xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision c243e4902be8df1e643c76b5f18b68bb77cc5268)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*-
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 /*
97  * Manages physical address maps.
98  *
99  * In addition to hardware address maps, this module is called upon to
100  * provide software-use-only maps which may or may not be stored in the
101  * same form as hardware maps.  These pseudo-maps are used to store
102  * intermediate results from copy operations to and from address spaces.
103  *
104  * Since the information managed by this module is also stored by the
105  * logical address mapping module, this module may throw away valid virtual
106  * to physical mappings at almost any time.  However, invalidations of
107  * mappings must be done as requested.
108  *
109  * In order to cope with hardware architectures which make virtual to
110  * physical map invalidates expensive, this module may delay invalidate
111  * reduced protection operations until such time as they are actually
112  * necessary.  This module is given full information as to which processors
113  * are currently using which maps, and to when physical maps must be made
114  * correct.
115  */
116 
117 #include "opt_kstack_pages.h"
118 
119 #include <sys/param.h>
120 #include <sys/kernel.h>
121 #include <sys/queue.h>
122 #include <sys/cpuset.h>
123 #include <sys/ktr.h>
124 #include <sys/lock.h>
125 #include <sys/msgbuf.h>
126 #include <sys/mutex.h>
127 #include <sys/proc.h>
128 #include <sys/rwlock.h>
129 #include <sys/sched.h>
130 #include <sys/sysctl.h>
131 #include <sys/systm.h>
132 #include <sys/vmmeter.h>
133 
134 #include <dev/ofw/openfirm.h>
135 
136 #include <vm/vm.h>
137 #include <vm/vm_param.h>
138 #include <vm/vm_kern.h>
139 #include <vm/vm_page.h>
140 #include <vm/vm_map.h>
141 #include <vm/vm_object.h>
142 #include <vm/vm_extern.h>
143 #include <vm/vm_pageout.h>
144 #include <vm/vm_pager.h>
145 #include <vm/uma.h>
146 
147 #include <machine/cpu.h>
148 #include <machine/platform.h>
149 #include <machine/bat.h>
150 #include <machine/frame.h>
151 #include <machine/md_var.h>
152 #include <machine/psl.h>
153 #include <machine/pte.h>
154 #include <machine/smp.h>
155 #include <machine/sr.h>
156 #include <machine/mmuvar.h>
157 #include <machine/trap_aim.h>
158 
159 #include "mmu_if.h"
160 
161 #define	MOEA_DEBUG
162 
163 #define TODO	panic("%s: not implemented", __func__);
164 
165 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
166 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
167 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
168 
169 struct ofw_map {
170 	vm_offset_t	om_va;
171 	vm_size_t	om_len;
172 	vm_offset_t	om_pa;
173 	u_int		om_mode;
174 };
175 
176 /*
177  * Map of physical memory regions.
178  */
179 static struct	mem_region *regions;
180 static struct	mem_region *pregions;
181 static u_int    phys_avail_count;
182 static int	regions_sz, pregions_sz;
183 static struct	ofw_map *translations;
184 
185 /*
186  * Lock for the pteg and pvo tables.
187  */
188 struct mtx	moea_table_mutex;
189 struct mtx	moea_vsid_mutex;
190 
191 /* tlbie instruction synchronization */
192 static struct mtx tlbie_mtx;
193 
194 /*
195  * PTEG data.
196  */
197 static struct	pteg *moea_pteg_table;
198 u_int		moea_pteg_count;
199 u_int		moea_pteg_mask;
200 
201 /*
202  * PVO data.
203  */
204 struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
205 struct	pvo_head moea_pvo_kunmanaged =
206     LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
207 
208 /*
209  * Isolate the global pv list lock from data and other locks to prevent false
210  * sharing within the cache.
211  */
212 static struct {
213 	struct rwlock	lock;
214 	char		padding[CACHE_LINE_SIZE - sizeof(struct rwlock)];
215 } pvh_global __aligned(CACHE_LINE_SIZE);
216 
217 #define	pvh_global_lock	pvh_global.lock
218 
219 uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
220 uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
221 
222 #define	BPVO_POOL_SIZE	32768
223 static struct	pvo_entry *moea_bpvo_pool;
224 static int	moea_bpvo_pool_index = 0;
225 
226 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
227 static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
228 
229 static boolean_t moea_initialized = FALSE;
230 
231 /*
232  * Statistics.
233  */
234 u_int	moea_pte_valid = 0;
235 u_int	moea_pte_overflow = 0;
236 u_int	moea_pte_replacements = 0;
237 u_int	moea_pvo_entries = 0;
238 u_int	moea_pvo_enter_calls = 0;
239 u_int	moea_pvo_remove_calls = 0;
240 u_int	moea_pte_spills = 0;
241 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
242     0, "");
243 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
244     &moea_pte_overflow, 0, "");
245 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
246     &moea_pte_replacements, 0, "");
247 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
248     0, "");
249 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
250     &moea_pvo_enter_calls, 0, "");
251 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
252     &moea_pvo_remove_calls, 0, "");
253 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
254     &moea_pte_spills, 0, "");
255 
256 /*
257  * Allocate physical memory for use in moea_bootstrap.
258  */
259 static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
260 
261 /*
262  * PTE calls.
263  */
264 static int		moea_pte_insert(u_int, struct pte *);
265 
266 /*
267  * PVO calls.
268  */
269 static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
270 		    vm_offset_t, vm_offset_t, u_int, int);
271 static void	moea_pvo_remove(struct pvo_entry *, int);
272 static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
273 static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
274 
275 /*
276  * Utility routines.
277  */
278 static void		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
279 			    vm_prot_t, boolean_t);
280 static void		moea_syncicache(vm_offset_t, vm_size_t);
281 static boolean_t	moea_query_bit(vm_page_t, int);
282 static u_int		moea_clear_bit(vm_page_t, int);
283 static void		moea_kremove(mmu_t, vm_offset_t);
284 int		moea_pte_spill(vm_offset_t);
285 
286 /*
287  * Kernel MMU interface
288  */
289 void moea_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
290 void moea_clear_modify(mmu_t, vm_page_t);
291 void moea_clear_reference(mmu_t, vm_page_t);
292 void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
293 void moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
294 void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
295     vm_prot_t);
296 void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
297 vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
298 vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
299 void moea_init(mmu_t);
300 boolean_t moea_is_modified(mmu_t, vm_page_t);
301 boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
302 boolean_t moea_is_referenced(mmu_t, vm_page_t);
303 int moea_ts_referenced(mmu_t, vm_page_t);
304 vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
305 boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
306 int moea_page_wired_mappings(mmu_t, vm_page_t);
307 void moea_pinit(mmu_t, pmap_t);
308 void moea_pinit0(mmu_t, pmap_t);
309 void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
310 void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
311 void moea_qremove(mmu_t, vm_offset_t, int);
312 void moea_release(mmu_t, pmap_t);
313 void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
314 void moea_remove_all(mmu_t, vm_page_t);
315 void moea_remove_write(mmu_t, vm_page_t);
316 void moea_zero_page(mmu_t, vm_page_t);
317 void moea_zero_page_area(mmu_t, vm_page_t, int, int);
318 void moea_zero_page_idle(mmu_t, vm_page_t);
319 void moea_activate(mmu_t, struct thread *);
320 void moea_deactivate(mmu_t, struct thread *);
321 void moea_cpu_bootstrap(mmu_t, int);
322 void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
323 void *moea_mapdev(mmu_t, vm_paddr_t, vm_size_t);
324 void *moea_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
325 void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
326 vm_paddr_t moea_kextract(mmu_t, vm_offset_t);
327 void moea_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t);
328 void moea_kenter(mmu_t, vm_offset_t, vm_paddr_t);
329 void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
330 boolean_t moea_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
331 static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
332 
333 static mmu_method_t moea_methods[] = {
334 	MMUMETHOD(mmu_change_wiring,	moea_change_wiring),
335 	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
336 	MMUMETHOD(mmu_clear_reference,	moea_clear_reference),
337 	MMUMETHOD(mmu_copy_page,	moea_copy_page),
338 	MMUMETHOD(mmu_enter,		moea_enter),
339 	MMUMETHOD(mmu_enter_object,	moea_enter_object),
340 	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
341 	MMUMETHOD(mmu_extract,		moea_extract),
342 	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
343 	MMUMETHOD(mmu_init,		moea_init),
344 	MMUMETHOD(mmu_is_modified,	moea_is_modified),
345 	MMUMETHOD(mmu_is_prefaultable,	moea_is_prefaultable),
346 	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
347 	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
348 	MMUMETHOD(mmu_map,     		moea_map),
349 	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
350 	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
351 	MMUMETHOD(mmu_pinit,		moea_pinit),
352 	MMUMETHOD(mmu_pinit0,		moea_pinit0),
353 	MMUMETHOD(mmu_protect,		moea_protect),
354 	MMUMETHOD(mmu_qenter,		moea_qenter),
355 	MMUMETHOD(mmu_qremove,		moea_qremove),
356 	MMUMETHOD(mmu_release,		moea_release),
357 	MMUMETHOD(mmu_remove,		moea_remove),
358 	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
359 	MMUMETHOD(mmu_remove_write,	moea_remove_write),
360 	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
361 	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
362 	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
363 	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
364 	MMUMETHOD(mmu_activate,		moea_activate),
365 	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
366 	MMUMETHOD(mmu_page_set_memattr,	moea_page_set_memattr),
367 
368 	/* Internal interfaces */
369 	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
370 	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
371 	MMUMETHOD(mmu_mapdev_attr,	moea_mapdev_attr),
372 	MMUMETHOD(mmu_mapdev,		moea_mapdev),
373 	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
374 	MMUMETHOD(mmu_kextract,		moea_kextract),
375 	MMUMETHOD(mmu_kenter,		moea_kenter),
376 	MMUMETHOD(mmu_kenter_attr,	moea_kenter_attr),
377 	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
378 
379 	{ 0, 0 }
380 };
381 
382 MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
383 
384 static __inline uint32_t
385 moea_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
386 {
387 	uint32_t pte_lo;
388 	int i;
389 
390 	if (ma != VM_MEMATTR_DEFAULT) {
391 		switch (ma) {
392 		case VM_MEMATTR_UNCACHEABLE:
393 			return (PTE_I | PTE_G);
394 		case VM_MEMATTR_WRITE_COMBINING:
395 		case VM_MEMATTR_WRITE_BACK:
396 		case VM_MEMATTR_PREFETCHABLE:
397 			return (PTE_I);
398 		case VM_MEMATTR_WRITE_THROUGH:
399 			return (PTE_W | PTE_M);
400 		}
401 	}
402 
403 	/*
404 	 * Assume the page is cache inhibited and access is guarded unless
405 	 * it's in our available memory array.
406 	 */
407 	pte_lo = PTE_I | PTE_G;
408 	for (i = 0; i < pregions_sz; i++) {
409 		if ((pa >= pregions[i].mr_start) &&
410 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
411 			pte_lo = PTE_M;
412 			break;
413 		}
414 	}
415 
416 	return pte_lo;
417 }
418 
419 static void
420 tlbie(vm_offset_t va)
421 {
422 
423 	mtx_lock_spin(&tlbie_mtx);
424 	__asm __volatile("ptesync");
425 	__asm __volatile("tlbie %0" :: "r"(va));
426 	__asm __volatile("eieio; tlbsync; ptesync");
427 	mtx_unlock_spin(&tlbie_mtx);
428 }
429 
430 static void
431 tlbia(void)
432 {
433 	vm_offset_t va;
434 
435 	for (va = 0; va < 0x00040000; va += 0x00001000) {
436 		__asm __volatile("tlbie %0" :: "r"(va));
437 		powerpc_sync();
438 	}
439 	__asm __volatile("tlbsync");
440 	powerpc_sync();
441 }
442 
443 static __inline int
444 va_to_sr(u_int *sr, vm_offset_t va)
445 {
446 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
447 }
448 
449 static __inline u_int
450 va_to_pteg(u_int sr, vm_offset_t addr)
451 {
452 	u_int hash;
453 
454 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
455 	    ADDR_PIDX_SHFT);
456 	return (hash & moea_pteg_mask);
457 }
458 
459 static __inline struct pvo_head *
460 vm_page_to_pvoh(vm_page_t m)
461 {
462 
463 	return (&m->md.mdpg_pvoh);
464 }
465 
466 static __inline void
467 moea_attr_clear(vm_page_t m, int ptebit)
468 {
469 
470 	rw_assert(&pvh_global_lock, RA_WLOCKED);
471 	m->md.mdpg_attrs &= ~ptebit;
472 }
473 
474 static __inline int
475 moea_attr_fetch(vm_page_t m)
476 {
477 
478 	return (m->md.mdpg_attrs);
479 }
480 
481 static __inline void
482 moea_attr_save(vm_page_t m, int ptebit)
483 {
484 
485 	rw_assert(&pvh_global_lock, RA_WLOCKED);
486 	m->md.mdpg_attrs |= ptebit;
487 }
488 
489 static __inline int
490 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
491 {
492 	if (pt->pte_hi == pvo_pt->pte_hi)
493 		return (1);
494 
495 	return (0);
496 }
497 
498 static __inline int
499 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
500 {
501 	return (pt->pte_hi & ~PTE_VALID) ==
502 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
503 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
504 }
505 
506 static __inline void
507 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
508 {
509 
510 	mtx_assert(&moea_table_mutex, MA_OWNED);
511 
512 	/*
513 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
514 	 * set when the real pte is set in memory.
515 	 *
516 	 * Note: Don't set the valid bit for correct operation of tlb update.
517 	 */
518 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
519 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
520 	pt->pte_lo = pte_lo;
521 }
522 
523 static __inline void
524 moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
525 {
526 
527 	mtx_assert(&moea_table_mutex, MA_OWNED);
528 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
529 }
530 
531 static __inline void
532 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
533 {
534 
535 	mtx_assert(&moea_table_mutex, MA_OWNED);
536 
537 	/*
538 	 * As shown in Section 7.6.3.2.3
539 	 */
540 	pt->pte_lo &= ~ptebit;
541 	tlbie(va);
542 }
543 
544 static __inline void
545 moea_pte_set(struct pte *pt, struct pte *pvo_pt)
546 {
547 
548 	mtx_assert(&moea_table_mutex, MA_OWNED);
549 	pvo_pt->pte_hi |= PTE_VALID;
550 
551 	/*
552 	 * Update the PTE as defined in section 7.6.3.1.
553 	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
554 	 * been saved so this routine can restore them (if desired).
555 	 */
556 	pt->pte_lo = pvo_pt->pte_lo;
557 	powerpc_sync();
558 	pt->pte_hi = pvo_pt->pte_hi;
559 	powerpc_sync();
560 	moea_pte_valid++;
561 }
562 
563 static __inline void
564 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
565 {
566 
567 	mtx_assert(&moea_table_mutex, MA_OWNED);
568 	pvo_pt->pte_hi &= ~PTE_VALID;
569 
570 	/*
571 	 * Force the reg & chg bits back into the PTEs.
572 	 */
573 	powerpc_sync();
574 
575 	/*
576 	 * Invalidate the pte.
577 	 */
578 	pt->pte_hi &= ~PTE_VALID;
579 
580 	tlbie(va);
581 
582 	/*
583 	 * Save the reg & chg bits.
584 	 */
585 	moea_pte_synch(pt, pvo_pt);
586 	moea_pte_valid--;
587 }
588 
589 static __inline void
590 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
591 {
592 
593 	/*
594 	 * Invalidate the PTE
595 	 */
596 	moea_pte_unset(pt, pvo_pt, va);
597 	moea_pte_set(pt, pvo_pt);
598 }
599 
600 /*
601  * Quick sort callout for comparing memory regions.
602  */
603 static int	om_cmp(const void *a, const void *b);
604 
605 static int
606 om_cmp(const void *a, const void *b)
607 {
608 	const struct	ofw_map *mapa;
609 	const struct	ofw_map *mapb;
610 
611 	mapa = a;
612 	mapb = b;
613 	if (mapa->om_pa < mapb->om_pa)
614 		return (-1);
615 	else if (mapa->om_pa > mapb->om_pa)
616 		return (1);
617 	else
618 		return (0);
619 }
620 
621 void
622 moea_cpu_bootstrap(mmu_t mmup, int ap)
623 {
624 	u_int sdr;
625 	int i;
626 
627 	if (ap) {
628 		powerpc_sync();
629 		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
630 		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
631 		isync();
632 		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
633 		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
634 		isync();
635 	}
636 
637 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
638 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
639 	isync();
640 
641 	__asm __volatile("mtibatu 1,%0" :: "r"(0));
642 	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
643 	__asm __volatile("mtibatu 2,%0" :: "r"(0));
644 	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
645 	__asm __volatile("mtibatu 3,%0" :: "r"(0));
646 	isync();
647 
648 	for (i = 0; i < 16; i++)
649 		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
650 	powerpc_sync();
651 
652 	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
653 	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
654 	isync();
655 
656 	tlbia();
657 }
658 
659 void
660 moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
661 {
662 	ihandle_t	mmui;
663 	phandle_t	chosen, mmu;
664 	int		sz;
665 	int		i, j;
666 	vm_size_t	size, physsz, hwphyssz;
667 	vm_offset_t	pa, va, off;
668 	void		*dpcpu;
669 	register_t	msr;
670 
671         /*
672          * Set up BAT0 to map the lowest 256 MB area
673          */
674         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
675         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
676 
677         /*
678          * Map PCI memory space.
679          */
680         battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
681         battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
682 
683         battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
684         battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
685 
686         battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
687         battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
688 
689         battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
690         battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
691 
692         /*
693          * Map obio devices.
694          */
695         battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
696         battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
697 
698 	/*
699 	 * Use an IBAT and a DBAT to map the bottom segment of memory
700 	 * where we are. Turn off instruction relocation temporarily
701 	 * to prevent faults while reprogramming the IBAT.
702 	 */
703 	msr = mfmsr();
704 	mtmsr(msr & ~PSL_IR);
705 	__asm (".balign 32; \n"
706 	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
707 	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
708 	    :: "r"(battable[0].batu), "r"(battable[0].batl));
709 	mtmsr(msr);
710 
711 	/* map pci space */
712 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
713 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
714 	isync();
715 
716 	/* set global direct map flag */
717 	hw_direct_map = 1;
718 
719 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
720 	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
721 
722 	for (i = 0; i < pregions_sz; i++) {
723 		vm_offset_t pa;
724 		vm_offset_t end;
725 
726 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
727 			pregions[i].mr_start,
728 			pregions[i].mr_start + pregions[i].mr_size,
729 			pregions[i].mr_size);
730 		/*
731 		 * Install entries into the BAT table to allow all
732 		 * of physmem to be convered by on-demand BAT entries.
733 		 * The loop will sometimes set the same battable element
734 		 * twice, but that's fine since they won't be used for
735 		 * a while yet.
736 		 */
737 		pa = pregions[i].mr_start & 0xf0000000;
738 		end = pregions[i].mr_start + pregions[i].mr_size;
739 		do {
740                         u_int n = pa >> ADDR_SR_SHFT;
741 
742 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
743 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
744 			pa += SEGMENT_LENGTH;
745 		} while (pa < end);
746 	}
747 
748 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
749 		panic("moea_bootstrap: phys_avail too small");
750 
751 	phys_avail_count = 0;
752 	physsz = 0;
753 	hwphyssz = 0;
754 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
755 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
756 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
757 		    regions[i].mr_start + regions[i].mr_size,
758 		    regions[i].mr_size);
759 		if (hwphyssz != 0 &&
760 		    (physsz + regions[i].mr_size) >= hwphyssz) {
761 			if (physsz < hwphyssz) {
762 				phys_avail[j] = regions[i].mr_start;
763 				phys_avail[j + 1] = regions[i].mr_start +
764 				    hwphyssz - physsz;
765 				physsz = hwphyssz;
766 				phys_avail_count++;
767 			}
768 			break;
769 		}
770 		phys_avail[j] = regions[i].mr_start;
771 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
772 		phys_avail_count++;
773 		physsz += regions[i].mr_size;
774 	}
775 
776 	/* Check for overlap with the kernel and exception vectors */
777 	for (j = 0; j < 2*phys_avail_count; j+=2) {
778 		if (phys_avail[j] < EXC_LAST)
779 			phys_avail[j] += EXC_LAST;
780 
781 		if (kernelstart >= phys_avail[j] &&
782 		    kernelstart < phys_avail[j+1]) {
783 			if (kernelend < phys_avail[j+1]) {
784 				phys_avail[2*phys_avail_count] =
785 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
786 				phys_avail[2*phys_avail_count + 1] =
787 				    phys_avail[j+1];
788 				phys_avail_count++;
789 			}
790 
791 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
792 		}
793 
794 		if (kernelend >= phys_avail[j] &&
795 		    kernelend < phys_avail[j+1]) {
796 			if (kernelstart > phys_avail[j]) {
797 				phys_avail[2*phys_avail_count] = phys_avail[j];
798 				phys_avail[2*phys_avail_count + 1] =
799 				    kernelstart & ~PAGE_MASK;
800 				phys_avail_count++;
801 			}
802 
803 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
804 		}
805 	}
806 
807 	physmem = btoc(physsz);
808 
809 	/*
810 	 * Allocate PTEG table.
811 	 */
812 #ifdef PTEGCOUNT
813 	moea_pteg_count = PTEGCOUNT;
814 #else
815 	moea_pteg_count = 0x1000;
816 
817 	while (moea_pteg_count < physmem)
818 		moea_pteg_count <<= 1;
819 
820 	moea_pteg_count >>= 1;
821 #endif /* PTEGCOUNT */
822 
823 	size = moea_pteg_count * sizeof(struct pteg);
824 	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
825 	    size);
826 	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
827 	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
828 	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
829 	moea_pteg_mask = moea_pteg_count - 1;
830 
831 	/*
832 	 * Allocate pv/overflow lists.
833 	 */
834 	size = sizeof(struct pvo_head) * moea_pteg_count;
835 	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
836 	    PAGE_SIZE);
837 	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
838 	for (i = 0; i < moea_pteg_count; i++)
839 		LIST_INIT(&moea_pvo_table[i]);
840 
841 	/*
842 	 * Initialize the lock that synchronizes access to the pteg and pvo
843 	 * tables.
844 	 */
845 	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
846 	    MTX_RECURSE);
847 	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
848 
849 	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
850 
851 	/*
852 	 * Initialise the unmanaged pvo pool.
853 	 */
854 	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
855 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
856 	moea_bpvo_pool_index = 0;
857 
858 	/*
859 	 * Make sure kernel vsid is allocated as well as VSID 0.
860 	 */
861 	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
862 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
863 	moea_vsid_bitmap[0] |= 1;
864 
865 	/*
866 	 * Initialize the kernel pmap (which is statically allocated).
867 	 */
868 	PMAP_LOCK_INIT(kernel_pmap);
869 	for (i = 0; i < 16; i++)
870 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
871 	CPU_FILL(&kernel_pmap->pm_active);
872 	RB_INIT(&kernel_pmap->pmap_pvo);
873 
874  	/*
875 	 * Initialize the global pv list lock.
876 	 */
877 	rw_init(&pvh_global_lock, "pmap pv global");
878 
879 	/*
880 	 * Set up the Open Firmware mappings
881 	 */
882 	chosen = OF_finddevice("/chosen");
883 	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
884 	    (mmu = OF_instance_to_package(mmui)) != -1 &&
885 	    (sz = OF_getproplen(mmu, "translations")) != -1) {
886 		translations = NULL;
887 		for (i = 0; phys_avail[i] != 0; i += 2) {
888 			if (phys_avail[i + 1] >= sz) {
889 				translations = (struct ofw_map *)phys_avail[i];
890 				break;
891 			}
892 		}
893 		if (translations == NULL)
894 			panic("moea_bootstrap: no space to copy translations");
895 		bzero(translations, sz);
896 		if (OF_getprop(mmu, "translations", translations, sz) == -1)
897 			panic("moea_bootstrap: can't get ofw translations");
898 		CTR0(KTR_PMAP, "moea_bootstrap: translations");
899 		sz /= sizeof(*translations);
900 		qsort(translations, sz, sizeof (*translations), om_cmp);
901 		for (i = 0; i < sz; i++) {
902 			CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
903 			    translations[i].om_pa, translations[i].om_va,
904 			    translations[i].om_len);
905 
906 			/*
907 			 * If the mapping is 1:1, let the RAM and device
908 			 * on-demand BAT tables take care of the translation.
909 			 */
910 			if (translations[i].om_va == translations[i].om_pa)
911 				continue;
912 
913 			/* Enter the pages */
914 			for (off = 0; off < translations[i].om_len;
915 			    off += PAGE_SIZE)
916 				moea_kenter(mmup, translations[i].om_va + off,
917 					    translations[i].om_pa + off);
918 		}
919 	}
920 
921 	/*
922 	 * Calculate the last available physical address.
923 	 */
924 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
925 		;
926 	Maxmem = powerpc_btop(phys_avail[i + 1]);
927 
928 	moea_cpu_bootstrap(mmup,0);
929 
930 	pmap_bootstrapped++;
931 
932 	/*
933 	 * Set the start and end of kva.
934 	 */
935 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
936 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
937 
938 	/*
939 	 * Allocate a kernel stack with a guard page for thread0 and map it
940 	 * into the kernel page map.
941 	 */
942 	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
943 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
944 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
945 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
946 	thread0.td_kstack = va;
947 	thread0.td_kstack_pages = KSTACK_PAGES;
948 	for (i = 0; i < KSTACK_PAGES; i++) {
949 		moea_kenter(mmup, va, pa);
950 		pa += PAGE_SIZE;
951 		va += PAGE_SIZE;
952 	}
953 
954 	/*
955 	 * Allocate virtual address space for the message buffer.
956 	 */
957 	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
958 	msgbufp = (struct msgbuf *)virtual_avail;
959 	va = virtual_avail;
960 	virtual_avail += round_page(msgbufsize);
961 	while (va < virtual_avail) {
962 		moea_kenter(mmup, va, pa);
963 		pa += PAGE_SIZE;
964 		va += PAGE_SIZE;
965 	}
966 
967 	/*
968 	 * Allocate virtual address space for the dynamic percpu area.
969 	 */
970 	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
971 	dpcpu = (void *)virtual_avail;
972 	va = virtual_avail;
973 	virtual_avail += DPCPU_SIZE;
974 	while (va < virtual_avail) {
975 		moea_kenter(mmup, va, pa);
976 		pa += PAGE_SIZE;
977 		va += PAGE_SIZE;
978 	}
979 	dpcpu_init(dpcpu, 0);
980 }
981 
982 /*
983  * Activate a user pmap.  The pmap must be activated before it's address
984  * space can be accessed in any way.
985  */
986 void
987 moea_activate(mmu_t mmu, struct thread *td)
988 {
989 	pmap_t	pm, pmr;
990 
991 	/*
992 	 * Load all the data we need up front to encourage the compiler to
993 	 * not issue any loads while we have interrupts disabled below.
994 	 */
995 	pm = &td->td_proc->p_vmspace->vm_pmap;
996 	pmr = pm->pmap_phys;
997 
998 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
999 	PCPU_SET(curpmap, pmr);
1000 }
1001 
1002 void
1003 moea_deactivate(mmu_t mmu, struct thread *td)
1004 {
1005 	pmap_t	pm;
1006 
1007 	pm = &td->td_proc->p_vmspace->vm_pmap;
1008 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1009 	PCPU_SET(curpmap, NULL);
1010 }
1011 
1012 void
1013 moea_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1014 {
1015 	struct	pvo_entry *pvo;
1016 
1017 	PMAP_LOCK(pm);
1018 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1019 
1020 	if (pvo != NULL) {
1021 		if (wired) {
1022 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1023 				pm->pm_stats.wired_count++;
1024 			pvo->pvo_vaddr |= PVO_WIRED;
1025 		} else {
1026 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1027 				pm->pm_stats.wired_count--;
1028 			pvo->pvo_vaddr &= ~PVO_WIRED;
1029 		}
1030 	}
1031 	PMAP_UNLOCK(pm);
1032 }
1033 
1034 void
1035 moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1036 {
1037 	vm_offset_t	dst;
1038 	vm_offset_t	src;
1039 
1040 	dst = VM_PAGE_TO_PHYS(mdst);
1041 	src = VM_PAGE_TO_PHYS(msrc);
1042 
1043 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
1044 }
1045 
1046 /*
1047  * Zero a page of physical memory by temporarily mapping it into the tlb.
1048  */
1049 void
1050 moea_zero_page(mmu_t mmu, vm_page_t m)
1051 {
1052 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1053 	void *va = (void *)pa;
1054 
1055 	bzero(va, PAGE_SIZE);
1056 }
1057 
1058 void
1059 moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1060 {
1061 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1062 	void *va = (void *)(pa + off);
1063 
1064 	bzero(va, size);
1065 }
1066 
1067 void
1068 moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1069 {
1070 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1071 	void *va = (void *)pa;
1072 
1073 	bzero(va, PAGE_SIZE);
1074 }
1075 
1076 /*
1077  * Map the given physical page at the specified virtual address in the
1078  * target pmap with the protection requested.  If specified the page
1079  * will be wired down.
1080  */
1081 void
1082 moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1083 	   boolean_t wired)
1084 {
1085 
1086 	rw_wlock(&pvh_global_lock);
1087 	PMAP_LOCK(pmap);
1088 	moea_enter_locked(pmap, va, m, prot, wired);
1089 	rw_wunlock(&pvh_global_lock);
1090 	PMAP_UNLOCK(pmap);
1091 }
1092 
1093 /*
1094  * Map the given physical page at the specified virtual address in the
1095  * target pmap with the protection requested.  If specified the page
1096  * will be wired down.
1097  *
1098  * The page queues and pmap must be locked.
1099  */
1100 static void
1101 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1102     boolean_t wired)
1103 {
1104 	struct		pvo_head *pvo_head;
1105 	uma_zone_t	zone;
1106 	vm_page_t	pg;
1107 	u_int		pte_lo, pvo_flags;
1108 	int		error;
1109 
1110 	if (!moea_initialized) {
1111 		pvo_head = &moea_pvo_kunmanaged;
1112 		zone = moea_upvo_zone;
1113 		pvo_flags = 0;
1114 		pg = NULL;
1115 	} else {
1116 		pvo_head = vm_page_to_pvoh(m);
1117 		pg = m;
1118 		zone = moea_mpvo_zone;
1119 		pvo_flags = PVO_MANAGED;
1120 	}
1121 	if (pmap_bootstrapped)
1122 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1123 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1124 	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
1125 	    VM_OBJECT_LOCKED(m->object),
1126 	    ("moea_enter_locked: page %p is not busy", m));
1127 
1128 	/* XXX change the pvo head for fake pages */
1129 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1130 		pvo_flags &= ~PVO_MANAGED;
1131 		pvo_head = &moea_pvo_kunmanaged;
1132 		zone = moea_upvo_zone;
1133 	}
1134 
1135 	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1136 
1137 	if (prot & VM_PROT_WRITE) {
1138 		pte_lo |= PTE_BW;
1139 		if (pmap_bootstrapped &&
1140 		    (m->oflags & VPO_UNMANAGED) == 0)
1141 			vm_page_aflag_set(m, PGA_WRITEABLE);
1142 	} else
1143 		pte_lo |= PTE_BR;
1144 
1145 	if (prot & VM_PROT_EXECUTE)
1146 		pvo_flags |= PVO_EXECUTABLE;
1147 
1148 	if (wired)
1149 		pvo_flags |= PVO_WIRED;
1150 
1151 	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1152 	    pte_lo, pvo_flags);
1153 
1154 	/*
1155 	 * Flush the real page from the instruction cache. This has be done
1156 	 * for all user mappings to prevent information leakage via the
1157 	 * instruction cache. moea_pvo_enter() returns ENOENT for the first
1158 	 * mapping for a page.
1159 	 */
1160 	if (pmap != kernel_pmap && error == ENOENT &&
1161 	    (pte_lo & (PTE_I | PTE_G)) == 0)
1162 		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1163 }
1164 
1165 /*
1166  * Maps a sequence of resident pages belonging to the same object.
1167  * The sequence begins with the given page m_start.  This page is
1168  * mapped at the given virtual address start.  Each subsequent page is
1169  * mapped at a virtual address that is offset from start by the same
1170  * amount as the page is offset from m_start within the object.  The
1171  * last page in the sequence is the page with the largest offset from
1172  * m_start that can be mapped at a virtual address less than the given
1173  * virtual address end.  Not every virtual page between start and end
1174  * is mapped; only those for which a resident page exists with the
1175  * corresponding offset from m_start are mapped.
1176  */
1177 void
1178 moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1179     vm_page_t m_start, vm_prot_t prot)
1180 {
1181 	vm_page_t m;
1182 	vm_pindex_t diff, psize;
1183 
1184 	psize = atop(end - start);
1185 	m = m_start;
1186 	rw_wlock(&pvh_global_lock);
1187 	PMAP_LOCK(pm);
1188 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1189 		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1190 		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1191 		m = TAILQ_NEXT(m, listq);
1192 	}
1193 	rw_wunlock(&pvh_global_lock);
1194 	PMAP_UNLOCK(pm);
1195 }
1196 
1197 void
1198 moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1199     vm_prot_t prot)
1200 {
1201 
1202 	rw_wlock(&pvh_global_lock);
1203 	PMAP_LOCK(pm);
1204 	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1205 	    FALSE);
1206 	rw_wunlock(&pvh_global_lock);
1207 	PMAP_UNLOCK(pm);
1208 }
1209 
1210 vm_paddr_t
1211 moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1212 {
1213 	struct	pvo_entry *pvo;
1214 	vm_paddr_t pa;
1215 
1216 	PMAP_LOCK(pm);
1217 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1218 	if (pvo == NULL)
1219 		pa = 0;
1220 	else
1221 		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1222 	PMAP_UNLOCK(pm);
1223 	return (pa);
1224 }
1225 
1226 /*
1227  * Atomically extract and hold the physical page with the given
1228  * pmap and virtual address pair if that mapping permits the given
1229  * protection.
1230  */
1231 vm_page_t
1232 moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1233 {
1234 	struct	pvo_entry *pvo;
1235 	vm_page_t m;
1236         vm_paddr_t pa;
1237 
1238 	m = NULL;
1239 	pa = 0;
1240 	PMAP_LOCK(pmap);
1241 retry:
1242 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1243 	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1244 	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1245 	     (prot & VM_PROT_WRITE) == 0)) {
1246 		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1247 			goto retry;
1248 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1249 		vm_page_hold(m);
1250 	}
1251 	PA_UNLOCK_COND(pa);
1252 	PMAP_UNLOCK(pmap);
1253 	return (m);
1254 }
1255 
1256 void
1257 moea_init(mmu_t mmu)
1258 {
1259 
1260 	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1261 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1262 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1263 	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1264 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1265 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1266 	moea_initialized = TRUE;
1267 }
1268 
1269 boolean_t
1270 moea_is_referenced(mmu_t mmu, vm_page_t m)
1271 {
1272 	boolean_t rv;
1273 
1274 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1275 	    ("moea_is_referenced: page %p is not managed", m));
1276 	rw_wlock(&pvh_global_lock);
1277 	rv = moea_query_bit(m, PTE_REF);
1278 	rw_wunlock(&pvh_global_lock);
1279 	return (rv);
1280 }
1281 
1282 boolean_t
1283 moea_is_modified(mmu_t mmu, vm_page_t m)
1284 {
1285 	boolean_t rv;
1286 
1287 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1288 	    ("moea_is_modified: page %p is not managed", m));
1289 
1290 	/*
1291 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
1292 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1293 	 * is clear, no PTEs can have PTE_CHG set.
1294 	 */
1295 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1296 	if ((m->oflags & VPO_BUSY) == 0 &&
1297 	    (m->aflags & PGA_WRITEABLE) == 0)
1298 		return (FALSE);
1299 	rw_wlock(&pvh_global_lock);
1300 	rv = moea_query_bit(m, PTE_CHG);
1301 	rw_wunlock(&pvh_global_lock);
1302 	return (rv);
1303 }
1304 
1305 boolean_t
1306 moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1307 {
1308 	struct pvo_entry *pvo;
1309 	boolean_t rv;
1310 
1311 	PMAP_LOCK(pmap);
1312 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1313 	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1314 	PMAP_UNLOCK(pmap);
1315 	return (rv);
1316 }
1317 
1318 void
1319 moea_clear_reference(mmu_t mmu, vm_page_t m)
1320 {
1321 
1322 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1323 	    ("moea_clear_reference: page %p is not managed", m));
1324 	rw_wlock(&pvh_global_lock);
1325 	moea_clear_bit(m, PTE_REF);
1326 	rw_wunlock(&pvh_global_lock);
1327 }
1328 
1329 void
1330 moea_clear_modify(mmu_t mmu, vm_page_t m)
1331 {
1332 
1333 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1334 	    ("moea_clear_modify: page %p is not managed", m));
1335 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1336 	KASSERT((m->oflags & VPO_BUSY) == 0,
1337 	    ("moea_clear_modify: page %p is busy", m));
1338 
1339 	/*
1340 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_CHG
1341 	 * set.  If the object containing the page is locked and the page is
1342 	 * not VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
1343 	 */
1344 	if ((m->aflags & PGA_WRITEABLE) == 0)
1345 		return;
1346 	rw_wlock(&pvh_global_lock);
1347 	moea_clear_bit(m, PTE_CHG);
1348 	rw_wunlock(&pvh_global_lock);
1349 }
1350 
1351 /*
1352  * Clear the write and modified bits in each of the given page's mappings.
1353  */
1354 void
1355 moea_remove_write(mmu_t mmu, vm_page_t m)
1356 {
1357 	struct	pvo_entry *pvo;
1358 	struct	pte *pt;
1359 	pmap_t	pmap;
1360 	u_int	lo;
1361 
1362 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1363 	    ("moea_remove_write: page %p is not managed", m));
1364 
1365 	/*
1366 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1367 	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
1368 	 * is clear, no page table entries need updating.
1369 	 */
1370 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1371 	if ((m->oflags & VPO_BUSY) == 0 &&
1372 	    (m->aflags & PGA_WRITEABLE) == 0)
1373 		return;
1374 	rw_wlock(&pvh_global_lock);
1375 	lo = moea_attr_fetch(m);
1376 	powerpc_sync();
1377 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1378 		pmap = pvo->pvo_pmap;
1379 		PMAP_LOCK(pmap);
1380 		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1381 			pt = moea_pvo_to_pte(pvo, -1);
1382 			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1383 			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1384 			if (pt != NULL) {
1385 				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1386 				lo |= pvo->pvo_pte.pte.pte_lo;
1387 				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1388 				moea_pte_change(pt, &pvo->pvo_pte.pte,
1389 				    pvo->pvo_vaddr);
1390 				mtx_unlock(&moea_table_mutex);
1391 			}
1392 		}
1393 		PMAP_UNLOCK(pmap);
1394 	}
1395 	if ((lo & PTE_CHG) != 0) {
1396 		moea_attr_clear(m, PTE_CHG);
1397 		vm_page_dirty(m);
1398 	}
1399 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1400 	rw_wunlock(&pvh_global_lock);
1401 }
1402 
1403 /*
1404  *	moea_ts_referenced:
1405  *
1406  *	Return a count of reference bits for a page, clearing those bits.
1407  *	It is not necessary for every reference bit to be cleared, but it
1408  *	is necessary that 0 only be returned when there are truly no
1409  *	reference bits set.
1410  *
1411  *	XXX: The exact number of bits to check and clear is a matter that
1412  *	should be tested and standardized at some point in the future for
1413  *	optimal aging of shared pages.
1414  */
1415 int
1416 moea_ts_referenced(mmu_t mmu, vm_page_t m)
1417 {
1418 	int count;
1419 
1420 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1421 	    ("moea_ts_referenced: page %p is not managed", m));
1422 	rw_wlock(&pvh_global_lock);
1423 	count = moea_clear_bit(m, PTE_REF);
1424 	rw_wunlock(&pvh_global_lock);
1425 	return (count);
1426 }
1427 
1428 /*
1429  * Modify the WIMG settings of all mappings for a page.
1430  */
1431 void
1432 moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1433 {
1434 	struct	pvo_entry *pvo;
1435 	struct	pvo_head *pvo_head;
1436 	struct	pte *pt;
1437 	pmap_t	pmap;
1438 	u_int	lo;
1439 
1440 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1441 		m->md.mdpg_cache_attrs = ma;
1442 		return;
1443 	}
1444 
1445 	rw_wlock(&pvh_global_lock);
1446 	pvo_head = vm_page_to_pvoh(m);
1447 	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1448 
1449 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1450 		pmap = pvo->pvo_pmap;
1451 		PMAP_LOCK(pmap);
1452 		pt = moea_pvo_to_pte(pvo, -1);
1453 		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1454 		pvo->pvo_pte.pte.pte_lo |= lo;
1455 		if (pt != NULL) {
1456 			moea_pte_change(pt, &pvo->pvo_pte.pte,
1457 			    pvo->pvo_vaddr);
1458 			if (pvo->pvo_pmap == kernel_pmap)
1459 				isync();
1460 		}
1461 		mtx_unlock(&moea_table_mutex);
1462 		PMAP_UNLOCK(pmap);
1463 	}
1464 	m->md.mdpg_cache_attrs = ma;
1465 	rw_wunlock(&pvh_global_lock);
1466 }
1467 
1468 /*
1469  * Map a wired page into kernel virtual address space.
1470  */
1471 void
1472 moea_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1473 {
1474 
1475 	moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1476 }
1477 
1478 void
1479 moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1480 {
1481 	u_int		pte_lo;
1482 	int		error;
1483 
1484 #if 0
1485 	if (va < VM_MIN_KERNEL_ADDRESS)
1486 		panic("moea_kenter: attempt to enter non-kernel address %#x",
1487 		    va);
1488 #endif
1489 
1490 	pte_lo = moea_calc_wimg(pa, ma);
1491 
1492 	PMAP_LOCK(kernel_pmap);
1493 	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1494 	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1495 
1496 	if (error != 0 && error != ENOENT)
1497 		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1498 		    pa, error);
1499 
1500 	PMAP_UNLOCK(kernel_pmap);
1501 }
1502 
1503 /*
1504  * Extract the physical page address associated with the given kernel virtual
1505  * address.
1506  */
1507 vm_paddr_t
1508 moea_kextract(mmu_t mmu, vm_offset_t va)
1509 {
1510 	struct		pvo_entry *pvo;
1511 	vm_paddr_t pa;
1512 
1513 	/*
1514 	 * Allow direct mappings on 32-bit OEA
1515 	 */
1516 	if (va < VM_MIN_KERNEL_ADDRESS) {
1517 		return (va);
1518 	}
1519 
1520 	PMAP_LOCK(kernel_pmap);
1521 	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1522 	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1523 	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1524 	PMAP_UNLOCK(kernel_pmap);
1525 	return (pa);
1526 }
1527 
1528 /*
1529  * Remove a wired page from kernel virtual address space.
1530  */
1531 void
1532 moea_kremove(mmu_t mmu, vm_offset_t va)
1533 {
1534 
1535 	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1536 }
1537 
1538 /*
1539  * Map a range of physical addresses into kernel virtual address space.
1540  *
1541  * The value passed in *virt is a suggested virtual address for the mapping.
1542  * Architectures which can support a direct-mapped physical to virtual region
1543  * can return the appropriate address within that region, leaving '*virt'
1544  * unchanged.  We cannot and therefore do not; *virt is updated with the
1545  * first usable address after the mapped region.
1546  */
1547 vm_offset_t
1548 moea_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1549     vm_paddr_t pa_end, int prot)
1550 {
1551 	vm_offset_t	sva, va;
1552 
1553 	sva = *virt;
1554 	va = sva;
1555 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1556 		moea_kenter(mmu, va, pa_start);
1557 	*virt = va;
1558 	return (sva);
1559 }
1560 
1561 /*
1562  * Returns true if the pmap's pv is one of the first
1563  * 16 pvs linked to from this page.  This count may
1564  * be changed upwards or downwards in the future; it
1565  * is only necessary that true be returned for a small
1566  * subset of pmaps for proper page aging.
1567  */
1568 boolean_t
1569 moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1570 {
1571         int loops;
1572 	struct pvo_entry *pvo;
1573 	boolean_t rv;
1574 
1575 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1576 	    ("moea_page_exists_quick: page %p is not managed", m));
1577 	loops = 0;
1578 	rv = FALSE;
1579 	rw_wlock(&pvh_global_lock);
1580 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1581 		if (pvo->pvo_pmap == pmap) {
1582 			rv = TRUE;
1583 			break;
1584 		}
1585 		if (++loops >= 16)
1586 			break;
1587 	}
1588 	rw_wunlock(&pvh_global_lock);
1589 	return (rv);
1590 }
1591 
1592 /*
1593  * Return the number of managed mappings to the given physical page
1594  * that are wired.
1595  */
1596 int
1597 moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1598 {
1599 	struct pvo_entry *pvo;
1600 	int count;
1601 
1602 	count = 0;
1603 	if ((m->oflags & VPO_UNMANAGED) != 0)
1604 		return (count);
1605 	rw_wlock(&pvh_global_lock);
1606 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1607 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1608 			count++;
1609 	rw_wunlock(&pvh_global_lock);
1610 	return (count);
1611 }
1612 
1613 static u_int	moea_vsidcontext;
1614 
1615 void
1616 moea_pinit(mmu_t mmu, pmap_t pmap)
1617 {
1618 	int	i, mask;
1619 	u_int	entropy;
1620 
1621 	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1622 	PMAP_LOCK_INIT(pmap);
1623 	RB_INIT(&pmap->pmap_pvo);
1624 
1625 	entropy = 0;
1626 	__asm __volatile("mftb %0" : "=r"(entropy));
1627 
1628 	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1629 	    == NULL) {
1630 		pmap->pmap_phys = pmap;
1631 	}
1632 
1633 
1634 	mtx_lock(&moea_vsid_mutex);
1635 	/*
1636 	 * Allocate some segment registers for this pmap.
1637 	 */
1638 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1639 		u_int	hash, n;
1640 
1641 		/*
1642 		 * Create a new value by mutiplying by a prime and adding in
1643 		 * entropy from the timebase register.  This is to make the
1644 		 * VSID more random so that the PT hash function collides
1645 		 * less often.  (Note that the prime casues gcc to do shifts
1646 		 * instead of a multiply.)
1647 		 */
1648 		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1649 		hash = moea_vsidcontext & (NPMAPS - 1);
1650 		if (hash == 0)		/* 0 is special, avoid it */
1651 			continue;
1652 		n = hash >> 5;
1653 		mask = 1 << (hash & (VSID_NBPW - 1));
1654 		hash = (moea_vsidcontext & 0xfffff);
1655 		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1656 			/* anything free in this bucket? */
1657 			if (moea_vsid_bitmap[n] == 0xffffffff) {
1658 				entropy = (moea_vsidcontext >> 20);
1659 				continue;
1660 			}
1661 			i = ffs(~moea_vsid_bitmap[n]) - 1;
1662 			mask = 1 << i;
1663 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1664 			hash |= i;
1665 		}
1666 		KASSERT(!(moea_vsid_bitmap[n] & mask),
1667 		    ("Allocating in-use VSID group %#x\n", hash));
1668 		moea_vsid_bitmap[n] |= mask;
1669 		for (i = 0; i < 16; i++)
1670 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1671 		mtx_unlock(&moea_vsid_mutex);
1672 		return;
1673 	}
1674 
1675 	mtx_unlock(&moea_vsid_mutex);
1676 	panic("moea_pinit: out of segments");
1677 }
1678 
1679 /*
1680  * Initialize the pmap associated with process 0.
1681  */
1682 void
1683 moea_pinit0(mmu_t mmu, pmap_t pm)
1684 {
1685 
1686 	moea_pinit(mmu, pm);
1687 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1688 }
1689 
1690 /*
1691  * Set the physical protection on the specified range of this map as requested.
1692  */
1693 void
1694 moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1695     vm_prot_t prot)
1696 {
1697 	struct	pvo_entry *pvo, *tpvo, key;
1698 	struct	pte *pt;
1699 
1700 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1701 	    ("moea_protect: non current pmap"));
1702 
1703 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1704 		moea_remove(mmu, pm, sva, eva);
1705 		return;
1706 	}
1707 
1708 	rw_wlock(&pvh_global_lock);
1709 	PMAP_LOCK(pm);
1710 	key.pvo_vaddr = sva;
1711 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1712 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1713 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1714 		if ((prot & VM_PROT_EXECUTE) == 0)
1715 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1716 
1717 		/*
1718 		 * Grab the PTE pointer before we diddle with the cached PTE
1719 		 * copy.
1720 		 */
1721 		pt = moea_pvo_to_pte(pvo, -1);
1722 		/*
1723 		 * Change the protection of the page.
1724 		 */
1725 		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1726 		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1727 
1728 		/*
1729 		 * If the PVO is in the page table, update that pte as well.
1730 		 */
1731 		if (pt != NULL) {
1732 			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1733 			mtx_unlock(&moea_table_mutex);
1734 		}
1735 	}
1736 	rw_wunlock(&pvh_global_lock);
1737 	PMAP_UNLOCK(pm);
1738 }
1739 
1740 /*
1741  * Map a list of wired pages into kernel virtual address space.  This is
1742  * intended for temporary mappings which do not need page modification or
1743  * references recorded.  Existing mappings in the region are overwritten.
1744  */
1745 void
1746 moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1747 {
1748 	vm_offset_t va;
1749 
1750 	va = sva;
1751 	while (count-- > 0) {
1752 		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1753 		va += PAGE_SIZE;
1754 		m++;
1755 	}
1756 }
1757 
1758 /*
1759  * Remove page mappings from kernel virtual address space.  Intended for
1760  * temporary mappings entered by moea_qenter.
1761  */
1762 void
1763 moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1764 {
1765 	vm_offset_t va;
1766 
1767 	va = sva;
1768 	while (count-- > 0) {
1769 		moea_kremove(mmu, va);
1770 		va += PAGE_SIZE;
1771 	}
1772 }
1773 
1774 void
1775 moea_release(mmu_t mmu, pmap_t pmap)
1776 {
1777         int idx, mask;
1778 
1779 	/*
1780 	 * Free segment register's VSID
1781 	 */
1782         if (pmap->pm_sr[0] == 0)
1783                 panic("moea_release");
1784 
1785 	mtx_lock(&moea_vsid_mutex);
1786         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1787         mask = 1 << (idx % VSID_NBPW);
1788         idx /= VSID_NBPW;
1789         moea_vsid_bitmap[idx] &= ~mask;
1790 	mtx_unlock(&moea_vsid_mutex);
1791 	PMAP_LOCK_DESTROY(pmap);
1792 }
1793 
1794 /*
1795  * Remove the given range of addresses from the specified map.
1796  */
1797 void
1798 moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1799 {
1800 	struct	pvo_entry *pvo, *tpvo, key;
1801 
1802 	rw_wlock(&pvh_global_lock);
1803 	PMAP_LOCK(pm);
1804 	key.pvo_vaddr = sva;
1805 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1806 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1807 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1808 		moea_pvo_remove(pvo, -1);
1809 	}
1810 	PMAP_UNLOCK(pm);
1811 	rw_wunlock(&pvh_global_lock);
1812 }
1813 
1814 /*
1815  * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1816  * will reflect changes in pte's back to the vm_page.
1817  */
1818 void
1819 moea_remove_all(mmu_t mmu, vm_page_t m)
1820 {
1821 	struct  pvo_head *pvo_head;
1822 	struct	pvo_entry *pvo, *next_pvo;
1823 	pmap_t	pmap;
1824 
1825 	rw_wlock(&pvh_global_lock);
1826 	pvo_head = vm_page_to_pvoh(m);
1827 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1828 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1829 
1830 		pmap = pvo->pvo_pmap;
1831 		PMAP_LOCK(pmap);
1832 		moea_pvo_remove(pvo, -1);
1833 		PMAP_UNLOCK(pmap);
1834 	}
1835 	if ((m->aflags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
1836 		moea_attr_clear(m, PTE_CHG);
1837 		vm_page_dirty(m);
1838 	}
1839 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1840 	rw_wunlock(&pvh_global_lock);
1841 }
1842 
1843 /*
1844  * Allocate a physical page of memory directly from the phys_avail map.
1845  * Can only be called from moea_bootstrap before avail start and end are
1846  * calculated.
1847  */
1848 static vm_offset_t
1849 moea_bootstrap_alloc(vm_size_t size, u_int align)
1850 {
1851 	vm_offset_t	s, e;
1852 	int		i, j;
1853 
1854 	size = round_page(size);
1855 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1856 		if (align != 0)
1857 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1858 		else
1859 			s = phys_avail[i];
1860 		e = s + size;
1861 
1862 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1863 			continue;
1864 
1865 		if (s == phys_avail[i]) {
1866 			phys_avail[i] += size;
1867 		} else if (e == phys_avail[i + 1]) {
1868 			phys_avail[i + 1] -= size;
1869 		} else {
1870 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1871 				phys_avail[j] = phys_avail[j - 2];
1872 				phys_avail[j + 1] = phys_avail[j - 1];
1873 			}
1874 
1875 			phys_avail[i + 3] = phys_avail[i + 1];
1876 			phys_avail[i + 1] = s;
1877 			phys_avail[i + 2] = e;
1878 			phys_avail_count++;
1879 		}
1880 
1881 		return (s);
1882 	}
1883 	panic("moea_bootstrap_alloc: could not allocate memory");
1884 }
1885 
1886 static void
1887 moea_syncicache(vm_offset_t pa, vm_size_t len)
1888 {
1889 	__syncicache((void *)pa, len);
1890 }
1891 
1892 static int
1893 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1894     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1895 {
1896 	struct	pvo_entry *pvo;
1897 	u_int	sr;
1898 	int	first;
1899 	u_int	ptegidx;
1900 	int	i;
1901 	int     bootstrap;
1902 
1903 	moea_pvo_enter_calls++;
1904 	first = 0;
1905 	bootstrap = 0;
1906 
1907 	/*
1908 	 * Compute the PTE Group index.
1909 	 */
1910 	va &= ~ADDR_POFF;
1911 	sr = va_to_sr(pm->pm_sr, va);
1912 	ptegidx = va_to_pteg(sr, va);
1913 
1914 	/*
1915 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1916 	 * there is a mapping.
1917 	 */
1918 	mtx_lock(&moea_table_mutex);
1919 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1920 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1921 			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
1922 			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
1923 			    (pte_lo & PTE_PP)) {
1924 				mtx_unlock(&moea_table_mutex);
1925 				return (0);
1926 			}
1927 			moea_pvo_remove(pvo, -1);
1928 			break;
1929 		}
1930 	}
1931 
1932 	/*
1933 	 * If we aren't overwriting a mapping, try to allocate.
1934 	 */
1935 	if (moea_initialized) {
1936 		pvo = uma_zalloc(zone, M_NOWAIT);
1937 	} else {
1938 		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1939 			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1940 			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1941 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1942 		}
1943 		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1944 		moea_bpvo_pool_index++;
1945 		bootstrap = 1;
1946 	}
1947 
1948 	if (pvo == NULL) {
1949 		mtx_unlock(&moea_table_mutex);
1950 		return (ENOMEM);
1951 	}
1952 
1953 	moea_pvo_entries++;
1954 	pvo->pvo_vaddr = va;
1955 	pvo->pvo_pmap = pm;
1956 	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1957 	pvo->pvo_vaddr &= ~ADDR_POFF;
1958 	if (flags & VM_PROT_EXECUTE)
1959 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1960 	if (flags & PVO_WIRED)
1961 		pvo->pvo_vaddr |= PVO_WIRED;
1962 	if (pvo_head != &moea_pvo_kunmanaged)
1963 		pvo->pvo_vaddr |= PVO_MANAGED;
1964 	if (bootstrap)
1965 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1966 
1967 	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
1968 
1969 	/*
1970 	 * Add to pmap list
1971 	 */
1972 	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
1973 
1974 	/*
1975 	 * Remember if the list was empty and therefore will be the first
1976 	 * item.
1977 	 */
1978 	if (LIST_FIRST(pvo_head) == NULL)
1979 		first = 1;
1980 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1981 
1982 	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
1983 		pm->pm_stats.wired_count++;
1984 	pm->pm_stats.resident_count++;
1985 
1986 	/*
1987 	 * We hope this succeeds but it isn't required.
1988 	 */
1989 	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
1990 	if (i >= 0) {
1991 		PVO_PTEGIDX_SET(pvo, i);
1992 	} else {
1993 		panic("moea_pvo_enter: overflow");
1994 		moea_pte_overflow++;
1995 	}
1996 	mtx_unlock(&moea_table_mutex);
1997 
1998 	return (first ? ENOENT : 0);
1999 }
2000 
2001 static void
2002 moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
2003 {
2004 	struct	pte *pt;
2005 
2006 	/*
2007 	 * If there is an active pte entry, we need to deactivate it (and
2008 	 * save the ref & cfg bits).
2009 	 */
2010 	pt = moea_pvo_to_pte(pvo, pteidx);
2011 	if (pt != NULL) {
2012 		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2013 		mtx_unlock(&moea_table_mutex);
2014 		PVO_PTEGIDX_CLR(pvo);
2015 	} else {
2016 		moea_pte_overflow--;
2017 	}
2018 
2019 	/*
2020 	 * Update our statistics.
2021 	 */
2022 	pvo->pvo_pmap->pm_stats.resident_count--;
2023 	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
2024 		pvo->pvo_pmap->pm_stats.wired_count--;
2025 
2026 	/*
2027 	 * Save the REF/CHG bits into their cache if the page is managed.
2028 	 */
2029 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2030 		struct	vm_page *pg;
2031 
2032 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
2033 		if (pg != NULL) {
2034 			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2035 			    (PTE_REF | PTE_CHG));
2036 		}
2037 	}
2038 
2039 	/*
2040 	 * Remove this PVO from the PV and pmap lists.
2041 	 */
2042 	LIST_REMOVE(pvo, pvo_vlink);
2043 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2044 
2045 	/*
2046 	 * Remove this from the overflow list and return it to the pool
2047 	 * if we aren't going to reuse it.
2048 	 */
2049 	LIST_REMOVE(pvo, pvo_olink);
2050 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2051 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2052 		    moea_upvo_zone, pvo);
2053 	moea_pvo_entries--;
2054 	moea_pvo_remove_calls++;
2055 }
2056 
2057 static __inline int
2058 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2059 {
2060 	int	pteidx;
2061 
2062 	/*
2063 	 * We can find the actual pte entry without searching by grabbing
2064 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2065 	 * noticing the HID bit.
2066 	 */
2067 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2068 	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2069 		pteidx ^= moea_pteg_mask * 8;
2070 
2071 	return (pteidx);
2072 }
2073 
2074 static struct pvo_entry *
2075 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2076 {
2077 	struct	pvo_entry *pvo;
2078 	int	ptegidx;
2079 	u_int	sr;
2080 
2081 	va &= ~ADDR_POFF;
2082 	sr = va_to_sr(pm->pm_sr, va);
2083 	ptegidx = va_to_pteg(sr, va);
2084 
2085 	mtx_lock(&moea_table_mutex);
2086 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2087 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2088 			if (pteidx_p)
2089 				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2090 			break;
2091 		}
2092 	}
2093 	mtx_unlock(&moea_table_mutex);
2094 
2095 	return (pvo);
2096 }
2097 
2098 static struct pte *
2099 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2100 {
2101 	struct	pte *pt;
2102 
2103 	/*
2104 	 * If we haven't been supplied the ptegidx, calculate it.
2105 	 */
2106 	if (pteidx == -1) {
2107 		int	ptegidx;
2108 		u_int	sr;
2109 
2110 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2111 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2112 		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2113 	}
2114 
2115 	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2116 	mtx_lock(&moea_table_mutex);
2117 
2118 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2119 		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2120 		    "valid pte index", pvo);
2121 	}
2122 
2123 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2124 		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2125 		    "pvo but no valid pte", pvo);
2126 	}
2127 
2128 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2129 		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2130 			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2131 			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2132 		}
2133 
2134 		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2135 		    != 0) {
2136 			panic("moea_pvo_to_pte: pvo %p pte does not match "
2137 			    "pte %p in moea_pteg_table", pvo, pt);
2138 		}
2139 
2140 		mtx_assert(&moea_table_mutex, MA_OWNED);
2141 		return (pt);
2142 	}
2143 
2144 	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2145 		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2146 		    "moea_pteg_table but valid in pvo", pvo, pt);
2147 	}
2148 
2149 	mtx_unlock(&moea_table_mutex);
2150 	return (NULL);
2151 }
2152 
2153 /*
2154  * XXX: THIS STUFF SHOULD BE IN pte.c?
2155  */
2156 int
2157 moea_pte_spill(vm_offset_t addr)
2158 {
2159 	struct	pvo_entry *source_pvo, *victim_pvo;
2160 	struct	pvo_entry *pvo;
2161 	int	ptegidx, i, j;
2162 	u_int	sr;
2163 	struct	pteg *pteg;
2164 	struct	pte *pt;
2165 
2166 	moea_pte_spills++;
2167 
2168 	sr = mfsrin(addr);
2169 	ptegidx = va_to_pteg(sr, addr);
2170 
2171 	/*
2172 	 * Have to substitute some entry.  Use the primary hash for this.
2173 	 * Use low bits of timebase as random generator.
2174 	 */
2175 	pteg = &moea_pteg_table[ptegidx];
2176 	mtx_lock(&moea_table_mutex);
2177 	__asm __volatile("mftb %0" : "=r"(i));
2178 	i &= 7;
2179 	pt = &pteg->pt[i];
2180 
2181 	source_pvo = NULL;
2182 	victim_pvo = NULL;
2183 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2184 		/*
2185 		 * We need to find a pvo entry for this address.
2186 		 */
2187 		if (source_pvo == NULL &&
2188 		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2189 		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2190 			/*
2191 			 * Now found an entry to be spilled into the pteg.
2192 			 * The PTE is now valid, so we know it's active.
2193 			 */
2194 			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2195 
2196 			if (j >= 0) {
2197 				PVO_PTEGIDX_SET(pvo, j);
2198 				moea_pte_overflow--;
2199 				mtx_unlock(&moea_table_mutex);
2200 				return (1);
2201 			}
2202 
2203 			source_pvo = pvo;
2204 
2205 			if (victim_pvo != NULL)
2206 				break;
2207 		}
2208 
2209 		/*
2210 		 * We also need the pvo entry of the victim we are replacing
2211 		 * so save the R & C bits of the PTE.
2212 		 */
2213 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2214 		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2215 			victim_pvo = pvo;
2216 			if (source_pvo != NULL)
2217 				break;
2218 		}
2219 	}
2220 
2221 	if (source_pvo == NULL) {
2222 		mtx_unlock(&moea_table_mutex);
2223 		return (0);
2224 	}
2225 
2226 	if (victim_pvo == NULL) {
2227 		if ((pt->pte_hi & PTE_HID) == 0)
2228 			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2229 			    "entry", pt);
2230 
2231 		/*
2232 		 * If this is a secondary PTE, we need to search it's primary
2233 		 * pvo bucket for the matching PVO.
2234 		 */
2235 		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2236 		    pvo_olink) {
2237 			/*
2238 			 * We also need the pvo entry of the victim we are
2239 			 * replacing so save the R & C bits of the PTE.
2240 			 */
2241 			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2242 				victim_pvo = pvo;
2243 				break;
2244 			}
2245 		}
2246 
2247 		if (victim_pvo == NULL)
2248 			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2249 			    "entry", pt);
2250 	}
2251 
2252 	/*
2253 	 * We are invalidating the TLB entry for the EA we are replacing even
2254 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2255 	 * contained in the TLB entry.
2256 	 */
2257 	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2258 
2259 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2260 	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2261 
2262 	PVO_PTEGIDX_CLR(victim_pvo);
2263 	PVO_PTEGIDX_SET(source_pvo, i);
2264 	moea_pte_replacements++;
2265 
2266 	mtx_unlock(&moea_table_mutex);
2267 	return (1);
2268 }
2269 
2270 static int
2271 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2272 {
2273 	struct	pte *pt;
2274 	int	i;
2275 
2276 	mtx_assert(&moea_table_mutex, MA_OWNED);
2277 
2278 	/*
2279 	 * First try primary hash.
2280 	 */
2281 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2282 		if ((pt->pte_hi & PTE_VALID) == 0) {
2283 			pvo_pt->pte_hi &= ~PTE_HID;
2284 			moea_pte_set(pt, pvo_pt);
2285 			return (i);
2286 		}
2287 	}
2288 
2289 	/*
2290 	 * Now try secondary hash.
2291 	 */
2292 	ptegidx ^= moea_pteg_mask;
2293 
2294 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2295 		if ((pt->pte_hi & PTE_VALID) == 0) {
2296 			pvo_pt->pte_hi |= PTE_HID;
2297 			moea_pte_set(pt, pvo_pt);
2298 			return (i);
2299 		}
2300 	}
2301 
2302 	panic("moea_pte_insert: overflow");
2303 	return (-1);
2304 }
2305 
2306 static boolean_t
2307 moea_query_bit(vm_page_t m, int ptebit)
2308 {
2309 	struct	pvo_entry *pvo;
2310 	struct	pte *pt;
2311 
2312 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2313 	if (moea_attr_fetch(m) & ptebit)
2314 		return (TRUE);
2315 
2316 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2317 
2318 		/*
2319 		 * See if we saved the bit off.  If so, cache it and return
2320 		 * success.
2321 		 */
2322 		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2323 			moea_attr_save(m, ptebit);
2324 			return (TRUE);
2325 		}
2326 	}
2327 
2328 	/*
2329 	 * No luck, now go through the hard part of looking at the PTEs
2330 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2331 	 * the PTEs.
2332 	 */
2333 	powerpc_sync();
2334 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2335 
2336 		/*
2337 		 * See if this pvo has a valid PTE.  if so, fetch the
2338 		 * REF/CHG bits from the valid PTE.  If the appropriate
2339 		 * ptebit is set, cache it and return success.
2340 		 */
2341 		pt = moea_pvo_to_pte(pvo, -1);
2342 		if (pt != NULL) {
2343 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2344 			mtx_unlock(&moea_table_mutex);
2345 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2346 				moea_attr_save(m, ptebit);
2347 				return (TRUE);
2348 			}
2349 		}
2350 	}
2351 
2352 	return (FALSE);
2353 }
2354 
2355 static u_int
2356 moea_clear_bit(vm_page_t m, int ptebit)
2357 {
2358 	u_int	count;
2359 	struct	pvo_entry *pvo;
2360 	struct	pte *pt;
2361 
2362 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2363 
2364 	/*
2365 	 * Clear the cached value.
2366 	 */
2367 	moea_attr_clear(m, ptebit);
2368 
2369 	/*
2370 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2371 	 * we can reset the right ones).  note that since the pvo entries and
2372 	 * list heads are accessed via BAT0 and are never placed in the page
2373 	 * table, we don't have to worry about further accesses setting the
2374 	 * REF/CHG bits.
2375 	 */
2376 	powerpc_sync();
2377 
2378 	/*
2379 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2380 	 * valid pte clear the ptebit from the valid pte.
2381 	 */
2382 	count = 0;
2383 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2384 		pt = moea_pvo_to_pte(pvo, -1);
2385 		if (pt != NULL) {
2386 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2387 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2388 				count++;
2389 				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2390 			}
2391 			mtx_unlock(&moea_table_mutex);
2392 		}
2393 		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2394 	}
2395 
2396 	return (count);
2397 }
2398 
2399 /*
2400  * Return true if the physical range is encompassed by the battable[idx]
2401  */
2402 static int
2403 moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2404 {
2405 	u_int prot;
2406 	u_int32_t start;
2407 	u_int32_t end;
2408 	u_int32_t bat_ble;
2409 
2410 	/*
2411 	 * Return immediately if not a valid mapping
2412 	 */
2413 	if (!(battable[idx].batu & BAT_Vs))
2414 		return (EINVAL);
2415 
2416 	/*
2417 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2418 	 * so it can function as an i/o page
2419 	 */
2420 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2421 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2422 		return (EPERM);
2423 
2424 	/*
2425 	 * The address should be within the BAT range. Assume that the
2426 	 * start address in the BAT has the correct alignment (thus
2427 	 * not requiring masking)
2428 	 */
2429 	start = battable[idx].batl & BAT_PBS;
2430 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2431 	end = start | (bat_ble << 15) | 0x7fff;
2432 
2433 	if ((pa < start) || ((pa + size) > end))
2434 		return (ERANGE);
2435 
2436 	return (0);
2437 }
2438 
2439 boolean_t
2440 moea_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2441 {
2442 	int i;
2443 
2444 	/*
2445 	 * This currently does not work for entries that
2446 	 * overlap 256M BAT segments.
2447 	 */
2448 
2449 	for(i = 0; i < 16; i++)
2450 		if (moea_bat_mapped(i, pa, size) == 0)
2451 			return (0);
2452 
2453 	return (EFAULT);
2454 }
2455 
2456 /*
2457  * Map a set of physical memory pages into the kernel virtual
2458  * address space. Return a pointer to where it is mapped. This
2459  * routine is intended to be used for mapping device memory,
2460  * NOT real memory.
2461  */
2462 void *
2463 moea_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2464 {
2465 
2466 	return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2467 }
2468 
2469 void *
2470 moea_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2471 {
2472 	vm_offset_t va, tmpva, ppa, offset;
2473 	int i;
2474 
2475 	ppa = trunc_page(pa);
2476 	offset = pa & PAGE_MASK;
2477 	size = roundup(offset + size, PAGE_SIZE);
2478 
2479 	/*
2480 	 * If the physical address lies within a valid BAT table entry,
2481 	 * return the 1:1 mapping. This currently doesn't work
2482 	 * for regions that overlap 256M BAT segments.
2483 	 */
2484 	for (i = 0; i < 16; i++) {
2485 		if (moea_bat_mapped(i, pa, size) == 0)
2486 			return ((void *) pa);
2487 	}
2488 
2489 	va = kmem_alloc_nofault(kernel_map, size);
2490 	if (!va)
2491 		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2492 
2493 	for (tmpva = va; size > 0;) {
2494 		moea_kenter_attr(mmu, tmpva, ppa, ma);
2495 		tlbie(tmpva);
2496 		size -= PAGE_SIZE;
2497 		tmpva += PAGE_SIZE;
2498 		ppa += PAGE_SIZE;
2499 	}
2500 
2501 	return ((void *)(va + offset));
2502 }
2503 
2504 void
2505 moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2506 {
2507 	vm_offset_t base, offset;
2508 
2509 	/*
2510 	 * If this is outside kernel virtual space, then it's a
2511 	 * battable entry and doesn't require unmapping
2512 	 */
2513 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2514 		base = trunc_page(va);
2515 		offset = va & PAGE_MASK;
2516 		size = roundup(offset + size, PAGE_SIZE);
2517 		kmem_free(kernel_map, base, size);
2518 	}
2519 }
2520 
2521 static void
2522 moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2523 {
2524 	struct pvo_entry *pvo;
2525 	vm_offset_t lim;
2526 	vm_paddr_t pa;
2527 	vm_size_t len;
2528 
2529 	PMAP_LOCK(pm);
2530 	while (sz > 0) {
2531 		lim = round_page(va);
2532 		len = MIN(lim - va, sz);
2533 		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2534 		if (pvo != NULL) {
2535 			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2536 			    (va & ADDR_POFF);
2537 			moea_syncicache(pa, len);
2538 		}
2539 		va += len;
2540 		sz -= len;
2541 	}
2542 	PMAP_UNLOCK(pm);
2543 }
2544