void
1270 pmap_kremove(vm_offset_t va)
1271 {
1272 
1273 	pmap_remove(kernel_pmap, va, va + PAGE_SIZE);
1274 }
1275 
1276 /*
1277  * Map a range of physical addresses into kernel virtual address space.
1278  *
1279  * The value passed in *virt is a suggested virtual address for the mapping.
1280  * Architectures which can support a direct-mapped physical to virtual region
1281  * can return the appropriate address within that region, leaving '*virt'
1282  * unchanged.  We cannot and therefore do not; *virt is updated with the
1283  * first usable address after the mapped region.
1284  */
1285 vm_offset_t
1286 pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
1287 {
1288 	vm_offset_t	sva, va;
1289 
1290 	sva = *virt;
1291 	va = sva;
1292 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1293 		pmap_kenter(va, pa_start);
1294 	*virt = va;
1295 	return (sva);
1296 }
1297 
1298 int
1299 pmap_mincore(pmap_t pmap, vm_offset_t addr)
1300 {
1301 	TODO;
1302 	return (0);
1303 }
1304 
1305 void
1306 pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
1307 		    vm_pindex_t pindex, vm_size_t size)
1308 {
1309 
1310 	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
1311 	KASSERT(object->type == OBJT_DEVICE,
1312 	    ("pmap_object_init_pt: non-device object"));
1313 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1314 	    ("pmap_object_init_pt: non current pmap"));
1315 }
1316 
1317 /*
1318  * Lower the permission for all mappings to a given page.
1319  */
1320 void
1321 pmap_page_protect(vm_page_t m, vm_prot_t prot)
1322 {
1323 	struct	pvo_head *pvo_head;
1324 	struct	pvo_entry *pvo, *next_pvo;
1325 	struct	pte *pt;
1326 	pmap_t	pmap;
1327 
1328 	/*
1329 	 * Since the routine only downgrades protection, if the
1330 	 * maximal protection is desired, there isn't any change
1331 	 * to be made.
1332 	 */
1333 	if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
1334 	    (VM_PROT_READ|VM_PROT_WRITE))
1335 		return;
1336 
1337 	pvo_head = vm_page_to_pvoh(m);
1338 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1339 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1340 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1341 		pmap = pvo->pvo_pmap;
1342 		PMAP_LOCK(pmap);
1343 
1344 		/*
1345 		 * Downgrading to no mapping at all, we just remove the entry.
1346 		 */
1347 		if ((prot & VM_PROT_READ) == 0) {
1348 			pmap_pvo_remove(pvo, -1);
1349 			PMAP_UNLOCK(pmap);
1350 			continue;
1351 		}
1352 
1353 		/*
1354 		 * If EXEC permission is being revoked, just clear the flag
1355 		 * in the PVO.
1356 		 */
1357 		if ((prot & VM_PROT_EXECUTE) == 0)
1358 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1359 
1360 		/*
1361 		 * If this entry is already RO, don't diddle with the page
1362 		 * table.
1363 		 */
1364 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
1365 			PMAP_UNLOCK(pmap);
1366 			PMAP_PVO_CHECK(pvo);
1367 			continue;
1368 		}
1369 
1370 		/*
1371 		 * Grab the PTE before we diddle the bits so pvo_to_pte can
1372 		 * verify the pte contents are as expected.
1373 		 */
1374 		pt = pmap_pvo_to_pte(pvo, -1);
1375 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1376 		pvo->pvo_pte.pte_lo |= PTE_BR;
1377 		if (pt != NULL)
1378 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1379 		PMAP_UNLOCK(pmap);
1380 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1381 	}
1382 
1383 	/*
1384 	 * Downgrading from writeable: clear the VM page flag
1385 	 */
1386 	if ((prot & VM_PROT_WRITE) != VM_PROT_WRITE)
1387 		vm_page_flag_clear(m, PG_WRITEABLE);
1388 }
1389 
1390 /*
1391  * Returns true if the pmap's pv is one of the first
1392  * 16 pvs linked to from this page.  This count may
1393  * be changed upwards or downwards in the future; it
1394  * is only necessary that true be returned for a small
1395  * subset of pmaps for proper page aging.
1396  */
1397 boolean_t
1398 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
1399 {
1400         int loops;
1401 	struct pvo_entry *pvo;
1402 
1403         if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
1404                 return FALSE;
1405 
1406 	loops = 0;
1407 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1408 		if (pvo->pvo_pmap == pmap)
1409 			return (TRUE);
1410 		if (++loops >= 16)
1411 			break;
1412 	}
1413 
1414 	return (FALSE);
1415 }
1416 
1417 static u_int	pmap_vsidcontext;
1418 
1419 void
1420 pmap_pinit(pmap_t pmap)
1421 {
1422 	int	i, mask;
1423 	u_int	entropy;
1424 
1425 	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("pmap_pinit: virt pmap"));
1426 	PMAP_LOCK_INIT(pmap);
1427 
1428 	entropy = 0;
1429 	__asm __volatile("mftb %0" : "=r"(entropy));
1430 
1431 	/*
1432 	 * Allocate some segment registers for this pmap.
1433 	 */
1434 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1435 		u_int	hash, n;
1436 
1437 		/*
1438 		 * Create a new value by mutiplying by a prime and adding in
1439 		 * entropy from the timebase register.  This is to make the
1440 		 * VSID more random so that the PT hash function collides
1441 		 * less often.  (Note that the prime casues gcc to do shifts
1442 		 * instead of a multiply.)
1443 		 */
1444 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1445 		hash = pmap_vsidcontext & (NPMAPS - 1);
1446 		if (hash == 0)		/* 0 is special, avoid it */
1447 			continue;
1448 		n = hash >> 5;
1449 		mask = 1 << (hash & (VSID_NBPW - 1));
1450 		hash = (pmap_vsidcontext & 0xfffff);
1451 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1452 			/* anything free in this bucket? */
1453 			if (pmap_vsid_bitmap[n] == 0xffffffff) {
1454 				entropy = (pmap_vsidcontext >> 20);
1455 				continue;
1456 			}
1457 			i = ffs(~pmap_vsid_bitmap[i]) - 1;
1458 			mask = 1 << i;
1459 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1460 			hash |= i;
1461 		}
1462 		pmap_vsid_bitmap[n] |= mask;
1463 		for (i = 0; i < 16; i++)
1464 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1465 		return;
1466 	}
1467 
1468 	panic("pmap_pinit: out of segments");
1469 }
1470 
1471 /*
1472  * Initialize the pmap associated with process 0.
1473  */
1474 void
1475 pmap_pinit0(pmap_t pm)
1476 {
1477 
1478 	pmap_pinit(pm);
1479 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1480 }
1481 
1482 /*
1483  * Set the physical protection on the specified range of this map as requested.
1484  */
1485 void
1486 pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1487 {
1488 	struct	pvo_entry *pvo;
1489 	struct	pte *pt;
1490 	int	pteidx;
1491 
1492 	CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1493 	    eva, prot);
1494 
1495 
1496 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1497 	    ("pmap_protect: non current pmap"));
1498 
1499 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1500 		mtx_lock(&Giant);
1501 		pmap_remove(pm, sva, eva);
1502 		mtx_unlock(&Giant);
1503 		return;
1504 	}
1505 
1506 	mtx_lock(&Giant);
1507 	vm_page_lock_queues();
1508 	PMAP_LOCK(pm);
1509 	for (; sva < eva; sva += PAGE_SIZE) {
1510 		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1511 		if (pvo == NULL)
1512 			continue;
1513 
1514 		if ((prot & VM_PROT_EXECUTE) == 0)
1515 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1516 
1517 		/*
1518 		 * Grab the PTE pointer before we diddle with the cached PTE
1519 		 * copy.
1520 		 */
1521 		pt = pmap_pvo_to_pte(pvo, pteidx);
1522 		/*
1523 		 * Change the protection of the page.
1524 		 */
1525 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1526 		pvo->pvo_pte.pte_lo |= PTE_BR;
1527 
1528 		/*
1529 		 * If the PVO is in the page table, update that pte as well.
1530 		 */
1531 		if (pt != NULL)
1532 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1533 	}
1534 	vm_page_unlock_queues();
1535 	PMAP_UNLOCK(pm);
1536 	mtx_unlock(&Giant);
1537 }
1538 
1539 /*
1540  * Map a list of wired pages into kernel virtual address space.  This is
1541  * intended for temporary mappings which do not need page modification or
1542  * references recorded.  Existing mappings in the region are overwritten.
1543  */
1544 void
1545 pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
1546 {
1547 	vm_offset_t va;
1548 
1549 	va = sva;
1550 	while (count-- > 0) {
1551 		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
1552 		va += PAGE_SIZE;
1553 		m++;
1554 	}
1555 }
1556 
1557 /*
1558  * Remove page mappings from kernel virtual address space.  Intended for
1559  * temporary mappings entered by pmap_qenter.
1560  */
1561 void
1562 pmap_qremove(vm_offset_t sva, int count)
1563 {
1564 	vm_offset_t va;
1565 
1566 	va = sva;
1567 	while (count-- > 0) {
1568 		pmap_kremove(va);
1569 		va += PAGE_SIZE;
1570 	}
1571 }
1572 
1573 void
1574 pmap_release(pmap_t pmap)
1575 {
1576         int idx, mask;
1577 
1578 	/*
1579 	 * Free segment register's VSID
1580 	 */
1581         if (pmap->pm_sr[0] == 0)
1582                 panic("pmap_release");
1583 
1584         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1585         mask = 1 << (idx % VSID_NBPW);
1586         idx /= VSID_NBPW;
1587         pmap_vsid_bitmap[idx] &= ~mask;
1588 	PMAP_LOCK_DESTROY(pmap);
1589 }
1590 
1591 /*
1592  * Remove the given range of addresses from the specified map.
1593  */
1594 void
1595 pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1596 {
1597 	struct	pvo_entry *pvo;
1598 	int	pteidx;
1599 
1600 	vm_page_lock_queues();
1601 	PMAP_LOCK(pm);
1602 	for (; sva < eva; sva += PAGE_SIZE) {
1603 		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1604 		if (pvo != NULL) {
1605 			pmap_pvo_remove(pvo, pteidx);
1606 		}
1607 	}
1608 	vm_page_unlock_queues();
1609 	PMAP_UNLOCK(pm);
1610 }
1611 
1612 /*
1613  * Remove physical page from all pmaps in which it resides. pmap_pvo_remove()
1614  * will reflect changes in pte's back to the vm_page.
1615  */
1616 void
1617 pmap_remove_all(vm_page_t m)
1618 {
1619 	struct  pvo_head *pvo_head;
1620 	struct	pvo_entry *pvo, *next_pvo;
1621 	pmap_t	pmap;
1622 
1623 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1624 
1625 	pvo_head = vm_page_to_pvoh(m);
1626 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1627 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1628 
1629 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1630 		pmap = pvo->pvo_pmap;
1631 		PMAP_LOCK(pmap);
1632 		pmap_pvo_remove(pvo, -1);
1633 		PMAP_UNLOCK(pmap);
1634 	}
1635 	vm_page_flag_clear(m, PG_WRITEABLE);
1636 }
1637 
1638 /*
1639  * Remove all pages from specified address space, this aids process exit
1640  * speeds.  This is much faster than pmap_remove in the case of running down
1641  * an entire address space.  Only works for the current pmap.
1642  */
1643 void
1644 pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1645 {
1646 }
1647 
1648 /*
1649  * Allocate a physical page of memory directly from the phys_avail map.
1650  * Can only be called from pmap_bootstrap before avail start and end are
1651  * calculated.
1652  */
1653 static vm_offset_t
1654 pmap_bootstrap_alloc(vm_size_t size, u_int align)
1655 {
1656 	vm_offset_t	s, e;
1657 	int		i, j;
1658 
1659 	size = round_page(size);
1660 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1661 		if (align != 0)
1662 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1663 		else
1664 			s = phys_avail[i];
1665 		e = s + size;
1666 
1667 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1668 			continue;
1669 
1670 		if (s == phys_avail[i]) {
1671 			phys_avail[i] += size;
1672 		} else if (e == phys_avail[i + 1]) {
1673 			phys_avail[i + 1] -= size;
1674 		} else {
1675 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1676 				phys_avail[j] = phys_avail[j - 2];
1677 				phys_avail[j + 1] = phys_avail[j - 1];
1678 			}
1679 
1680 			phys_avail[i + 3] = phys_avail[i + 1];
1681 			phys_avail[i + 1] = s;
1682 			phys_avail[i + 2] = e;
1683 			phys_avail_count++;
1684 		}
1685 
1686 		return (s);
1687 	}
1688 	panic("pmap_bootstrap_alloc: could not allocate memory");
1689 }
1690 
1691 /*
1692  * Return an unmapped pvo for a kernel virtual address.
1693  * Used by pmap functions that operate on physical pages.
1694  */
1695 static struct pvo_entry *
1696 pmap_rkva_alloc(void)
1697 {
1698 	struct		pvo_entry *pvo;
1699 	struct		pte *pt;
1700 	vm_offset_t	kva;
1701 	int		pteidx;
1702 
1703 	if (pmap_rkva_count == 0)
1704 		panic("pmap_rkva_alloc: no more reserved KVAs");
1705 
1706 	kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
1707 	pmap_kenter(kva, 0);
1708 
1709 	pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
1710 
1711 	if (pvo == NULL)
1712 		panic("pmap_kva_alloc: pmap_pvo_find_va failed");
1713 
1714 	pt = pmap_pvo_to_pte(pvo, pteidx);
1715 
1716 	if (pt == NULL)
1717 		panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
1718 
1719 	pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1720 	PVO_PTEGIDX_CLR(pvo);
1721 
1722 	pmap_pte_overflow++;
1723 
1724 	return (pvo);
1725 }
1726 
1727 static void
1728 pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1729     int *depth_p)
1730 {
1731 	struct	pte *pt;
1732 
1733 	/*
1734 	 * If this pvo already has a valid pte, we need to save it so it can
1735 	 * be restored later.  We then just reload the new PTE over the old
1736 	 * slot.
1737 	 */
1738 	if (saved_pt != NULL) {
1739 		pt = pmap_pvo_to_pte(pvo, -1);
1740 
1741 		if (pt != NULL) {
1742 			pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1743 			PVO_PTEGIDX_CLR(pvo);
1744 			pmap_pte_overflow++;
1745 		}
1746 
1747 		*saved_pt = pvo->pvo_pte;
1748 
1749 		pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1750 	}
1751 
1752 	pvo->pvo_pte.pte_lo |= pa;
1753 
1754 	if (!pmap_pte_spill(pvo->pvo_vaddr))
1755 		panic("pmap_pa_map: could not spill pvo %p", pvo);
1756 
1757 	if (depth_p != NULL)
1758 		(*depth_p)++;
1759 }
1760 
1761 static void
1762 pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1763 {
1764 	struct	pte *pt;
1765 
1766 	pt = pmap_pvo_to_pte(pvo, -1);
1767 
1768 	if (pt != NULL) {
1769 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1770 		PVO_PTEGIDX_CLR(pvo);
1771 		pmap_pte_overflow++;
1772 	}
1773 
1774 	pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1775 
1776 	/*
1777 	 * If there is a saved PTE and it's valid, restore it and return.
1778 	 */
1779 	if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1780 		if (depth_p != NULL && --(*depth_p) == 0)
1781 			panic("pmap_pa_unmap: restoring but depth == 0");
1782 
1783 		pvo->pvo_pte = *saved_pt;
1784 
1785 		if (!pmap_pte_spill(pvo->pvo_vaddr))
1786 			panic("pmap_pa_unmap: could not spill pvo %p", pvo);
1787 	}
1788 }
1789 
1790 static void
1791 pmap_syncicache(vm_offset_t pa, vm_size_t len)
1792 {
1793 	__syncicache((void *)pa, len);
1794 }
1795 
1796 static void
1797 tlbia(void)
1798 {
1799 	caddr_t	i;
1800 
1801 	SYNC();
1802 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1803 		TLBIE(i);
1804 		EIEIO();
1805 	}
1806 	TLBSYNC();
1807 	SYNC();
1808 }
1809 
1810 static int
1811 pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1812     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1813 {
1814 	struct	pvo_entry *pvo;
1815 	u_int	sr;
1816 	int	first;
1817 	u_int	ptegidx;
1818 	int	i;
1819 	int     bootstrap;
1820 
1821 	pmap_pvo_enter_calls++;
1822 	first = 0;
1823 
1824 	bootstrap = 0;
1825 
1826 	/*
1827 	 * Compute the PTE Group index.
1828 	 */
1829 	va &= ~ADDR_POFF;
1830 	sr = va_to_sr(pm->pm_sr, va);
1831 	ptegidx = va_to_pteg(sr, va);
1832 
1833 	/*
1834 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1835 	 * there is a mapping.
1836 	 */
1837 	mtx_lock(&pmap_table_mutex);
1838 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1839 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1840 			if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
1841 			    (pvo->pvo_pte.pte_lo & PTE_PP) ==
1842 			    (pte_lo & PTE_PP)) {
1843 				mtx_unlock(&pmap_table_mutex);
1844 				return (0);
1845 			}
1846 			pmap_pvo_remove(pvo, -1);
1847 			break;
1848 		}
1849 	}
1850 
1851 	/*
1852 	 * If we aren't overwriting a mapping, try to allocate.
1853 	 */
1854 	if (pmap_initialized) {
1855 		pvo = uma_zalloc(zone, M_NOWAIT);
1856 	} else {
1857 		if (pmap_bpvo_pool_index >= BPVO_POOL_SIZE) {
1858 			panic("pmap_enter: bpvo pool exhausted, %d, %d, %d",
1859 			      pmap_bpvo_pool_index, BPVO_POOL_SIZE,
1860 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1861 		}
1862 		pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
1863 		pmap_bpvo_pool_index++;
1864 		bootstrap = 1;
1865 	}
1866 
1867 	if (pvo == NULL) {
1868 		mtx_unlock(&pmap_table_mutex);
1869 		return (ENOMEM);
1870 	}
1871 
1872 	pmap_pvo_entries++;
1873 	pvo->pvo_vaddr = va;
1874 	pvo->pvo_pmap = pm;
1875 	LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1876 	pvo->pvo_vaddr &= ~ADDR_POFF;
1877 	if (flags & VM_PROT_EXECUTE)
1878 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1879 	if (flags & PVO_WIRED)
1880 		pvo->pvo_vaddr |= PVO_WIRED;
1881 	if (pvo_head != &pmap_pvo_kunmanaged)
1882 		pvo->pvo_vaddr |= PVO_MANAGED;
1883 	if (bootstrap)
1884 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1885 	pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1886 
1887 	/*
1888 	 * Remember if the list was empty and therefore will be the first
1889 	 * item.
1890 	 */
1891 	if (LIST_FIRST(pvo_head) == NULL)
1892 		first = 1;
1893 
1894 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1895 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1896 		pm->pm_stats.wired_count++;
1897 	pm->pm_stats.resident_count++;
1898 
1899 	/*
1900 	 * We hope this succeeds but it isn't required.
1901 	 */
1902 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1903 	if (i >= 0) {
1904 		PVO_PTEGIDX_SET(pvo, i);
1905 	} else {
1906 		panic("pmap_pvo_enter: overflow");
1907 		pmap_pte_overflow++;
1908 	}
1909 
1910 	mtx_unlock(&pmap_table_mutex);
1911 	return (first ? ENOENT : 0);
1912 }
1913 
1914 static void
1915 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1916 {
1917 	struct	pte *pt;
1918 
1919 	/*
1920 	 * If there is an active pte entry, we need to deactivate it (and
1921 	 * save the ref & cfg bits).
1922 	 */
1923 	pt = pmap_pvo_to_pte(pvo, pteidx);
1924 	if (pt != NULL) {
1925 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1926 		PVO_PTEGIDX_CLR(pvo);
1927 	} else {
1928 		pmap_pte_overflow--;
1929 	}
1930 
1931 	/*
1932 	 * Update our statistics.
1933 	 */
1934 	pvo->pvo_pmap->pm_stats.resident_count--;
1935 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1936 		pvo->pvo_pmap->pm_stats.wired_count--;
1937 
1938 	/*
1939 	 * Save the REF/CHG bits into their cache if the page is managed.
1940 	 */
1941 	if (pvo->pvo_vaddr & PVO_MANAGED) {
1942 		struct	vm_page *pg;
1943 
1944 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1945 		if (pg != NULL) {
1946 			pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
1947 			    (PTE_REF | PTE_CHG));
1948 		}
1949 	}
1950 
1951 	/*
1952 	 * Remove this PVO from the PV list.
1953 	 */
1954 	LIST_REMOVE(pvo, pvo_vlink);
1955 
1956 	/*
1957 	 * Remove this from the overflow list and return it to the pool
1958 	 * if we aren't going to reuse it.
1959 	 */
1960 	LIST_REMOVE(pvo, pvo_olink);
1961 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
1962 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
1963 		    pmap_upvo_zone, pvo);
1964 	pmap_pvo_entries--;
1965 	pmap_pvo_remove_calls++;
1966 }
1967 
1968 static __inline int
1969 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1970 {
1971 	int	pteidx;
1972 
1973 	/*
1974 	 * We can find the actual pte entry without searching by grabbing
1975 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
1976 	 * noticing the HID bit.
1977 	 */
1978 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1979 	if (pvo->pvo_pte.pte_hi & PTE_HID)
1980 		pteidx ^= pmap_pteg_mask * 8;
1981 
1982 	return (pteidx);
1983 }
1984 
1985 static struct pvo_entry *
1986 pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
1987 {
1988 	struct	pvo_entry *pvo;
1989 	int	ptegidx;
1990 	u_int	sr;
1991 
1992 	va &= ~ADDR_POFF;
1993 	sr = va_to_sr(pm->pm_sr, va);
1994 	ptegidx = va_to_pteg(sr, va);
1995 
1996 	mtx_lock(&pmap_table_mutex);
1997 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1998 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1999 			if (pteidx_p)
2000 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
2001 			break;
2002 		}
2003 	}
2004 	mtx_unlock(&pmap_table_mutex);
2005 
2006 	return (pvo);
2007 }
2008 
2009 static struct pte *
2010 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2011 {
2012 	struct	pte *pt;
2013 
2014 	/*
2015 	 * If we haven't been supplied the ptegidx, calculate it.
2016 	 */
2017 	if (pteidx == -1) {
2018 		int	ptegidx;
2019 		u_int	sr;
2020 
2021 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2022 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2023 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
2024 	}
2025 
2026 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
2027 
2028 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2029 		panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
2030 		    "valid pte index", pvo);
2031 	}
2032 
2033 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2034 		panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
2035 		    "pvo but no valid pte", pvo);
2036 	}
2037 
2038 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2039 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
2040 			panic("pmap_pvo_to_pte: pvo %p has valid pte in "
2041 			    "pmap_pteg_table %p but invalid in pvo", pvo, pt);
2042 		}
2043 
2044 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2045 		    != 0) {
2046 			panic("pmap_pvo_to_pte: pvo %p pte does not match "
2047 			    "pte %p in pmap_pteg_table", pvo, pt);
2048 		}
2049 
2050 		return (pt);
2051 	}
2052 
2053 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
2054 		panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
2055 		    "pmap_pteg_table but valid in pvo", pvo, pt);
2056 	}
2057 
2058 	return (NULL);
2059 }
2060 
2061 /*
2062  * XXX: THIS STUFF SHOULD BE IN pte.c?
2063  */
2064 int
2065 pmap_pte_spill(vm_offset_t addr)
2066 {
2067 	struct	pvo_entry *source_pvo, *victim_pvo;
2068 	struct	pvo_entry *pvo;
2069 	int	ptegidx, i, j;
2070 	u_int	sr;
2071 	struct	pteg *pteg;
2072 	struct	pte *pt;
2073 
2074 	pmap_pte_spills++;
2075 
2076 	sr = mfsrin(addr);
2077 	ptegidx = va_to_pteg(sr, addr);
2078 
2079 	/*
2080 	 * Have to substitute some entry.  Use the primary hash for this.
2081 	 * Use low bits of timebase as random generator.
2082 	 */
2083 	pteg = &pmap_pteg_table[ptegidx];
2084 	mtx_lock(&pmap_table_mutex);
2085 	__asm __volatile("mftb %0" : "=r"(i));
2086 	i &= 7;
2087 	pt = &pteg->pt[i];
2088 
2089 	source_pvo = NULL;
2090 	victim_pvo = NULL;
2091 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2092 		/*
2093 		 * We need to find a pvo entry for this address.
2094 		 */
2095 		PMAP_PVO_CHECK(pvo);
2096 		if (source_pvo == NULL &&
2097 		    pmap_pte_match(&pvo->pvo_pte, sr, addr,
2098 		    pvo->pvo_pte.pte_hi & PTE_HID)) {
2099 			/*
2100 			 * Now found an entry to be spilled into the pteg.
2101 			 * The PTE is now valid, so we know it's active.
2102 			 */
2103 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
2104 
2105 			if (j >= 0) {
2106 				PVO_PTEGIDX_SET(pvo, j);
2107 				pmap_pte_overflow--;
2108 				PMAP_PVO_CHECK(pvo);
2109 				mtx_unlock(&pmap_table_mutex);
2110 				return (1);
2111 			}
2112 
2113 			source_pvo = pvo;
2114 
2115 			if (victim_pvo != NULL)
2116 				break;
2117 		}
2118 
2119 		/*
2120 		 * We also need the pvo entry of the victim we are replacing
2121 		 * so save the R & C bits of the PTE.
2122 		 */
2123 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2124 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
2125 			victim_pvo = pvo;
2126 			if (source_pvo != NULL)
2127 				break;
2128 		}
2129 	}
2130 
2131 	if (source_pvo == NULL) {
2132 		mtx_unlock(&pmap_table_mutex);
2133 		return (0);
2134 	}
2135 
2136 	if (victim_pvo == NULL) {
2137 		if ((pt->pte_hi & PTE_HID) == 0)
2138 			panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
2139 			    "entry", pt);
2140 
2141 		/*
2142 		 * If this is a secondary PTE, we need to search it's primary
2143 		 * pvo bucket for the matching PVO.
2144 		 */
2145 		LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
2146 		    pvo_olink) {
2147 			PMAP_PVO_CHECK(pvo);
2148 			/*
2149 			 * We also need the pvo entry of the victim we are
2150 			 * replacing so save the R & C bits of the PTE.
2151 			 */
2152 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
2153 				victim_pvo = pvo;
2154 				break;
2155 			}
2156 		}
2157 
2158 		if (victim_pvo == NULL)
2159 			panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
2160 			    "entry", pt);
2161 	}
2162 
2163 	/*
2164 	 * We are invalidating the TLB entry for the EA we are replacing even
2165 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2166 	 * contained in the TLB entry.
2167 	 */
2168 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
2169 
2170 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
2171 	pmap_pte_set(pt, &source_pvo->pvo_pte);
2172 
2173 	PVO_PTEGIDX_CLR(victim_pvo);
2174 	PVO_PTEGIDX_SET(source_pvo, i);
2175 	pmap_pte_replacements++;
2176 
2177 	PMAP_PVO_CHECK(victim_pvo);
2178 	PMAP_PVO_CHECK(source_pvo);
2179 
2180 	mtx_unlock(&pmap_table_mutex);
2181 	return (1);
2182 }
2183 
2184 static int
2185 pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2186 {
2187 	struct	pte *pt;
2188 	int	i;
2189 
2190 	/*
2191 	 * First try primary hash.
2192 	 */
2193 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2194 		if ((pt->pte_hi & PTE_VALID) == 0) {
2195 			pvo_pt->pte_hi &= ~PTE_HID;
2196 			pmap_pte_set(pt, pvo_pt);
2197 			return (i);
2198 		}
2199 	}
2200 
2201 	/*
2202 	 * Now try secondary hash.
2203 	 */
2204 	ptegidx ^= pmap_pteg_mask;
2205 	ptegidx++;
2206 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2207 		if ((pt->pte_hi & PTE_VALID) == 0) {
2208 			pvo_pt->pte_hi |= PTE_HID;
2209 			pmap_pte_set(pt, pvo_pt);
2210 			return (i);
2211 		}
2212 	}
2213 
2214 	panic("pmap_pte_insert: overflow");
2215 	return (-1);
2216 }
2217 
2218 static boolean_t
2219 pmap_query_bit(vm_page_t m, int ptebit)
2220 {
2221 	struct	pvo_entry *pvo;
2222 	struct	pte *pt;
2223 
2224 #if 0
2225 	if (pmap_attr_fetch(m) & ptebit)
2226 		return (TRUE);
2227 #endif
2228 
2229 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2230 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2231 
2232 		/*
2233 		 * See if we saved the bit off.  If so, cache it and return
2234 		 * success.
2235 		 */
2236 		if (pvo->pvo_pte.pte_lo & ptebit) {
2237 			pmap_attr_save(m, ptebit);
2238 			PMAP_PVO_CHECK(pvo);	/* sanity check */
2239 			return (TRUE);
2240 		}
2241 	}
2242 
2243 	/*
2244 	 * No luck, now go through the hard part of looking at the PTEs
2245 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2246 	 * the PTEs.
2247 	 */
2248 	SYNC();
2249 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2250 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2251 
2252 		/*
2253 		 * See if this pvo has a valid PTE.  if so, fetch the
2254 		 * REF/CHG bits from the valid PTE.  If the appropriate
2255 		 * ptebit is set, cache it and return success.
2256 		 */
2257 		pt = pmap_pvo_to_pte(pvo, -1);
2258 		if (pt != NULL) {
2259 			pmap_pte_synch(pt, &pvo->pvo_pte);
2260 			if (pvo->pvo_pte.pte_lo & ptebit) {
2261 				pmap_attr_save(m, ptebit);
2262 				PMAP_PVO_CHECK(pvo);	/* sanity check */
2263 				return (TRUE);
2264 			}
2265 		}
2266 	}
2267 
2268 	return (FALSE);
2269 }
2270 
2271 static u_int
2272 pmap_clear_bit(vm_page_t m, int ptebit, int *origbit)
2273 {
2274 	u_int	count;
2275 	struct	pvo_entry *pvo;
2276 	struct	pte *pt;
2277 	int	rv;
2278 
2279 	/*
2280 	 * Clear the cached value.
2281 	 */
2282 	rv = pmap_attr_fetch(m);
2283 	pmap_attr_clear(m, ptebit);
2284 
2285 	/*
2286 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2287 	 * we can reset the right ones).  note that since the pvo entries and
2288 	 * list heads are accessed via BAT0 and are never placed in the page
2289 	 * table, we don't have to worry about further accesses setting the
2290 	 * REF/CHG bits.
2291 	 */
2292 	SYNC();
2293 
2294 	/*
2295 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2296 	 * valid pte clear the ptebit from the valid pte.
2297 	 */
2298 	count = 0;
2299 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2300 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2301 		pt = pmap_pvo_to_pte(pvo, -1);
2302 		if (pt != NULL) {
2303 			pmap_pte_synch(pt, &pvo->pvo_pte);
2304 			if (pvo->pvo_pte.pte_lo & ptebit) {
2305 				count++;
2306 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2307 			}
2308 		}
2309 		rv |= pvo->pvo_pte.pte_lo;
2310 		pvo->pvo_pte.pte_lo &= ~ptebit;
2311 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2312 	}
2313 
2314 	if (origbit != NULL) {
2315 		*origbit = rv;
2316 	}
2317 
2318 	return (count);
2319 }
2320 
2321 /*
2322  * Return true if the physical range is encompassed by the battable[idx]
2323  */
2324 static int
2325 pmap_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2326 {
2327 	u_int prot;
2328 	u_int32_t start;
2329 	u_int32_t end;
2330 	u_int32_t bat_ble;
2331 
2332 	/*
2333 	 * Return immediately if not a valid mapping
2334 	 */
2335 	if (!battable[idx].batu & BAT_Vs)
2336 		return (EINVAL);
2337 
2338 	/*
2339 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2340 	 * so it can function as an i/o page
2341 	 */
2342 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2343 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2344 		return (EPERM);
2345 
2346 	/*
2347 	 * The address should be within the BAT range. Assume that the
2348 	 * start address in the BAT has the correct alignment (thus
2349 	 * not requiring masking)
2350 	 */
2351 	start = battable[idx].batl & BAT_PBS;
2352 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2353 	end = start | (bat_ble << 15) | 0x7fff;
2354 
2355 	if ((pa < start) || ((pa + size) > end))
2356 		return (ERANGE);
2357 
2358 	return (0);
2359 }
2360 
2361 int
2362 pmap_dev_direct_mapped(vm_offset_t pa, vm_size_t size)
2363 {
2364 	int i;
2365 
2366 	/*
2367 	 * This currently does not work for entries that
2368 	 * overlap 256M BAT segments.
2369 	 */
2370 
2371 	for(i = 0; i < 16; i++)
2372 		if (pmap_bat_mapped(i, pa, size) == 0)
2373 			return (0);
2374 
2375 	return (EFAULT);
2376 }
2377 
2378 /*
2379  * Map a set of physical memory pages into the kernel virtual
2380  * address space. Return a pointer to where it is mapped. This
2381  * routine is intended to be used for mapping device memory,
2382  * NOT real memory.
2383  */
2384 void *
2385 pmap_mapdev(vm_offset_t pa, vm_size_t size)
2386 {
2387 	vm_offset_t va, tmpva, ppa, offset;
2388 	int i;
2389 
2390 	ppa = trunc_page(pa);
2391 	offset = pa & PAGE_MASK;
2392 	size = roundup(offset + size, PAGE_SIZE);
2393 
2394 	GIANT_REQUIRED;
2395 
2396 	/*
2397 	 * If the physical address lies within a valid BAT table entry,
2398 	 * return the 1:1 mapping. This currently doesn't work
2399 	 * for regions that overlap 256M BAT segments.
2400 	 */
2401 	for (i = 0; i < 16; i++) {
2402 		if (pmap_bat_mapped(i, pa, size) == 0)
2403 			return ((void *) pa);
2404 	}
2405 
2406 	va = kmem_alloc_nofault(kernel_map, size);
2407 	if (!va)
2408 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2409 
2410 	for (tmpva = va; size > 0;) {
2411 		pmap_kenter(tmpva, ppa);
2412 		TLBIE(tmpva); /* XXX or should it be invalidate-all ? */
2413 		size -= PAGE_SIZE;
2414 		tmpva += PAGE_SIZE;
2415 		ppa += PAGE_SIZE;
2416 	}
2417 
2418 	return ((void *)(va + offset));
2419 }
2420 
2421 void
2422 pmap_unmapdev(vm_offset_t va, vm_size_t size)
2423 {
2424 	vm_offset_t base, offset;
2425 
2426 	/*
2427 	 * If this is outside kernel virtual space, then it's a
2428 	 * battable entry and doesn't require unmapping
2429 	 */
2430 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2431 		base = trunc_page(va);
2432 		offset = va & PAGE_MASK;
2433 		size = roundup(offset + size, PAGE_SIZE);
2434 		kmem_free(kernel_map, base, size);
2435 	}
2436 }
2437