xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision acd3428b7d3e94cef0e1881c868cb4b131d4ff41)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*-
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 /*
97  * Manages physical address maps.
98  *
99  * In addition to hardware address maps, this module is called upon to
100  * provide software-use-only maps which may or may not be stored in the
101  * same form as hardware maps.  These pseudo-maps are used to store
102  * intermediate results from copy operations to and from address spaces.
103  *
104  * Since the information managed by this module is also stored by the
105  * logical address mapping module, this module may throw away valid virtual
106  * to physical mappings at almost any time.  However, invalidations of
107  * mappings must be done as requested.
108  *
109  * In order to cope with hardware architectures which make virtual to
110  * physical map invalidates expensive, this module may delay invalidate
111  * reduced protection operations until such time as they are actually
112  * necessary.  This module is given full information as to which processors
113  * are currently using which maps, and to when physical maps must be made
114  * correct.
115  */
116 
117 #include "opt_kstack_pages.h"
118 
119 #include <sys/param.h>
120 #include <sys/kernel.h>
121 #include <sys/ktr.h>
122 #include <sys/lock.h>
123 #include <sys/msgbuf.h>
124 #include <sys/mutex.h>
125 #include <sys/proc.h>
126 #include <sys/sysctl.h>
127 #include <sys/systm.h>
128 #include <sys/vmmeter.h>
129 
130 #include <dev/ofw/openfirm.h>
131 
132 #include <vm/vm.h>
133 #include <vm/vm_param.h>
134 #include <vm/vm_kern.h>
135 #include <vm/vm_page.h>
136 #include <vm/vm_map.h>
137 #include <vm/vm_object.h>
138 #include <vm/vm_extern.h>
139 #include <vm/vm_pageout.h>
140 #include <vm/vm_pager.h>
141 #include <vm/uma.h>
142 
143 #include <machine/cpu.h>
144 #include <machine/powerpc.h>
145 #include <machine/bat.h>
146 #include <machine/frame.h>
147 #include <machine/md_var.h>
148 #include <machine/psl.h>
149 #include <machine/pte.h>
150 #include <machine/sr.h>
151 #include <machine/mmuvar.h>
152 
153 #include "mmu_if.h"
154 
155 #define	MOEA_DEBUG
156 
157 #define TODO	panic("%s: not implemented", __func__);
158 
159 #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
160 #define	TLBSYNC()	__asm __volatile("tlbsync");
161 #define	SYNC()		__asm __volatile("sync");
162 #define	EIEIO()		__asm __volatile("eieio");
163 
164 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
165 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
166 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
167 
168 #define	PVO_PTEGIDX_MASK	0x007		/* which PTEG slot */
169 #define	PVO_PTEGIDX_VALID	0x008		/* slot is valid */
170 #define	PVO_WIRED		0x010		/* PVO entry is wired */
171 #define	PVO_MANAGED		0x020		/* PVO entry is managed */
172 #define	PVO_EXECUTABLE		0x040		/* PVO entry is executable */
173 #define	PVO_BOOTSTRAP		0x080		/* PVO entry allocated during
174 						   bootstrap */
175 #define PVO_FAKE		0x100		/* fictitious phys page */
176 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
177 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
178 #define PVO_ISFAKE(pvo)		((pvo)->pvo_vaddr & PVO_FAKE)
179 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
180 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
181 #define	PVO_PTEGIDX_CLR(pvo)	\
182 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
183 #define	PVO_PTEGIDX_SET(pvo, i)	\
184 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
185 
186 #define	MOEA_PVO_CHECK(pvo)
187 
188 struct ofw_map {
189 	vm_offset_t	om_va;
190 	vm_size_t	om_len;
191 	vm_offset_t	om_pa;
192 	u_int		om_mode;
193 };
194 
195 /*
196  * Map of physical memory regions.
197  */
198 static struct	mem_region *regions;
199 static struct	mem_region *pregions;
200 u_int           phys_avail_count;
201 int		regions_sz, pregions_sz;
202 static struct	ofw_map *translations;
203 
204 extern struct pmap ofw_pmap;
205 
206 
207 
208 /*
209  * Lock for the pteg and pvo tables.
210  */
211 struct mtx	moea_table_mutex;
212 
213 /*
214  * PTEG data.
215  */
216 static struct	pteg *moea_pteg_table;
217 u_int		moea_pteg_count;
218 u_int		moea_pteg_mask;
219 
220 /*
221  * PVO data.
222  */
223 struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
224 struct	pvo_head moea_pvo_kunmanaged =
225     LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
226 struct	pvo_head moea_pvo_unmanaged =
227     LIST_HEAD_INITIALIZER(moea_pvo_unmanaged);	/* list of unmanaged pages */
228 
229 uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
230 uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
231 
232 #define	BPVO_POOL_SIZE	32768
233 static struct	pvo_entry *moea_bpvo_pool;
234 static int	moea_bpvo_pool_index = 0;
235 
236 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
237 static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
238 
239 static boolean_t moea_initialized = FALSE;
240 
241 /*
242  * Statistics.
243  */
244 u_int	moea_pte_valid = 0;
245 u_int	moea_pte_overflow = 0;
246 u_int	moea_pte_replacements = 0;
247 u_int	moea_pvo_entries = 0;
248 u_int	moea_pvo_enter_calls = 0;
249 u_int	moea_pvo_remove_calls = 0;
250 u_int	moea_pte_spills = 0;
251 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
252     0, "");
253 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
254     &moea_pte_overflow, 0, "");
255 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
256     &moea_pte_replacements, 0, "");
257 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
258     0, "");
259 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
260     &moea_pvo_enter_calls, 0, "");
261 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
262     &moea_pvo_remove_calls, 0, "");
263 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
264     &moea_pte_spills, 0, "");
265 
266 struct	pvo_entry *moea_pvo_zeropage;
267 struct	mtx	moea_pvo_zeropage_mtx;
268 
269 vm_offset_t	moea_rkva_start = VM_MIN_KERNEL_ADDRESS;
270 u_int		moea_rkva_count = 4;
271 
272 /*
273  * Allocate physical memory for use in moea_bootstrap.
274  */
275 static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
276 
277 /*
278  * PTE calls.
279  */
280 static int		moea_pte_insert(u_int, struct pte *);
281 
282 /*
283  * PVO calls.
284  */
285 static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
286 		    vm_offset_t, vm_offset_t, u_int, int);
287 static void	moea_pvo_remove(struct pvo_entry *, int);
288 static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
289 static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
290 
291 /*
292  * Utility routines.
293  */
294 static void		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
295 			    vm_prot_t, boolean_t);
296 static struct		pvo_entry *moea_rkva_alloc(mmu_t);
297 static void		moea_pa_map(struct pvo_entry *, vm_offset_t,
298 			    struct pte *, int *);
299 static void		moea_pa_unmap(struct pvo_entry *, struct pte *, int *);
300 static void		moea_syncicache(vm_offset_t, vm_size_t);
301 static boolean_t	moea_query_bit(vm_page_t, int);
302 static u_int		moea_clear_bit(vm_page_t, int, int *);
303 static void		moea_kremove(mmu_t, vm_offset_t);
304 static void		tlbia(void);
305 int		moea_pte_spill(vm_offset_t);
306 
307 /*
308  * Kernel MMU interface
309  */
310 void moea_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
311 void moea_clear_modify(mmu_t, vm_page_t);
312 void moea_clear_reference(mmu_t, vm_page_t);
313 void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
314 void moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
315 void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
316     vm_prot_t);
317 void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
318 vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
319 vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
320 void moea_init(mmu_t);
321 boolean_t moea_is_modified(mmu_t, vm_page_t);
322 boolean_t moea_ts_referenced(mmu_t, vm_page_t);
323 vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
324 boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
325 void moea_pinit(mmu_t, pmap_t);
326 void moea_pinit0(mmu_t, pmap_t);
327 void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
328 void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
329 void moea_qremove(mmu_t, vm_offset_t, int);
330 void moea_release(mmu_t, pmap_t);
331 void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
332 void moea_remove_all(mmu_t, vm_page_t);
333 void moea_remove_write(mmu_t, vm_page_t);
334 void moea_zero_page(mmu_t, vm_page_t);
335 void moea_zero_page_area(mmu_t, vm_page_t, int, int);
336 void moea_zero_page_idle(mmu_t, vm_page_t);
337 void moea_activate(mmu_t, struct thread *);
338 void moea_deactivate(mmu_t, struct thread *);
339 void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
340 void *moea_mapdev(mmu_t, vm_offset_t, vm_size_t);
341 void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
342 vm_offset_t moea_kextract(mmu_t, vm_offset_t);
343 void moea_kenter(mmu_t, vm_offset_t, vm_offset_t);
344 boolean_t moea_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
345 
346 static mmu_method_t moea_methods[] = {
347 	MMUMETHOD(mmu_change_wiring,	moea_change_wiring),
348 	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
349 	MMUMETHOD(mmu_clear_reference,	moea_clear_reference),
350 	MMUMETHOD(mmu_copy_page,	moea_copy_page),
351 	MMUMETHOD(mmu_enter,		moea_enter),
352 	MMUMETHOD(mmu_enter_object,	moea_enter_object),
353 	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
354 	MMUMETHOD(mmu_extract,		moea_extract),
355 	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
356 	MMUMETHOD(mmu_init,		moea_init),
357 	MMUMETHOD(mmu_is_modified,	moea_is_modified),
358 	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
359 	MMUMETHOD(mmu_map,     		moea_map),
360 	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
361 	MMUMETHOD(mmu_pinit,		moea_pinit),
362 	MMUMETHOD(mmu_pinit0,		moea_pinit0),
363 	MMUMETHOD(mmu_protect,		moea_protect),
364 	MMUMETHOD(mmu_qenter,		moea_qenter),
365 	MMUMETHOD(mmu_qremove,		moea_qremove),
366 	MMUMETHOD(mmu_release,		moea_release),
367 	MMUMETHOD(mmu_remove,		moea_remove),
368 	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
369 	MMUMETHOD(mmu_remove_write,	moea_remove_write),
370 	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
371 	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
372 	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
373 	MMUMETHOD(mmu_activate,		moea_activate),
374 	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
375 
376 	/* Internal interfaces */
377 	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
378 	MMUMETHOD(mmu_mapdev,		moea_mapdev),
379 	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
380 	MMUMETHOD(mmu_kextract,		moea_kextract),
381 	MMUMETHOD(mmu_kenter,		moea_kenter),
382 	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
383 
384 	{ 0, 0 }
385 };
386 
387 static mmu_def_t oea_mmu = {
388 	MMU_TYPE_OEA,
389 	moea_methods,
390 	0
391 };
392 MMU_DEF(oea_mmu);
393 
394 
395 static __inline int
396 va_to_sr(u_int *sr, vm_offset_t va)
397 {
398 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
399 }
400 
401 static __inline u_int
402 va_to_pteg(u_int sr, vm_offset_t addr)
403 {
404 	u_int hash;
405 
406 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
407 	    ADDR_PIDX_SHFT);
408 	return (hash & moea_pteg_mask);
409 }
410 
411 static __inline struct pvo_head *
412 pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
413 {
414 	struct	vm_page *pg;
415 
416 	pg = PHYS_TO_VM_PAGE(pa);
417 
418 	if (pg_p != NULL)
419 		*pg_p = pg;
420 
421 	if (pg == NULL)
422 		return (&moea_pvo_unmanaged);
423 
424 	return (&pg->md.mdpg_pvoh);
425 }
426 
427 static __inline struct pvo_head *
428 vm_page_to_pvoh(vm_page_t m)
429 {
430 
431 	return (&m->md.mdpg_pvoh);
432 }
433 
434 static __inline void
435 moea_attr_clear(vm_page_t m, int ptebit)
436 {
437 
438 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
439 	m->md.mdpg_attrs &= ~ptebit;
440 }
441 
442 static __inline int
443 moea_attr_fetch(vm_page_t m)
444 {
445 
446 	return (m->md.mdpg_attrs);
447 }
448 
449 static __inline void
450 moea_attr_save(vm_page_t m, int ptebit)
451 {
452 
453 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
454 	m->md.mdpg_attrs |= ptebit;
455 }
456 
457 static __inline int
458 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
459 {
460 	if (pt->pte_hi == pvo_pt->pte_hi)
461 		return (1);
462 
463 	return (0);
464 }
465 
466 static __inline int
467 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
468 {
469 	return (pt->pte_hi & ~PTE_VALID) ==
470 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
471 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
472 }
473 
474 static __inline void
475 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
476 {
477 
478 	mtx_assert(&moea_table_mutex, MA_OWNED);
479 
480 	/*
481 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
482 	 * set when the real pte is set in memory.
483 	 *
484 	 * Note: Don't set the valid bit for correct operation of tlb update.
485 	 */
486 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
487 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
488 	pt->pte_lo = pte_lo;
489 }
490 
491 static __inline void
492 moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
493 {
494 
495 	mtx_assert(&moea_table_mutex, MA_OWNED);
496 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
497 }
498 
499 static __inline void
500 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
501 {
502 
503 	mtx_assert(&moea_table_mutex, MA_OWNED);
504 
505 	/*
506 	 * As shown in Section 7.6.3.2.3
507 	 */
508 	pt->pte_lo &= ~ptebit;
509 	TLBIE(va);
510 	EIEIO();
511 	TLBSYNC();
512 	SYNC();
513 }
514 
515 static __inline void
516 moea_pte_set(struct pte *pt, struct pte *pvo_pt)
517 {
518 
519 	mtx_assert(&moea_table_mutex, MA_OWNED);
520 	pvo_pt->pte_hi |= PTE_VALID;
521 
522 	/*
523 	 * Update the PTE as defined in section 7.6.3.1.
524 	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
525 	 * been saved so this routine can restore them (if desired).
526 	 */
527 	pt->pte_lo = pvo_pt->pte_lo;
528 	EIEIO();
529 	pt->pte_hi = pvo_pt->pte_hi;
530 	SYNC();
531 	moea_pte_valid++;
532 }
533 
534 static __inline void
535 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
536 {
537 
538 	mtx_assert(&moea_table_mutex, MA_OWNED);
539 	pvo_pt->pte_hi &= ~PTE_VALID;
540 
541 	/*
542 	 * Force the reg & chg bits back into the PTEs.
543 	 */
544 	SYNC();
545 
546 	/*
547 	 * Invalidate the pte.
548 	 */
549 	pt->pte_hi &= ~PTE_VALID;
550 
551 	SYNC();
552 	TLBIE(va);
553 	EIEIO();
554 	TLBSYNC();
555 	SYNC();
556 
557 	/*
558 	 * Save the reg & chg bits.
559 	 */
560 	moea_pte_synch(pt, pvo_pt);
561 	moea_pte_valid--;
562 }
563 
564 static __inline void
565 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
566 {
567 
568 	/*
569 	 * Invalidate the PTE
570 	 */
571 	moea_pte_unset(pt, pvo_pt, va);
572 	moea_pte_set(pt, pvo_pt);
573 }
574 
575 /*
576  * Quick sort callout for comparing memory regions.
577  */
578 static int	mr_cmp(const void *a, const void *b);
579 static int	om_cmp(const void *a, const void *b);
580 
581 static int
582 mr_cmp(const void *a, const void *b)
583 {
584 	const struct	mem_region *regiona;
585 	const struct	mem_region *regionb;
586 
587 	regiona = a;
588 	regionb = b;
589 	if (regiona->mr_start < regionb->mr_start)
590 		return (-1);
591 	else if (regiona->mr_start > regionb->mr_start)
592 		return (1);
593 	else
594 		return (0);
595 }
596 
597 static int
598 om_cmp(const void *a, const void *b)
599 {
600 	const struct	ofw_map *mapa;
601 	const struct	ofw_map *mapb;
602 
603 	mapa = a;
604 	mapb = b;
605 	if (mapa->om_pa < mapb->om_pa)
606 		return (-1);
607 	else if (mapa->om_pa > mapb->om_pa)
608 		return (1);
609 	else
610 		return (0);
611 }
612 
613 void
614 moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
615 {
616 	ihandle_t	mmui;
617 	phandle_t	chosen, mmu;
618 	int		sz;
619 	int		i, j;
620 	int		ofw_mappings;
621 	vm_size_t	size, physsz, hwphyssz;
622 	vm_offset_t	pa, va, off;
623 	u_int		batl, batu;
624 
625         /*
626          * Set up BAT0 to map the lowest 256 MB area
627          */
628         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
629         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
630 
631         /*
632          * Map PCI memory space.
633          */
634         battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
635         battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
636 
637         battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
638         battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
639 
640         battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
641         battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
642 
643         battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
644         battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
645 
646         /*
647          * Map obio devices.
648          */
649         battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
650         battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
651 
652 	/*
653 	 * Use an IBAT and a DBAT to map the bottom segment of memory
654 	 * where we are.
655 	 */
656 	batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
657 	batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
658 	__asm (".balign 32; \n"
659 	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
660 	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
661 	    :: "r"(batu), "r"(batl));
662 
663 #if 0
664 	/* map frame buffer */
665 	batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
666 	batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
667 	__asm ("mtdbatu 1,%0; mtdbatl 1,%1; isync"
668 	    :: "r"(batu), "r"(batl));
669 #endif
670 
671 #if 1
672 	/* map pci space */
673 	batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
674 	batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
675 	__asm ("mtdbatu 1,%0; mtdbatl 1,%1; isync"
676 	    :: "r"(batu), "r"(batl));
677 #endif
678 
679 	/*
680 	 * Set the start and end of kva.
681 	 */
682 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
683 	virtual_end = VM_MAX_KERNEL_ADDRESS;
684 
685 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
686 	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
687 
688 	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
689 	for (i = 0; i < pregions_sz; i++) {
690 		vm_offset_t pa;
691 		vm_offset_t end;
692 
693 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
694 			pregions[i].mr_start,
695 			pregions[i].mr_start + pregions[i].mr_size,
696 			pregions[i].mr_size);
697 		/*
698 		 * Install entries into the BAT table to allow all
699 		 * of physmem to be convered by on-demand BAT entries.
700 		 * The loop will sometimes set the same battable element
701 		 * twice, but that's fine since they won't be used for
702 		 * a while yet.
703 		 */
704 		pa = pregions[i].mr_start & 0xf0000000;
705 		end = pregions[i].mr_start + pregions[i].mr_size;
706 		do {
707                         u_int n = pa >> ADDR_SR_SHFT;
708 
709 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
710 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
711 			pa += SEGMENT_LENGTH;
712 		} while (pa < end);
713 	}
714 
715 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
716 		panic("moea_bootstrap: phys_avail too small");
717 	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
718 	phys_avail_count = 0;
719 	physsz = 0;
720 	hwphyssz = 0;
721 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
722 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
723 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
724 		    regions[i].mr_start + regions[i].mr_size,
725 		    regions[i].mr_size);
726 		if (hwphyssz != 0 &&
727 		    (physsz + regions[i].mr_size) >= hwphyssz) {
728 			if (physsz < hwphyssz) {
729 				phys_avail[j] = regions[i].mr_start;
730 				phys_avail[j + 1] = regions[i].mr_start +
731 				    hwphyssz - physsz;
732 				physsz = hwphyssz;
733 				phys_avail_count++;
734 			}
735 			break;
736 		}
737 		phys_avail[j] = regions[i].mr_start;
738 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
739 		phys_avail_count++;
740 		physsz += regions[i].mr_size;
741 	}
742 	physmem = btoc(physsz);
743 
744 	/*
745 	 * Allocate PTEG table.
746 	 */
747 #ifdef PTEGCOUNT
748 	moea_pteg_count = PTEGCOUNT;
749 #else
750 	moea_pteg_count = 0x1000;
751 
752 	while (moea_pteg_count < physmem)
753 		moea_pteg_count <<= 1;
754 
755 	moea_pteg_count >>= 1;
756 #endif /* PTEGCOUNT */
757 
758 	size = moea_pteg_count * sizeof(struct pteg);
759 	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
760 	    size);
761 	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
762 	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
763 	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
764 	moea_pteg_mask = moea_pteg_count - 1;
765 
766 	/*
767 	 * Allocate pv/overflow lists.
768 	 */
769 	size = sizeof(struct pvo_head) * moea_pteg_count;
770 	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
771 	    PAGE_SIZE);
772 	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
773 	for (i = 0; i < moea_pteg_count; i++)
774 		LIST_INIT(&moea_pvo_table[i]);
775 
776 	/*
777 	 * Initialize the lock that synchronizes access to the pteg and pvo
778 	 * tables.
779 	 */
780 	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
781 	    MTX_RECURSE);
782 
783 	/*
784 	 * Allocate the message buffer.
785 	 */
786 	msgbuf_phys = moea_bootstrap_alloc(MSGBUF_SIZE, 0);
787 
788 	/*
789 	 * Initialise the unmanaged pvo pool.
790 	 */
791 	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
792 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
793 	moea_bpvo_pool_index = 0;
794 
795 	/*
796 	 * Make sure kernel vsid is allocated as well as VSID 0.
797 	 */
798 	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
799 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
800 	moea_vsid_bitmap[0] |= 1;
801 
802 	/*
803 	 * Set up the Open Firmware pmap and add it's mappings.
804 	 */
805 	moea_pinit(mmup, &ofw_pmap);
806 	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
807 	ofw_pmap.pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
808 	if ((chosen = OF_finddevice("/chosen")) == -1)
809 		panic("moea_bootstrap: can't find /chosen");
810 	OF_getprop(chosen, "mmu", &mmui, 4);
811 	if ((mmu = OF_instance_to_package(mmui)) == -1)
812 		panic("moea_bootstrap: can't get mmu package");
813 	if ((sz = OF_getproplen(mmu, "translations")) == -1)
814 		panic("moea_bootstrap: can't get ofw translation count");
815 	translations = NULL;
816 	for (i = 0; phys_avail[i] != 0; i += 2) {
817 		if (phys_avail[i + 1] >= sz) {
818 			translations = (struct ofw_map *)phys_avail[i];
819 			break;
820 		}
821 	}
822 	if (translations == NULL)
823 		panic("moea_bootstrap: no space to copy translations");
824 	bzero(translations, sz);
825 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
826 		panic("moea_bootstrap: can't get ofw translations");
827 	CTR0(KTR_PMAP, "moea_bootstrap: translations");
828 	sz /= sizeof(*translations);
829 	qsort(translations, sz, sizeof (*translations), om_cmp);
830 	for (i = 0, ofw_mappings = 0; i < sz; i++) {
831 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
832 		    translations[i].om_pa, translations[i].om_va,
833 		    translations[i].om_len);
834 
835 		/*
836 		 * If the mapping is 1:1, let the RAM and device on-demand
837 		 * BAT tables take care of the translation.
838 		 */
839 		if (translations[i].om_va == translations[i].om_pa)
840 			continue;
841 
842 		/* Enter the pages */
843 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
844 			struct	vm_page m;
845 
846 			m.phys_addr = translations[i].om_pa + off;
847 			PMAP_LOCK(&ofw_pmap);
848 			moea_enter_locked(&ofw_pmap,
849 				   translations[i].om_va + off, &m,
850 				   VM_PROT_ALL, 1);
851 			PMAP_UNLOCK(&ofw_pmap);
852 			ofw_mappings++;
853 		}
854 	}
855 #ifdef SMP
856 	TLBSYNC();
857 #endif
858 
859 	/*
860 	 * Initialize the kernel pmap (which is statically allocated).
861 	 */
862 	PMAP_LOCK_INIT(kernel_pmap);
863 	for (i = 0; i < 16; i++) {
864 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
865 	}
866 	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
867 	kernel_pmap->pm_sr[KERNEL2_SR] = KERNEL2_SEGMENT;
868 	kernel_pmap->pm_active = ~0;
869 
870 	/*
871 	 * Allocate a kernel stack with a guard page for thread0 and map it
872 	 * into the kernel page map.
873 	 */
874 	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
875 	kstack0_phys = pa;
876 	kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
877 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
878 	    kstack0);
879 	virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
880 	for (i = 0; i < KSTACK_PAGES; i++) {
881 		pa = kstack0_phys + i * PAGE_SIZE;
882 		va = kstack0 + i * PAGE_SIZE;
883 		moea_kenter(mmup, va, pa);
884 		TLBIE(va);
885 	}
886 
887 	/*
888 	 * Calculate the last available physical address.
889 	 */
890 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
891 		;
892 	Maxmem = powerpc_btop(phys_avail[i + 1]);
893 
894 	/*
895 	 * Allocate virtual address space for the message buffer.
896 	 */
897 	msgbufp = (struct msgbuf *)virtual_avail;
898 	virtual_avail += round_page(MSGBUF_SIZE);
899 
900 	/*
901 	 * Initialize hardware.
902 	 */
903 	for (i = 0; i < 16; i++) {
904 		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
905 	}
906 	__asm __volatile ("mtsr %0,%1"
907 	    :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
908 	__asm __volatile ("mtsr %0,%1"
909 	    :: "n"(KERNEL2_SR), "r"(KERNEL2_SEGMENT));
910 	__asm __volatile ("sync; mtsdr1 %0; isync"
911 	    :: "r"((u_int)moea_pteg_table | (moea_pteg_mask >> 10)));
912 	tlbia();
913 
914 	pmap_bootstrapped++;
915 }
916 
917 /*
918  * Activate a user pmap.  The pmap must be activated before it's address
919  * space can be accessed in any way.
920  */
921 void
922 moea_activate(mmu_t mmu, struct thread *td)
923 {
924 	pmap_t	pm, pmr;
925 
926 	/*
927 	 * Load all the data we need up front to encourage the compiler to
928 	 * not issue any loads while we have interrupts disabled below.
929 	 */
930 	pm = &td->td_proc->p_vmspace->vm_pmap;
931 
932 	if ((pmr = (pmap_t)moea_kextract(mmu, (vm_offset_t)pm)) == NULL)
933 		pmr = pm;
934 
935 	pm->pm_active |= PCPU_GET(cpumask);
936 	PCPU_SET(curpmap, pmr);
937 }
938 
939 void
940 moea_deactivate(mmu_t mmu, struct thread *td)
941 {
942 	pmap_t	pm;
943 
944 	pm = &td->td_proc->p_vmspace->vm_pmap;
945 	pm->pm_active &= ~(PCPU_GET(cpumask));
946 	PCPU_SET(curpmap, NULL);
947 }
948 
949 void
950 moea_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
951 {
952 	struct	pvo_entry *pvo;
953 
954 	PMAP_LOCK(pm);
955 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
956 
957 	if (pvo != NULL) {
958 		if (wired) {
959 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
960 				pm->pm_stats.wired_count++;
961 			pvo->pvo_vaddr |= PVO_WIRED;
962 		} else {
963 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
964 				pm->pm_stats.wired_count--;
965 			pvo->pvo_vaddr &= ~PVO_WIRED;
966 		}
967 	}
968 	PMAP_UNLOCK(pm);
969 }
970 
971 void
972 moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
973 {
974 	vm_offset_t	dst;
975 	vm_offset_t	src;
976 
977 	dst = VM_PAGE_TO_PHYS(mdst);
978 	src = VM_PAGE_TO_PHYS(msrc);
979 
980 	kcopy((void *)src, (void *)dst, PAGE_SIZE);
981 }
982 
983 /*
984  * Zero a page of physical memory by temporarily mapping it into the tlb.
985  */
986 void
987 moea_zero_page(mmu_t mmu, vm_page_t m)
988 {
989 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
990 	caddr_t va;
991 
992 	if (pa < SEGMENT_LENGTH) {
993 		va = (caddr_t) pa;
994 	} else if (moea_initialized) {
995 		if (moea_pvo_zeropage == NULL) {
996 			moea_pvo_zeropage = moea_rkva_alloc(mmu);
997 			mtx_init(&moea_pvo_zeropage_mtx, "pvo zero page",
998 			    NULL, MTX_DEF);
999 		}
1000 		mtx_lock(&moea_pvo_zeropage_mtx);
1001 		moea_pa_map(moea_pvo_zeropage, pa, NULL, NULL);
1002 		va = (caddr_t)PVO_VADDR(moea_pvo_zeropage);
1003 	} else {
1004 		panic("moea_zero_page: can't zero pa %#x", pa);
1005 	}
1006 
1007 	bzero(va, PAGE_SIZE);
1008 
1009 	if (pa >= SEGMENT_LENGTH) {
1010 		moea_pa_unmap(moea_pvo_zeropage, NULL, NULL);
1011 		mtx_unlock(&moea_pvo_zeropage_mtx);
1012 	}
1013 }
1014 
1015 void
1016 moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1017 {
1018 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1019 	caddr_t va;
1020 
1021 	if (pa < SEGMENT_LENGTH) {
1022 		va = (caddr_t) pa;
1023 	} else if (moea_initialized) {
1024 		if (moea_pvo_zeropage == NULL) {
1025 			moea_pvo_zeropage = moea_rkva_alloc(mmu);
1026 			mtx_init(&moea_pvo_zeropage_mtx, "pvo zero page",
1027 			    NULL, MTX_DEF);
1028 		}
1029 		mtx_lock(&moea_pvo_zeropage_mtx);
1030 		moea_pa_map(moea_pvo_zeropage, pa, NULL, NULL);
1031 		va = (caddr_t)PVO_VADDR(moea_pvo_zeropage);
1032 	} else {
1033 		panic("moea_zero_page: can't zero pa %#x", pa);
1034 	}
1035 
1036 	bzero(va + off, size);
1037 
1038 	if (pa >= SEGMENT_LENGTH) {
1039 		moea_pa_unmap(moea_pvo_zeropage, NULL, NULL);
1040 		mtx_unlock(&moea_pvo_zeropage_mtx);
1041 	}
1042 }
1043 
1044 void
1045 moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1046 {
1047 
1048 	moea_zero_page(mmu, m);
1049 }
1050 
1051 /*
1052  * Map the given physical page at the specified virtual address in the
1053  * target pmap with the protection requested.  If specified the page
1054  * will be wired down.
1055  */
1056 void
1057 moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1058 	   boolean_t wired)
1059 {
1060 
1061 	vm_page_lock_queues();
1062 	PMAP_LOCK(pmap);
1063 	moea_enter_locked(pmap, va, m, prot, wired);
1064 	vm_page_unlock_queues();
1065 	PMAP_UNLOCK(pmap);
1066 }
1067 
1068 /*
1069  * Map the given physical page at the specified virtual address in the
1070  * target pmap with the protection requested.  If specified the page
1071  * will be wired down.
1072  *
1073  * The page queues and pmap must be locked.
1074  */
1075 static void
1076 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1077     boolean_t wired)
1078 {
1079 	struct		pvo_head *pvo_head;
1080 	uma_zone_t	zone;
1081 	vm_page_t	pg;
1082 	u_int		pte_lo, pvo_flags, was_exec, i;
1083 	int		error;
1084 
1085 	if (!moea_initialized) {
1086 		pvo_head = &moea_pvo_kunmanaged;
1087 		zone = moea_upvo_zone;
1088 		pvo_flags = 0;
1089 		pg = NULL;
1090 		was_exec = PTE_EXEC;
1091 	} else {
1092 		pvo_head = vm_page_to_pvoh(m);
1093 		pg = m;
1094 		zone = moea_mpvo_zone;
1095 		pvo_flags = PVO_MANAGED;
1096 		was_exec = 0;
1097 	}
1098 	if (pmap_bootstrapped)
1099 		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1100 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1101 
1102 	/* XXX change the pvo head for fake pages */
1103 	if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS)
1104 		pvo_head = &moea_pvo_kunmanaged;
1105 
1106 	/*
1107 	 * If this is a managed page, and it's the first reference to the page,
1108 	 * clear the execness of the page.  Otherwise fetch the execness.
1109 	 */
1110 	if ((pg != NULL) && ((m->flags & PG_FICTITIOUS) == 0)) {
1111 		if (LIST_EMPTY(pvo_head)) {
1112 			moea_attr_clear(pg, PTE_EXEC);
1113 		} else {
1114 			was_exec = moea_attr_fetch(pg) & PTE_EXEC;
1115 		}
1116 	}
1117 
1118 	/*
1119 	 * Assume the page is cache inhibited and access is guarded unless
1120 	 * it's in our available memory array.
1121 	 */
1122 	pte_lo = PTE_I | PTE_G;
1123 	for (i = 0; i < pregions_sz; i++) {
1124 		if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
1125 		    (VM_PAGE_TO_PHYS(m) <
1126 			(pregions[i].mr_start + pregions[i].mr_size))) {
1127 			pte_lo &= ~(PTE_I | PTE_G);
1128 			break;
1129 		}
1130 	}
1131 
1132 	if (prot & VM_PROT_WRITE)
1133 		pte_lo |= PTE_BW;
1134 	else
1135 		pte_lo |= PTE_BR;
1136 
1137 	if (prot & VM_PROT_EXECUTE)
1138 		pvo_flags |= PVO_EXECUTABLE;
1139 
1140 	if (wired)
1141 		pvo_flags |= PVO_WIRED;
1142 
1143 	if ((m->flags & PG_FICTITIOUS) != 0)
1144 		pvo_flags |= PVO_FAKE;
1145 
1146 	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1147 	    pte_lo, pvo_flags);
1148 
1149 	/*
1150 	 * Flush the real page from the instruction cache if this page is
1151 	 * mapped executable and cacheable and was not previously mapped (or
1152 	 * was not mapped executable).
1153 	 */
1154 	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1155 	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1156 		/*
1157 		 * Flush the real memory from the cache.
1158 		 */
1159 		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1160 		if (pg != NULL)
1161 			moea_attr_save(pg, PTE_EXEC);
1162 	}
1163 
1164 	/* XXX syncicache always until problems are sorted */
1165 	moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1166 }
1167 
1168 /*
1169  * Maps a sequence of resident pages belonging to the same object.
1170  * The sequence begins with the given page m_start.  This page is
1171  * mapped at the given virtual address start.  Each subsequent page is
1172  * mapped at a virtual address that is offset from start by the same
1173  * amount as the page is offset from m_start within the object.  The
1174  * last page in the sequence is the page with the largest offset from
1175  * m_start that can be mapped at a virtual address less than the given
1176  * virtual address end.  Not every virtual page between start and end
1177  * is mapped; only those for which a resident page exists with the
1178  * corresponding offset from m_start are mapped.
1179  */
1180 void
1181 moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1182     vm_page_t m_start, vm_prot_t prot)
1183 {
1184 	vm_page_t m;
1185 	vm_pindex_t diff, psize;
1186 
1187 	psize = atop(end - start);
1188 	m = m_start;
1189 	PMAP_LOCK(pm);
1190 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1191 		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1192 		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1193 		m = TAILQ_NEXT(m, listq);
1194 	}
1195 	PMAP_UNLOCK(pm);
1196 }
1197 
1198 void
1199 moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1200     vm_prot_t prot)
1201 {
1202 
1203 	PMAP_LOCK(pm);
1204 	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1205 	    FALSE);
1206 	PMAP_UNLOCK(pm);
1207 
1208 }
1209 
1210 vm_paddr_t
1211 moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1212 {
1213 	struct	pvo_entry *pvo;
1214 	vm_paddr_t pa;
1215 
1216 	PMAP_LOCK(pm);
1217 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1218 	if (pvo == NULL)
1219 		pa = 0;
1220 	else
1221 		pa = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1222 	PMAP_UNLOCK(pm);
1223 	return (pa);
1224 }
1225 
1226 /*
1227  * Atomically extract and hold the physical page with the given
1228  * pmap and virtual address pair if that mapping permits the given
1229  * protection.
1230  */
1231 vm_page_t
1232 moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1233 {
1234 	struct	pvo_entry *pvo;
1235 	vm_page_t m;
1236 
1237 	m = NULL;
1238 	vm_page_lock_queues();
1239 	PMAP_LOCK(pmap);
1240 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1241 	if (pvo != NULL && (pvo->pvo_pte.pte_hi & PTE_VALID) &&
1242 	    ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_RW ||
1243 	     (prot & VM_PROT_WRITE) == 0)) {
1244 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1245 		vm_page_hold(m);
1246 	}
1247 	vm_page_unlock_queues();
1248 	PMAP_UNLOCK(pmap);
1249 	return (m);
1250 }
1251 
1252 void
1253 moea_init(mmu_t mmu)
1254 {
1255 
1256 	CTR0(KTR_PMAP, "moea_init");
1257 
1258 	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1259 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1260 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1261 	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1262 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1263 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1264 	moea_initialized = TRUE;
1265 }
1266 
1267 boolean_t
1268 moea_is_modified(mmu_t mmu, vm_page_t m)
1269 {
1270 
1271 	if ((m->flags & (PG_FICTITIOUS |PG_UNMANAGED)) != 0)
1272 		return (FALSE);
1273 
1274 	return (moea_query_bit(m, PTE_CHG));
1275 }
1276 
1277 void
1278 moea_clear_reference(mmu_t mmu, vm_page_t m)
1279 {
1280 
1281 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1282 		return;
1283 	moea_clear_bit(m, PTE_REF, NULL);
1284 }
1285 
1286 void
1287 moea_clear_modify(mmu_t mmu, vm_page_t m)
1288 {
1289 
1290 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1291 		return;
1292 	moea_clear_bit(m, PTE_CHG, NULL);
1293 }
1294 
1295 /*
1296  * Clear the write and modified bits in each of the given page's mappings.
1297  */
1298 void
1299 moea_remove_write(mmu_t mmu, vm_page_t m)
1300 {
1301 	struct	pvo_entry *pvo;
1302 	struct	pte *pt;
1303 	pmap_t	pmap;
1304 	u_int	lo;
1305 
1306 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1307 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1308 	    (m->flags & PG_WRITEABLE) == 0)
1309 		return;
1310 	lo = moea_attr_fetch(m);
1311 	SYNC();
1312 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1313 		pmap = pvo->pvo_pmap;
1314 		PMAP_LOCK(pmap);
1315 		if ((pvo->pvo_pte.pte_lo & PTE_PP) != PTE_BR) {
1316 			pt = moea_pvo_to_pte(pvo, -1);
1317 			pvo->pvo_pte.pte_lo &= ~PTE_PP;
1318 			pvo->pvo_pte.pte_lo |= PTE_BR;
1319 			if (pt != NULL) {
1320 				moea_pte_synch(pt, &pvo->pvo_pte);
1321 				lo |= pvo->pvo_pte.pte_lo;
1322 				pvo->pvo_pte.pte_lo &= ~PTE_CHG;
1323 				moea_pte_change(pt, &pvo->pvo_pte,
1324 				    pvo->pvo_vaddr);
1325 				mtx_unlock(&moea_table_mutex);
1326 			}
1327 		}
1328 		PMAP_UNLOCK(pmap);
1329 	}
1330 	if ((lo & PTE_CHG) != 0) {
1331 		moea_attr_clear(m, PTE_CHG);
1332 		vm_page_dirty(m);
1333 	}
1334 	vm_page_flag_clear(m, PG_WRITEABLE);
1335 }
1336 
1337 /*
1338  *	moea_ts_referenced:
1339  *
1340  *	Return a count of reference bits for a page, clearing those bits.
1341  *	It is not necessary for every reference bit to be cleared, but it
1342  *	is necessary that 0 only be returned when there are truly no
1343  *	reference bits set.
1344  *
1345  *	XXX: The exact number of bits to check and clear is a matter that
1346  *	should be tested and standardized at some point in the future for
1347  *	optimal aging of shared pages.
1348  */
1349 boolean_t
1350 moea_ts_referenced(mmu_t mmu, vm_page_t m)
1351 {
1352 	int count;
1353 
1354 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1355 		return (0);
1356 
1357 	count = moea_clear_bit(m, PTE_REF, NULL);
1358 
1359 	return (count);
1360 }
1361 
1362 /*
1363  * Map a wired page into kernel virtual address space.
1364  */
1365 void
1366 moea_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1367 {
1368 	u_int		pte_lo;
1369 	int		error;
1370 	int		i;
1371 
1372 #if 0
1373 	if (va < VM_MIN_KERNEL_ADDRESS)
1374 		panic("moea_kenter: attempt to enter non-kernel address %#x",
1375 		    va);
1376 #endif
1377 
1378 	pte_lo = PTE_I | PTE_G;
1379 	for (i = 0; i < pregions_sz; i++) {
1380 		if ((pa >= pregions[i].mr_start) &&
1381 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
1382 			pte_lo &= ~(PTE_I | PTE_G);
1383 			break;
1384 		}
1385 	}
1386 
1387 	PMAP_LOCK(kernel_pmap);
1388 	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1389 	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1390 
1391 	if (error != 0 && error != ENOENT)
1392 		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1393 		    pa, error);
1394 
1395 	/*
1396 	 * Flush the real memory from the instruction cache.
1397 	 */
1398 	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1399 		moea_syncicache(pa, PAGE_SIZE);
1400 	}
1401 	PMAP_UNLOCK(kernel_pmap);
1402 }
1403 
1404 /*
1405  * Extract the physical page address associated with the given kernel virtual
1406  * address.
1407  */
1408 vm_offset_t
1409 moea_kextract(mmu_t mmu, vm_offset_t va)
1410 {
1411 	struct		pvo_entry *pvo;
1412 	vm_paddr_t pa;
1413 
1414 #ifdef UMA_MD_SMALL_ALLOC
1415 	/*
1416 	 * Allow direct mappings
1417 	 */
1418 	if (va < VM_MIN_KERNEL_ADDRESS) {
1419 		return (va);
1420 	}
1421 #endif
1422 
1423 	PMAP_LOCK(kernel_pmap);
1424 	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1425 	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1426 	pa = (pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1427 	PMAP_UNLOCK(kernel_pmap);
1428 	return (pa);
1429 }
1430 
1431 /*
1432  * Remove a wired page from kernel virtual address space.
1433  */
1434 void
1435 moea_kremove(mmu_t mmu, vm_offset_t va)
1436 {
1437 
1438 	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1439 }
1440 
1441 /*
1442  * Map a range of physical addresses into kernel virtual address space.
1443  *
1444  * The value passed in *virt is a suggested virtual address for the mapping.
1445  * Architectures which can support a direct-mapped physical to virtual region
1446  * can return the appropriate address within that region, leaving '*virt'
1447  * unchanged.  We cannot and therefore do not; *virt is updated with the
1448  * first usable address after the mapped region.
1449  */
1450 vm_offset_t
1451 moea_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1452     vm_offset_t pa_end, int prot)
1453 {
1454 	vm_offset_t	sva, va;
1455 
1456 	sva = *virt;
1457 	va = sva;
1458 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1459 		moea_kenter(mmu, va, pa_start);
1460 	*virt = va;
1461 	return (sva);
1462 }
1463 
1464 /*
1465  * Returns true if the pmap's pv is one of the first
1466  * 16 pvs linked to from this page.  This count may
1467  * be changed upwards or downwards in the future; it
1468  * is only necessary that true be returned for a small
1469  * subset of pmaps for proper page aging.
1470  */
1471 boolean_t
1472 moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1473 {
1474         int loops;
1475 	struct pvo_entry *pvo;
1476 
1477         if (!moea_initialized || (m->flags & PG_FICTITIOUS))
1478                 return FALSE;
1479 
1480 	loops = 0;
1481 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1482 		if (pvo->pvo_pmap == pmap)
1483 			return (TRUE);
1484 		if (++loops >= 16)
1485 			break;
1486 	}
1487 
1488 	return (FALSE);
1489 }
1490 
1491 static u_int	moea_vsidcontext;
1492 
1493 void
1494 moea_pinit(mmu_t mmu, pmap_t pmap)
1495 {
1496 	int	i, mask;
1497 	u_int	entropy;
1498 
1499 	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1500 	PMAP_LOCK_INIT(pmap);
1501 
1502 	entropy = 0;
1503 	__asm __volatile("mftb %0" : "=r"(entropy));
1504 
1505 	/*
1506 	 * Allocate some segment registers for this pmap.
1507 	 */
1508 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1509 		u_int	hash, n;
1510 
1511 		/*
1512 		 * Create a new value by mutiplying by a prime and adding in
1513 		 * entropy from the timebase register.  This is to make the
1514 		 * VSID more random so that the PT hash function collides
1515 		 * less often.  (Note that the prime casues gcc to do shifts
1516 		 * instead of a multiply.)
1517 		 */
1518 		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1519 		hash = moea_vsidcontext & (NPMAPS - 1);
1520 		if (hash == 0)		/* 0 is special, avoid it */
1521 			continue;
1522 		n = hash >> 5;
1523 		mask = 1 << (hash & (VSID_NBPW - 1));
1524 		hash = (moea_vsidcontext & 0xfffff);
1525 		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1526 			/* anything free in this bucket? */
1527 			if (moea_vsid_bitmap[n] == 0xffffffff) {
1528 				entropy = (moea_vsidcontext >> 20);
1529 				continue;
1530 			}
1531 			i = ffs(~moea_vsid_bitmap[i]) - 1;
1532 			mask = 1 << i;
1533 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1534 			hash |= i;
1535 		}
1536 		moea_vsid_bitmap[n] |= mask;
1537 		for (i = 0; i < 16; i++)
1538 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1539 		return;
1540 	}
1541 
1542 	panic("moea_pinit: out of segments");
1543 }
1544 
1545 /*
1546  * Initialize the pmap associated with process 0.
1547  */
1548 void
1549 moea_pinit0(mmu_t mmu, pmap_t pm)
1550 {
1551 
1552 	moea_pinit(mmu, pm);
1553 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1554 }
1555 
1556 /*
1557  * Set the physical protection on the specified range of this map as requested.
1558  */
1559 void
1560 moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1561     vm_prot_t prot)
1562 {
1563 	struct	pvo_entry *pvo;
1564 	struct	pte *pt;
1565 	int	pteidx;
1566 
1567 	CTR4(KTR_PMAP, "moea_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1568 	    eva, prot);
1569 
1570 
1571 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1572 	    ("moea_protect: non current pmap"));
1573 
1574 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1575 		moea_remove(mmu, pm, sva, eva);
1576 		return;
1577 	}
1578 
1579 	vm_page_lock_queues();
1580 	PMAP_LOCK(pm);
1581 	for (; sva < eva; sva += PAGE_SIZE) {
1582 		pvo = moea_pvo_find_va(pm, sva, &pteidx);
1583 		if (pvo == NULL)
1584 			continue;
1585 
1586 		if ((prot & VM_PROT_EXECUTE) == 0)
1587 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1588 
1589 		/*
1590 		 * Grab the PTE pointer before we diddle with the cached PTE
1591 		 * copy.
1592 		 */
1593 		pt = moea_pvo_to_pte(pvo, pteidx);
1594 		/*
1595 		 * Change the protection of the page.
1596 		 */
1597 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1598 		pvo->pvo_pte.pte_lo |= PTE_BR;
1599 
1600 		/*
1601 		 * If the PVO is in the page table, update that pte as well.
1602 		 */
1603 		if (pt != NULL) {
1604 			moea_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1605 			mtx_unlock(&moea_table_mutex);
1606 		}
1607 	}
1608 	vm_page_unlock_queues();
1609 	PMAP_UNLOCK(pm);
1610 }
1611 
1612 /*
1613  * Map a list of wired pages into kernel virtual address space.  This is
1614  * intended for temporary mappings which do not need page modification or
1615  * references recorded.  Existing mappings in the region are overwritten.
1616  */
1617 void
1618 moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1619 {
1620 	vm_offset_t va;
1621 
1622 	va = sva;
1623 	while (count-- > 0) {
1624 		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1625 		va += PAGE_SIZE;
1626 		m++;
1627 	}
1628 }
1629 
1630 /*
1631  * Remove page mappings from kernel virtual address space.  Intended for
1632  * temporary mappings entered by moea_qenter.
1633  */
1634 void
1635 moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1636 {
1637 	vm_offset_t va;
1638 
1639 	va = sva;
1640 	while (count-- > 0) {
1641 		moea_kremove(mmu, va);
1642 		va += PAGE_SIZE;
1643 	}
1644 }
1645 
1646 void
1647 moea_release(mmu_t mmu, pmap_t pmap)
1648 {
1649         int idx, mask;
1650 
1651 	/*
1652 	 * Free segment register's VSID
1653 	 */
1654         if (pmap->pm_sr[0] == 0)
1655                 panic("moea_release");
1656 
1657         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1658         mask = 1 << (idx % VSID_NBPW);
1659         idx /= VSID_NBPW;
1660         moea_vsid_bitmap[idx] &= ~mask;
1661 	PMAP_LOCK_DESTROY(pmap);
1662 }
1663 
1664 /*
1665  * Remove the given range of addresses from the specified map.
1666  */
1667 void
1668 moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1669 {
1670 	struct	pvo_entry *pvo;
1671 	int	pteidx;
1672 
1673 	vm_page_lock_queues();
1674 	PMAP_LOCK(pm);
1675 	for (; sva < eva; sva += PAGE_SIZE) {
1676 		pvo = moea_pvo_find_va(pm, sva, &pteidx);
1677 		if (pvo != NULL) {
1678 			moea_pvo_remove(pvo, pteidx);
1679 		}
1680 	}
1681 	PMAP_UNLOCK(pm);
1682 	vm_page_unlock_queues();
1683 }
1684 
1685 /*
1686  * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1687  * will reflect changes in pte's back to the vm_page.
1688  */
1689 void
1690 moea_remove_all(mmu_t mmu, vm_page_t m)
1691 {
1692 	struct  pvo_head *pvo_head;
1693 	struct	pvo_entry *pvo, *next_pvo;
1694 	pmap_t	pmap;
1695 
1696 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1697 
1698 	pvo_head = vm_page_to_pvoh(m);
1699 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1700 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1701 
1702 		MOEA_PVO_CHECK(pvo);	/* sanity check */
1703 		pmap = pvo->pvo_pmap;
1704 		PMAP_LOCK(pmap);
1705 		moea_pvo_remove(pvo, -1);
1706 		PMAP_UNLOCK(pmap);
1707 	}
1708 	vm_page_flag_clear(m, PG_WRITEABLE);
1709 }
1710 
1711 /*
1712  * Allocate a physical page of memory directly from the phys_avail map.
1713  * Can only be called from moea_bootstrap before avail start and end are
1714  * calculated.
1715  */
1716 static vm_offset_t
1717 moea_bootstrap_alloc(vm_size_t size, u_int align)
1718 {
1719 	vm_offset_t	s, e;
1720 	int		i, j;
1721 
1722 	size = round_page(size);
1723 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1724 		if (align != 0)
1725 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1726 		else
1727 			s = phys_avail[i];
1728 		e = s + size;
1729 
1730 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1731 			continue;
1732 
1733 		if (s == phys_avail[i]) {
1734 			phys_avail[i] += size;
1735 		} else if (e == phys_avail[i + 1]) {
1736 			phys_avail[i + 1] -= size;
1737 		} else {
1738 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1739 				phys_avail[j] = phys_avail[j - 2];
1740 				phys_avail[j + 1] = phys_avail[j - 1];
1741 			}
1742 
1743 			phys_avail[i + 3] = phys_avail[i + 1];
1744 			phys_avail[i + 1] = s;
1745 			phys_avail[i + 2] = e;
1746 			phys_avail_count++;
1747 		}
1748 
1749 		return (s);
1750 	}
1751 	panic("moea_bootstrap_alloc: could not allocate memory");
1752 }
1753 
1754 /*
1755  * Return an unmapped pvo for a kernel virtual address.
1756  * Used by pmap functions that operate on physical pages.
1757  */
1758 static struct pvo_entry *
1759 moea_rkva_alloc(mmu_t mmu)
1760 {
1761 	struct		pvo_entry *pvo;
1762 	struct		pte *pt;
1763 	vm_offset_t	kva;
1764 	int		pteidx;
1765 
1766 	if (moea_rkva_count == 0)
1767 		panic("moea_rkva_alloc: no more reserved KVAs");
1768 
1769 	kva = moea_rkva_start + (PAGE_SIZE * --moea_rkva_count);
1770 	moea_kenter(mmu, kva, 0);
1771 
1772 	pvo = moea_pvo_find_va(kernel_pmap, kva, &pteidx);
1773 
1774 	if (pvo == NULL)
1775 		panic("moea_kva_alloc: moea_pvo_find_va failed");
1776 
1777 	pt = moea_pvo_to_pte(pvo, pteidx);
1778 
1779 	if (pt == NULL)
1780 		panic("moea_kva_alloc: moea_pvo_to_pte failed");
1781 
1782 	moea_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1783 	mtx_unlock(&moea_table_mutex);
1784 	PVO_PTEGIDX_CLR(pvo);
1785 
1786 	moea_pte_overflow++;
1787 
1788 	return (pvo);
1789 }
1790 
1791 static void
1792 moea_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1793     int *depth_p)
1794 {
1795 	struct	pte *pt;
1796 
1797 	/*
1798 	 * If this pvo already has a valid pte, we need to save it so it can
1799 	 * be restored later.  We then just reload the new PTE over the old
1800 	 * slot.
1801 	 */
1802 	if (saved_pt != NULL) {
1803 		pt = moea_pvo_to_pte(pvo, -1);
1804 
1805 		if (pt != NULL) {
1806 			moea_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1807 			mtx_unlock(&moea_table_mutex);
1808 			PVO_PTEGIDX_CLR(pvo);
1809 			moea_pte_overflow++;
1810 		}
1811 
1812 		*saved_pt = pvo->pvo_pte;
1813 
1814 		pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1815 	}
1816 
1817 	pvo->pvo_pte.pte_lo |= pa;
1818 
1819 	if (!moea_pte_spill(pvo->pvo_vaddr))
1820 		panic("moea_pa_map: could not spill pvo %p", pvo);
1821 
1822 	if (depth_p != NULL)
1823 		(*depth_p)++;
1824 }
1825 
1826 static void
1827 moea_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1828 {
1829 	struct	pte *pt;
1830 
1831 	pt = moea_pvo_to_pte(pvo, -1);
1832 
1833 	if (pt != NULL) {
1834 		moea_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1835 		mtx_unlock(&moea_table_mutex);
1836 		PVO_PTEGIDX_CLR(pvo);
1837 		moea_pte_overflow++;
1838 	}
1839 
1840 	pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1841 
1842 	/*
1843 	 * If there is a saved PTE and it's valid, restore it and return.
1844 	 */
1845 	if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1846 		if (depth_p != NULL && --(*depth_p) == 0)
1847 			panic("moea_pa_unmap: restoring but depth == 0");
1848 
1849 		pvo->pvo_pte = *saved_pt;
1850 
1851 		if (!moea_pte_spill(pvo->pvo_vaddr))
1852 			panic("moea_pa_unmap: could not spill pvo %p", pvo);
1853 	}
1854 }
1855 
1856 static void
1857 moea_syncicache(vm_offset_t pa, vm_size_t len)
1858 {
1859 	__syncicache((void *)pa, len);
1860 }
1861 
1862 static void
1863 tlbia(void)
1864 {
1865 	caddr_t	i;
1866 
1867 	SYNC();
1868 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1869 		TLBIE(i);
1870 		EIEIO();
1871 	}
1872 	TLBSYNC();
1873 	SYNC();
1874 }
1875 
1876 static int
1877 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1878     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1879 {
1880 	struct	pvo_entry *pvo;
1881 	u_int	sr;
1882 	int	first;
1883 	u_int	ptegidx;
1884 	int	i;
1885 	int     bootstrap;
1886 
1887 	moea_pvo_enter_calls++;
1888 	first = 0;
1889 	bootstrap = 0;
1890 
1891 	/*
1892 	 * Compute the PTE Group index.
1893 	 */
1894 	va &= ~ADDR_POFF;
1895 	sr = va_to_sr(pm->pm_sr, va);
1896 	ptegidx = va_to_pteg(sr, va);
1897 
1898 	/*
1899 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1900 	 * there is a mapping.
1901 	 */
1902 	mtx_lock(&moea_table_mutex);
1903 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1904 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1905 			if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
1906 			    (pvo->pvo_pte.pte_lo & PTE_PP) ==
1907 			    (pte_lo & PTE_PP)) {
1908 				mtx_unlock(&moea_table_mutex);
1909 				return (0);
1910 			}
1911 			moea_pvo_remove(pvo, -1);
1912 			break;
1913 		}
1914 	}
1915 
1916 	/*
1917 	 * If we aren't overwriting a mapping, try to allocate.
1918 	 */
1919 	if (moea_initialized) {
1920 		pvo = uma_zalloc(zone, M_NOWAIT);
1921 	} else {
1922 		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1923 			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1924 			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1925 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1926 		}
1927 		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1928 		moea_bpvo_pool_index++;
1929 		bootstrap = 1;
1930 	}
1931 
1932 	if (pvo == NULL) {
1933 		mtx_unlock(&moea_table_mutex);
1934 		return (ENOMEM);
1935 	}
1936 
1937 	moea_pvo_entries++;
1938 	pvo->pvo_vaddr = va;
1939 	pvo->pvo_pmap = pm;
1940 	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1941 	pvo->pvo_vaddr &= ~ADDR_POFF;
1942 	if (flags & VM_PROT_EXECUTE)
1943 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1944 	if (flags & PVO_WIRED)
1945 		pvo->pvo_vaddr |= PVO_WIRED;
1946 	if (pvo_head != &moea_pvo_kunmanaged)
1947 		pvo->pvo_vaddr |= PVO_MANAGED;
1948 	if (bootstrap)
1949 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1950 	if (flags & PVO_FAKE)
1951 		pvo->pvo_vaddr |= PVO_FAKE;
1952 
1953 	moea_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1954 
1955 	/*
1956 	 * Remember if the list was empty and therefore will be the first
1957 	 * item.
1958 	 */
1959 	if (LIST_FIRST(pvo_head) == NULL)
1960 		first = 1;
1961 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1962 
1963 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1964 		pm->pm_stats.wired_count++;
1965 	pm->pm_stats.resident_count++;
1966 
1967 	/*
1968 	 * We hope this succeeds but it isn't required.
1969 	 */
1970 	i = moea_pte_insert(ptegidx, &pvo->pvo_pte);
1971 	if (i >= 0) {
1972 		PVO_PTEGIDX_SET(pvo, i);
1973 	} else {
1974 		panic("moea_pvo_enter: overflow");
1975 		moea_pte_overflow++;
1976 	}
1977 	mtx_unlock(&moea_table_mutex);
1978 
1979 	return (first ? ENOENT : 0);
1980 }
1981 
1982 static void
1983 moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
1984 {
1985 	struct	pte *pt;
1986 
1987 	/*
1988 	 * If there is an active pte entry, we need to deactivate it (and
1989 	 * save the ref & cfg bits).
1990 	 */
1991 	pt = moea_pvo_to_pte(pvo, pteidx);
1992 	if (pt != NULL) {
1993 		moea_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1994 		mtx_unlock(&moea_table_mutex);
1995 		PVO_PTEGIDX_CLR(pvo);
1996 	} else {
1997 		moea_pte_overflow--;
1998 	}
1999 
2000 	/*
2001 	 * Update our statistics.
2002 	 */
2003 	pvo->pvo_pmap->pm_stats.resident_count--;
2004 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
2005 		pvo->pvo_pmap->pm_stats.wired_count--;
2006 
2007 	/*
2008 	 * Save the REF/CHG bits into their cache if the page is managed.
2009 	 */
2010 	if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
2011 		struct	vm_page *pg;
2012 
2013 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
2014 		if (pg != NULL) {
2015 			moea_attr_save(pg, pvo->pvo_pte.pte_lo &
2016 			    (PTE_REF | PTE_CHG));
2017 		}
2018 	}
2019 
2020 	/*
2021 	 * Remove this PVO from the PV list.
2022 	 */
2023 	LIST_REMOVE(pvo, pvo_vlink);
2024 
2025 	/*
2026 	 * Remove this from the overflow list and return it to the pool
2027 	 * if we aren't going to reuse it.
2028 	 */
2029 	LIST_REMOVE(pvo, pvo_olink);
2030 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2031 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2032 		    moea_upvo_zone, pvo);
2033 	moea_pvo_entries--;
2034 	moea_pvo_remove_calls++;
2035 }
2036 
2037 static __inline int
2038 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2039 {
2040 	int	pteidx;
2041 
2042 	/*
2043 	 * We can find the actual pte entry without searching by grabbing
2044 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2045 	 * noticing the HID bit.
2046 	 */
2047 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2048 	if (pvo->pvo_pte.pte_hi & PTE_HID)
2049 		pteidx ^= moea_pteg_mask * 8;
2050 
2051 	return (pteidx);
2052 }
2053 
2054 static struct pvo_entry *
2055 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2056 {
2057 	struct	pvo_entry *pvo;
2058 	int	ptegidx;
2059 	u_int	sr;
2060 
2061 	va &= ~ADDR_POFF;
2062 	sr = va_to_sr(pm->pm_sr, va);
2063 	ptegidx = va_to_pteg(sr, va);
2064 
2065 	mtx_lock(&moea_table_mutex);
2066 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2067 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2068 			if (pteidx_p)
2069 				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2070 			break;
2071 		}
2072 	}
2073 	mtx_unlock(&moea_table_mutex);
2074 
2075 	return (pvo);
2076 }
2077 
2078 static struct pte *
2079 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2080 {
2081 	struct	pte *pt;
2082 
2083 	/*
2084 	 * If we haven't been supplied the ptegidx, calculate it.
2085 	 */
2086 	if (pteidx == -1) {
2087 		int	ptegidx;
2088 		u_int	sr;
2089 
2090 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2091 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2092 		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2093 	}
2094 
2095 	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2096 	mtx_lock(&moea_table_mutex);
2097 
2098 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2099 		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2100 		    "valid pte index", pvo);
2101 	}
2102 
2103 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2104 		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2105 		    "pvo but no valid pte", pvo);
2106 	}
2107 
2108 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2109 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
2110 			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2111 			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2112 		}
2113 
2114 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2115 		    != 0) {
2116 			panic("moea_pvo_to_pte: pvo %p pte does not match "
2117 			    "pte %p in moea_pteg_table", pvo, pt);
2118 		}
2119 
2120 		mtx_assert(&moea_table_mutex, MA_OWNED);
2121 		return (pt);
2122 	}
2123 
2124 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
2125 		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2126 		    "moea_pteg_table but valid in pvo", pvo, pt);
2127 	}
2128 
2129 	mtx_unlock(&moea_table_mutex);
2130 	return (NULL);
2131 }
2132 
2133 /*
2134  * XXX: THIS STUFF SHOULD BE IN pte.c?
2135  */
2136 int
2137 moea_pte_spill(vm_offset_t addr)
2138 {
2139 	struct	pvo_entry *source_pvo, *victim_pvo;
2140 	struct	pvo_entry *pvo;
2141 	int	ptegidx, i, j;
2142 	u_int	sr;
2143 	struct	pteg *pteg;
2144 	struct	pte *pt;
2145 
2146 	moea_pte_spills++;
2147 
2148 	sr = mfsrin(addr);
2149 	ptegidx = va_to_pteg(sr, addr);
2150 
2151 	/*
2152 	 * Have to substitute some entry.  Use the primary hash for this.
2153 	 * Use low bits of timebase as random generator.
2154 	 */
2155 	pteg = &moea_pteg_table[ptegidx];
2156 	mtx_lock(&moea_table_mutex);
2157 	__asm __volatile("mftb %0" : "=r"(i));
2158 	i &= 7;
2159 	pt = &pteg->pt[i];
2160 
2161 	source_pvo = NULL;
2162 	victim_pvo = NULL;
2163 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2164 		/*
2165 		 * We need to find a pvo entry for this address.
2166 		 */
2167 		MOEA_PVO_CHECK(pvo);
2168 		if (source_pvo == NULL &&
2169 		    moea_pte_match(&pvo->pvo_pte, sr, addr,
2170 		    pvo->pvo_pte.pte_hi & PTE_HID)) {
2171 			/*
2172 			 * Now found an entry to be spilled into the pteg.
2173 			 * The PTE is now valid, so we know it's active.
2174 			 */
2175 			j = moea_pte_insert(ptegidx, &pvo->pvo_pte);
2176 
2177 			if (j >= 0) {
2178 				PVO_PTEGIDX_SET(pvo, j);
2179 				moea_pte_overflow--;
2180 				MOEA_PVO_CHECK(pvo);
2181 				mtx_unlock(&moea_table_mutex);
2182 				return (1);
2183 			}
2184 
2185 			source_pvo = pvo;
2186 
2187 			if (victim_pvo != NULL)
2188 				break;
2189 		}
2190 
2191 		/*
2192 		 * We also need the pvo entry of the victim we are replacing
2193 		 * so save the R & C bits of the PTE.
2194 		 */
2195 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2196 		    moea_pte_compare(pt, &pvo->pvo_pte)) {
2197 			victim_pvo = pvo;
2198 			if (source_pvo != NULL)
2199 				break;
2200 		}
2201 	}
2202 
2203 	if (source_pvo == NULL) {
2204 		mtx_unlock(&moea_table_mutex);
2205 		return (0);
2206 	}
2207 
2208 	if (victim_pvo == NULL) {
2209 		if ((pt->pte_hi & PTE_HID) == 0)
2210 			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2211 			    "entry", pt);
2212 
2213 		/*
2214 		 * If this is a secondary PTE, we need to search it's primary
2215 		 * pvo bucket for the matching PVO.
2216 		 */
2217 		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2218 		    pvo_olink) {
2219 			MOEA_PVO_CHECK(pvo);
2220 			/*
2221 			 * We also need the pvo entry of the victim we are
2222 			 * replacing so save the R & C bits of the PTE.
2223 			 */
2224 			if (moea_pte_compare(pt, &pvo->pvo_pte)) {
2225 				victim_pvo = pvo;
2226 				break;
2227 			}
2228 		}
2229 
2230 		if (victim_pvo == NULL)
2231 			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2232 			    "entry", pt);
2233 	}
2234 
2235 	/*
2236 	 * We are invalidating the TLB entry for the EA we are replacing even
2237 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2238 	 * contained in the TLB entry.
2239 	 */
2240 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
2241 
2242 	moea_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
2243 	moea_pte_set(pt, &source_pvo->pvo_pte);
2244 
2245 	PVO_PTEGIDX_CLR(victim_pvo);
2246 	PVO_PTEGIDX_SET(source_pvo, i);
2247 	moea_pte_replacements++;
2248 
2249 	MOEA_PVO_CHECK(victim_pvo);
2250 	MOEA_PVO_CHECK(source_pvo);
2251 
2252 	mtx_unlock(&moea_table_mutex);
2253 	return (1);
2254 }
2255 
2256 static int
2257 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2258 {
2259 	struct	pte *pt;
2260 	int	i;
2261 
2262 	mtx_assert(&moea_table_mutex, MA_OWNED);
2263 
2264 	/*
2265 	 * First try primary hash.
2266 	 */
2267 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2268 		if ((pt->pte_hi & PTE_VALID) == 0) {
2269 			pvo_pt->pte_hi &= ~PTE_HID;
2270 			moea_pte_set(pt, pvo_pt);
2271 			return (i);
2272 		}
2273 	}
2274 
2275 	/*
2276 	 * Now try secondary hash.
2277 	 */
2278 	ptegidx ^= moea_pteg_mask;
2279 	ptegidx++;
2280 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2281 		if ((pt->pte_hi & PTE_VALID) == 0) {
2282 			pvo_pt->pte_hi |= PTE_HID;
2283 			moea_pte_set(pt, pvo_pt);
2284 			return (i);
2285 		}
2286 	}
2287 
2288 	panic("moea_pte_insert: overflow");
2289 	return (-1);
2290 }
2291 
2292 static boolean_t
2293 moea_query_bit(vm_page_t m, int ptebit)
2294 {
2295 	struct	pvo_entry *pvo;
2296 	struct	pte *pt;
2297 
2298 #if 0
2299 	if (moea_attr_fetch(m) & ptebit)
2300 		return (TRUE);
2301 #endif
2302 
2303 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2304 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2305 
2306 		/*
2307 		 * See if we saved the bit off.  If so, cache it and return
2308 		 * success.
2309 		 */
2310 		if (pvo->pvo_pte.pte_lo & ptebit) {
2311 			moea_attr_save(m, ptebit);
2312 			MOEA_PVO_CHECK(pvo);	/* sanity check */
2313 			return (TRUE);
2314 		}
2315 	}
2316 
2317 	/*
2318 	 * No luck, now go through the hard part of looking at the PTEs
2319 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2320 	 * the PTEs.
2321 	 */
2322 	SYNC();
2323 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2324 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2325 
2326 		/*
2327 		 * See if this pvo has a valid PTE.  if so, fetch the
2328 		 * REF/CHG bits from the valid PTE.  If the appropriate
2329 		 * ptebit is set, cache it and return success.
2330 		 */
2331 		pt = moea_pvo_to_pte(pvo, -1);
2332 		if (pt != NULL) {
2333 			moea_pte_synch(pt, &pvo->pvo_pte);
2334 			mtx_unlock(&moea_table_mutex);
2335 			if (pvo->pvo_pte.pte_lo & ptebit) {
2336 				moea_attr_save(m, ptebit);
2337 				MOEA_PVO_CHECK(pvo);	/* sanity check */
2338 				return (TRUE);
2339 			}
2340 		}
2341 	}
2342 
2343 	return (FALSE);
2344 }
2345 
2346 static u_int
2347 moea_clear_bit(vm_page_t m, int ptebit, int *origbit)
2348 {
2349 	u_int	count;
2350 	struct	pvo_entry *pvo;
2351 	struct	pte *pt;
2352 	int	rv;
2353 
2354 	/*
2355 	 * Clear the cached value.
2356 	 */
2357 	rv = moea_attr_fetch(m);
2358 	moea_attr_clear(m, ptebit);
2359 
2360 	/*
2361 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2362 	 * we can reset the right ones).  note that since the pvo entries and
2363 	 * list heads are accessed via BAT0 and are never placed in the page
2364 	 * table, we don't have to worry about further accesses setting the
2365 	 * REF/CHG bits.
2366 	 */
2367 	SYNC();
2368 
2369 	/*
2370 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2371 	 * valid pte clear the ptebit from the valid pte.
2372 	 */
2373 	count = 0;
2374 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2375 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2376 		pt = moea_pvo_to_pte(pvo, -1);
2377 		if (pt != NULL) {
2378 			moea_pte_synch(pt, &pvo->pvo_pte);
2379 			if (pvo->pvo_pte.pte_lo & ptebit) {
2380 				count++;
2381 				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2382 			}
2383 			mtx_unlock(&moea_table_mutex);
2384 		}
2385 		rv |= pvo->pvo_pte.pte_lo;
2386 		pvo->pvo_pte.pte_lo &= ~ptebit;
2387 		MOEA_PVO_CHECK(pvo);	/* sanity check */
2388 	}
2389 
2390 	if (origbit != NULL) {
2391 		*origbit = rv;
2392 	}
2393 
2394 	return (count);
2395 }
2396 
2397 /*
2398  * Return true if the physical range is encompassed by the battable[idx]
2399  */
2400 static int
2401 moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2402 {
2403 	u_int prot;
2404 	u_int32_t start;
2405 	u_int32_t end;
2406 	u_int32_t bat_ble;
2407 
2408 	/*
2409 	 * Return immediately if not a valid mapping
2410 	 */
2411 	if (!battable[idx].batu & BAT_Vs)
2412 		return (EINVAL);
2413 
2414 	/*
2415 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2416 	 * so it can function as an i/o page
2417 	 */
2418 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2419 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2420 		return (EPERM);
2421 
2422 	/*
2423 	 * The address should be within the BAT range. Assume that the
2424 	 * start address in the BAT has the correct alignment (thus
2425 	 * not requiring masking)
2426 	 */
2427 	start = battable[idx].batl & BAT_PBS;
2428 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2429 	end = start | (bat_ble << 15) | 0x7fff;
2430 
2431 	if ((pa < start) || ((pa + size) > end))
2432 		return (ERANGE);
2433 
2434 	return (0);
2435 }
2436 
2437 boolean_t
2438 moea_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2439 {
2440 	int i;
2441 
2442 	/*
2443 	 * This currently does not work for entries that
2444 	 * overlap 256M BAT segments.
2445 	 */
2446 
2447 	for(i = 0; i < 16; i++)
2448 		if (moea_bat_mapped(i, pa, size) == 0)
2449 			return (0);
2450 
2451 	return (EFAULT);
2452 }
2453 
2454 /*
2455  * Map a set of physical memory pages into the kernel virtual
2456  * address space. Return a pointer to where it is mapped. This
2457  * routine is intended to be used for mapping device memory,
2458  * NOT real memory.
2459  */
2460 void *
2461 moea_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2462 {
2463 	vm_offset_t va, tmpva, ppa, offset;
2464 	int i;
2465 
2466 	ppa = trunc_page(pa);
2467 	offset = pa & PAGE_MASK;
2468 	size = roundup(offset + size, PAGE_SIZE);
2469 
2470 	GIANT_REQUIRED;
2471 
2472 	/*
2473 	 * If the physical address lies within a valid BAT table entry,
2474 	 * return the 1:1 mapping. This currently doesn't work
2475 	 * for regions that overlap 256M BAT segments.
2476 	 */
2477 	for (i = 0; i < 16; i++) {
2478 		if (moea_bat_mapped(i, pa, size) == 0)
2479 			return ((void *) pa);
2480 	}
2481 
2482 	va = kmem_alloc_nofault(kernel_map, size);
2483 	if (!va)
2484 		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2485 
2486 	for (tmpva = va; size > 0;) {
2487 		moea_kenter(mmu, tmpva, ppa);
2488 		TLBIE(tmpva); /* XXX or should it be invalidate-all ? */
2489 		size -= PAGE_SIZE;
2490 		tmpva += PAGE_SIZE;
2491 		ppa += PAGE_SIZE;
2492 	}
2493 
2494 	return ((void *)(va + offset));
2495 }
2496 
2497 void
2498 moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2499 {
2500 	vm_offset_t base, offset;
2501 
2502 	/*
2503 	 * If this is outside kernel virtual space, then it's a
2504 	 * battable entry and doesn't require unmapping
2505 	 */
2506 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2507 		base = trunc_page(va);
2508 		offset = va & PAGE_MASK;
2509 		size = roundup(offset + size, PAGE_SIZE);
2510 		kmem_free(kernel_map, base, size);
2511 	}
2512 }
2513