xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision b37f6c9805edb4b89f0a8c2b78f78a3dcfc0647b)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD AND BSD-4-Clause
3  *
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*-
32  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
33  * Copyright (C) 1995, 1996 TooLs GmbH.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgement:
46  *	This product includes software developed by TooLs GmbH.
47  * 4. The name of TooLs GmbH may not be used to endorse or promote products
48  *    derived from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
51  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
52  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
53  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
54  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
55  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
56  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
57  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
58  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
59  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
60  *
61  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
62  */
63 /*-
64  * Copyright (C) 2001 Benno Rice.
65  * All rights reserved.
66  *
67  * Redistribution and use in source and binary forms, with or without
68  * modification, are permitted provided that the following conditions
69  * are met:
70  * 1. Redistributions of source code must retain the above copyright
71  *    notice, this list of conditions and the following disclaimer.
72  * 2. Redistributions in binary form must reproduce the above copyright
73  *    notice, this list of conditions and the following disclaimer in the
74  *    documentation and/or other materials provided with the distribution.
75  *
76  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
77  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
78  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
79  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
80  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
81  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
82  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
83  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
84  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
85  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
86  */
87 
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90 
91 /*
92  * Manages physical address maps.
93  *
94  * Since the information managed by this module is also stored by the
95  * logical address mapping module, this module may throw away valid virtual
96  * to physical mappings at almost any time.  However, invalidations of
97  * mappings must be done as requested.
98  *
99  * In order to cope with hardware architectures which make virtual to
100  * physical map invalidates expensive, this module may delay invalidate
101  * reduced protection operations until such time as they are actually
102  * necessary.  This module is given full information as to which processors
103  * are currently using which maps, and to when physical maps must be made
104  * correct.
105  */
106 
107 #include "opt_kstack_pages.h"
108 
109 #include <sys/param.h>
110 #include <sys/kernel.h>
111 #include <sys/conf.h>
112 #include <sys/queue.h>
113 #include <sys/cpuset.h>
114 #include <sys/kerneldump.h>
115 #include <sys/ktr.h>
116 #include <sys/lock.h>
117 #include <sys/msgbuf.h>
118 #include <sys/mutex.h>
119 #include <sys/proc.h>
120 #include <sys/rwlock.h>
121 #include <sys/sched.h>
122 #include <sys/sysctl.h>
123 #include <sys/systm.h>
124 #include <sys/vmmeter.h>
125 
126 #include <dev/ofw/openfirm.h>
127 
128 #include <vm/vm.h>
129 #include <vm/vm_param.h>
130 #include <vm/vm_kern.h>
131 #include <vm/vm_page.h>
132 #include <vm/vm_map.h>
133 #include <vm/vm_object.h>
134 #include <vm/vm_extern.h>
135 #include <vm/vm_pageout.h>
136 #include <vm/uma.h>
137 
138 #include <machine/cpu.h>
139 #include <machine/platform.h>
140 #include <machine/bat.h>
141 #include <machine/frame.h>
142 #include <machine/md_var.h>
143 #include <machine/psl.h>
144 #include <machine/pte.h>
145 #include <machine/smp.h>
146 #include <machine/sr.h>
147 #include <machine/mmuvar.h>
148 #include <machine/trap.h>
149 
150 #include "mmu_if.h"
151 
152 #define	MOEA_DEBUG
153 
154 #define TODO	panic("%s: not implemented", __func__);
155 
156 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
157 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
158 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
159 
160 struct ofw_map {
161 	vm_offset_t	om_va;
162 	vm_size_t	om_len;
163 	vm_offset_t	om_pa;
164 	u_int		om_mode;
165 };
166 
167 extern unsigned char _etext[];
168 extern unsigned char _end[];
169 
170 /*
171  * Map of physical memory regions.
172  */
173 static struct	mem_region *regions;
174 static struct	mem_region *pregions;
175 static u_int    phys_avail_count;
176 static int	regions_sz, pregions_sz;
177 static struct	ofw_map *translations;
178 
179 /*
180  * Lock for the pteg and pvo tables.
181  */
182 struct mtx	moea_table_mutex;
183 struct mtx	moea_vsid_mutex;
184 
185 /* tlbie instruction synchronization */
186 static struct mtx tlbie_mtx;
187 
188 /*
189  * PTEG data.
190  */
191 static struct	pteg *moea_pteg_table;
192 u_int		moea_pteg_count;
193 u_int		moea_pteg_mask;
194 
195 /*
196  * PVO data.
197  */
198 struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
199 struct	pvo_head moea_pvo_kunmanaged =
200     LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
201 
202 static struct rwlock_padalign pvh_global_lock;
203 
204 uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
205 uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
206 
207 #define	BPVO_POOL_SIZE	32768
208 static struct	pvo_entry *moea_bpvo_pool;
209 static int	moea_bpvo_pool_index = 0;
210 
211 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
212 static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
213 
214 static boolean_t moea_initialized = FALSE;
215 
216 /*
217  * Statistics.
218  */
219 u_int	moea_pte_valid = 0;
220 u_int	moea_pte_overflow = 0;
221 u_int	moea_pte_replacements = 0;
222 u_int	moea_pvo_entries = 0;
223 u_int	moea_pvo_enter_calls = 0;
224 u_int	moea_pvo_remove_calls = 0;
225 u_int	moea_pte_spills = 0;
226 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
227     0, "");
228 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
229     &moea_pte_overflow, 0, "");
230 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
231     &moea_pte_replacements, 0, "");
232 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
233     0, "");
234 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
235     &moea_pvo_enter_calls, 0, "");
236 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
237     &moea_pvo_remove_calls, 0, "");
238 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
239     &moea_pte_spills, 0, "");
240 
241 /*
242  * Allocate physical memory for use in moea_bootstrap.
243  */
244 static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
245 
246 /*
247  * PTE calls.
248  */
249 static int		moea_pte_insert(u_int, struct pte *);
250 
251 /*
252  * PVO calls.
253  */
254 static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
255 		    vm_offset_t, vm_paddr_t, u_int, int);
256 static void	moea_pvo_remove(struct pvo_entry *, int);
257 static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
258 static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
259 
260 /*
261  * Utility routines.
262  */
263 static int		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
264 			    vm_prot_t, u_int, int8_t);
265 static void		moea_syncicache(vm_paddr_t, vm_size_t);
266 static boolean_t	moea_query_bit(vm_page_t, int);
267 static u_int		moea_clear_bit(vm_page_t, int);
268 static void		moea_kremove(mmu_t, vm_offset_t);
269 int		moea_pte_spill(vm_offset_t);
270 
271 /*
272  * Kernel MMU interface
273  */
274 void moea_clear_modify(mmu_t, vm_page_t);
275 void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
276 void moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
277     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
278 int moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int,
279     int8_t);
280 void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
281     vm_prot_t);
282 void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
283 vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
284 vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
285 void moea_init(mmu_t);
286 boolean_t moea_is_modified(mmu_t, vm_page_t);
287 boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
288 boolean_t moea_is_referenced(mmu_t, vm_page_t);
289 int moea_ts_referenced(mmu_t, vm_page_t);
290 vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
291 boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
292 void moea_page_init(mmu_t, vm_page_t);
293 int moea_page_wired_mappings(mmu_t, vm_page_t);
294 void moea_pinit(mmu_t, pmap_t);
295 void moea_pinit0(mmu_t, pmap_t);
296 void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
297 void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
298 void moea_qremove(mmu_t, vm_offset_t, int);
299 void moea_release(mmu_t, pmap_t);
300 void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
301 void moea_remove_all(mmu_t, vm_page_t);
302 void moea_remove_write(mmu_t, vm_page_t);
303 void moea_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
304 void moea_zero_page(mmu_t, vm_page_t);
305 void moea_zero_page_area(mmu_t, vm_page_t, int, int);
306 void moea_activate(mmu_t, struct thread *);
307 void moea_deactivate(mmu_t, struct thread *);
308 void moea_cpu_bootstrap(mmu_t, int);
309 void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
310 void *moea_mapdev(mmu_t, vm_paddr_t, vm_size_t);
311 void *moea_mapdev_attr(mmu_t, vm_paddr_t, vm_size_t, vm_memattr_t);
312 void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
313 vm_paddr_t moea_kextract(mmu_t, vm_offset_t);
314 void moea_kenter_attr(mmu_t, vm_offset_t, vm_paddr_t, vm_memattr_t);
315 void moea_kenter(mmu_t, vm_offset_t, vm_paddr_t);
316 void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
317 boolean_t moea_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
318 static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
319 void moea_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va);
320 void moea_scan_init(mmu_t mmu);
321 vm_offset_t moea_quick_enter_page(mmu_t mmu, vm_page_t m);
322 void moea_quick_remove_page(mmu_t mmu, vm_offset_t addr);
323 static int moea_map_user_ptr(mmu_t mmu, pmap_t pm,
324     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
325 
326 
327 static mmu_method_t moea_methods[] = {
328 	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
329 	MMUMETHOD(mmu_copy_page,	moea_copy_page),
330 	MMUMETHOD(mmu_copy_pages,	moea_copy_pages),
331 	MMUMETHOD(mmu_enter,		moea_enter),
332 	MMUMETHOD(mmu_enter_object,	moea_enter_object),
333 	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
334 	MMUMETHOD(mmu_extract,		moea_extract),
335 	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
336 	MMUMETHOD(mmu_init,		moea_init),
337 	MMUMETHOD(mmu_is_modified,	moea_is_modified),
338 	MMUMETHOD(mmu_is_prefaultable,	moea_is_prefaultable),
339 	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
340 	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
341 	MMUMETHOD(mmu_map,     		moea_map),
342 	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
343 	MMUMETHOD(mmu_page_init,	moea_page_init),
344 	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
345 	MMUMETHOD(mmu_pinit,		moea_pinit),
346 	MMUMETHOD(mmu_pinit0,		moea_pinit0),
347 	MMUMETHOD(mmu_protect,		moea_protect),
348 	MMUMETHOD(mmu_qenter,		moea_qenter),
349 	MMUMETHOD(mmu_qremove,		moea_qremove),
350 	MMUMETHOD(mmu_release,		moea_release),
351 	MMUMETHOD(mmu_remove,		moea_remove),
352 	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
353 	MMUMETHOD(mmu_remove_write,	moea_remove_write),
354 	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
355 	MMUMETHOD(mmu_unwire,		moea_unwire),
356 	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
357 	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
358 	MMUMETHOD(mmu_activate,		moea_activate),
359 	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
360 	MMUMETHOD(mmu_page_set_memattr,	moea_page_set_memattr),
361 	MMUMETHOD(mmu_quick_enter_page, moea_quick_enter_page),
362 	MMUMETHOD(mmu_quick_remove_page, moea_quick_remove_page),
363 
364 	/* Internal interfaces */
365 	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
366 	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
367 	MMUMETHOD(mmu_mapdev_attr,	moea_mapdev_attr),
368 	MMUMETHOD(mmu_mapdev,		moea_mapdev),
369 	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
370 	MMUMETHOD(mmu_kextract,		moea_kextract),
371 	MMUMETHOD(mmu_kenter,		moea_kenter),
372 	MMUMETHOD(mmu_kenter_attr,	moea_kenter_attr),
373 	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
374 	MMUMETHOD(mmu_scan_init,	moea_scan_init),
375 	MMUMETHOD(mmu_dumpsys_map,	moea_dumpsys_map),
376 	MMUMETHOD(mmu_map_user_ptr,	moea_map_user_ptr),
377 
378 	{ 0, 0 }
379 };
380 
381 MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
382 
383 static __inline uint32_t
384 moea_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
385 {
386 	uint32_t pte_lo;
387 	int i;
388 
389 	if (ma != VM_MEMATTR_DEFAULT) {
390 		switch (ma) {
391 		case VM_MEMATTR_UNCACHEABLE:
392 			return (PTE_I | PTE_G);
393 		case VM_MEMATTR_CACHEABLE:
394 			return (PTE_M);
395 		case VM_MEMATTR_WRITE_COMBINING:
396 		case VM_MEMATTR_WRITE_BACK:
397 		case VM_MEMATTR_PREFETCHABLE:
398 			return (PTE_I);
399 		case VM_MEMATTR_WRITE_THROUGH:
400 			return (PTE_W | PTE_M);
401 		}
402 	}
403 
404 	/*
405 	 * Assume the page is cache inhibited and access is guarded unless
406 	 * it's in our available memory array.
407 	 */
408 	pte_lo = PTE_I | PTE_G;
409 	for (i = 0; i < pregions_sz; i++) {
410 		if ((pa >= pregions[i].mr_start) &&
411 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
412 			pte_lo = PTE_M;
413 			break;
414 		}
415 	}
416 
417 	return pte_lo;
418 }
419 
420 static void
421 tlbie(vm_offset_t va)
422 {
423 
424 	mtx_lock_spin(&tlbie_mtx);
425 	__asm __volatile("ptesync");
426 	__asm __volatile("tlbie %0" :: "r"(va));
427 	__asm __volatile("eieio; tlbsync; ptesync");
428 	mtx_unlock_spin(&tlbie_mtx);
429 }
430 
431 static void
432 tlbia(void)
433 {
434 	vm_offset_t va;
435 
436 	for (va = 0; va < 0x00040000; va += 0x00001000) {
437 		__asm __volatile("tlbie %0" :: "r"(va));
438 		powerpc_sync();
439 	}
440 	__asm __volatile("tlbsync");
441 	powerpc_sync();
442 }
443 
444 static __inline int
445 va_to_sr(u_int *sr, vm_offset_t va)
446 {
447 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
448 }
449 
450 static __inline u_int
451 va_to_pteg(u_int sr, vm_offset_t addr)
452 {
453 	u_int hash;
454 
455 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
456 	    ADDR_PIDX_SHFT);
457 	return (hash & moea_pteg_mask);
458 }
459 
460 static __inline struct pvo_head *
461 vm_page_to_pvoh(vm_page_t m)
462 {
463 
464 	return (&m->md.mdpg_pvoh);
465 }
466 
467 static __inline void
468 moea_attr_clear(vm_page_t m, int ptebit)
469 {
470 
471 	rw_assert(&pvh_global_lock, RA_WLOCKED);
472 	m->md.mdpg_attrs &= ~ptebit;
473 }
474 
475 static __inline int
476 moea_attr_fetch(vm_page_t m)
477 {
478 
479 	return (m->md.mdpg_attrs);
480 }
481 
482 static __inline void
483 moea_attr_save(vm_page_t m, int ptebit)
484 {
485 
486 	rw_assert(&pvh_global_lock, RA_WLOCKED);
487 	m->md.mdpg_attrs |= ptebit;
488 }
489 
490 static __inline int
491 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
492 {
493 	if (pt->pte_hi == pvo_pt->pte_hi)
494 		return (1);
495 
496 	return (0);
497 }
498 
499 static __inline int
500 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
501 {
502 	return (pt->pte_hi & ~PTE_VALID) ==
503 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
504 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
505 }
506 
507 static __inline void
508 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
509 {
510 
511 	mtx_assert(&moea_table_mutex, MA_OWNED);
512 
513 	/*
514 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
515 	 * set when the real pte is set in memory.
516 	 *
517 	 * Note: Don't set the valid bit for correct operation of tlb update.
518 	 */
519 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
520 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
521 	pt->pte_lo = pte_lo;
522 }
523 
524 static __inline void
525 moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
526 {
527 
528 	mtx_assert(&moea_table_mutex, MA_OWNED);
529 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
530 }
531 
532 static __inline void
533 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
534 {
535 
536 	mtx_assert(&moea_table_mutex, MA_OWNED);
537 
538 	/*
539 	 * As shown in Section 7.6.3.2.3
540 	 */
541 	pt->pte_lo &= ~ptebit;
542 	tlbie(va);
543 }
544 
545 static __inline void
546 moea_pte_set(struct pte *pt, struct pte *pvo_pt)
547 {
548 
549 	mtx_assert(&moea_table_mutex, MA_OWNED);
550 	pvo_pt->pte_hi |= PTE_VALID;
551 
552 	/*
553 	 * Update the PTE as defined in section 7.6.3.1.
554 	 * Note that the REF/CHG bits are from pvo_pt and thus should have
555 	 * been saved so this routine can restore them (if desired).
556 	 */
557 	pt->pte_lo = pvo_pt->pte_lo;
558 	powerpc_sync();
559 	pt->pte_hi = pvo_pt->pte_hi;
560 	powerpc_sync();
561 	moea_pte_valid++;
562 }
563 
564 static __inline void
565 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
566 {
567 
568 	mtx_assert(&moea_table_mutex, MA_OWNED);
569 	pvo_pt->pte_hi &= ~PTE_VALID;
570 
571 	/*
572 	 * Force the reg & chg bits back into the PTEs.
573 	 */
574 	powerpc_sync();
575 
576 	/*
577 	 * Invalidate the pte.
578 	 */
579 	pt->pte_hi &= ~PTE_VALID;
580 
581 	tlbie(va);
582 
583 	/*
584 	 * Save the reg & chg bits.
585 	 */
586 	moea_pte_synch(pt, pvo_pt);
587 	moea_pte_valid--;
588 }
589 
590 static __inline void
591 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
592 {
593 
594 	/*
595 	 * Invalidate the PTE
596 	 */
597 	moea_pte_unset(pt, pvo_pt, va);
598 	moea_pte_set(pt, pvo_pt);
599 }
600 
601 /*
602  * Quick sort callout for comparing memory regions.
603  */
604 static int	om_cmp(const void *a, const void *b);
605 
606 static int
607 om_cmp(const void *a, const void *b)
608 {
609 	const struct	ofw_map *mapa;
610 	const struct	ofw_map *mapb;
611 
612 	mapa = a;
613 	mapb = b;
614 	if (mapa->om_pa < mapb->om_pa)
615 		return (-1);
616 	else if (mapa->om_pa > mapb->om_pa)
617 		return (1);
618 	else
619 		return (0);
620 }
621 
622 void
623 moea_cpu_bootstrap(mmu_t mmup, int ap)
624 {
625 	u_int sdr;
626 	int i;
627 
628 	if (ap) {
629 		powerpc_sync();
630 		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
631 		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
632 		isync();
633 		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
634 		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
635 		isync();
636 	}
637 
638 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
639 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
640 	isync();
641 
642 	__asm __volatile("mtibatu 1,%0" :: "r"(0));
643 	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
644 	__asm __volatile("mtibatu 2,%0" :: "r"(0));
645 	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
646 	__asm __volatile("mtibatu 3,%0" :: "r"(0));
647 	isync();
648 
649 	for (i = 0; i < 16; i++)
650 		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
651 	powerpc_sync();
652 
653 	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
654 	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
655 	isync();
656 
657 	tlbia();
658 }
659 
660 void
661 moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
662 {
663 	ihandle_t	mmui;
664 	phandle_t	chosen, mmu;
665 	int		sz;
666 	int		i, j;
667 	vm_size_t	size, physsz, hwphyssz;
668 	vm_offset_t	pa, va, off;
669 	void		*dpcpu;
670 	register_t	msr;
671 
672         /*
673          * Set up BAT0 to map the lowest 256 MB area
674          */
675         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
676         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
677 
678 	/*
679 	 * Map PCI memory space.
680 	 */
681 	battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
682 	battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
683 
684 	battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
685 	battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
686 
687 	battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
688 	battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
689 
690 	battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
691 	battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
692 
693 	/*
694 	 * Map obio devices.
695 	 */
696 	battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
697 	battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
698 
699 	/*
700 	 * Use an IBAT and a DBAT to map the bottom segment of memory
701 	 * where we are. Turn off instruction relocation temporarily
702 	 * to prevent faults while reprogramming the IBAT.
703 	 */
704 	msr = mfmsr();
705 	mtmsr(msr & ~PSL_IR);
706 	__asm (".balign 32; \n"
707 	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
708 	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
709 	    :: "r"(battable[0].batu), "r"(battable[0].batl));
710 	mtmsr(msr);
711 
712 	/* map pci space */
713 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
714 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
715 	isync();
716 
717 	/* set global direct map flag */
718 	hw_direct_map = 1;
719 
720 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
721 	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
722 
723 	for (i = 0; i < pregions_sz; i++) {
724 		vm_offset_t pa;
725 		vm_offset_t end;
726 
727 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
728 			pregions[i].mr_start,
729 			pregions[i].mr_start + pregions[i].mr_size,
730 			pregions[i].mr_size);
731 		/*
732 		 * Install entries into the BAT table to allow all
733 		 * of physmem to be convered by on-demand BAT entries.
734 		 * The loop will sometimes set the same battable element
735 		 * twice, but that's fine since they won't be used for
736 		 * a while yet.
737 		 */
738 		pa = pregions[i].mr_start & 0xf0000000;
739 		end = pregions[i].mr_start + pregions[i].mr_size;
740 		do {
741                         u_int n = pa >> ADDR_SR_SHFT;
742 
743 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
744 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
745 			pa += SEGMENT_LENGTH;
746 		} while (pa < end);
747 	}
748 
749 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
750 		panic("moea_bootstrap: phys_avail too small");
751 
752 	phys_avail_count = 0;
753 	physsz = 0;
754 	hwphyssz = 0;
755 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
756 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
757 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
758 		    regions[i].mr_start + regions[i].mr_size,
759 		    regions[i].mr_size);
760 		if (hwphyssz != 0 &&
761 		    (physsz + regions[i].mr_size) >= hwphyssz) {
762 			if (physsz < hwphyssz) {
763 				phys_avail[j] = regions[i].mr_start;
764 				phys_avail[j + 1] = regions[i].mr_start +
765 				    hwphyssz - physsz;
766 				physsz = hwphyssz;
767 				phys_avail_count++;
768 			}
769 			break;
770 		}
771 		phys_avail[j] = regions[i].mr_start;
772 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
773 		phys_avail_count++;
774 		physsz += regions[i].mr_size;
775 	}
776 
777 	/* Check for overlap with the kernel and exception vectors */
778 	for (j = 0; j < 2*phys_avail_count; j+=2) {
779 		if (phys_avail[j] < EXC_LAST)
780 			phys_avail[j] += EXC_LAST;
781 
782 		if (kernelstart >= phys_avail[j] &&
783 		    kernelstart < phys_avail[j+1]) {
784 			if (kernelend < phys_avail[j+1]) {
785 				phys_avail[2*phys_avail_count] =
786 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
787 				phys_avail[2*phys_avail_count + 1] =
788 				    phys_avail[j+1];
789 				phys_avail_count++;
790 			}
791 
792 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
793 		}
794 
795 		if (kernelend >= phys_avail[j] &&
796 		    kernelend < phys_avail[j+1]) {
797 			if (kernelstart > phys_avail[j]) {
798 				phys_avail[2*phys_avail_count] = phys_avail[j];
799 				phys_avail[2*phys_avail_count + 1] =
800 				    kernelstart & ~PAGE_MASK;
801 				phys_avail_count++;
802 			}
803 
804 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
805 		}
806 	}
807 
808 	physmem = btoc(physsz);
809 
810 	/*
811 	 * Allocate PTEG table.
812 	 */
813 #ifdef PTEGCOUNT
814 	moea_pteg_count = PTEGCOUNT;
815 #else
816 	moea_pteg_count = 0x1000;
817 
818 	while (moea_pteg_count < physmem)
819 		moea_pteg_count <<= 1;
820 
821 	moea_pteg_count >>= 1;
822 #endif /* PTEGCOUNT */
823 
824 	size = moea_pteg_count * sizeof(struct pteg);
825 	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
826 	    size);
827 	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
828 	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
829 	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
830 	moea_pteg_mask = moea_pteg_count - 1;
831 
832 	/*
833 	 * Allocate pv/overflow lists.
834 	 */
835 	size = sizeof(struct pvo_head) * moea_pteg_count;
836 	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
837 	    PAGE_SIZE);
838 	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
839 	for (i = 0; i < moea_pteg_count; i++)
840 		LIST_INIT(&moea_pvo_table[i]);
841 
842 	/*
843 	 * Initialize the lock that synchronizes access to the pteg and pvo
844 	 * tables.
845 	 */
846 	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
847 	    MTX_RECURSE);
848 	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
849 
850 	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
851 
852 	/*
853 	 * Initialise the unmanaged pvo pool.
854 	 */
855 	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
856 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
857 	moea_bpvo_pool_index = 0;
858 
859 	/*
860 	 * Make sure kernel vsid is allocated as well as VSID 0.
861 	 */
862 	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
863 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
864 	moea_vsid_bitmap[0] |= 1;
865 
866 	/*
867 	 * Initialize the kernel pmap (which is statically allocated).
868 	 */
869 	PMAP_LOCK_INIT(kernel_pmap);
870 	for (i = 0; i < 16; i++)
871 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
872 	CPU_FILL(&kernel_pmap->pm_active);
873 	RB_INIT(&kernel_pmap->pmap_pvo);
874 
875  	/*
876 	 * Initialize the global pv list lock.
877 	 */
878 	rw_init(&pvh_global_lock, "pmap pv global");
879 
880 	/*
881 	 * Set up the Open Firmware mappings
882 	 */
883 	chosen = OF_finddevice("/chosen");
884 	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
885 	    (mmu = OF_instance_to_package(mmui)) != -1 &&
886 	    (sz = OF_getproplen(mmu, "translations")) != -1) {
887 		translations = NULL;
888 		for (i = 0; phys_avail[i] != 0; i += 2) {
889 			if (phys_avail[i + 1] >= sz) {
890 				translations = (struct ofw_map *)phys_avail[i];
891 				break;
892 			}
893 		}
894 		if (translations == NULL)
895 			panic("moea_bootstrap: no space to copy translations");
896 		bzero(translations, sz);
897 		if (OF_getprop(mmu, "translations", translations, sz) == -1)
898 			panic("moea_bootstrap: can't get ofw translations");
899 		CTR0(KTR_PMAP, "moea_bootstrap: translations");
900 		sz /= sizeof(*translations);
901 		qsort(translations, sz, sizeof (*translations), om_cmp);
902 		for (i = 0; i < sz; i++) {
903 			CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
904 			    translations[i].om_pa, translations[i].om_va,
905 			    translations[i].om_len);
906 
907 			/*
908 			 * If the mapping is 1:1, let the RAM and device
909 			 * on-demand BAT tables take care of the translation.
910 			 */
911 			if (translations[i].om_va == translations[i].om_pa)
912 				continue;
913 
914 			/* Enter the pages */
915 			for (off = 0; off < translations[i].om_len;
916 			    off += PAGE_SIZE)
917 				moea_kenter(mmup, translations[i].om_va + off,
918 					    translations[i].om_pa + off);
919 		}
920 	}
921 
922 	/*
923 	 * Calculate the last available physical address.
924 	 */
925 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
926 		;
927 	Maxmem = powerpc_btop(phys_avail[i + 1]);
928 
929 	moea_cpu_bootstrap(mmup,0);
930 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
931 	pmap_bootstrapped++;
932 
933 	/*
934 	 * Set the start and end of kva.
935 	 */
936 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
937 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
938 
939 	/*
940 	 * Allocate a kernel stack with a guard page for thread0 and map it
941 	 * into the kernel page map.
942 	 */
943 	pa = moea_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
944 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
945 	virtual_avail = va + kstack_pages * PAGE_SIZE;
946 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
947 	thread0.td_kstack = va;
948 	thread0.td_kstack_pages = kstack_pages;
949 	for (i = 0; i < kstack_pages; i++) {
950 		moea_kenter(mmup, va, pa);
951 		pa += PAGE_SIZE;
952 		va += PAGE_SIZE;
953 	}
954 
955 	/*
956 	 * Allocate virtual address space for the message buffer.
957 	 */
958 	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
959 	msgbufp = (struct msgbuf *)virtual_avail;
960 	va = virtual_avail;
961 	virtual_avail += round_page(msgbufsize);
962 	while (va < virtual_avail) {
963 		moea_kenter(mmup, va, pa);
964 		pa += PAGE_SIZE;
965 		va += PAGE_SIZE;
966 	}
967 
968 	/*
969 	 * Allocate virtual address space for the dynamic percpu area.
970 	 */
971 	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
972 	dpcpu = (void *)virtual_avail;
973 	va = virtual_avail;
974 	virtual_avail += DPCPU_SIZE;
975 	while (va < virtual_avail) {
976 		moea_kenter(mmup, va, pa);
977 		pa += PAGE_SIZE;
978 		va += PAGE_SIZE;
979 	}
980 	dpcpu_init(dpcpu, 0);
981 }
982 
983 /*
984  * Activate a user pmap.  The pmap must be activated before it's address
985  * space can be accessed in any way.
986  */
987 void
988 moea_activate(mmu_t mmu, struct thread *td)
989 {
990 	pmap_t	pm, pmr;
991 
992 	/*
993 	 * Load all the data we need up front to encourage the compiler to
994 	 * not issue any loads while we have interrupts disabled below.
995 	 */
996 	pm = &td->td_proc->p_vmspace->vm_pmap;
997 	pmr = pm->pmap_phys;
998 
999 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1000 	PCPU_SET(curpmap, pmr);
1001 
1002 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1003 }
1004 
1005 void
1006 moea_deactivate(mmu_t mmu, struct thread *td)
1007 {
1008 	pmap_t	pm;
1009 
1010 	pm = &td->td_proc->p_vmspace->vm_pmap;
1011 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1012 	PCPU_SET(curpmap, NULL);
1013 }
1014 
1015 void
1016 moea_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1017 {
1018 	struct	pvo_entry key, *pvo;
1019 
1020 	PMAP_LOCK(pm);
1021 	key.pvo_vaddr = sva;
1022 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1023 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1024 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1025 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1026 			panic("moea_unwire: pvo %p is missing PVO_WIRED", pvo);
1027 		pvo->pvo_vaddr &= ~PVO_WIRED;
1028 		pm->pm_stats.wired_count--;
1029 	}
1030 	PMAP_UNLOCK(pm);
1031 }
1032 
1033 void
1034 moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1035 {
1036 	vm_offset_t	dst;
1037 	vm_offset_t	src;
1038 
1039 	dst = VM_PAGE_TO_PHYS(mdst);
1040 	src = VM_PAGE_TO_PHYS(msrc);
1041 
1042 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
1043 }
1044 
1045 void
1046 moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1047     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1048 {
1049 	void *a_cp, *b_cp;
1050 	vm_offset_t a_pg_offset, b_pg_offset;
1051 	int cnt;
1052 
1053 	while (xfersize > 0) {
1054 		a_pg_offset = a_offset & PAGE_MASK;
1055 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1056 		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1057 		    a_pg_offset;
1058 		b_pg_offset = b_offset & PAGE_MASK;
1059 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1060 		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1061 		    b_pg_offset;
1062 		bcopy(a_cp, b_cp, cnt);
1063 		a_offset += cnt;
1064 		b_offset += cnt;
1065 		xfersize -= cnt;
1066 	}
1067 }
1068 
1069 /*
1070  * Zero a page of physical memory by temporarily mapping it into the tlb.
1071  */
1072 void
1073 moea_zero_page(mmu_t mmu, vm_page_t m)
1074 {
1075 	vm_offset_t off, pa = VM_PAGE_TO_PHYS(m);
1076 
1077 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1078 		__asm __volatile("dcbz 0,%0" :: "r"(pa + off));
1079 }
1080 
1081 void
1082 moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1083 {
1084 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1085 	void *va = (void *)(pa + off);
1086 
1087 	bzero(va, size);
1088 }
1089 
1090 vm_offset_t
1091 moea_quick_enter_page(mmu_t mmu, vm_page_t m)
1092 {
1093 
1094 	return (VM_PAGE_TO_PHYS(m));
1095 }
1096 
1097 void
1098 moea_quick_remove_page(mmu_t mmu, vm_offset_t addr)
1099 {
1100 }
1101 
1102 /*
1103  * Map the given physical page at the specified virtual address in the
1104  * target pmap with the protection requested.  If specified the page
1105  * will be wired down.
1106  */
1107 int
1108 moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1109     u_int flags, int8_t psind)
1110 {
1111 	int error;
1112 
1113 	for (;;) {
1114 		rw_wlock(&pvh_global_lock);
1115 		PMAP_LOCK(pmap);
1116 		error = moea_enter_locked(pmap, va, m, prot, flags, psind);
1117 		rw_wunlock(&pvh_global_lock);
1118 		PMAP_UNLOCK(pmap);
1119 		if (error != ENOMEM)
1120 			return (KERN_SUCCESS);
1121 		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1122 			return (KERN_RESOURCE_SHORTAGE);
1123 		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1124 		VM_WAIT;
1125 	}
1126 }
1127 
1128 /*
1129  * Map the given physical page at the specified virtual address in the
1130  * target pmap with the protection requested.  If specified the page
1131  * will be wired down.
1132  *
1133  * The global pvh and pmap must be locked.
1134  */
1135 static int
1136 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1137     u_int flags, int8_t psind __unused)
1138 {
1139 	struct		pvo_head *pvo_head;
1140 	uma_zone_t	zone;
1141 	u_int		pte_lo, pvo_flags;
1142 	int		error;
1143 
1144 	if (pmap_bootstrapped)
1145 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1146 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1147 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1148 		VM_OBJECT_ASSERT_LOCKED(m->object);
1149 
1150 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea_initialized) {
1151 		pvo_head = &moea_pvo_kunmanaged;
1152 		zone = moea_upvo_zone;
1153 		pvo_flags = 0;
1154 	} else {
1155 		pvo_head = vm_page_to_pvoh(m);
1156 		zone = moea_mpvo_zone;
1157 		pvo_flags = PVO_MANAGED;
1158 	}
1159 
1160 	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1161 
1162 	if (prot & VM_PROT_WRITE) {
1163 		pte_lo |= PTE_BW;
1164 		if (pmap_bootstrapped &&
1165 		    (m->oflags & VPO_UNMANAGED) == 0)
1166 			vm_page_aflag_set(m, PGA_WRITEABLE);
1167 	} else
1168 		pte_lo |= PTE_BR;
1169 
1170 	if ((flags & PMAP_ENTER_WIRED) != 0)
1171 		pvo_flags |= PVO_WIRED;
1172 
1173 	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1174 	    pte_lo, pvo_flags);
1175 
1176 	/*
1177 	 * Flush the real page from the instruction cache. This has be done
1178 	 * for all user mappings to prevent information leakage via the
1179 	 * instruction cache. moea_pvo_enter() returns ENOENT for the first
1180 	 * mapping for a page.
1181 	 */
1182 	if (pmap != kernel_pmap && error == ENOENT &&
1183 	    (pte_lo & (PTE_I | PTE_G)) == 0)
1184 		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1185 
1186 	return (error);
1187 }
1188 
1189 /*
1190  * Maps a sequence of resident pages belonging to the same object.
1191  * The sequence begins with the given page m_start.  This page is
1192  * mapped at the given virtual address start.  Each subsequent page is
1193  * mapped at a virtual address that is offset from start by the same
1194  * amount as the page is offset from m_start within the object.  The
1195  * last page in the sequence is the page with the largest offset from
1196  * m_start that can be mapped at a virtual address less than the given
1197  * virtual address end.  Not every virtual page between start and end
1198  * is mapped; only those for which a resident page exists with the
1199  * corresponding offset from m_start are mapped.
1200  */
1201 void
1202 moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1203     vm_page_t m_start, vm_prot_t prot)
1204 {
1205 	vm_page_t m;
1206 	vm_pindex_t diff, psize;
1207 
1208 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1209 
1210 	psize = atop(end - start);
1211 	m = m_start;
1212 	rw_wlock(&pvh_global_lock);
1213 	PMAP_LOCK(pm);
1214 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1215 		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1216 		    (VM_PROT_READ | VM_PROT_EXECUTE), 0, 0);
1217 		m = TAILQ_NEXT(m, listq);
1218 	}
1219 	rw_wunlock(&pvh_global_lock);
1220 	PMAP_UNLOCK(pm);
1221 }
1222 
1223 void
1224 moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1225     vm_prot_t prot)
1226 {
1227 
1228 	rw_wlock(&pvh_global_lock);
1229 	PMAP_LOCK(pm);
1230 	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1231 	    0, 0);
1232 	rw_wunlock(&pvh_global_lock);
1233 	PMAP_UNLOCK(pm);
1234 }
1235 
1236 vm_paddr_t
1237 moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1238 {
1239 	struct	pvo_entry *pvo;
1240 	vm_paddr_t pa;
1241 
1242 	PMAP_LOCK(pm);
1243 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1244 	if (pvo == NULL)
1245 		pa = 0;
1246 	else
1247 		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1248 	PMAP_UNLOCK(pm);
1249 	return (pa);
1250 }
1251 
1252 /*
1253  * Atomically extract and hold the physical page with the given
1254  * pmap and virtual address pair if that mapping permits the given
1255  * protection.
1256  */
1257 vm_page_t
1258 moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1259 {
1260 	struct	pvo_entry *pvo;
1261 	vm_page_t m;
1262         vm_paddr_t pa;
1263 
1264 	m = NULL;
1265 	pa = 0;
1266 	PMAP_LOCK(pmap);
1267 retry:
1268 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1269 	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1270 	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1271 	     (prot & VM_PROT_WRITE) == 0)) {
1272 		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1273 			goto retry;
1274 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1275 		vm_page_hold(m);
1276 	}
1277 	PA_UNLOCK_COND(pa);
1278 	PMAP_UNLOCK(pmap);
1279 	return (m);
1280 }
1281 
1282 void
1283 moea_init(mmu_t mmu)
1284 {
1285 
1286 	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1287 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1288 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1289 	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1290 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1291 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1292 	moea_initialized = TRUE;
1293 }
1294 
1295 boolean_t
1296 moea_is_referenced(mmu_t mmu, vm_page_t m)
1297 {
1298 	boolean_t rv;
1299 
1300 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1301 	    ("moea_is_referenced: page %p is not managed", m));
1302 	rw_wlock(&pvh_global_lock);
1303 	rv = moea_query_bit(m, PTE_REF);
1304 	rw_wunlock(&pvh_global_lock);
1305 	return (rv);
1306 }
1307 
1308 boolean_t
1309 moea_is_modified(mmu_t mmu, vm_page_t m)
1310 {
1311 	boolean_t rv;
1312 
1313 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1314 	    ("moea_is_modified: page %p is not managed", m));
1315 
1316 	/*
1317 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1318 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1319 	 * is clear, no PTEs can have PTE_CHG set.
1320 	 */
1321 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1322 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1323 		return (FALSE);
1324 	rw_wlock(&pvh_global_lock);
1325 	rv = moea_query_bit(m, PTE_CHG);
1326 	rw_wunlock(&pvh_global_lock);
1327 	return (rv);
1328 }
1329 
1330 boolean_t
1331 moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1332 {
1333 	struct pvo_entry *pvo;
1334 	boolean_t rv;
1335 
1336 	PMAP_LOCK(pmap);
1337 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1338 	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1339 	PMAP_UNLOCK(pmap);
1340 	return (rv);
1341 }
1342 
1343 void
1344 moea_clear_modify(mmu_t mmu, vm_page_t m)
1345 {
1346 
1347 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1348 	    ("moea_clear_modify: page %p is not managed", m));
1349 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1350 	KASSERT(!vm_page_xbusied(m),
1351 	    ("moea_clear_modify: page %p is exclusive busy", m));
1352 
1353 	/*
1354 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_CHG
1355 	 * set.  If the object containing the page is locked and the page is
1356 	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1357 	 */
1358 	if ((m->aflags & PGA_WRITEABLE) == 0)
1359 		return;
1360 	rw_wlock(&pvh_global_lock);
1361 	moea_clear_bit(m, PTE_CHG);
1362 	rw_wunlock(&pvh_global_lock);
1363 }
1364 
1365 /*
1366  * Clear the write and modified bits in each of the given page's mappings.
1367  */
1368 void
1369 moea_remove_write(mmu_t mmu, vm_page_t m)
1370 {
1371 	struct	pvo_entry *pvo;
1372 	struct	pte *pt;
1373 	pmap_t	pmap;
1374 	u_int	lo;
1375 
1376 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1377 	    ("moea_remove_write: page %p is not managed", m));
1378 
1379 	/*
1380 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1381 	 * set by another thread while the object is locked.  Thus,
1382 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1383 	 */
1384 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1385 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1386 		return;
1387 	rw_wlock(&pvh_global_lock);
1388 	lo = moea_attr_fetch(m);
1389 	powerpc_sync();
1390 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1391 		pmap = pvo->pvo_pmap;
1392 		PMAP_LOCK(pmap);
1393 		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1394 			pt = moea_pvo_to_pte(pvo, -1);
1395 			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1396 			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1397 			if (pt != NULL) {
1398 				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1399 				lo |= pvo->pvo_pte.pte.pte_lo;
1400 				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1401 				moea_pte_change(pt, &pvo->pvo_pte.pte,
1402 				    pvo->pvo_vaddr);
1403 				mtx_unlock(&moea_table_mutex);
1404 			}
1405 		}
1406 		PMAP_UNLOCK(pmap);
1407 	}
1408 	if ((lo & PTE_CHG) != 0) {
1409 		moea_attr_clear(m, PTE_CHG);
1410 		vm_page_dirty(m);
1411 	}
1412 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1413 	rw_wunlock(&pvh_global_lock);
1414 }
1415 
1416 /*
1417  *	moea_ts_referenced:
1418  *
1419  *	Return a count of reference bits for a page, clearing those bits.
1420  *	It is not necessary for every reference bit to be cleared, but it
1421  *	is necessary that 0 only be returned when there are truly no
1422  *	reference bits set.
1423  *
1424  *	XXX: The exact number of bits to check and clear is a matter that
1425  *	should be tested and standardized at some point in the future for
1426  *	optimal aging of shared pages.
1427  */
1428 int
1429 moea_ts_referenced(mmu_t mmu, vm_page_t m)
1430 {
1431 	int count;
1432 
1433 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1434 	    ("moea_ts_referenced: page %p is not managed", m));
1435 	rw_wlock(&pvh_global_lock);
1436 	count = moea_clear_bit(m, PTE_REF);
1437 	rw_wunlock(&pvh_global_lock);
1438 	return (count);
1439 }
1440 
1441 /*
1442  * Modify the WIMG settings of all mappings for a page.
1443  */
1444 void
1445 moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1446 {
1447 	struct	pvo_entry *pvo;
1448 	struct	pvo_head *pvo_head;
1449 	struct	pte *pt;
1450 	pmap_t	pmap;
1451 	u_int	lo;
1452 
1453 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1454 		m->md.mdpg_cache_attrs = ma;
1455 		return;
1456 	}
1457 
1458 	rw_wlock(&pvh_global_lock);
1459 	pvo_head = vm_page_to_pvoh(m);
1460 	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1461 
1462 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1463 		pmap = pvo->pvo_pmap;
1464 		PMAP_LOCK(pmap);
1465 		pt = moea_pvo_to_pte(pvo, -1);
1466 		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1467 		pvo->pvo_pte.pte.pte_lo |= lo;
1468 		if (pt != NULL) {
1469 			moea_pte_change(pt, &pvo->pvo_pte.pte,
1470 			    pvo->pvo_vaddr);
1471 			if (pvo->pvo_pmap == kernel_pmap)
1472 				isync();
1473 		}
1474 		mtx_unlock(&moea_table_mutex);
1475 		PMAP_UNLOCK(pmap);
1476 	}
1477 	m->md.mdpg_cache_attrs = ma;
1478 	rw_wunlock(&pvh_global_lock);
1479 }
1480 
1481 /*
1482  * Map a wired page into kernel virtual address space.
1483  */
1484 void
1485 moea_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1486 {
1487 
1488 	moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1489 }
1490 
1491 void
1492 moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1493 {
1494 	u_int		pte_lo;
1495 	int		error;
1496 
1497 #if 0
1498 	if (va < VM_MIN_KERNEL_ADDRESS)
1499 		panic("moea_kenter: attempt to enter non-kernel address %#x",
1500 		    va);
1501 #endif
1502 
1503 	pte_lo = moea_calc_wimg(pa, ma);
1504 
1505 	PMAP_LOCK(kernel_pmap);
1506 	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1507 	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1508 
1509 	if (error != 0 && error != ENOENT)
1510 		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1511 		    pa, error);
1512 
1513 	PMAP_UNLOCK(kernel_pmap);
1514 }
1515 
1516 /*
1517  * Extract the physical page address associated with the given kernel virtual
1518  * address.
1519  */
1520 vm_paddr_t
1521 moea_kextract(mmu_t mmu, vm_offset_t va)
1522 {
1523 	struct		pvo_entry *pvo;
1524 	vm_paddr_t pa;
1525 
1526 	/*
1527 	 * Allow direct mappings on 32-bit OEA
1528 	 */
1529 	if (va < VM_MIN_KERNEL_ADDRESS) {
1530 		return (va);
1531 	}
1532 
1533 	PMAP_LOCK(kernel_pmap);
1534 	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1535 	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1536 	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1537 	PMAP_UNLOCK(kernel_pmap);
1538 	return (pa);
1539 }
1540 
1541 /*
1542  * Remove a wired page from kernel virtual address space.
1543  */
1544 void
1545 moea_kremove(mmu_t mmu, vm_offset_t va)
1546 {
1547 
1548 	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1549 }
1550 
1551 /*
1552  * Provide a kernel pointer corresponding to a given userland pointer.
1553  * The returned pointer is valid until the next time this function is
1554  * called in this thread. This is used internally in copyin/copyout.
1555  */
1556 int
1557 moea_map_user_ptr(mmu_t mmu, pmap_t pm, volatile const void *uaddr,
1558     void **kaddr, size_t ulen, size_t *klen)
1559 {
1560 	size_t l;
1561 	register_t vsid;
1562 
1563 	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
1564 	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
1565 	if (l > ulen)
1566 		l = ulen;
1567 	if (klen)
1568 		*klen = l;
1569 	else if (l != ulen)
1570 		return (EFAULT);
1571 
1572 	vsid = va_to_vsid(pm, (vm_offset_t)uaddr);
1573 
1574 	/* Mark segment no-execute */
1575 	vsid |= SR_N;
1576 
1577 	/* If we have already set this VSID, we can just return */
1578 	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == vsid)
1579 		return (0);
1580 
1581 	__asm __volatile("isync");
1582 	curthread->td_pcb->pcb_cpu.aim.usr_segm =
1583 	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
1584 	curthread->td_pcb->pcb_cpu.aim.usr_vsid = vsid;
1585 	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(vsid));
1586 
1587 	return (0);
1588 }
1589 
1590 /*
1591  * Map a range of physical addresses into kernel virtual address space.
1592  *
1593  * The value passed in *virt is a suggested virtual address for the mapping.
1594  * Architectures which can support a direct-mapped physical to virtual region
1595  * can return the appropriate address within that region, leaving '*virt'
1596  * unchanged.  We cannot and therefore do not; *virt is updated with the
1597  * first usable address after the mapped region.
1598  */
1599 vm_offset_t
1600 moea_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1601     vm_paddr_t pa_end, int prot)
1602 {
1603 	vm_offset_t	sva, va;
1604 
1605 	sva = *virt;
1606 	va = sva;
1607 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1608 		moea_kenter(mmu, va, pa_start);
1609 	*virt = va;
1610 	return (sva);
1611 }
1612 
1613 /*
1614  * Returns true if the pmap's pv is one of the first
1615  * 16 pvs linked to from this page.  This count may
1616  * be changed upwards or downwards in the future; it
1617  * is only necessary that true be returned for a small
1618  * subset of pmaps for proper page aging.
1619  */
1620 boolean_t
1621 moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1622 {
1623         int loops;
1624 	struct pvo_entry *pvo;
1625 	boolean_t rv;
1626 
1627 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1628 	    ("moea_page_exists_quick: page %p is not managed", m));
1629 	loops = 0;
1630 	rv = FALSE;
1631 	rw_wlock(&pvh_global_lock);
1632 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1633 		if (pvo->pvo_pmap == pmap) {
1634 			rv = TRUE;
1635 			break;
1636 		}
1637 		if (++loops >= 16)
1638 			break;
1639 	}
1640 	rw_wunlock(&pvh_global_lock);
1641 	return (rv);
1642 }
1643 
1644 void
1645 moea_page_init(mmu_t mmu __unused, vm_page_t m)
1646 {
1647 
1648 	m->md.mdpg_attrs = 0;
1649 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
1650 	LIST_INIT(&m->md.mdpg_pvoh);
1651 }
1652 
1653 /*
1654  * Return the number of managed mappings to the given physical page
1655  * that are wired.
1656  */
1657 int
1658 moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1659 {
1660 	struct pvo_entry *pvo;
1661 	int count;
1662 
1663 	count = 0;
1664 	if ((m->oflags & VPO_UNMANAGED) != 0)
1665 		return (count);
1666 	rw_wlock(&pvh_global_lock);
1667 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1668 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1669 			count++;
1670 	rw_wunlock(&pvh_global_lock);
1671 	return (count);
1672 }
1673 
1674 static u_int	moea_vsidcontext;
1675 
1676 void
1677 moea_pinit(mmu_t mmu, pmap_t pmap)
1678 {
1679 	int	i, mask;
1680 	u_int	entropy;
1681 
1682 	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1683 	RB_INIT(&pmap->pmap_pvo);
1684 
1685 	entropy = 0;
1686 	__asm __volatile("mftb %0" : "=r"(entropy));
1687 
1688 	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1689 	    == NULL) {
1690 		pmap->pmap_phys = pmap;
1691 	}
1692 
1693 
1694 	mtx_lock(&moea_vsid_mutex);
1695 	/*
1696 	 * Allocate some segment registers for this pmap.
1697 	 */
1698 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1699 		u_int	hash, n;
1700 
1701 		/*
1702 		 * Create a new value by mutiplying by a prime and adding in
1703 		 * entropy from the timebase register.  This is to make the
1704 		 * VSID more random so that the PT hash function collides
1705 		 * less often.  (Note that the prime casues gcc to do shifts
1706 		 * instead of a multiply.)
1707 		 */
1708 		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1709 		hash = moea_vsidcontext & (NPMAPS - 1);
1710 		if (hash == 0)		/* 0 is special, avoid it */
1711 			continue;
1712 		n = hash >> 5;
1713 		mask = 1 << (hash & (VSID_NBPW - 1));
1714 		hash = (moea_vsidcontext & 0xfffff);
1715 		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1716 			/* anything free in this bucket? */
1717 			if (moea_vsid_bitmap[n] == 0xffffffff) {
1718 				entropy = (moea_vsidcontext >> 20);
1719 				continue;
1720 			}
1721 			i = ffs(~moea_vsid_bitmap[n]) - 1;
1722 			mask = 1 << i;
1723 			hash &= rounddown2(0xfffff, VSID_NBPW);
1724 			hash |= i;
1725 		}
1726 		KASSERT(!(moea_vsid_bitmap[n] & mask),
1727 		    ("Allocating in-use VSID group %#x\n", hash));
1728 		moea_vsid_bitmap[n] |= mask;
1729 		for (i = 0; i < 16; i++)
1730 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1731 		mtx_unlock(&moea_vsid_mutex);
1732 		return;
1733 	}
1734 
1735 	mtx_unlock(&moea_vsid_mutex);
1736 	panic("moea_pinit: out of segments");
1737 }
1738 
1739 /*
1740  * Initialize the pmap associated with process 0.
1741  */
1742 void
1743 moea_pinit0(mmu_t mmu, pmap_t pm)
1744 {
1745 
1746 	PMAP_LOCK_INIT(pm);
1747 	moea_pinit(mmu, pm);
1748 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1749 }
1750 
1751 /*
1752  * Set the physical protection on the specified range of this map as requested.
1753  */
1754 void
1755 moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1756     vm_prot_t prot)
1757 {
1758 	struct	pvo_entry *pvo, *tpvo, key;
1759 	struct	pte *pt;
1760 
1761 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1762 	    ("moea_protect: non current pmap"));
1763 
1764 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1765 		moea_remove(mmu, pm, sva, eva);
1766 		return;
1767 	}
1768 
1769 	rw_wlock(&pvh_global_lock);
1770 	PMAP_LOCK(pm);
1771 	key.pvo_vaddr = sva;
1772 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1773 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1774 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1775 
1776 		/*
1777 		 * Grab the PTE pointer before we diddle with the cached PTE
1778 		 * copy.
1779 		 */
1780 		pt = moea_pvo_to_pte(pvo, -1);
1781 		/*
1782 		 * Change the protection of the page.
1783 		 */
1784 		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1785 		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1786 
1787 		/*
1788 		 * If the PVO is in the page table, update that pte as well.
1789 		 */
1790 		if (pt != NULL) {
1791 			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1792 			mtx_unlock(&moea_table_mutex);
1793 		}
1794 	}
1795 	rw_wunlock(&pvh_global_lock);
1796 	PMAP_UNLOCK(pm);
1797 }
1798 
1799 /*
1800  * Map a list of wired pages into kernel virtual address space.  This is
1801  * intended for temporary mappings which do not need page modification or
1802  * references recorded.  Existing mappings in the region are overwritten.
1803  */
1804 void
1805 moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1806 {
1807 	vm_offset_t va;
1808 
1809 	va = sva;
1810 	while (count-- > 0) {
1811 		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1812 		va += PAGE_SIZE;
1813 		m++;
1814 	}
1815 }
1816 
1817 /*
1818  * Remove page mappings from kernel virtual address space.  Intended for
1819  * temporary mappings entered by moea_qenter.
1820  */
1821 void
1822 moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1823 {
1824 	vm_offset_t va;
1825 
1826 	va = sva;
1827 	while (count-- > 0) {
1828 		moea_kremove(mmu, va);
1829 		va += PAGE_SIZE;
1830 	}
1831 }
1832 
1833 void
1834 moea_release(mmu_t mmu, pmap_t pmap)
1835 {
1836         int idx, mask;
1837 
1838 	/*
1839 	 * Free segment register's VSID
1840 	 */
1841         if (pmap->pm_sr[0] == 0)
1842                 panic("moea_release");
1843 
1844 	mtx_lock(&moea_vsid_mutex);
1845         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1846         mask = 1 << (idx % VSID_NBPW);
1847         idx /= VSID_NBPW;
1848         moea_vsid_bitmap[idx] &= ~mask;
1849 	mtx_unlock(&moea_vsid_mutex);
1850 }
1851 
1852 /*
1853  * Remove the given range of addresses from the specified map.
1854  */
1855 void
1856 moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1857 {
1858 	struct	pvo_entry *pvo, *tpvo, key;
1859 
1860 	rw_wlock(&pvh_global_lock);
1861 	PMAP_LOCK(pm);
1862 	key.pvo_vaddr = sva;
1863 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1864 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1865 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1866 		moea_pvo_remove(pvo, -1);
1867 	}
1868 	PMAP_UNLOCK(pm);
1869 	rw_wunlock(&pvh_global_lock);
1870 }
1871 
1872 /*
1873  * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1874  * will reflect changes in pte's back to the vm_page.
1875  */
1876 void
1877 moea_remove_all(mmu_t mmu, vm_page_t m)
1878 {
1879 	struct  pvo_head *pvo_head;
1880 	struct	pvo_entry *pvo, *next_pvo;
1881 	pmap_t	pmap;
1882 
1883 	rw_wlock(&pvh_global_lock);
1884 	pvo_head = vm_page_to_pvoh(m);
1885 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1886 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1887 
1888 		pmap = pvo->pvo_pmap;
1889 		PMAP_LOCK(pmap);
1890 		moea_pvo_remove(pvo, -1);
1891 		PMAP_UNLOCK(pmap);
1892 	}
1893 	if ((m->aflags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
1894 		moea_attr_clear(m, PTE_CHG);
1895 		vm_page_dirty(m);
1896 	}
1897 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1898 	rw_wunlock(&pvh_global_lock);
1899 }
1900 
1901 /*
1902  * Allocate a physical page of memory directly from the phys_avail map.
1903  * Can only be called from moea_bootstrap before avail start and end are
1904  * calculated.
1905  */
1906 static vm_offset_t
1907 moea_bootstrap_alloc(vm_size_t size, u_int align)
1908 {
1909 	vm_offset_t	s, e;
1910 	int		i, j;
1911 
1912 	size = round_page(size);
1913 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1914 		if (align != 0)
1915 			s = roundup2(phys_avail[i], align);
1916 		else
1917 			s = phys_avail[i];
1918 		e = s + size;
1919 
1920 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1921 			continue;
1922 
1923 		if (s == phys_avail[i]) {
1924 			phys_avail[i] += size;
1925 		} else if (e == phys_avail[i + 1]) {
1926 			phys_avail[i + 1] -= size;
1927 		} else {
1928 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1929 				phys_avail[j] = phys_avail[j - 2];
1930 				phys_avail[j + 1] = phys_avail[j - 1];
1931 			}
1932 
1933 			phys_avail[i + 3] = phys_avail[i + 1];
1934 			phys_avail[i + 1] = s;
1935 			phys_avail[i + 2] = e;
1936 			phys_avail_count++;
1937 		}
1938 
1939 		return (s);
1940 	}
1941 	panic("moea_bootstrap_alloc: could not allocate memory");
1942 }
1943 
1944 static void
1945 moea_syncicache(vm_paddr_t pa, vm_size_t len)
1946 {
1947 	__syncicache((void *)pa, len);
1948 }
1949 
1950 static int
1951 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1952     vm_offset_t va, vm_paddr_t pa, u_int pte_lo, int flags)
1953 {
1954 	struct	pvo_entry *pvo;
1955 	u_int	sr;
1956 	int	first;
1957 	u_int	ptegidx;
1958 	int	i;
1959 	int     bootstrap;
1960 
1961 	moea_pvo_enter_calls++;
1962 	first = 0;
1963 	bootstrap = 0;
1964 
1965 	/*
1966 	 * Compute the PTE Group index.
1967 	 */
1968 	va &= ~ADDR_POFF;
1969 	sr = va_to_sr(pm->pm_sr, va);
1970 	ptegidx = va_to_pteg(sr, va);
1971 
1972 	/*
1973 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1974 	 * there is a mapping.
1975 	 */
1976 	mtx_lock(&moea_table_mutex);
1977 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1978 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1979 			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
1980 			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
1981 			    (pte_lo & PTE_PP)) {
1982 				/*
1983 				 * The PTE is not changing.  Instead, this may
1984 				 * be a request to change the mapping's wired
1985 				 * attribute.
1986 				 */
1987 				mtx_unlock(&moea_table_mutex);
1988 				if ((flags & PVO_WIRED) != 0 &&
1989 				    (pvo->pvo_vaddr & PVO_WIRED) == 0) {
1990 					pvo->pvo_vaddr |= PVO_WIRED;
1991 					pm->pm_stats.wired_count++;
1992 				} else if ((flags & PVO_WIRED) == 0 &&
1993 				    (pvo->pvo_vaddr & PVO_WIRED) != 0) {
1994 					pvo->pvo_vaddr &= ~PVO_WIRED;
1995 					pm->pm_stats.wired_count--;
1996 				}
1997 				return (0);
1998 			}
1999 			moea_pvo_remove(pvo, -1);
2000 			break;
2001 		}
2002 	}
2003 
2004 	/*
2005 	 * If we aren't overwriting a mapping, try to allocate.
2006 	 */
2007 	if (moea_initialized) {
2008 		pvo = uma_zalloc(zone, M_NOWAIT);
2009 	} else {
2010 		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
2011 			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
2012 			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
2013 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2014 		}
2015 		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
2016 		moea_bpvo_pool_index++;
2017 		bootstrap = 1;
2018 	}
2019 
2020 	if (pvo == NULL) {
2021 		mtx_unlock(&moea_table_mutex);
2022 		return (ENOMEM);
2023 	}
2024 
2025 	moea_pvo_entries++;
2026 	pvo->pvo_vaddr = va;
2027 	pvo->pvo_pmap = pm;
2028 	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
2029 	pvo->pvo_vaddr &= ~ADDR_POFF;
2030 	if (flags & PVO_WIRED)
2031 		pvo->pvo_vaddr |= PVO_WIRED;
2032 	if (pvo_head != &moea_pvo_kunmanaged)
2033 		pvo->pvo_vaddr |= PVO_MANAGED;
2034 	if (bootstrap)
2035 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2036 
2037 	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
2038 
2039 	/*
2040 	 * Add to pmap list
2041 	 */
2042 	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2043 
2044 	/*
2045 	 * Remember if the list was empty and therefore will be the first
2046 	 * item.
2047 	 */
2048 	if (LIST_FIRST(pvo_head) == NULL)
2049 		first = 1;
2050 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2051 
2052 	if (pvo->pvo_vaddr & PVO_WIRED)
2053 		pm->pm_stats.wired_count++;
2054 	pm->pm_stats.resident_count++;
2055 
2056 	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2057 	KASSERT(i < 8, ("Invalid PTE index"));
2058 	if (i >= 0) {
2059 		PVO_PTEGIDX_SET(pvo, i);
2060 	} else {
2061 		panic("moea_pvo_enter: overflow");
2062 		moea_pte_overflow++;
2063 	}
2064 	mtx_unlock(&moea_table_mutex);
2065 
2066 	return (first ? ENOENT : 0);
2067 }
2068 
2069 static void
2070 moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
2071 {
2072 	struct	pte *pt;
2073 
2074 	/*
2075 	 * If there is an active pte entry, we need to deactivate it (and
2076 	 * save the ref & cfg bits).
2077 	 */
2078 	pt = moea_pvo_to_pte(pvo, pteidx);
2079 	if (pt != NULL) {
2080 		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2081 		mtx_unlock(&moea_table_mutex);
2082 		PVO_PTEGIDX_CLR(pvo);
2083 	} else {
2084 		moea_pte_overflow--;
2085 	}
2086 
2087 	/*
2088 	 * Update our statistics.
2089 	 */
2090 	pvo->pvo_pmap->pm_stats.resident_count--;
2091 	if (pvo->pvo_vaddr & PVO_WIRED)
2092 		pvo->pvo_pmap->pm_stats.wired_count--;
2093 
2094 	/*
2095 	 * Save the REF/CHG bits into their cache if the page is managed.
2096 	 */
2097 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2098 		struct	vm_page *pg;
2099 
2100 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
2101 		if (pg != NULL) {
2102 			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2103 			    (PTE_REF | PTE_CHG));
2104 		}
2105 	}
2106 
2107 	/*
2108 	 * Remove this PVO from the PV and pmap lists.
2109 	 */
2110 	LIST_REMOVE(pvo, pvo_vlink);
2111 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2112 
2113 	/*
2114 	 * Remove this from the overflow list and return it to the pool
2115 	 * if we aren't going to reuse it.
2116 	 */
2117 	LIST_REMOVE(pvo, pvo_olink);
2118 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2119 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2120 		    moea_upvo_zone, pvo);
2121 	moea_pvo_entries--;
2122 	moea_pvo_remove_calls++;
2123 }
2124 
2125 static __inline int
2126 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2127 {
2128 	int	pteidx;
2129 
2130 	/*
2131 	 * We can find the actual pte entry without searching by grabbing
2132 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2133 	 * noticing the HID bit.
2134 	 */
2135 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2136 	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2137 		pteidx ^= moea_pteg_mask * 8;
2138 
2139 	return (pteidx);
2140 }
2141 
2142 static struct pvo_entry *
2143 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2144 {
2145 	struct	pvo_entry *pvo;
2146 	int	ptegidx;
2147 	u_int	sr;
2148 
2149 	va &= ~ADDR_POFF;
2150 	sr = va_to_sr(pm->pm_sr, va);
2151 	ptegidx = va_to_pteg(sr, va);
2152 
2153 	mtx_lock(&moea_table_mutex);
2154 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2155 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2156 			if (pteidx_p)
2157 				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2158 			break;
2159 		}
2160 	}
2161 	mtx_unlock(&moea_table_mutex);
2162 
2163 	return (pvo);
2164 }
2165 
2166 static struct pte *
2167 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2168 {
2169 	struct	pte *pt;
2170 
2171 	/*
2172 	 * If we haven't been supplied the ptegidx, calculate it.
2173 	 */
2174 	if (pteidx == -1) {
2175 		int	ptegidx;
2176 		u_int	sr;
2177 
2178 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2179 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2180 		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2181 	}
2182 
2183 	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2184 	mtx_lock(&moea_table_mutex);
2185 
2186 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2187 		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2188 		    "valid pte index", pvo);
2189 	}
2190 
2191 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2192 		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2193 		    "pvo but no valid pte", pvo);
2194 	}
2195 
2196 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2197 		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2198 			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2199 			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2200 		}
2201 
2202 		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2203 		    != 0) {
2204 			panic("moea_pvo_to_pte: pvo %p pte does not match "
2205 			    "pte %p in moea_pteg_table", pvo, pt);
2206 		}
2207 
2208 		mtx_assert(&moea_table_mutex, MA_OWNED);
2209 		return (pt);
2210 	}
2211 
2212 	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2213 		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2214 		    "moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2215 	}
2216 
2217 	mtx_unlock(&moea_table_mutex);
2218 	return (NULL);
2219 }
2220 
2221 /*
2222  * XXX: THIS STUFF SHOULD BE IN pte.c?
2223  */
2224 int
2225 moea_pte_spill(vm_offset_t addr)
2226 {
2227 	struct	pvo_entry *source_pvo, *victim_pvo;
2228 	struct	pvo_entry *pvo;
2229 	int	ptegidx, i, j;
2230 	u_int	sr;
2231 	struct	pteg *pteg;
2232 	struct	pte *pt;
2233 
2234 	moea_pte_spills++;
2235 
2236 	sr = mfsrin(addr);
2237 	ptegidx = va_to_pteg(sr, addr);
2238 
2239 	/*
2240 	 * Have to substitute some entry.  Use the primary hash for this.
2241 	 * Use low bits of timebase as random generator.
2242 	 */
2243 	pteg = &moea_pteg_table[ptegidx];
2244 	mtx_lock(&moea_table_mutex);
2245 	__asm __volatile("mftb %0" : "=r"(i));
2246 	i &= 7;
2247 	pt = &pteg->pt[i];
2248 
2249 	source_pvo = NULL;
2250 	victim_pvo = NULL;
2251 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2252 		/*
2253 		 * We need to find a pvo entry for this address.
2254 		 */
2255 		if (source_pvo == NULL &&
2256 		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2257 		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2258 			/*
2259 			 * Now found an entry to be spilled into the pteg.
2260 			 * The PTE is now valid, so we know it's active.
2261 			 */
2262 			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2263 
2264 			if (j >= 0) {
2265 				PVO_PTEGIDX_SET(pvo, j);
2266 				moea_pte_overflow--;
2267 				mtx_unlock(&moea_table_mutex);
2268 				return (1);
2269 			}
2270 
2271 			source_pvo = pvo;
2272 
2273 			if (victim_pvo != NULL)
2274 				break;
2275 		}
2276 
2277 		/*
2278 		 * We also need the pvo entry of the victim we are replacing
2279 		 * so save the R & C bits of the PTE.
2280 		 */
2281 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2282 		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2283 			victim_pvo = pvo;
2284 			if (source_pvo != NULL)
2285 				break;
2286 		}
2287 	}
2288 
2289 	if (source_pvo == NULL) {
2290 		mtx_unlock(&moea_table_mutex);
2291 		return (0);
2292 	}
2293 
2294 	if (victim_pvo == NULL) {
2295 		if ((pt->pte_hi & PTE_HID) == 0)
2296 			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2297 			    "entry", pt);
2298 
2299 		/*
2300 		 * If this is a secondary PTE, we need to search it's primary
2301 		 * pvo bucket for the matching PVO.
2302 		 */
2303 		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2304 		    pvo_olink) {
2305 			/*
2306 			 * We also need the pvo entry of the victim we are
2307 			 * replacing so save the R & C bits of the PTE.
2308 			 */
2309 			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2310 				victim_pvo = pvo;
2311 				break;
2312 			}
2313 		}
2314 
2315 		if (victim_pvo == NULL)
2316 			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2317 			    "entry", pt);
2318 	}
2319 
2320 	/*
2321 	 * We are invalidating the TLB entry for the EA we are replacing even
2322 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2323 	 * contained in the TLB entry.
2324 	 */
2325 	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2326 
2327 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2328 	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2329 
2330 	PVO_PTEGIDX_CLR(victim_pvo);
2331 	PVO_PTEGIDX_SET(source_pvo, i);
2332 	moea_pte_replacements++;
2333 
2334 	mtx_unlock(&moea_table_mutex);
2335 	return (1);
2336 }
2337 
2338 static __inline struct pvo_entry *
2339 moea_pte_spillable_ident(u_int ptegidx)
2340 {
2341 	struct	pte *pt;
2342 	struct	pvo_entry *pvo_walk, *pvo = NULL;
2343 
2344 	LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) {
2345 		if (pvo_walk->pvo_vaddr & PVO_WIRED)
2346 			continue;
2347 
2348 		if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID))
2349 			continue;
2350 
2351 		pt = moea_pvo_to_pte(pvo_walk, -1);
2352 
2353 		if (pt == NULL)
2354 			continue;
2355 
2356 		pvo = pvo_walk;
2357 
2358 		mtx_unlock(&moea_table_mutex);
2359 		if (!(pt->pte_lo & PTE_REF))
2360 			return (pvo_walk);
2361 	}
2362 
2363 	return (pvo);
2364 }
2365 
2366 static int
2367 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2368 {
2369 	struct	pte *pt;
2370 	struct	pvo_entry *victim_pvo;
2371 	int	i;
2372 	int	victim_idx;
2373 	u_int	pteg_bkpidx = ptegidx;
2374 
2375 	mtx_assert(&moea_table_mutex, MA_OWNED);
2376 
2377 	/*
2378 	 * First try primary hash.
2379 	 */
2380 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2381 		if ((pt->pte_hi & PTE_VALID) == 0) {
2382 			pvo_pt->pte_hi &= ~PTE_HID;
2383 			moea_pte_set(pt, pvo_pt);
2384 			return (i);
2385 		}
2386 	}
2387 
2388 	/*
2389 	 * Now try secondary hash.
2390 	 */
2391 	ptegidx ^= moea_pteg_mask;
2392 
2393 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2394 		if ((pt->pte_hi & PTE_VALID) == 0) {
2395 			pvo_pt->pte_hi |= PTE_HID;
2396 			moea_pte_set(pt, pvo_pt);
2397 			return (i);
2398 		}
2399 	}
2400 
2401 	/* Try again, but this time try to force a PTE out. */
2402 	ptegidx = pteg_bkpidx;
2403 
2404 	victim_pvo = moea_pte_spillable_ident(ptegidx);
2405 	if (victim_pvo == NULL) {
2406 		ptegidx ^= moea_pteg_mask;
2407 		victim_pvo = moea_pte_spillable_ident(ptegidx);
2408 	}
2409 
2410 	if (victim_pvo == NULL) {
2411 		panic("moea_pte_insert: overflow");
2412 		return (-1);
2413 	}
2414 
2415 	victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx);
2416 
2417 	if (pteg_bkpidx == ptegidx)
2418 		pvo_pt->pte_hi &= ~PTE_HID;
2419 	else
2420 		pvo_pt->pte_hi |= PTE_HID;
2421 
2422 	/*
2423 	 * Synchronize the sacrifice PTE with its PVO, then mark both
2424 	 * invalid. The PVO will be reused when/if the VM system comes
2425 	 * here after a fault.
2426 	 */
2427 	pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7];
2428 
2429 	if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi)
2430 	    panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2431 
2432 	/*
2433 	 * Set the new PTE.
2434 	 */
2435 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2436 	PVO_PTEGIDX_CLR(victim_pvo);
2437 	moea_pte_overflow++;
2438 	moea_pte_set(pt, pvo_pt);
2439 
2440 	return (victim_idx & 7);
2441 }
2442 
2443 static boolean_t
2444 moea_query_bit(vm_page_t m, int ptebit)
2445 {
2446 	struct	pvo_entry *pvo;
2447 	struct	pte *pt;
2448 
2449 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2450 	if (moea_attr_fetch(m) & ptebit)
2451 		return (TRUE);
2452 
2453 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2454 
2455 		/*
2456 		 * See if we saved the bit off.  If so, cache it and return
2457 		 * success.
2458 		 */
2459 		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2460 			moea_attr_save(m, ptebit);
2461 			return (TRUE);
2462 		}
2463 	}
2464 
2465 	/*
2466 	 * No luck, now go through the hard part of looking at the PTEs
2467 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2468 	 * the PTEs.
2469 	 */
2470 	powerpc_sync();
2471 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2472 
2473 		/*
2474 		 * See if this pvo has a valid PTE.  if so, fetch the
2475 		 * REF/CHG bits from the valid PTE.  If the appropriate
2476 		 * ptebit is set, cache it and return success.
2477 		 */
2478 		pt = moea_pvo_to_pte(pvo, -1);
2479 		if (pt != NULL) {
2480 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2481 			mtx_unlock(&moea_table_mutex);
2482 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2483 				moea_attr_save(m, ptebit);
2484 				return (TRUE);
2485 			}
2486 		}
2487 	}
2488 
2489 	return (FALSE);
2490 }
2491 
2492 static u_int
2493 moea_clear_bit(vm_page_t m, int ptebit)
2494 {
2495 	u_int	count;
2496 	struct	pvo_entry *pvo;
2497 	struct	pte *pt;
2498 
2499 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2500 
2501 	/*
2502 	 * Clear the cached value.
2503 	 */
2504 	moea_attr_clear(m, ptebit);
2505 
2506 	/*
2507 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2508 	 * we can reset the right ones).  note that since the pvo entries and
2509 	 * list heads are accessed via BAT0 and are never placed in the page
2510 	 * table, we don't have to worry about further accesses setting the
2511 	 * REF/CHG bits.
2512 	 */
2513 	powerpc_sync();
2514 
2515 	/*
2516 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2517 	 * valid pte clear the ptebit from the valid pte.
2518 	 */
2519 	count = 0;
2520 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2521 		pt = moea_pvo_to_pte(pvo, -1);
2522 		if (pt != NULL) {
2523 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2524 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2525 				count++;
2526 				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2527 			}
2528 			mtx_unlock(&moea_table_mutex);
2529 		}
2530 		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2531 	}
2532 
2533 	return (count);
2534 }
2535 
2536 /*
2537  * Return true if the physical range is encompassed by the battable[idx]
2538  */
2539 static int
2540 moea_bat_mapped(int idx, vm_paddr_t pa, vm_size_t size)
2541 {
2542 	u_int prot;
2543 	u_int32_t start;
2544 	u_int32_t end;
2545 	u_int32_t bat_ble;
2546 
2547 	/*
2548 	 * Return immediately if not a valid mapping
2549 	 */
2550 	if (!(battable[idx].batu & BAT_Vs))
2551 		return (EINVAL);
2552 
2553 	/*
2554 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2555 	 * so it can function as an i/o page
2556 	 */
2557 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2558 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2559 		return (EPERM);
2560 
2561 	/*
2562 	 * The address should be within the BAT range. Assume that the
2563 	 * start address in the BAT has the correct alignment (thus
2564 	 * not requiring masking)
2565 	 */
2566 	start = battable[idx].batl & BAT_PBS;
2567 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2568 	end = start | (bat_ble << 15) | 0x7fff;
2569 
2570 	if ((pa < start) || ((pa + size) > end))
2571 		return (ERANGE);
2572 
2573 	return (0);
2574 }
2575 
2576 boolean_t
2577 moea_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2578 {
2579 	int i;
2580 
2581 	/*
2582 	 * This currently does not work for entries that
2583 	 * overlap 256M BAT segments.
2584 	 */
2585 
2586 	for(i = 0; i < 16; i++)
2587 		if (moea_bat_mapped(i, pa, size) == 0)
2588 			return (0);
2589 
2590 	return (EFAULT);
2591 }
2592 
2593 /*
2594  * Map a set of physical memory pages into the kernel virtual
2595  * address space. Return a pointer to where it is mapped. This
2596  * routine is intended to be used for mapping device memory,
2597  * NOT real memory.
2598  */
2599 void *
2600 moea_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2601 {
2602 
2603 	return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2604 }
2605 
2606 void *
2607 moea_mapdev_attr(mmu_t mmu, vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2608 {
2609 	vm_offset_t va, tmpva, ppa, offset;
2610 	int i;
2611 
2612 	ppa = trunc_page(pa);
2613 	offset = pa & PAGE_MASK;
2614 	size = roundup(offset + size, PAGE_SIZE);
2615 
2616 	/*
2617 	 * If the physical address lies within a valid BAT table entry,
2618 	 * return the 1:1 mapping. This currently doesn't work
2619 	 * for regions that overlap 256M BAT segments.
2620 	 */
2621 	for (i = 0; i < 16; i++) {
2622 		if (moea_bat_mapped(i, pa, size) == 0)
2623 			return ((void *) pa);
2624 	}
2625 
2626 	va = kva_alloc(size);
2627 	if (!va)
2628 		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2629 
2630 	for (tmpva = va; size > 0;) {
2631 		moea_kenter_attr(mmu, tmpva, ppa, ma);
2632 		tlbie(tmpva);
2633 		size -= PAGE_SIZE;
2634 		tmpva += PAGE_SIZE;
2635 		ppa += PAGE_SIZE;
2636 	}
2637 
2638 	return ((void *)(va + offset));
2639 }
2640 
2641 void
2642 moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2643 {
2644 	vm_offset_t base, offset;
2645 
2646 	/*
2647 	 * If this is outside kernel virtual space, then it's a
2648 	 * battable entry and doesn't require unmapping
2649 	 */
2650 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2651 		base = trunc_page(va);
2652 		offset = va & PAGE_MASK;
2653 		size = roundup(offset + size, PAGE_SIZE);
2654 		kva_free(base, size);
2655 	}
2656 }
2657 
2658 static void
2659 moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2660 {
2661 	struct pvo_entry *pvo;
2662 	vm_offset_t lim;
2663 	vm_paddr_t pa;
2664 	vm_size_t len;
2665 
2666 	PMAP_LOCK(pm);
2667 	while (sz > 0) {
2668 		lim = round_page(va);
2669 		len = MIN(lim - va, sz);
2670 		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2671 		if (pvo != NULL) {
2672 			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2673 			    (va & ADDR_POFF);
2674 			moea_syncicache(pa, len);
2675 		}
2676 		va += len;
2677 		sz -= len;
2678 	}
2679 	PMAP_UNLOCK(pm);
2680 }
2681 
2682 void
2683 moea_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2684 {
2685 
2686 	*va = (void *)pa;
2687 }
2688 
2689 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2690 
2691 void
2692 moea_scan_init(mmu_t mmu)
2693 {
2694 	struct pvo_entry *pvo;
2695 	vm_offset_t va;
2696 	int i;
2697 
2698 	if (!do_minidump) {
2699 		/* Initialize phys. segments for dumpsys(). */
2700 		memset(&dump_map, 0, sizeof(dump_map));
2701 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2702 		for (i = 0; i < pregions_sz; i++) {
2703 			dump_map[i].pa_start = pregions[i].mr_start;
2704 			dump_map[i].pa_size = pregions[i].mr_size;
2705 		}
2706 		return;
2707 	}
2708 
2709 	/* Virtual segments for minidumps: */
2710 	memset(&dump_map, 0, sizeof(dump_map));
2711 
2712 	/* 1st: kernel .data and .bss. */
2713 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2714 	dump_map[0].pa_size =
2715 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2716 
2717 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2718 	dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
2719 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2720 
2721 	/* 3rd: kernel VM. */
2722 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2723 	/* Find start of next chunk (from va). */
2724 	while (va < virtual_end) {
2725 		/* Don't dump the buffer cache. */
2726 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2727 			va = kmi.buffer_eva;
2728 			continue;
2729 		}
2730 		pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
2731 		if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2732 			break;
2733 		va += PAGE_SIZE;
2734 	}
2735 	if (va < virtual_end) {
2736 		dump_map[2].pa_start = va;
2737 		va += PAGE_SIZE;
2738 		/* Find last page in chunk. */
2739 		while (va < virtual_end) {
2740 			/* Don't run into the buffer cache. */
2741 			if (va == kmi.buffer_sva)
2742 				break;
2743 			pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF,
2744 			    NULL);
2745 			if (pvo == NULL ||
2746 			    !(pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2747 				break;
2748 			va += PAGE_SIZE;
2749 		}
2750 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2751 	}
2752 }
2753