xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision c22994e3ad2d05f45f5e9fc78140a5d6b3d7e567)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD AND BSD-4-Clause
3  *
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*-
32  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
33  * Copyright (C) 1995, 1996 TooLs GmbH.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgement:
46  *	This product includes software developed by TooLs GmbH.
47  * 4. The name of TooLs GmbH may not be used to endorse or promote products
48  *    derived from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
51  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
52  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
53  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
54  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
55  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
56  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
57  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
58  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
59  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
60  *
61  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
62  */
63 /*-
64  * Copyright (C) 2001 Benno Rice.
65  * All rights reserved.
66  *
67  * Redistribution and use in source and binary forms, with or without
68  * modification, are permitted provided that the following conditions
69  * are met:
70  * 1. Redistributions of source code must retain the above copyright
71  *    notice, this list of conditions and the following disclaimer.
72  * 2. Redistributions in binary form must reproduce the above copyright
73  *    notice, this list of conditions and the following disclaimer in the
74  *    documentation and/or other materials provided with the distribution.
75  *
76  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
77  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
78  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
79  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
80  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
81  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
82  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
83  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
84  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
85  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
86  */
87 
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90 
91 /*
92  * Manages physical address maps.
93  *
94  * Since the information managed by this module is also stored by the
95  * logical address mapping module, this module may throw away valid virtual
96  * to physical mappings at almost any time.  However, invalidations of
97  * mappings must be done as requested.
98  *
99  * In order to cope with hardware architectures which make virtual to
100  * physical map invalidates expensive, this module may delay invalidate
101  * reduced protection operations until such time as they are actually
102  * necessary.  This module is given full information as to which processors
103  * are currently using which maps, and to when physical maps must be made
104  * correct.
105  */
106 
107 #include "opt_kstack_pages.h"
108 
109 #include <sys/param.h>
110 #include <sys/kernel.h>
111 #include <sys/conf.h>
112 #include <sys/queue.h>
113 #include <sys/cpuset.h>
114 #include <sys/kerneldump.h>
115 #include <sys/ktr.h>
116 #include <sys/lock.h>
117 #include <sys/msgbuf.h>
118 #include <sys/mutex.h>
119 #include <sys/proc.h>
120 #include <sys/rwlock.h>
121 #include <sys/sched.h>
122 #include <sys/sysctl.h>
123 #include <sys/systm.h>
124 #include <sys/vmmeter.h>
125 
126 #include <dev/ofw/openfirm.h>
127 
128 #include <vm/vm.h>
129 #include <vm/vm_param.h>
130 #include <vm/vm_kern.h>
131 #include <vm/vm_page.h>
132 #include <vm/vm_map.h>
133 #include <vm/vm_object.h>
134 #include <vm/vm_extern.h>
135 #include <vm/vm_page.h>
136 #include <vm/vm_phys.h>
137 #include <vm/vm_pageout.h>
138 #include <vm/uma.h>
139 
140 #include <machine/cpu.h>
141 #include <machine/platform.h>
142 #include <machine/bat.h>
143 #include <machine/frame.h>
144 #include <machine/md_var.h>
145 #include <machine/psl.h>
146 #include <machine/pte.h>
147 #include <machine/smp.h>
148 #include <machine/sr.h>
149 #include <machine/mmuvar.h>
150 #include <machine/trap.h>
151 
152 #include "mmu_if.h"
153 
154 #define	MOEA_DEBUG
155 
156 #define TODO	panic("%s: not implemented", __func__);
157 
158 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
159 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
160 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
161 
162 struct ofw_map {
163 	vm_offset_t	om_va;
164 	vm_size_t	om_len;
165 	vm_offset_t	om_pa;
166 	u_int		om_mode;
167 };
168 
169 extern unsigned char _etext[];
170 extern unsigned char _end[];
171 
172 /*
173  * Map of physical memory regions.
174  */
175 static struct	mem_region *regions;
176 static struct	mem_region *pregions;
177 static u_int    phys_avail_count;
178 static int	regions_sz, pregions_sz;
179 static struct	ofw_map *translations;
180 
181 /*
182  * Lock for the pteg and pvo tables.
183  */
184 struct mtx	moea_table_mutex;
185 struct mtx	moea_vsid_mutex;
186 
187 /* tlbie instruction synchronization */
188 static struct mtx tlbie_mtx;
189 
190 /*
191  * PTEG data.
192  */
193 static struct	pteg *moea_pteg_table;
194 u_int		moea_pteg_count;
195 u_int		moea_pteg_mask;
196 
197 /*
198  * PVO data.
199  */
200 struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
201 struct	pvo_head moea_pvo_kunmanaged =
202     LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
203 
204 static struct rwlock_padalign pvh_global_lock;
205 
206 uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
207 uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
208 
209 #define	BPVO_POOL_SIZE	32768
210 static struct	pvo_entry *moea_bpvo_pool;
211 static int	moea_bpvo_pool_index = 0;
212 
213 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
214 static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
215 
216 static boolean_t moea_initialized = FALSE;
217 
218 /*
219  * Statistics.
220  */
221 u_int	moea_pte_valid = 0;
222 u_int	moea_pte_overflow = 0;
223 u_int	moea_pte_replacements = 0;
224 u_int	moea_pvo_entries = 0;
225 u_int	moea_pvo_enter_calls = 0;
226 u_int	moea_pvo_remove_calls = 0;
227 u_int	moea_pte_spills = 0;
228 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
229     0, "");
230 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
231     &moea_pte_overflow, 0, "");
232 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
233     &moea_pte_replacements, 0, "");
234 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
235     0, "");
236 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
237     &moea_pvo_enter_calls, 0, "");
238 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
239     &moea_pvo_remove_calls, 0, "");
240 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
241     &moea_pte_spills, 0, "");
242 
243 /*
244  * Allocate physical memory for use in moea_bootstrap.
245  */
246 static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
247 
248 /*
249  * PTE calls.
250  */
251 static int		moea_pte_insert(u_int, struct pte *);
252 
253 /*
254  * PVO calls.
255  */
256 static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
257 		    vm_offset_t, vm_paddr_t, u_int, int);
258 static void	moea_pvo_remove(struct pvo_entry *, int);
259 static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
260 static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
261 
262 /*
263  * Utility routines.
264  */
265 static int		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
266 			    vm_prot_t, u_int, int8_t);
267 static void		moea_syncicache(vm_paddr_t, vm_size_t);
268 static boolean_t	moea_query_bit(vm_page_t, int);
269 static u_int		moea_clear_bit(vm_page_t, int);
270 static void		moea_kremove(mmu_t, vm_offset_t);
271 int		moea_pte_spill(vm_offset_t);
272 
273 /*
274  * Kernel MMU interface
275  */
276 void moea_clear_modify(mmu_t, vm_page_t);
277 void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
278 void moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
279     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
280 int moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int,
281     int8_t);
282 void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
283     vm_prot_t);
284 void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
285 vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
286 vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
287 void moea_init(mmu_t);
288 boolean_t moea_is_modified(mmu_t, vm_page_t);
289 boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
290 boolean_t moea_is_referenced(mmu_t, vm_page_t);
291 int moea_ts_referenced(mmu_t, vm_page_t);
292 vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
293 boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
294 void moea_page_init(mmu_t, vm_page_t);
295 int moea_page_wired_mappings(mmu_t, vm_page_t);
296 void moea_pinit(mmu_t, pmap_t);
297 void moea_pinit0(mmu_t, pmap_t);
298 void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
299 void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
300 void moea_qremove(mmu_t, vm_offset_t, int);
301 void moea_release(mmu_t, pmap_t);
302 void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
303 void moea_remove_all(mmu_t, vm_page_t);
304 void moea_remove_write(mmu_t, vm_page_t);
305 void moea_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
306 void moea_zero_page(mmu_t, vm_page_t);
307 void moea_zero_page_area(mmu_t, vm_page_t, int, int);
308 void moea_activate(mmu_t, struct thread *);
309 void moea_deactivate(mmu_t, struct thread *);
310 void moea_cpu_bootstrap(mmu_t, int);
311 void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
312 void *moea_mapdev(mmu_t, vm_paddr_t, vm_size_t);
313 void *moea_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
314 void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
315 vm_paddr_t moea_kextract(mmu_t, vm_offset_t);
316 void moea_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
317 void moea_kenter(mmu_t, vm_offset_t, vm_paddr_t);
318 void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
319 boolean_t moea_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
320 static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
321 void moea_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va);
322 void moea_scan_init(mmu_t mmu);
323 vm_offset_t moea_quick_enter_page(mmu_t mmu, vm_page_t m);
324 void moea_quick_remove_page(mmu_t mmu, vm_offset_t addr);
325 static int moea_map_user_ptr(mmu_t mmu, pmap_t pm,
326     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
327 static int moea_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr,
328     int *is_user, vm_offset_t *decoded_addr);
329 
330 
331 static mmu_method_t moea_methods[] = {
332 	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
333 	MMUMETHOD(mmu_copy_page,	moea_copy_page),
334 	MMUMETHOD(mmu_copy_pages,	moea_copy_pages),
335 	MMUMETHOD(mmu_enter,		moea_enter),
336 	MMUMETHOD(mmu_enter_object,	moea_enter_object),
337 	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
338 	MMUMETHOD(mmu_extract,		moea_extract),
339 	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
340 	MMUMETHOD(mmu_init,		moea_init),
341 	MMUMETHOD(mmu_is_modified,	moea_is_modified),
342 	MMUMETHOD(mmu_is_prefaultable,	moea_is_prefaultable),
343 	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
344 	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
345 	MMUMETHOD(mmu_map,     		moea_map),
346 	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
347 	MMUMETHOD(mmu_page_init,	moea_page_init),
348 	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
349 	MMUMETHOD(mmu_pinit,		moea_pinit),
350 	MMUMETHOD(mmu_pinit0,		moea_pinit0),
351 	MMUMETHOD(mmu_protect,		moea_protect),
352 	MMUMETHOD(mmu_qenter,		moea_qenter),
353 	MMUMETHOD(mmu_qremove,		moea_qremove),
354 	MMUMETHOD(mmu_release,		moea_release),
355 	MMUMETHOD(mmu_remove,		moea_remove),
356 	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
357 	MMUMETHOD(mmu_remove_write,	moea_remove_write),
358 	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
359 	MMUMETHOD(mmu_unwire,		moea_unwire),
360 	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
361 	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
362 	MMUMETHOD(mmu_activate,		moea_activate),
363 	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
364 	MMUMETHOD(mmu_page_set_memattr,	moea_page_set_memattr),
365 	MMUMETHOD(mmu_quick_enter_page, moea_quick_enter_page),
366 	MMUMETHOD(mmu_quick_remove_page, moea_quick_remove_page),
367 
368 	/* Internal interfaces */
369 	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
370 	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
371 	MMUMETHOD(mmu_mapdev_attr,	moea_mapdev_attr),
372 	MMUMETHOD(mmu_mapdev,		moea_mapdev),
373 	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
374 	MMUMETHOD(mmu_kextract,		moea_kextract),
375 	MMUMETHOD(mmu_kenter,		moea_kenter),
376 	MMUMETHOD(mmu_kenter_attr,	moea_kenter_attr),
377 	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
378 	MMUMETHOD(mmu_scan_init,	moea_scan_init),
379 	MMUMETHOD(mmu_dumpsys_map,	moea_dumpsys_map),
380 	MMUMETHOD(mmu_map_user_ptr,	moea_map_user_ptr),
381 	MMUMETHOD(mmu_decode_kernel_ptr, moea_decode_kernel_ptr),
382 
383 	{ 0, 0 }
384 };
385 
386 MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
387 
388 static __inline uint32_t
389 moea_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
390 {
391 	uint32_t pte_lo;
392 	int i;
393 
394 	if (ma != VM_MEMATTR_DEFAULT) {
395 		switch (ma) {
396 		case VM_MEMATTR_UNCACHEABLE:
397 			return (PTE_I | PTE_G);
398 		case VM_MEMATTR_CACHEABLE:
399 			return (PTE_M);
400 		case VM_MEMATTR_WRITE_COMBINING:
401 		case VM_MEMATTR_WRITE_BACK:
402 		case VM_MEMATTR_PREFETCHABLE:
403 			return (PTE_I);
404 		case VM_MEMATTR_WRITE_THROUGH:
405 			return (PTE_W | PTE_M);
406 		}
407 	}
408 
409 	/*
410 	 * Assume the page is cache inhibited and access is guarded unless
411 	 * it's in our available memory array.
412 	 */
413 	pte_lo = PTE_I | PTE_G;
414 	for (i = 0; i < pregions_sz; i++) {
415 		if ((pa >= pregions[i].mr_start) &&
416 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
417 			pte_lo = PTE_M;
418 			break;
419 		}
420 	}
421 
422 	return pte_lo;
423 }
424 
425 static void
426 tlbie(vm_offset_t va)
427 {
428 
429 	mtx_lock_spin(&tlbie_mtx);
430 	__asm __volatile("ptesync");
431 	__asm __volatile("tlbie %0" :: "r"(va));
432 	__asm __volatile("eieio; tlbsync; ptesync");
433 	mtx_unlock_spin(&tlbie_mtx);
434 }
435 
436 static void
437 tlbia(void)
438 {
439 	vm_offset_t va;
440 
441 	for (va = 0; va < 0x00040000; va += 0x00001000) {
442 		__asm __volatile("tlbie %0" :: "r"(va));
443 		powerpc_sync();
444 	}
445 	__asm __volatile("tlbsync");
446 	powerpc_sync();
447 }
448 
449 static __inline int
450 va_to_sr(u_int *sr, vm_offset_t va)
451 {
452 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
453 }
454 
455 static __inline u_int
456 va_to_pteg(u_int sr, vm_offset_t addr)
457 {
458 	u_int hash;
459 
460 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
461 	    ADDR_PIDX_SHFT);
462 	return (hash & moea_pteg_mask);
463 }
464 
465 static __inline struct pvo_head *
466 vm_page_to_pvoh(vm_page_t m)
467 {
468 
469 	return (&m->md.mdpg_pvoh);
470 }
471 
472 static __inline void
473 moea_attr_clear(vm_page_t m, int ptebit)
474 {
475 
476 	rw_assert(&pvh_global_lock, RA_WLOCKED);
477 	m->md.mdpg_attrs &= ~ptebit;
478 }
479 
480 static __inline int
481 moea_attr_fetch(vm_page_t m)
482 {
483 
484 	return (m->md.mdpg_attrs);
485 }
486 
487 static __inline void
488 moea_attr_save(vm_page_t m, int ptebit)
489 {
490 
491 	rw_assert(&pvh_global_lock, RA_WLOCKED);
492 	m->md.mdpg_attrs |= ptebit;
493 }
494 
495 static __inline int
496 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
497 {
498 	if (pt->pte_hi == pvo_pt->pte_hi)
499 		return (1);
500 
501 	return (0);
502 }
503 
504 static __inline int
505 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
506 {
507 	return (pt->pte_hi & ~PTE_VALID) ==
508 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
509 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
510 }
511 
512 static __inline void
513 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
514 {
515 
516 	mtx_assert(&moea_table_mutex, MA_OWNED);
517 
518 	/*
519 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
520 	 * set when the real pte is set in memory.
521 	 *
522 	 * Note: Don't set the valid bit for correct operation of tlb update.
523 	 */
524 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
525 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
526 	pt->pte_lo = pte_lo;
527 }
528 
529 static __inline void
530 moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
531 {
532 
533 	mtx_assert(&moea_table_mutex, MA_OWNED);
534 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
535 }
536 
537 static __inline void
538 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
539 {
540 
541 	mtx_assert(&moea_table_mutex, MA_OWNED);
542 
543 	/*
544 	 * As shown in Section 7.6.3.2.3
545 	 */
546 	pt->pte_lo &= ~ptebit;
547 	tlbie(va);
548 }
549 
550 static __inline void
551 moea_pte_set(struct pte *pt, struct pte *pvo_pt)
552 {
553 
554 	mtx_assert(&moea_table_mutex, MA_OWNED);
555 	pvo_pt->pte_hi |= PTE_VALID;
556 
557 	/*
558 	 * Update the PTE as defined in section 7.6.3.1.
559 	 * Note that the REF/CHG bits are from pvo_pt and thus should have
560 	 * been saved so this routine can restore them (if desired).
561 	 */
562 	pt->pte_lo = pvo_pt->pte_lo;
563 	powerpc_sync();
564 	pt->pte_hi = pvo_pt->pte_hi;
565 	powerpc_sync();
566 	moea_pte_valid++;
567 }
568 
569 static __inline void
570 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
571 {
572 
573 	mtx_assert(&moea_table_mutex, MA_OWNED);
574 	pvo_pt->pte_hi &= ~PTE_VALID;
575 
576 	/*
577 	 * Force the reg & chg bits back into the PTEs.
578 	 */
579 	powerpc_sync();
580 
581 	/*
582 	 * Invalidate the pte.
583 	 */
584 	pt->pte_hi &= ~PTE_VALID;
585 
586 	tlbie(va);
587 
588 	/*
589 	 * Save the reg & chg bits.
590 	 */
591 	moea_pte_synch(pt, pvo_pt);
592 	moea_pte_valid--;
593 }
594 
595 static __inline void
596 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
597 {
598 
599 	/*
600 	 * Invalidate the PTE
601 	 */
602 	moea_pte_unset(pt, pvo_pt, va);
603 	moea_pte_set(pt, pvo_pt);
604 }
605 
606 /*
607  * Quick sort callout for comparing memory regions.
608  */
609 static int	om_cmp(const void *a, const void *b);
610 
611 static int
612 om_cmp(const void *a, const void *b)
613 {
614 	const struct	ofw_map *mapa;
615 	const struct	ofw_map *mapb;
616 
617 	mapa = a;
618 	mapb = b;
619 	if (mapa->om_pa < mapb->om_pa)
620 		return (-1);
621 	else if (mapa->om_pa > mapb->om_pa)
622 		return (1);
623 	else
624 		return (0);
625 }
626 
627 void
628 moea_cpu_bootstrap(mmu_t mmup, int ap)
629 {
630 	u_int sdr;
631 	int i;
632 
633 	if (ap) {
634 		powerpc_sync();
635 		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
636 		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
637 		isync();
638 		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
639 		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
640 		isync();
641 	}
642 
643 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
644 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
645 	isync();
646 
647 	__asm __volatile("mtibatu 1,%0" :: "r"(0));
648 	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
649 	__asm __volatile("mtibatu 2,%0" :: "r"(0));
650 	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
651 	__asm __volatile("mtibatu 3,%0" :: "r"(0));
652 	isync();
653 
654 	for (i = 0; i < 16; i++)
655 		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
656 	powerpc_sync();
657 
658 	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
659 	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
660 	isync();
661 
662 	tlbia();
663 }
664 
665 void
666 moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
667 {
668 	ihandle_t	mmui;
669 	phandle_t	chosen, mmu;
670 	int		sz;
671 	int		i, j;
672 	vm_size_t	size, physsz, hwphyssz;
673 	vm_offset_t	pa, va, off;
674 	void		*dpcpu;
675 	register_t	msr;
676 
677         /*
678          * Set up BAT0 to map the lowest 256 MB area
679          */
680         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
681         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
682 
683 	/*
684 	 * Map PCI memory space.
685 	 */
686 	battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
687 	battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
688 
689 	battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
690 	battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
691 
692 	battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
693 	battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
694 
695 	battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
696 	battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
697 
698 	/*
699 	 * Map obio devices.
700 	 */
701 	battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
702 	battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
703 
704 	/*
705 	 * Use an IBAT and a DBAT to map the bottom segment of memory
706 	 * where we are. Turn off instruction relocation temporarily
707 	 * to prevent faults while reprogramming the IBAT.
708 	 */
709 	msr = mfmsr();
710 	mtmsr(msr & ~PSL_IR);
711 	__asm (".balign 32; \n"
712 	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
713 	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
714 	    :: "r"(battable[0].batu), "r"(battable[0].batl));
715 	mtmsr(msr);
716 
717 	/* map pci space */
718 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
719 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
720 	isync();
721 
722 	/* set global direct map flag */
723 	hw_direct_map = 1;
724 
725 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
726 	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
727 
728 	for (i = 0; i < pregions_sz; i++) {
729 		vm_offset_t pa;
730 		vm_offset_t end;
731 
732 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
733 			pregions[i].mr_start,
734 			pregions[i].mr_start + pregions[i].mr_size,
735 			pregions[i].mr_size);
736 		/*
737 		 * Install entries into the BAT table to allow all
738 		 * of physmem to be convered by on-demand BAT entries.
739 		 * The loop will sometimes set the same battable element
740 		 * twice, but that's fine since they won't be used for
741 		 * a while yet.
742 		 */
743 		pa = pregions[i].mr_start & 0xf0000000;
744 		end = pregions[i].mr_start + pregions[i].mr_size;
745 		do {
746                         u_int n = pa >> ADDR_SR_SHFT;
747 
748 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
749 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
750 			pa += SEGMENT_LENGTH;
751 		} while (pa < end);
752 	}
753 
754 	if (PHYS_AVAIL_ENTRIES < regions_sz)
755 		panic("moea_bootstrap: phys_avail too small");
756 
757 	phys_avail_count = 0;
758 	physsz = 0;
759 	hwphyssz = 0;
760 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
761 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
762 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
763 		    regions[i].mr_start + regions[i].mr_size,
764 		    regions[i].mr_size);
765 		if (hwphyssz != 0 &&
766 		    (physsz + regions[i].mr_size) >= hwphyssz) {
767 			if (physsz < hwphyssz) {
768 				phys_avail[j] = regions[i].mr_start;
769 				phys_avail[j + 1] = regions[i].mr_start +
770 				    hwphyssz - physsz;
771 				physsz = hwphyssz;
772 				phys_avail_count++;
773 			}
774 			break;
775 		}
776 		phys_avail[j] = regions[i].mr_start;
777 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
778 		phys_avail_count++;
779 		physsz += regions[i].mr_size;
780 	}
781 
782 	/* Check for overlap with the kernel and exception vectors */
783 	for (j = 0; j < 2*phys_avail_count; j+=2) {
784 		if (phys_avail[j] < EXC_LAST)
785 			phys_avail[j] += EXC_LAST;
786 
787 		if (kernelstart >= phys_avail[j] &&
788 		    kernelstart < phys_avail[j+1]) {
789 			if (kernelend < phys_avail[j+1]) {
790 				phys_avail[2*phys_avail_count] =
791 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
792 				phys_avail[2*phys_avail_count + 1] =
793 				    phys_avail[j+1];
794 				phys_avail_count++;
795 			}
796 
797 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
798 		}
799 
800 		if (kernelend >= phys_avail[j] &&
801 		    kernelend < phys_avail[j+1]) {
802 			if (kernelstart > phys_avail[j]) {
803 				phys_avail[2*phys_avail_count] = phys_avail[j];
804 				phys_avail[2*phys_avail_count + 1] =
805 				    kernelstart & ~PAGE_MASK;
806 				phys_avail_count++;
807 			}
808 
809 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
810 		}
811 	}
812 
813 	physmem = btoc(physsz);
814 
815 	/*
816 	 * Allocate PTEG table.
817 	 */
818 #ifdef PTEGCOUNT
819 	moea_pteg_count = PTEGCOUNT;
820 #else
821 	moea_pteg_count = 0x1000;
822 
823 	while (moea_pteg_count < physmem)
824 		moea_pteg_count <<= 1;
825 
826 	moea_pteg_count >>= 1;
827 #endif /* PTEGCOUNT */
828 
829 	size = moea_pteg_count * sizeof(struct pteg);
830 	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
831 	    size);
832 	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
833 	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
834 	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
835 	moea_pteg_mask = moea_pteg_count - 1;
836 
837 	/*
838 	 * Allocate pv/overflow lists.
839 	 */
840 	size = sizeof(struct pvo_head) * moea_pteg_count;
841 	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
842 	    PAGE_SIZE);
843 	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
844 	for (i = 0; i < moea_pteg_count; i++)
845 		LIST_INIT(&moea_pvo_table[i]);
846 
847 	/*
848 	 * Initialize the lock that synchronizes access to the pteg and pvo
849 	 * tables.
850 	 */
851 	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
852 	    MTX_RECURSE);
853 	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
854 
855 	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
856 
857 	/*
858 	 * Initialise the unmanaged pvo pool.
859 	 */
860 	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
861 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
862 	moea_bpvo_pool_index = 0;
863 
864 	/*
865 	 * Make sure kernel vsid is allocated as well as VSID 0.
866 	 */
867 	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
868 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
869 	moea_vsid_bitmap[0] |= 1;
870 
871 	/*
872 	 * Initialize the kernel pmap (which is statically allocated).
873 	 */
874 	PMAP_LOCK_INIT(kernel_pmap);
875 	for (i = 0; i < 16; i++)
876 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
877 	CPU_FILL(&kernel_pmap->pm_active);
878 	RB_INIT(&kernel_pmap->pmap_pvo);
879 
880  	/*
881 	 * Initialize the global pv list lock.
882 	 */
883 	rw_init(&pvh_global_lock, "pmap pv global");
884 
885 	/*
886 	 * Set up the Open Firmware mappings
887 	 */
888 	chosen = OF_finddevice("/chosen");
889 	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
890 	    (mmu = OF_instance_to_package(mmui)) != -1 &&
891 	    (sz = OF_getproplen(mmu, "translations")) != -1) {
892 		translations = NULL;
893 		for (i = 0; phys_avail[i] != 0; i += 2) {
894 			if (phys_avail[i + 1] >= sz) {
895 				translations = (struct ofw_map *)phys_avail[i];
896 				break;
897 			}
898 		}
899 		if (translations == NULL)
900 			panic("moea_bootstrap: no space to copy translations");
901 		bzero(translations, sz);
902 		if (OF_getprop(mmu, "translations", translations, sz) == -1)
903 			panic("moea_bootstrap: can't get ofw translations");
904 		CTR0(KTR_PMAP, "moea_bootstrap: translations");
905 		sz /= sizeof(*translations);
906 		qsort(translations, sz, sizeof (*translations), om_cmp);
907 		for (i = 0; i < sz; i++) {
908 			CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
909 			    translations[i].om_pa, translations[i].om_va,
910 			    translations[i].om_len);
911 
912 			/*
913 			 * If the mapping is 1:1, let the RAM and device
914 			 * on-demand BAT tables take care of the translation.
915 			 */
916 			if (translations[i].om_va == translations[i].om_pa)
917 				continue;
918 
919 			/* Enter the pages */
920 			for (off = 0; off < translations[i].om_len;
921 			    off += PAGE_SIZE)
922 				moea_kenter(mmup, translations[i].om_va + off,
923 					    translations[i].om_pa + off);
924 		}
925 	}
926 
927 	/*
928 	 * Calculate the last available physical address.
929 	 */
930 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
931 		;
932 	Maxmem = powerpc_btop(phys_avail[i + 1]);
933 
934 	moea_cpu_bootstrap(mmup,0);
935 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
936 	pmap_bootstrapped++;
937 
938 	/*
939 	 * Set the start and end of kva.
940 	 */
941 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
942 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
943 
944 	/*
945 	 * Allocate a kernel stack with a guard page for thread0 and map it
946 	 * into the kernel page map.
947 	 */
948 	pa = moea_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
949 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
950 	virtual_avail = va + kstack_pages * PAGE_SIZE;
951 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
952 	thread0.td_kstack = va;
953 	thread0.td_kstack_pages = kstack_pages;
954 	for (i = 0; i < kstack_pages; i++) {
955 		moea_kenter(mmup, va, pa);
956 		pa += PAGE_SIZE;
957 		va += PAGE_SIZE;
958 	}
959 
960 	/*
961 	 * Allocate virtual address space for the message buffer.
962 	 */
963 	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
964 	msgbufp = (struct msgbuf *)virtual_avail;
965 	va = virtual_avail;
966 	virtual_avail += round_page(msgbufsize);
967 	while (va < virtual_avail) {
968 		moea_kenter(mmup, va, pa);
969 		pa += PAGE_SIZE;
970 		va += PAGE_SIZE;
971 	}
972 
973 	/*
974 	 * Allocate virtual address space for the dynamic percpu area.
975 	 */
976 	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
977 	dpcpu = (void *)virtual_avail;
978 	va = virtual_avail;
979 	virtual_avail += DPCPU_SIZE;
980 	while (va < virtual_avail) {
981 		moea_kenter(mmup, va, pa);
982 		pa += PAGE_SIZE;
983 		va += PAGE_SIZE;
984 	}
985 	dpcpu_init(dpcpu, 0);
986 }
987 
988 /*
989  * Activate a user pmap.  The pmap must be activated before it's address
990  * space can be accessed in any way.
991  */
992 void
993 moea_activate(mmu_t mmu, struct thread *td)
994 {
995 	pmap_t	pm, pmr;
996 
997 	/*
998 	 * Load all the data we need up front to encourage the compiler to
999 	 * not issue any loads while we have interrupts disabled below.
1000 	 */
1001 	pm = &td->td_proc->p_vmspace->vm_pmap;
1002 	pmr = pm->pmap_phys;
1003 
1004 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1005 	PCPU_SET(curpmap, pmr);
1006 
1007 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1008 }
1009 
1010 void
1011 moea_deactivate(mmu_t mmu, struct thread *td)
1012 {
1013 	pmap_t	pm;
1014 
1015 	pm = &td->td_proc->p_vmspace->vm_pmap;
1016 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1017 	PCPU_SET(curpmap, NULL);
1018 }
1019 
1020 void
1021 moea_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1022 {
1023 	struct	pvo_entry key, *pvo;
1024 
1025 	PMAP_LOCK(pm);
1026 	key.pvo_vaddr = sva;
1027 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1028 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1029 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1030 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1031 			panic("moea_unwire: pvo %p is missing PVO_WIRED", pvo);
1032 		pvo->pvo_vaddr &= ~PVO_WIRED;
1033 		pm->pm_stats.wired_count--;
1034 	}
1035 	PMAP_UNLOCK(pm);
1036 }
1037 
1038 void
1039 moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1040 {
1041 	vm_offset_t	dst;
1042 	vm_offset_t	src;
1043 
1044 	dst = VM_PAGE_TO_PHYS(mdst);
1045 	src = VM_PAGE_TO_PHYS(msrc);
1046 
1047 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
1048 }
1049 
1050 void
1051 moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1052     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1053 {
1054 	void *a_cp, *b_cp;
1055 	vm_offset_t a_pg_offset, b_pg_offset;
1056 	int cnt;
1057 
1058 	while (xfersize > 0) {
1059 		a_pg_offset = a_offset & PAGE_MASK;
1060 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1061 		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1062 		    a_pg_offset;
1063 		b_pg_offset = b_offset & PAGE_MASK;
1064 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1065 		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1066 		    b_pg_offset;
1067 		bcopy(a_cp, b_cp, cnt);
1068 		a_offset += cnt;
1069 		b_offset += cnt;
1070 		xfersize -= cnt;
1071 	}
1072 }
1073 
1074 /*
1075  * Zero a page of physical memory by temporarily mapping it into the tlb.
1076  */
1077 void
1078 moea_zero_page(mmu_t mmu, vm_page_t m)
1079 {
1080 	vm_offset_t off, pa = VM_PAGE_TO_PHYS(m);
1081 
1082 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1083 		__asm __volatile("dcbz 0,%0" :: "r"(pa + off));
1084 }
1085 
1086 void
1087 moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1088 {
1089 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1090 	void *va = (void *)(pa + off);
1091 
1092 	bzero(va, size);
1093 }
1094 
1095 vm_offset_t
1096 moea_quick_enter_page(mmu_t mmu, vm_page_t m)
1097 {
1098 
1099 	return (VM_PAGE_TO_PHYS(m));
1100 }
1101 
1102 void
1103 moea_quick_remove_page(mmu_t mmu, vm_offset_t addr)
1104 {
1105 }
1106 
1107 /*
1108  * Map the given physical page at the specified virtual address in the
1109  * target pmap with the protection requested.  If specified the page
1110  * will be wired down.
1111  */
1112 int
1113 moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1114     u_int flags, int8_t psind)
1115 {
1116 	int error;
1117 
1118 	for (;;) {
1119 		rw_wlock(&pvh_global_lock);
1120 		PMAP_LOCK(pmap);
1121 		error = moea_enter_locked(pmap, va, m, prot, flags, psind);
1122 		rw_wunlock(&pvh_global_lock);
1123 		PMAP_UNLOCK(pmap);
1124 		if (error != ENOMEM)
1125 			return (KERN_SUCCESS);
1126 		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1127 			return (KERN_RESOURCE_SHORTAGE);
1128 		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1129 		vm_wait(NULL);
1130 	}
1131 }
1132 
1133 /*
1134  * Map the given physical page at the specified virtual address in the
1135  * target pmap with the protection requested.  If specified the page
1136  * will be wired down.
1137  *
1138  * The global pvh and pmap must be locked.
1139  */
1140 static int
1141 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1142     u_int flags, int8_t psind __unused)
1143 {
1144 	struct		pvo_head *pvo_head;
1145 	uma_zone_t	zone;
1146 	u_int		pte_lo, pvo_flags;
1147 	int		error;
1148 
1149 	if (pmap_bootstrapped)
1150 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1151 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1152 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1153 		VM_OBJECT_ASSERT_LOCKED(m->object);
1154 
1155 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea_initialized) {
1156 		pvo_head = &moea_pvo_kunmanaged;
1157 		zone = moea_upvo_zone;
1158 		pvo_flags = 0;
1159 	} else {
1160 		pvo_head = vm_page_to_pvoh(m);
1161 		zone = moea_mpvo_zone;
1162 		pvo_flags = PVO_MANAGED;
1163 	}
1164 
1165 	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1166 
1167 	if (prot & VM_PROT_WRITE) {
1168 		pte_lo |= PTE_BW;
1169 		if (pmap_bootstrapped &&
1170 		    (m->oflags & VPO_UNMANAGED) == 0)
1171 			vm_page_aflag_set(m, PGA_WRITEABLE);
1172 	} else
1173 		pte_lo |= PTE_BR;
1174 
1175 	if ((flags & PMAP_ENTER_WIRED) != 0)
1176 		pvo_flags |= PVO_WIRED;
1177 
1178 	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1179 	    pte_lo, pvo_flags);
1180 
1181 	/*
1182 	 * Flush the real page from the instruction cache. This has be done
1183 	 * for all user mappings to prevent information leakage via the
1184 	 * instruction cache. moea_pvo_enter() returns ENOENT for the first
1185 	 * mapping for a page.
1186 	 */
1187 	if (pmap != kernel_pmap && error == ENOENT &&
1188 	    (pte_lo & (PTE_I | PTE_G)) == 0)
1189 		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1190 
1191 	return (error);
1192 }
1193 
1194 /*
1195  * Maps a sequence of resident pages belonging to the same object.
1196  * The sequence begins with the given page m_start.  This page is
1197  * mapped at the given virtual address start.  Each subsequent page is
1198  * mapped at a virtual address that is offset from start by the same
1199  * amount as the page is offset from m_start within the object.  The
1200  * last page in the sequence is the page with the largest offset from
1201  * m_start that can be mapped at a virtual address less than the given
1202  * virtual address end.  Not every virtual page between start and end
1203  * is mapped; only those for which a resident page exists with the
1204  * corresponding offset from m_start are mapped.
1205  */
1206 void
1207 moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1208     vm_page_t m_start, vm_prot_t prot)
1209 {
1210 	vm_page_t m;
1211 	vm_pindex_t diff, psize;
1212 
1213 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1214 
1215 	psize = atop(end - start);
1216 	m = m_start;
1217 	rw_wlock(&pvh_global_lock);
1218 	PMAP_LOCK(pm);
1219 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1220 		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1221 		    (VM_PROT_READ | VM_PROT_EXECUTE), 0, 0);
1222 		m = TAILQ_NEXT(m, listq);
1223 	}
1224 	rw_wunlock(&pvh_global_lock);
1225 	PMAP_UNLOCK(pm);
1226 }
1227 
1228 void
1229 moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1230     vm_prot_t prot)
1231 {
1232 
1233 	rw_wlock(&pvh_global_lock);
1234 	PMAP_LOCK(pm);
1235 	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1236 	    0, 0);
1237 	rw_wunlock(&pvh_global_lock);
1238 	PMAP_UNLOCK(pm);
1239 }
1240 
1241 vm_paddr_t
1242 moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1243 {
1244 	struct	pvo_entry *pvo;
1245 	vm_paddr_t pa;
1246 
1247 	PMAP_LOCK(pm);
1248 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1249 	if (pvo == NULL)
1250 		pa = 0;
1251 	else
1252 		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1253 	PMAP_UNLOCK(pm);
1254 	return (pa);
1255 }
1256 
1257 /*
1258  * Atomically extract and hold the physical page with the given
1259  * pmap and virtual address pair if that mapping permits the given
1260  * protection.
1261  */
1262 vm_page_t
1263 moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1264 {
1265 	struct	pvo_entry *pvo;
1266 	vm_page_t m;
1267         vm_paddr_t pa;
1268 
1269 	m = NULL;
1270 	pa = 0;
1271 	PMAP_LOCK(pmap);
1272 retry:
1273 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1274 	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1275 	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1276 	     (prot & VM_PROT_WRITE) == 0)) {
1277 		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1278 			goto retry;
1279 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1280 		vm_page_wire(m);
1281 	}
1282 	PA_UNLOCK_COND(pa);
1283 	PMAP_UNLOCK(pmap);
1284 	return (m);
1285 }
1286 
1287 void
1288 moea_init(mmu_t mmu)
1289 {
1290 
1291 	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1292 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1293 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1294 	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1295 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1296 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1297 	moea_initialized = TRUE;
1298 }
1299 
1300 boolean_t
1301 moea_is_referenced(mmu_t mmu, vm_page_t m)
1302 {
1303 	boolean_t rv;
1304 
1305 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1306 	    ("moea_is_referenced: page %p is not managed", m));
1307 	rw_wlock(&pvh_global_lock);
1308 	rv = moea_query_bit(m, PTE_REF);
1309 	rw_wunlock(&pvh_global_lock);
1310 	return (rv);
1311 }
1312 
1313 boolean_t
1314 moea_is_modified(mmu_t mmu, vm_page_t m)
1315 {
1316 	boolean_t rv;
1317 
1318 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1319 	    ("moea_is_modified: page %p is not managed", m));
1320 
1321 	/*
1322 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1323 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1324 	 * is clear, no PTEs can have PTE_CHG set.
1325 	 */
1326 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1327 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1328 		return (FALSE);
1329 	rw_wlock(&pvh_global_lock);
1330 	rv = moea_query_bit(m, PTE_CHG);
1331 	rw_wunlock(&pvh_global_lock);
1332 	return (rv);
1333 }
1334 
1335 boolean_t
1336 moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1337 {
1338 	struct pvo_entry *pvo;
1339 	boolean_t rv;
1340 
1341 	PMAP_LOCK(pmap);
1342 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1343 	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1344 	PMAP_UNLOCK(pmap);
1345 	return (rv);
1346 }
1347 
1348 void
1349 moea_clear_modify(mmu_t mmu, vm_page_t m)
1350 {
1351 
1352 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1353 	    ("moea_clear_modify: page %p is not managed", m));
1354 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1355 	KASSERT(!vm_page_xbusied(m),
1356 	    ("moea_clear_modify: page %p is exclusive busy", m));
1357 
1358 	/*
1359 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_CHG
1360 	 * set.  If the object containing the page is locked and the page is
1361 	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1362 	 */
1363 	if ((m->aflags & PGA_WRITEABLE) == 0)
1364 		return;
1365 	rw_wlock(&pvh_global_lock);
1366 	moea_clear_bit(m, PTE_CHG);
1367 	rw_wunlock(&pvh_global_lock);
1368 }
1369 
1370 /*
1371  * Clear the write and modified bits in each of the given page's mappings.
1372  */
1373 void
1374 moea_remove_write(mmu_t mmu, vm_page_t m)
1375 {
1376 	struct	pvo_entry *pvo;
1377 	struct	pte *pt;
1378 	pmap_t	pmap;
1379 	u_int	lo;
1380 
1381 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1382 	    ("moea_remove_write: page %p is not managed", m));
1383 
1384 	/*
1385 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1386 	 * set by another thread while the object is locked.  Thus,
1387 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1388 	 */
1389 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1390 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1391 		return;
1392 	rw_wlock(&pvh_global_lock);
1393 	lo = moea_attr_fetch(m);
1394 	powerpc_sync();
1395 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1396 		pmap = pvo->pvo_pmap;
1397 		PMAP_LOCK(pmap);
1398 		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1399 			pt = moea_pvo_to_pte(pvo, -1);
1400 			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1401 			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1402 			if (pt != NULL) {
1403 				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1404 				lo |= pvo->pvo_pte.pte.pte_lo;
1405 				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1406 				moea_pte_change(pt, &pvo->pvo_pte.pte,
1407 				    pvo->pvo_vaddr);
1408 				mtx_unlock(&moea_table_mutex);
1409 			}
1410 		}
1411 		PMAP_UNLOCK(pmap);
1412 	}
1413 	if ((lo & PTE_CHG) != 0) {
1414 		moea_attr_clear(m, PTE_CHG);
1415 		vm_page_dirty(m);
1416 	}
1417 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1418 	rw_wunlock(&pvh_global_lock);
1419 }
1420 
1421 /*
1422  *	moea_ts_referenced:
1423  *
1424  *	Return a count of reference bits for a page, clearing those bits.
1425  *	It is not necessary for every reference bit to be cleared, but it
1426  *	is necessary that 0 only be returned when there are truly no
1427  *	reference bits set.
1428  *
1429  *	XXX: The exact number of bits to check and clear is a matter that
1430  *	should be tested and standardized at some point in the future for
1431  *	optimal aging of shared pages.
1432  */
1433 int
1434 moea_ts_referenced(mmu_t mmu, vm_page_t m)
1435 {
1436 	int count;
1437 
1438 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1439 	    ("moea_ts_referenced: page %p is not managed", m));
1440 	rw_wlock(&pvh_global_lock);
1441 	count = moea_clear_bit(m, PTE_REF);
1442 	rw_wunlock(&pvh_global_lock);
1443 	return (count);
1444 }
1445 
1446 /*
1447  * Modify the WIMG settings of all mappings for a page.
1448  */
1449 void
1450 moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1451 {
1452 	struct	pvo_entry *pvo;
1453 	struct	pvo_head *pvo_head;
1454 	struct	pte *pt;
1455 	pmap_t	pmap;
1456 	u_int	lo;
1457 
1458 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1459 		m->md.mdpg_cache_attrs = ma;
1460 		return;
1461 	}
1462 
1463 	rw_wlock(&pvh_global_lock);
1464 	pvo_head = vm_page_to_pvoh(m);
1465 	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1466 
1467 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1468 		pmap = pvo->pvo_pmap;
1469 		PMAP_LOCK(pmap);
1470 		pt = moea_pvo_to_pte(pvo, -1);
1471 		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1472 		pvo->pvo_pte.pte.pte_lo |= lo;
1473 		if (pt != NULL) {
1474 			moea_pte_change(pt, &pvo->pvo_pte.pte,
1475 			    pvo->pvo_vaddr);
1476 			if (pvo->pvo_pmap == kernel_pmap)
1477 				isync();
1478 		}
1479 		mtx_unlock(&moea_table_mutex);
1480 		PMAP_UNLOCK(pmap);
1481 	}
1482 	m->md.mdpg_cache_attrs = ma;
1483 	rw_wunlock(&pvh_global_lock);
1484 }
1485 
1486 /*
1487  * Map a wired page into kernel virtual address space.
1488  */
1489 void
1490 moea_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1491 {
1492 
1493 	moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1494 }
1495 
1496 void
1497 moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1498 {
1499 	u_int		pte_lo;
1500 	int		error;
1501 
1502 #if 0
1503 	if (va < VM_MIN_KERNEL_ADDRESS)
1504 		panic("moea_kenter: attempt to enter non-kernel address %#x",
1505 		    va);
1506 #endif
1507 
1508 	pte_lo = moea_calc_wimg(pa, ma);
1509 
1510 	PMAP_LOCK(kernel_pmap);
1511 	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1512 	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1513 
1514 	if (error != 0 && error != ENOENT)
1515 		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1516 		    pa, error);
1517 
1518 	PMAP_UNLOCK(kernel_pmap);
1519 }
1520 
1521 /*
1522  * Extract the physical page address associated with the given kernel virtual
1523  * address.
1524  */
1525 vm_paddr_t
1526 moea_kextract(mmu_t mmu, vm_offset_t va)
1527 {
1528 	struct		pvo_entry *pvo;
1529 	vm_paddr_t pa;
1530 
1531 	/*
1532 	 * Allow direct mappings on 32-bit OEA
1533 	 */
1534 	if (va < VM_MIN_KERNEL_ADDRESS) {
1535 		return (va);
1536 	}
1537 
1538 	PMAP_LOCK(kernel_pmap);
1539 	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1540 	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1541 	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1542 	PMAP_UNLOCK(kernel_pmap);
1543 	return (pa);
1544 }
1545 
1546 /*
1547  * Remove a wired page from kernel virtual address space.
1548  */
1549 void
1550 moea_kremove(mmu_t mmu, vm_offset_t va)
1551 {
1552 
1553 	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1554 }
1555 
1556 /*
1557  * Provide a kernel pointer corresponding to a given userland pointer.
1558  * The returned pointer is valid until the next time this function is
1559  * called in this thread. This is used internally in copyin/copyout.
1560  */
1561 int
1562 moea_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr,
1563     void **kaddr, size_t ulen, size_t *klen)
1564 {
1565 	size_t l;
1566 	register_t vsid;
1567 
1568 	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
1569 	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
1570 	if (l > ulen)
1571 		l = ulen;
1572 	if (klen)
1573 		*klen = l;
1574 	else if (l != ulen)
1575 		return (EFAULT);
1576 
1577 	vsid = va_to_vsid(pm, (vm_offset_t)uaddr);
1578 
1579 	/* Mark segment no-execute */
1580 	vsid |= SR_N;
1581 
1582 	/* If we have already set this VSID, we can just return */
1583 	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == vsid)
1584 		return (0);
1585 
1586 	__asm __volatile("isync");
1587 	curthread->td_pcb->pcb_cpu.aim.usr_segm =
1588 	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
1589 	curthread->td_pcb->pcb_cpu.aim.usr_vsid = vsid;
1590 	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(vsid));
1591 
1592 	return (0);
1593 }
1594 
1595 /*
1596  * Figure out where a given kernel pointer (usually in a fault) points
1597  * to from the VM's perspective, potentially remapping into userland's
1598  * address space.
1599  */
1600 static int
1601 moea_decode_kernel_ptr(mmu_t mmu, vm_offset_t addr, int *is_user,
1602     vm_offset_t *decoded_addr)
1603 {
1604 	vm_offset_t user_sr;
1605 
1606 	if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
1607 		user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
1608 		addr &= ADDR_PIDX | ADDR_POFF;
1609 		addr |= user_sr << ADDR_SR_SHFT;
1610 		*decoded_addr = addr;
1611 		*is_user = 1;
1612 	} else {
1613 		*decoded_addr = addr;
1614 		*is_user = 0;
1615 	}
1616 
1617 	return (0);
1618 }
1619 
1620 /*
1621  * Map a range of physical addresses into kernel virtual address space.
1622  *
1623  * The value passed in *virt is a suggested virtual address for the mapping.
1624  * Architectures which can support a direct-mapped physical to virtual region
1625  * can return the appropriate address within that region, leaving '*virt'
1626  * unchanged.  We cannot and therefore do not; *virt is updated with the
1627  * first usable address after the mapped region.
1628  */
1629 vm_offset_t
1630 moea_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1631     vm_paddr_t pa_end, int prot)
1632 {
1633 	vm_offset_t	sva, va;
1634 
1635 	sva = *virt;
1636 	va = sva;
1637 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1638 		moea_kenter(mmu, va, pa_start);
1639 	*virt = va;
1640 	return (sva);
1641 }
1642 
1643 /*
1644  * Returns true if the pmap's pv is one of the first
1645  * 16 pvs linked to from this page.  This count may
1646  * be changed upwards or downwards in the future; it
1647  * is only necessary that true be returned for a small
1648  * subset of pmaps for proper page aging.
1649  */
1650 boolean_t
1651 moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1652 {
1653         int loops;
1654 	struct pvo_entry *pvo;
1655 	boolean_t rv;
1656 
1657 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1658 	    ("moea_page_exists_quick: page %p is not managed", m));
1659 	loops = 0;
1660 	rv = FALSE;
1661 	rw_wlock(&pvh_global_lock);
1662 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1663 		if (pvo->pvo_pmap == pmap) {
1664 			rv = TRUE;
1665 			break;
1666 		}
1667 		if (++loops >= 16)
1668 			break;
1669 	}
1670 	rw_wunlock(&pvh_global_lock);
1671 	return (rv);
1672 }
1673 
1674 void
1675 moea_page_init(mmu_t mmu __unused, vm_page_t m)
1676 {
1677 
1678 	m->md.mdpg_attrs = 0;
1679 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
1680 	LIST_INIT(&m->md.mdpg_pvoh);
1681 }
1682 
1683 /*
1684  * Return the number of managed mappings to the given physical page
1685  * that are wired.
1686  */
1687 int
1688 moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1689 {
1690 	struct pvo_entry *pvo;
1691 	int count;
1692 
1693 	count = 0;
1694 	if ((m->oflags & VPO_UNMANAGED) != 0)
1695 		return (count);
1696 	rw_wlock(&pvh_global_lock);
1697 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1698 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1699 			count++;
1700 	rw_wunlock(&pvh_global_lock);
1701 	return (count);
1702 }
1703 
1704 static u_int	moea_vsidcontext;
1705 
1706 void
1707 moea_pinit(mmu_t mmu, pmap_t pmap)
1708 {
1709 	int	i, mask;
1710 	u_int	entropy;
1711 
1712 	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1713 	RB_INIT(&pmap->pmap_pvo);
1714 
1715 	entropy = 0;
1716 	__asm __volatile("mftb %0" : "=r"(entropy));
1717 
1718 	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1719 	    == NULL) {
1720 		pmap->pmap_phys = pmap;
1721 	}
1722 
1723 
1724 	mtx_lock(&moea_vsid_mutex);
1725 	/*
1726 	 * Allocate some segment registers for this pmap.
1727 	 */
1728 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1729 		u_int	hash, n;
1730 
1731 		/*
1732 		 * Create a new value by mutiplying by a prime and adding in
1733 		 * entropy from the timebase register.  This is to make the
1734 		 * VSID more random so that the PT hash function collides
1735 		 * less often.  (Note that the prime casues gcc to do shifts
1736 		 * instead of a multiply.)
1737 		 */
1738 		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1739 		hash = moea_vsidcontext & (NPMAPS - 1);
1740 		if (hash == 0)		/* 0 is special, avoid it */
1741 			continue;
1742 		n = hash >> 5;
1743 		mask = 1 << (hash & (VSID_NBPW - 1));
1744 		hash = (moea_vsidcontext & 0xfffff);
1745 		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1746 			/* anything free in this bucket? */
1747 			if (moea_vsid_bitmap[n] == 0xffffffff) {
1748 				entropy = (moea_vsidcontext >> 20);
1749 				continue;
1750 			}
1751 			i = ffs(~moea_vsid_bitmap[n]) - 1;
1752 			mask = 1 << i;
1753 			hash &= rounddown2(0xfffff, VSID_NBPW);
1754 			hash |= i;
1755 		}
1756 		KASSERT(!(moea_vsid_bitmap[n] & mask),
1757 		    ("Allocating in-use VSID group %#x\n", hash));
1758 		moea_vsid_bitmap[n] |= mask;
1759 		for (i = 0; i < 16; i++)
1760 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1761 		mtx_unlock(&moea_vsid_mutex);
1762 		return;
1763 	}
1764 
1765 	mtx_unlock(&moea_vsid_mutex);
1766 	panic("moea_pinit: out of segments");
1767 }
1768 
1769 /*
1770  * Initialize the pmap associated with process 0.
1771  */
1772 void
1773 moea_pinit0(mmu_t mmu, pmap_t pm)
1774 {
1775 
1776 	PMAP_LOCK_INIT(pm);
1777 	moea_pinit(mmu, pm);
1778 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1779 }
1780 
1781 /*
1782  * Set the physical protection on the specified range of this map as requested.
1783  */
1784 void
1785 moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1786     vm_prot_t prot)
1787 {
1788 	struct	pvo_entry *pvo, *tpvo, key;
1789 	struct	pte *pt;
1790 
1791 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1792 	    ("moea_protect: non current pmap"));
1793 
1794 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1795 		moea_remove(mmu, pm, sva, eva);
1796 		return;
1797 	}
1798 
1799 	rw_wlock(&pvh_global_lock);
1800 	PMAP_LOCK(pm);
1801 	key.pvo_vaddr = sva;
1802 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1803 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1804 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1805 
1806 		/*
1807 		 * Grab the PTE pointer before we diddle with the cached PTE
1808 		 * copy.
1809 		 */
1810 		pt = moea_pvo_to_pte(pvo, -1);
1811 		/*
1812 		 * Change the protection of the page.
1813 		 */
1814 		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1815 		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1816 
1817 		/*
1818 		 * If the PVO is in the page table, update that pte as well.
1819 		 */
1820 		if (pt != NULL) {
1821 			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1822 			mtx_unlock(&moea_table_mutex);
1823 		}
1824 	}
1825 	rw_wunlock(&pvh_global_lock);
1826 	PMAP_UNLOCK(pm);
1827 }
1828 
1829 /*
1830  * Map a list of wired pages into kernel virtual address space.  This is
1831  * intended for temporary mappings which do not need page modification or
1832  * references recorded.  Existing mappings in the region are overwritten.
1833  */
1834 void
1835 moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1836 {
1837 	vm_offset_t va;
1838 
1839 	va = sva;
1840 	while (count-- > 0) {
1841 		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1842 		va += PAGE_SIZE;
1843 		m++;
1844 	}
1845 }
1846 
1847 /*
1848  * Remove page mappings from kernel virtual address space.  Intended for
1849  * temporary mappings entered by moea_qenter.
1850  */
1851 void
1852 moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1853 {
1854 	vm_offset_t va;
1855 
1856 	va = sva;
1857 	while (count-- > 0) {
1858 		moea_kremove(mmu, va);
1859 		va += PAGE_SIZE;
1860 	}
1861 }
1862 
1863 void
1864 moea_release(mmu_t mmu, pmap_t pmap)
1865 {
1866         int idx, mask;
1867 
1868 	/*
1869 	 * Free segment register's VSID
1870 	 */
1871         if (pmap->pm_sr[0] == 0)
1872                 panic("moea_release");
1873 
1874 	mtx_lock(&moea_vsid_mutex);
1875         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1876         mask = 1 << (idx % VSID_NBPW);
1877         idx /= VSID_NBPW;
1878         moea_vsid_bitmap[idx] &= ~mask;
1879 	mtx_unlock(&moea_vsid_mutex);
1880 }
1881 
1882 /*
1883  * Remove the given range of addresses from the specified map.
1884  */
1885 void
1886 moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1887 {
1888 	struct	pvo_entry *pvo, *tpvo, key;
1889 
1890 	rw_wlock(&pvh_global_lock);
1891 	PMAP_LOCK(pm);
1892 	key.pvo_vaddr = sva;
1893 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1894 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1895 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1896 		moea_pvo_remove(pvo, -1);
1897 	}
1898 	PMAP_UNLOCK(pm);
1899 	rw_wunlock(&pvh_global_lock);
1900 }
1901 
1902 /*
1903  * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1904  * will reflect changes in pte's back to the vm_page.
1905  */
1906 void
1907 moea_remove_all(mmu_t mmu, vm_page_t m)
1908 {
1909 	struct  pvo_head *pvo_head;
1910 	struct	pvo_entry *pvo, *next_pvo;
1911 	pmap_t	pmap;
1912 
1913 	rw_wlock(&pvh_global_lock);
1914 	pvo_head = vm_page_to_pvoh(m);
1915 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1916 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1917 
1918 		pmap = pvo->pvo_pmap;
1919 		PMAP_LOCK(pmap);
1920 		moea_pvo_remove(pvo, -1);
1921 		PMAP_UNLOCK(pmap);
1922 	}
1923 	if ((m->aflags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
1924 		moea_attr_clear(m, PTE_CHG);
1925 		vm_page_dirty(m);
1926 	}
1927 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1928 	rw_wunlock(&pvh_global_lock);
1929 }
1930 
1931 /*
1932  * Allocate a physical page of memory directly from the phys_avail map.
1933  * Can only be called from moea_bootstrap before avail start and end are
1934  * calculated.
1935  */
1936 static vm_offset_t
1937 moea_bootstrap_alloc(vm_size_t size, u_int align)
1938 {
1939 	vm_offset_t	s, e;
1940 	int		i, j;
1941 
1942 	size = round_page(size);
1943 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1944 		if (align != 0)
1945 			s = roundup2(phys_avail[i], align);
1946 		else
1947 			s = phys_avail[i];
1948 		e = s + size;
1949 
1950 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1951 			continue;
1952 
1953 		if (s == phys_avail[i]) {
1954 			phys_avail[i] += size;
1955 		} else if (e == phys_avail[i + 1]) {
1956 			phys_avail[i + 1] -= size;
1957 		} else {
1958 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1959 				phys_avail[j] = phys_avail[j - 2];
1960 				phys_avail[j + 1] = phys_avail[j - 1];
1961 			}
1962 
1963 			phys_avail[i + 3] = phys_avail[i + 1];
1964 			phys_avail[i + 1] = s;
1965 			phys_avail[i + 2] = e;
1966 			phys_avail_count++;
1967 		}
1968 
1969 		return (s);
1970 	}
1971 	panic("moea_bootstrap_alloc: could not allocate memory");
1972 }
1973 
1974 static void
1975 moea_syncicache(vm_paddr_t pa, vm_size_t len)
1976 {
1977 	__syncicache((void *)pa, len);
1978 }
1979 
1980 static int
1981 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1982     vm_offset_t va, vm_paddr_t pa, u_int pte_lo, int flags)
1983 {
1984 	struct	pvo_entry *pvo;
1985 	u_int	sr;
1986 	int	first;
1987 	u_int	ptegidx;
1988 	int	i;
1989 	int     bootstrap;
1990 
1991 	moea_pvo_enter_calls++;
1992 	first = 0;
1993 	bootstrap = 0;
1994 
1995 	/*
1996 	 * Compute the PTE Group index.
1997 	 */
1998 	va &= ~ADDR_POFF;
1999 	sr = va_to_sr(pm->pm_sr, va);
2000 	ptegidx = va_to_pteg(sr, va);
2001 
2002 	/*
2003 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2004 	 * there is a mapping.
2005 	 */
2006 	mtx_lock(&moea_table_mutex);
2007 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2008 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2009 			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
2010 			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
2011 			    (pte_lo & PTE_PP)) {
2012 				/*
2013 				 * The PTE is not changing.  Instead, this may
2014 				 * be a request to change the mapping's wired
2015 				 * attribute.
2016 				 */
2017 				mtx_unlock(&moea_table_mutex);
2018 				if ((flags & PVO_WIRED) != 0 &&
2019 				    (pvo->pvo_vaddr & PVO_WIRED) == 0) {
2020 					pvo->pvo_vaddr |= PVO_WIRED;
2021 					pm->pm_stats.wired_count++;
2022 				} else if ((flags & PVO_WIRED) == 0 &&
2023 				    (pvo->pvo_vaddr & PVO_WIRED) != 0) {
2024 					pvo->pvo_vaddr &= ~PVO_WIRED;
2025 					pm->pm_stats.wired_count--;
2026 				}
2027 				return (0);
2028 			}
2029 			moea_pvo_remove(pvo, -1);
2030 			break;
2031 		}
2032 	}
2033 
2034 	/*
2035 	 * If we aren't overwriting a mapping, try to allocate.
2036 	 */
2037 	if (moea_initialized) {
2038 		pvo = uma_zalloc(zone, M_NOWAIT);
2039 	} else {
2040 		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
2041 			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
2042 			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
2043 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2044 		}
2045 		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
2046 		moea_bpvo_pool_index++;
2047 		bootstrap = 1;
2048 	}
2049 
2050 	if (pvo == NULL) {
2051 		mtx_unlock(&moea_table_mutex);
2052 		return (ENOMEM);
2053 	}
2054 
2055 	moea_pvo_entries++;
2056 	pvo->pvo_vaddr = va;
2057 	pvo->pvo_pmap = pm;
2058 	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
2059 	pvo->pvo_vaddr &= ~ADDR_POFF;
2060 	if (flags & PVO_WIRED)
2061 		pvo->pvo_vaddr |= PVO_WIRED;
2062 	if (pvo_head != &moea_pvo_kunmanaged)
2063 		pvo->pvo_vaddr |= PVO_MANAGED;
2064 	if (bootstrap)
2065 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2066 
2067 	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
2068 
2069 	/*
2070 	 * Add to pmap list
2071 	 */
2072 	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2073 
2074 	/*
2075 	 * Remember if the list was empty and therefore will be the first
2076 	 * item.
2077 	 */
2078 	if (LIST_FIRST(pvo_head) == NULL)
2079 		first = 1;
2080 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2081 
2082 	if (pvo->pvo_vaddr & PVO_WIRED)
2083 		pm->pm_stats.wired_count++;
2084 	pm->pm_stats.resident_count++;
2085 
2086 	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2087 	KASSERT(i < 8, ("Invalid PTE index"));
2088 	if (i >= 0) {
2089 		PVO_PTEGIDX_SET(pvo, i);
2090 	} else {
2091 		panic("moea_pvo_enter: overflow");
2092 		moea_pte_overflow++;
2093 	}
2094 	mtx_unlock(&moea_table_mutex);
2095 
2096 	return (first ? ENOENT : 0);
2097 }
2098 
2099 static void
2100 moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
2101 {
2102 	struct	pte *pt;
2103 
2104 	/*
2105 	 * If there is an active pte entry, we need to deactivate it (and
2106 	 * save the ref & cfg bits).
2107 	 */
2108 	pt = moea_pvo_to_pte(pvo, pteidx);
2109 	if (pt != NULL) {
2110 		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2111 		mtx_unlock(&moea_table_mutex);
2112 		PVO_PTEGIDX_CLR(pvo);
2113 	} else {
2114 		moea_pte_overflow--;
2115 	}
2116 
2117 	/*
2118 	 * Update our statistics.
2119 	 */
2120 	pvo->pvo_pmap->pm_stats.resident_count--;
2121 	if (pvo->pvo_vaddr & PVO_WIRED)
2122 		pvo->pvo_pmap->pm_stats.wired_count--;
2123 
2124 	/*
2125 	 * Save the REF/CHG bits into their cache if the page is managed.
2126 	 */
2127 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2128 		struct	vm_page *pg;
2129 
2130 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
2131 		if (pg != NULL) {
2132 			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2133 			    (PTE_REF | PTE_CHG));
2134 		}
2135 	}
2136 
2137 	/*
2138 	 * Remove this PVO from the PV and pmap lists.
2139 	 */
2140 	LIST_REMOVE(pvo, pvo_vlink);
2141 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2142 
2143 	/*
2144 	 * Remove this from the overflow list and return it to the pool
2145 	 * if we aren't going to reuse it.
2146 	 */
2147 	LIST_REMOVE(pvo, pvo_olink);
2148 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2149 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2150 		    moea_upvo_zone, pvo);
2151 	moea_pvo_entries--;
2152 	moea_pvo_remove_calls++;
2153 }
2154 
2155 static __inline int
2156 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2157 {
2158 	int	pteidx;
2159 
2160 	/*
2161 	 * We can find the actual pte entry without searching by grabbing
2162 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2163 	 * noticing the HID bit.
2164 	 */
2165 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2166 	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2167 		pteidx ^= moea_pteg_mask * 8;
2168 
2169 	return (pteidx);
2170 }
2171 
2172 static struct pvo_entry *
2173 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2174 {
2175 	struct	pvo_entry *pvo;
2176 	int	ptegidx;
2177 	u_int	sr;
2178 
2179 	va &= ~ADDR_POFF;
2180 	sr = va_to_sr(pm->pm_sr, va);
2181 	ptegidx = va_to_pteg(sr, va);
2182 
2183 	mtx_lock(&moea_table_mutex);
2184 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2185 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2186 			if (pteidx_p)
2187 				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2188 			break;
2189 		}
2190 	}
2191 	mtx_unlock(&moea_table_mutex);
2192 
2193 	return (pvo);
2194 }
2195 
2196 static struct pte *
2197 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2198 {
2199 	struct	pte *pt;
2200 
2201 	/*
2202 	 * If we haven't been supplied the ptegidx, calculate it.
2203 	 */
2204 	if (pteidx == -1) {
2205 		int	ptegidx;
2206 		u_int	sr;
2207 
2208 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2209 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2210 		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2211 	}
2212 
2213 	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2214 	mtx_lock(&moea_table_mutex);
2215 
2216 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2217 		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2218 		    "valid pte index", pvo);
2219 	}
2220 
2221 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2222 		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2223 		    "pvo but no valid pte", pvo);
2224 	}
2225 
2226 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2227 		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2228 			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2229 			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2230 		}
2231 
2232 		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2233 		    != 0) {
2234 			panic("moea_pvo_to_pte: pvo %p pte does not match "
2235 			    "pte %p in moea_pteg_table", pvo, pt);
2236 		}
2237 
2238 		mtx_assert(&moea_table_mutex, MA_OWNED);
2239 		return (pt);
2240 	}
2241 
2242 	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2243 		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2244 		    "moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2245 	}
2246 
2247 	mtx_unlock(&moea_table_mutex);
2248 	return (NULL);
2249 }
2250 
2251 /*
2252  * XXX: THIS STUFF SHOULD BE IN pte.c?
2253  */
2254 int
2255 moea_pte_spill(vm_offset_t addr)
2256 {
2257 	struct	pvo_entry *source_pvo, *victim_pvo;
2258 	struct	pvo_entry *pvo;
2259 	int	ptegidx, i, j;
2260 	u_int	sr;
2261 	struct	pteg *pteg;
2262 	struct	pte *pt;
2263 
2264 	moea_pte_spills++;
2265 
2266 	sr = mfsrin(addr);
2267 	ptegidx = va_to_pteg(sr, addr);
2268 
2269 	/*
2270 	 * Have to substitute some entry.  Use the primary hash for this.
2271 	 * Use low bits of timebase as random generator.
2272 	 */
2273 	pteg = &moea_pteg_table[ptegidx];
2274 	mtx_lock(&moea_table_mutex);
2275 	__asm __volatile("mftb %0" : "=r"(i));
2276 	i &= 7;
2277 	pt = &pteg->pt[i];
2278 
2279 	source_pvo = NULL;
2280 	victim_pvo = NULL;
2281 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2282 		/*
2283 		 * We need to find a pvo entry for this address.
2284 		 */
2285 		if (source_pvo == NULL &&
2286 		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2287 		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2288 			/*
2289 			 * Now found an entry to be spilled into the pteg.
2290 			 * The PTE is now valid, so we know it's active.
2291 			 */
2292 			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2293 
2294 			if (j >= 0) {
2295 				PVO_PTEGIDX_SET(pvo, j);
2296 				moea_pte_overflow--;
2297 				mtx_unlock(&moea_table_mutex);
2298 				return (1);
2299 			}
2300 
2301 			source_pvo = pvo;
2302 
2303 			if (victim_pvo != NULL)
2304 				break;
2305 		}
2306 
2307 		/*
2308 		 * We also need the pvo entry of the victim we are replacing
2309 		 * so save the R & C bits of the PTE.
2310 		 */
2311 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2312 		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2313 			victim_pvo = pvo;
2314 			if (source_pvo != NULL)
2315 				break;
2316 		}
2317 	}
2318 
2319 	if (source_pvo == NULL) {
2320 		mtx_unlock(&moea_table_mutex);
2321 		return (0);
2322 	}
2323 
2324 	if (victim_pvo == NULL) {
2325 		if ((pt->pte_hi & PTE_HID) == 0)
2326 			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2327 			    "entry", pt);
2328 
2329 		/*
2330 		 * If this is a secondary PTE, we need to search it's primary
2331 		 * pvo bucket for the matching PVO.
2332 		 */
2333 		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2334 		    pvo_olink) {
2335 			/*
2336 			 * We also need the pvo entry of the victim we are
2337 			 * replacing so save the R & C bits of the PTE.
2338 			 */
2339 			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2340 				victim_pvo = pvo;
2341 				break;
2342 			}
2343 		}
2344 
2345 		if (victim_pvo == NULL)
2346 			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2347 			    "entry", pt);
2348 	}
2349 
2350 	/*
2351 	 * We are invalidating the TLB entry for the EA we are replacing even
2352 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2353 	 * contained in the TLB entry.
2354 	 */
2355 	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2356 
2357 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2358 	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2359 
2360 	PVO_PTEGIDX_CLR(victim_pvo);
2361 	PVO_PTEGIDX_SET(source_pvo, i);
2362 	moea_pte_replacements++;
2363 
2364 	mtx_unlock(&moea_table_mutex);
2365 	return (1);
2366 }
2367 
2368 static __inline struct pvo_entry *
2369 moea_pte_spillable_ident(u_int ptegidx)
2370 {
2371 	struct	pte *pt;
2372 	struct	pvo_entry *pvo_walk, *pvo = NULL;
2373 
2374 	LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) {
2375 		if (pvo_walk->pvo_vaddr & PVO_WIRED)
2376 			continue;
2377 
2378 		if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID))
2379 			continue;
2380 
2381 		pt = moea_pvo_to_pte(pvo_walk, -1);
2382 
2383 		if (pt == NULL)
2384 			continue;
2385 
2386 		pvo = pvo_walk;
2387 
2388 		mtx_unlock(&moea_table_mutex);
2389 		if (!(pt->pte_lo & PTE_REF))
2390 			return (pvo_walk);
2391 	}
2392 
2393 	return (pvo);
2394 }
2395 
2396 static int
2397 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2398 {
2399 	struct	pte *pt;
2400 	struct	pvo_entry *victim_pvo;
2401 	int	i;
2402 	int	victim_idx;
2403 	u_int	pteg_bkpidx = ptegidx;
2404 
2405 	mtx_assert(&moea_table_mutex, MA_OWNED);
2406 
2407 	/*
2408 	 * First try primary hash.
2409 	 */
2410 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2411 		if ((pt->pte_hi & PTE_VALID) == 0) {
2412 			pvo_pt->pte_hi &= ~PTE_HID;
2413 			moea_pte_set(pt, pvo_pt);
2414 			return (i);
2415 		}
2416 	}
2417 
2418 	/*
2419 	 * Now try secondary hash.
2420 	 */
2421 	ptegidx ^= moea_pteg_mask;
2422 
2423 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2424 		if ((pt->pte_hi & PTE_VALID) == 0) {
2425 			pvo_pt->pte_hi |= PTE_HID;
2426 			moea_pte_set(pt, pvo_pt);
2427 			return (i);
2428 		}
2429 	}
2430 
2431 	/* Try again, but this time try to force a PTE out. */
2432 	ptegidx = pteg_bkpidx;
2433 
2434 	victim_pvo = moea_pte_spillable_ident(ptegidx);
2435 	if (victim_pvo == NULL) {
2436 		ptegidx ^= moea_pteg_mask;
2437 		victim_pvo = moea_pte_spillable_ident(ptegidx);
2438 	}
2439 
2440 	if (victim_pvo == NULL) {
2441 		panic("moea_pte_insert: overflow");
2442 		return (-1);
2443 	}
2444 
2445 	victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx);
2446 
2447 	if (pteg_bkpidx == ptegidx)
2448 		pvo_pt->pte_hi &= ~PTE_HID;
2449 	else
2450 		pvo_pt->pte_hi |= PTE_HID;
2451 
2452 	/*
2453 	 * Synchronize the sacrifice PTE with its PVO, then mark both
2454 	 * invalid. The PVO will be reused when/if the VM system comes
2455 	 * here after a fault.
2456 	 */
2457 	pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7];
2458 
2459 	if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi)
2460 	    panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2461 
2462 	/*
2463 	 * Set the new PTE.
2464 	 */
2465 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2466 	PVO_PTEGIDX_CLR(victim_pvo);
2467 	moea_pte_overflow++;
2468 	moea_pte_set(pt, pvo_pt);
2469 
2470 	return (victim_idx & 7);
2471 }
2472 
2473 static boolean_t
2474 moea_query_bit(vm_page_t m, int ptebit)
2475 {
2476 	struct	pvo_entry *pvo;
2477 	struct	pte *pt;
2478 
2479 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2480 	if (moea_attr_fetch(m) & ptebit)
2481 		return (TRUE);
2482 
2483 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2484 
2485 		/*
2486 		 * See if we saved the bit off.  If so, cache it and return
2487 		 * success.
2488 		 */
2489 		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2490 			moea_attr_save(m, ptebit);
2491 			return (TRUE);
2492 		}
2493 	}
2494 
2495 	/*
2496 	 * No luck, now go through the hard part of looking at the PTEs
2497 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2498 	 * the PTEs.
2499 	 */
2500 	powerpc_sync();
2501 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2502 
2503 		/*
2504 		 * See if this pvo has a valid PTE.  if so, fetch the
2505 		 * REF/CHG bits from the valid PTE.  If the appropriate
2506 		 * ptebit is set, cache it and return success.
2507 		 */
2508 		pt = moea_pvo_to_pte(pvo, -1);
2509 		if (pt != NULL) {
2510 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2511 			mtx_unlock(&moea_table_mutex);
2512 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2513 				moea_attr_save(m, ptebit);
2514 				return (TRUE);
2515 			}
2516 		}
2517 	}
2518 
2519 	return (FALSE);
2520 }
2521 
2522 static u_int
2523 moea_clear_bit(vm_page_t m, int ptebit)
2524 {
2525 	u_int	count;
2526 	struct	pvo_entry *pvo;
2527 	struct	pte *pt;
2528 
2529 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2530 
2531 	/*
2532 	 * Clear the cached value.
2533 	 */
2534 	moea_attr_clear(m, ptebit);
2535 
2536 	/*
2537 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2538 	 * we can reset the right ones).  note that since the pvo entries and
2539 	 * list heads are accessed via BAT0 and are never placed in the page
2540 	 * table, we don't have to worry about further accesses setting the
2541 	 * REF/CHG bits.
2542 	 */
2543 	powerpc_sync();
2544 
2545 	/*
2546 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2547 	 * valid pte clear the ptebit from the valid pte.
2548 	 */
2549 	count = 0;
2550 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2551 		pt = moea_pvo_to_pte(pvo, -1);
2552 		if (pt != NULL) {
2553 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2554 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2555 				count++;
2556 				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2557 			}
2558 			mtx_unlock(&moea_table_mutex);
2559 		}
2560 		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2561 	}
2562 
2563 	return (count);
2564 }
2565 
2566 /*
2567  * Return true if the physical range is encompassed by the battable[idx]
2568  */
2569 static int
2570 moea_bat_mapped(int idx, vm_paddr_t pa, vm_size_t size)
2571 {
2572 	u_int prot;
2573 	u_int32_t start;
2574 	u_int32_t end;
2575 	u_int32_t bat_ble;
2576 
2577 	/*
2578 	 * Return immediately if not a valid mapping
2579 	 */
2580 	if (!(battable[idx].batu & BAT_Vs))
2581 		return (EINVAL);
2582 
2583 	/*
2584 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2585 	 * so it can function as an i/o page
2586 	 */
2587 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2588 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2589 		return (EPERM);
2590 
2591 	/*
2592 	 * The address should be within the BAT range. Assume that the
2593 	 * start address in the BAT has the correct alignment (thus
2594 	 * not requiring masking)
2595 	 */
2596 	start = battable[idx].batl & BAT_PBS;
2597 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2598 	end = start | (bat_ble << 15) | 0x7fff;
2599 
2600 	if ((pa < start) || ((pa + size) > end))
2601 		return (ERANGE);
2602 
2603 	return (0);
2604 }
2605 
2606 boolean_t
2607 moea_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2608 {
2609 	int i;
2610 
2611 	/*
2612 	 * This currently does not work for entries that
2613 	 * overlap 256M BAT segments.
2614 	 */
2615 
2616 	for(i = 0; i < 16; i++)
2617 		if (moea_bat_mapped(i, pa, size) == 0)
2618 			return (0);
2619 
2620 	return (EFAULT);
2621 }
2622 
2623 /*
2624  * Map a set of physical memory pages into the kernel virtual
2625  * address space. Return a pointer to where it is mapped. This
2626  * routine is intended to be used for mapping device memory,
2627  * NOT real memory.
2628  */
2629 void *
2630 moea_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2631 {
2632 
2633 	return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2634 }
2635 
2636 void *
2637 moea_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2638 {
2639 	vm_offset_t va, tmpva, ppa, offset;
2640 	int i;
2641 
2642 	ppa = trunc_page(pa);
2643 	offset = pa & PAGE_MASK;
2644 	size = roundup(offset + size, PAGE_SIZE);
2645 
2646 	/*
2647 	 * If the physical address lies within a valid BAT table entry,
2648 	 * return the 1:1 mapping. This currently doesn't work
2649 	 * for regions that overlap 256M BAT segments.
2650 	 */
2651 	for (i = 0; i < 16; i++) {
2652 		if (moea_bat_mapped(i, pa, size) == 0)
2653 			return ((void *) pa);
2654 	}
2655 
2656 	va = kva_alloc(size);
2657 	if (!va)
2658 		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2659 
2660 	for (tmpva = va; size > 0;) {
2661 		moea_kenter_attr(mmu, tmpva, ppa, ma);
2662 		tlbie(tmpva);
2663 		size -= PAGE_SIZE;
2664 		tmpva += PAGE_SIZE;
2665 		ppa += PAGE_SIZE;
2666 	}
2667 
2668 	return ((void *)(va + offset));
2669 }
2670 
2671 void
2672 moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2673 {
2674 	vm_offset_t base, offset;
2675 
2676 	/*
2677 	 * If this is outside kernel virtual space, then it's a
2678 	 * battable entry and doesn't require unmapping
2679 	 */
2680 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2681 		base = trunc_page(va);
2682 		offset = va & PAGE_MASK;
2683 		size = roundup(offset + size, PAGE_SIZE);
2684 		kva_free(base, size);
2685 	}
2686 }
2687 
2688 static void
2689 moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2690 {
2691 	struct pvo_entry *pvo;
2692 	vm_offset_t lim;
2693 	vm_paddr_t pa;
2694 	vm_size_t len;
2695 
2696 	PMAP_LOCK(pm);
2697 	while (sz > 0) {
2698 		lim = round_page(va);
2699 		len = MIN(lim - va, sz);
2700 		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2701 		if (pvo != NULL) {
2702 			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2703 			    (va & ADDR_POFF);
2704 			moea_syncicache(pa, len);
2705 		}
2706 		va += len;
2707 		sz -= len;
2708 	}
2709 	PMAP_UNLOCK(pm);
2710 }
2711 
2712 void
2713 moea_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2714 {
2715 
2716 	*va = (void *)pa;
2717 }
2718 
2719 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2720 
2721 void
2722 moea_scan_init(mmu_t mmu)
2723 {
2724 	struct pvo_entry *pvo;
2725 	vm_offset_t va;
2726 	int i;
2727 
2728 	if (!do_minidump) {
2729 		/* Initialize phys. segments for dumpsys(). */
2730 		memset(&dump_map, 0, sizeof(dump_map));
2731 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2732 		for (i = 0; i < pregions_sz; i++) {
2733 			dump_map[i].pa_start = pregions[i].mr_start;
2734 			dump_map[i].pa_size = pregions[i].mr_size;
2735 		}
2736 		return;
2737 	}
2738 
2739 	/* Virtual segments for minidumps: */
2740 	memset(&dump_map, 0, sizeof(dump_map));
2741 
2742 	/* 1st: kernel .data and .bss. */
2743 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2744 	dump_map[0].pa_size =
2745 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2746 
2747 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2748 	dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
2749 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2750 
2751 	/* 3rd: kernel VM. */
2752 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2753 	/* Find start of next chunk (from va). */
2754 	while (va < virtual_end) {
2755 		/* Don't dump the buffer cache. */
2756 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2757 			va = kmi.buffer_eva;
2758 			continue;
2759 		}
2760 		pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
2761 		if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2762 			break;
2763 		va += PAGE_SIZE;
2764 	}
2765 	if (va < virtual_end) {
2766 		dump_map[2].pa_start = va;
2767 		va += PAGE_SIZE;
2768 		/* Find last page in chunk. */
2769 		while (va < virtual_end) {
2770 			/* Don't run into the buffer cache. */
2771 			if (va == kmi.buffer_sva)
2772 				break;
2773 			pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF,
2774 			    NULL);
2775 			if (pvo == NULL ||
2776 			    !(pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2777 				break;
2778 			va += PAGE_SIZE;
2779 		}
2780 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2781 	}
2782 }
2783