xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision c17d43407fe04133a94055b0dbc7ea8965654a9f)
1 /*
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #ifndef lint
94 static const char rcsid[] =
95   "$FreeBSD$";
96 #endif /* not lint */
97 
98 /*
99  * Manages physical address maps.
100  *
101  * In addition to hardware address maps, this module is called upon to
102  * provide software-use-only maps which may or may not be stored in the
103  * same form as hardware maps.  These pseudo-maps are used to store
104  * intermediate results from copy operations to and from address spaces.
105  *
106  * Since the information managed by this module is also stored by the
107  * logical address mapping module, this module may throw away valid virtual
108  * to physical mappings at almost any time.  However, invalidations of
109  * mappings must be done as requested.
110  *
111  * In order to cope with hardware architectures which make virtual to
112  * physical map invalidates expensive, this module may delay invalidate
113  * reduced protection operations until such time as they are actually
114  * necessary.  This module is given full information as to which processors
115  * are currently using which maps, and to when physical maps must be made
116  * correct.
117  */
118 
119 #include <sys/param.h>
120 #include <sys/kernel.h>
121 #include <sys/ktr.h>
122 #include <sys/lock.h>
123 #include <sys/msgbuf.h>
124 #include <sys/mutex.h>
125 #include <sys/proc.h>
126 #include <sys/sysctl.h>
127 #include <sys/systm.h>
128 #include <sys/vmmeter.h>
129 
130 #include <dev/ofw/openfirm.h>
131 
132 #include <vm/vm.h>
133 #include <vm/vm_param.h>
134 #include <vm/vm_kern.h>
135 #include <vm/vm_page.h>
136 #include <vm/vm_map.h>
137 #include <vm/vm_object.h>
138 #include <vm/vm_extern.h>
139 #include <vm/vm_pageout.h>
140 #include <vm/vm_pager.h>
141 #include <vm/uma.h>
142 
143 #include <machine/bat.h>
144 #include <machine/frame.h>
145 #include <machine/md_var.h>
146 #include <machine/psl.h>
147 #include <machine/pte.h>
148 #include <machine/sr.h>
149 
150 #define	PMAP_DEBUG
151 
152 #define TODO	panic("%s: not implemented", __func__);
153 
154 #define	PMAP_LOCK(pm)
155 #define	PMAP_UNLOCK(pm)
156 
157 #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
158 #define	TLBSYNC()	__asm __volatile("tlbsync");
159 #define	SYNC()		__asm __volatile("sync");
160 #define	EIEIO()		__asm __volatile("eieio");
161 
162 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
163 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
164 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
165 
166 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
167 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
168 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
169 #define	PVO_MANAGED		0x0020		/* PVO entry is managed */
170 #define	PVO_EXECUTABLE		0x0040		/* PVO entry is executable */
171 #define	PVO_BOOTSTRAP		0x0004		/* PVO entry allocated during
172 						   bootstrap */
173 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
174 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
175 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
176 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
177 #define	PVO_PTEGIDX_CLR(pvo)	\
178 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
179 #define	PVO_PTEGIDX_SET(pvo, i)	\
180 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
181 
182 #define	PMAP_PVO_CHECK(pvo)
183 
184 struct mem_region {
185 	vm_offset_t	mr_start;
186 	vm_offset_t	mr_size;
187 };
188 
189 struct ofw_map {
190 	vm_offset_t	om_va;
191 	vm_size_t	om_len;
192 	vm_offset_t	om_pa;
193 	u_int		om_mode;
194 };
195 
196 int	pmap_bootstrapped = 0;
197 
198 /*
199  * Virtual and physical address of message buffer.
200  */
201 struct		msgbuf *msgbufp;
202 vm_offset_t	msgbuf_phys;
203 
204 /*
205  * Physical addresses of first and last available physical page.
206  */
207 vm_offset_t avail_start;
208 vm_offset_t avail_end;
209 
210 /*
211  * Map of physical memory regions.
212  */
213 vm_offset_t	phys_avail[128];
214 u_int		phys_avail_count;
215 static struct	mem_region regions[128];
216 static struct	ofw_map translations[128];
217 static int	translations_size;
218 
219 /*
220  * First and last available kernel virtual addresses.
221  */
222 vm_offset_t virtual_avail;
223 vm_offset_t virtual_end;
224 vm_offset_t kernel_vm_end;
225 
226 /*
227  * Kernel pmap.
228  */
229 struct pmap kernel_pmap_store;
230 extern struct pmap ofw_pmap;
231 
232 /*
233  * PTEG data.
234  */
235 static struct	pteg *pmap_pteg_table;
236 u_int		pmap_pteg_count;
237 u_int		pmap_pteg_mask;
238 
239 /*
240  * PVO data.
241  */
242 struct	pvo_head *pmap_pvo_table;		/* pvo entries by pteg index */
243 struct	pvo_head pmap_pvo_kunmanaged =
244     LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
245 struct	pvo_head pmap_pvo_unmanaged =
246     LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
247 
248 uma_zone_t	pmap_upvo_zone;	/* zone for pvo entries for unmanaged pages */
249 uma_zone_t	pmap_mpvo_zone;	/* zone for pvo entries for managed pages */
250 struct		vm_object pmap_upvo_zone_obj;
251 struct		vm_object pmap_mpvo_zone_obj;
252 static vm_object_t	pmap_pvo_obj;
253 static u_int		pmap_pvo_count;
254 
255 #define	PMAP_PVO_SIZE	1024
256 static struct	pvo_entry *pmap_bpvo_pool;
257 static int	pmap_bpvo_pool_index;
258 static int	pmap_bpvo_pool_count;
259 
260 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
261 static u_int	pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
262 
263 static boolean_t pmap_initialized = FALSE;
264 
265 /*
266  * Statistics.
267  */
268 u_int	pmap_pte_valid = 0;
269 u_int	pmap_pte_overflow = 0;
270 u_int	pmap_pte_replacements = 0;
271 u_int	pmap_pvo_entries = 0;
272 u_int	pmap_pvo_enter_calls = 0;
273 u_int	pmap_pvo_remove_calls = 0;
274 u_int	pmap_pte_spills = 0;
275 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
276     0, "");
277 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
278     &pmap_pte_overflow, 0, "");
279 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
280     &pmap_pte_replacements, 0, "");
281 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
282     0, "");
283 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
284     &pmap_pvo_enter_calls, 0, "");
285 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
286     &pmap_pvo_remove_calls, 0, "");
287 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
288     &pmap_pte_spills, 0, "");
289 
290 struct	pvo_entry *pmap_pvo_zeropage;
291 
292 vm_offset_t	pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
293 u_int		pmap_rkva_count = 4;
294 
295 /*
296  * Allocate physical memory for use in pmap_bootstrap.
297  */
298 static vm_offset_t	pmap_bootstrap_alloc(vm_size_t, u_int);
299 
300 /*
301  * PTE calls.
302  */
303 static int		pmap_pte_insert(u_int, struct pte *);
304 
305 /*
306  * PVO calls.
307  */
308 static int	pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
309 		    vm_offset_t, vm_offset_t, u_int, int);
310 static void	pmap_pvo_remove(struct pvo_entry *, int);
311 static struct	pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
312 static struct	pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
313 
314 /*
315  * Utility routines.
316  */
317 static void *		pmap_pvo_allocf(uma_zone_t, int, u_int8_t *, int);
318 static struct		pvo_entry *pmap_rkva_alloc(void);
319 static void		pmap_pa_map(struct pvo_entry *, vm_offset_t,
320 			    struct pte *, int *);
321 static void		pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
322 static void		pmap_syncicache(vm_offset_t, vm_size_t);
323 static boolean_t	pmap_query_bit(vm_page_t, int);
324 static boolean_t	pmap_clear_bit(vm_page_t, int);
325 static void		tlbia(void);
326 
327 static __inline int
328 va_to_sr(u_int *sr, vm_offset_t va)
329 {
330 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
331 }
332 
333 static __inline u_int
334 va_to_pteg(u_int sr, vm_offset_t addr)
335 {
336 	u_int hash;
337 
338 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
339 	    ADDR_PIDX_SHFT);
340 	return (hash & pmap_pteg_mask);
341 }
342 
343 static __inline struct pvo_head *
344 pa_to_pvoh(vm_offset_t pa)
345 {
346 	struct	vm_page *pg;
347 
348 	pg = PHYS_TO_VM_PAGE(pa);
349 
350 	if (pg == NULL)
351 		return (&pmap_pvo_unmanaged);
352 
353 	return (&pg->md.mdpg_pvoh);
354 }
355 
356 static __inline struct pvo_head *
357 vm_page_to_pvoh(vm_page_t m)
358 {
359 
360 	return (&m->md.mdpg_pvoh);
361 }
362 
363 static __inline void
364 pmap_attr_clear(vm_page_t m, int ptebit)
365 {
366 
367 	m->md.mdpg_attrs &= ~ptebit;
368 }
369 
370 static __inline int
371 pmap_attr_fetch(vm_page_t m)
372 {
373 
374 	return (m->md.mdpg_attrs);
375 }
376 
377 static __inline void
378 pmap_attr_save(vm_page_t m, int ptebit)
379 {
380 
381 	m->md.mdpg_attrs |= ptebit;
382 }
383 
384 static __inline int
385 pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
386 {
387 	if (pt->pte_hi == pvo_pt->pte_hi)
388 		return (1);
389 
390 	return (0);
391 }
392 
393 static __inline int
394 pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
395 {
396 	return (pt->pte_hi & ~PTE_VALID) ==
397 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
398 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
399 }
400 
401 static __inline void
402 pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
403 {
404 	/*
405 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
406 	 * set when the real pte is set in memory.
407 	 *
408 	 * Note: Don't set the valid bit for correct operation of tlb update.
409 	 */
410 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
411 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
412 	pt->pte_lo = pte_lo;
413 }
414 
415 static __inline void
416 pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
417 {
418 
419 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
420 }
421 
422 static __inline void
423 pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
424 {
425 
426 	/*
427 	 * As shown in Section 7.6.3.2.3
428 	 */
429 	pt->pte_lo &= ~ptebit;
430 	TLBIE(va);
431 	EIEIO();
432 	TLBSYNC();
433 	SYNC();
434 }
435 
436 static __inline void
437 pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
438 {
439 
440 	pvo_pt->pte_hi |= PTE_VALID;
441 
442 	/*
443 	 * Update the PTE as defined in section 7.6.3.1.
444 	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
445 	 * been saved so this routine can restore them (if desired).
446 	 */
447 	pt->pte_lo = pvo_pt->pte_lo;
448 	EIEIO();
449 	pt->pte_hi = pvo_pt->pte_hi;
450 	SYNC();
451 	pmap_pte_valid++;
452 }
453 
454 static __inline void
455 pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
456 {
457 
458 	pvo_pt->pte_hi &= ~PTE_VALID;
459 
460 	/*
461 	 * Force the reg & chg bits back into the PTEs.
462 	 */
463 	SYNC();
464 
465 	/*
466 	 * Invalidate the pte.
467 	 */
468 	pt->pte_hi &= ~PTE_VALID;
469 
470 	SYNC();
471 	TLBIE(va);
472 	EIEIO();
473 	TLBSYNC();
474 	SYNC();
475 
476 	/*
477 	 * Save the reg & chg bits.
478 	 */
479 	pmap_pte_synch(pt, pvo_pt);
480 	pmap_pte_valid--;
481 }
482 
483 static __inline void
484 pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
485 {
486 
487 	/*
488 	 * Invalidate the PTE
489 	 */
490 	pmap_pte_unset(pt, pvo_pt, va);
491 	pmap_pte_set(pt, pvo_pt);
492 }
493 
494 /*
495  * Quick sort callout for comparing memory regions.
496  */
497 static int	mr_cmp(const void *a, const void *b);
498 static int	om_cmp(const void *a, const void *b);
499 
500 static int
501 mr_cmp(const void *a, const void *b)
502 {
503 	const struct	mem_region *regiona;
504 	const struct	mem_region *regionb;
505 
506 	regiona = a;
507 	regionb = b;
508 	if (regiona->mr_start < regionb->mr_start)
509 		return (-1);
510 	else if (regiona->mr_start > regionb->mr_start)
511 		return (1);
512 	else
513 		return (0);
514 }
515 
516 static int
517 om_cmp(const void *a, const void *b)
518 {
519 	const struct	ofw_map *mapa;
520 	const struct	ofw_map *mapb;
521 
522 	mapa = a;
523 	mapb = b;
524 	if (mapa->om_pa < mapb->om_pa)
525 		return (-1);
526 	else if (mapa->om_pa > mapb->om_pa)
527 		return (1);
528 	else
529 		return (0);
530 }
531 
532 void
533 pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
534 {
535 	ihandle_t	pmem, mmui;
536 	phandle_t	chosen, mmu;
537 	int		sz;
538 	int		i, j;
539 	vm_size_t	size, physsz;
540 	vm_offset_t	pa, va, off;
541 	u_int		batl, batu;
542 
543 	/*
544 	 * Use an IBAT and a DBAT to map the bottom segment of memory
545 	 * where we are.
546 	 */
547 	batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
548 	batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
549 	__asm ("mtibatu 0,%0; mtibatl 0,%1; mtdbatu 0,%0; mtdbatl 0,%1"
550 	    :: "r"(batu), "r"(batl));
551 #if 0
552 	batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
553 	batl = BATL(0x80000000, BAT_M, BAT_PP_RW);
554 	__asm ("mtibatu 1,%0; mtibatl 1,%1; mtdbatu 1,%0; mtdbatl 1,%1"
555 	    :: "r"(batu), "r"(batl));
556 #endif
557 
558 	/*
559 	 * Set the start and end of kva.
560 	 */
561 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
562 	virtual_end = VM_MAX_KERNEL_ADDRESS;
563 
564 	if ((pmem = OF_finddevice("/memory")) == -1)
565 		panic("pmap_bootstrap: can't locate memory device");
566 	if ((sz = OF_getproplen(pmem, "available")) == -1)
567 		panic("pmap_bootstrap: can't get length of available memory");
568 	if (sizeof(phys_avail) < sz)
569 		panic("pmap_bootstrap: phys_avail too small");
570 	if (sizeof(regions) < sz)
571 		panic("pmap_bootstrap: regions too small");
572 	bzero(regions, sz);
573 	if (OF_getprop(pmem, "available", regions, sz) == -1)
574 		panic("pmap_bootstrap: can't get available memory");
575 	sz /= sizeof(*regions);
576 	CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
577 	qsort(regions, sz, sizeof(*regions), mr_cmp);
578 	phys_avail_count = 0;
579 	physsz = 0;
580 	for (i = 0, j = 0; i < sz; i++, j += 2) {
581 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
582 		    regions[i].mr_start + regions[i].mr_size,
583 		    regions[i].mr_size);
584 		phys_avail[j] = regions[i].mr_start;
585 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
586 		phys_avail_count++;
587 		physsz += regions[i].mr_size;
588 	}
589 	physmem = btoc(physsz);
590 
591 	/*
592 	 * Allocate PTEG table.
593 	 */
594 #ifdef PTEGCOUNT
595 	pmap_pteg_count = PTEGCOUNT;
596 #else
597 	pmap_pteg_count = 0x1000;
598 
599 	while (pmap_pteg_count < physmem)
600 		pmap_pteg_count <<= 1;
601 
602 	pmap_pteg_count >>= 1;
603 #endif /* PTEGCOUNT */
604 
605 	size = pmap_pteg_count * sizeof(struct pteg);
606 	CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
607 	    size);
608 	pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
609 	CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
610 	bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
611 	pmap_pteg_mask = pmap_pteg_count - 1;
612 
613 	/*
614 	 * Allocate PTE overflow lists.
615 	 */
616 	size = sizeof(struct pvo_head) * pmap_pteg_count;
617 	pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
618 	    PAGE_SIZE);
619 	CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
620 	for (i = 0; i < pmap_pteg_count; i++)
621 		LIST_INIT(&pmap_pvo_table[i]);
622 
623 	/*
624 	 * Allocate the message buffer.
625 	 */
626 	msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
627 
628 	/*
629 	 * Initialise the unmanaged pvo pool.
630 	 */
631 	pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(PAGE_SIZE, 0);
632 	pmap_bpvo_pool_index = 0;
633 	pmap_bpvo_pool_count = (int)PAGE_SIZE / sizeof(struct pvo_entry);
634 
635 	/*
636 	 * Make sure kernel vsid is allocated as well as VSID 0.
637 	 */
638 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
639 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
640 	pmap_vsid_bitmap[0] |= 1;
641 
642 	/*
643 	 * Set up the OpenFirmware pmap and add it's mappings.
644 	 */
645 	pmap_pinit(&ofw_pmap);
646 	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
647 	if ((chosen = OF_finddevice("/chosen")) == -1)
648 		panic("pmap_bootstrap: can't find /chosen");
649 	OF_getprop(chosen, "mmu", &mmui, 4);
650 	if ((mmu = OF_instance_to_package(mmui)) == -1)
651 		panic("pmap_bootstrap: can't get mmu package");
652 	if ((sz = OF_getproplen(mmu, "translations")) == -1)
653 		panic("pmap_bootstrap: can't get ofw translation count");
654 	if (sizeof(translations) < sz)
655 		panic("pmap_bootstrap: translations too small");
656 	bzero(translations, sz);
657 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
658 		panic("pmap_bootstrap: can't get ofw translations");
659 	CTR0(KTR_PMAP, "pmap_bootstrap: translations");
660 	qsort(translations, sz, sizeof (*translations), om_cmp);
661 	for (i = 0; i < sz; i++) {
662 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
663 		    translations[i].om_pa, translations[i].om_va,
664 		    translations[i].om_len);
665 
666 		/* Drop stuff below something? */
667 
668 		/* Enter the pages? */
669 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
670 			struct	vm_page m;
671 
672 			m.phys_addr = translations[i].om_pa + off;
673 			pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
674 			    VM_PROT_ALL, 1);
675 		}
676 	}
677 #ifdef SMP
678 	TLBSYNC();
679 #endif
680 
681 	/*
682 	 * Initialize the kernel pmap (which is statically allocated).
683 	 */
684 	for (i = 0; i < 16; i++) {
685 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
686 	}
687 	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
688 	kernel_pmap->pm_active = ~0;
689 	kernel_pmap->pm_count = 1;
690 
691 	/*
692 	 * Allocate a kernel stack with a guard page for thread0 and map it
693 	 * into the kernel page map.
694 	 */
695 	pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
696 	kstack0_phys = pa;
697 	kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
698 	CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
699 	    kstack0);
700 	virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
701 	for (i = 0; i < KSTACK_PAGES; i++) {
702 		pa = kstack0_phys + i * PAGE_SIZE;
703 		va = kstack0 + i * PAGE_SIZE;
704 		pmap_kenter(va, pa);
705 		TLBIE(va);
706 	}
707 
708 	/*
709 	 * Calculate the first and last available physical addresses.
710 	 */
711 	avail_start = phys_avail[0];
712 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
713 		;
714 	avail_end = phys_avail[i + 1];
715 	Maxmem = powerpc_btop(avail_end);
716 
717 	/*
718 	 * Allocate virtual address space for the message buffer.
719 	 */
720 	msgbufp = (struct msgbuf *)virtual_avail;
721 	virtual_avail += round_page(MSGBUF_SIZE);
722 
723 	/*
724 	 * Initialize hardware.
725 	 */
726 	for (i = 0; i < 16; i++) {
727 		__asm __volatile("mtsrin %0,%1"
728 		    :: "r"(EMPTY_SEGMENT), "r"(i << ADDR_SR_SHFT));
729 	}
730 	__asm __volatile ("mtsr %0,%1"
731 	    :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
732 	__asm __volatile ("sync; mtsdr1 %0; isync"
733 	    :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
734 	tlbia();
735 
736 	pmap_bootstrapped++;
737 }
738 
739 /*
740  * Activate a user pmap.  The pmap must be activated before it's address
741  * space can be accessed in any way.
742  */
743 void
744 pmap_activate(struct thread *td)
745 {
746 	pmap_t	pm;
747 	int	i;
748 
749 	/*
750 	 * Load all the data we need up front to encourasge the compiler to
751 	 * not issue any loads while we have interrupts disabled below.
752 	 */
753 	pm = &td->td_proc->p_vmspace->vm_pmap;
754 
755 	KASSERT(pm->pm_active == 0, ("pmap_activate: pmap already active?"));
756 
757 	pm->pm_active |= PCPU_GET(cpumask);
758 
759 	/*
760 	 * XXX: Address this again later?
761 	 * NetBSD only change the segment registers on return to userland.
762 	 */
763 #if 0
764 	critical_enter();
765 
766 	for (i = 0; i < 16; i++) {
767 		__asm __volatile("mtsr %0,%1" :: "r"(i), "r"(pm->pm_sr[i]));
768 	}
769 	__asm __volatile("sync; isync");
770 
771 	critical_exit();
772 #endif
773 }
774 
775 void
776 pmap_deactivate(struct thread *td)
777 {
778 	pmap_t	pm;
779 
780 	pm = &td->td_proc->p_vmspace->vm_pmap;
781 	pm->pm_active &= ~(PCPU_GET(cpumask));
782 }
783 
784 vm_offset_t
785 pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
786 {
787 	TODO;
788 	return (0);
789 }
790 
791 void
792 pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
793 {
794 	TODO;
795 }
796 
797 void
798 pmap_clear_modify(vm_page_t m)
799 {
800 
801 	if (m->flags * PG_FICTITIOUS)
802 		return;
803 	pmap_clear_bit(m, PTE_CHG);
804 }
805 
806 void
807 pmap_collect(void)
808 {
809 	TODO;
810 }
811 
812 void
813 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
814 	  vm_size_t len, vm_offset_t src_addr)
815 {
816 	TODO;
817 }
818 
819 void
820 pmap_copy_page(vm_offset_t src, vm_offset_t dst)
821 {
822 	TODO;
823 }
824 
825 /*
826  * Zero a page of physical memory by temporarily mapping it into the tlb.
827  */
828 void
829 pmap_zero_page(vm_offset_t pa)
830 {
831 	caddr_t	va;
832 	int	i;
833 
834 	if (pa < SEGMENT_LENGTH) {
835 		va = (caddr_t) pa;
836 	} else if (pmap_initialized) {
837 		if (pmap_pvo_zeropage == NULL)
838 			pmap_pvo_zeropage = pmap_rkva_alloc();
839 		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
840 		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
841 	} else {
842 		panic("pmap_zero_page: can't zero pa %#x", pa);
843 	}
844 
845 	bzero(va, PAGE_SIZE);
846 
847 	for (i = PAGE_SIZE / CACHELINESIZE; i > 0; i--) {
848 		__asm __volatile("dcbz 0,%0" :: "r"(va));
849 		va += CACHELINESIZE;
850 	}
851 
852 	if (pa >= SEGMENT_LENGTH)
853 		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
854 }
855 
856 void
857 pmap_zero_page_area(vm_offset_t pa, int off, int size)
858 {
859 	TODO;
860 }
861 
862 /*
863  * Map the given physical page at the specified virtual address in the
864  * target pmap with the protection requested.  If specified the page
865  * will be wired down.
866  */
867 void
868 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
869 	   boolean_t wired)
870 {
871 	struct		pvo_head *pvo_head;
872 	uma_zone_t	zone;
873 	u_int		pte_lo, pvo_flags;
874 	int		error;
875 
876 	if (!pmap_initialized) {
877 		pvo_head = &pmap_pvo_kunmanaged;
878 		zone = pmap_upvo_zone;
879 		pvo_flags = 0;
880 	} else {
881 		pvo_head = pa_to_pvoh(m->phys_addr);
882 		zone = pmap_mpvo_zone;
883 		pvo_flags = PVO_MANAGED;
884 	}
885 
886 	pte_lo = PTE_I | PTE_G;
887 
888 	if (prot & VM_PROT_WRITE)
889 		pte_lo |= PTE_BW;
890 	else
891 		pte_lo |= PTE_BR;
892 
893 	if (prot & VM_PROT_EXECUTE)
894 		pvo_flags |= PVO_EXECUTABLE;
895 
896 	if (wired)
897 		pvo_flags |= PVO_WIRED;
898 
899 	error = pmap_pvo_enter(pmap, zone, pvo_head, va, m->phys_addr, pte_lo,
900 	    pvo_flags);
901 
902 	if (error == ENOENT) {
903 		/*
904 		 * Flush the real memory from the cache.
905 		 */
906 		if ((pvo_flags & PVO_EXECUTABLE) && (pte_lo & PTE_I) == 0) {
907 			pmap_syncicache(m->phys_addr, PAGE_SIZE);
908 		}
909 	}
910 }
911 
912 vm_offset_t
913 pmap_extract(pmap_t pmap, vm_offset_t va)
914 {
915 	TODO;
916 	return (0);
917 }
918 
919 /*
920  * Grow the number of kernel page table entries.  Unneeded.
921  */
922 void
923 pmap_growkernel(vm_offset_t addr)
924 {
925 }
926 
927 void
928 pmap_init(vm_offset_t phys_start, vm_offset_t phys_end)
929 {
930 
931 	CTR(KTR_PMAP, "pmap_init");
932 }
933 
934 void
935 pmap_init2(void)
936 {
937 
938 	CTR(KTR_PMAP, "pmap_init2");
939 
940 	pmap_pvo_obj = vm_object_allocate(OBJT_PHYS, 16);
941 	pmap_pvo_count = 0;
942 	pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
943 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
944 	uma_zone_set_allocf(pmap_upvo_zone, pmap_pvo_allocf);
945 	pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
946 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
947 	uma_zone_set_allocf(pmap_mpvo_zone, pmap_pvo_allocf);
948 	pmap_initialized = TRUE;
949 }
950 
951 boolean_t
952 pmap_is_modified(vm_page_t m)
953 {
954 	TODO;
955 	return (0);
956 }
957 
958 void
959 pmap_clear_reference(vm_page_t m)
960 {
961 	TODO;
962 }
963 
964 /*
965  *	pmap_ts_referenced:
966  *
967  *	Return a count of reference bits for a page, clearing those bits.
968  *	It is not necessary for every reference bit to be cleared, but it
969  *	is necessary that 0 only be returned when there are truly no
970  *	reference bits set.
971  *
972  *	XXX: The exact number of bits to check and clear is a matter that
973  *	should be tested and standardized at some point in the future for
974  *	optimal aging of shared pages.
975  */
976 
977 int
978 pmap_ts_referenced(vm_page_t m)
979 {
980 	TODO;
981 	return (0);
982 }
983 
984 /*
985  * Map a wired page into kernel virtual address space.
986  */
987 void
988 pmap_kenter(vm_offset_t va, vm_offset_t pa)
989 {
990 	u_int		pte_lo;
991 	int		error;
992 	int		i;
993 
994 #if 0
995 	if (va < VM_MIN_KERNEL_ADDRESS)
996 		panic("pmap_kenter: attempt to enter non-kernel address %#x",
997 		    va);
998 #endif
999 
1000 	pte_lo = PTE_I | PTE_G | PTE_BW;
1001 	for (i = 0; phys_avail[i + 2] != 0; i += 2) {
1002 		if (pa >= phys_avail[i] && pa < phys_avail[i + 1]) {
1003 			pte_lo &= ~(PTE_I | PTE_G);
1004 			break;
1005 		}
1006 	}
1007 
1008 	error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
1009 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1010 
1011 	if (error != 0 && error != ENOENT)
1012 		panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
1013 		    pa, error);
1014 
1015 	/*
1016 	 * Flush the real memory from the instruction cache.
1017 	 */
1018 	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1019 		pmap_syncicache(pa, PAGE_SIZE);
1020 	}
1021 }
1022 
1023 vm_offset_t
1024 pmap_kextract(vm_offset_t va)
1025 {
1026 	TODO;
1027 	return (0);
1028 }
1029 
1030 /*
1031  * Remove a wired page from kernel virtual address space.
1032  */
1033 void
1034 pmap_kremove(vm_offset_t va)
1035 {
1036 
1037 	pmap_remove(kernel_pmap, va, roundup(va, PAGE_SIZE));
1038 }
1039 
1040 /*
1041  * Map a range of physical addresses into kernel virtual address space.
1042  *
1043  * The value passed in *virt is a suggested virtual address for the mapping.
1044  * Architectures which can support a direct-mapped physical to virtual region
1045  * can return the appropriate address within that region, leaving '*virt'
1046  * unchanged.  We cannot and therefore do not; *virt is updated with the
1047  * first usable address after the mapped region.
1048  */
1049 vm_offset_t
1050 pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
1051 {
1052 	vm_offset_t	sva, va;
1053 
1054 	sva = *virt;
1055 	va = sva;
1056 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1057 		pmap_kenter(va, pa_start);
1058 	*virt = va;
1059 	return (sva);
1060 }
1061 
1062 int
1063 pmap_mincore(pmap_t pmap, vm_offset_t addr)
1064 {
1065 	TODO;
1066 	return (0);
1067 }
1068 
1069 /*
1070  * Create the uarea for a new process.
1071  * This routine directly affects the fork perf for a process.
1072  */
1073 void
1074 pmap_new_proc(struct proc *p)
1075 {
1076 	vm_object_t	upobj;
1077 	vm_offset_t	up;
1078 	vm_page_t	m;
1079 	u_int		i;
1080 
1081 	/*
1082 	 * Allocate the object for the upages.
1083 	 */
1084 	upobj = p->p_upages_obj;
1085 	if (upobj == NULL) {
1086 		upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
1087 		p->p_upages_obj = upobj;
1088 	}
1089 
1090 	/*
1091 	 * Get a kernel virtual address for the uarea for this process.
1092 	 */
1093 	up = (vm_offset_t)p->p_uarea;
1094 	if (up == 0) {
1095 		up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
1096 		if (up == 0)
1097 			panic("pmap_new_proc: upage allocation failed");
1098 		p->p_uarea = (struct user *)up;
1099 	}
1100 
1101 	for (i = 0; i < UAREA_PAGES; i++) {
1102 		/*
1103 		 * Get a uarea page.
1104 		 */
1105 		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1106 
1107 		/*
1108 		 * Wire the page.
1109 		 */
1110 		m->wire_count++;
1111 
1112 		/*
1113 		 * Enter the page into the kernel address space.
1114 		 */
1115 		pmap_kenter(up + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1116 
1117 		vm_page_wakeup(m);
1118 		vm_page_flag_clear(m, PG_ZERO);
1119 		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1120 		m->valid = VM_PAGE_BITS_ALL;
1121 	}
1122 }
1123 
1124 void
1125 pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
1126 		    vm_pindex_t pindex, vm_size_t size, int limit)
1127 {
1128 	TODO;
1129 }
1130 
1131 /*
1132  * Lower the permission for all mappings to a given page.
1133  */
1134 void
1135 pmap_page_protect(vm_page_t m, vm_prot_t prot)
1136 {
1137 	struct	pvo_head *pvo_head;
1138 	struct	pvo_entry *pvo, *next_pvo;
1139 	struct	pte *pt;
1140 
1141 	/*
1142 	 * Since the routine only downgrades protection, if the
1143 	 * maximal protection is desired, there isn't any change
1144 	 * to be made.
1145 	 */
1146 	if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
1147 	    (VM_PROT_READ|VM_PROT_WRITE))
1148 		return;
1149 
1150 	pvo_head = vm_page_to_pvoh(m);
1151 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1152 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1153 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1154 
1155 		/*
1156 		 * Downgrading to no mapping at all, we just remove the entry.
1157 		 */
1158 		if ((prot & VM_PROT_READ) == 0) {
1159 			pmap_pvo_remove(pvo, -1);
1160 			continue;
1161 		}
1162 
1163 		/*
1164 		 * If EXEC permission is being revoked, just clear the flag
1165 		 * in the PVO.
1166 		 */
1167 		if ((prot & VM_PROT_EXECUTE) == 0)
1168 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1169 
1170 		/*
1171 		 * If this entry is already RO, don't diddle with the page
1172 		 * table.
1173 		 */
1174 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
1175 			PMAP_PVO_CHECK(pvo);
1176 			continue;
1177 		}
1178 
1179 		/*
1180 		 * Grab the PTE before we diddle the bits so pvo_to_pte can
1181 		 * verify the pte contents are as expected.
1182 		 */
1183 		pt = pmap_pvo_to_pte(pvo, -1);
1184 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1185 		pvo->pvo_pte.pte_lo |= PTE_BR;
1186 		if (pt != NULL)
1187 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1188 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1189 	}
1190 }
1191 
1192 /*
1193  * Make the specified page pageable (or not).  Unneeded.
1194  */
1195 void
1196 pmap_pageable(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1197 	      boolean_t pageable)
1198 {
1199 }
1200 
1201 /*
1202  * Returns true if the pmap's pv is one of the first
1203  * 16 pvs linked to from this page.  This count may
1204  * be changed upwards or downwards in the future; it
1205  * is only necessary that true be returned for a small
1206  * subset of pmaps for proper page aging.
1207  */
1208 boolean_t
1209 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
1210 {
1211 	TODO;
1212 	return (0);
1213 }
1214 
1215 static u_int	pmap_vsidcontext;
1216 
1217 void
1218 pmap_pinit(pmap_t pmap)
1219 {
1220 	int	i, mask;
1221 	u_int	entropy;
1222 
1223 	entropy = 0;
1224 	__asm __volatile("mftb %0" : "=r"(entropy));
1225 
1226 	/*
1227 	 * Allocate some segment registers for this pmap.
1228 	 */
1229 	pmap->pm_count = 1;
1230 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1231 		u_int	hash, n;
1232 
1233 		/*
1234 		 * Create a new value by mutiplying by a prime and adding in
1235 		 * entropy from the timebase register.  This is to make the
1236 		 * VSID more random so that the PT hash function collides
1237 		 * less often.  (Note that the prime casues gcc to do shifts
1238 		 * instead of a multiply.)
1239 		 */
1240 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1241 		hash = pmap_vsidcontext & (NPMAPS - 1);
1242 		if (hash == 0)		/* 0 is special, avoid it */
1243 			continue;
1244 		n = hash >> 5;
1245 		mask = 1 << (hash & (VSID_NBPW - 1));
1246 		hash = (pmap_vsidcontext & 0xfffff);
1247 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1248 			/* anything free in this bucket? */
1249 			if (pmap_vsid_bitmap[n] == 0xffffffff) {
1250 				entropy = (pmap_vsidcontext >> 20);
1251 				continue;
1252 			}
1253 			i = ffs(~pmap_vsid_bitmap[i]) - 1;
1254 			mask = 1 << i;
1255 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1256 			hash |= i;
1257 		}
1258 		pmap_vsid_bitmap[n] |= mask;
1259 		for (i = 0; i < 16; i++)
1260 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1261 		return;
1262 	}
1263 
1264 	panic("pmap_pinit: out of segments");
1265 }
1266 
1267 /*
1268  * Initialize the pmap associated with process 0.
1269  */
1270 void
1271 pmap_pinit0(pmap_t pm)
1272 {
1273 
1274 	pmap_pinit(pm);
1275 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1276 }
1277 
1278 void
1279 pmap_pinit2(pmap_t pmap)
1280 {
1281 	/* XXX: Remove this stub when no longer called */
1282 }
1283 
1284 void
1285 pmap_prefault(pmap_t pm, vm_offset_t va, vm_map_entry_t entry)
1286 {
1287 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1288 	    ("pmap_prefault: non current pmap"));
1289 	/* XXX */
1290 }
1291 
1292 void
1293 pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1294 {
1295 	TODO;
1296 }
1297 
1298 vm_offset_t
1299 pmap_phys_address(int ppn)
1300 {
1301 	TODO;
1302 	return (0);
1303 }
1304 
1305 /*
1306  * Map a list of wired pages into kernel virtual address space.  This is
1307  * intended for temporary mappings which do not need page modification or
1308  * references recorded.  Existing mappings in the region are overwritten.
1309  */
1310 void
1311 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1312 {
1313 	int	i;
1314 
1315 	for (i = 0; i < count; i++, va += PAGE_SIZE)
1316 		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
1317 }
1318 
1319 /*
1320  * Remove page mappings from kernel virtual address space.  Intended for
1321  * temporary mappings entered by pmap_qenter.
1322  */
1323 void
1324 pmap_qremove(vm_offset_t va, int count)
1325 {
1326 	int	i;
1327 
1328 	for (i = 0; i < count; i++, va += PAGE_SIZE)
1329 		pmap_kremove(va);
1330 }
1331 
1332 /*
1333  * Add a reference to the specified pmap.
1334  */
1335 void
1336 pmap_reference(pmap_t pm)
1337 {
1338 
1339 	if (pm != NULL)
1340 		pm->pm_count++;
1341 }
1342 
1343 void
1344 pmap_release(pmap_t pmap)
1345 {
1346 	TODO;
1347 }
1348 
1349 /*
1350  * Remove the given range of addresses from the specified map.
1351  */
1352 void
1353 pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1354 {
1355 	struct	pvo_entry *pvo;
1356 	int	pteidx;
1357 
1358 	for (; sva < eva; sva += PAGE_SIZE) {
1359 		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1360 		if (pvo != NULL) {
1361 			pmap_pvo_remove(pvo, pteidx);
1362 		}
1363 	}
1364 }
1365 
1366 void
1367 pmap_remove_pages(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1368 {
1369 	TODO;
1370 }
1371 
1372 void
1373 pmap_swapin_proc(struct proc *p)
1374 {
1375 	TODO;
1376 }
1377 
1378 void
1379 pmap_swapout_proc(struct proc *p)
1380 {
1381 	TODO;
1382 }
1383 
1384 /*
1385  * Create the kernel stack and pcb for a new thread.
1386  * This routine directly affects the fork perf for a process and
1387  * create performance for a thread.
1388  */
1389 void
1390 pmap_new_thread(struct thread *td)
1391 {
1392 	vm_object_t	ksobj;
1393 	vm_offset_t	ks;
1394 	vm_page_t	m;
1395 	u_int		i;
1396 
1397 	/*
1398 	 * Allocate object for the kstack.
1399 	 */
1400 	ksobj = td->td_kstack_obj;
1401 	if (ksobj == NULL) {
1402 		ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
1403 		td->td_kstack_obj = ksobj;
1404 	}
1405 
1406 	/*
1407 	 * Get a kernel virtual address for the kstack for this thread.
1408 	 */
1409 	ks = td->td_kstack;
1410 	if (ks == 0) {
1411 		ks = kmem_alloc_nofault(kernel_map,
1412 		    (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE);
1413 		if (ks == 0)
1414 			panic("pmap_new_thread: kstack allocation failed");
1415 		TLBIE(ks);
1416 		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
1417 		td->td_kstack = ks;
1418 	}
1419 
1420 	for (i = 0; i < KSTACK_PAGES; i++) {
1421 		/*
1422 		 * Get a kernel stack page.
1423 		 */
1424 		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1425 
1426 		/*
1427 		 * Wire the page.
1428 		 */
1429 		m->wire_count++;
1430 
1431 		/*
1432 		 * Enter the page into the kernel address space.
1433 		 */
1434 		pmap_kenter(ks + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1435 
1436 		vm_page_wakeup(m);
1437 		vm_page_flag_clear(m, PG_ZERO);
1438 		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1439 		m->valid = VM_PAGE_BITS_ALL;
1440 	}
1441 }
1442 
1443 void
1444 pmap_dispose_proc(struct proc *p)
1445 {
1446 	TODO;
1447 }
1448 
1449 void
1450 pmap_dispose_thread(struct thread *td)
1451 {
1452 	TODO;
1453 }
1454 
1455 void
1456 pmap_swapin_thread(struct thread *td)
1457 {
1458 	TODO;
1459 }
1460 
1461 void
1462 pmap_swapout_thread(struct thread *td)
1463 {
1464 	TODO;
1465 }
1466 
1467 /*
1468  * Allocate a physical page of memory directly from the phys_avail map.
1469  * Can only be called from pmap_bootstrap before avail start and end are
1470  * calculated.
1471  */
1472 static vm_offset_t
1473 pmap_bootstrap_alloc(vm_size_t size, u_int align)
1474 {
1475 	vm_offset_t	s, e;
1476 	int		i, j;
1477 
1478 	size = round_page(size);
1479 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1480 		if (align != 0)
1481 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1482 		else
1483 			s = phys_avail[i];
1484 		e = s + size;
1485 
1486 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1487 			continue;
1488 
1489 		if (s == phys_avail[i]) {
1490 			phys_avail[i] += size;
1491 		} else if (e == phys_avail[i + 1]) {
1492 			phys_avail[i + 1] -= size;
1493 		} else {
1494 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1495 				phys_avail[j] = phys_avail[j - 2];
1496 				phys_avail[j + 1] = phys_avail[j - 1];
1497 			}
1498 
1499 			phys_avail[i + 3] = phys_avail[i + 1];
1500 			phys_avail[i + 1] = s;
1501 			phys_avail[i + 2] = e;
1502 			phys_avail_count++;
1503 		}
1504 
1505 		return (s);
1506 	}
1507 	panic("pmap_bootstrap_alloc: could not allocate memory");
1508 }
1509 
1510 /*
1511  * Return an unmapped pvo for a kernel virtual address.
1512  * Used by pmap functions that operate on physical pages.
1513  */
1514 static struct pvo_entry *
1515 pmap_rkva_alloc(void)
1516 {
1517 	struct		pvo_entry *pvo;
1518 	struct		pte *pt;
1519 	vm_offset_t	kva;
1520 	int		pteidx;
1521 
1522 	if (pmap_rkva_count == 0)
1523 		panic("pmap_rkva_alloc: no more reserved KVAs");
1524 
1525 	kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
1526 	pmap_kenter(kva, 0);
1527 
1528 	pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
1529 
1530 	if (pvo == NULL)
1531 		panic("pmap_kva_alloc: pmap_pvo_find_va failed");
1532 
1533 	pt = pmap_pvo_to_pte(pvo, pteidx);
1534 
1535 	if (pt == NULL)
1536 		panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
1537 
1538 	pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1539 	PVO_PTEGIDX_CLR(pvo);
1540 
1541 	pmap_pte_overflow++;
1542 
1543 	return (pvo);
1544 }
1545 
1546 static void
1547 pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1548     int *depth_p)
1549 {
1550 	struct	pte *pt;
1551 
1552 	/*
1553 	 * If this pvo already has a valid pte, we need to save it so it can
1554 	 * be restored later.  We then just reload the new PTE over the old
1555 	 * slot.
1556 	 */
1557 	if (saved_pt != NULL) {
1558 		pt = pmap_pvo_to_pte(pvo, -1);
1559 
1560 		if (pt != NULL) {
1561 			pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1562 			PVO_PTEGIDX_CLR(pvo);
1563 			pmap_pte_overflow++;
1564 		}
1565 
1566 		*saved_pt = pvo->pvo_pte;
1567 
1568 		pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1569 	}
1570 
1571 	pvo->pvo_pte.pte_lo |= pa;
1572 
1573 	if (!pmap_pte_spill(pvo->pvo_vaddr))
1574 		panic("pmap_pa_map: could not spill pvo %p", pvo);
1575 
1576 	if (depth_p != NULL)
1577 		(*depth_p)++;
1578 }
1579 
1580 static void
1581 pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1582 {
1583 	struct	pte *pt;
1584 
1585 	pt = pmap_pvo_to_pte(pvo, -1);
1586 
1587 	if (pt != NULL) {
1588 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1589 		PVO_PTEGIDX_CLR(pvo);
1590 		pmap_pte_overflow++;
1591 	}
1592 
1593 	pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1594 
1595 	/*
1596 	 * If there is a saved PTE and it's valid, restore it and return.
1597 	 */
1598 	if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1599 		if (depth_p != NULL && --(*depth_p) == 0)
1600 			panic("pmap_pa_unmap: restoring but depth == 0");
1601 
1602 		pvo->pvo_pte = *saved_pt;
1603 
1604 		if (!pmap_pte_spill(pvo->pvo_vaddr))
1605 			panic("pmap_pa_unmap: could not spill pvo %p", pvo);
1606 	}
1607 }
1608 
1609 static void
1610 pmap_syncicache(vm_offset_t pa, vm_size_t len)
1611 {
1612 	__syncicache((void *)pa, len);
1613 }
1614 
1615 static void
1616 tlbia(void)
1617 {
1618 	caddr_t	i;
1619 
1620 	SYNC();
1621 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1622 		TLBIE(i);
1623 		EIEIO();
1624 	}
1625 	TLBSYNC();
1626 	SYNC();
1627 }
1628 
1629 static int
1630 pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1631     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1632 {
1633 	struct	pvo_entry *pvo;
1634 	u_int	sr;
1635 	int	first;
1636 	u_int	ptegidx;
1637 	int	i;
1638 
1639 	pmap_pvo_enter_calls++;
1640 
1641 	/*
1642 	 * Compute the PTE Group index.
1643 	 */
1644 	va &= ~ADDR_POFF;
1645 	sr = va_to_sr(pm->pm_sr, va);
1646 	ptegidx = va_to_pteg(sr, va);
1647 
1648 	/*
1649 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1650 	 * there is a mapping.
1651 	 */
1652 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1653 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1654 			if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa)
1655 				return (0);
1656 			pmap_pvo_remove(pvo, -1);
1657 			break;
1658 		}
1659 	}
1660 
1661 	/*
1662 	 * If we aren't overwriting a mapping, try to allocate.
1663 	 */
1664 	if (pmap_initialized) {
1665 		pvo = uma_zalloc(zone, M_NOWAIT);
1666 	} else {
1667 		if (pmap_bpvo_pool_index >= pmap_bpvo_pool_count) {
1668 			pmap_bpvo_pool = (struct pvo_entry *)
1669 			    pmap_bootstrap_alloc(PAGE_SIZE, 0);
1670 			pmap_bpvo_pool_index = 0;
1671 		}
1672 		pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
1673 		pmap_bpvo_pool_index++;
1674 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1675 	}
1676 
1677 	if (pvo == NULL) {
1678 		return (ENOMEM);
1679 	}
1680 
1681 	pmap_pvo_entries++;
1682 	pvo->pvo_vaddr = va;
1683 	pvo->pvo_pmap = pm;
1684 	LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1685 	pvo->pvo_vaddr &= ~ADDR_POFF;
1686 	if (flags & VM_PROT_EXECUTE)
1687 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1688 	if (flags & PVO_WIRED)
1689 		pvo->pvo_vaddr |= PVO_WIRED;
1690 	if (pvo_head != &pmap_pvo_kunmanaged)
1691 		pvo->pvo_vaddr |= PVO_MANAGED;
1692 	pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1693 
1694 	/*
1695 	 * Remember if the list was empty and therefore will be the first
1696 	 * item.
1697 	 */
1698 	first = LIST_FIRST(pvo_head) == NULL;
1699 
1700 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1701 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1702 		pvo->pvo_pmap->pm_stats.wired_count++;
1703 	pvo->pvo_pmap->pm_stats.resident_count++;
1704 
1705 	/*
1706 	 * We hope this succeeds but it isn't required.
1707 	 */
1708 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1709 	if (i >= 0) {
1710 		PVO_PTEGIDX_SET(pvo, i);
1711 	} else {
1712 		panic("pmap_pvo_enter: overflow");
1713 		pmap_pte_overflow++;
1714 	}
1715 
1716 	return (first ? ENOENT : 0);
1717 }
1718 
1719 static void
1720 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1721 {
1722 	struct	pte *pt;
1723 
1724 	/*
1725 	 * If there is an active pte entry, we need to deactivate it (and
1726 	 * save the ref & cfg bits).
1727 	 */
1728 	pt = pmap_pvo_to_pte(pvo, pteidx);
1729 	if (pt != NULL) {
1730 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1731 		PVO_PTEGIDX_CLR(pvo);
1732 	} else {
1733 		pmap_pte_overflow--;
1734 	}
1735 
1736 	/*
1737 	 * Update our statistics.
1738 	 */
1739 	pvo->pvo_pmap->pm_stats.resident_count--;
1740 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1741 		pvo->pvo_pmap->pm_stats.wired_count--;
1742 
1743 	/*
1744 	 * Save the REF/CHG bits into their cache if the page is managed.
1745 	 */
1746 	if (pvo->pvo_vaddr & PVO_MANAGED) {
1747 		struct	vm_page *pg;
1748 
1749 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1750 		if (pg != NULL) {
1751 			pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
1752 			    (PTE_REF | PTE_CHG));
1753 		}
1754 	}
1755 
1756 	/*
1757 	 * Remove this PVO from the PV list.
1758 	 */
1759 	LIST_REMOVE(pvo, pvo_vlink);
1760 
1761 	/*
1762 	 * Remove this from the overflow list and return it to the pool
1763 	 * if we aren't going to reuse it.
1764 	 */
1765 	LIST_REMOVE(pvo, pvo_olink);
1766 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
1767 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
1768 		    pmap_upvo_zone, pvo);
1769 	pmap_pvo_entries--;
1770 	pmap_pvo_remove_calls++;
1771 }
1772 
1773 static __inline int
1774 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1775 {
1776 	int	pteidx;
1777 
1778 	/*
1779 	 * We can find the actual pte entry without searching by grabbing
1780 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
1781 	 * noticing the HID bit.
1782 	 */
1783 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1784 	if (pvo->pvo_pte.pte_hi & PTE_HID)
1785 		pteidx ^= pmap_pteg_mask * 8;
1786 
1787 	return (pteidx);
1788 }
1789 
1790 static struct pvo_entry *
1791 pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
1792 {
1793 	struct	pvo_entry *pvo;
1794 	int	ptegidx;
1795 	u_int	sr;
1796 
1797 	va &= ~ADDR_POFF;
1798 	sr = va_to_sr(pm->pm_sr, va);
1799 	ptegidx = va_to_pteg(sr, va);
1800 
1801 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1802 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1803 			if (pteidx_p)
1804 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1805 			return (pvo);
1806 		}
1807 	}
1808 
1809 	return (NULL);
1810 }
1811 
1812 static struct pte *
1813 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1814 {
1815 	struct	pte *pt;
1816 
1817 	/*
1818 	 * If we haven't been supplied the ptegidx, calculate it.
1819 	 */
1820 	if (pteidx == -1) {
1821 		int	ptegidx;
1822 		u_int	sr;
1823 
1824 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
1825 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
1826 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1827 	}
1828 
1829 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1830 
1831 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1832 		panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
1833 		    "valid pte index", pvo);
1834 	}
1835 
1836 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1837 		panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
1838 		    "pvo but no valid pte", pvo);
1839 	}
1840 
1841 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1842 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1843 			panic("pmap_pvo_to_pte: pvo %p has valid pte in "
1844 			    "pmap_pteg_table %p but invalid in pvo", pvo, pt);
1845 		}
1846 
1847 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
1848 		    != 0) {
1849 			panic("pmap_pvo_to_pte: pvo %p pte does not match "
1850 			    "pte %p in pmap_pteg_table", pvo, pt);
1851 		}
1852 
1853 		return (pt);
1854 	}
1855 
1856 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1857 		panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
1858 		    "pmap_pteg_table but valid in pvo", pvo, pt);
1859 	}
1860 
1861 	return (NULL);
1862 }
1863 
1864 static void *
1865 pmap_pvo_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1866 {
1867 	vm_page_t	m;
1868 
1869 	if (bytes != PAGE_SIZE)
1870 		panic("pmap_pvo_allocf: benno was shortsighted.  hit him.");
1871 
1872 	*flags = UMA_SLAB_PRIV;
1873 	m = vm_page_alloc(pmap_pvo_obj, pmap_pvo_count, VM_ALLOC_SYSTEM);
1874 	if (m == NULL)
1875 		return (NULL);
1876 	pmap_pvo_count++;
1877 	return ((void *)VM_PAGE_TO_PHYS(m));
1878 }
1879 
1880 /*
1881  * XXX: THIS STUFF SHOULD BE IN pte.c?
1882  */
1883 int
1884 pmap_pte_spill(vm_offset_t addr)
1885 {
1886 	struct	pvo_entry *source_pvo, *victim_pvo;
1887 	struct	pvo_entry *pvo;
1888 	int	ptegidx, i, j;
1889 	u_int	sr;
1890 	struct	pteg *pteg;
1891 	struct	pte *pt;
1892 
1893 	pmap_pte_spills++;
1894 
1895 	__asm __volatile("mfsrin %0,%1" : "=r"(sr) : "r"(addr));
1896 	ptegidx = va_to_pteg(sr, addr);
1897 
1898 	/*
1899 	 * Have to substitute some entry.  Use the primary hash for this.
1900 	 * Use low bits of timebase as random generator.
1901 	 */
1902 	pteg = &pmap_pteg_table[ptegidx];
1903 	__asm __volatile("mftb %0" : "=r"(i));
1904 	i &= 7;
1905 	pt = &pteg->pt[i];
1906 
1907 	source_pvo = NULL;
1908 	victim_pvo = NULL;
1909 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1910 		/*
1911 		 * We need to find a pvo entry for this address.
1912 		 */
1913 		PMAP_PVO_CHECK(pvo);
1914 		if (source_pvo == NULL &&
1915 		    pmap_pte_match(&pvo->pvo_pte, sr, addr,
1916 		    pvo->pvo_pte.pte_hi & PTE_HID)) {
1917 			/*
1918 			 * Now found an entry to be spilled into the pteg.
1919 			 * The PTE is now valid, so we know it's active.
1920 			 */
1921 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1922 
1923 			if (j >= 0) {
1924 				PVO_PTEGIDX_SET(pvo, j);
1925 				pmap_pte_overflow--;
1926 				PMAP_PVO_CHECK(pvo);
1927 				return (1);
1928 			}
1929 
1930 			source_pvo = pvo;
1931 
1932 			if (victim_pvo != NULL)
1933 				break;
1934 		}
1935 
1936 		/*
1937 		 * We also need the pvo entry of the victim we are replacing
1938 		 * so save the R & C bits of the PTE.
1939 		 */
1940 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
1941 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
1942 			victim_pvo = pvo;
1943 			if (source_pvo != NULL)
1944 				break;
1945 		}
1946 	}
1947 
1948 	if (source_pvo == NULL)
1949 		return (0);
1950 
1951 	if (victim_pvo == NULL) {
1952 		if ((pt->pte_hi & PTE_HID) == 0)
1953 			panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
1954 			    "entry", pt);
1955 
1956 		/*
1957 		 * If this is a secondary PTE, we need to search it's primary
1958 		 * pvo bucket for the matching PVO.
1959 		 */
1960 		LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
1961 		    pvo_olink) {
1962 			PMAP_PVO_CHECK(pvo);
1963 			/*
1964 			 * We also need the pvo entry of the victim we are
1965 			 * replacing so save the R & C bits of the PTE.
1966 			 */
1967 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
1968 				victim_pvo = pvo;
1969 				break;
1970 			}
1971 		}
1972 
1973 		if (victim_pvo == NULL)
1974 			panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
1975 			    "entry", pt);
1976 	}
1977 
1978 	/*
1979 	 * We are invalidating the TLB entry for the EA we are replacing even
1980 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
1981 	 * contained in the TLB entry.
1982 	 */
1983 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
1984 
1985 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
1986 	pmap_pte_set(pt, &source_pvo->pvo_pte);
1987 
1988 	PVO_PTEGIDX_CLR(victim_pvo);
1989 	PVO_PTEGIDX_SET(source_pvo, i);
1990 	pmap_pte_replacements++;
1991 
1992 	PMAP_PVO_CHECK(victim_pvo);
1993 	PMAP_PVO_CHECK(source_pvo);
1994 
1995 	return (1);
1996 }
1997 
1998 static int
1999 pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2000 {
2001 	struct	pte *pt;
2002 	int	i;
2003 
2004 	/*
2005 	 * First try primary hash.
2006 	 */
2007 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2008 		if ((pt->pte_hi & PTE_VALID) == 0) {
2009 			pvo_pt->pte_hi &= ~PTE_HID;
2010 			pmap_pte_set(pt, pvo_pt);
2011 			return (i);
2012 		}
2013 	}
2014 
2015 	/*
2016 	 * Now try secondary hash.
2017 	 */
2018 	ptegidx ^= pmap_pteg_mask;
2019 	ptegidx++;
2020 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2021 		if ((pt->pte_hi & PTE_VALID) == 0) {
2022 			pvo_pt->pte_hi |= PTE_HID;
2023 			pmap_pte_set(pt, pvo_pt);
2024 			return (i);
2025 		}
2026 	}
2027 
2028 	panic("pmap_pte_insert: overflow");
2029 	return (-1);
2030 }
2031 
2032 static boolean_t
2033 pmap_query_bit(vm_page_t m, int ptebit)
2034 {
2035 	struct	pvo_entry *pvo;
2036 	struct	pte *pt;
2037 
2038 	if (pmap_attr_fetch(m) & ptebit)
2039 		return (TRUE);
2040 
2041 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2042 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2043 
2044 		/*
2045 		 * See if we saved the bit off.  If so, cache it and return
2046 		 * success.
2047 		 */
2048 		if (pvo->pvo_pte.pte_lo & ptebit) {
2049 			pmap_attr_save(m, ptebit);
2050 			PMAP_PVO_CHECK(pvo);	/* sanity check */
2051 			return (TRUE);
2052 		}
2053 	}
2054 
2055 	/*
2056 	 * No luck, now go through the hard part of looking at the PTEs
2057 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2058 	 * the PTEs.
2059 	 */
2060 	SYNC();
2061 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2062 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2063 
2064 		/*
2065 		 * See if this pvo has a valid PTE.  if so, fetch the
2066 		 * REF/CHG bits from the valid PTE.  If the appropriate
2067 		 * ptebit is set, cache it and return success.
2068 		 */
2069 		pt = pmap_pvo_to_pte(pvo, -1);
2070 		if (pt != NULL) {
2071 			pmap_pte_synch(pt, &pvo->pvo_pte);
2072 			if (pvo->pvo_pte.pte_lo & ptebit) {
2073 				pmap_attr_save(m, ptebit);
2074 				PMAP_PVO_CHECK(pvo);	/* sanity check */
2075 				return (TRUE);
2076 			}
2077 		}
2078 	}
2079 
2080 	return (TRUE);
2081 }
2082 
2083 static boolean_t
2084 pmap_clear_bit(vm_page_t m, int ptebit)
2085 {
2086 	struct	pvo_entry *pvo;
2087 	struct	pte *pt;
2088 	int	rv;
2089 
2090 	/*
2091 	 * Clear the cached value.
2092 	 */
2093 	rv = pmap_attr_fetch(m);
2094 	pmap_attr_clear(m, ptebit);
2095 
2096 	/*
2097 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2098 	 * we can reset the right ones).  note that since the pvo entries and
2099 	 * list heads are accessed via BAT0 and are never placed in the page
2100 	 * table, we don't have to worry about further accesses setting the
2101 	 * REF/CHG bits.
2102 	 */
2103 	SYNC();
2104 
2105 	/*
2106 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2107 	 * valid pte clear the ptebit from the valid pte.
2108 	 */
2109 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2110 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2111 		pt = pmap_pvo_to_pte(pvo, -1);
2112 		if (pt != NULL) {
2113 			pmap_pte_synch(pt, &pvo->pvo_pte);
2114 			if (pvo->pvo_pte.pte_lo & ptebit)
2115 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2116 		}
2117 		rv |= pvo->pvo_pte.pte_lo;
2118 		pvo->pvo_pte.pte_lo &= ~ptebit;
2119 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2120 	}
2121 
2122 	return ((rv & ptebit) != 0);
2123 }
2124