xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision b2db760808f74bb53c232900091c9da801ebbfcc)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*-
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 /*
97  * Manages physical address maps.
98  *
99  * In addition to hardware address maps, this module is called upon to
100  * provide software-use-only maps which may or may not be stored in the
101  * same form as hardware maps.  These pseudo-maps are used to store
102  * intermediate results from copy operations to and from address spaces.
103  *
104  * Since the information managed by this module is also stored by the
105  * logical address mapping module, this module may throw away valid virtual
106  * to physical mappings at almost any time.  However, invalidations of
107  * mappings must be done as requested.
108  *
109  * In order to cope with hardware architectures which make virtual to
110  * physical map invalidates expensive, this module may delay invalidate
111  * reduced protection operations until such time as they are actually
112  * necessary.  This module is given full information as to which processors
113  * are currently using which maps, and to when physical maps must be made
114  * correct.
115  */
116 
117 #include "opt_kstack_pages.h"
118 
119 #include <sys/param.h>
120 #include <sys/kernel.h>
121 #include <sys/ktr.h>
122 #include <sys/lock.h>
123 #include <sys/msgbuf.h>
124 #include <sys/mutex.h>
125 #include <sys/proc.h>
126 #include <sys/sysctl.h>
127 #include <sys/systm.h>
128 #include <sys/vmmeter.h>
129 
130 #include <dev/ofw/openfirm.h>
131 
132 #include <vm/vm.h>
133 #include <vm/vm_param.h>
134 #include <vm/vm_kern.h>
135 #include <vm/vm_page.h>
136 #include <vm/vm_map.h>
137 #include <vm/vm_object.h>
138 #include <vm/vm_extern.h>
139 #include <vm/vm_pageout.h>
140 #include <vm/vm_pager.h>
141 #include <vm/uma.h>
142 
143 #include <machine/cpu.h>
144 #include <machine/platform.h>
145 #include <machine/bat.h>
146 #include <machine/frame.h>
147 #include <machine/md_var.h>
148 #include <machine/psl.h>
149 #include <machine/pte.h>
150 #include <machine/smp.h>
151 #include <machine/sr.h>
152 #include <machine/mmuvar.h>
153 
154 #include "mmu_if.h"
155 
156 #define	MOEA_DEBUG
157 
158 #define TODO	panic("%s: not implemented", __func__);
159 
160 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
161 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
162 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
163 
164 #define	PVO_PTEGIDX_MASK	0x007		/* which PTEG slot */
165 #define	PVO_PTEGIDX_VALID	0x008		/* slot is valid */
166 #define	PVO_WIRED		0x010		/* PVO entry is wired */
167 #define	PVO_MANAGED		0x020		/* PVO entry is managed */
168 #define	PVO_EXECUTABLE		0x040		/* PVO entry is executable */
169 #define	PVO_BOOTSTRAP		0x080		/* PVO entry allocated during
170 						   bootstrap */
171 #define PVO_FAKE		0x100		/* fictitious phys page */
172 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
173 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
174 #define PVO_ISFAKE(pvo)		((pvo)->pvo_vaddr & PVO_FAKE)
175 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
176 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
177 #define	PVO_PTEGIDX_CLR(pvo)	\
178 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
179 #define	PVO_PTEGIDX_SET(pvo, i)	\
180 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
181 
182 #define	MOEA_PVO_CHECK(pvo)
183 
184 struct ofw_map {
185 	vm_offset_t	om_va;
186 	vm_size_t	om_len;
187 	vm_offset_t	om_pa;
188 	u_int		om_mode;
189 };
190 
191 /*
192  * Map of physical memory regions.
193  */
194 static struct	mem_region *regions;
195 static struct	mem_region *pregions;
196 static u_int    phys_avail_count;
197 static int	regions_sz, pregions_sz;
198 static struct	ofw_map *translations;
199 
200 extern struct pmap ofw_pmap;
201 
202 /*
203  * Lock for the pteg and pvo tables.
204  */
205 struct mtx	moea_table_mutex;
206 
207 /* tlbie instruction synchronization */
208 static struct mtx tlbie_mtx;
209 
210 /*
211  * PTEG data.
212  */
213 static struct	pteg *moea_pteg_table;
214 u_int		moea_pteg_count;
215 u_int		moea_pteg_mask;
216 
217 /*
218  * PVO data.
219  */
220 struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
221 struct	pvo_head moea_pvo_kunmanaged =
222     LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
223 struct	pvo_head moea_pvo_unmanaged =
224     LIST_HEAD_INITIALIZER(moea_pvo_unmanaged);	/* list of unmanaged pages */
225 
226 uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
227 uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
228 
229 #define	BPVO_POOL_SIZE	32768
230 static struct	pvo_entry *moea_bpvo_pool;
231 static int	moea_bpvo_pool_index = 0;
232 
233 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
234 static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
235 
236 static boolean_t moea_initialized = FALSE;
237 
238 /*
239  * Statistics.
240  */
241 u_int	moea_pte_valid = 0;
242 u_int	moea_pte_overflow = 0;
243 u_int	moea_pte_replacements = 0;
244 u_int	moea_pvo_entries = 0;
245 u_int	moea_pvo_enter_calls = 0;
246 u_int	moea_pvo_remove_calls = 0;
247 u_int	moea_pte_spills = 0;
248 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
249     0, "");
250 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
251     &moea_pte_overflow, 0, "");
252 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
253     &moea_pte_replacements, 0, "");
254 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
255     0, "");
256 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
257     &moea_pvo_enter_calls, 0, "");
258 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
259     &moea_pvo_remove_calls, 0, "");
260 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
261     &moea_pte_spills, 0, "");
262 
263 /*
264  * Allocate physical memory for use in moea_bootstrap.
265  */
266 static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
267 
268 /*
269  * PTE calls.
270  */
271 static int		moea_pte_insert(u_int, struct pte *);
272 
273 /*
274  * PVO calls.
275  */
276 static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
277 		    vm_offset_t, vm_offset_t, u_int, int);
278 static void	moea_pvo_remove(struct pvo_entry *, int);
279 static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
280 static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
281 
282 /*
283  * Utility routines.
284  */
285 static void		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
286 			    vm_prot_t, boolean_t);
287 static void		moea_syncicache(vm_offset_t, vm_size_t);
288 static boolean_t	moea_query_bit(vm_page_t, int);
289 static u_int		moea_clear_bit(vm_page_t, int);
290 static void		moea_kremove(mmu_t, vm_offset_t);
291 int		moea_pte_spill(vm_offset_t);
292 
293 /*
294  * Kernel MMU interface
295  */
296 void moea_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
297 void moea_clear_modify(mmu_t, vm_page_t);
298 void moea_clear_reference(mmu_t, vm_page_t);
299 void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
300 void moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
301 void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
302     vm_prot_t);
303 void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
304 vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
305 vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
306 void moea_init(mmu_t);
307 boolean_t moea_is_modified(mmu_t, vm_page_t);
308 boolean_t moea_is_referenced(mmu_t, vm_page_t);
309 boolean_t moea_ts_referenced(mmu_t, vm_page_t);
310 vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
311 boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
312 int moea_page_wired_mappings(mmu_t, vm_page_t);
313 void moea_pinit(mmu_t, pmap_t);
314 void moea_pinit0(mmu_t, pmap_t);
315 void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
316 void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
317 void moea_qremove(mmu_t, vm_offset_t, int);
318 void moea_release(mmu_t, pmap_t);
319 void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
320 void moea_remove_all(mmu_t, vm_page_t);
321 void moea_remove_write(mmu_t, vm_page_t);
322 void moea_zero_page(mmu_t, vm_page_t);
323 void moea_zero_page_area(mmu_t, vm_page_t, int, int);
324 void moea_zero_page_idle(mmu_t, vm_page_t);
325 void moea_activate(mmu_t, struct thread *);
326 void moea_deactivate(mmu_t, struct thread *);
327 void moea_cpu_bootstrap(mmu_t, int);
328 void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
329 void *moea_mapdev(mmu_t, vm_offset_t, vm_size_t);
330 void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
331 vm_offset_t moea_kextract(mmu_t, vm_offset_t);
332 void moea_kenter(mmu_t, vm_offset_t, vm_offset_t);
333 boolean_t moea_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
334 static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
335 
336 static mmu_method_t moea_methods[] = {
337 	MMUMETHOD(mmu_change_wiring,	moea_change_wiring),
338 	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
339 	MMUMETHOD(mmu_clear_reference,	moea_clear_reference),
340 	MMUMETHOD(mmu_copy_page,	moea_copy_page),
341 	MMUMETHOD(mmu_enter,		moea_enter),
342 	MMUMETHOD(mmu_enter_object,	moea_enter_object),
343 	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
344 	MMUMETHOD(mmu_extract,		moea_extract),
345 	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
346 	MMUMETHOD(mmu_init,		moea_init),
347 	MMUMETHOD(mmu_is_modified,	moea_is_modified),
348 	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
349 	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
350 	MMUMETHOD(mmu_map,     		moea_map),
351 	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
352 	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
353 	MMUMETHOD(mmu_pinit,		moea_pinit),
354 	MMUMETHOD(mmu_pinit0,		moea_pinit0),
355 	MMUMETHOD(mmu_protect,		moea_protect),
356 	MMUMETHOD(mmu_qenter,		moea_qenter),
357 	MMUMETHOD(mmu_qremove,		moea_qremove),
358 	MMUMETHOD(mmu_release,		moea_release),
359 	MMUMETHOD(mmu_remove,		moea_remove),
360 	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
361 	MMUMETHOD(mmu_remove_write,	moea_remove_write),
362 	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
363 	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
364 	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
365 	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
366 	MMUMETHOD(mmu_activate,		moea_activate),
367 	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
368 
369 	/* Internal interfaces */
370 	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
371 	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
372 	MMUMETHOD(mmu_mapdev,		moea_mapdev),
373 	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
374 	MMUMETHOD(mmu_kextract,		moea_kextract),
375 	MMUMETHOD(mmu_kenter,		moea_kenter),
376 	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
377 
378 	{ 0, 0 }
379 };
380 
381 static mmu_def_t oea_mmu = {
382 	MMU_TYPE_OEA,
383 	moea_methods,
384 	0
385 };
386 MMU_DEF(oea_mmu);
387 
388 static void
389 tlbie(vm_offset_t va)
390 {
391 
392 	mtx_lock_spin(&tlbie_mtx);
393 	__asm __volatile("tlbie %0" :: "r"(va));
394 	__asm __volatile("tlbsync");
395 	powerpc_sync();
396 	mtx_unlock_spin(&tlbie_mtx);
397 }
398 
399 static void
400 tlbia(void)
401 {
402 	vm_offset_t va;
403 
404 	for (va = 0; va < 0x00040000; va += 0x00001000) {
405 		__asm __volatile("tlbie %0" :: "r"(va));
406 		powerpc_sync();
407 	}
408 	__asm __volatile("tlbsync");
409 	powerpc_sync();
410 }
411 
412 static __inline int
413 va_to_sr(u_int *sr, vm_offset_t va)
414 {
415 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
416 }
417 
418 static __inline u_int
419 va_to_pteg(u_int sr, vm_offset_t addr)
420 {
421 	u_int hash;
422 
423 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
424 	    ADDR_PIDX_SHFT);
425 	return (hash & moea_pteg_mask);
426 }
427 
428 static __inline struct pvo_head *
429 pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
430 {
431 	struct	vm_page *pg;
432 
433 	pg = PHYS_TO_VM_PAGE(pa);
434 
435 	if (pg_p != NULL)
436 		*pg_p = pg;
437 
438 	if (pg == NULL)
439 		return (&moea_pvo_unmanaged);
440 
441 	return (&pg->md.mdpg_pvoh);
442 }
443 
444 static __inline struct pvo_head *
445 vm_page_to_pvoh(vm_page_t m)
446 {
447 
448 	return (&m->md.mdpg_pvoh);
449 }
450 
451 static __inline void
452 moea_attr_clear(vm_page_t m, int ptebit)
453 {
454 
455 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
456 	m->md.mdpg_attrs &= ~ptebit;
457 }
458 
459 static __inline int
460 moea_attr_fetch(vm_page_t m)
461 {
462 
463 	return (m->md.mdpg_attrs);
464 }
465 
466 static __inline void
467 moea_attr_save(vm_page_t m, int ptebit)
468 {
469 
470 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
471 	m->md.mdpg_attrs |= ptebit;
472 }
473 
474 static __inline int
475 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
476 {
477 	if (pt->pte_hi == pvo_pt->pte_hi)
478 		return (1);
479 
480 	return (0);
481 }
482 
483 static __inline int
484 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
485 {
486 	return (pt->pte_hi & ~PTE_VALID) ==
487 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
488 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
489 }
490 
491 static __inline void
492 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
493 {
494 
495 	mtx_assert(&moea_table_mutex, MA_OWNED);
496 
497 	/*
498 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
499 	 * set when the real pte is set in memory.
500 	 *
501 	 * Note: Don't set the valid bit for correct operation of tlb update.
502 	 */
503 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
504 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
505 	pt->pte_lo = pte_lo;
506 }
507 
508 static __inline void
509 moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
510 {
511 
512 	mtx_assert(&moea_table_mutex, MA_OWNED);
513 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
514 }
515 
516 static __inline void
517 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
518 {
519 
520 	mtx_assert(&moea_table_mutex, MA_OWNED);
521 
522 	/*
523 	 * As shown in Section 7.6.3.2.3
524 	 */
525 	pt->pte_lo &= ~ptebit;
526 	tlbie(va);
527 }
528 
529 static __inline void
530 moea_pte_set(struct pte *pt, struct pte *pvo_pt)
531 {
532 
533 	mtx_assert(&moea_table_mutex, MA_OWNED);
534 	pvo_pt->pte_hi |= PTE_VALID;
535 
536 	/*
537 	 * Update the PTE as defined in section 7.6.3.1.
538 	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
539 	 * been saved so this routine can restore them (if desired).
540 	 */
541 	pt->pte_lo = pvo_pt->pte_lo;
542 	powerpc_sync();
543 	pt->pte_hi = pvo_pt->pte_hi;
544 	powerpc_sync();
545 	moea_pte_valid++;
546 }
547 
548 static __inline void
549 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
550 {
551 
552 	mtx_assert(&moea_table_mutex, MA_OWNED);
553 	pvo_pt->pte_hi &= ~PTE_VALID;
554 
555 	/*
556 	 * Force the reg & chg bits back into the PTEs.
557 	 */
558 	powerpc_sync();
559 
560 	/*
561 	 * Invalidate the pte.
562 	 */
563 	pt->pte_hi &= ~PTE_VALID;
564 
565 	tlbie(va);
566 
567 	/*
568 	 * Save the reg & chg bits.
569 	 */
570 	moea_pte_synch(pt, pvo_pt);
571 	moea_pte_valid--;
572 }
573 
574 static __inline void
575 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
576 {
577 
578 	/*
579 	 * Invalidate the PTE
580 	 */
581 	moea_pte_unset(pt, pvo_pt, va);
582 	moea_pte_set(pt, pvo_pt);
583 }
584 
585 /*
586  * Quick sort callout for comparing memory regions.
587  */
588 static int	mr_cmp(const void *a, const void *b);
589 static int	om_cmp(const void *a, const void *b);
590 
591 static int
592 mr_cmp(const void *a, const void *b)
593 {
594 	const struct	mem_region *regiona;
595 	const struct	mem_region *regionb;
596 
597 	regiona = a;
598 	regionb = b;
599 	if (regiona->mr_start < regionb->mr_start)
600 		return (-1);
601 	else if (regiona->mr_start > regionb->mr_start)
602 		return (1);
603 	else
604 		return (0);
605 }
606 
607 static int
608 om_cmp(const void *a, const void *b)
609 {
610 	const struct	ofw_map *mapa;
611 	const struct	ofw_map *mapb;
612 
613 	mapa = a;
614 	mapb = b;
615 	if (mapa->om_pa < mapb->om_pa)
616 		return (-1);
617 	else if (mapa->om_pa > mapb->om_pa)
618 		return (1);
619 	else
620 		return (0);
621 }
622 
623 void
624 moea_cpu_bootstrap(mmu_t mmup, int ap)
625 {
626 	u_int sdr;
627 	int i;
628 
629 	if (ap) {
630 		powerpc_sync();
631 		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
632 		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
633 		isync();
634 		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
635 		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
636 		isync();
637 	}
638 
639 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
640 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
641 	isync();
642 
643 	__asm __volatile("mtibatu 1,%0" :: "r"(0));
644 	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
645 	__asm __volatile("mtibatu 2,%0" :: "r"(0));
646 	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
647 	__asm __volatile("mtibatu 3,%0" :: "r"(0));
648 	isync();
649 
650 	for (i = 0; i < 16; i++)
651 		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
652 
653 	__asm __volatile("mtsr %0,%1" :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
654 	__asm __volatile("mtsr %0,%1" :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
655 	powerpc_sync();
656 
657 	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
658 	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
659 	isync();
660 
661 	tlbia();
662 }
663 
664 void
665 moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
666 {
667 	ihandle_t	mmui;
668 	phandle_t	chosen, mmu;
669 	int		sz;
670 	int		i, j;
671 	int		ofw_mappings;
672 	vm_size_t	size, physsz, hwphyssz;
673 	vm_offset_t	pa, va, off;
674 	void		*dpcpu;
675 	register_t	msr;
676 
677         /*
678          * Set up BAT0 to map the lowest 256 MB area
679          */
680         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
681         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
682 
683         /*
684          * Map PCI memory space.
685          */
686         battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
687         battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
688 
689         battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
690         battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
691 
692         battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
693         battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
694 
695         battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
696         battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
697 
698         /*
699          * Map obio devices.
700          */
701         battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
702         battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
703 
704 	/*
705 	 * Use an IBAT and a DBAT to map the bottom segment of memory
706 	 * where we are. Turn off instruction relocation temporarily
707 	 * to prevent faults while reprogramming the IBAT.
708 	 */
709 	msr = mfmsr();
710 	mtmsr(msr & ~PSL_IR);
711 	__asm (".balign 32; \n"
712 	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
713 	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
714 	    :: "r"(battable[0].batu), "r"(battable[0].batl));
715 	mtmsr(msr);
716 
717 	/* map pci space */
718 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
719 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
720 	isync();
721 
722 	/* set global direct map flag */
723 	hw_direct_map = 1;
724 
725 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
726 	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
727 
728 	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
729 	for (i = 0; i < pregions_sz; i++) {
730 		vm_offset_t pa;
731 		vm_offset_t end;
732 
733 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
734 			pregions[i].mr_start,
735 			pregions[i].mr_start + pregions[i].mr_size,
736 			pregions[i].mr_size);
737 		/*
738 		 * Install entries into the BAT table to allow all
739 		 * of physmem to be convered by on-demand BAT entries.
740 		 * The loop will sometimes set the same battable element
741 		 * twice, but that's fine since they won't be used for
742 		 * a while yet.
743 		 */
744 		pa = pregions[i].mr_start & 0xf0000000;
745 		end = pregions[i].mr_start + pregions[i].mr_size;
746 		do {
747                         u_int n = pa >> ADDR_SR_SHFT;
748 
749 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
750 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
751 			pa += SEGMENT_LENGTH;
752 		} while (pa < end);
753 	}
754 
755 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
756 		panic("moea_bootstrap: phys_avail too small");
757 	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
758 	phys_avail_count = 0;
759 	physsz = 0;
760 	hwphyssz = 0;
761 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
762 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
763 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
764 		    regions[i].mr_start + regions[i].mr_size,
765 		    regions[i].mr_size);
766 		if (hwphyssz != 0 &&
767 		    (physsz + regions[i].mr_size) >= hwphyssz) {
768 			if (physsz < hwphyssz) {
769 				phys_avail[j] = regions[i].mr_start;
770 				phys_avail[j + 1] = regions[i].mr_start +
771 				    hwphyssz - physsz;
772 				physsz = hwphyssz;
773 				phys_avail_count++;
774 			}
775 			break;
776 		}
777 		phys_avail[j] = regions[i].mr_start;
778 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
779 		phys_avail_count++;
780 		physsz += regions[i].mr_size;
781 	}
782 	physmem = btoc(physsz);
783 
784 	/*
785 	 * Allocate PTEG table.
786 	 */
787 #ifdef PTEGCOUNT
788 	moea_pteg_count = PTEGCOUNT;
789 #else
790 	moea_pteg_count = 0x1000;
791 
792 	while (moea_pteg_count < physmem)
793 		moea_pteg_count <<= 1;
794 
795 	moea_pteg_count >>= 1;
796 #endif /* PTEGCOUNT */
797 
798 	size = moea_pteg_count * sizeof(struct pteg);
799 	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
800 	    size);
801 	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
802 	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
803 	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
804 	moea_pteg_mask = moea_pteg_count - 1;
805 
806 	/*
807 	 * Allocate pv/overflow lists.
808 	 */
809 	size = sizeof(struct pvo_head) * moea_pteg_count;
810 	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
811 	    PAGE_SIZE);
812 	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
813 	for (i = 0; i < moea_pteg_count; i++)
814 		LIST_INIT(&moea_pvo_table[i]);
815 
816 	/*
817 	 * Initialize the lock that synchronizes access to the pteg and pvo
818 	 * tables.
819 	 */
820 	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
821 	    MTX_RECURSE);
822 
823 	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
824 
825 	/*
826 	 * Initialise the unmanaged pvo pool.
827 	 */
828 	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
829 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
830 	moea_bpvo_pool_index = 0;
831 
832 	/*
833 	 * Make sure kernel vsid is allocated as well as VSID 0.
834 	 */
835 	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
836 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
837 	moea_vsid_bitmap[0] |= 1;
838 
839 	/*
840 	 * Set up the Open Firmware pmap and add it's mappings.
841 	 */
842 	moea_pinit(mmup, &ofw_pmap);
843 	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
844 	ofw_pmap.pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
845 	if ((chosen = OF_finddevice("/chosen")) == -1)
846 		panic("moea_bootstrap: can't find /chosen");
847 	OF_getprop(chosen, "mmu", &mmui, 4);
848 	if ((mmu = OF_instance_to_package(mmui)) == -1)
849 		panic("moea_bootstrap: can't get mmu package");
850 	if ((sz = OF_getproplen(mmu, "translations")) == -1)
851 		panic("moea_bootstrap: can't get ofw translation count");
852 	translations = NULL;
853 	for (i = 0; phys_avail[i] != 0; i += 2) {
854 		if (phys_avail[i + 1] >= sz) {
855 			translations = (struct ofw_map *)phys_avail[i];
856 			break;
857 		}
858 	}
859 	if (translations == NULL)
860 		panic("moea_bootstrap: no space to copy translations");
861 	bzero(translations, sz);
862 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
863 		panic("moea_bootstrap: can't get ofw translations");
864 	CTR0(KTR_PMAP, "moea_bootstrap: translations");
865 	sz /= sizeof(*translations);
866 	qsort(translations, sz, sizeof (*translations), om_cmp);
867 	for (i = 0, ofw_mappings = 0; i < sz; i++) {
868 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
869 		    translations[i].om_pa, translations[i].om_va,
870 		    translations[i].om_len);
871 
872 		/*
873 		 * If the mapping is 1:1, let the RAM and device on-demand
874 		 * BAT tables take care of the translation.
875 		 */
876 		if (translations[i].om_va == translations[i].om_pa)
877 			continue;
878 
879 		/* Enter the pages */
880 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
881 			struct	vm_page m;
882 
883 			m.phys_addr = translations[i].om_pa + off;
884 			m.oflags = VPO_BUSY;
885 			PMAP_LOCK(&ofw_pmap);
886 			moea_enter_locked(&ofw_pmap,
887 				   translations[i].om_va + off, &m,
888 				   VM_PROT_ALL, 1);
889 			PMAP_UNLOCK(&ofw_pmap);
890 			ofw_mappings++;
891 		}
892 	}
893 
894 	/*
895 	 * Calculate the last available physical address.
896 	 */
897 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
898 		;
899 	Maxmem = powerpc_btop(phys_avail[i + 1]);
900 
901 	/*
902 	 * Initialize the kernel pmap (which is statically allocated).
903 	 */
904 	PMAP_LOCK_INIT(kernel_pmap);
905 	for (i = 0; i < 16; i++) {
906 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
907 	}
908 	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
909 	kernel_pmap->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
910 	kernel_pmap->pm_active = ~0;
911 
912 	moea_cpu_bootstrap(mmup,0);
913 
914 	pmap_bootstrapped++;
915 
916 	/*
917 	 * Set the start and end of kva.
918 	 */
919 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
920 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
921 
922 	/*
923 	 * Allocate a kernel stack with a guard page for thread0 and map it
924 	 * into the kernel page map.
925 	 */
926 	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
927 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
928 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
929 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
930 	thread0.td_kstack = va;
931 	thread0.td_kstack_pages = KSTACK_PAGES;
932 	for (i = 0; i < KSTACK_PAGES; i++) {
933 		moea_kenter(mmup, va, pa);
934 		pa += PAGE_SIZE;
935 		va += PAGE_SIZE;
936 	}
937 
938 	/*
939 	 * Allocate virtual address space for the message buffer.
940 	 */
941 	pa = msgbuf_phys = moea_bootstrap_alloc(MSGBUF_SIZE, PAGE_SIZE);
942 	msgbufp = (struct msgbuf *)virtual_avail;
943 	va = virtual_avail;
944 	virtual_avail += round_page(MSGBUF_SIZE);
945 	while (va < virtual_avail) {
946 		moea_kenter(mmup, va, pa);
947 		pa += PAGE_SIZE;
948 		va += PAGE_SIZE;
949 	}
950 
951 	/*
952 	 * Allocate virtual address space for the dynamic percpu area.
953 	 */
954 	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
955 	dpcpu = (void *)virtual_avail;
956 	va = virtual_avail;
957 	virtual_avail += DPCPU_SIZE;
958 	while (va < virtual_avail) {
959 		moea_kenter(mmup, va, pa);
960 		pa += PAGE_SIZE;
961 		va += PAGE_SIZE;
962 	}
963 	dpcpu_init(dpcpu, 0);
964 }
965 
966 /*
967  * Activate a user pmap.  The pmap must be activated before it's address
968  * space can be accessed in any way.
969  */
970 void
971 moea_activate(mmu_t mmu, struct thread *td)
972 {
973 	pmap_t	pm, pmr;
974 
975 	/*
976 	 * Load all the data we need up front to encourage the compiler to
977 	 * not issue any loads while we have interrupts disabled below.
978 	 */
979 	pm = &td->td_proc->p_vmspace->vm_pmap;
980 	pmr = pm->pmap_phys;
981 
982 	pm->pm_active |= PCPU_GET(cpumask);
983 	PCPU_SET(curpmap, pmr);
984 }
985 
986 void
987 moea_deactivate(mmu_t mmu, struct thread *td)
988 {
989 	pmap_t	pm;
990 
991 	pm = &td->td_proc->p_vmspace->vm_pmap;
992 	pm->pm_active &= ~PCPU_GET(cpumask);
993 	PCPU_SET(curpmap, NULL);
994 }
995 
996 void
997 moea_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
998 {
999 	struct	pvo_entry *pvo;
1000 
1001 	PMAP_LOCK(pm);
1002 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1003 
1004 	if (pvo != NULL) {
1005 		if (wired) {
1006 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1007 				pm->pm_stats.wired_count++;
1008 			pvo->pvo_vaddr |= PVO_WIRED;
1009 		} else {
1010 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1011 				pm->pm_stats.wired_count--;
1012 			pvo->pvo_vaddr &= ~PVO_WIRED;
1013 		}
1014 	}
1015 	PMAP_UNLOCK(pm);
1016 }
1017 
1018 void
1019 moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1020 {
1021 	vm_offset_t	dst;
1022 	vm_offset_t	src;
1023 
1024 	dst = VM_PAGE_TO_PHYS(mdst);
1025 	src = VM_PAGE_TO_PHYS(msrc);
1026 
1027 	kcopy((void *)src, (void *)dst, PAGE_SIZE);
1028 }
1029 
1030 /*
1031  * Zero a page of physical memory by temporarily mapping it into the tlb.
1032  */
1033 void
1034 moea_zero_page(mmu_t mmu, vm_page_t m)
1035 {
1036 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1037 	void *va = (void *)pa;
1038 
1039 	bzero(va, PAGE_SIZE);
1040 }
1041 
1042 void
1043 moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1044 {
1045 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1046 	void *va = (void *)(pa + off);
1047 
1048 	bzero(va, size);
1049 }
1050 
1051 void
1052 moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1053 {
1054 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1055 	void *va = (void *)pa;
1056 
1057 	bzero(va, PAGE_SIZE);
1058 }
1059 
1060 /*
1061  * Map the given physical page at the specified virtual address in the
1062  * target pmap with the protection requested.  If specified the page
1063  * will be wired down.
1064  */
1065 void
1066 moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1067 	   boolean_t wired)
1068 {
1069 
1070 	vm_page_lock_queues();
1071 	PMAP_LOCK(pmap);
1072 	moea_enter_locked(pmap, va, m, prot, wired);
1073 	vm_page_unlock_queues();
1074 	PMAP_UNLOCK(pmap);
1075 }
1076 
1077 /*
1078  * Map the given physical page at the specified virtual address in the
1079  * target pmap with the protection requested.  If specified the page
1080  * will be wired down.
1081  *
1082  * The page queues and pmap must be locked.
1083  */
1084 static void
1085 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1086     boolean_t wired)
1087 {
1088 	struct		pvo_head *pvo_head;
1089 	uma_zone_t	zone;
1090 	vm_page_t	pg;
1091 	u_int		pte_lo, pvo_flags, was_exec, i;
1092 	int		error;
1093 
1094 	if (!moea_initialized) {
1095 		pvo_head = &moea_pvo_kunmanaged;
1096 		zone = moea_upvo_zone;
1097 		pvo_flags = 0;
1098 		pg = NULL;
1099 		was_exec = PTE_EXEC;
1100 	} else {
1101 		pvo_head = vm_page_to_pvoh(m);
1102 		pg = m;
1103 		zone = moea_mpvo_zone;
1104 		pvo_flags = PVO_MANAGED;
1105 		was_exec = 0;
1106 	}
1107 	if (pmap_bootstrapped)
1108 		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1109 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1110 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1111 	    (m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
1112 	    ("moea_enter_locked: page %p is not busy", m));
1113 
1114 	/* XXX change the pvo head for fake pages */
1115 	if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS) {
1116 		pvo_flags &= ~PVO_MANAGED;
1117 		pvo_head = &moea_pvo_kunmanaged;
1118 		zone = moea_upvo_zone;
1119 	}
1120 
1121 	/*
1122 	 * If this is a managed page, and it's the first reference to the page,
1123 	 * clear the execness of the page.  Otherwise fetch the execness.
1124 	 */
1125 	if ((pg != NULL) && ((m->flags & PG_FICTITIOUS) == 0)) {
1126 		if (LIST_EMPTY(pvo_head)) {
1127 			moea_attr_clear(pg, PTE_EXEC);
1128 		} else {
1129 			was_exec = moea_attr_fetch(pg) & PTE_EXEC;
1130 		}
1131 	}
1132 
1133 	/*
1134 	 * Assume the page is cache inhibited and access is guarded unless
1135 	 * it's in our available memory array.
1136 	 */
1137 	pte_lo = PTE_I | PTE_G;
1138 	for (i = 0; i < pregions_sz; i++) {
1139 		if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
1140 		    (VM_PAGE_TO_PHYS(m) <
1141 			(pregions[i].mr_start + pregions[i].mr_size))) {
1142 			pte_lo = PTE_M;
1143 			break;
1144 		}
1145 	}
1146 
1147 	if (prot & VM_PROT_WRITE) {
1148 		pte_lo |= PTE_BW;
1149 		if (pmap_bootstrapped &&
1150 		    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
1151 			vm_page_flag_set(m, PG_WRITEABLE);
1152 	} else
1153 		pte_lo |= PTE_BR;
1154 
1155 	if (prot & VM_PROT_EXECUTE)
1156 		pvo_flags |= PVO_EXECUTABLE;
1157 
1158 	if (wired)
1159 		pvo_flags |= PVO_WIRED;
1160 
1161 	if ((m->flags & PG_FICTITIOUS) != 0)
1162 		pvo_flags |= PVO_FAKE;
1163 
1164 	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1165 	    pte_lo, pvo_flags);
1166 
1167 	/*
1168 	 * Flush the real page from the instruction cache if this page is
1169 	 * mapped executable and cacheable and was not previously mapped (or
1170 	 * was not mapped executable).
1171 	 */
1172 	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1173 	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1174 		/*
1175 		 * Flush the real memory from the cache.
1176 		 */
1177 		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1178 		if (pg != NULL)
1179 			moea_attr_save(pg, PTE_EXEC);
1180 	}
1181 
1182 	/* XXX syncicache always until problems are sorted */
1183 	moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1184 }
1185 
1186 /*
1187  * Maps a sequence of resident pages belonging to the same object.
1188  * The sequence begins with the given page m_start.  This page is
1189  * mapped at the given virtual address start.  Each subsequent page is
1190  * mapped at a virtual address that is offset from start by the same
1191  * amount as the page is offset from m_start within the object.  The
1192  * last page in the sequence is the page with the largest offset from
1193  * m_start that can be mapped at a virtual address less than the given
1194  * virtual address end.  Not every virtual page between start and end
1195  * is mapped; only those for which a resident page exists with the
1196  * corresponding offset from m_start are mapped.
1197  */
1198 void
1199 moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1200     vm_page_t m_start, vm_prot_t prot)
1201 {
1202 	vm_page_t m;
1203 	vm_pindex_t diff, psize;
1204 
1205 	psize = atop(end - start);
1206 	m = m_start;
1207 	vm_page_lock_queues();
1208 	PMAP_LOCK(pm);
1209 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1210 		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1211 		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1212 		m = TAILQ_NEXT(m, listq);
1213 	}
1214 	vm_page_unlock_queues();
1215 	PMAP_UNLOCK(pm);
1216 }
1217 
1218 void
1219 moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1220     vm_prot_t prot)
1221 {
1222 
1223 	vm_page_lock_queues();
1224 	PMAP_LOCK(pm);
1225 	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1226 	    FALSE);
1227 	vm_page_unlock_queues();
1228 	PMAP_UNLOCK(pm);
1229 }
1230 
1231 vm_paddr_t
1232 moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1233 {
1234 	struct	pvo_entry *pvo;
1235 	vm_paddr_t pa;
1236 
1237 	PMAP_LOCK(pm);
1238 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1239 	if (pvo == NULL)
1240 		pa = 0;
1241 	else
1242 		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1243 	PMAP_UNLOCK(pm);
1244 	return (pa);
1245 }
1246 
1247 /*
1248  * Atomically extract and hold the physical page with the given
1249  * pmap and virtual address pair if that mapping permits the given
1250  * protection.
1251  */
1252 vm_page_t
1253 moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1254 {
1255 	struct	pvo_entry *pvo;
1256 	vm_page_t m;
1257         vm_paddr_t pa;
1258 
1259 	m = NULL;
1260 	pa = 0;
1261 	PMAP_LOCK(pmap);
1262 retry:
1263 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1264 	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1265 	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1266 	     (prot & VM_PROT_WRITE) == 0)) {
1267 		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1268 			goto retry;
1269 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1270 		vm_page_hold(m);
1271 	}
1272 	PA_UNLOCK_COND(pa);
1273 	PMAP_UNLOCK(pmap);
1274 	return (m);
1275 }
1276 
1277 void
1278 moea_init(mmu_t mmu)
1279 {
1280 
1281 	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1282 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1283 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1284 	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1285 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1286 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1287 	moea_initialized = TRUE;
1288 }
1289 
1290 boolean_t
1291 moea_is_referenced(mmu_t mmu, vm_page_t m)
1292 {
1293 
1294 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1295 	    ("moea_is_referenced: page %p is not managed", m));
1296 	return (moea_query_bit(m, PTE_REF));
1297 }
1298 
1299 boolean_t
1300 moea_is_modified(mmu_t mmu, vm_page_t m)
1301 {
1302 
1303 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1304 	    ("moea_is_modified: page %p is not managed", m));
1305 
1306 	/*
1307 	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
1308 	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
1309 	 * is clear, no PTEs can have PTE_CHG set.
1310 	 */
1311 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1312 	if ((m->oflags & VPO_BUSY) == 0 &&
1313 	    (m->flags & PG_WRITEABLE) == 0)
1314 		return (FALSE);
1315 	return (moea_query_bit(m, PTE_CHG));
1316 }
1317 
1318 void
1319 moea_clear_reference(mmu_t mmu, vm_page_t m)
1320 {
1321 
1322 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1323 	    ("moea_clear_reference: page %p is not managed", m));
1324 	moea_clear_bit(m, PTE_REF);
1325 }
1326 
1327 void
1328 moea_clear_modify(mmu_t mmu, vm_page_t m)
1329 {
1330 
1331 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1332 	    ("moea_clear_modify: page %p is not managed", m));
1333 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1334 	KASSERT((m->oflags & VPO_BUSY) == 0,
1335 	    ("moea_clear_modify: page %p is busy", m));
1336 
1337 	/*
1338 	 * If the page is not PG_WRITEABLE, then no PTEs can have PTE_CHG
1339 	 * set.  If the object containing the page is locked and the page is
1340 	 * not VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
1341 	 */
1342 	if ((m->flags & PG_WRITEABLE) == 0)
1343 		return;
1344 	moea_clear_bit(m, PTE_CHG);
1345 }
1346 
1347 /*
1348  * Clear the write and modified bits in each of the given page's mappings.
1349  */
1350 void
1351 moea_remove_write(mmu_t mmu, vm_page_t m)
1352 {
1353 	struct	pvo_entry *pvo;
1354 	struct	pte *pt;
1355 	pmap_t	pmap;
1356 	u_int	lo;
1357 
1358 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1359 	    ("moea_remove_write: page %p is not managed", m));
1360 
1361 	/*
1362 	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
1363 	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
1364 	 * is clear, no page table entries need updating.
1365 	 */
1366 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1367 	if ((m->oflags & VPO_BUSY) == 0 &&
1368 	    (m->flags & PG_WRITEABLE) == 0)
1369 		return;
1370 	vm_page_lock_queues();
1371 	lo = moea_attr_fetch(m);
1372 	powerpc_sync();
1373 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1374 		pmap = pvo->pvo_pmap;
1375 		PMAP_LOCK(pmap);
1376 		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1377 			pt = moea_pvo_to_pte(pvo, -1);
1378 			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1379 			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1380 			if (pt != NULL) {
1381 				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1382 				lo |= pvo->pvo_pte.pte.pte_lo;
1383 				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1384 				moea_pte_change(pt, &pvo->pvo_pte.pte,
1385 				    pvo->pvo_vaddr);
1386 				mtx_unlock(&moea_table_mutex);
1387 			}
1388 		}
1389 		PMAP_UNLOCK(pmap);
1390 	}
1391 	if ((lo & PTE_CHG) != 0) {
1392 		moea_attr_clear(m, PTE_CHG);
1393 		vm_page_dirty(m);
1394 	}
1395 	vm_page_flag_clear(m, PG_WRITEABLE);
1396 	vm_page_unlock_queues();
1397 }
1398 
1399 /*
1400  *	moea_ts_referenced:
1401  *
1402  *	Return a count of reference bits for a page, clearing those bits.
1403  *	It is not necessary for every reference bit to be cleared, but it
1404  *	is necessary that 0 only be returned when there are truly no
1405  *	reference bits set.
1406  *
1407  *	XXX: The exact number of bits to check and clear is a matter that
1408  *	should be tested and standardized at some point in the future for
1409  *	optimal aging of shared pages.
1410  */
1411 boolean_t
1412 moea_ts_referenced(mmu_t mmu, vm_page_t m)
1413 {
1414 
1415 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1416 	    ("moea_ts_referenced: page %p is not managed", m));
1417 	return (moea_clear_bit(m, PTE_REF));
1418 }
1419 
1420 /*
1421  * Map a wired page into kernel virtual address space.
1422  */
1423 void
1424 moea_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1425 {
1426 	u_int		pte_lo;
1427 	int		error;
1428 	int		i;
1429 
1430 #if 0
1431 	if (va < VM_MIN_KERNEL_ADDRESS)
1432 		panic("moea_kenter: attempt to enter non-kernel address %#x",
1433 		    va);
1434 #endif
1435 
1436 	pte_lo = PTE_I | PTE_G;
1437 	for (i = 0; i < pregions_sz; i++) {
1438 		if ((pa >= pregions[i].mr_start) &&
1439 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
1440 			pte_lo = PTE_M;
1441 			break;
1442 		}
1443 	}
1444 
1445 	PMAP_LOCK(kernel_pmap);
1446 	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1447 	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1448 
1449 	if (error != 0 && error != ENOENT)
1450 		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1451 		    pa, error);
1452 
1453 	/*
1454 	 * Flush the real memory from the instruction cache.
1455 	 */
1456 	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1457 		moea_syncicache(pa, PAGE_SIZE);
1458 	}
1459 	PMAP_UNLOCK(kernel_pmap);
1460 }
1461 
1462 /*
1463  * Extract the physical page address associated with the given kernel virtual
1464  * address.
1465  */
1466 vm_offset_t
1467 moea_kextract(mmu_t mmu, vm_offset_t va)
1468 {
1469 	struct		pvo_entry *pvo;
1470 	vm_paddr_t pa;
1471 
1472 	/*
1473 	 * Allow direct mappings on 32-bit OEA
1474 	 */
1475 	if (va < VM_MIN_KERNEL_ADDRESS) {
1476 		return (va);
1477 	}
1478 
1479 	PMAP_LOCK(kernel_pmap);
1480 	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1481 	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1482 	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1483 	PMAP_UNLOCK(kernel_pmap);
1484 	return (pa);
1485 }
1486 
1487 /*
1488  * Remove a wired page from kernel virtual address space.
1489  */
1490 void
1491 moea_kremove(mmu_t mmu, vm_offset_t va)
1492 {
1493 
1494 	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1495 }
1496 
1497 /*
1498  * Map a range of physical addresses into kernel virtual address space.
1499  *
1500  * The value passed in *virt is a suggested virtual address for the mapping.
1501  * Architectures which can support a direct-mapped physical to virtual region
1502  * can return the appropriate address within that region, leaving '*virt'
1503  * unchanged.  We cannot and therefore do not; *virt is updated with the
1504  * first usable address after the mapped region.
1505  */
1506 vm_offset_t
1507 moea_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1508     vm_offset_t pa_end, int prot)
1509 {
1510 	vm_offset_t	sva, va;
1511 
1512 	sva = *virt;
1513 	va = sva;
1514 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1515 		moea_kenter(mmu, va, pa_start);
1516 	*virt = va;
1517 	return (sva);
1518 }
1519 
1520 /*
1521  * Returns true if the pmap's pv is one of the first
1522  * 16 pvs linked to from this page.  This count may
1523  * be changed upwards or downwards in the future; it
1524  * is only necessary that true be returned for a small
1525  * subset of pmaps for proper page aging.
1526  */
1527 boolean_t
1528 moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1529 {
1530         int loops;
1531 	struct pvo_entry *pvo;
1532 	boolean_t rv;
1533 
1534 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1535 	    ("moea_page_exists_quick: page %p is not managed", m));
1536 	loops = 0;
1537 	rv = FALSE;
1538 	vm_page_lock_queues();
1539 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1540 		if (pvo->pvo_pmap == pmap) {
1541 			rv = TRUE;
1542 			break;
1543 		}
1544 		if (++loops >= 16)
1545 			break;
1546 	}
1547 	vm_page_unlock_queues();
1548 	return (rv);
1549 }
1550 
1551 /*
1552  * Return the number of managed mappings to the given physical page
1553  * that are wired.
1554  */
1555 int
1556 moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1557 {
1558 	struct pvo_entry *pvo;
1559 	int count;
1560 
1561 	count = 0;
1562 	if ((m->flags & PG_FICTITIOUS) != 0)
1563 		return (count);
1564 	vm_page_lock_queues();
1565 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1566 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1567 			count++;
1568 	vm_page_unlock_queues();
1569 	return (count);
1570 }
1571 
1572 static u_int	moea_vsidcontext;
1573 
1574 void
1575 moea_pinit(mmu_t mmu, pmap_t pmap)
1576 {
1577 	int	i, mask;
1578 	u_int	entropy;
1579 
1580 	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1581 	PMAP_LOCK_INIT(pmap);
1582 
1583 	entropy = 0;
1584 	__asm __volatile("mftb %0" : "=r"(entropy));
1585 
1586 	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1587 	    == NULL) {
1588 		pmap->pmap_phys = pmap;
1589 	}
1590 
1591 
1592 	/*
1593 	 * Allocate some segment registers for this pmap.
1594 	 */
1595 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1596 		u_int	hash, n;
1597 
1598 		/*
1599 		 * Create a new value by mutiplying by a prime and adding in
1600 		 * entropy from the timebase register.  This is to make the
1601 		 * VSID more random so that the PT hash function collides
1602 		 * less often.  (Note that the prime casues gcc to do shifts
1603 		 * instead of a multiply.)
1604 		 */
1605 		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1606 		hash = moea_vsidcontext & (NPMAPS - 1);
1607 		if (hash == 0)		/* 0 is special, avoid it */
1608 			continue;
1609 		n = hash >> 5;
1610 		mask = 1 << (hash & (VSID_NBPW - 1));
1611 		hash = (moea_vsidcontext & 0xfffff);
1612 		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1613 			/* anything free in this bucket? */
1614 			if (moea_vsid_bitmap[n] == 0xffffffff) {
1615 				entropy = (moea_vsidcontext >> 20);
1616 				continue;
1617 			}
1618 			i = ffs(~moea_vsid_bitmap[i]) - 1;
1619 			mask = 1 << i;
1620 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1621 			hash |= i;
1622 		}
1623 		moea_vsid_bitmap[n] |= mask;
1624 		for (i = 0; i < 16; i++)
1625 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1626 		return;
1627 	}
1628 
1629 	panic("moea_pinit: out of segments");
1630 }
1631 
1632 /*
1633  * Initialize the pmap associated with process 0.
1634  */
1635 void
1636 moea_pinit0(mmu_t mmu, pmap_t pm)
1637 {
1638 
1639 	moea_pinit(mmu, pm);
1640 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1641 }
1642 
1643 /*
1644  * Set the physical protection on the specified range of this map as requested.
1645  */
1646 void
1647 moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1648     vm_prot_t prot)
1649 {
1650 	struct	pvo_entry *pvo;
1651 	struct	pte *pt;
1652 	int	pteidx;
1653 
1654 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1655 	    ("moea_protect: non current pmap"));
1656 
1657 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1658 		moea_remove(mmu, pm, sva, eva);
1659 		return;
1660 	}
1661 
1662 	vm_page_lock_queues();
1663 	PMAP_LOCK(pm);
1664 	for (; sva < eva; sva += PAGE_SIZE) {
1665 		pvo = moea_pvo_find_va(pm, sva, &pteidx);
1666 		if (pvo == NULL)
1667 			continue;
1668 
1669 		if ((prot & VM_PROT_EXECUTE) == 0)
1670 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1671 
1672 		/*
1673 		 * Grab the PTE pointer before we diddle with the cached PTE
1674 		 * copy.
1675 		 */
1676 		pt = moea_pvo_to_pte(pvo, pteidx);
1677 		/*
1678 		 * Change the protection of the page.
1679 		 */
1680 		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1681 		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1682 
1683 		/*
1684 		 * If the PVO is in the page table, update that pte as well.
1685 		 */
1686 		if (pt != NULL) {
1687 			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1688 			mtx_unlock(&moea_table_mutex);
1689 		}
1690 	}
1691 	vm_page_unlock_queues();
1692 	PMAP_UNLOCK(pm);
1693 }
1694 
1695 /*
1696  * Map a list of wired pages into kernel virtual address space.  This is
1697  * intended for temporary mappings which do not need page modification or
1698  * references recorded.  Existing mappings in the region are overwritten.
1699  */
1700 void
1701 moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1702 {
1703 	vm_offset_t va;
1704 
1705 	va = sva;
1706 	while (count-- > 0) {
1707 		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1708 		va += PAGE_SIZE;
1709 		m++;
1710 	}
1711 }
1712 
1713 /*
1714  * Remove page mappings from kernel virtual address space.  Intended for
1715  * temporary mappings entered by moea_qenter.
1716  */
1717 void
1718 moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1719 {
1720 	vm_offset_t va;
1721 
1722 	va = sva;
1723 	while (count-- > 0) {
1724 		moea_kremove(mmu, va);
1725 		va += PAGE_SIZE;
1726 	}
1727 }
1728 
1729 void
1730 moea_release(mmu_t mmu, pmap_t pmap)
1731 {
1732         int idx, mask;
1733 
1734 	/*
1735 	 * Free segment register's VSID
1736 	 */
1737         if (pmap->pm_sr[0] == 0)
1738                 panic("moea_release");
1739 
1740         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1741         mask = 1 << (idx % VSID_NBPW);
1742         idx /= VSID_NBPW;
1743         moea_vsid_bitmap[idx] &= ~mask;
1744 	PMAP_LOCK_DESTROY(pmap);
1745 }
1746 
1747 /*
1748  * Remove the given range of addresses from the specified map.
1749  */
1750 void
1751 moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1752 {
1753 	struct	pvo_entry *pvo;
1754 	int	pteidx;
1755 
1756 	vm_page_lock_queues();
1757 	PMAP_LOCK(pm);
1758 	for (; sva < eva; sva += PAGE_SIZE) {
1759 		pvo = moea_pvo_find_va(pm, sva, &pteidx);
1760 		if (pvo != NULL) {
1761 			moea_pvo_remove(pvo, pteidx);
1762 		}
1763 	}
1764 	PMAP_UNLOCK(pm);
1765 	vm_page_unlock_queues();
1766 }
1767 
1768 /*
1769  * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1770  * will reflect changes in pte's back to the vm_page.
1771  */
1772 void
1773 moea_remove_all(mmu_t mmu, vm_page_t m)
1774 {
1775 	struct  pvo_head *pvo_head;
1776 	struct	pvo_entry *pvo, *next_pvo;
1777 	pmap_t	pmap;
1778 
1779 	vm_page_lock_queues();
1780 	pvo_head = vm_page_to_pvoh(m);
1781 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1782 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1783 
1784 		MOEA_PVO_CHECK(pvo);	/* sanity check */
1785 		pmap = pvo->pvo_pmap;
1786 		PMAP_LOCK(pmap);
1787 		moea_pvo_remove(pvo, -1);
1788 		PMAP_UNLOCK(pmap);
1789 	}
1790 	if ((m->flags & PG_WRITEABLE) && moea_is_modified(mmu, m)) {
1791 		moea_attr_clear(m, PTE_CHG);
1792 		vm_page_dirty(m);
1793 	}
1794 	vm_page_flag_clear(m, PG_WRITEABLE);
1795 	vm_page_unlock_queues();
1796 }
1797 
1798 /*
1799  * Allocate a physical page of memory directly from the phys_avail map.
1800  * Can only be called from moea_bootstrap before avail start and end are
1801  * calculated.
1802  */
1803 static vm_offset_t
1804 moea_bootstrap_alloc(vm_size_t size, u_int align)
1805 {
1806 	vm_offset_t	s, e;
1807 	int		i, j;
1808 
1809 	size = round_page(size);
1810 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1811 		if (align != 0)
1812 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1813 		else
1814 			s = phys_avail[i];
1815 		e = s + size;
1816 
1817 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1818 			continue;
1819 
1820 		if (s == phys_avail[i]) {
1821 			phys_avail[i] += size;
1822 		} else if (e == phys_avail[i + 1]) {
1823 			phys_avail[i + 1] -= size;
1824 		} else {
1825 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1826 				phys_avail[j] = phys_avail[j - 2];
1827 				phys_avail[j + 1] = phys_avail[j - 1];
1828 			}
1829 
1830 			phys_avail[i + 3] = phys_avail[i + 1];
1831 			phys_avail[i + 1] = s;
1832 			phys_avail[i + 2] = e;
1833 			phys_avail_count++;
1834 		}
1835 
1836 		return (s);
1837 	}
1838 	panic("moea_bootstrap_alloc: could not allocate memory");
1839 }
1840 
1841 static void
1842 moea_syncicache(vm_offset_t pa, vm_size_t len)
1843 {
1844 	__syncicache((void *)pa, len);
1845 }
1846 
1847 static int
1848 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1849     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1850 {
1851 	struct	pvo_entry *pvo;
1852 	u_int	sr;
1853 	int	first;
1854 	u_int	ptegidx;
1855 	int	i;
1856 	int     bootstrap;
1857 
1858 	moea_pvo_enter_calls++;
1859 	first = 0;
1860 	bootstrap = 0;
1861 
1862 	/*
1863 	 * Compute the PTE Group index.
1864 	 */
1865 	va &= ~ADDR_POFF;
1866 	sr = va_to_sr(pm->pm_sr, va);
1867 	ptegidx = va_to_pteg(sr, va);
1868 
1869 	/*
1870 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1871 	 * there is a mapping.
1872 	 */
1873 	mtx_lock(&moea_table_mutex);
1874 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1875 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1876 			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
1877 			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
1878 			    (pte_lo & PTE_PP)) {
1879 				mtx_unlock(&moea_table_mutex);
1880 				return (0);
1881 			}
1882 			moea_pvo_remove(pvo, -1);
1883 			break;
1884 		}
1885 	}
1886 
1887 	/*
1888 	 * If we aren't overwriting a mapping, try to allocate.
1889 	 */
1890 	if (moea_initialized) {
1891 		pvo = uma_zalloc(zone, M_NOWAIT);
1892 	} else {
1893 		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1894 			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1895 			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1896 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1897 		}
1898 		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1899 		moea_bpvo_pool_index++;
1900 		bootstrap = 1;
1901 	}
1902 
1903 	if (pvo == NULL) {
1904 		mtx_unlock(&moea_table_mutex);
1905 		return (ENOMEM);
1906 	}
1907 
1908 	moea_pvo_entries++;
1909 	pvo->pvo_vaddr = va;
1910 	pvo->pvo_pmap = pm;
1911 	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1912 	pvo->pvo_vaddr &= ~ADDR_POFF;
1913 	if (flags & VM_PROT_EXECUTE)
1914 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1915 	if (flags & PVO_WIRED)
1916 		pvo->pvo_vaddr |= PVO_WIRED;
1917 	if (pvo_head != &moea_pvo_kunmanaged)
1918 		pvo->pvo_vaddr |= PVO_MANAGED;
1919 	if (bootstrap)
1920 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1921 	if (flags & PVO_FAKE)
1922 		pvo->pvo_vaddr |= PVO_FAKE;
1923 
1924 	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
1925 
1926 	/*
1927 	 * Remember if the list was empty and therefore will be the first
1928 	 * item.
1929 	 */
1930 	if (LIST_FIRST(pvo_head) == NULL)
1931 		first = 1;
1932 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1933 
1934 	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
1935 		pm->pm_stats.wired_count++;
1936 	pm->pm_stats.resident_count++;
1937 
1938 	/*
1939 	 * We hope this succeeds but it isn't required.
1940 	 */
1941 	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
1942 	if (i >= 0) {
1943 		PVO_PTEGIDX_SET(pvo, i);
1944 	} else {
1945 		panic("moea_pvo_enter: overflow");
1946 		moea_pte_overflow++;
1947 	}
1948 	mtx_unlock(&moea_table_mutex);
1949 
1950 	return (first ? ENOENT : 0);
1951 }
1952 
1953 static void
1954 moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
1955 {
1956 	struct	pte *pt;
1957 
1958 	/*
1959 	 * If there is an active pte entry, we need to deactivate it (and
1960 	 * save the ref & cfg bits).
1961 	 */
1962 	pt = moea_pvo_to_pte(pvo, pteidx);
1963 	if (pt != NULL) {
1964 		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1965 		mtx_unlock(&moea_table_mutex);
1966 		PVO_PTEGIDX_CLR(pvo);
1967 	} else {
1968 		moea_pte_overflow--;
1969 	}
1970 
1971 	/*
1972 	 * Update our statistics.
1973 	 */
1974 	pvo->pvo_pmap->pm_stats.resident_count--;
1975 	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
1976 		pvo->pvo_pmap->pm_stats.wired_count--;
1977 
1978 	/*
1979 	 * Save the REF/CHG bits into their cache if the page is managed.
1980 	 */
1981 	if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
1982 		struct	vm_page *pg;
1983 
1984 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1985 		if (pg != NULL) {
1986 			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
1987 			    (PTE_REF | PTE_CHG));
1988 		}
1989 	}
1990 
1991 	/*
1992 	 * Remove this PVO from the PV list.
1993 	 */
1994 	LIST_REMOVE(pvo, pvo_vlink);
1995 
1996 	/*
1997 	 * Remove this from the overflow list and return it to the pool
1998 	 * if we aren't going to reuse it.
1999 	 */
2000 	LIST_REMOVE(pvo, pvo_olink);
2001 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2002 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2003 		    moea_upvo_zone, pvo);
2004 	moea_pvo_entries--;
2005 	moea_pvo_remove_calls++;
2006 }
2007 
2008 static __inline int
2009 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2010 {
2011 	int	pteidx;
2012 
2013 	/*
2014 	 * We can find the actual pte entry without searching by grabbing
2015 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2016 	 * noticing the HID bit.
2017 	 */
2018 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2019 	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2020 		pteidx ^= moea_pteg_mask * 8;
2021 
2022 	return (pteidx);
2023 }
2024 
2025 static struct pvo_entry *
2026 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2027 {
2028 	struct	pvo_entry *pvo;
2029 	int	ptegidx;
2030 	u_int	sr;
2031 
2032 	va &= ~ADDR_POFF;
2033 	sr = va_to_sr(pm->pm_sr, va);
2034 	ptegidx = va_to_pteg(sr, va);
2035 
2036 	mtx_lock(&moea_table_mutex);
2037 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2038 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2039 			if (pteidx_p)
2040 				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2041 			break;
2042 		}
2043 	}
2044 	mtx_unlock(&moea_table_mutex);
2045 
2046 	return (pvo);
2047 }
2048 
2049 static struct pte *
2050 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2051 {
2052 	struct	pte *pt;
2053 
2054 	/*
2055 	 * If we haven't been supplied the ptegidx, calculate it.
2056 	 */
2057 	if (pteidx == -1) {
2058 		int	ptegidx;
2059 		u_int	sr;
2060 
2061 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2062 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2063 		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2064 	}
2065 
2066 	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2067 	mtx_lock(&moea_table_mutex);
2068 
2069 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2070 		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2071 		    "valid pte index", pvo);
2072 	}
2073 
2074 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2075 		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2076 		    "pvo but no valid pte", pvo);
2077 	}
2078 
2079 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2080 		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2081 			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2082 			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2083 		}
2084 
2085 		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2086 		    != 0) {
2087 			panic("moea_pvo_to_pte: pvo %p pte does not match "
2088 			    "pte %p in moea_pteg_table", pvo, pt);
2089 		}
2090 
2091 		mtx_assert(&moea_table_mutex, MA_OWNED);
2092 		return (pt);
2093 	}
2094 
2095 	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2096 		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2097 		    "moea_pteg_table but valid in pvo", pvo, pt);
2098 	}
2099 
2100 	mtx_unlock(&moea_table_mutex);
2101 	return (NULL);
2102 }
2103 
2104 /*
2105  * XXX: THIS STUFF SHOULD BE IN pte.c?
2106  */
2107 int
2108 moea_pte_spill(vm_offset_t addr)
2109 {
2110 	struct	pvo_entry *source_pvo, *victim_pvo;
2111 	struct	pvo_entry *pvo;
2112 	int	ptegidx, i, j;
2113 	u_int	sr;
2114 	struct	pteg *pteg;
2115 	struct	pte *pt;
2116 
2117 	moea_pte_spills++;
2118 
2119 	sr = mfsrin(addr);
2120 	ptegidx = va_to_pteg(sr, addr);
2121 
2122 	/*
2123 	 * Have to substitute some entry.  Use the primary hash for this.
2124 	 * Use low bits of timebase as random generator.
2125 	 */
2126 	pteg = &moea_pteg_table[ptegidx];
2127 	mtx_lock(&moea_table_mutex);
2128 	__asm __volatile("mftb %0" : "=r"(i));
2129 	i &= 7;
2130 	pt = &pteg->pt[i];
2131 
2132 	source_pvo = NULL;
2133 	victim_pvo = NULL;
2134 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2135 		/*
2136 		 * We need to find a pvo entry for this address.
2137 		 */
2138 		MOEA_PVO_CHECK(pvo);
2139 		if (source_pvo == NULL &&
2140 		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2141 		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2142 			/*
2143 			 * Now found an entry to be spilled into the pteg.
2144 			 * The PTE is now valid, so we know it's active.
2145 			 */
2146 			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2147 
2148 			if (j >= 0) {
2149 				PVO_PTEGIDX_SET(pvo, j);
2150 				moea_pte_overflow--;
2151 				MOEA_PVO_CHECK(pvo);
2152 				mtx_unlock(&moea_table_mutex);
2153 				return (1);
2154 			}
2155 
2156 			source_pvo = pvo;
2157 
2158 			if (victim_pvo != NULL)
2159 				break;
2160 		}
2161 
2162 		/*
2163 		 * We also need the pvo entry of the victim we are replacing
2164 		 * so save the R & C bits of the PTE.
2165 		 */
2166 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2167 		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2168 			victim_pvo = pvo;
2169 			if (source_pvo != NULL)
2170 				break;
2171 		}
2172 	}
2173 
2174 	if (source_pvo == NULL) {
2175 		mtx_unlock(&moea_table_mutex);
2176 		return (0);
2177 	}
2178 
2179 	if (victim_pvo == NULL) {
2180 		if ((pt->pte_hi & PTE_HID) == 0)
2181 			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2182 			    "entry", pt);
2183 
2184 		/*
2185 		 * If this is a secondary PTE, we need to search it's primary
2186 		 * pvo bucket for the matching PVO.
2187 		 */
2188 		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2189 		    pvo_olink) {
2190 			MOEA_PVO_CHECK(pvo);
2191 			/*
2192 			 * We also need the pvo entry of the victim we are
2193 			 * replacing so save the R & C bits of the PTE.
2194 			 */
2195 			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2196 				victim_pvo = pvo;
2197 				break;
2198 			}
2199 		}
2200 
2201 		if (victim_pvo == NULL)
2202 			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2203 			    "entry", pt);
2204 	}
2205 
2206 	/*
2207 	 * We are invalidating the TLB entry for the EA we are replacing even
2208 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2209 	 * contained in the TLB entry.
2210 	 */
2211 	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2212 
2213 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2214 	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2215 
2216 	PVO_PTEGIDX_CLR(victim_pvo);
2217 	PVO_PTEGIDX_SET(source_pvo, i);
2218 	moea_pte_replacements++;
2219 
2220 	MOEA_PVO_CHECK(victim_pvo);
2221 	MOEA_PVO_CHECK(source_pvo);
2222 
2223 	mtx_unlock(&moea_table_mutex);
2224 	return (1);
2225 }
2226 
2227 static int
2228 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2229 {
2230 	struct	pte *pt;
2231 	int	i;
2232 
2233 	mtx_assert(&moea_table_mutex, MA_OWNED);
2234 
2235 	/*
2236 	 * First try primary hash.
2237 	 */
2238 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2239 		if ((pt->pte_hi & PTE_VALID) == 0) {
2240 			pvo_pt->pte_hi &= ~PTE_HID;
2241 			moea_pte_set(pt, pvo_pt);
2242 			return (i);
2243 		}
2244 	}
2245 
2246 	/*
2247 	 * Now try secondary hash.
2248 	 */
2249 	ptegidx ^= moea_pteg_mask;
2250 
2251 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2252 		if ((pt->pte_hi & PTE_VALID) == 0) {
2253 			pvo_pt->pte_hi |= PTE_HID;
2254 			moea_pte_set(pt, pvo_pt);
2255 			return (i);
2256 		}
2257 	}
2258 
2259 	panic("moea_pte_insert: overflow");
2260 	return (-1);
2261 }
2262 
2263 static boolean_t
2264 moea_query_bit(vm_page_t m, int ptebit)
2265 {
2266 	struct	pvo_entry *pvo;
2267 	struct	pte *pt;
2268 
2269 	if (moea_attr_fetch(m) & ptebit)
2270 		return (TRUE);
2271 
2272 	vm_page_lock_queues();
2273 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2274 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2275 
2276 		/*
2277 		 * See if we saved the bit off.  If so, cache it and return
2278 		 * success.
2279 		 */
2280 		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2281 			moea_attr_save(m, ptebit);
2282 			MOEA_PVO_CHECK(pvo);	/* sanity check */
2283 			vm_page_unlock_queues();
2284 			return (TRUE);
2285 		}
2286 	}
2287 
2288 	/*
2289 	 * No luck, now go through the hard part of looking at the PTEs
2290 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2291 	 * the PTEs.
2292 	 */
2293 	powerpc_sync();
2294 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2295 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2296 
2297 		/*
2298 		 * See if this pvo has a valid PTE.  if so, fetch the
2299 		 * REF/CHG bits from the valid PTE.  If the appropriate
2300 		 * ptebit is set, cache it and return success.
2301 		 */
2302 		pt = moea_pvo_to_pte(pvo, -1);
2303 		if (pt != NULL) {
2304 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2305 			mtx_unlock(&moea_table_mutex);
2306 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2307 				moea_attr_save(m, ptebit);
2308 				MOEA_PVO_CHECK(pvo);	/* sanity check */
2309 				vm_page_unlock_queues();
2310 				return (TRUE);
2311 			}
2312 		}
2313 	}
2314 
2315 	vm_page_unlock_queues();
2316 	return (FALSE);
2317 }
2318 
2319 static u_int
2320 moea_clear_bit(vm_page_t m, int ptebit)
2321 {
2322 	u_int	count;
2323 	struct	pvo_entry *pvo;
2324 	struct	pte *pt;
2325 
2326 	vm_page_lock_queues();
2327 
2328 	/*
2329 	 * Clear the cached value.
2330 	 */
2331 	moea_attr_clear(m, ptebit);
2332 
2333 	/*
2334 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2335 	 * we can reset the right ones).  note that since the pvo entries and
2336 	 * list heads are accessed via BAT0 and are never placed in the page
2337 	 * table, we don't have to worry about further accesses setting the
2338 	 * REF/CHG bits.
2339 	 */
2340 	powerpc_sync();
2341 
2342 	/*
2343 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2344 	 * valid pte clear the ptebit from the valid pte.
2345 	 */
2346 	count = 0;
2347 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2348 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2349 		pt = moea_pvo_to_pte(pvo, -1);
2350 		if (pt != NULL) {
2351 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2352 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2353 				count++;
2354 				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2355 			}
2356 			mtx_unlock(&moea_table_mutex);
2357 		}
2358 		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2359 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2360 	}
2361 
2362 	vm_page_unlock_queues();
2363 	return (count);
2364 }
2365 
2366 /*
2367  * Return true if the physical range is encompassed by the battable[idx]
2368  */
2369 static int
2370 moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2371 {
2372 	u_int prot;
2373 	u_int32_t start;
2374 	u_int32_t end;
2375 	u_int32_t bat_ble;
2376 
2377 	/*
2378 	 * Return immediately if not a valid mapping
2379 	 */
2380 	if (!battable[idx].batu & BAT_Vs)
2381 		return (EINVAL);
2382 
2383 	/*
2384 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2385 	 * so it can function as an i/o page
2386 	 */
2387 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2388 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2389 		return (EPERM);
2390 
2391 	/*
2392 	 * The address should be within the BAT range. Assume that the
2393 	 * start address in the BAT has the correct alignment (thus
2394 	 * not requiring masking)
2395 	 */
2396 	start = battable[idx].batl & BAT_PBS;
2397 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2398 	end = start | (bat_ble << 15) | 0x7fff;
2399 
2400 	if ((pa < start) || ((pa + size) > end))
2401 		return (ERANGE);
2402 
2403 	return (0);
2404 }
2405 
2406 boolean_t
2407 moea_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2408 {
2409 	int i;
2410 
2411 	/*
2412 	 * This currently does not work for entries that
2413 	 * overlap 256M BAT segments.
2414 	 */
2415 
2416 	for(i = 0; i < 16; i++)
2417 		if (moea_bat_mapped(i, pa, size) == 0)
2418 			return (0);
2419 
2420 	return (EFAULT);
2421 }
2422 
2423 /*
2424  * Map a set of physical memory pages into the kernel virtual
2425  * address space. Return a pointer to where it is mapped. This
2426  * routine is intended to be used for mapping device memory,
2427  * NOT real memory.
2428  */
2429 void *
2430 moea_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2431 {
2432 	vm_offset_t va, tmpva, ppa, offset;
2433 	int i;
2434 
2435 	ppa = trunc_page(pa);
2436 	offset = pa & PAGE_MASK;
2437 	size = roundup(offset + size, PAGE_SIZE);
2438 
2439 	GIANT_REQUIRED;
2440 
2441 	/*
2442 	 * If the physical address lies within a valid BAT table entry,
2443 	 * return the 1:1 mapping. This currently doesn't work
2444 	 * for regions that overlap 256M BAT segments.
2445 	 */
2446 	for (i = 0; i < 16; i++) {
2447 		if (moea_bat_mapped(i, pa, size) == 0)
2448 			return ((void *) pa);
2449 	}
2450 
2451 	va = kmem_alloc_nofault(kernel_map, size);
2452 	if (!va)
2453 		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2454 
2455 	for (tmpva = va; size > 0;) {
2456 		moea_kenter(mmu, tmpva, ppa);
2457 		tlbie(tmpva);
2458 		size -= PAGE_SIZE;
2459 		tmpva += PAGE_SIZE;
2460 		ppa += PAGE_SIZE;
2461 	}
2462 
2463 	return ((void *)(va + offset));
2464 }
2465 
2466 void
2467 moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2468 {
2469 	vm_offset_t base, offset;
2470 
2471 	/*
2472 	 * If this is outside kernel virtual space, then it's a
2473 	 * battable entry and doesn't require unmapping
2474 	 */
2475 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2476 		base = trunc_page(va);
2477 		offset = va & PAGE_MASK;
2478 		size = roundup(offset + size, PAGE_SIZE);
2479 		kmem_free(kernel_map, base, size);
2480 	}
2481 }
2482 
2483 static void
2484 moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2485 {
2486 	struct pvo_entry *pvo;
2487 	vm_offset_t lim;
2488 	vm_paddr_t pa;
2489 	vm_size_t len;
2490 
2491 	PMAP_LOCK(pm);
2492 	while (sz > 0) {
2493 		lim = round_page(va);
2494 		len = MIN(lim - va, sz);
2495 		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2496 		if (pvo != NULL) {
2497 			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2498 			    (va & ADDR_POFF);
2499 			moea_syncicache(pa, len);
2500 		}
2501 		va += len;
2502 		sz -= len;
2503 	}
2504 	PMAP_UNLOCK(pm);
2505 }
2506