xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision a66ffea41d7ea4e39a49bc146e6f6decb4fbd02c)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*-
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 /*
97  * Manages physical address maps.
98  *
99  * Since the information managed by this module is also stored by the
100  * logical address mapping module, this module may throw away valid virtual
101  * to physical mappings at almost any time.  However, invalidations of
102  * mappings must be done as requested.
103  *
104  * In order to cope with hardware architectures which make virtual to
105  * physical map invalidates expensive, this module may delay invalidate
106  * reduced protection operations until such time as they are actually
107  * necessary.  This module is given full information as to which processors
108  * are currently using which maps, and to when physical maps must be made
109  * correct.
110  */
111 
112 #include "opt_kstack_pages.h"
113 
114 #include <sys/param.h>
115 #include <sys/kernel.h>
116 #include <sys/queue.h>
117 #include <sys/cpuset.h>
118 #include <sys/ktr.h>
119 #include <sys/lock.h>
120 #include <sys/msgbuf.h>
121 #include <sys/mutex.h>
122 #include <sys/proc.h>
123 #include <sys/rwlock.h>
124 #include <sys/sched.h>
125 #include <sys/sysctl.h>
126 #include <sys/systm.h>
127 #include <sys/vmmeter.h>
128 
129 #include <dev/ofw/openfirm.h>
130 
131 #include <vm/vm.h>
132 #include <vm/vm_param.h>
133 #include <vm/vm_kern.h>
134 #include <vm/vm_page.h>
135 #include <vm/vm_map.h>
136 #include <vm/vm_object.h>
137 #include <vm/vm_extern.h>
138 #include <vm/vm_pageout.h>
139 #include <vm/uma.h>
140 
141 #include <machine/cpu.h>
142 #include <machine/platform.h>
143 #include <machine/bat.h>
144 #include <machine/frame.h>
145 #include <machine/md_var.h>
146 #include <machine/psl.h>
147 #include <machine/pte.h>
148 #include <machine/smp.h>
149 #include <machine/sr.h>
150 #include <machine/mmuvar.h>
151 #include <machine/trap_aim.h>
152 
153 #include "mmu_if.h"
154 
155 #define	MOEA_DEBUG
156 
157 #define TODO	panic("%s: not implemented", __func__);
158 
159 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
160 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
161 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
162 
163 struct ofw_map {
164 	vm_offset_t	om_va;
165 	vm_size_t	om_len;
166 	vm_offset_t	om_pa;
167 	u_int		om_mode;
168 };
169 
170 /*
171  * Map of physical memory regions.
172  */
173 static struct	mem_region *regions;
174 static struct	mem_region *pregions;
175 static u_int    phys_avail_count;
176 static int	regions_sz, pregions_sz;
177 static struct	ofw_map *translations;
178 
179 /*
180  * Lock for the pteg and pvo tables.
181  */
182 struct mtx	moea_table_mutex;
183 struct mtx	moea_vsid_mutex;
184 
185 /* tlbie instruction synchronization */
186 static struct mtx tlbie_mtx;
187 
188 /*
189  * PTEG data.
190  */
191 static struct	pteg *moea_pteg_table;
192 u_int		moea_pteg_count;
193 u_int		moea_pteg_mask;
194 
195 /*
196  * PVO data.
197  */
198 struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
199 struct	pvo_head moea_pvo_kunmanaged =
200     LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
201 
202 static struct rwlock_padalign pvh_global_lock;
203 
204 uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
205 uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
206 
207 #define	BPVO_POOL_SIZE	32768
208 static struct	pvo_entry *moea_bpvo_pool;
209 static int	moea_bpvo_pool_index = 0;
210 
211 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
212 static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
213 
214 static boolean_t moea_initialized = FALSE;
215 
216 /*
217  * Statistics.
218  */
219 u_int	moea_pte_valid = 0;
220 u_int	moea_pte_overflow = 0;
221 u_int	moea_pte_replacements = 0;
222 u_int	moea_pvo_entries = 0;
223 u_int	moea_pvo_enter_calls = 0;
224 u_int	moea_pvo_remove_calls = 0;
225 u_int	moea_pte_spills = 0;
226 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
227     0, "");
228 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
229     &moea_pte_overflow, 0, "");
230 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
231     &moea_pte_replacements, 0, "");
232 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
233     0, "");
234 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
235     &moea_pvo_enter_calls, 0, "");
236 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
237     &moea_pvo_remove_calls, 0, "");
238 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
239     &moea_pte_spills, 0, "");
240 
241 /*
242  * Allocate physical memory for use in moea_bootstrap.
243  */
244 static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
245 
246 /*
247  * PTE calls.
248  */
249 static int		moea_pte_insert(u_int, struct pte *);
250 
251 /*
252  * PVO calls.
253  */
254 static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
255 		    vm_offset_t, vm_offset_t, u_int, int);
256 static void	moea_pvo_remove(struct pvo_entry *, int);
257 static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
258 static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
259 
260 /*
261  * Utility routines.
262  */
263 static void		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
264 			    vm_prot_t, boolean_t);
265 static void		moea_syncicache(vm_offset_t, vm_size_t);
266 static boolean_t	moea_query_bit(vm_page_t, int);
267 static u_int		moea_clear_bit(vm_page_t, int);
268 static void		moea_kremove(mmu_t, vm_offset_t);
269 int		moea_pte_spill(vm_offset_t);
270 
271 /*
272  * Kernel MMU interface
273  */
274 void moea_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
275 void moea_clear_modify(mmu_t, vm_page_t);
276 void moea_clear_reference(mmu_t, vm_page_t);
277 void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
278 void moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
279 void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
280     vm_prot_t);
281 void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
282 vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
283 vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
284 void moea_init(mmu_t);
285 boolean_t moea_is_modified(mmu_t, vm_page_t);
286 boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
287 boolean_t moea_is_referenced(mmu_t, vm_page_t);
288 int moea_ts_referenced(mmu_t, vm_page_t);
289 vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
290 boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
291 int moea_page_wired_mappings(mmu_t, vm_page_t);
292 void moea_pinit(mmu_t, pmap_t);
293 void moea_pinit0(mmu_t, pmap_t);
294 void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
295 void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
296 void moea_qremove(mmu_t, vm_offset_t, int);
297 void moea_release(mmu_t, pmap_t);
298 void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
299 void moea_remove_all(mmu_t, vm_page_t);
300 void moea_remove_write(mmu_t, vm_page_t);
301 void moea_zero_page(mmu_t, vm_page_t);
302 void moea_zero_page_area(mmu_t, vm_page_t, int, int);
303 void moea_zero_page_idle(mmu_t, vm_page_t);
304 void moea_activate(mmu_t, struct thread *);
305 void moea_deactivate(mmu_t, struct thread *);
306 void moea_cpu_bootstrap(mmu_t, int);
307 void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
308 void *moea_mapdev(mmu_t, vm_paddr_t, vm_size_t);
309 void *moea_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
310 void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
311 vm_paddr_t moea_kextract(mmu_t, vm_offset_t);
312 void moea_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t);
313 void moea_kenter(mmu_t, vm_offset_t, vm_paddr_t);
314 void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
315 boolean_t moea_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
316 static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
317 
318 static mmu_method_t moea_methods[] = {
319 	MMUMETHOD(mmu_change_wiring,	moea_change_wiring),
320 	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
321 	MMUMETHOD(mmu_clear_reference,	moea_clear_reference),
322 	MMUMETHOD(mmu_copy_page,	moea_copy_page),
323 	MMUMETHOD(mmu_enter,		moea_enter),
324 	MMUMETHOD(mmu_enter_object,	moea_enter_object),
325 	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
326 	MMUMETHOD(mmu_extract,		moea_extract),
327 	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
328 	MMUMETHOD(mmu_init,		moea_init),
329 	MMUMETHOD(mmu_is_modified,	moea_is_modified),
330 	MMUMETHOD(mmu_is_prefaultable,	moea_is_prefaultable),
331 	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
332 	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
333 	MMUMETHOD(mmu_map,     		moea_map),
334 	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
335 	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
336 	MMUMETHOD(mmu_pinit,		moea_pinit),
337 	MMUMETHOD(mmu_pinit0,		moea_pinit0),
338 	MMUMETHOD(mmu_protect,		moea_protect),
339 	MMUMETHOD(mmu_qenter,		moea_qenter),
340 	MMUMETHOD(mmu_qremove,		moea_qremove),
341 	MMUMETHOD(mmu_release,		moea_release),
342 	MMUMETHOD(mmu_remove,		moea_remove),
343 	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
344 	MMUMETHOD(mmu_remove_write,	moea_remove_write),
345 	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
346 	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
347 	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
348 	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
349 	MMUMETHOD(mmu_activate,		moea_activate),
350 	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
351 	MMUMETHOD(mmu_page_set_memattr,	moea_page_set_memattr),
352 
353 	/* Internal interfaces */
354 	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
355 	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
356 	MMUMETHOD(mmu_mapdev_attr,	moea_mapdev_attr),
357 	MMUMETHOD(mmu_mapdev,		moea_mapdev),
358 	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
359 	MMUMETHOD(mmu_kextract,		moea_kextract),
360 	MMUMETHOD(mmu_kenter,		moea_kenter),
361 	MMUMETHOD(mmu_kenter_attr,	moea_kenter_attr),
362 	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
363 
364 	{ 0, 0 }
365 };
366 
367 MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
368 
369 static __inline uint32_t
370 moea_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
371 {
372 	uint32_t pte_lo;
373 	int i;
374 
375 	if (ma != VM_MEMATTR_DEFAULT) {
376 		switch (ma) {
377 		case VM_MEMATTR_UNCACHEABLE:
378 			return (PTE_I | PTE_G);
379 		case VM_MEMATTR_WRITE_COMBINING:
380 		case VM_MEMATTR_WRITE_BACK:
381 		case VM_MEMATTR_PREFETCHABLE:
382 			return (PTE_I);
383 		case VM_MEMATTR_WRITE_THROUGH:
384 			return (PTE_W | PTE_M);
385 		}
386 	}
387 
388 	/*
389 	 * Assume the page is cache inhibited and access is guarded unless
390 	 * it's in our available memory array.
391 	 */
392 	pte_lo = PTE_I | PTE_G;
393 	for (i = 0; i < pregions_sz; i++) {
394 		if ((pa >= pregions[i].mr_start) &&
395 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
396 			pte_lo = PTE_M;
397 			break;
398 		}
399 	}
400 
401 	return pte_lo;
402 }
403 
404 static void
405 tlbie(vm_offset_t va)
406 {
407 
408 	mtx_lock_spin(&tlbie_mtx);
409 	__asm __volatile("ptesync");
410 	__asm __volatile("tlbie %0" :: "r"(va));
411 	__asm __volatile("eieio; tlbsync; ptesync");
412 	mtx_unlock_spin(&tlbie_mtx);
413 }
414 
415 static void
416 tlbia(void)
417 {
418 	vm_offset_t va;
419 
420 	for (va = 0; va < 0x00040000; va += 0x00001000) {
421 		__asm __volatile("tlbie %0" :: "r"(va));
422 		powerpc_sync();
423 	}
424 	__asm __volatile("tlbsync");
425 	powerpc_sync();
426 }
427 
428 static __inline int
429 va_to_sr(u_int *sr, vm_offset_t va)
430 {
431 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
432 }
433 
434 static __inline u_int
435 va_to_pteg(u_int sr, vm_offset_t addr)
436 {
437 	u_int hash;
438 
439 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
440 	    ADDR_PIDX_SHFT);
441 	return (hash & moea_pteg_mask);
442 }
443 
444 static __inline struct pvo_head *
445 vm_page_to_pvoh(vm_page_t m)
446 {
447 
448 	return (&m->md.mdpg_pvoh);
449 }
450 
451 static __inline void
452 moea_attr_clear(vm_page_t m, int ptebit)
453 {
454 
455 	rw_assert(&pvh_global_lock, RA_WLOCKED);
456 	m->md.mdpg_attrs &= ~ptebit;
457 }
458 
459 static __inline int
460 moea_attr_fetch(vm_page_t m)
461 {
462 
463 	return (m->md.mdpg_attrs);
464 }
465 
466 static __inline void
467 moea_attr_save(vm_page_t m, int ptebit)
468 {
469 
470 	rw_assert(&pvh_global_lock, RA_WLOCKED);
471 	m->md.mdpg_attrs |= ptebit;
472 }
473 
474 static __inline int
475 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
476 {
477 	if (pt->pte_hi == pvo_pt->pte_hi)
478 		return (1);
479 
480 	return (0);
481 }
482 
483 static __inline int
484 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
485 {
486 	return (pt->pte_hi & ~PTE_VALID) ==
487 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
488 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
489 }
490 
491 static __inline void
492 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
493 {
494 
495 	mtx_assert(&moea_table_mutex, MA_OWNED);
496 
497 	/*
498 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
499 	 * set when the real pte is set in memory.
500 	 *
501 	 * Note: Don't set the valid bit for correct operation of tlb update.
502 	 */
503 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
504 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
505 	pt->pte_lo = pte_lo;
506 }
507 
508 static __inline void
509 moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
510 {
511 
512 	mtx_assert(&moea_table_mutex, MA_OWNED);
513 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
514 }
515 
516 static __inline void
517 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
518 {
519 
520 	mtx_assert(&moea_table_mutex, MA_OWNED);
521 
522 	/*
523 	 * As shown in Section 7.6.3.2.3
524 	 */
525 	pt->pte_lo &= ~ptebit;
526 	tlbie(va);
527 }
528 
529 static __inline void
530 moea_pte_set(struct pte *pt, struct pte *pvo_pt)
531 {
532 
533 	mtx_assert(&moea_table_mutex, MA_OWNED);
534 	pvo_pt->pte_hi |= PTE_VALID;
535 
536 	/*
537 	 * Update the PTE as defined in section 7.6.3.1.
538 	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
539 	 * been saved so this routine can restore them (if desired).
540 	 */
541 	pt->pte_lo = pvo_pt->pte_lo;
542 	powerpc_sync();
543 	pt->pte_hi = pvo_pt->pte_hi;
544 	powerpc_sync();
545 	moea_pte_valid++;
546 }
547 
548 static __inline void
549 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
550 {
551 
552 	mtx_assert(&moea_table_mutex, MA_OWNED);
553 	pvo_pt->pte_hi &= ~PTE_VALID;
554 
555 	/*
556 	 * Force the reg & chg bits back into the PTEs.
557 	 */
558 	powerpc_sync();
559 
560 	/*
561 	 * Invalidate the pte.
562 	 */
563 	pt->pte_hi &= ~PTE_VALID;
564 
565 	tlbie(va);
566 
567 	/*
568 	 * Save the reg & chg bits.
569 	 */
570 	moea_pte_synch(pt, pvo_pt);
571 	moea_pte_valid--;
572 }
573 
574 static __inline void
575 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
576 {
577 
578 	/*
579 	 * Invalidate the PTE
580 	 */
581 	moea_pte_unset(pt, pvo_pt, va);
582 	moea_pte_set(pt, pvo_pt);
583 }
584 
585 /*
586  * Quick sort callout for comparing memory regions.
587  */
588 static int	om_cmp(const void *a, const void *b);
589 
590 static int
591 om_cmp(const void *a, const void *b)
592 {
593 	const struct	ofw_map *mapa;
594 	const struct	ofw_map *mapb;
595 
596 	mapa = a;
597 	mapb = b;
598 	if (mapa->om_pa < mapb->om_pa)
599 		return (-1);
600 	else if (mapa->om_pa > mapb->om_pa)
601 		return (1);
602 	else
603 		return (0);
604 }
605 
606 void
607 moea_cpu_bootstrap(mmu_t mmup, int ap)
608 {
609 	u_int sdr;
610 	int i;
611 
612 	if (ap) {
613 		powerpc_sync();
614 		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
615 		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
616 		isync();
617 		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
618 		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
619 		isync();
620 	}
621 
622 #ifdef WII
623 	/*
624 	 * Special case for the Wii: don't install the PCI BAT.
625 	 */
626 	if (strcmp(installed_platform(), "wii") != 0) {
627 #endif
628 		__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
629 		__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
630 #ifdef WII
631 	}
632 #endif
633 	isync();
634 
635 	__asm __volatile("mtibatu 1,%0" :: "r"(0));
636 	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
637 	__asm __volatile("mtibatu 2,%0" :: "r"(0));
638 	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
639 	__asm __volatile("mtibatu 3,%0" :: "r"(0));
640 	isync();
641 
642 	for (i = 0; i < 16; i++)
643 		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
644 	powerpc_sync();
645 
646 	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
647 	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
648 	isync();
649 
650 	tlbia();
651 }
652 
653 void
654 moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
655 {
656 	ihandle_t	mmui;
657 	phandle_t	chosen, mmu;
658 	int		sz;
659 	int		i, j;
660 	vm_size_t	size, physsz, hwphyssz;
661 	vm_offset_t	pa, va, off;
662 	void		*dpcpu;
663 	register_t	msr;
664 
665         /*
666          * Set up BAT0 to map the lowest 256 MB area
667          */
668         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
669         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
670 
671 	/*
672 	 * Map PCI memory space.
673 	 */
674 	battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
675 	battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
676 
677 	battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
678 	battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
679 
680 	battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
681 	battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
682 
683 	battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
684 	battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
685 
686 	/*
687 	 * Map obio devices.
688 	 */
689 	battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
690 	battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
691 
692 	/*
693 	 * Use an IBAT and a DBAT to map the bottom segment of memory
694 	 * where we are. Turn off instruction relocation temporarily
695 	 * to prevent faults while reprogramming the IBAT.
696 	 */
697 	msr = mfmsr();
698 	mtmsr(msr & ~PSL_IR);
699 	__asm (".balign 32; \n"
700 	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
701 	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
702 	    :: "r"(battable[0].batu), "r"(battable[0].batl));
703 	mtmsr(msr);
704 
705 #ifdef WII
706         if (strcmp(installed_platform(), "wii") != 0) {
707 #endif
708 		/* map pci space */
709 		__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
710 		__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
711 #ifdef WII
712 	}
713 #endif
714 	isync();
715 
716 	/* set global direct map flag */
717 	hw_direct_map = 1;
718 
719 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
720 	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
721 
722 	for (i = 0; i < pregions_sz; i++) {
723 		vm_offset_t pa;
724 		vm_offset_t end;
725 
726 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
727 			pregions[i].mr_start,
728 			pregions[i].mr_start + pregions[i].mr_size,
729 			pregions[i].mr_size);
730 		/*
731 		 * Install entries into the BAT table to allow all
732 		 * of physmem to be convered by on-demand BAT entries.
733 		 * The loop will sometimes set the same battable element
734 		 * twice, but that's fine since they won't be used for
735 		 * a while yet.
736 		 */
737 		pa = pregions[i].mr_start & 0xf0000000;
738 		end = pregions[i].mr_start + pregions[i].mr_size;
739 		do {
740                         u_int n = pa >> ADDR_SR_SHFT;
741 
742 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
743 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
744 			pa += SEGMENT_LENGTH;
745 		} while (pa < end);
746 	}
747 
748 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
749 		panic("moea_bootstrap: phys_avail too small");
750 
751 	phys_avail_count = 0;
752 	physsz = 0;
753 	hwphyssz = 0;
754 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
755 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
756 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
757 		    regions[i].mr_start + regions[i].mr_size,
758 		    regions[i].mr_size);
759 		if (hwphyssz != 0 &&
760 		    (physsz + regions[i].mr_size) >= hwphyssz) {
761 			if (physsz < hwphyssz) {
762 				phys_avail[j] = regions[i].mr_start;
763 				phys_avail[j + 1] = regions[i].mr_start +
764 				    hwphyssz - physsz;
765 				physsz = hwphyssz;
766 				phys_avail_count++;
767 			}
768 			break;
769 		}
770 		phys_avail[j] = regions[i].mr_start;
771 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
772 		phys_avail_count++;
773 		physsz += regions[i].mr_size;
774 	}
775 
776 	/* Check for overlap with the kernel and exception vectors */
777 	for (j = 0; j < 2*phys_avail_count; j+=2) {
778 		if (phys_avail[j] < EXC_LAST)
779 			phys_avail[j] += EXC_LAST;
780 
781 		if (kernelstart >= phys_avail[j] &&
782 		    kernelstart < phys_avail[j+1]) {
783 			if (kernelend < phys_avail[j+1]) {
784 				phys_avail[2*phys_avail_count] =
785 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
786 				phys_avail[2*phys_avail_count + 1] =
787 				    phys_avail[j+1];
788 				phys_avail_count++;
789 			}
790 
791 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
792 		}
793 
794 		if (kernelend >= phys_avail[j] &&
795 		    kernelend < phys_avail[j+1]) {
796 			if (kernelstart > phys_avail[j]) {
797 				phys_avail[2*phys_avail_count] = phys_avail[j];
798 				phys_avail[2*phys_avail_count + 1] =
799 				    kernelstart & ~PAGE_MASK;
800 				phys_avail_count++;
801 			}
802 
803 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
804 		}
805 	}
806 
807 	physmem = btoc(physsz);
808 
809 	/*
810 	 * Allocate PTEG table.
811 	 */
812 #ifdef PTEGCOUNT
813 	moea_pteg_count = PTEGCOUNT;
814 #else
815 	moea_pteg_count = 0x1000;
816 
817 	while (moea_pteg_count < physmem)
818 		moea_pteg_count <<= 1;
819 
820 	moea_pteg_count >>= 1;
821 #endif /* PTEGCOUNT */
822 
823 	size = moea_pteg_count * sizeof(struct pteg);
824 	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
825 	    size);
826 	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
827 	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
828 	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
829 	moea_pteg_mask = moea_pteg_count - 1;
830 
831 	/*
832 	 * Allocate pv/overflow lists.
833 	 */
834 	size = sizeof(struct pvo_head) * moea_pteg_count;
835 	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
836 	    PAGE_SIZE);
837 	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
838 	for (i = 0; i < moea_pteg_count; i++)
839 		LIST_INIT(&moea_pvo_table[i]);
840 
841 	/*
842 	 * Initialize the lock that synchronizes access to the pteg and pvo
843 	 * tables.
844 	 */
845 	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
846 	    MTX_RECURSE);
847 	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
848 
849 	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
850 
851 	/*
852 	 * Initialise the unmanaged pvo pool.
853 	 */
854 	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
855 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
856 	moea_bpvo_pool_index = 0;
857 
858 	/*
859 	 * Make sure kernel vsid is allocated as well as VSID 0.
860 	 */
861 	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
862 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
863 	moea_vsid_bitmap[0] |= 1;
864 
865 	/*
866 	 * Initialize the kernel pmap (which is statically allocated).
867 	 */
868 	PMAP_LOCK_INIT(kernel_pmap);
869 	for (i = 0; i < 16; i++)
870 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
871 	CPU_FILL(&kernel_pmap->pm_active);
872 	RB_INIT(&kernel_pmap->pmap_pvo);
873 
874  	/*
875 	 * Initialize the global pv list lock.
876 	 */
877 	rw_init(&pvh_global_lock, "pmap pv global");
878 
879 	/*
880 	 * Set up the Open Firmware mappings
881 	 */
882 	chosen = OF_finddevice("/chosen");
883 	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
884 	    (mmu = OF_instance_to_package(mmui)) != -1 &&
885 	    (sz = OF_getproplen(mmu, "translations")) != -1) {
886 		translations = NULL;
887 		for (i = 0; phys_avail[i] != 0; i += 2) {
888 			if (phys_avail[i + 1] >= sz) {
889 				translations = (struct ofw_map *)phys_avail[i];
890 				break;
891 			}
892 		}
893 		if (translations == NULL)
894 			panic("moea_bootstrap: no space to copy translations");
895 		bzero(translations, sz);
896 		if (OF_getprop(mmu, "translations", translations, sz) == -1)
897 			panic("moea_bootstrap: can't get ofw translations");
898 		CTR0(KTR_PMAP, "moea_bootstrap: translations");
899 		sz /= sizeof(*translations);
900 		qsort(translations, sz, sizeof (*translations), om_cmp);
901 		for (i = 0; i < sz; i++) {
902 			CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
903 			    translations[i].om_pa, translations[i].om_va,
904 			    translations[i].om_len);
905 
906 			/*
907 			 * If the mapping is 1:1, let the RAM and device
908 			 * on-demand BAT tables take care of the translation.
909 			 */
910 			if (translations[i].om_va == translations[i].om_pa)
911 				continue;
912 
913 			/* Enter the pages */
914 			for (off = 0; off < translations[i].om_len;
915 			    off += PAGE_SIZE)
916 				moea_kenter(mmup, translations[i].om_va + off,
917 					    translations[i].om_pa + off);
918 		}
919 	}
920 
921 	/*
922 	 * Calculate the last available physical address.
923 	 */
924 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
925 		;
926 	Maxmem = powerpc_btop(phys_avail[i + 1]);
927 
928 	moea_cpu_bootstrap(mmup,0);
929 
930 	pmap_bootstrapped++;
931 
932 	/*
933 	 * Set the start and end of kva.
934 	 */
935 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
936 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
937 
938 	/*
939 	 * Allocate a kernel stack with a guard page for thread0 and map it
940 	 * into the kernel page map.
941 	 */
942 	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
943 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
944 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
945 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
946 	thread0.td_kstack = va;
947 	thread0.td_kstack_pages = KSTACK_PAGES;
948 	for (i = 0; i < KSTACK_PAGES; i++) {
949 		moea_kenter(mmup, va, pa);
950 		pa += PAGE_SIZE;
951 		va += PAGE_SIZE;
952 	}
953 
954 	/*
955 	 * Allocate virtual address space for the message buffer.
956 	 */
957 	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
958 	msgbufp = (struct msgbuf *)virtual_avail;
959 	va = virtual_avail;
960 	virtual_avail += round_page(msgbufsize);
961 	while (va < virtual_avail) {
962 		moea_kenter(mmup, va, pa);
963 		pa += PAGE_SIZE;
964 		va += PAGE_SIZE;
965 	}
966 
967 	/*
968 	 * Allocate virtual address space for the dynamic percpu area.
969 	 */
970 	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
971 	dpcpu = (void *)virtual_avail;
972 	va = virtual_avail;
973 	virtual_avail += DPCPU_SIZE;
974 	while (va < virtual_avail) {
975 		moea_kenter(mmup, va, pa);
976 		pa += PAGE_SIZE;
977 		va += PAGE_SIZE;
978 	}
979 	dpcpu_init(dpcpu, 0);
980 }
981 
982 /*
983  * Activate a user pmap.  The pmap must be activated before it's address
984  * space can be accessed in any way.
985  */
986 void
987 moea_activate(mmu_t mmu, struct thread *td)
988 {
989 	pmap_t	pm, pmr;
990 
991 	/*
992 	 * Load all the data we need up front to encourage the compiler to
993 	 * not issue any loads while we have interrupts disabled below.
994 	 */
995 	pm = &td->td_proc->p_vmspace->vm_pmap;
996 	pmr = pm->pmap_phys;
997 
998 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
999 	PCPU_SET(curpmap, pmr);
1000 }
1001 
1002 void
1003 moea_deactivate(mmu_t mmu, struct thread *td)
1004 {
1005 	pmap_t	pm;
1006 
1007 	pm = &td->td_proc->p_vmspace->vm_pmap;
1008 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1009 	PCPU_SET(curpmap, NULL);
1010 }
1011 
1012 void
1013 moea_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1014 {
1015 	struct	pvo_entry *pvo;
1016 
1017 	PMAP_LOCK(pm);
1018 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1019 
1020 	if (pvo != NULL) {
1021 		if (wired) {
1022 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1023 				pm->pm_stats.wired_count++;
1024 			pvo->pvo_vaddr |= PVO_WIRED;
1025 		} else {
1026 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1027 				pm->pm_stats.wired_count--;
1028 			pvo->pvo_vaddr &= ~PVO_WIRED;
1029 		}
1030 	}
1031 	PMAP_UNLOCK(pm);
1032 }
1033 
1034 void
1035 moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1036 {
1037 	vm_offset_t	dst;
1038 	vm_offset_t	src;
1039 
1040 	dst = VM_PAGE_TO_PHYS(mdst);
1041 	src = VM_PAGE_TO_PHYS(msrc);
1042 
1043 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
1044 }
1045 
1046 /*
1047  * Zero a page of physical memory by temporarily mapping it into the tlb.
1048  */
1049 void
1050 moea_zero_page(mmu_t mmu, vm_page_t m)
1051 {
1052 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1053 	void *va = (void *)pa;
1054 
1055 	bzero(va, PAGE_SIZE);
1056 }
1057 
1058 void
1059 moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1060 {
1061 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1062 	void *va = (void *)(pa + off);
1063 
1064 	bzero(va, size);
1065 }
1066 
1067 void
1068 moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1069 {
1070 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1071 	void *va = (void *)pa;
1072 
1073 	bzero(va, PAGE_SIZE);
1074 }
1075 
1076 /*
1077  * Map the given physical page at the specified virtual address in the
1078  * target pmap with the protection requested.  If specified the page
1079  * will be wired down.
1080  */
1081 void
1082 moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1083 	   boolean_t wired)
1084 {
1085 
1086 	rw_wlock(&pvh_global_lock);
1087 	PMAP_LOCK(pmap);
1088 	moea_enter_locked(pmap, va, m, prot, wired);
1089 	rw_wunlock(&pvh_global_lock);
1090 	PMAP_UNLOCK(pmap);
1091 }
1092 
1093 /*
1094  * Map the given physical page at the specified virtual address in the
1095  * target pmap with the protection requested.  If specified the page
1096  * will be wired down.
1097  *
1098  * The page queues and pmap must be locked.
1099  */
1100 static void
1101 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1102     boolean_t wired)
1103 {
1104 	struct		pvo_head *pvo_head;
1105 	uma_zone_t	zone;
1106 	vm_page_t	pg;
1107 	u_int		pte_lo, pvo_flags;
1108 	int		error;
1109 
1110 	if (!moea_initialized) {
1111 		pvo_head = &moea_pvo_kunmanaged;
1112 		zone = moea_upvo_zone;
1113 		pvo_flags = 0;
1114 		pg = NULL;
1115 	} else {
1116 		pvo_head = vm_page_to_pvoh(m);
1117 		pg = m;
1118 		zone = moea_mpvo_zone;
1119 		pvo_flags = PVO_MANAGED;
1120 	}
1121 	if (pmap_bootstrapped)
1122 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1123 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1124 	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == 0)
1125 		VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1126 
1127 	/* XXX change the pvo head for fake pages */
1128 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1129 		pvo_flags &= ~PVO_MANAGED;
1130 		pvo_head = &moea_pvo_kunmanaged;
1131 		zone = moea_upvo_zone;
1132 	}
1133 
1134 	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1135 
1136 	if (prot & VM_PROT_WRITE) {
1137 		pte_lo |= PTE_BW;
1138 		if (pmap_bootstrapped &&
1139 		    (m->oflags & VPO_UNMANAGED) == 0)
1140 			vm_page_aflag_set(m, PGA_WRITEABLE);
1141 	} else
1142 		pte_lo |= PTE_BR;
1143 
1144 	if (prot & VM_PROT_EXECUTE)
1145 		pvo_flags |= PVO_EXECUTABLE;
1146 
1147 	if (wired)
1148 		pvo_flags |= PVO_WIRED;
1149 
1150 	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1151 	    pte_lo, pvo_flags);
1152 
1153 	/*
1154 	 * Flush the real page from the instruction cache. This has be done
1155 	 * for all user mappings to prevent information leakage via the
1156 	 * instruction cache. moea_pvo_enter() returns ENOENT for the first
1157 	 * mapping for a page.
1158 	 */
1159 	if (pmap != kernel_pmap && error == ENOENT &&
1160 	    (pte_lo & (PTE_I | PTE_G)) == 0)
1161 		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1162 }
1163 
1164 /*
1165  * Maps a sequence of resident pages belonging to the same object.
1166  * The sequence begins with the given page m_start.  This page is
1167  * mapped at the given virtual address start.  Each subsequent page is
1168  * mapped at a virtual address that is offset from start by the same
1169  * amount as the page is offset from m_start within the object.  The
1170  * last page in the sequence is the page with the largest offset from
1171  * m_start that can be mapped at a virtual address less than the given
1172  * virtual address end.  Not every virtual page between start and end
1173  * is mapped; only those for which a resident page exists with the
1174  * corresponding offset from m_start are mapped.
1175  */
1176 void
1177 moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1178     vm_page_t m_start, vm_prot_t prot)
1179 {
1180 	vm_page_t m;
1181 	vm_pindex_t diff, psize;
1182 
1183 	psize = atop(end - start);
1184 	m = m_start;
1185 	rw_wlock(&pvh_global_lock);
1186 	PMAP_LOCK(pm);
1187 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1188 		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1189 		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1190 		m = TAILQ_NEXT(m, listq);
1191 	}
1192 	rw_wunlock(&pvh_global_lock);
1193 	PMAP_UNLOCK(pm);
1194 }
1195 
1196 void
1197 moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1198     vm_prot_t prot)
1199 {
1200 
1201 	rw_wlock(&pvh_global_lock);
1202 	PMAP_LOCK(pm);
1203 	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1204 	    FALSE);
1205 	rw_wunlock(&pvh_global_lock);
1206 	PMAP_UNLOCK(pm);
1207 }
1208 
1209 vm_paddr_t
1210 moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1211 {
1212 	struct	pvo_entry *pvo;
1213 	vm_paddr_t pa;
1214 
1215 	PMAP_LOCK(pm);
1216 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1217 	if (pvo == NULL)
1218 		pa = 0;
1219 	else
1220 		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1221 	PMAP_UNLOCK(pm);
1222 	return (pa);
1223 }
1224 
1225 /*
1226  * Atomically extract and hold the physical page with the given
1227  * pmap and virtual address pair if that mapping permits the given
1228  * protection.
1229  */
1230 vm_page_t
1231 moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1232 {
1233 	struct	pvo_entry *pvo;
1234 	vm_page_t m;
1235         vm_paddr_t pa;
1236 
1237 	m = NULL;
1238 	pa = 0;
1239 	PMAP_LOCK(pmap);
1240 retry:
1241 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1242 	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1243 	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1244 	     (prot & VM_PROT_WRITE) == 0)) {
1245 		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1246 			goto retry;
1247 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1248 		vm_page_hold(m);
1249 	}
1250 	PA_UNLOCK_COND(pa);
1251 	PMAP_UNLOCK(pmap);
1252 	return (m);
1253 }
1254 
1255 void
1256 moea_init(mmu_t mmu)
1257 {
1258 
1259 	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1260 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1261 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1262 	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1263 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1264 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1265 	moea_initialized = TRUE;
1266 }
1267 
1268 boolean_t
1269 moea_is_referenced(mmu_t mmu, vm_page_t m)
1270 {
1271 	boolean_t rv;
1272 
1273 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1274 	    ("moea_is_referenced: page %p is not managed", m));
1275 	rw_wlock(&pvh_global_lock);
1276 	rv = moea_query_bit(m, PTE_REF);
1277 	rw_wunlock(&pvh_global_lock);
1278 	return (rv);
1279 }
1280 
1281 boolean_t
1282 moea_is_modified(mmu_t mmu, vm_page_t m)
1283 {
1284 	boolean_t rv;
1285 
1286 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1287 	    ("moea_is_modified: page %p is not managed", m));
1288 
1289 	/*
1290 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
1291 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1292 	 * is clear, no PTEs can have PTE_CHG set.
1293 	 */
1294 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1295 	if ((m->oflags & VPO_BUSY) == 0 &&
1296 	    (m->aflags & PGA_WRITEABLE) == 0)
1297 		return (FALSE);
1298 	rw_wlock(&pvh_global_lock);
1299 	rv = moea_query_bit(m, PTE_CHG);
1300 	rw_wunlock(&pvh_global_lock);
1301 	return (rv);
1302 }
1303 
1304 boolean_t
1305 moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1306 {
1307 	struct pvo_entry *pvo;
1308 	boolean_t rv;
1309 
1310 	PMAP_LOCK(pmap);
1311 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1312 	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1313 	PMAP_UNLOCK(pmap);
1314 	return (rv);
1315 }
1316 
1317 void
1318 moea_clear_reference(mmu_t mmu, vm_page_t m)
1319 {
1320 
1321 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1322 	    ("moea_clear_reference: page %p is not managed", m));
1323 	rw_wlock(&pvh_global_lock);
1324 	moea_clear_bit(m, PTE_REF);
1325 	rw_wunlock(&pvh_global_lock);
1326 }
1327 
1328 void
1329 moea_clear_modify(mmu_t mmu, vm_page_t m)
1330 {
1331 
1332 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1333 	    ("moea_clear_modify: page %p is not managed", m));
1334 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1335 	KASSERT((m->oflags & VPO_BUSY) == 0,
1336 	    ("moea_clear_modify: page %p is busy", m));
1337 
1338 	/*
1339 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_CHG
1340 	 * set.  If the object containing the page is locked and the page is
1341 	 * not VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
1342 	 */
1343 	if ((m->aflags & PGA_WRITEABLE) == 0)
1344 		return;
1345 	rw_wlock(&pvh_global_lock);
1346 	moea_clear_bit(m, PTE_CHG);
1347 	rw_wunlock(&pvh_global_lock);
1348 }
1349 
1350 /*
1351  * Clear the write and modified bits in each of the given page's mappings.
1352  */
1353 void
1354 moea_remove_write(mmu_t mmu, vm_page_t m)
1355 {
1356 	struct	pvo_entry *pvo;
1357 	struct	pte *pt;
1358 	pmap_t	pmap;
1359 	u_int	lo;
1360 
1361 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1362 	    ("moea_remove_write: page %p is not managed", m));
1363 
1364 	/*
1365 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1366 	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
1367 	 * is clear, no page table entries need updating.
1368 	 */
1369 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1370 	if ((m->oflags & VPO_BUSY) == 0 &&
1371 	    (m->aflags & PGA_WRITEABLE) == 0)
1372 		return;
1373 	rw_wlock(&pvh_global_lock);
1374 	lo = moea_attr_fetch(m);
1375 	powerpc_sync();
1376 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1377 		pmap = pvo->pvo_pmap;
1378 		PMAP_LOCK(pmap);
1379 		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1380 			pt = moea_pvo_to_pte(pvo, -1);
1381 			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1382 			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1383 			if (pt != NULL) {
1384 				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1385 				lo |= pvo->pvo_pte.pte.pte_lo;
1386 				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1387 				moea_pte_change(pt, &pvo->pvo_pte.pte,
1388 				    pvo->pvo_vaddr);
1389 				mtx_unlock(&moea_table_mutex);
1390 			}
1391 		}
1392 		PMAP_UNLOCK(pmap);
1393 	}
1394 	if ((lo & PTE_CHG) != 0) {
1395 		moea_attr_clear(m, PTE_CHG);
1396 		vm_page_dirty(m);
1397 	}
1398 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1399 	rw_wunlock(&pvh_global_lock);
1400 }
1401 
1402 /*
1403  *	moea_ts_referenced:
1404  *
1405  *	Return a count of reference bits for a page, clearing those bits.
1406  *	It is not necessary for every reference bit to be cleared, but it
1407  *	is necessary that 0 only be returned when there are truly no
1408  *	reference bits set.
1409  *
1410  *	XXX: The exact number of bits to check and clear is a matter that
1411  *	should be tested and standardized at some point in the future for
1412  *	optimal aging of shared pages.
1413  */
1414 int
1415 moea_ts_referenced(mmu_t mmu, vm_page_t m)
1416 {
1417 	int count;
1418 
1419 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1420 	    ("moea_ts_referenced: page %p is not managed", m));
1421 	rw_wlock(&pvh_global_lock);
1422 	count = moea_clear_bit(m, PTE_REF);
1423 	rw_wunlock(&pvh_global_lock);
1424 	return (count);
1425 }
1426 
1427 /*
1428  * Modify the WIMG settings of all mappings for a page.
1429  */
1430 void
1431 moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1432 {
1433 	struct	pvo_entry *pvo;
1434 	struct	pvo_head *pvo_head;
1435 	struct	pte *pt;
1436 	pmap_t	pmap;
1437 	u_int	lo;
1438 
1439 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1440 		m->md.mdpg_cache_attrs = ma;
1441 		return;
1442 	}
1443 
1444 	rw_wlock(&pvh_global_lock);
1445 	pvo_head = vm_page_to_pvoh(m);
1446 	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1447 
1448 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1449 		pmap = pvo->pvo_pmap;
1450 		PMAP_LOCK(pmap);
1451 		pt = moea_pvo_to_pte(pvo, -1);
1452 		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1453 		pvo->pvo_pte.pte.pte_lo |= lo;
1454 		if (pt != NULL) {
1455 			moea_pte_change(pt, &pvo->pvo_pte.pte,
1456 			    pvo->pvo_vaddr);
1457 			if (pvo->pvo_pmap == kernel_pmap)
1458 				isync();
1459 		}
1460 		mtx_unlock(&moea_table_mutex);
1461 		PMAP_UNLOCK(pmap);
1462 	}
1463 	m->md.mdpg_cache_attrs = ma;
1464 	rw_wunlock(&pvh_global_lock);
1465 }
1466 
1467 /*
1468  * Map a wired page into kernel virtual address space.
1469  */
1470 void
1471 moea_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1472 {
1473 
1474 	moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1475 }
1476 
1477 void
1478 moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1479 {
1480 	u_int		pte_lo;
1481 	int		error;
1482 
1483 #if 0
1484 	if (va < VM_MIN_KERNEL_ADDRESS)
1485 		panic("moea_kenter: attempt to enter non-kernel address %#x",
1486 		    va);
1487 #endif
1488 
1489 	pte_lo = moea_calc_wimg(pa, ma);
1490 
1491 	PMAP_LOCK(kernel_pmap);
1492 	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1493 	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1494 
1495 	if (error != 0 && error != ENOENT)
1496 		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1497 		    pa, error);
1498 
1499 	PMAP_UNLOCK(kernel_pmap);
1500 }
1501 
1502 /*
1503  * Extract the physical page address associated with the given kernel virtual
1504  * address.
1505  */
1506 vm_paddr_t
1507 moea_kextract(mmu_t mmu, vm_offset_t va)
1508 {
1509 	struct		pvo_entry *pvo;
1510 	vm_paddr_t pa;
1511 
1512 	/*
1513 	 * Allow direct mappings on 32-bit OEA
1514 	 */
1515 	if (va < VM_MIN_KERNEL_ADDRESS) {
1516 		return (va);
1517 	}
1518 
1519 	PMAP_LOCK(kernel_pmap);
1520 	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1521 	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1522 	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1523 	PMAP_UNLOCK(kernel_pmap);
1524 	return (pa);
1525 }
1526 
1527 /*
1528  * Remove a wired page from kernel virtual address space.
1529  */
1530 void
1531 moea_kremove(mmu_t mmu, vm_offset_t va)
1532 {
1533 
1534 	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1535 }
1536 
1537 /*
1538  * Map a range of physical addresses into kernel virtual address space.
1539  *
1540  * The value passed in *virt is a suggested virtual address for the mapping.
1541  * Architectures which can support a direct-mapped physical to virtual region
1542  * can return the appropriate address within that region, leaving '*virt'
1543  * unchanged.  We cannot and therefore do not; *virt is updated with the
1544  * first usable address after the mapped region.
1545  */
1546 vm_offset_t
1547 moea_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1548     vm_paddr_t pa_end, int prot)
1549 {
1550 	vm_offset_t	sva, va;
1551 
1552 	sva = *virt;
1553 	va = sva;
1554 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1555 		moea_kenter(mmu, va, pa_start);
1556 	*virt = va;
1557 	return (sva);
1558 }
1559 
1560 /*
1561  * Returns true if the pmap's pv is one of the first
1562  * 16 pvs linked to from this page.  This count may
1563  * be changed upwards or downwards in the future; it
1564  * is only necessary that true be returned for a small
1565  * subset of pmaps for proper page aging.
1566  */
1567 boolean_t
1568 moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1569 {
1570         int loops;
1571 	struct pvo_entry *pvo;
1572 	boolean_t rv;
1573 
1574 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1575 	    ("moea_page_exists_quick: page %p is not managed", m));
1576 	loops = 0;
1577 	rv = FALSE;
1578 	rw_wlock(&pvh_global_lock);
1579 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1580 		if (pvo->pvo_pmap == pmap) {
1581 			rv = TRUE;
1582 			break;
1583 		}
1584 		if (++loops >= 16)
1585 			break;
1586 	}
1587 	rw_wunlock(&pvh_global_lock);
1588 	return (rv);
1589 }
1590 
1591 /*
1592  * Return the number of managed mappings to the given physical page
1593  * that are wired.
1594  */
1595 int
1596 moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1597 {
1598 	struct pvo_entry *pvo;
1599 	int count;
1600 
1601 	count = 0;
1602 	if ((m->oflags & VPO_UNMANAGED) != 0)
1603 		return (count);
1604 	rw_wlock(&pvh_global_lock);
1605 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1606 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1607 			count++;
1608 	rw_wunlock(&pvh_global_lock);
1609 	return (count);
1610 }
1611 
1612 static u_int	moea_vsidcontext;
1613 
1614 void
1615 moea_pinit(mmu_t mmu, pmap_t pmap)
1616 {
1617 	int	i, mask;
1618 	u_int	entropy;
1619 
1620 	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1621 	PMAP_LOCK_INIT(pmap);
1622 	RB_INIT(&pmap->pmap_pvo);
1623 
1624 	entropy = 0;
1625 	__asm __volatile("mftb %0" : "=r"(entropy));
1626 
1627 	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1628 	    == NULL) {
1629 		pmap->pmap_phys = pmap;
1630 	}
1631 
1632 
1633 	mtx_lock(&moea_vsid_mutex);
1634 	/*
1635 	 * Allocate some segment registers for this pmap.
1636 	 */
1637 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1638 		u_int	hash, n;
1639 
1640 		/*
1641 		 * Create a new value by mutiplying by a prime and adding in
1642 		 * entropy from the timebase register.  This is to make the
1643 		 * VSID more random so that the PT hash function collides
1644 		 * less often.  (Note that the prime casues gcc to do shifts
1645 		 * instead of a multiply.)
1646 		 */
1647 		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1648 		hash = moea_vsidcontext & (NPMAPS - 1);
1649 		if (hash == 0)		/* 0 is special, avoid it */
1650 			continue;
1651 		n = hash >> 5;
1652 		mask = 1 << (hash & (VSID_NBPW - 1));
1653 		hash = (moea_vsidcontext & 0xfffff);
1654 		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1655 			/* anything free in this bucket? */
1656 			if (moea_vsid_bitmap[n] == 0xffffffff) {
1657 				entropy = (moea_vsidcontext >> 20);
1658 				continue;
1659 			}
1660 			i = ffs(~moea_vsid_bitmap[n]) - 1;
1661 			mask = 1 << i;
1662 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1663 			hash |= i;
1664 		}
1665 		KASSERT(!(moea_vsid_bitmap[n] & mask),
1666 		    ("Allocating in-use VSID group %#x\n", hash));
1667 		moea_vsid_bitmap[n] |= mask;
1668 		for (i = 0; i < 16; i++)
1669 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1670 		mtx_unlock(&moea_vsid_mutex);
1671 		return;
1672 	}
1673 
1674 	mtx_unlock(&moea_vsid_mutex);
1675 	panic("moea_pinit: out of segments");
1676 }
1677 
1678 /*
1679  * Initialize the pmap associated with process 0.
1680  */
1681 void
1682 moea_pinit0(mmu_t mmu, pmap_t pm)
1683 {
1684 
1685 	moea_pinit(mmu, pm);
1686 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1687 }
1688 
1689 /*
1690  * Set the physical protection on the specified range of this map as requested.
1691  */
1692 void
1693 moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1694     vm_prot_t prot)
1695 {
1696 	struct	pvo_entry *pvo, *tpvo, key;
1697 	struct	pte *pt;
1698 
1699 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1700 	    ("moea_protect: non current pmap"));
1701 
1702 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1703 		moea_remove(mmu, pm, sva, eva);
1704 		return;
1705 	}
1706 
1707 	rw_wlock(&pvh_global_lock);
1708 	PMAP_LOCK(pm);
1709 	key.pvo_vaddr = sva;
1710 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1711 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1712 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1713 		if ((prot & VM_PROT_EXECUTE) == 0)
1714 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1715 
1716 		/*
1717 		 * Grab the PTE pointer before we diddle with the cached PTE
1718 		 * copy.
1719 		 */
1720 		pt = moea_pvo_to_pte(pvo, -1);
1721 		/*
1722 		 * Change the protection of the page.
1723 		 */
1724 		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1725 		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1726 
1727 		/*
1728 		 * If the PVO is in the page table, update that pte as well.
1729 		 */
1730 		if (pt != NULL) {
1731 			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1732 			mtx_unlock(&moea_table_mutex);
1733 		}
1734 	}
1735 	rw_wunlock(&pvh_global_lock);
1736 	PMAP_UNLOCK(pm);
1737 }
1738 
1739 /*
1740  * Map a list of wired pages into kernel virtual address space.  This is
1741  * intended for temporary mappings which do not need page modification or
1742  * references recorded.  Existing mappings in the region are overwritten.
1743  */
1744 void
1745 moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1746 {
1747 	vm_offset_t va;
1748 
1749 	va = sva;
1750 	while (count-- > 0) {
1751 		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1752 		va += PAGE_SIZE;
1753 		m++;
1754 	}
1755 }
1756 
1757 /*
1758  * Remove page mappings from kernel virtual address space.  Intended for
1759  * temporary mappings entered by moea_qenter.
1760  */
1761 void
1762 moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1763 {
1764 	vm_offset_t va;
1765 
1766 	va = sva;
1767 	while (count-- > 0) {
1768 		moea_kremove(mmu, va);
1769 		va += PAGE_SIZE;
1770 	}
1771 }
1772 
1773 void
1774 moea_release(mmu_t mmu, pmap_t pmap)
1775 {
1776         int idx, mask;
1777 
1778 	/*
1779 	 * Free segment register's VSID
1780 	 */
1781         if (pmap->pm_sr[0] == 0)
1782                 panic("moea_release");
1783 
1784 	mtx_lock(&moea_vsid_mutex);
1785         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1786         mask = 1 << (idx % VSID_NBPW);
1787         idx /= VSID_NBPW;
1788         moea_vsid_bitmap[idx] &= ~mask;
1789 	mtx_unlock(&moea_vsid_mutex);
1790 	PMAP_LOCK_DESTROY(pmap);
1791 }
1792 
1793 /*
1794  * Remove the given range of addresses from the specified map.
1795  */
1796 void
1797 moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1798 {
1799 	struct	pvo_entry *pvo, *tpvo, key;
1800 
1801 	rw_wlock(&pvh_global_lock);
1802 	PMAP_LOCK(pm);
1803 	key.pvo_vaddr = sva;
1804 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1805 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1806 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1807 		moea_pvo_remove(pvo, -1);
1808 	}
1809 	PMAP_UNLOCK(pm);
1810 	rw_wunlock(&pvh_global_lock);
1811 }
1812 
1813 /*
1814  * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1815  * will reflect changes in pte's back to the vm_page.
1816  */
1817 void
1818 moea_remove_all(mmu_t mmu, vm_page_t m)
1819 {
1820 	struct  pvo_head *pvo_head;
1821 	struct	pvo_entry *pvo, *next_pvo;
1822 	pmap_t	pmap;
1823 
1824 	rw_wlock(&pvh_global_lock);
1825 	pvo_head = vm_page_to_pvoh(m);
1826 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1827 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1828 
1829 		pmap = pvo->pvo_pmap;
1830 		PMAP_LOCK(pmap);
1831 		moea_pvo_remove(pvo, -1);
1832 		PMAP_UNLOCK(pmap);
1833 	}
1834 	if ((m->aflags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
1835 		moea_attr_clear(m, PTE_CHG);
1836 		vm_page_dirty(m);
1837 	}
1838 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1839 	rw_wunlock(&pvh_global_lock);
1840 }
1841 
1842 /*
1843  * Allocate a physical page of memory directly from the phys_avail map.
1844  * Can only be called from moea_bootstrap before avail start and end are
1845  * calculated.
1846  */
1847 static vm_offset_t
1848 moea_bootstrap_alloc(vm_size_t size, u_int align)
1849 {
1850 	vm_offset_t	s, e;
1851 	int		i, j;
1852 
1853 	size = round_page(size);
1854 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1855 		if (align != 0)
1856 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1857 		else
1858 			s = phys_avail[i];
1859 		e = s + size;
1860 
1861 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1862 			continue;
1863 
1864 		if (s == phys_avail[i]) {
1865 			phys_avail[i] += size;
1866 		} else if (e == phys_avail[i + 1]) {
1867 			phys_avail[i + 1] -= size;
1868 		} else {
1869 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1870 				phys_avail[j] = phys_avail[j - 2];
1871 				phys_avail[j + 1] = phys_avail[j - 1];
1872 			}
1873 
1874 			phys_avail[i + 3] = phys_avail[i + 1];
1875 			phys_avail[i + 1] = s;
1876 			phys_avail[i + 2] = e;
1877 			phys_avail_count++;
1878 		}
1879 
1880 		return (s);
1881 	}
1882 	panic("moea_bootstrap_alloc: could not allocate memory");
1883 }
1884 
1885 static void
1886 moea_syncicache(vm_offset_t pa, vm_size_t len)
1887 {
1888 	__syncicache((void *)pa, len);
1889 }
1890 
1891 static int
1892 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1893     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1894 {
1895 	struct	pvo_entry *pvo;
1896 	u_int	sr;
1897 	int	first;
1898 	u_int	ptegidx;
1899 	int	i;
1900 	int     bootstrap;
1901 
1902 	moea_pvo_enter_calls++;
1903 	first = 0;
1904 	bootstrap = 0;
1905 
1906 	/*
1907 	 * Compute the PTE Group index.
1908 	 */
1909 	va &= ~ADDR_POFF;
1910 	sr = va_to_sr(pm->pm_sr, va);
1911 	ptegidx = va_to_pteg(sr, va);
1912 
1913 	/*
1914 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1915 	 * there is a mapping.
1916 	 */
1917 	mtx_lock(&moea_table_mutex);
1918 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1919 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1920 			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
1921 			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
1922 			    (pte_lo & PTE_PP)) {
1923 				mtx_unlock(&moea_table_mutex);
1924 				return (0);
1925 			}
1926 			moea_pvo_remove(pvo, -1);
1927 			break;
1928 		}
1929 	}
1930 
1931 	/*
1932 	 * If we aren't overwriting a mapping, try to allocate.
1933 	 */
1934 	if (moea_initialized) {
1935 		pvo = uma_zalloc(zone, M_NOWAIT);
1936 	} else {
1937 		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1938 			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1939 			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1940 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1941 		}
1942 		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1943 		moea_bpvo_pool_index++;
1944 		bootstrap = 1;
1945 	}
1946 
1947 	if (pvo == NULL) {
1948 		mtx_unlock(&moea_table_mutex);
1949 		return (ENOMEM);
1950 	}
1951 
1952 	moea_pvo_entries++;
1953 	pvo->pvo_vaddr = va;
1954 	pvo->pvo_pmap = pm;
1955 	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1956 	pvo->pvo_vaddr &= ~ADDR_POFF;
1957 	if (flags & VM_PROT_EXECUTE)
1958 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1959 	if (flags & PVO_WIRED)
1960 		pvo->pvo_vaddr |= PVO_WIRED;
1961 	if (pvo_head != &moea_pvo_kunmanaged)
1962 		pvo->pvo_vaddr |= PVO_MANAGED;
1963 	if (bootstrap)
1964 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1965 
1966 	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
1967 
1968 	/*
1969 	 * Add to pmap list
1970 	 */
1971 	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
1972 
1973 	/*
1974 	 * Remember if the list was empty and therefore will be the first
1975 	 * item.
1976 	 */
1977 	if (LIST_FIRST(pvo_head) == NULL)
1978 		first = 1;
1979 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1980 
1981 	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
1982 		pm->pm_stats.wired_count++;
1983 	pm->pm_stats.resident_count++;
1984 
1985 	/*
1986 	 * We hope this succeeds but it isn't required.
1987 	 */
1988 	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
1989 	if (i >= 0) {
1990 		PVO_PTEGIDX_SET(pvo, i);
1991 	} else {
1992 		panic("moea_pvo_enter: overflow");
1993 		moea_pte_overflow++;
1994 	}
1995 	mtx_unlock(&moea_table_mutex);
1996 
1997 	return (first ? ENOENT : 0);
1998 }
1999 
2000 static void
2001 moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
2002 {
2003 	struct	pte *pt;
2004 
2005 	/*
2006 	 * If there is an active pte entry, we need to deactivate it (and
2007 	 * save the ref & cfg bits).
2008 	 */
2009 	pt = moea_pvo_to_pte(pvo, pteidx);
2010 	if (pt != NULL) {
2011 		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2012 		mtx_unlock(&moea_table_mutex);
2013 		PVO_PTEGIDX_CLR(pvo);
2014 	} else {
2015 		moea_pte_overflow--;
2016 	}
2017 
2018 	/*
2019 	 * Update our statistics.
2020 	 */
2021 	pvo->pvo_pmap->pm_stats.resident_count--;
2022 	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
2023 		pvo->pvo_pmap->pm_stats.wired_count--;
2024 
2025 	/*
2026 	 * Save the REF/CHG bits into their cache if the page is managed.
2027 	 */
2028 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2029 		struct	vm_page *pg;
2030 
2031 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
2032 		if (pg != NULL) {
2033 			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2034 			    (PTE_REF | PTE_CHG));
2035 		}
2036 	}
2037 
2038 	/*
2039 	 * Remove this PVO from the PV and pmap lists.
2040 	 */
2041 	LIST_REMOVE(pvo, pvo_vlink);
2042 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2043 
2044 	/*
2045 	 * Remove this from the overflow list and return it to the pool
2046 	 * if we aren't going to reuse it.
2047 	 */
2048 	LIST_REMOVE(pvo, pvo_olink);
2049 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2050 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2051 		    moea_upvo_zone, pvo);
2052 	moea_pvo_entries--;
2053 	moea_pvo_remove_calls++;
2054 }
2055 
2056 static __inline int
2057 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2058 {
2059 	int	pteidx;
2060 
2061 	/*
2062 	 * We can find the actual pte entry without searching by grabbing
2063 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2064 	 * noticing the HID bit.
2065 	 */
2066 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2067 	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2068 		pteidx ^= moea_pteg_mask * 8;
2069 
2070 	return (pteidx);
2071 }
2072 
2073 static struct pvo_entry *
2074 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2075 {
2076 	struct	pvo_entry *pvo;
2077 	int	ptegidx;
2078 	u_int	sr;
2079 
2080 	va &= ~ADDR_POFF;
2081 	sr = va_to_sr(pm->pm_sr, va);
2082 	ptegidx = va_to_pteg(sr, va);
2083 
2084 	mtx_lock(&moea_table_mutex);
2085 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2086 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2087 			if (pteidx_p)
2088 				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2089 			break;
2090 		}
2091 	}
2092 	mtx_unlock(&moea_table_mutex);
2093 
2094 	return (pvo);
2095 }
2096 
2097 static struct pte *
2098 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2099 {
2100 	struct	pte *pt;
2101 
2102 	/*
2103 	 * If we haven't been supplied the ptegidx, calculate it.
2104 	 */
2105 	if (pteidx == -1) {
2106 		int	ptegidx;
2107 		u_int	sr;
2108 
2109 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2110 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2111 		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2112 	}
2113 
2114 	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2115 	mtx_lock(&moea_table_mutex);
2116 
2117 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2118 		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2119 		    "valid pte index", pvo);
2120 	}
2121 
2122 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2123 		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2124 		    "pvo but no valid pte", pvo);
2125 	}
2126 
2127 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2128 		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2129 			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2130 			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2131 		}
2132 
2133 		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2134 		    != 0) {
2135 			panic("moea_pvo_to_pte: pvo %p pte does not match "
2136 			    "pte %p in moea_pteg_table", pvo, pt);
2137 		}
2138 
2139 		mtx_assert(&moea_table_mutex, MA_OWNED);
2140 		return (pt);
2141 	}
2142 
2143 	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2144 		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2145 		    "moea_pteg_table but valid in pvo", pvo, pt);
2146 	}
2147 
2148 	mtx_unlock(&moea_table_mutex);
2149 	return (NULL);
2150 }
2151 
2152 /*
2153  * XXX: THIS STUFF SHOULD BE IN pte.c?
2154  */
2155 int
2156 moea_pte_spill(vm_offset_t addr)
2157 {
2158 	struct	pvo_entry *source_pvo, *victim_pvo;
2159 	struct	pvo_entry *pvo;
2160 	int	ptegidx, i, j;
2161 	u_int	sr;
2162 	struct	pteg *pteg;
2163 	struct	pte *pt;
2164 
2165 	moea_pte_spills++;
2166 
2167 	sr = mfsrin(addr);
2168 	ptegidx = va_to_pteg(sr, addr);
2169 
2170 	/*
2171 	 * Have to substitute some entry.  Use the primary hash for this.
2172 	 * Use low bits of timebase as random generator.
2173 	 */
2174 	pteg = &moea_pteg_table[ptegidx];
2175 	mtx_lock(&moea_table_mutex);
2176 	__asm __volatile("mftb %0" : "=r"(i));
2177 	i &= 7;
2178 	pt = &pteg->pt[i];
2179 
2180 	source_pvo = NULL;
2181 	victim_pvo = NULL;
2182 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2183 		/*
2184 		 * We need to find a pvo entry for this address.
2185 		 */
2186 		if (source_pvo == NULL &&
2187 		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2188 		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2189 			/*
2190 			 * Now found an entry to be spilled into the pteg.
2191 			 * The PTE is now valid, so we know it's active.
2192 			 */
2193 			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2194 
2195 			if (j >= 0) {
2196 				PVO_PTEGIDX_SET(pvo, j);
2197 				moea_pte_overflow--;
2198 				mtx_unlock(&moea_table_mutex);
2199 				return (1);
2200 			}
2201 
2202 			source_pvo = pvo;
2203 
2204 			if (victim_pvo != NULL)
2205 				break;
2206 		}
2207 
2208 		/*
2209 		 * We also need the pvo entry of the victim we are replacing
2210 		 * so save the R & C bits of the PTE.
2211 		 */
2212 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2213 		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2214 			victim_pvo = pvo;
2215 			if (source_pvo != NULL)
2216 				break;
2217 		}
2218 	}
2219 
2220 	if (source_pvo == NULL) {
2221 		mtx_unlock(&moea_table_mutex);
2222 		return (0);
2223 	}
2224 
2225 	if (victim_pvo == NULL) {
2226 		if ((pt->pte_hi & PTE_HID) == 0)
2227 			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2228 			    "entry", pt);
2229 
2230 		/*
2231 		 * If this is a secondary PTE, we need to search it's primary
2232 		 * pvo bucket for the matching PVO.
2233 		 */
2234 		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2235 		    pvo_olink) {
2236 			/*
2237 			 * We also need the pvo entry of the victim we are
2238 			 * replacing so save the R & C bits of the PTE.
2239 			 */
2240 			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2241 				victim_pvo = pvo;
2242 				break;
2243 			}
2244 		}
2245 
2246 		if (victim_pvo == NULL)
2247 			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2248 			    "entry", pt);
2249 	}
2250 
2251 	/*
2252 	 * We are invalidating the TLB entry for the EA we are replacing even
2253 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2254 	 * contained in the TLB entry.
2255 	 */
2256 	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2257 
2258 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2259 	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2260 
2261 	PVO_PTEGIDX_CLR(victim_pvo);
2262 	PVO_PTEGIDX_SET(source_pvo, i);
2263 	moea_pte_replacements++;
2264 
2265 	mtx_unlock(&moea_table_mutex);
2266 	return (1);
2267 }
2268 
2269 static int
2270 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2271 {
2272 	struct	pte *pt;
2273 	int	i;
2274 
2275 	mtx_assert(&moea_table_mutex, MA_OWNED);
2276 
2277 	/*
2278 	 * First try primary hash.
2279 	 */
2280 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2281 		if ((pt->pte_hi & PTE_VALID) == 0) {
2282 			pvo_pt->pte_hi &= ~PTE_HID;
2283 			moea_pte_set(pt, pvo_pt);
2284 			return (i);
2285 		}
2286 	}
2287 
2288 	/*
2289 	 * Now try secondary hash.
2290 	 */
2291 	ptegidx ^= moea_pteg_mask;
2292 
2293 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2294 		if ((pt->pte_hi & PTE_VALID) == 0) {
2295 			pvo_pt->pte_hi |= PTE_HID;
2296 			moea_pte_set(pt, pvo_pt);
2297 			return (i);
2298 		}
2299 	}
2300 
2301 	panic("moea_pte_insert: overflow");
2302 	return (-1);
2303 }
2304 
2305 static boolean_t
2306 moea_query_bit(vm_page_t m, int ptebit)
2307 {
2308 	struct	pvo_entry *pvo;
2309 	struct	pte *pt;
2310 
2311 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2312 	if (moea_attr_fetch(m) & ptebit)
2313 		return (TRUE);
2314 
2315 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2316 
2317 		/*
2318 		 * See if we saved the bit off.  If so, cache it and return
2319 		 * success.
2320 		 */
2321 		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2322 			moea_attr_save(m, ptebit);
2323 			return (TRUE);
2324 		}
2325 	}
2326 
2327 	/*
2328 	 * No luck, now go through the hard part of looking at the PTEs
2329 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2330 	 * the PTEs.
2331 	 */
2332 	powerpc_sync();
2333 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2334 
2335 		/*
2336 		 * See if this pvo has a valid PTE.  if so, fetch the
2337 		 * REF/CHG bits from the valid PTE.  If the appropriate
2338 		 * ptebit is set, cache it and return success.
2339 		 */
2340 		pt = moea_pvo_to_pte(pvo, -1);
2341 		if (pt != NULL) {
2342 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2343 			mtx_unlock(&moea_table_mutex);
2344 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2345 				moea_attr_save(m, ptebit);
2346 				return (TRUE);
2347 			}
2348 		}
2349 	}
2350 
2351 	return (FALSE);
2352 }
2353 
2354 static u_int
2355 moea_clear_bit(vm_page_t m, int ptebit)
2356 {
2357 	u_int	count;
2358 	struct	pvo_entry *pvo;
2359 	struct	pte *pt;
2360 
2361 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2362 
2363 	/*
2364 	 * Clear the cached value.
2365 	 */
2366 	moea_attr_clear(m, ptebit);
2367 
2368 	/*
2369 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2370 	 * we can reset the right ones).  note that since the pvo entries and
2371 	 * list heads are accessed via BAT0 and are never placed in the page
2372 	 * table, we don't have to worry about further accesses setting the
2373 	 * REF/CHG bits.
2374 	 */
2375 	powerpc_sync();
2376 
2377 	/*
2378 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2379 	 * valid pte clear the ptebit from the valid pte.
2380 	 */
2381 	count = 0;
2382 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2383 		pt = moea_pvo_to_pte(pvo, -1);
2384 		if (pt != NULL) {
2385 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2386 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2387 				count++;
2388 				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2389 			}
2390 			mtx_unlock(&moea_table_mutex);
2391 		}
2392 		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2393 	}
2394 
2395 	return (count);
2396 }
2397 
2398 /*
2399  * Return true if the physical range is encompassed by the battable[idx]
2400  */
2401 static int
2402 moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2403 {
2404 	u_int prot;
2405 	u_int32_t start;
2406 	u_int32_t end;
2407 	u_int32_t bat_ble;
2408 
2409 	/*
2410 	 * Return immediately if not a valid mapping
2411 	 */
2412 	if (!(battable[idx].batu & BAT_Vs))
2413 		return (EINVAL);
2414 
2415 	/*
2416 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2417 	 * so it can function as an i/o page
2418 	 */
2419 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2420 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2421 		return (EPERM);
2422 
2423 	/*
2424 	 * The address should be within the BAT range. Assume that the
2425 	 * start address in the BAT has the correct alignment (thus
2426 	 * not requiring masking)
2427 	 */
2428 	start = battable[idx].batl & BAT_PBS;
2429 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2430 	end = start | (bat_ble << 15) | 0x7fff;
2431 
2432 	if ((pa < start) || ((pa + size) > end))
2433 		return (ERANGE);
2434 
2435 	return (0);
2436 }
2437 
2438 boolean_t
2439 moea_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2440 {
2441 	int i;
2442 
2443 	/*
2444 	 * This currently does not work for entries that
2445 	 * overlap 256M BAT segments.
2446 	 */
2447 
2448 	for(i = 0; i < 16; i++)
2449 		if (moea_bat_mapped(i, pa, size) == 0)
2450 			return (0);
2451 
2452 	return (EFAULT);
2453 }
2454 
2455 /*
2456  * Map a set of physical memory pages into the kernel virtual
2457  * address space. Return a pointer to where it is mapped. This
2458  * routine is intended to be used for mapping device memory,
2459  * NOT real memory.
2460  */
2461 void *
2462 moea_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2463 {
2464 
2465 	return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2466 }
2467 
2468 void *
2469 moea_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2470 {
2471 	vm_offset_t va, tmpva, ppa, offset;
2472 	int i;
2473 
2474 	ppa = trunc_page(pa);
2475 	offset = pa & PAGE_MASK;
2476 	size = roundup(offset + size, PAGE_SIZE);
2477 
2478 	/*
2479 	 * If the physical address lies within a valid BAT table entry,
2480 	 * return the 1:1 mapping. This currently doesn't work
2481 	 * for regions that overlap 256M BAT segments.
2482 	 */
2483 	for (i = 0; i < 16; i++) {
2484 		if (moea_bat_mapped(i, pa, size) == 0)
2485 			return ((void *) pa);
2486 	}
2487 
2488 	va = kmem_alloc_nofault(kernel_map, size);
2489 	if (!va)
2490 		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2491 
2492 	for (tmpva = va; size > 0;) {
2493 		moea_kenter_attr(mmu, tmpva, ppa, ma);
2494 		tlbie(tmpva);
2495 		size -= PAGE_SIZE;
2496 		tmpva += PAGE_SIZE;
2497 		ppa += PAGE_SIZE;
2498 	}
2499 
2500 	return ((void *)(va + offset));
2501 }
2502 
2503 void
2504 moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2505 {
2506 	vm_offset_t base, offset;
2507 
2508 	/*
2509 	 * If this is outside kernel virtual space, then it's a
2510 	 * battable entry and doesn't require unmapping
2511 	 */
2512 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2513 		base = trunc_page(va);
2514 		offset = va & PAGE_MASK;
2515 		size = roundup(offset + size, PAGE_SIZE);
2516 		kmem_free(kernel_map, base, size);
2517 	}
2518 }
2519 
2520 static void
2521 moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2522 {
2523 	struct pvo_entry *pvo;
2524 	vm_offset_t lim;
2525 	vm_paddr_t pa;
2526 	vm_size_t len;
2527 
2528 	PMAP_LOCK(pm);
2529 	while (sz > 0) {
2530 		lim = round_page(va);
2531 		len = MIN(lim - va, sz);
2532 		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2533 		if (pvo != NULL) {
2534 			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2535 			    (va & ADDR_POFF);
2536 			moea_syncicache(pa, len);
2537 		}
2538 		va += len;
2539 		sz -= len;
2540 	}
2541 	PMAP_UNLOCK(pm);
2542 }
2543