xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision 9a41df2a0e6408e9b329bbd8b9e37c2b44461a1b)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*-
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 /*
97  * Manages physical address maps.
98  *
99  * Since the information managed by this module is also stored by the
100  * logical address mapping module, this module may throw away valid virtual
101  * to physical mappings at almost any time.  However, invalidations of
102  * mappings must be done as requested.
103  *
104  * In order to cope with hardware architectures which make virtual to
105  * physical map invalidates expensive, this module may delay invalidate
106  * reduced protection operations until such time as they are actually
107  * necessary.  This module is given full information as to which processors
108  * are currently using which maps, and to when physical maps must be made
109  * correct.
110  */
111 
112 #include "opt_kstack_pages.h"
113 
114 #include <sys/param.h>
115 #include <sys/kernel.h>
116 #include <sys/queue.h>
117 #include <sys/cpuset.h>
118 #include <sys/ktr.h>
119 #include <sys/lock.h>
120 #include <sys/msgbuf.h>
121 #include <sys/mutex.h>
122 #include <sys/proc.h>
123 #include <sys/rwlock.h>
124 #include <sys/sched.h>
125 #include <sys/sysctl.h>
126 #include <sys/systm.h>
127 #include <sys/vmmeter.h>
128 
129 #include <dev/ofw/openfirm.h>
130 
131 #include <vm/vm.h>
132 #include <vm/vm_param.h>
133 #include <vm/vm_kern.h>
134 #include <vm/vm_page.h>
135 #include <vm/vm_map.h>
136 #include <vm/vm_object.h>
137 #include <vm/vm_extern.h>
138 #include <vm/vm_pageout.h>
139 #include <vm/vm_pager.h>
140 #include <vm/uma.h>
141 
142 #include <machine/cpu.h>
143 #include <machine/platform.h>
144 #include <machine/bat.h>
145 #include <machine/frame.h>
146 #include <machine/md_var.h>
147 #include <machine/psl.h>
148 #include <machine/pte.h>
149 #include <machine/smp.h>
150 #include <machine/sr.h>
151 #include <machine/mmuvar.h>
152 #include <machine/trap_aim.h>
153 
154 #include "mmu_if.h"
155 
156 #define	MOEA_DEBUG
157 
158 #define TODO	panic("%s: not implemented", __func__);
159 
160 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
161 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
162 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
163 
164 struct ofw_map {
165 	vm_offset_t	om_va;
166 	vm_size_t	om_len;
167 	vm_offset_t	om_pa;
168 	u_int		om_mode;
169 };
170 
171 /*
172  * Map of physical memory regions.
173  */
174 static struct	mem_region *regions;
175 static struct	mem_region *pregions;
176 static u_int    phys_avail_count;
177 static int	regions_sz, pregions_sz;
178 static struct	ofw_map *translations;
179 
180 /*
181  * Lock for the pteg and pvo tables.
182  */
183 struct mtx	moea_table_mutex;
184 struct mtx	moea_vsid_mutex;
185 
186 /* tlbie instruction synchronization */
187 static struct mtx tlbie_mtx;
188 
189 /*
190  * PTEG data.
191  */
192 static struct	pteg *moea_pteg_table;
193 u_int		moea_pteg_count;
194 u_int		moea_pteg_mask;
195 
196 /*
197  * PVO data.
198  */
199 struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
200 struct	pvo_head moea_pvo_kunmanaged =
201     LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
202 
203 /*
204  * Isolate the global pv list lock from data and other locks to prevent false
205  * sharing within the cache.
206  */
207 static struct {
208 	struct rwlock	lock;
209 	char		padding[CACHE_LINE_SIZE - sizeof(struct rwlock)];
210 } pvh_global __aligned(CACHE_LINE_SIZE);
211 
212 #define	pvh_global_lock	pvh_global.lock
213 
214 uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
215 uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
216 
217 #define	BPVO_POOL_SIZE	32768
218 static struct	pvo_entry *moea_bpvo_pool;
219 static int	moea_bpvo_pool_index = 0;
220 
221 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
222 static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
223 
224 static boolean_t moea_initialized = FALSE;
225 
226 /*
227  * Statistics.
228  */
229 u_int	moea_pte_valid = 0;
230 u_int	moea_pte_overflow = 0;
231 u_int	moea_pte_replacements = 0;
232 u_int	moea_pvo_entries = 0;
233 u_int	moea_pvo_enter_calls = 0;
234 u_int	moea_pvo_remove_calls = 0;
235 u_int	moea_pte_spills = 0;
236 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
237     0, "");
238 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
239     &moea_pte_overflow, 0, "");
240 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
241     &moea_pte_replacements, 0, "");
242 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
243     0, "");
244 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
245     &moea_pvo_enter_calls, 0, "");
246 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
247     &moea_pvo_remove_calls, 0, "");
248 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
249     &moea_pte_spills, 0, "");
250 
251 /*
252  * Allocate physical memory for use in moea_bootstrap.
253  */
254 static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
255 
256 /*
257  * PTE calls.
258  */
259 static int		moea_pte_insert(u_int, struct pte *);
260 
261 /*
262  * PVO calls.
263  */
264 static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
265 		    vm_offset_t, vm_offset_t, u_int, int);
266 static void	moea_pvo_remove(struct pvo_entry *, int);
267 static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
268 static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
269 
270 /*
271  * Utility routines.
272  */
273 static void		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
274 			    vm_prot_t, boolean_t);
275 static void		moea_syncicache(vm_offset_t, vm_size_t);
276 static boolean_t	moea_query_bit(vm_page_t, int);
277 static u_int		moea_clear_bit(vm_page_t, int);
278 static void		moea_kremove(mmu_t, vm_offset_t);
279 int		moea_pte_spill(vm_offset_t);
280 
281 /*
282  * Kernel MMU interface
283  */
284 void moea_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
285 void moea_clear_modify(mmu_t, vm_page_t);
286 void moea_clear_reference(mmu_t, vm_page_t);
287 void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
288 void moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
289 void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
290     vm_prot_t);
291 void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
292 vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
293 vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
294 void moea_init(mmu_t);
295 boolean_t moea_is_modified(mmu_t, vm_page_t);
296 boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
297 boolean_t moea_is_referenced(mmu_t, vm_page_t);
298 int moea_ts_referenced(mmu_t, vm_page_t);
299 vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
300 boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
301 int moea_page_wired_mappings(mmu_t, vm_page_t);
302 void moea_pinit(mmu_t, pmap_t);
303 void moea_pinit0(mmu_t, pmap_t);
304 void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
305 void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
306 void moea_qremove(mmu_t, vm_offset_t, int);
307 void moea_release(mmu_t, pmap_t);
308 void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
309 void moea_remove_all(mmu_t, vm_page_t);
310 void moea_remove_write(mmu_t, vm_page_t);
311 void moea_zero_page(mmu_t, vm_page_t);
312 void moea_zero_page_area(mmu_t, vm_page_t, int, int);
313 void moea_zero_page_idle(mmu_t, vm_page_t);
314 void moea_activate(mmu_t, struct thread *);
315 void moea_deactivate(mmu_t, struct thread *);
316 void moea_cpu_bootstrap(mmu_t, int);
317 void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
318 void *moea_mapdev(mmu_t, vm_paddr_t, vm_size_t);
319 void *moea_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
320 void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
321 vm_paddr_t moea_kextract(mmu_t, vm_offset_t);
322 void moea_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t);
323 void moea_kenter(mmu_t, vm_offset_t, vm_paddr_t);
324 void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
325 boolean_t moea_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
326 static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
327 
328 static mmu_method_t moea_methods[] = {
329 	MMUMETHOD(mmu_change_wiring,	moea_change_wiring),
330 	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
331 	MMUMETHOD(mmu_clear_reference,	moea_clear_reference),
332 	MMUMETHOD(mmu_copy_page,	moea_copy_page),
333 	MMUMETHOD(mmu_enter,		moea_enter),
334 	MMUMETHOD(mmu_enter_object,	moea_enter_object),
335 	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
336 	MMUMETHOD(mmu_extract,		moea_extract),
337 	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
338 	MMUMETHOD(mmu_init,		moea_init),
339 	MMUMETHOD(mmu_is_modified,	moea_is_modified),
340 	MMUMETHOD(mmu_is_prefaultable,	moea_is_prefaultable),
341 	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
342 	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
343 	MMUMETHOD(mmu_map,     		moea_map),
344 	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
345 	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
346 	MMUMETHOD(mmu_pinit,		moea_pinit),
347 	MMUMETHOD(mmu_pinit0,		moea_pinit0),
348 	MMUMETHOD(mmu_protect,		moea_protect),
349 	MMUMETHOD(mmu_qenter,		moea_qenter),
350 	MMUMETHOD(mmu_qremove,		moea_qremove),
351 	MMUMETHOD(mmu_release,		moea_release),
352 	MMUMETHOD(mmu_remove,		moea_remove),
353 	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
354 	MMUMETHOD(mmu_remove_write,	moea_remove_write),
355 	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
356 	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
357 	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
358 	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
359 	MMUMETHOD(mmu_activate,		moea_activate),
360 	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
361 	MMUMETHOD(mmu_page_set_memattr,	moea_page_set_memattr),
362 
363 	/* Internal interfaces */
364 	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
365 	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
366 	MMUMETHOD(mmu_mapdev_attr,	moea_mapdev_attr),
367 	MMUMETHOD(mmu_mapdev,		moea_mapdev),
368 	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
369 	MMUMETHOD(mmu_kextract,		moea_kextract),
370 	MMUMETHOD(mmu_kenter,		moea_kenter),
371 	MMUMETHOD(mmu_kenter_attr,	moea_kenter_attr),
372 	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
373 
374 	{ 0, 0 }
375 };
376 
377 MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
378 
379 static __inline uint32_t
380 moea_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
381 {
382 	uint32_t pte_lo;
383 	int i;
384 
385 	if (ma != VM_MEMATTR_DEFAULT) {
386 		switch (ma) {
387 		case VM_MEMATTR_UNCACHEABLE:
388 			return (PTE_I | PTE_G);
389 		case VM_MEMATTR_WRITE_COMBINING:
390 		case VM_MEMATTR_WRITE_BACK:
391 		case VM_MEMATTR_PREFETCHABLE:
392 			return (PTE_I);
393 		case VM_MEMATTR_WRITE_THROUGH:
394 			return (PTE_W | PTE_M);
395 		}
396 	}
397 
398 	/*
399 	 * Assume the page is cache inhibited and access is guarded unless
400 	 * it's in our available memory array.
401 	 */
402 	pte_lo = PTE_I | PTE_G;
403 	for (i = 0; i < pregions_sz; i++) {
404 		if ((pa >= pregions[i].mr_start) &&
405 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
406 			pte_lo = PTE_M;
407 			break;
408 		}
409 	}
410 
411 	return pte_lo;
412 }
413 
414 static void
415 tlbie(vm_offset_t va)
416 {
417 
418 	mtx_lock_spin(&tlbie_mtx);
419 	__asm __volatile("ptesync");
420 	__asm __volatile("tlbie %0" :: "r"(va));
421 	__asm __volatile("eieio; tlbsync; ptesync");
422 	mtx_unlock_spin(&tlbie_mtx);
423 }
424 
425 static void
426 tlbia(void)
427 {
428 	vm_offset_t va;
429 
430 	for (va = 0; va < 0x00040000; va += 0x00001000) {
431 		__asm __volatile("tlbie %0" :: "r"(va));
432 		powerpc_sync();
433 	}
434 	__asm __volatile("tlbsync");
435 	powerpc_sync();
436 }
437 
438 static __inline int
439 va_to_sr(u_int *sr, vm_offset_t va)
440 {
441 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
442 }
443 
444 static __inline u_int
445 va_to_pteg(u_int sr, vm_offset_t addr)
446 {
447 	u_int hash;
448 
449 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
450 	    ADDR_PIDX_SHFT);
451 	return (hash & moea_pteg_mask);
452 }
453 
454 static __inline struct pvo_head *
455 vm_page_to_pvoh(vm_page_t m)
456 {
457 
458 	return (&m->md.mdpg_pvoh);
459 }
460 
461 static __inline void
462 moea_attr_clear(vm_page_t m, int ptebit)
463 {
464 
465 	rw_assert(&pvh_global_lock, RA_WLOCKED);
466 	m->md.mdpg_attrs &= ~ptebit;
467 }
468 
469 static __inline int
470 moea_attr_fetch(vm_page_t m)
471 {
472 
473 	return (m->md.mdpg_attrs);
474 }
475 
476 static __inline void
477 moea_attr_save(vm_page_t m, int ptebit)
478 {
479 
480 	rw_assert(&pvh_global_lock, RA_WLOCKED);
481 	m->md.mdpg_attrs |= ptebit;
482 }
483 
484 static __inline int
485 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
486 {
487 	if (pt->pte_hi == pvo_pt->pte_hi)
488 		return (1);
489 
490 	return (0);
491 }
492 
493 static __inline int
494 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
495 {
496 	return (pt->pte_hi & ~PTE_VALID) ==
497 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
498 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
499 }
500 
501 static __inline void
502 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
503 {
504 
505 	mtx_assert(&moea_table_mutex, MA_OWNED);
506 
507 	/*
508 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
509 	 * set when the real pte is set in memory.
510 	 *
511 	 * Note: Don't set the valid bit for correct operation of tlb update.
512 	 */
513 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
514 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
515 	pt->pte_lo = pte_lo;
516 }
517 
518 static __inline void
519 moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
520 {
521 
522 	mtx_assert(&moea_table_mutex, MA_OWNED);
523 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
524 }
525 
526 static __inline void
527 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
528 {
529 
530 	mtx_assert(&moea_table_mutex, MA_OWNED);
531 
532 	/*
533 	 * As shown in Section 7.6.3.2.3
534 	 */
535 	pt->pte_lo &= ~ptebit;
536 	tlbie(va);
537 }
538 
539 static __inline void
540 moea_pte_set(struct pte *pt, struct pte *pvo_pt)
541 {
542 
543 	mtx_assert(&moea_table_mutex, MA_OWNED);
544 	pvo_pt->pte_hi |= PTE_VALID;
545 
546 	/*
547 	 * Update the PTE as defined in section 7.6.3.1.
548 	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
549 	 * been saved so this routine can restore them (if desired).
550 	 */
551 	pt->pte_lo = pvo_pt->pte_lo;
552 	powerpc_sync();
553 	pt->pte_hi = pvo_pt->pte_hi;
554 	powerpc_sync();
555 	moea_pte_valid++;
556 }
557 
558 static __inline void
559 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
560 {
561 
562 	mtx_assert(&moea_table_mutex, MA_OWNED);
563 	pvo_pt->pte_hi &= ~PTE_VALID;
564 
565 	/*
566 	 * Force the reg & chg bits back into the PTEs.
567 	 */
568 	powerpc_sync();
569 
570 	/*
571 	 * Invalidate the pte.
572 	 */
573 	pt->pte_hi &= ~PTE_VALID;
574 
575 	tlbie(va);
576 
577 	/*
578 	 * Save the reg & chg bits.
579 	 */
580 	moea_pte_synch(pt, pvo_pt);
581 	moea_pte_valid--;
582 }
583 
584 static __inline void
585 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
586 {
587 
588 	/*
589 	 * Invalidate the PTE
590 	 */
591 	moea_pte_unset(pt, pvo_pt, va);
592 	moea_pte_set(pt, pvo_pt);
593 }
594 
595 /*
596  * Quick sort callout for comparing memory regions.
597  */
598 static int	om_cmp(const void *a, const void *b);
599 
600 static int
601 om_cmp(const void *a, const void *b)
602 {
603 	const struct	ofw_map *mapa;
604 	const struct	ofw_map *mapb;
605 
606 	mapa = a;
607 	mapb = b;
608 	if (mapa->om_pa < mapb->om_pa)
609 		return (-1);
610 	else if (mapa->om_pa > mapb->om_pa)
611 		return (1);
612 	else
613 		return (0);
614 }
615 
616 void
617 moea_cpu_bootstrap(mmu_t mmup, int ap)
618 {
619 	u_int sdr;
620 	int i;
621 
622 	if (ap) {
623 		powerpc_sync();
624 		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
625 		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
626 		isync();
627 		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
628 		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
629 		isync();
630 	}
631 
632 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
633 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
634 	isync();
635 
636 	__asm __volatile("mtibatu 1,%0" :: "r"(0));
637 	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
638 	__asm __volatile("mtibatu 2,%0" :: "r"(0));
639 	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
640 	__asm __volatile("mtibatu 3,%0" :: "r"(0));
641 	isync();
642 
643 	for (i = 0; i < 16; i++)
644 		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
645 	powerpc_sync();
646 
647 	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
648 	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
649 	isync();
650 
651 	tlbia();
652 }
653 
654 void
655 moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
656 {
657 	ihandle_t	mmui;
658 	phandle_t	chosen, mmu;
659 	int		sz;
660 	int		i, j;
661 	vm_size_t	size, physsz, hwphyssz;
662 	vm_offset_t	pa, va, off;
663 	void		*dpcpu;
664 	register_t	msr;
665 
666         /*
667          * Set up BAT0 to map the lowest 256 MB area
668          */
669         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
670         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
671 
672         /*
673          * Map PCI memory space.
674          */
675         battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
676         battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
677 
678         battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
679         battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
680 
681         battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
682         battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
683 
684         battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
685         battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
686 
687         /*
688          * Map obio devices.
689          */
690         battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
691         battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
692 
693 	/*
694 	 * Use an IBAT and a DBAT to map the bottom segment of memory
695 	 * where we are. Turn off instruction relocation temporarily
696 	 * to prevent faults while reprogramming the IBAT.
697 	 */
698 	msr = mfmsr();
699 	mtmsr(msr & ~PSL_IR);
700 	__asm (".balign 32; \n"
701 	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
702 	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
703 	    :: "r"(battable[0].batu), "r"(battable[0].batl));
704 	mtmsr(msr);
705 
706 	/* map pci space */
707 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
708 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
709 	isync();
710 
711 	/* set global direct map flag */
712 	hw_direct_map = 1;
713 
714 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
715 	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
716 
717 	for (i = 0; i < pregions_sz; i++) {
718 		vm_offset_t pa;
719 		vm_offset_t end;
720 
721 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
722 			pregions[i].mr_start,
723 			pregions[i].mr_start + pregions[i].mr_size,
724 			pregions[i].mr_size);
725 		/*
726 		 * Install entries into the BAT table to allow all
727 		 * of physmem to be convered by on-demand BAT entries.
728 		 * The loop will sometimes set the same battable element
729 		 * twice, but that's fine since they won't be used for
730 		 * a while yet.
731 		 */
732 		pa = pregions[i].mr_start & 0xf0000000;
733 		end = pregions[i].mr_start + pregions[i].mr_size;
734 		do {
735                         u_int n = pa >> ADDR_SR_SHFT;
736 
737 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
738 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
739 			pa += SEGMENT_LENGTH;
740 		} while (pa < end);
741 	}
742 
743 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
744 		panic("moea_bootstrap: phys_avail too small");
745 
746 	phys_avail_count = 0;
747 	physsz = 0;
748 	hwphyssz = 0;
749 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
750 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
751 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
752 		    regions[i].mr_start + regions[i].mr_size,
753 		    regions[i].mr_size);
754 		if (hwphyssz != 0 &&
755 		    (physsz + regions[i].mr_size) >= hwphyssz) {
756 			if (physsz < hwphyssz) {
757 				phys_avail[j] = regions[i].mr_start;
758 				phys_avail[j + 1] = regions[i].mr_start +
759 				    hwphyssz - physsz;
760 				physsz = hwphyssz;
761 				phys_avail_count++;
762 			}
763 			break;
764 		}
765 		phys_avail[j] = regions[i].mr_start;
766 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
767 		phys_avail_count++;
768 		physsz += regions[i].mr_size;
769 	}
770 
771 	/* Check for overlap with the kernel and exception vectors */
772 	for (j = 0; j < 2*phys_avail_count; j+=2) {
773 		if (phys_avail[j] < EXC_LAST)
774 			phys_avail[j] += EXC_LAST;
775 
776 		if (kernelstart >= phys_avail[j] &&
777 		    kernelstart < phys_avail[j+1]) {
778 			if (kernelend < phys_avail[j+1]) {
779 				phys_avail[2*phys_avail_count] =
780 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
781 				phys_avail[2*phys_avail_count + 1] =
782 				    phys_avail[j+1];
783 				phys_avail_count++;
784 			}
785 
786 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
787 		}
788 
789 		if (kernelend >= phys_avail[j] &&
790 		    kernelend < phys_avail[j+1]) {
791 			if (kernelstart > phys_avail[j]) {
792 				phys_avail[2*phys_avail_count] = phys_avail[j];
793 				phys_avail[2*phys_avail_count + 1] =
794 				    kernelstart & ~PAGE_MASK;
795 				phys_avail_count++;
796 			}
797 
798 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
799 		}
800 	}
801 
802 	physmem = btoc(physsz);
803 
804 	/*
805 	 * Allocate PTEG table.
806 	 */
807 #ifdef PTEGCOUNT
808 	moea_pteg_count = PTEGCOUNT;
809 #else
810 	moea_pteg_count = 0x1000;
811 
812 	while (moea_pteg_count < physmem)
813 		moea_pteg_count <<= 1;
814 
815 	moea_pteg_count >>= 1;
816 #endif /* PTEGCOUNT */
817 
818 	size = moea_pteg_count * sizeof(struct pteg);
819 	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
820 	    size);
821 	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
822 	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
823 	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
824 	moea_pteg_mask = moea_pteg_count - 1;
825 
826 	/*
827 	 * Allocate pv/overflow lists.
828 	 */
829 	size = sizeof(struct pvo_head) * moea_pteg_count;
830 	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
831 	    PAGE_SIZE);
832 	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
833 	for (i = 0; i < moea_pteg_count; i++)
834 		LIST_INIT(&moea_pvo_table[i]);
835 
836 	/*
837 	 * Initialize the lock that synchronizes access to the pteg and pvo
838 	 * tables.
839 	 */
840 	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
841 	    MTX_RECURSE);
842 	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
843 
844 	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
845 
846 	/*
847 	 * Initialise the unmanaged pvo pool.
848 	 */
849 	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
850 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
851 	moea_bpvo_pool_index = 0;
852 
853 	/*
854 	 * Make sure kernel vsid is allocated as well as VSID 0.
855 	 */
856 	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
857 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
858 	moea_vsid_bitmap[0] |= 1;
859 
860 	/*
861 	 * Initialize the kernel pmap (which is statically allocated).
862 	 */
863 	PMAP_LOCK_INIT(kernel_pmap);
864 	for (i = 0; i < 16; i++)
865 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
866 	CPU_FILL(&kernel_pmap->pm_active);
867 	RB_INIT(&kernel_pmap->pmap_pvo);
868 
869  	/*
870 	 * Initialize the global pv list lock.
871 	 */
872 	rw_init(&pvh_global_lock, "pmap pv global");
873 
874 	/*
875 	 * Set up the Open Firmware mappings
876 	 */
877 	chosen = OF_finddevice("/chosen");
878 	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
879 	    (mmu = OF_instance_to_package(mmui)) != -1 &&
880 	    (sz = OF_getproplen(mmu, "translations")) != -1) {
881 		translations = NULL;
882 		for (i = 0; phys_avail[i] != 0; i += 2) {
883 			if (phys_avail[i + 1] >= sz) {
884 				translations = (struct ofw_map *)phys_avail[i];
885 				break;
886 			}
887 		}
888 		if (translations == NULL)
889 			panic("moea_bootstrap: no space to copy translations");
890 		bzero(translations, sz);
891 		if (OF_getprop(mmu, "translations", translations, sz) == -1)
892 			panic("moea_bootstrap: can't get ofw translations");
893 		CTR0(KTR_PMAP, "moea_bootstrap: translations");
894 		sz /= sizeof(*translations);
895 		qsort(translations, sz, sizeof (*translations), om_cmp);
896 		for (i = 0; i < sz; i++) {
897 			CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
898 			    translations[i].om_pa, translations[i].om_va,
899 			    translations[i].om_len);
900 
901 			/*
902 			 * If the mapping is 1:1, let the RAM and device
903 			 * on-demand BAT tables take care of the translation.
904 			 */
905 			if (translations[i].om_va == translations[i].om_pa)
906 				continue;
907 
908 			/* Enter the pages */
909 			for (off = 0; off < translations[i].om_len;
910 			    off += PAGE_SIZE)
911 				moea_kenter(mmup, translations[i].om_va + off,
912 					    translations[i].om_pa + off);
913 		}
914 	}
915 
916 	/*
917 	 * Calculate the last available physical address.
918 	 */
919 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
920 		;
921 	Maxmem = powerpc_btop(phys_avail[i + 1]);
922 
923 	moea_cpu_bootstrap(mmup,0);
924 
925 	pmap_bootstrapped++;
926 
927 	/*
928 	 * Set the start and end of kva.
929 	 */
930 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
931 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
932 
933 	/*
934 	 * Allocate a kernel stack with a guard page for thread0 and map it
935 	 * into the kernel page map.
936 	 */
937 	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
938 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
939 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
940 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
941 	thread0.td_kstack = va;
942 	thread0.td_kstack_pages = KSTACK_PAGES;
943 	for (i = 0; i < KSTACK_PAGES; i++) {
944 		moea_kenter(mmup, va, pa);
945 		pa += PAGE_SIZE;
946 		va += PAGE_SIZE;
947 	}
948 
949 	/*
950 	 * Allocate virtual address space for the message buffer.
951 	 */
952 	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
953 	msgbufp = (struct msgbuf *)virtual_avail;
954 	va = virtual_avail;
955 	virtual_avail += round_page(msgbufsize);
956 	while (va < virtual_avail) {
957 		moea_kenter(mmup, va, pa);
958 		pa += PAGE_SIZE;
959 		va += PAGE_SIZE;
960 	}
961 
962 	/*
963 	 * Allocate virtual address space for the dynamic percpu area.
964 	 */
965 	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
966 	dpcpu = (void *)virtual_avail;
967 	va = virtual_avail;
968 	virtual_avail += DPCPU_SIZE;
969 	while (va < virtual_avail) {
970 		moea_kenter(mmup, va, pa);
971 		pa += PAGE_SIZE;
972 		va += PAGE_SIZE;
973 	}
974 	dpcpu_init(dpcpu, 0);
975 }
976 
977 /*
978  * Activate a user pmap.  The pmap must be activated before it's address
979  * space can be accessed in any way.
980  */
981 void
982 moea_activate(mmu_t mmu, struct thread *td)
983 {
984 	pmap_t	pm, pmr;
985 
986 	/*
987 	 * Load all the data we need up front to encourage the compiler to
988 	 * not issue any loads while we have interrupts disabled below.
989 	 */
990 	pm = &td->td_proc->p_vmspace->vm_pmap;
991 	pmr = pm->pmap_phys;
992 
993 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
994 	PCPU_SET(curpmap, pmr);
995 }
996 
997 void
998 moea_deactivate(mmu_t mmu, struct thread *td)
999 {
1000 	pmap_t	pm;
1001 
1002 	pm = &td->td_proc->p_vmspace->vm_pmap;
1003 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1004 	PCPU_SET(curpmap, NULL);
1005 }
1006 
1007 void
1008 moea_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1009 {
1010 	struct	pvo_entry *pvo;
1011 
1012 	PMAP_LOCK(pm);
1013 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1014 
1015 	if (pvo != NULL) {
1016 		if (wired) {
1017 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1018 				pm->pm_stats.wired_count++;
1019 			pvo->pvo_vaddr |= PVO_WIRED;
1020 		} else {
1021 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1022 				pm->pm_stats.wired_count--;
1023 			pvo->pvo_vaddr &= ~PVO_WIRED;
1024 		}
1025 	}
1026 	PMAP_UNLOCK(pm);
1027 }
1028 
1029 void
1030 moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1031 {
1032 	vm_offset_t	dst;
1033 	vm_offset_t	src;
1034 
1035 	dst = VM_PAGE_TO_PHYS(mdst);
1036 	src = VM_PAGE_TO_PHYS(msrc);
1037 
1038 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
1039 }
1040 
1041 /*
1042  * Zero a page of physical memory by temporarily mapping it into the tlb.
1043  */
1044 void
1045 moea_zero_page(mmu_t mmu, vm_page_t m)
1046 {
1047 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1048 	void *va = (void *)pa;
1049 
1050 	bzero(va, PAGE_SIZE);
1051 }
1052 
1053 void
1054 moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1055 {
1056 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1057 	void *va = (void *)(pa + off);
1058 
1059 	bzero(va, size);
1060 }
1061 
1062 void
1063 moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1064 {
1065 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1066 	void *va = (void *)pa;
1067 
1068 	bzero(va, PAGE_SIZE);
1069 }
1070 
1071 /*
1072  * Map the given physical page at the specified virtual address in the
1073  * target pmap with the protection requested.  If specified the page
1074  * will be wired down.
1075  */
1076 void
1077 moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1078 	   boolean_t wired)
1079 {
1080 
1081 	rw_wlock(&pvh_global_lock);
1082 	PMAP_LOCK(pmap);
1083 	moea_enter_locked(pmap, va, m, prot, wired);
1084 	rw_wunlock(&pvh_global_lock);
1085 	PMAP_UNLOCK(pmap);
1086 }
1087 
1088 /*
1089  * Map the given physical page at the specified virtual address in the
1090  * target pmap with the protection requested.  If specified the page
1091  * will be wired down.
1092  *
1093  * The page queues and pmap must be locked.
1094  */
1095 static void
1096 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1097     boolean_t wired)
1098 {
1099 	struct		pvo_head *pvo_head;
1100 	uma_zone_t	zone;
1101 	vm_page_t	pg;
1102 	u_int		pte_lo, pvo_flags;
1103 	int		error;
1104 
1105 	if (!moea_initialized) {
1106 		pvo_head = &moea_pvo_kunmanaged;
1107 		zone = moea_upvo_zone;
1108 		pvo_flags = 0;
1109 		pg = NULL;
1110 	} else {
1111 		pvo_head = vm_page_to_pvoh(m);
1112 		pg = m;
1113 		zone = moea_mpvo_zone;
1114 		pvo_flags = PVO_MANAGED;
1115 	}
1116 	if (pmap_bootstrapped)
1117 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1118 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1119 	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
1120 	    VM_OBJECT_LOCKED(m->object),
1121 	    ("moea_enter_locked: page %p is not busy", m));
1122 
1123 	/* XXX change the pvo head for fake pages */
1124 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1125 		pvo_flags &= ~PVO_MANAGED;
1126 		pvo_head = &moea_pvo_kunmanaged;
1127 		zone = moea_upvo_zone;
1128 	}
1129 
1130 	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1131 
1132 	if (prot & VM_PROT_WRITE) {
1133 		pte_lo |= PTE_BW;
1134 		if (pmap_bootstrapped &&
1135 		    (m->oflags & VPO_UNMANAGED) == 0)
1136 			vm_page_aflag_set(m, PGA_WRITEABLE);
1137 	} else
1138 		pte_lo |= PTE_BR;
1139 
1140 	if (prot & VM_PROT_EXECUTE)
1141 		pvo_flags |= PVO_EXECUTABLE;
1142 
1143 	if (wired)
1144 		pvo_flags |= PVO_WIRED;
1145 
1146 	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1147 	    pte_lo, pvo_flags);
1148 
1149 	/*
1150 	 * Flush the real page from the instruction cache. This has be done
1151 	 * for all user mappings to prevent information leakage via the
1152 	 * instruction cache. moea_pvo_enter() returns ENOENT for the first
1153 	 * mapping for a page.
1154 	 */
1155 	if (pmap != kernel_pmap && error == ENOENT &&
1156 	    (pte_lo & (PTE_I | PTE_G)) == 0)
1157 		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1158 }
1159 
1160 /*
1161  * Maps a sequence of resident pages belonging to the same object.
1162  * The sequence begins with the given page m_start.  This page is
1163  * mapped at the given virtual address start.  Each subsequent page is
1164  * mapped at a virtual address that is offset from start by the same
1165  * amount as the page is offset from m_start within the object.  The
1166  * last page in the sequence is the page with the largest offset from
1167  * m_start that can be mapped at a virtual address less than the given
1168  * virtual address end.  Not every virtual page between start and end
1169  * is mapped; only those for which a resident page exists with the
1170  * corresponding offset from m_start are mapped.
1171  */
1172 void
1173 moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1174     vm_page_t m_start, vm_prot_t prot)
1175 {
1176 	vm_page_t m;
1177 	vm_pindex_t diff, psize;
1178 
1179 	psize = atop(end - start);
1180 	m = m_start;
1181 	rw_wlock(&pvh_global_lock);
1182 	PMAP_LOCK(pm);
1183 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1184 		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1185 		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1186 		m = TAILQ_NEXT(m, listq);
1187 	}
1188 	rw_wunlock(&pvh_global_lock);
1189 	PMAP_UNLOCK(pm);
1190 }
1191 
1192 void
1193 moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1194     vm_prot_t prot)
1195 {
1196 
1197 	rw_wlock(&pvh_global_lock);
1198 	PMAP_LOCK(pm);
1199 	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1200 	    FALSE);
1201 	rw_wunlock(&pvh_global_lock);
1202 	PMAP_UNLOCK(pm);
1203 }
1204 
1205 vm_paddr_t
1206 moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1207 {
1208 	struct	pvo_entry *pvo;
1209 	vm_paddr_t pa;
1210 
1211 	PMAP_LOCK(pm);
1212 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1213 	if (pvo == NULL)
1214 		pa = 0;
1215 	else
1216 		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1217 	PMAP_UNLOCK(pm);
1218 	return (pa);
1219 }
1220 
1221 /*
1222  * Atomically extract and hold the physical page with the given
1223  * pmap and virtual address pair if that mapping permits the given
1224  * protection.
1225  */
1226 vm_page_t
1227 moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1228 {
1229 	struct	pvo_entry *pvo;
1230 	vm_page_t m;
1231         vm_paddr_t pa;
1232 
1233 	m = NULL;
1234 	pa = 0;
1235 	PMAP_LOCK(pmap);
1236 retry:
1237 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1238 	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1239 	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1240 	     (prot & VM_PROT_WRITE) == 0)) {
1241 		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1242 			goto retry;
1243 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1244 		vm_page_hold(m);
1245 	}
1246 	PA_UNLOCK_COND(pa);
1247 	PMAP_UNLOCK(pmap);
1248 	return (m);
1249 }
1250 
1251 void
1252 moea_init(mmu_t mmu)
1253 {
1254 
1255 	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1256 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1257 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1258 	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1259 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1260 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1261 	moea_initialized = TRUE;
1262 }
1263 
1264 boolean_t
1265 moea_is_referenced(mmu_t mmu, vm_page_t m)
1266 {
1267 	boolean_t rv;
1268 
1269 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1270 	    ("moea_is_referenced: page %p is not managed", m));
1271 	rw_wlock(&pvh_global_lock);
1272 	rv = moea_query_bit(m, PTE_REF);
1273 	rw_wunlock(&pvh_global_lock);
1274 	return (rv);
1275 }
1276 
1277 boolean_t
1278 moea_is_modified(mmu_t mmu, vm_page_t m)
1279 {
1280 	boolean_t rv;
1281 
1282 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1283 	    ("moea_is_modified: page %p is not managed", m));
1284 
1285 	/*
1286 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
1287 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1288 	 * is clear, no PTEs can have PTE_CHG set.
1289 	 */
1290 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1291 	if ((m->oflags & VPO_BUSY) == 0 &&
1292 	    (m->aflags & PGA_WRITEABLE) == 0)
1293 		return (FALSE);
1294 	rw_wlock(&pvh_global_lock);
1295 	rv = moea_query_bit(m, PTE_CHG);
1296 	rw_wunlock(&pvh_global_lock);
1297 	return (rv);
1298 }
1299 
1300 boolean_t
1301 moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1302 {
1303 	struct pvo_entry *pvo;
1304 	boolean_t rv;
1305 
1306 	PMAP_LOCK(pmap);
1307 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1308 	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1309 	PMAP_UNLOCK(pmap);
1310 	return (rv);
1311 }
1312 
1313 void
1314 moea_clear_reference(mmu_t mmu, vm_page_t m)
1315 {
1316 
1317 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1318 	    ("moea_clear_reference: page %p is not managed", m));
1319 	rw_wlock(&pvh_global_lock);
1320 	moea_clear_bit(m, PTE_REF);
1321 	rw_wunlock(&pvh_global_lock);
1322 }
1323 
1324 void
1325 moea_clear_modify(mmu_t mmu, vm_page_t m)
1326 {
1327 
1328 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1329 	    ("moea_clear_modify: page %p is not managed", m));
1330 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1331 	KASSERT((m->oflags & VPO_BUSY) == 0,
1332 	    ("moea_clear_modify: page %p is busy", m));
1333 
1334 	/*
1335 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_CHG
1336 	 * set.  If the object containing the page is locked and the page is
1337 	 * not VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
1338 	 */
1339 	if ((m->aflags & PGA_WRITEABLE) == 0)
1340 		return;
1341 	rw_wlock(&pvh_global_lock);
1342 	moea_clear_bit(m, PTE_CHG);
1343 	rw_wunlock(&pvh_global_lock);
1344 }
1345 
1346 /*
1347  * Clear the write and modified bits in each of the given page's mappings.
1348  */
1349 void
1350 moea_remove_write(mmu_t mmu, vm_page_t m)
1351 {
1352 	struct	pvo_entry *pvo;
1353 	struct	pte *pt;
1354 	pmap_t	pmap;
1355 	u_int	lo;
1356 
1357 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1358 	    ("moea_remove_write: page %p is not managed", m));
1359 
1360 	/*
1361 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1362 	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
1363 	 * is clear, no page table entries need updating.
1364 	 */
1365 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1366 	if ((m->oflags & VPO_BUSY) == 0 &&
1367 	    (m->aflags & PGA_WRITEABLE) == 0)
1368 		return;
1369 	rw_wlock(&pvh_global_lock);
1370 	lo = moea_attr_fetch(m);
1371 	powerpc_sync();
1372 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1373 		pmap = pvo->pvo_pmap;
1374 		PMAP_LOCK(pmap);
1375 		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1376 			pt = moea_pvo_to_pte(pvo, -1);
1377 			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1378 			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1379 			if (pt != NULL) {
1380 				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1381 				lo |= pvo->pvo_pte.pte.pte_lo;
1382 				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1383 				moea_pte_change(pt, &pvo->pvo_pte.pte,
1384 				    pvo->pvo_vaddr);
1385 				mtx_unlock(&moea_table_mutex);
1386 			}
1387 		}
1388 		PMAP_UNLOCK(pmap);
1389 	}
1390 	if ((lo & PTE_CHG) != 0) {
1391 		moea_attr_clear(m, PTE_CHG);
1392 		vm_page_dirty(m);
1393 	}
1394 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1395 	rw_wunlock(&pvh_global_lock);
1396 }
1397 
1398 /*
1399  *	moea_ts_referenced:
1400  *
1401  *	Return a count of reference bits for a page, clearing those bits.
1402  *	It is not necessary for every reference bit to be cleared, but it
1403  *	is necessary that 0 only be returned when there are truly no
1404  *	reference bits set.
1405  *
1406  *	XXX: The exact number of bits to check and clear is a matter that
1407  *	should be tested and standardized at some point in the future for
1408  *	optimal aging of shared pages.
1409  */
1410 int
1411 moea_ts_referenced(mmu_t mmu, vm_page_t m)
1412 {
1413 	int count;
1414 
1415 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1416 	    ("moea_ts_referenced: page %p is not managed", m));
1417 	rw_wlock(&pvh_global_lock);
1418 	count = moea_clear_bit(m, PTE_REF);
1419 	rw_wunlock(&pvh_global_lock);
1420 	return (count);
1421 }
1422 
1423 /*
1424  * Modify the WIMG settings of all mappings for a page.
1425  */
1426 void
1427 moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1428 {
1429 	struct	pvo_entry *pvo;
1430 	struct	pvo_head *pvo_head;
1431 	struct	pte *pt;
1432 	pmap_t	pmap;
1433 	u_int	lo;
1434 
1435 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1436 		m->md.mdpg_cache_attrs = ma;
1437 		return;
1438 	}
1439 
1440 	rw_wlock(&pvh_global_lock);
1441 	pvo_head = vm_page_to_pvoh(m);
1442 	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1443 
1444 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1445 		pmap = pvo->pvo_pmap;
1446 		PMAP_LOCK(pmap);
1447 		pt = moea_pvo_to_pte(pvo, -1);
1448 		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1449 		pvo->pvo_pte.pte.pte_lo |= lo;
1450 		if (pt != NULL) {
1451 			moea_pte_change(pt, &pvo->pvo_pte.pte,
1452 			    pvo->pvo_vaddr);
1453 			if (pvo->pvo_pmap == kernel_pmap)
1454 				isync();
1455 		}
1456 		mtx_unlock(&moea_table_mutex);
1457 		PMAP_UNLOCK(pmap);
1458 	}
1459 	m->md.mdpg_cache_attrs = ma;
1460 	rw_wunlock(&pvh_global_lock);
1461 }
1462 
1463 /*
1464  * Map a wired page into kernel virtual address space.
1465  */
1466 void
1467 moea_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1468 {
1469 
1470 	moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1471 }
1472 
1473 void
1474 moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1475 {
1476 	u_int		pte_lo;
1477 	int		error;
1478 
1479 #if 0
1480 	if (va < VM_MIN_KERNEL_ADDRESS)
1481 		panic("moea_kenter: attempt to enter non-kernel address %#x",
1482 		    va);
1483 #endif
1484 
1485 	pte_lo = moea_calc_wimg(pa, ma);
1486 
1487 	PMAP_LOCK(kernel_pmap);
1488 	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1489 	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1490 
1491 	if (error != 0 && error != ENOENT)
1492 		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1493 		    pa, error);
1494 
1495 	PMAP_UNLOCK(kernel_pmap);
1496 }
1497 
1498 /*
1499  * Extract the physical page address associated with the given kernel virtual
1500  * address.
1501  */
1502 vm_paddr_t
1503 moea_kextract(mmu_t mmu, vm_offset_t va)
1504 {
1505 	struct		pvo_entry *pvo;
1506 	vm_paddr_t pa;
1507 
1508 	/*
1509 	 * Allow direct mappings on 32-bit OEA
1510 	 */
1511 	if (va < VM_MIN_KERNEL_ADDRESS) {
1512 		return (va);
1513 	}
1514 
1515 	PMAP_LOCK(kernel_pmap);
1516 	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1517 	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1518 	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1519 	PMAP_UNLOCK(kernel_pmap);
1520 	return (pa);
1521 }
1522 
1523 /*
1524  * Remove a wired page from kernel virtual address space.
1525  */
1526 void
1527 moea_kremove(mmu_t mmu, vm_offset_t va)
1528 {
1529 
1530 	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1531 }
1532 
1533 /*
1534  * Map a range of physical addresses into kernel virtual address space.
1535  *
1536  * The value passed in *virt is a suggested virtual address for the mapping.
1537  * Architectures which can support a direct-mapped physical to virtual region
1538  * can return the appropriate address within that region, leaving '*virt'
1539  * unchanged.  We cannot and therefore do not; *virt is updated with the
1540  * first usable address after the mapped region.
1541  */
1542 vm_offset_t
1543 moea_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1544     vm_paddr_t pa_end, int prot)
1545 {
1546 	vm_offset_t	sva, va;
1547 
1548 	sva = *virt;
1549 	va = sva;
1550 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1551 		moea_kenter(mmu, va, pa_start);
1552 	*virt = va;
1553 	return (sva);
1554 }
1555 
1556 /*
1557  * Returns true if the pmap's pv is one of the first
1558  * 16 pvs linked to from this page.  This count may
1559  * be changed upwards or downwards in the future; it
1560  * is only necessary that true be returned for a small
1561  * subset of pmaps for proper page aging.
1562  */
1563 boolean_t
1564 moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1565 {
1566         int loops;
1567 	struct pvo_entry *pvo;
1568 	boolean_t rv;
1569 
1570 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1571 	    ("moea_page_exists_quick: page %p is not managed", m));
1572 	loops = 0;
1573 	rv = FALSE;
1574 	rw_wlock(&pvh_global_lock);
1575 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1576 		if (pvo->pvo_pmap == pmap) {
1577 			rv = TRUE;
1578 			break;
1579 		}
1580 		if (++loops >= 16)
1581 			break;
1582 	}
1583 	rw_wunlock(&pvh_global_lock);
1584 	return (rv);
1585 }
1586 
1587 /*
1588  * Return the number of managed mappings to the given physical page
1589  * that are wired.
1590  */
1591 int
1592 moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1593 {
1594 	struct pvo_entry *pvo;
1595 	int count;
1596 
1597 	count = 0;
1598 	if ((m->oflags & VPO_UNMANAGED) != 0)
1599 		return (count);
1600 	rw_wlock(&pvh_global_lock);
1601 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1602 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1603 			count++;
1604 	rw_wunlock(&pvh_global_lock);
1605 	return (count);
1606 }
1607 
1608 static u_int	moea_vsidcontext;
1609 
1610 void
1611 moea_pinit(mmu_t mmu, pmap_t pmap)
1612 {
1613 	int	i, mask;
1614 	u_int	entropy;
1615 
1616 	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1617 	PMAP_LOCK_INIT(pmap);
1618 	RB_INIT(&pmap->pmap_pvo);
1619 
1620 	entropy = 0;
1621 	__asm __volatile("mftb %0" : "=r"(entropy));
1622 
1623 	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1624 	    == NULL) {
1625 		pmap->pmap_phys = pmap;
1626 	}
1627 
1628 
1629 	mtx_lock(&moea_vsid_mutex);
1630 	/*
1631 	 * Allocate some segment registers for this pmap.
1632 	 */
1633 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1634 		u_int	hash, n;
1635 
1636 		/*
1637 		 * Create a new value by mutiplying by a prime and adding in
1638 		 * entropy from the timebase register.  This is to make the
1639 		 * VSID more random so that the PT hash function collides
1640 		 * less often.  (Note that the prime casues gcc to do shifts
1641 		 * instead of a multiply.)
1642 		 */
1643 		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1644 		hash = moea_vsidcontext & (NPMAPS - 1);
1645 		if (hash == 0)		/* 0 is special, avoid it */
1646 			continue;
1647 		n = hash >> 5;
1648 		mask = 1 << (hash & (VSID_NBPW - 1));
1649 		hash = (moea_vsidcontext & 0xfffff);
1650 		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1651 			/* anything free in this bucket? */
1652 			if (moea_vsid_bitmap[n] == 0xffffffff) {
1653 				entropy = (moea_vsidcontext >> 20);
1654 				continue;
1655 			}
1656 			i = ffs(~moea_vsid_bitmap[n]) - 1;
1657 			mask = 1 << i;
1658 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1659 			hash |= i;
1660 		}
1661 		KASSERT(!(moea_vsid_bitmap[n] & mask),
1662 		    ("Allocating in-use VSID group %#x\n", hash));
1663 		moea_vsid_bitmap[n] |= mask;
1664 		for (i = 0; i < 16; i++)
1665 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1666 		mtx_unlock(&moea_vsid_mutex);
1667 		return;
1668 	}
1669 
1670 	mtx_unlock(&moea_vsid_mutex);
1671 	panic("moea_pinit: out of segments");
1672 }
1673 
1674 /*
1675  * Initialize the pmap associated with process 0.
1676  */
1677 void
1678 moea_pinit0(mmu_t mmu, pmap_t pm)
1679 {
1680 
1681 	moea_pinit(mmu, pm);
1682 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1683 }
1684 
1685 /*
1686  * Set the physical protection on the specified range of this map as requested.
1687  */
1688 void
1689 moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1690     vm_prot_t prot)
1691 {
1692 	struct	pvo_entry *pvo, *tpvo, key;
1693 	struct	pte *pt;
1694 
1695 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1696 	    ("moea_protect: non current pmap"));
1697 
1698 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1699 		moea_remove(mmu, pm, sva, eva);
1700 		return;
1701 	}
1702 
1703 	rw_wlock(&pvh_global_lock);
1704 	PMAP_LOCK(pm);
1705 	key.pvo_vaddr = sva;
1706 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1707 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1708 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1709 		if ((prot & VM_PROT_EXECUTE) == 0)
1710 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1711 
1712 		/*
1713 		 * Grab the PTE pointer before we diddle with the cached PTE
1714 		 * copy.
1715 		 */
1716 		pt = moea_pvo_to_pte(pvo, -1);
1717 		/*
1718 		 * Change the protection of the page.
1719 		 */
1720 		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1721 		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1722 
1723 		/*
1724 		 * If the PVO is in the page table, update that pte as well.
1725 		 */
1726 		if (pt != NULL) {
1727 			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1728 			mtx_unlock(&moea_table_mutex);
1729 		}
1730 	}
1731 	rw_wunlock(&pvh_global_lock);
1732 	PMAP_UNLOCK(pm);
1733 }
1734 
1735 /*
1736  * Map a list of wired pages into kernel virtual address space.  This is
1737  * intended for temporary mappings which do not need page modification or
1738  * references recorded.  Existing mappings in the region are overwritten.
1739  */
1740 void
1741 moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1742 {
1743 	vm_offset_t va;
1744 
1745 	va = sva;
1746 	while (count-- > 0) {
1747 		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1748 		va += PAGE_SIZE;
1749 		m++;
1750 	}
1751 }
1752 
1753 /*
1754  * Remove page mappings from kernel virtual address space.  Intended for
1755  * temporary mappings entered by moea_qenter.
1756  */
1757 void
1758 moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1759 {
1760 	vm_offset_t va;
1761 
1762 	va = sva;
1763 	while (count-- > 0) {
1764 		moea_kremove(mmu, va);
1765 		va += PAGE_SIZE;
1766 	}
1767 }
1768 
1769 void
1770 moea_release(mmu_t mmu, pmap_t pmap)
1771 {
1772         int idx, mask;
1773 
1774 	/*
1775 	 * Free segment register's VSID
1776 	 */
1777         if (pmap->pm_sr[0] == 0)
1778                 panic("moea_release");
1779 
1780 	mtx_lock(&moea_vsid_mutex);
1781         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1782         mask = 1 << (idx % VSID_NBPW);
1783         idx /= VSID_NBPW;
1784         moea_vsid_bitmap[idx] &= ~mask;
1785 	mtx_unlock(&moea_vsid_mutex);
1786 	PMAP_LOCK_DESTROY(pmap);
1787 }
1788 
1789 /*
1790  * Remove the given range of addresses from the specified map.
1791  */
1792 void
1793 moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1794 {
1795 	struct	pvo_entry *pvo, *tpvo, key;
1796 
1797 	rw_wlock(&pvh_global_lock);
1798 	PMAP_LOCK(pm);
1799 	key.pvo_vaddr = sva;
1800 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1801 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1802 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1803 		moea_pvo_remove(pvo, -1);
1804 	}
1805 	PMAP_UNLOCK(pm);
1806 	rw_wunlock(&pvh_global_lock);
1807 }
1808 
1809 /*
1810  * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1811  * will reflect changes in pte's back to the vm_page.
1812  */
1813 void
1814 moea_remove_all(mmu_t mmu, vm_page_t m)
1815 {
1816 	struct  pvo_head *pvo_head;
1817 	struct	pvo_entry *pvo, *next_pvo;
1818 	pmap_t	pmap;
1819 
1820 	rw_wlock(&pvh_global_lock);
1821 	pvo_head = vm_page_to_pvoh(m);
1822 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1823 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1824 
1825 		pmap = pvo->pvo_pmap;
1826 		PMAP_LOCK(pmap);
1827 		moea_pvo_remove(pvo, -1);
1828 		PMAP_UNLOCK(pmap);
1829 	}
1830 	if ((m->aflags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
1831 		moea_attr_clear(m, PTE_CHG);
1832 		vm_page_dirty(m);
1833 	}
1834 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1835 	rw_wunlock(&pvh_global_lock);
1836 }
1837 
1838 /*
1839  * Allocate a physical page of memory directly from the phys_avail map.
1840  * Can only be called from moea_bootstrap before avail start and end are
1841  * calculated.
1842  */
1843 static vm_offset_t
1844 moea_bootstrap_alloc(vm_size_t size, u_int align)
1845 {
1846 	vm_offset_t	s, e;
1847 	int		i, j;
1848 
1849 	size = round_page(size);
1850 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1851 		if (align != 0)
1852 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1853 		else
1854 			s = phys_avail[i];
1855 		e = s + size;
1856 
1857 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1858 			continue;
1859 
1860 		if (s == phys_avail[i]) {
1861 			phys_avail[i] += size;
1862 		} else if (e == phys_avail[i + 1]) {
1863 			phys_avail[i + 1] -= size;
1864 		} else {
1865 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1866 				phys_avail[j] = phys_avail[j - 2];
1867 				phys_avail[j + 1] = phys_avail[j - 1];
1868 			}
1869 
1870 			phys_avail[i + 3] = phys_avail[i + 1];
1871 			phys_avail[i + 1] = s;
1872 			phys_avail[i + 2] = e;
1873 			phys_avail_count++;
1874 		}
1875 
1876 		return (s);
1877 	}
1878 	panic("moea_bootstrap_alloc: could not allocate memory");
1879 }
1880 
1881 static void
1882 moea_syncicache(vm_offset_t pa, vm_size_t len)
1883 {
1884 	__syncicache((void *)pa, len);
1885 }
1886 
1887 static int
1888 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1889     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1890 {
1891 	struct	pvo_entry *pvo;
1892 	u_int	sr;
1893 	int	first;
1894 	u_int	ptegidx;
1895 	int	i;
1896 	int     bootstrap;
1897 
1898 	moea_pvo_enter_calls++;
1899 	first = 0;
1900 	bootstrap = 0;
1901 
1902 	/*
1903 	 * Compute the PTE Group index.
1904 	 */
1905 	va &= ~ADDR_POFF;
1906 	sr = va_to_sr(pm->pm_sr, va);
1907 	ptegidx = va_to_pteg(sr, va);
1908 
1909 	/*
1910 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1911 	 * there is a mapping.
1912 	 */
1913 	mtx_lock(&moea_table_mutex);
1914 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1915 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1916 			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
1917 			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
1918 			    (pte_lo & PTE_PP)) {
1919 				mtx_unlock(&moea_table_mutex);
1920 				return (0);
1921 			}
1922 			moea_pvo_remove(pvo, -1);
1923 			break;
1924 		}
1925 	}
1926 
1927 	/*
1928 	 * If we aren't overwriting a mapping, try to allocate.
1929 	 */
1930 	if (moea_initialized) {
1931 		pvo = uma_zalloc(zone, M_NOWAIT);
1932 	} else {
1933 		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1934 			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1935 			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1936 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1937 		}
1938 		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1939 		moea_bpvo_pool_index++;
1940 		bootstrap = 1;
1941 	}
1942 
1943 	if (pvo == NULL) {
1944 		mtx_unlock(&moea_table_mutex);
1945 		return (ENOMEM);
1946 	}
1947 
1948 	moea_pvo_entries++;
1949 	pvo->pvo_vaddr = va;
1950 	pvo->pvo_pmap = pm;
1951 	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1952 	pvo->pvo_vaddr &= ~ADDR_POFF;
1953 	if (flags & VM_PROT_EXECUTE)
1954 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1955 	if (flags & PVO_WIRED)
1956 		pvo->pvo_vaddr |= PVO_WIRED;
1957 	if (pvo_head != &moea_pvo_kunmanaged)
1958 		pvo->pvo_vaddr |= PVO_MANAGED;
1959 	if (bootstrap)
1960 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1961 
1962 	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
1963 
1964 	/*
1965 	 * Add to pmap list
1966 	 */
1967 	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
1968 
1969 	/*
1970 	 * Remember if the list was empty and therefore will be the first
1971 	 * item.
1972 	 */
1973 	if (LIST_FIRST(pvo_head) == NULL)
1974 		first = 1;
1975 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1976 
1977 	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
1978 		pm->pm_stats.wired_count++;
1979 	pm->pm_stats.resident_count++;
1980 
1981 	/*
1982 	 * We hope this succeeds but it isn't required.
1983 	 */
1984 	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
1985 	if (i >= 0) {
1986 		PVO_PTEGIDX_SET(pvo, i);
1987 	} else {
1988 		panic("moea_pvo_enter: overflow");
1989 		moea_pte_overflow++;
1990 	}
1991 	mtx_unlock(&moea_table_mutex);
1992 
1993 	return (first ? ENOENT : 0);
1994 }
1995 
1996 static void
1997 moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
1998 {
1999 	struct	pte *pt;
2000 
2001 	/*
2002 	 * If there is an active pte entry, we need to deactivate it (and
2003 	 * save the ref & cfg bits).
2004 	 */
2005 	pt = moea_pvo_to_pte(pvo, pteidx);
2006 	if (pt != NULL) {
2007 		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2008 		mtx_unlock(&moea_table_mutex);
2009 		PVO_PTEGIDX_CLR(pvo);
2010 	} else {
2011 		moea_pte_overflow--;
2012 	}
2013 
2014 	/*
2015 	 * Update our statistics.
2016 	 */
2017 	pvo->pvo_pmap->pm_stats.resident_count--;
2018 	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
2019 		pvo->pvo_pmap->pm_stats.wired_count--;
2020 
2021 	/*
2022 	 * Save the REF/CHG bits into their cache if the page is managed.
2023 	 */
2024 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2025 		struct	vm_page *pg;
2026 
2027 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
2028 		if (pg != NULL) {
2029 			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2030 			    (PTE_REF | PTE_CHG));
2031 		}
2032 	}
2033 
2034 	/*
2035 	 * Remove this PVO from the PV and pmap lists.
2036 	 */
2037 	LIST_REMOVE(pvo, pvo_vlink);
2038 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2039 
2040 	/*
2041 	 * Remove this from the overflow list and return it to the pool
2042 	 * if we aren't going to reuse it.
2043 	 */
2044 	LIST_REMOVE(pvo, pvo_olink);
2045 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2046 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2047 		    moea_upvo_zone, pvo);
2048 	moea_pvo_entries--;
2049 	moea_pvo_remove_calls++;
2050 }
2051 
2052 static __inline int
2053 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2054 {
2055 	int	pteidx;
2056 
2057 	/*
2058 	 * We can find the actual pte entry without searching by grabbing
2059 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2060 	 * noticing the HID bit.
2061 	 */
2062 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2063 	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2064 		pteidx ^= moea_pteg_mask * 8;
2065 
2066 	return (pteidx);
2067 }
2068 
2069 static struct pvo_entry *
2070 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2071 {
2072 	struct	pvo_entry *pvo;
2073 	int	ptegidx;
2074 	u_int	sr;
2075 
2076 	va &= ~ADDR_POFF;
2077 	sr = va_to_sr(pm->pm_sr, va);
2078 	ptegidx = va_to_pteg(sr, va);
2079 
2080 	mtx_lock(&moea_table_mutex);
2081 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2082 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2083 			if (pteidx_p)
2084 				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2085 			break;
2086 		}
2087 	}
2088 	mtx_unlock(&moea_table_mutex);
2089 
2090 	return (pvo);
2091 }
2092 
2093 static struct pte *
2094 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2095 {
2096 	struct	pte *pt;
2097 
2098 	/*
2099 	 * If we haven't been supplied the ptegidx, calculate it.
2100 	 */
2101 	if (pteidx == -1) {
2102 		int	ptegidx;
2103 		u_int	sr;
2104 
2105 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2106 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2107 		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2108 	}
2109 
2110 	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2111 	mtx_lock(&moea_table_mutex);
2112 
2113 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2114 		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2115 		    "valid pte index", pvo);
2116 	}
2117 
2118 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2119 		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2120 		    "pvo but no valid pte", pvo);
2121 	}
2122 
2123 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2124 		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2125 			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2126 			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2127 		}
2128 
2129 		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2130 		    != 0) {
2131 			panic("moea_pvo_to_pte: pvo %p pte does not match "
2132 			    "pte %p in moea_pteg_table", pvo, pt);
2133 		}
2134 
2135 		mtx_assert(&moea_table_mutex, MA_OWNED);
2136 		return (pt);
2137 	}
2138 
2139 	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2140 		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2141 		    "moea_pteg_table but valid in pvo", pvo, pt);
2142 	}
2143 
2144 	mtx_unlock(&moea_table_mutex);
2145 	return (NULL);
2146 }
2147 
2148 /*
2149  * XXX: THIS STUFF SHOULD BE IN pte.c?
2150  */
2151 int
2152 moea_pte_spill(vm_offset_t addr)
2153 {
2154 	struct	pvo_entry *source_pvo, *victim_pvo;
2155 	struct	pvo_entry *pvo;
2156 	int	ptegidx, i, j;
2157 	u_int	sr;
2158 	struct	pteg *pteg;
2159 	struct	pte *pt;
2160 
2161 	moea_pte_spills++;
2162 
2163 	sr = mfsrin(addr);
2164 	ptegidx = va_to_pteg(sr, addr);
2165 
2166 	/*
2167 	 * Have to substitute some entry.  Use the primary hash for this.
2168 	 * Use low bits of timebase as random generator.
2169 	 */
2170 	pteg = &moea_pteg_table[ptegidx];
2171 	mtx_lock(&moea_table_mutex);
2172 	__asm __volatile("mftb %0" : "=r"(i));
2173 	i &= 7;
2174 	pt = &pteg->pt[i];
2175 
2176 	source_pvo = NULL;
2177 	victim_pvo = NULL;
2178 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2179 		/*
2180 		 * We need to find a pvo entry for this address.
2181 		 */
2182 		if (source_pvo == NULL &&
2183 		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2184 		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2185 			/*
2186 			 * Now found an entry to be spilled into the pteg.
2187 			 * The PTE is now valid, so we know it's active.
2188 			 */
2189 			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2190 
2191 			if (j >= 0) {
2192 				PVO_PTEGIDX_SET(pvo, j);
2193 				moea_pte_overflow--;
2194 				mtx_unlock(&moea_table_mutex);
2195 				return (1);
2196 			}
2197 
2198 			source_pvo = pvo;
2199 
2200 			if (victim_pvo != NULL)
2201 				break;
2202 		}
2203 
2204 		/*
2205 		 * We also need the pvo entry of the victim we are replacing
2206 		 * so save the R & C bits of the PTE.
2207 		 */
2208 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2209 		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2210 			victim_pvo = pvo;
2211 			if (source_pvo != NULL)
2212 				break;
2213 		}
2214 	}
2215 
2216 	if (source_pvo == NULL) {
2217 		mtx_unlock(&moea_table_mutex);
2218 		return (0);
2219 	}
2220 
2221 	if (victim_pvo == NULL) {
2222 		if ((pt->pte_hi & PTE_HID) == 0)
2223 			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2224 			    "entry", pt);
2225 
2226 		/*
2227 		 * If this is a secondary PTE, we need to search it's primary
2228 		 * pvo bucket for the matching PVO.
2229 		 */
2230 		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2231 		    pvo_olink) {
2232 			/*
2233 			 * We also need the pvo entry of the victim we are
2234 			 * replacing so save the R & C bits of the PTE.
2235 			 */
2236 			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2237 				victim_pvo = pvo;
2238 				break;
2239 			}
2240 		}
2241 
2242 		if (victim_pvo == NULL)
2243 			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2244 			    "entry", pt);
2245 	}
2246 
2247 	/*
2248 	 * We are invalidating the TLB entry for the EA we are replacing even
2249 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2250 	 * contained in the TLB entry.
2251 	 */
2252 	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2253 
2254 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2255 	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2256 
2257 	PVO_PTEGIDX_CLR(victim_pvo);
2258 	PVO_PTEGIDX_SET(source_pvo, i);
2259 	moea_pte_replacements++;
2260 
2261 	mtx_unlock(&moea_table_mutex);
2262 	return (1);
2263 }
2264 
2265 static int
2266 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2267 {
2268 	struct	pte *pt;
2269 	int	i;
2270 
2271 	mtx_assert(&moea_table_mutex, MA_OWNED);
2272 
2273 	/*
2274 	 * First try primary hash.
2275 	 */
2276 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2277 		if ((pt->pte_hi & PTE_VALID) == 0) {
2278 			pvo_pt->pte_hi &= ~PTE_HID;
2279 			moea_pte_set(pt, pvo_pt);
2280 			return (i);
2281 		}
2282 	}
2283 
2284 	/*
2285 	 * Now try secondary hash.
2286 	 */
2287 	ptegidx ^= moea_pteg_mask;
2288 
2289 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2290 		if ((pt->pte_hi & PTE_VALID) == 0) {
2291 			pvo_pt->pte_hi |= PTE_HID;
2292 			moea_pte_set(pt, pvo_pt);
2293 			return (i);
2294 		}
2295 	}
2296 
2297 	panic("moea_pte_insert: overflow");
2298 	return (-1);
2299 }
2300 
2301 static boolean_t
2302 moea_query_bit(vm_page_t m, int ptebit)
2303 {
2304 	struct	pvo_entry *pvo;
2305 	struct	pte *pt;
2306 
2307 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2308 	if (moea_attr_fetch(m) & ptebit)
2309 		return (TRUE);
2310 
2311 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2312 
2313 		/*
2314 		 * See if we saved the bit off.  If so, cache it and return
2315 		 * success.
2316 		 */
2317 		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2318 			moea_attr_save(m, ptebit);
2319 			return (TRUE);
2320 		}
2321 	}
2322 
2323 	/*
2324 	 * No luck, now go through the hard part of looking at the PTEs
2325 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2326 	 * the PTEs.
2327 	 */
2328 	powerpc_sync();
2329 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2330 
2331 		/*
2332 		 * See if this pvo has a valid PTE.  if so, fetch the
2333 		 * REF/CHG bits from the valid PTE.  If the appropriate
2334 		 * ptebit is set, cache it and return success.
2335 		 */
2336 		pt = moea_pvo_to_pte(pvo, -1);
2337 		if (pt != NULL) {
2338 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2339 			mtx_unlock(&moea_table_mutex);
2340 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2341 				moea_attr_save(m, ptebit);
2342 				return (TRUE);
2343 			}
2344 		}
2345 	}
2346 
2347 	return (FALSE);
2348 }
2349 
2350 static u_int
2351 moea_clear_bit(vm_page_t m, int ptebit)
2352 {
2353 	u_int	count;
2354 	struct	pvo_entry *pvo;
2355 	struct	pte *pt;
2356 
2357 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2358 
2359 	/*
2360 	 * Clear the cached value.
2361 	 */
2362 	moea_attr_clear(m, ptebit);
2363 
2364 	/*
2365 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2366 	 * we can reset the right ones).  note that since the pvo entries and
2367 	 * list heads are accessed via BAT0 and are never placed in the page
2368 	 * table, we don't have to worry about further accesses setting the
2369 	 * REF/CHG bits.
2370 	 */
2371 	powerpc_sync();
2372 
2373 	/*
2374 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2375 	 * valid pte clear the ptebit from the valid pte.
2376 	 */
2377 	count = 0;
2378 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2379 		pt = moea_pvo_to_pte(pvo, -1);
2380 		if (pt != NULL) {
2381 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2382 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2383 				count++;
2384 				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2385 			}
2386 			mtx_unlock(&moea_table_mutex);
2387 		}
2388 		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2389 	}
2390 
2391 	return (count);
2392 }
2393 
2394 /*
2395  * Return true if the physical range is encompassed by the battable[idx]
2396  */
2397 static int
2398 moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2399 {
2400 	u_int prot;
2401 	u_int32_t start;
2402 	u_int32_t end;
2403 	u_int32_t bat_ble;
2404 
2405 	/*
2406 	 * Return immediately if not a valid mapping
2407 	 */
2408 	if (!(battable[idx].batu & BAT_Vs))
2409 		return (EINVAL);
2410 
2411 	/*
2412 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2413 	 * so it can function as an i/o page
2414 	 */
2415 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2416 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2417 		return (EPERM);
2418 
2419 	/*
2420 	 * The address should be within the BAT range. Assume that the
2421 	 * start address in the BAT has the correct alignment (thus
2422 	 * not requiring masking)
2423 	 */
2424 	start = battable[idx].batl & BAT_PBS;
2425 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2426 	end = start | (bat_ble << 15) | 0x7fff;
2427 
2428 	if ((pa < start) || ((pa + size) > end))
2429 		return (ERANGE);
2430 
2431 	return (0);
2432 }
2433 
2434 boolean_t
2435 moea_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2436 {
2437 	int i;
2438 
2439 	/*
2440 	 * This currently does not work for entries that
2441 	 * overlap 256M BAT segments.
2442 	 */
2443 
2444 	for(i = 0; i < 16; i++)
2445 		if (moea_bat_mapped(i, pa, size) == 0)
2446 			return (0);
2447 
2448 	return (EFAULT);
2449 }
2450 
2451 /*
2452  * Map a set of physical memory pages into the kernel virtual
2453  * address space. Return a pointer to where it is mapped. This
2454  * routine is intended to be used for mapping device memory,
2455  * NOT real memory.
2456  */
2457 void *
2458 moea_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2459 {
2460 
2461 	return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2462 }
2463 
2464 void *
2465 moea_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2466 {
2467 	vm_offset_t va, tmpva, ppa, offset;
2468 	int i;
2469 
2470 	ppa = trunc_page(pa);
2471 	offset = pa & PAGE_MASK;
2472 	size = roundup(offset + size, PAGE_SIZE);
2473 
2474 	/*
2475 	 * If the physical address lies within a valid BAT table entry,
2476 	 * return the 1:1 mapping. This currently doesn't work
2477 	 * for regions that overlap 256M BAT segments.
2478 	 */
2479 	for (i = 0; i < 16; i++) {
2480 		if (moea_bat_mapped(i, pa, size) == 0)
2481 			return ((void *) pa);
2482 	}
2483 
2484 	va = kmem_alloc_nofault(kernel_map, size);
2485 	if (!va)
2486 		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2487 
2488 	for (tmpva = va; size > 0;) {
2489 		moea_kenter_attr(mmu, tmpva, ppa, ma);
2490 		tlbie(tmpva);
2491 		size -= PAGE_SIZE;
2492 		tmpva += PAGE_SIZE;
2493 		ppa += PAGE_SIZE;
2494 	}
2495 
2496 	return ((void *)(va + offset));
2497 }
2498 
2499 void
2500 moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2501 {
2502 	vm_offset_t base, offset;
2503 
2504 	/*
2505 	 * If this is outside kernel virtual space, then it's a
2506 	 * battable entry and doesn't require unmapping
2507 	 */
2508 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2509 		base = trunc_page(va);
2510 		offset = va & PAGE_MASK;
2511 		size = roundup(offset + size, PAGE_SIZE);
2512 		kmem_free(kernel_map, base, size);
2513 	}
2514 }
2515 
2516 static void
2517 moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2518 {
2519 	struct pvo_entry *pvo;
2520 	vm_offset_t lim;
2521 	vm_paddr_t pa;
2522 	vm_size_t len;
2523 
2524 	PMAP_LOCK(pm);
2525 	while (sz > 0) {
2526 		lim = round_page(va);
2527 		len = MIN(lim - va, sz);
2528 		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2529 		if (pvo != NULL) {
2530 			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2531 			    (va & ADDR_POFF);
2532 			moea_syncicache(pa, len);
2533 		}
2534 		va += len;
2535 		sz -= len;
2536 	}
2537 	PMAP_UNLOCK(pm);
2538 }
2539