xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision 96474d2a3fa895fb9636183403fc8ca7ccf60216)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD AND BSD-4-Clause
3  *
4  * Copyright (c) 2001 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 /*-
32  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
33  * Copyright (C) 1995, 1996 TooLs GmbH.
34  * All rights reserved.
35  *
36  * Redistribution and use in source and binary forms, with or without
37  * modification, are permitted provided that the following conditions
38  * are met:
39  * 1. Redistributions of source code must retain the above copyright
40  *    notice, this list of conditions and the following disclaimer.
41  * 2. Redistributions in binary form must reproduce the above copyright
42  *    notice, this list of conditions and the following disclaimer in the
43  *    documentation and/or other materials provided with the distribution.
44  * 3. All advertising materials mentioning features or use of this software
45  *    must display the following acknowledgement:
46  *	This product includes software developed by TooLs GmbH.
47  * 4. The name of TooLs GmbH may not be used to endorse or promote products
48  *    derived from this software without specific prior written permission.
49  *
50  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
51  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
52  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
53  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
54  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
55  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
56  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
57  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
58  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
59  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
60  *
61  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
62  */
63 /*-
64  * Copyright (C) 2001 Benno Rice.
65  * All rights reserved.
66  *
67  * Redistribution and use in source and binary forms, with or without
68  * modification, are permitted provided that the following conditions
69  * are met:
70  * 1. Redistributions of source code must retain the above copyright
71  *    notice, this list of conditions and the following disclaimer.
72  * 2. Redistributions in binary form must reproduce the above copyright
73  *    notice, this list of conditions and the following disclaimer in the
74  *    documentation and/or other materials provided with the distribution.
75  *
76  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
77  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
78  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
79  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
80  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
81  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
82  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
83  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
84  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
85  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
86  */
87 
88 #include <sys/cdefs.h>
89 __FBSDID("$FreeBSD$");
90 
91 /*
92  * Manages physical address maps.
93  *
94  * Since the information managed by this module is also stored by the
95  * logical address mapping module, this module may throw away valid virtual
96  * to physical mappings at almost any time.  However, invalidations of
97  * mappings must be done as requested.
98  *
99  * In order to cope with hardware architectures which make virtual to
100  * physical map invalidates expensive, this module may delay invalidate
101  * reduced protection operations until such time as they are actually
102  * necessary.  This module is given full information as to which processors
103  * are currently using which maps, and to when physical maps must be made
104  * correct.
105  */
106 
107 #include "opt_kstack_pages.h"
108 
109 #include <sys/param.h>
110 #include <sys/kernel.h>
111 #include <sys/conf.h>
112 #include <sys/queue.h>
113 #include <sys/cpuset.h>
114 #include <sys/kerneldump.h>
115 #include <sys/ktr.h>
116 #include <sys/lock.h>
117 #include <sys/mman.h>
118 #include <sys/msgbuf.h>
119 #include <sys/mutex.h>
120 #include <sys/proc.h>
121 #include <sys/rwlock.h>
122 #include <sys/sched.h>
123 #include <sys/sysctl.h>
124 #include <sys/systm.h>
125 #include <sys/vmmeter.h>
126 
127 #include <dev/ofw/openfirm.h>
128 
129 #include <vm/vm.h>
130 #include <vm/pmap.h>
131 #include <vm/vm_param.h>
132 #include <vm/vm_kern.h>
133 #include <vm/vm_page.h>
134 #include <vm/vm_map.h>
135 #include <vm/vm_object.h>
136 #include <vm/vm_extern.h>
137 #include <vm/vm_page.h>
138 #include <vm/vm_phys.h>
139 #include <vm/vm_pageout.h>
140 #include <vm/uma.h>
141 
142 #include <machine/cpu.h>
143 #include <machine/platform.h>
144 #include <machine/bat.h>
145 #include <machine/frame.h>
146 #include <machine/md_var.h>
147 #include <machine/psl.h>
148 #include <machine/pte.h>
149 #include <machine/smp.h>
150 #include <machine/sr.h>
151 #include <machine/mmuvar.h>
152 #include <machine/trap.h>
153 
154 #define	MOEA_DEBUG
155 
156 #define TODO	panic("%s: not implemented", __func__);
157 
158 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
159 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
160 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
161 
162 /* Get physical address from PVO. */
163 #define PVO_PADDR(pvo)		((pvo)->pvo_pte.pte.pte_lo & PTE_RPGN)
164 
165 struct ofw_map {
166 	vm_offset_t	om_va;
167 	vm_size_t	om_len;
168 	vm_offset_t	om_pa;
169 	u_int		om_mode;
170 };
171 
172 extern unsigned char _etext[];
173 extern unsigned char _end[];
174 
175 /*
176  * Map of physical memory regions.
177  */
178 static struct	mem_region *regions;
179 static struct	mem_region *pregions;
180 static u_int    phys_avail_count;
181 static int	regions_sz, pregions_sz;
182 static struct	ofw_map *translations;
183 
184 /*
185  * Lock for the pteg and pvo tables.
186  */
187 struct mtx	moea_table_mutex;
188 struct mtx	moea_vsid_mutex;
189 
190 /* tlbie instruction synchronization */
191 static struct mtx tlbie_mtx;
192 
193 /*
194  * PTEG data.
195  */
196 static struct	pteg *moea_pteg_table;
197 u_int		moea_pteg_count;
198 u_int		moea_pteg_mask;
199 
200 /*
201  * PVO data.
202  */
203 struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
204 struct	pvo_head moea_pvo_kunmanaged =
205     LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
206 
207 static struct rwlock_padalign pvh_global_lock;
208 
209 uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
210 uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
211 
212 #define	BPVO_POOL_SIZE	32768
213 static struct	pvo_entry *moea_bpvo_pool;
214 static int	moea_bpvo_pool_index = 0;
215 
216 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
217 static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
218 
219 static boolean_t moea_initialized = FALSE;
220 
221 /*
222  * Statistics.
223  */
224 u_int	moea_pte_valid = 0;
225 u_int	moea_pte_overflow = 0;
226 u_int	moea_pte_replacements = 0;
227 u_int	moea_pvo_entries = 0;
228 u_int	moea_pvo_enter_calls = 0;
229 u_int	moea_pvo_remove_calls = 0;
230 u_int	moea_pte_spills = 0;
231 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
232     0, "");
233 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
234     &moea_pte_overflow, 0, "");
235 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
236     &moea_pte_replacements, 0, "");
237 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
238     0, "");
239 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
240     &moea_pvo_enter_calls, 0, "");
241 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
242     &moea_pvo_remove_calls, 0, "");
243 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
244     &moea_pte_spills, 0, "");
245 
246 /*
247  * Allocate physical memory for use in moea_bootstrap.
248  */
249 static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
250 
251 /*
252  * PTE calls.
253  */
254 static int		moea_pte_insert(u_int, struct pte *);
255 
256 /*
257  * PVO calls.
258  */
259 static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
260 		    vm_offset_t, vm_paddr_t, u_int, int);
261 static void	moea_pvo_remove(struct pvo_entry *, int);
262 static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
263 static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
264 
265 /*
266  * Utility routines.
267  */
268 static int		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
269 			    vm_prot_t, u_int, int8_t);
270 static void		moea_syncicache(vm_paddr_t, vm_size_t);
271 static boolean_t	moea_query_bit(vm_page_t, int);
272 static u_int		moea_clear_bit(vm_page_t, int);
273 static void		moea_kremove(vm_offset_t);
274 int		moea_pte_spill(vm_offset_t);
275 
276 /*
277  * Kernel MMU interface
278  */
279 void moea_clear_modify(vm_page_t);
280 void moea_copy_page(vm_page_t, vm_page_t);
281 void moea_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
282     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
283 int moea_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int,
284     int8_t);
285 void moea_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
286     vm_prot_t);
287 void moea_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
288 vm_paddr_t moea_extract(pmap_t, vm_offset_t);
289 vm_page_t moea_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t);
290 void moea_init(void);
291 boolean_t moea_is_modified(vm_page_t);
292 boolean_t moea_is_prefaultable(pmap_t, vm_offset_t);
293 boolean_t moea_is_referenced(vm_page_t);
294 int moea_ts_referenced(vm_page_t);
295 vm_offset_t moea_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
296 static int moea_mincore(pmap_t, vm_offset_t, vm_paddr_t *);
297 boolean_t moea_page_exists_quick(pmap_t, vm_page_t);
298 void moea_page_init(vm_page_t);
299 int moea_page_wired_mappings(vm_page_t);
300 int moea_pinit(pmap_t);
301 void moea_pinit0(pmap_t);
302 void moea_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
303 void moea_qenter(vm_offset_t, vm_page_t *, int);
304 void moea_qremove(vm_offset_t, int);
305 void moea_release(pmap_t);
306 void moea_remove(pmap_t, vm_offset_t, vm_offset_t);
307 void moea_remove_all(vm_page_t);
308 void moea_remove_write(vm_page_t);
309 void moea_unwire(pmap_t, vm_offset_t, vm_offset_t);
310 void moea_zero_page(vm_page_t);
311 void moea_zero_page_area(vm_page_t, int, int);
312 void moea_activate(struct thread *);
313 void moea_deactivate(struct thread *);
314 void moea_cpu_bootstrap(int);
315 void moea_bootstrap(vm_offset_t, vm_offset_t);
316 void *moea_mapdev(vm_paddr_t, vm_size_t);
317 void *moea_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
318 void moea_unmapdev(vm_offset_t, vm_size_t);
319 vm_paddr_t moea_kextract(vm_offset_t);
320 void moea_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t);
321 void moea_kenter(vm_offset_t, vm_paddr_t);
322 void moea_page_set_memattr(vm_page_t m, vm_memattr_t ma);
323 boolean_t moea_dev_direct_mapped(vm_paddr_t, vm_size_t);
324 static void moea_sync_icache(pmap_t, vm_offset_t, vm_size_t);
325 void moea_dumpsys_map(vm_paddr_t pa, size_t sz, void **va);
326 void moea_scan_init(void);
327 vm_offset_t moea_quick_enter_page(vm_page_t m);
328 void moea_quick_remove_page(vm_offset_t addr);
329 boolean_t moea_page_is_mapped(vm_page_t m);
330 static int moea_map_user_ptr(pmap_t pm,
331     volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen);
332 static int moea_decode_kernel_ptr(vm_offset_t addr,
333     int *is_user, vm_offset_t *decoded_addr);
334 
335 static struct pmap_funcs moea_methods = {
336 	.clear_modify = moea_clear_modify,
337 	.copy_page = moea_copy_page,
338 	.copy_pages = moea_copy_pages,
339 	.enter = moea_enter,
340 	.enter_object = moea_enter_object,
341 	.enter_quick = moea_enter_quick,
342 	.extract = moea_extract,
343 	.extract_and_hold = moea_extract_and_hold,
344 	.init = moea_init,
345 	.is_modified = moea_is_modified,
346 	.is_prefaultable = moea_is_prefaultable,
347 	.is_referenced = moea_is_referenced,
348 	.ts_referenced = moea_ts_referenced,
349 	.map =      		moea_map,
350 	.page_exists_quick = moea_page_exists_quick,
351 	.page_init = moea_page_init,
352 	.page_wired_mappings = moea_page_wired_mappings,
353 	.pinit = moea_pinit,
354 	.pinit0 = moea_pinit0,
355 	.protect = moea_protect,
356 	.qenter = moea_qenter,
357 	.qremove = moea_qremove,
358 	.release = moea_release,
359 	.remove = moea_remove,
360 	.remove_all = moea_remove_all,
361 	.mincore = moea_mincore,
362 	.remove_write = moea_remove_write,
363 	.sync_icache = moea_sync_icache,
364 	.unwire = moea_unwire,
365 	.zero_page =        	moea_zero_page,
366 	.zero_page_area = moea_zero_page_area,
367 	.activate = moea_activate,
368 	.deactivate =       	moea_deactivate,
369 	.page_set_memattr = moea_page_set_memattr,
370 	.quick_enter_page =  moea_quick_enter_page,
371 	.quick_remove_page =  moea_quick_remove_page,
372 	.page_is_mapped = moea_page_is_mapped,
373 
374 	/* Internal interfaces */
375 	.bootstrap =        	moea_bootstrap,
376 	.cpu_bootstrap =    	moea_cpu_bootstrap,
377 	.mapdev_attr = moea_mapdev_attr,
378 	.mapdev = moea_mapdev,
379 	.unmapdev = moea_unmapdev,
380 	.kextract = moea_kextract,
381 	.kenter = moea_kenter,
382 	.kenter_attr = moea_kenter_attr,
383 	.dev_direct_mapped = moea_dev_direct_mapped,
384 	.dumpsys_pa_init = moea_scan_init,
385 	.dumpsys_map_chunk = moea_dumpsys_map,
386 	.map_user_ptr = moea_map_user_ptr,
387 	.decode_kernel_ptr =  moea_decode_kernel_ptr,
388 };
389 
390 MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods);
391 
392 static __inline uint32_t
393 moea_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
394 {
395 	uint32_t pte_lo;
396 	int i;
397 
398 	if (ma != VM_MEMATTR_DEFAULT) {
399 		switch (ma) {
400 		case VM_MEMATTR_UNCACHEABLE:
401 			return (PTE_I | PTE_G);
402 		case VM_MEMATTR_CACHEABLE:
403 			return (PTE_M);
404 		case VM_MEMATTR_WRITE_COMBINING:
405 		case VM_MEMATTR_WRITE_BACK:
406 		case VM_MEMATTR_PREFETCHABLE:
407 			return (PTE_I);
408 		case VM_MEMATTR_WRITE_THROUGH:
409 			return (PTE_W | PTE_M);
410 		}
411 	}
412 
413 	/*
414 	 * Assume the page is cache inhibited and access is guarded unless
415 	 * it's in our available memory array.
416 	 */
417 	pte_lo = PTE_I | PTE_G;
418 	for (i = 0; i < pregions_sz; i++) {
419 		if ((pa >= pregions[i].mr_start) &&
420 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
421 			pte_lo = PTE_M;
422 			break;
423 		}
424 	}
425 
426 	return pte_lo;
427 }
428 
429 /*
430  * Translate OFW translations into VM attributes.
431  */
432 static __inline vm_memattr_t
433 moea_bootstrap_convert_wimg(uint32_t mode)
434 {
435 
436 	switch (mode) {
437 	case (PTE_I | PTE_G):
438 		/* PCI device memory */
439 		return VM_MEMATTR_UNCACHEABLE;
440 	case (PTE_M):
441 		/* Explicitly coherent */
442 		return VM_MEMATTR_CACHEABLE;
443 	case 0: /* Default claim */
444 	case 2: /* Alternate PP bits set by OF for the original payload */
445 		/* "Normal" memory. */
446 		return VM_MEMATTR_DEFAULT;
447 
448 	default:
449 		/* Err on the side of caution for unknowns */
450 		/* XXX should we panic instead? */
451 		return VM_MEMATTR_UNCACHEABLE;
452 	}
453 }
454 
455 static void
456 tlbie(vm_offset_t va)
457 {
458 
459 	mtx_lock_spin(&tlbie_mtx);
460 	__asm __volatile("ptesync");
461 	__asm __volatile("tlbie %0" :: "r"(va));
462 	__asm __volatile("eieio; tlbsync; ptesync");
463 	mtx_unlock_spin(&tlbie_mtx);
464 }
465 
466 static void
467 tlbia(void)
468 {
469 	vm_offset_t va;
470 
471 	for (va = 0; va < 0x00040000; va += 0x00001000) {
472 		__asm __volatile("tlbie %0" :: "r"(va));
473 		powerpc_sync();
474 	}
475 	__asm __volatile("tlbsync");
476 	powerpc_sync();
477 }
478 
479 static __inline int
480 va_to_sr(u_int *sr, vm_offset_t va)
481 {
482 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
483 }
484 
485 static __inline u_int
486 va_to_pteg(u_int sr, vm_offset_t addr)
487 {
488 	u_int hash;
489 
490 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
491 	    ADDR_PIDX_SHFT);
492 	return (hash & moea_pteg_mask);
493 }
494 
495 static __inline struct pvo_head *
496 vm_page_to_pvoh(vm_page_t m)
497 {
498 
499 	return (&m->md.mdpg_pvoh);
500 }
501 
502 static __inline void
503 moea_attr_clear(vm_page_t m, int ptebit)
504 {
505 
506 	rw_assert(&pvh_global_lock, RA_WLOCKED);
507 	m->md.mdpg_attrs &= ~ptebit;
508 }
509 
510 static __inline int
511 moea_attr_fetch(vm_page_t m)
512 {
513 
514 	return (m->md.mdpg_attrs);
515 }
516 
517 static __inline void
518 moea_attr_save(vm_page_t m, int ptebit)
519 {
520 
521 	rw_assert(&pvh_global_lock, RA_WLOCKED);
522 	m->md.mdpg_attrs |= ptebit;
523 }
524 
525 static __inline int
526 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
527 {
528 	if (pt->pte_hi == pvo_pt->pte_hi)
529 		return (1);
530 
531 	return (0);
532 }
533 
534 static __inline int
535 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
536 {
537 	return (pt->pte_hi & ~PTE_VALID) ==
538 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
539 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
540 }
541 
542 static __inline void
543 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
544 {
545 
546 	mtx_assert(&moea_table_mutex, MA_OWNED);
547 
548 	/*
549 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
550 	 * set when the real pte is set in memory.
551 	 *
552 	 * Note: Don't set the valid bit for correct operation of tlb update.
553 	 */
554 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
555 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
556 	pt->pte_lo = pte_lo;
557 }
558 
559 static __inline void
560 moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
561 {
562 
563 	mtx_assert(&moea_table_mutex, MA_OWNED);
564 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
565 }
566 
567 static __inline void
568 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
569 {
570 
571 	mtx_assert(&moea_table_mutex, MA_OWNED);
572 
573 	/*
574 	 * As shown in Section 7.6.3.2.3
575 	 */
576 	pt->pte_lo &= ~ptebit;
577 	tlbie(va);
578 }
579 
580 static __inline void
581 moea_pte_set(struct pte *pt, struct pte *pvo_pt)
582 {
583 
584 	mtx_assert(&moea_table_mutex, MA_OWNED);
585 	pvo_pt->pte_hi |= PTE_VALID;
586 
587 	/*
588 	 * Update the PTE as defined in section 7.6.3.1.
589 	 * Note that the REF/CHG bits are from pvo_pt and thus should have
590 	 * been saved so this routine can restore them (if desired).
591 	 */
592 	pt->pte_lo = pvo_pt->pte_lo;
593 	powerpc_sync();
594 	pt->pte_hi = pvo_pt->pte_hi;
595 	powerpc_sync();
596 	moea_pte_valid++;
597 }
598 
599 static __inline void
600 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
601 {
602 
603 	mtx_assert(&moea_table_mutex, MA_OWNED);
604 	pvo_pt->pte_hi &= ~PTE_VALID;
605 
606 	/*
607 	 * Force the reg & chg bits back into the PTEs.
608 	 */
609 	powerpc_sync();
610 
611 	/*
612 	 * Invalidate the pte.
613 	 */
614 	pt->pte_hi &= ~PTE_VALID;
615 
616 	tlbie(va);
617 
618 	/*
619 	 * Save the reg & chg bits.
620 	 */
621 	moea_pte_synch(pt, pvo_pt);
622 	moea_pte_valid--;
623 }
624 
625 static __inline void
626 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
627 {
628 
629 	/*
630 	 * Invalidate the PTE
631 	 */
632 	moea_pte_unset(pt, pvo_pt, va);
633 	moea_pte_set(pt, pvo_pt);
634 }
635 
636 /*
637  * Quick sort callout for comparing memory regions.
638  */
639 static int	om_cmp(const void *a, const void *b);
640 
641 static int
642 om_cmp(const void *a, const void *b)
643 {
644 	const struct	ofw_map *mapa;
645 	const struct	ofw_map *mapb;
646 
647 	mapa = a;
648 	mapb = b;
649 	if (mapa->om_pa < mapb->om_pa)
650 		return (-1);
651 	else if (mapa->om_pa > mapb->om_pa)
652 		return (1);
653 	else
654 		return (0);
655 }
656 
657 void
658 moea_cpu_bootstrap(int ap)
659 {
660 	u_int sdr;
661 	int i;
662 
663 	if (ap) {
664 		powerpc_sync();
665 		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
666 		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
667 		isync();
668 		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
669 		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
670 		isync();
671 	}
672 
673 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
674 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
675 	isync();
676 
677 	__asm __volatile("mtibatu 1,%0" :: "r"(0));
678 	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
679 	__asm __volatile("mtibatu 2,%0" :: "r"(0));
680 	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
681 	__asm __volatile("mtibatu 3,%0" :: "r"(0));
682 	isync();
683 
684 	for (i = 0; i < 16; i++)
685 		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
686 	powerpc_sync();
687 
688 	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
689 	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
690 	isync();
691 
692 	tlbia();
693 }
694 
695 void
696 moea_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
697 {
698 	ihandle_t	mmui;
699 	phandle_t	chosen, mmu;
700 	int		sz;
701 	int		i, j;
702 	vm_size_t	size, physsz, hwphyssz;
703 	vm_offset_t	pa, va, off;
704 	void		*dpcpu;
705 
706 	/*
707 	 * Map PCI memory space.
708 	 */
709 	battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
710 	battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
711 
712 	battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
713 	battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
714 
715 	battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
716 	battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
717 
718 	battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
719 	battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
720 
721 	powerpc_sync();
722 
723 	/* map pci space */
724 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
725 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
726 	isync();
727 
728 	/* set global direct map flag */
729 	hw_direct_map = 1;
730 
731 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
732 	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
733 
734 	for (i = 0; i < pregions_sz; i++) {
735 		vm_offset_t pa;
736 		vm_offset_t end;
737 
738 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
739 			pregions[i].mr_start,
740 			pregions[i].mr_start + pregions[i].mr_size,
741 			pregions[i].mr_size);
742 		/*
743 		 * Install entries into the BAT table to allow all
744 		 * of physmem to be convered by on-demand BAT entries.
745 		 * The loop will sometimes set the same battable element
746 		 * twice, but that's fine since they won't be used for
747 		 * a while yet.
748 		 */
749 		pa = pregions[i].mr_start & 0xf0000000;
750 		end = pregions[i].mr_start + pregions[i].mr_size;
751 		do {
752                         u_int n = pa >> ADDR_SR_SHFT;
753 
754 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
755 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
756 			pa += SEGMENT_LENGTH;
757 		} while (pa < end);
758 	}
759 
760 	if (PHYS_AVAIL_ENTRIES < regions_sz)
761 		panic("moea_bootstrap: phys_avail too small");
762 
763 	phys_avail_count = 0;
764 	physsz = 0;
765 	hwphyssz = 0;
766 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
767 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
768 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
769 		    regions[i].mr_start + regions[i].mr_size,
770 		    regions[i].mr_size);
771 		if (hwphyssz != 0 &&
772 		    (physsz + regions[i].mr_size) >= hwphyssz) {
773 			if (physsz < hwphyssz) {
774 				phys_avail[j] = regions[i].mr_start;
775 				phys_avail[j + 1] = regions[i].mr_start +
776 				    hwphyssz - physsz;
777 				physsz = hwphyssz;
778 				phys_avail_count++;
779 			}
780 			break;
781 		}
782 		phys_avail[j] = regions[i].mr_start;
783 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
784 		phys_avail_count++;
785 		physsz += regions[i].mr_size;
786 	}
787 
788 	/* Check for overlap with the kernel and exception vectors */
789 	for (j = 0; j < 2*phys_avail_count; j+=2) {
790 		if (phys_avail[j] < EXC_LAST)
791 			phys_avail[j] += EXC_LAST;
792 
793 		if (kernelstart >= phys_avail[j] &&
794 		    kernelstart < phys_avail[j+1]) {
795 			if (kernelend < phys_avail[j+1]) {
796 				phys_avail[2*phys_avail_count] =
797 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
798 				phys_avail[2*phys_avail_count + 1] =
799 				    phys_avail[j+1];
800 				phys_avail_count++;
801 			}
802 
803 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
804 		}
805 
806 		if (kernelend >= phys_avail[j] &&
807 		    kernelend < phys_avail[j+1]) {
808 			if (kernelstart > phys_avail[j]) {
809 				phys_avail[2*phys_avail_count] = phys_avail[j];
810 				phys_avail[2*phys_avail_count + 1] =
811 				    kernelstart & ~PAGE_MASK;
812 				phys_avail_count++;
813 			}
814 
815 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
816 		}
817 	}
818 
819 	physmem = btoc(physsz);
820 
821 	/*
822 	 * Allocate PTEG table.
823 	 */
824 #ifdef PTEGCOUNT
825 	moea_pteg_count = PTEGCOUNT;
826 #else
827 	moea_pteg_count = 0x1000;
828 
829 	while (moea_pteg_count < physmem)
830 		moea_pteg_count <<= 1;
831 
832 	moea_pteg_count >>= 1;
833 #endif /* PTEGCOUNT */
834 
835 	size = moea_pteg_count * sizeof(struct pteg);
836 	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
837 	    size);
838 	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
839 	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
840 	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
841 	moea_pteg_mask = moea_pteg_count - 1;
842 
843 	/*
844 	 * Allocate pv/overflow lists.
845 	 */
846 	size = sizeof(struct pvo_head) * moea_pteg_count;
847 	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
848 	    PAGE_SIZE);
849 	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
850 	for (i = 0; i < moea_pteg_count; i++)
851 		LIST_INIT(&moea_pvo_table[i]);
852 
853 	/*
854 	 * Initialize the lock that synchronizes access to the pteg and pvo
855 	 * tables.
856 	 */
857 	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
858 	    MTX_RECURSE);
859 	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
860 
861 	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
862 
863 	/*
864 	 * Initialise the unmanaged pvo pool.
865 	 */
866 	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
867 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
868 	moea_bpvo_pool_index = 0;
869 
870 	/*
871 	 * Make sure kernel vsid is allocated as well as VSID 0.
872 	 */
873 	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
874 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
875 	moea_vsid_bitmap[0] |= 1;
876 
877 	/*
878 	 * Initialize the kernel pmap (which is statically allocated).
879 	 */
880 	PMAP_LOCK_INIT(kernel_pmap);
881 	for (i = 0; i < 16; i++)
882 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
883 	CPU_FILL(&kernel_pmap->pm_active);
884 	RB_INIT(&kernel_pmap->pmap_pvo);
885 
886  	/*
887 	 * Initialize the global pv list lock.
888 	 */
889 	rw_init(&pvh_global_lock, "pmap pv global");
890 
891 	/*
892 	 * Set up the Open Firmware mappings
893 	 */
894 	chosen = OF_finddevice("/chosen");
895 	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
896 	    (mmu = OF_instance_to_package(mmui)) != -1 &&
897 	    (sz = OF_getproplen(mmu, "translations")) != -1) {
898 		translations = NULL;
899 		for (i = 0; phys_avail[i] != 0; i += 2) {
900 			if (phys_avail[i + 1] >= sz) {
901 				translations = (struct ofw_map *)phys_avail[i];
902 				break;
903 			}
904 		}
905 		if (translations == NULL)
906 			panic("moea_bootstrap: no space to copy translations");
907 		bzero(translations, sz);
908 		if (OF_getprop(mmu, "translations", translations, sz) == -1)
909 			panic("moea_bootstrap: can't get ofw translations");
910 		CTR0(KTR_PMAP, "moea_bootstrap: translations");
911 		sz /= sizeof(*translations);
912 		qsort(translations, sz, sizeof (*translations), om_cmp);
913 		for (i = 0; i < sz; i++) {
914 			CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
915 			    translations[i].om_pa, translations[i].om_va,
916 			    translations[i].om_len);
917 
918 			/*
919 			 * If the mapping is 1:1, let the RAM and device
920 			 * on-demand BAT tables take care of the translation.
921 			 *
922 			 * However, always enter mappings for segment 16,
923 			 * which is mixed-protection and therefore not
924 			 * compatible with a BAT entry.
925 			 */
926 			if ((translations[i].om_va >> ADDR_SR_SHFT) != 0xf &&
927 				translations[i].om_va == translations[i].om_pa)
928 					continue;
929 
930 			/* Enter the pages */
931 			for (off = 0; off < translations[i].om_len;
932 			    off += PAGE_SIZE)
933 				moea_kenter_attr(translations[i].om_va + off,
934 				    translations[i].om_pa + off,
935 				    moea_bootstrap_convert_wimg(translations[i].om_mode));
936 		}
937 	}
938 
939 	/*
940 	 * Calculate the last available physical address.
941 	 */
942 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
943 		;
944 	Maxmem = powerpc_btop(phys_avail[i + 1]);
945 
946 	moea_cpu_bootstrap(0);
947 	mtmsr(mfmsr() | PSL_DR | PSL_IR);
948 	pmap_bootstrapped++;
949 
950 	/*
951 	 * Set the start and end of kva.
952 	 */
953 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
954 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
955 
956 	/*
957 	 * Allocate a kernel stack with a guard page for thread0 and map it
958 	 * into the kernel page map.
959 	 */
960 	pa = moea_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE);
961 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
962 	virtual_avail = va + kstack_pages * PAGE_SIZE;
963 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
964 	thread0.td_kstack = va;
965 	thread0.td_kstack_pages = kstack_pages;
966 	for (i = 0; i < kstack_pages; i++) {
967 		moea_kenter(va, pa);
968 		pa += PAGE_SIZE;
969 		va += PAGE_SIZE;
970 	}
971 
972 	/*
973 	 * Allocate virtual address space for the message buffer.
974 	 */
975 	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
976 	msgbufp = (struct msgbuf *)virtual_avail;
977 	va = virtual_avail;
978 	virtual_avail += round_page(msgbufsize);
979 	while (va < virtual_avail) {
980 		moea_kenter(va, pa);
981 		pa += PAGE_SIZE;
982 		va += PAGE_SIZE;
983 	}
984 
985 	/*
986 	 * Allocate virtual address space for the dynamic percpu area.
987 	 */
988 	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
989 	dpcpu = (void *)virtual_avail;
990 	va = virtual_avail;
991 	virtual_avail += DPCPU_SIZE;
992 	while (va < virtual_avail) {
993 		moea_kenter(va, pa);
994 		pa += PAGE_SIZE;
995 		va += PAGE_SIZE;
996 	}
997 	dpcpu_init(dpcpu, 0);
998 }
999 
1000 /*
1001  * Activate a user pmap.  The pmap must be activated before it's address
1002  * space can be accessed in any way.
1003  */
1004 void
1005 moea_activate(struct thread *td)
1006 {
1007 	pmap_t	pm, pmr;
1008 
1009 	/*
1010 	 * Load all the data we need up front to encourage the compiler to
1011 	 * not issue any loads while we have interrupts disabled below.
1012 	 */
1013 	pm = &td->td_proc->p_vmspace->vm_pmap;
1014 	pmr = pm->pmap_phys;
1015 
1016 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1017 	PCPU_SET(curpmap, pmr);
1018 
1019 	mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid);
1020 }
1021 
1022 void
1023 moea_deactivate(struct thread *td)
1024 {
1025 	pmap_t	pm;
1026 
1027 	pm = &td->td_proc->p_vmspace->vm_pmap;
1028 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1029 	PCPU_SET(curpmap, NULL);
1030 }
1031 
1032 void
1033 moea_unwire(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1034 {
1035 	struct	pvo_entry key, *pvo;
1036 
1037 	PMAP_LOCK(pm);
1038 	key.pvo_vaddr = sva;
1039 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1040 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1041 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1042 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1043 			panic("moea_unwire: pvo %p is missing PVO_WIRED", pvo);
1044 		pvo->pvo_vaddr &= ~PVO_WIRED;
1045 		pm->pm_stats.wired_count--;
1046 	}
1047 	PMAP_UNLOCK(pm);
1048 }
1049 
1050 void
1051 moea_copy_page(vm_page_t msrc, vm_page_t mdst)
1052 {
1053 	vm_offset_t	dst;
1054 	vm_offset_t	src;
1055 
1056 	dst = VM_PAGE_TO_PHYS(mdst);
1057 	src = VM_PAGE_TO_PHYS(msrc);
1058 
1059 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
1060 }
1061 
1062 void
1063 moea_copy_pages(vm_page_t *ma, vm_offset_t a_offset,
1064     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1065 {
1066 	void *a_cp, *b_cp;
1067 	vm_offset_t a_pg_offset, b_pg_offset;
1068 	int cnt;
1069 
1070 	while (xfersize > 0) {
1071 		a_pg_offset = a_offset & PAGE_MASK;
1072 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1073 		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1074 		    a_pg_offset;
1075 		b_pg_offset = b_offset & PAGE_MASK;
1076 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1077 		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1078 		    b_pg_offset;
1079 		bcopy(a_cp, b_cp, cnt);
1080 		a_offset += cnt;
1081 		b_offset += cnt;
1082 		xfersize -= cnt;
1083 	}
1084 }
1085 
1086 /*
1087  * Zero a page of physical memory by temporarily mapping it into the tlb.
1088  */
1089 void
1090 moea_zero_page(vm_page_t m)
1091 {
1092 	vm_offset_t off, pa = VM_PAGE_TO_PHYS(m);
1093 
1094 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1095 		__asm __volatile("dcbz 0,%0" :: "r"(pa + off));
1096 }
1097 
1098 void
1099 moea_zero_page_area(vm_page_t m, int off, int size)
1100 {
1101 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1102 	void *va = (void *)(pa + off);
1103 
1104 	bzero(va, size);
1105 }
1106 
1107 vm_offset_t
1108 moea_quick_enter_page(vm_page_t m)
1109 {
1110 
1111 	return (VM_PAGE_TO_PHYS(m));
1112 }
1113 
1114 void
1115 moea_quick_remove_page(vm_offset_t addr)
1116 {
1117 }
1118 
1119 boolean_t
1120 moea_page_is_mapped(vm_page_t m)
1121 {
1122 	return (!LIST_EMPTY(&(m)->md.mdpg_pvoh));
1123 }
1124 
1125 /*
1126  * Map the given physical page at the specified virtual address in the
1127  * target pmap with the protection requested.  If specified the page
1128  * will be wired down.
1129  */
1130 int
1131 moea_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1132     u_int flags, int8_t psind)
1133 {
1134 	int error;
1135 
1136 	for (;;) {
1137 		rw_wlock(&pvh_global_lock);
1138 		PMAP_LOCK(pmap);
1139 		error = moea_enter_locked(pmap, va, m, prot, flags, psind);
1140 		rw_wunlock(&pvh_global_lock);
1141 		PMAP_UNLOCK(pmap);
1142 		if (error != ENOMEM)
1143 			return (KERN_SUCCESS);
1144 		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1145 			return (KERN_RESOURCE_SHORTAGE);
1146 		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1147 		vm_wait(NULL);
1148 	}
1149 }
1150 
1151 /*
1152  * Map the given physical page at the specified virtual address in the
1153  * target pmap with the protection requested.  If specified the page
1154  * will be wired down.
1155  *
1156  * The global pvh and pmap must be locked.
1157  */
1158 static int
1159 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1160     u_int flags, int8_t psind __unused)
1161 {
1162 	struct		pvo_head *pvo_head;
1163 	uma_zone_t	zone;
1164 	u_int		pte_lo, pvo_flags;
1165 	int		error;
1166 
1167 	if (pmap_bootstrapped)
1168 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1169 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1170 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1171 		if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1172 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1173 		else
1174 			VM_OBJECT_ASSERT_LOCKED(m->object);
1175 	}
1176 
1177 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea_initialized) {
1178 		pvo_head = &moea_pvo_kunmanaged;
1179 		zone = moea_upvo_zone;
1180 		pvo_flags = 0;
1181 	} else {
1182 		pvo_head = vm_page_to_pvoh(m);
1183 		zone = moea_mpvo_zone;
1184 		pvo_flags = PVO_MANAGED;
1185 	}
1186 
1187 	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1188 
1189 	if (prot & VM_PROT_WRITE) {
1190 		pte_lo |= PTE_BW;
1191 		if (pmap_bootstrapped &&
1192 		    (m->oflags & VPO_UNMANAGED) == 0)
1193 			vm_page_aflag_set(m, PGA_WRITEABLE);
1194 	} else
1195 		pte_lo |= PTE_BR;
1196 
1197 	if ((flags & PMAP_ENTER_WIRED) != 0)
1198 		pvo_flags |= PVO_WIRED;
1199 
1200 	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1201 	    pte_lo, pvo_flags);
1202 
1203 	/*
1204 	 * Flush the real page from the instruction cache. This has be done
1205 	 * for all user mappings to prevent information leakage via the
1206 	 * instruction cache. moea_pvo_enter() returns ENOENT for the first
1207 	 * mapping for a page.
1208 	 */
1209 	if (pmap != kernel_pmap && error == ENOENT &&
1210 	    (pte_lo & (PTE_I | PTE_G)) == 0)
1211 		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1212 
1213 	return (error);
1214 }
1215 
1216 /*
1217  * Maps a sequence of resident pages belonging to the same object.
1218  * The sequence begins with the given page m_start.  This page is
1219  * mapped at the given virtual address start.  Each subsequent page is
1220  * mapped at a virtual address that is offset from start by the same
1221  * amount as the page is offset from m_start within the object.  The
1222  * last page in the sequence is the page with the largest offset from
1223  * m_start that can be mapped at a virtual address less than the given
1224  * virtual address end.  Not every virtual page between start and end
1225  * is mapped; only those for which a resident page exists with the
1226  * corresponding offset from m_start are mapped.
1227  */
1228 void
1229 moea_enter_object(pmap_t pm, vm_offset_t start, vm_offset_t end,
1230     vm_page_t m_start, vm_prot_t prot)
1231 {
1232 	vm_page_t m;
1233 	vm_pindex_t diff, psize;
1234 
1235 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1236 
1237 	psize = atop(end - start);
1238 	m = m_start;
1239 	rw_wlock(&pvh_global_lock);
1240 	PMAP_LOCK(pm);
1241 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1242 		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1243 		    (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_QUICK_LOCKED,
1244 		    0);
1245 		m = TAILQ_NEXT(m, listq);
1246 	}
1247 	rw_wunlock(&pvh_global_lock);
1248 	PMAP_UNLOCK(pm);
1249 }
1250 
1251 void
1252 moea_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m,
1253     vm_prot_t prot)
1254 {
1255 
1256 	rw_wlock(&pvh_global_lock);
1257 	PMAP_LOCK(pm);
1258 	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1259 	    PMAP_ENTER_QUICK_LOCKED, 0);
1260 	rw_wunlock(&pvh_global_lock);
1261 	PMAP_UNLOCK(pm);
1262 }
1263 
1264 vm_paddr_t
1265 moea_extract(pmap_t pm, vm_offset_t va)
1266 {
1267 	struct	pvo_entry *pvo;
1268 	vm_paddr_t pa;
1269 
1270 	PMAP_LOCK(pm);
1271 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1272 	if (pvo == NULL)
1273 		pa = 0;
1274 	else
1275 		pa = PVO_PADDR(pvo) | (va & ADDR_POFF);
1276 	PMAP_UNLOCK(pm);
1277 	return (pa);
1278 }
1279 
1280 /*
1281  * Atomically extract and hold the physical page with the given
1282  * pmap and virtual address pair if that mapping permits the given
1283  * protection.
1284  */
1285 vm_page_t
1286 moea_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1287 {
1288 	struct	pvo_entry *pvo;
1289 	vm_page_t m;
1290 
1291 	m = NULL;
1292 	PMAP_LOCK(pmap);
1293 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1294 	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1295 	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1296 	     (prot & VM_PROT_WRITE) == 0)) {
1297 		m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
1298 		if (!vm_page_wire_mapped(m))
1299 			m = NULL;
1300 	}
1301 	PMAP_UNLOCK(pmap);
1302 	return (m);
1303 }
1304 
1305 void
1306 moea_init()
1307 {
1308 
1309 	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1310 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1311 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1312 	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1313 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1314 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1315 	moea_initialized = TRUE;
1316 }
1317 
1318 boolean_t
1319 moea_is_referenced(vm_page_t m)
1320 {
1321 	boolean_t rv;
1322 
1323 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1324 	    ("moea_is_referenced: page %p is not managed", m));
1325 	rw_wlock(&pvh_global_lock);
1326 	rv = moea_query_bit(m, PTE_REF);
1327 	rw_wunlock(&pvh_global_lock);
1328 	return (rv);
1329 }
1330 
1331 boolean_t
1332 moea_is_modified(vm_page_t m)
1333 {
1334 	boolean_t rv;
1335 
1336 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1337 	    ("moea_is_modified: page %p is not managed", m));
1338 
1339 	/*
1340 	 * If the page is not busied then this check is racy.
1341 	 */
1342 	if (!pmap_page_is_write_mapped(m))
1343 		return (FALSE);
1344 
1345 	rw_wlock(&pvh_global_lock);
1346 	rv = moea_query_bit(m, PTE_CHG);
1347 	rw_wunlock(&pvh_global_lock);
1348 	return (rv);
1349 }
1350 
1351 boolean_t
1352 moea_is_prefaultable(pmap_t pmap, vm_offset_t va)
1353 {
1354 	struct pvo_entry *pvo;
1355 	boolean_t rv;
1356 
1357 	PMAP_LOCK(pmap);
1358 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1359 	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1360 	PMAP_UNLOCK(pmap);
1361 	return (rv);
1362 }
1363 
1364 void
1365 moea_clear_modify(vm_page_t m)
1366 {
1367 
1368 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1369 	    ("moea_clear_modify: page %p is not managed", m));
1370 	vm_page_assert_busied(m);
1371 
1372 	if (!pmap_page_is_write_mapped(m))
1373 		return;
1374 	rw_wlock(&pvh_global_lock);
1375 	moea_clear_bit(m, PTE_CHG);
1376 	rw_wunlock(&pvh_global_lock);
1377 }
1378 
1379 /*
1380  * Clear the write and modified bits in each of the given page's mappings.
1381  */
1382 void
1383 moea_remove_write(vm_page_t m)
1384 {
1385 	struct	pvo_entry *pvo;
1386 	struct	pte *pt;
1387 	pmap_t	pmap;
1388 	u_int	lo;
1389 
1390 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1391 	    ("moea_remove_write: page %p is not managed", m));
1392 	vm_page_assert_busied(m);
1393 
1394 	if (!pmap_page_is_write_mapped(m))
1395 		return;
1396 	rw_wlock(&pvh_global_lock);
1397 	lo = moea_attr_fetch(m);
1398 	powerpc_sync();
1399 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1400 		pmap = pvo->pvo_pmap;
1401 		PMAP_LOCK(pmap);
1402 		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1403 			pt = moea_pvo_to_pte(pvo, -1);
1404 			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1405 			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1406 			if (pt != NULL) {
1407 				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1408 				lo |= pvo->pvo_pte.pte.pte_lo;
1409 				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1410 				moea_pte_change(pt, &pvo->pvo_pte.pte,
1411 				    pvo->pvo_vaddr);
1412 				mtx_unlock(&moea_table_mutex);
1413 			}
1414 		}
1415 		PMAP_UNLOCK(pmap);
1416 	}
1417 	if ((lo & PTE_CHG) != 0) {
1418 		moea_attr_clear(m, PTE_CHG);
1419 		vm_page_dirty(m);
1420 	}
1421 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1422 	rw_wunlock(&pvh_global_lock);
1423 }
1424 
1425 /*
1426  *	moea_ts_referenced:
1427  *
1428  *	Return a count of reference bits for a page, clearing those bits.
1429  *	It is not necessary for every reference bit to be cleared, but it
1430  *	is necessary that 0 only be returned when there are truly no
1431  *	reference bits set.
1432  *
1433  *	XXX: The exact number of bits to check and clear is a matter that
1434  *	should be tested and standardized at some point in the future for
1435  *	optimal aging of shared pages.
1436  */
1437 int
1438 moea_ts_referenced(vm_page_t m)
1439 {
1440 	int count;
1441 
1442 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1443 	    ("moea_ts_referenced: page %p is not managed", m));
1444 	rw_wlock(&pvh_global_lock);
1445 	count = moea_clear_bit(m, PTE_REF);
1446 	rw_wunlock(&pvh_global_lock);
1447 	return (count);
1448 }
1449 
1450 /*
1451  * Modify the WIMG settings of all mappings for a page.
1452  */
1453 void
1454 moea_page_set_memattr(vm_page_t m, vm_memattr_t ma)
1455 {
1456 	struct	pvo_entry *pvo;
1457 	struct	pvo_head *pvo_head;
1458 	struct	pte *pt;
1459 	pmap_t	pmap;
1460 	u_int	lo;
1461 
1462 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1463 		m->md.mdpg_cache_attrs = ma;
1464 		return;
1465 	}
1466 
1467 	rw_wlock(&pvh_global_lock);
1468 	pvo_head = vm_page_to_pvoh(m);
1469 	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1470 
1471 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1472 		pmap = pvo->pvo_pmap;
1473 		PMAP_LOCK(pmap);
1474 		pt = moea_pvo_to_pte(pvo, -1);
1475 		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1476 		pvo->pvo_pte.pte.pte_lo |= lo;
1477 		if (pt != NULL) {
1478 			moea_pte_change(pt, &pvo->pvo_pte.pte,
1479 			    pvo->pvo_vaddr);
1480 			if (pvo->pvo_pmap == kernel_pmap)
1481 				isync();
1482 		}
1483 		mtx_unlock(&moea_table_mutex);
1484 		PMAP_UNLOCK(pmap);
1485 	}
1486 	m->md.mdpg_cache_attrs = ma;
1487 	rw_wunlock(&pvh_global_lock);
1488 }
1489 
1490 /*
1491  * Map a wired page into kernel virtual address space.
1492  */
1493 void
1494 moea_kenter(vm_offset_t va, vm_paddr_t pa)
1495 {
1496 
1497 	moea_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
1498 }
1499 
1500 void
1501 moea_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1502 {
1503 	u_int		pte_lo;
1504 	int		error;
1505 
1506 #if 0
1507 	if (va < VM_MIN_KERNEL_ADDRESS)
1508 		panic("moea_kenter: attempt to enter non-kernel address %#x",
1509 		    va);
1510 #endif
1511 
1512 	pte_lo = moea_calc_wimg(pa, ma);
1513 
1514 	PMAP_LOCK(kernel_pmap);
1515 	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1516 	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1517 
1518 	if (error != 0 && error != ENOENT)
1519 		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1520 		    pa, error);
1521 
1522 	PMAP_UNLOCK(kernel_pmap);
1523 }
1524 
1525 /*
1526  * Extract the physical page address associated with the given kernel virtual
1527  * address.
1528  */
1529 vm_paddr_t
1530 moea_kextract(vm_offset_t va)
1531 {
1532 	struct		pvo_entry *pvo;
1533 	vm_paddr_t pa;
1534 
1535 	/*
1536 	 * Allow direct mappings on 32-bit OEA
1537 	 */
1538 	if (va < VM_MIN_KERNEL_ADDRESS) {
1539 		return (va);
1540 	}
1541 
1542 	PMAP_LOCK(kernel_pmap);
1543 	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1544 	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1545 	pa = PVO_PADDR(pvo) | (va & ADDR_POFF);
1546 	PMAP_UNLOCK(kernel_pmap);
1547 	return (pa);
1548 }
1549 
1550 /*
1551  * Remove a wired page from kernel virtual address space.
1552  */
1553 void
1554 moea_kremove(vm_offset_t va)
1555 {
1556 
1557 	moea_remove(kernel_pmap, va, va + PAGE_SIZE);
1558 }
1559 
1560 /*
1561  * Provide a kernel pointer corresponding to a given userland pointer.
1562  * The returned pointer is valid until the next time this function is
1563  * called in this thread. This is used internally in copyin/copyout.
1564  */
1565 int
1566 moea_map_user_ptr(pmap_t pm, volatile const void *uaddr,
1567     void **kaddr, size_t ulen, size_t *klen)
1568 {
1569 	size_t l;
1570 	register_t vsid;
1571 
1572 	*kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK);
1573 	l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr);
1574 	if (l > ulen)
1575 		l = ulen;
1576 	if (klen)
1577 		*klen = l;
1578 	else if (l != ulen)
1579 		return (EFAULT);
1580 
1581 	vsid = va_to_vsid(pm, (vm_offset_t)uaddr);
1582 
1583 	/* Mark segment no-execute */
1584 	vsid |= SR_N;
1585 
1586 	/* If we have already set this VSID, we can just return */
1587 	if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == vsid)
1588 		return (0);
1589 
1590 	__asm __volatile("isync");
1591 	curthread->td_pcb->pcb_cpu.aim.usr_segm =
1592 	    (uintptr_t)uaddr >> ADDR_SR_SHFT;
1593 	curthread->td_pcb->pcb_cpu.aim.usr_vsid = vsid;
1594 	__asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(vsid));
1595 
1596 	return (0);
1597 }
1598 
1599 /*
1600  * Figure out where a given kernel pointer (usually in a fault) points
1601  * to from the VM's perspective, potentially remapping into userland's
1602  * address space.
1603  */
1604 static int
1605 moea_decode_kernel_ptr(vm_offset_t addr, int *is_user,
1606     vm_offset_t *decoded_addr)
1607 {
1608 	vm_offset_t user_sr;
1609 
1610 	if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) {
1611 		user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm;
1612 		addr &= ADDR_PIDX | ADDR_POFF;
1613 		addr |= user_sr << ADDR_SR_SHFT;
1614 		*decoded_addr = addr;
1615 		*is_user = 1;
1616 	} else {
1617 		*decoded_addr = addr;
1618 		*is_user = 0;
1619 	}
1620 
1621 	return (0);
1622 }
1623 
1624 /*
1625  * Map a range of physical addresses into kernel virtual address space.
1626  *
1627  * The value passed in *virt is a suggested virtual address for the mapping.
1628  * Architectures which can support a direct-mapped physical to virtual region
1629  * can return the appropriate address within that region, leaving '*virt'
1630  * unchanged.  We cannot and therefore do not; *virt is updated with the
1631  * first usable address after the mapped region.
1632  */
1633 vm_offset_t
1634 moea_map(vm_offset_t *virt, vm_paddr_t pa_start,
1635     vm_paddr_t pa_end, int prot)
1636 {
1637 	vm_offset_t	sva, va;
1638 
1639 	sva = *virt;
1640 	va = sva;
1641 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1642 		moea_kenter(va, pa_start);
1643 	*virt = va;
1644 	return (sva);
1645 }
1646 
1647 /*
1648  * Returns true if the pmap's pv is one of the first
1649  * 16 pvs linked to from this page.  This count may
1650  * be changed upwards or downwards in the future; it
1651  * is only necessary that true be returned for a small
1652  * subset of pmaps for proper page aging.
1653  */
1654 boolean_t
1655 moea_page_exists_quick(pmap_t pmap, vm_page_t m)
1656 {
1657         int loops;
1658 	struct pvo_entry *pvo;
1659 	boolean_t rv;
1660 
1661 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1662 	    ("moea_page_exists_quick: page %p is not managed", m));
1663 	loops = 0;
1664 	rv = FALSE;
1665 	rw_wlock(&pvh_global_lock);
1666 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1667 		if (pvo->pvo_pmap == pmap) {
1668 			rv = TRUE;
1669 			break;
1670 		}
1671 		if (++loops >= 16)
1672 			break;
1673 	}
1674 	rw_wunlock(&pvh_global_lock);
1675 	return (rv);
1676 }
1677 
1678 void
1679 moea_page_init(vm_page_t m)
1680 {
1681 
1682 	m->md.mdpg_attrs = 0;
1683 	m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT;
1684 	LIST_INIT(&m->md.mdpg_pvoh);
1685 }
1686 
1687 /*
1688  * Return the number of managed mappings to the given physical page
1689  * that are wired.
1690  */
1691 int
1692 moea_page_wired_mappings(vm_page_t m)
1693 {
1694 	struct pvo_entry *pvo;
1695 	int count;
1696 
1697 	count = 0;
1698 	if ((m->oflags & VPO_UNMANAGED) != 0)
1699 		return (count);
1700 	rw_wlock(&pvh_global_lock);
1701 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1702 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1703 			count++;
1704 	rw_wunlock(&pvh_global_lock);
1705 	return (count);
1706 }
1707 
1708 static u_int	moea_vsidcontext;
1709 
1710 int
1711 moea_pinit(pmap_t pmap)
1712 {
1713 	int	i, mask;
1714 	u_int	entropy;
1715 
1716 	RB_INIT(&pmap->pmap_pvo);
1717 
1718 	entropy = 0;
1719 	__asm __volatile("mftb %0" : "=r"(entropy));
1720 
1721 	if ((pmap->pmap_phys = (pmap_t)moea_kextract((vm_offset_t)pmap))
1722 	    == NULL) {
1723 		pmap->pmap_phys = pmap;
1724 	}
1725 
1726 	mtx_lock(&moea_vsid_mutex);
1727 	/*
1728 	 * Allocate some segment registers for this pmap.
1729 	 */
1730 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1731 		u_int	hash, n;
1732 
1733 		/*
1734 		 * Create a new value by mutiplying by a prime and adding in
1735 		 * entropy from the timebase register.  This is to make the
1736 		 * VSID more random so that the PT hash function collides
1737 		 * less often.  (Note that the prime casues gcc to do shifts
1738 		 * instead of a multiply.)
1739 		 */
1740 		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1741 		hash = moea_vsidcontext & (NPMAPS - 1);
1742 		if (hash == 0)		/* 0 is special, avoid it */
1743 			continue;
1744 		n = hash >> 5;
1745 		mask = 1 << (hash & (VSID_NBPW - 1));
1746 		hash = (moea_vsidcontext & 0xfffff);
1747 		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1748 			/* anything free in this bucket? */
1749 			if (moea_vsid_bitmap[n] == 0xffffffff) {
1750 				entropy = (moea_vsidcontext >> 20);
1751 				continue;
1752 			}
1753 			i = ffs(~moea_vsid_bitmap[n]) - 1;
1754 			mask = 1 << i;
1755 			hash &= rounddown2(0xfffff, VSID_NBPW);
1756 			hash |= i;
1757 		}
1758 		KASSERT(!(moea_vsid_bitmap[n] & mask),
1759 		    ("Allocating in-use VSID group %#x\n", hash));
1760 		moea_vsid_bitmap[n] |= mask;
1761 		for (i = 0; i < 16; i++)
1762 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1763 		mtx_unlock(&moea_vsid_mutex);
1764 		return (1);
1765 	}
1766 
1767 	mtx_unlock(&moea_vsid_mutex);
1768 	panic("moea_pinit: out of segments");
1769 }
1770 
1771 /*
1772  * Initialize the pmap associated with process 0.
1773  */
1774 void
1775 moea_pinit0(pmap_t pm)
1776 {
1777 
1778 	PMAP_LOCK_INIT(pm);
1779 	moea_pinit(pm);
1780 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1781 }
1782 
1783 /*
1784  * Set the physical protection on the specified range of this map as requested.
1785  */
1786 void
1787 moea_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1788     vm_prot_t prot)
1789 {
1790 	struct	pvo_entry *pvo, *tpvo, key;
1791 	struct	pte *pt;
1792 
1793 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1794 	    ("moea_protect: non current pmap"));
1795 
1796 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1797 		moea_remove(pm, sva, eva);
1798 		return;
1799 	}
1800 
1801 	rw_wlock(&pvh_global_lock);
1802 	PMAP_LOCK(pm);
1803 	key.pvo_vaddr = sva;
1804 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1805 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1806 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1807 
1808 		/*
1809 		 * Grab the PTE pointer before we diddle with the cached PTE
1810 		 * copy.
1811 		 */
1812 		pt = moea_pvo_to_pte(pvo, -1);
1813 		/*
1814 		 * Change the protection of the page.
1815 		 */
1816 		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1817 		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1818 
1819 		/*
1820 		 * If the PVO is in the page table, update that pte as well.
1821 		 */
1822 		if (pt != NULL) {
1823 			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1824 			mtx_unlock(&moea_table_mutex);
1825 		}
1826 	}
1827 	rw_wunlock(&pvh_global_lock);
1828 	PMAP_UNLOCK(pm);
1829 }
1830 
1831 /*
1832  * Map a list of wired pages into kernel virtual address space.  This is
1833  * intended for temporary mappings which do not need page modification or
1834  * references recorded.  Existing mappings in the region are overwritten.
1835  */
1836 void
1837 moea_qenter(vm_offset_t sva, vm_page_t *m, int count)
1838 {
1839 	vm_offset_t va;
1840 
1841 	va = sva;
1842 	while (count-- > 0) {
1843 		moea_kenter(va, VM_PAGE_TO_PHYS(*m));
1844 		va += PAGE_SIZE;
1845 		m++;
1846 	}
1847 }
1848 
1849 /*
1850  * Remove page mappings from kernel virtual address space.  Intended for
1851  * temporary mappings entered by moea_qenter.
1852  */
1853 void
1854 moea_qremove(vm_offset_t sva, int count)
1855 {
1856 	vm_offset_t va;
1857 
1858 	va = sva;
1859 	while (count-- > 0) {
1860 		moea_kremove(va);
1861 		va += PAGE_SIZE;
1862 	}
1863 }
1864 
1865 void
1866 moea_release(pmap_t pmap)
1867 {
1868         int idx, mask;
1869 
1870 	/*
1871 	 * Free segment register's VSID
1872 	 */
1873         if (pmap->pm_sr[0] == 0)
1874                 panic("moea_release");
1875 
1876 	mtx_lock(&moea_vsid_mutex);
1877         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1878         mask = 1 << (idx % VSID_NBPW);
1879         idx /= VSID_NBPW;
1880         moea_vsid_bitmap[idx] &= ~mask;
1881 	mtx_unlock(&moea_vsid_mutex);
1882 }
1883 
1884 /*
1885  * Remove the given range of addresses from the specified map.
1886  */
1887 void
1888 moea_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1889 {
1890 	struct	pvo_entry *pvo, *tpvo, key;
1891 
1892 	rw_wlock(&pvh_global_lock);
1893 	PMAP_LOCK(pm);
1894 	key.pvo_vaddr = sva;
1895 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1896 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1897 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1898 		moea_pvo_remove(pvo, -1);
1899 	}
1900 	PMAP_UNLOCK(pm);
1901 	rw_wunlock(&pvh_global_lock);
1902 }
1903 
1904 /*
1905  * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1906  * will reflect changes in pte's back to the vm_page.
1907  */
1908 void
1909 moea_remove_all(vm_page_t m)
1910 {
1911 	struct  pvo_head *pvo_head;
1912 	struct	pvo_entry *pvo, *next_pvo;
1913 	pmap_t	pmap;
1914 
1915 	rw_wlock(&pvh_global_lock);
1916 	pvo_head = vm_page_to_pvoh(m);
1917 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1918 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1919 
1920 		pmap = pvo->pvo_pmap;
1921 		PMAP_LOCK(pmap);
1922 		moea_pvo_remove(pvo, -1);
1923 		PMAP_UNLOCK(pmap);
1924 	}
1925 	if ((m->a.flags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
1926 		moea_attr_clear(m, PTE_CHG);
1927 		vm_page_dirty(m);
1928 	}
1929 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1930 	rw_wunlock(&pvh_global_lock);
1931 }
1932 
1933 static int
1934 moea_mincore(pmap_t pm, vm_offset_t va, vm_paddr_t *pap)
1935 {
1936 	struct pvo_entry *pvo;
1937 	vm_paddr_t pa;
1938 	vm_page_t m;
1939 	int val;
1940 	bool managed;
1941 
1942 	PMAP_LOCK(pm);
1943 
1944 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1945 	if (pvo != NULL) {
1946 		pa = PVO_PADDR(pvo);
1947 		m = PHYS_TO_VM_PAGE(pa);
1948 		managed = (pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED;
1949 		val = MINCORE_INCORE;
1950 	} else {
1951 		PMAP_UNLOCK(pm);
1952 		return (0);
1953 	}
1954 
1955 	PMAP_UNLOCK(pm);
1956 
1957 	if (m == NULL)
1958 		return (0);
1959 
1960 	if (managed) {
1961 		if (moea_is_modified(m))
1962 			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
1963 
1964 		if (moea_is_referenced(m))
1965 			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
1966 	}
1967 
1968 	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
1969 	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
1970 	    managed) {
1971 		*pap = pa;
1972 	}
1973 
1974 	return (val);
1975 }
1976 
1977 /*
1978  * Allocate a physical page of memory directly from the phys_avail map.
1979  * Can only be called from moea_bootstrap before avail start and end are
1980  * calculated.
1981  */
1982 static vm_offset_t
1983 moea_bootstrap_alloc(vm_size_t size, u_int align)
1984 {
1985 	vm_offset_t	s, e;
1986 	int		i, j;
1987 
1988 	size = round_page(size);
1989 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1990 		if (align != 0)
1991 			s = roundup2(phys_avail[i], align);
1992 		else
1993 			s = phys_avail[i];
1994 		e = s + size;
1995 
1996 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1997 			continue;
1998 
1999 		if (s == phys_avail[i]) {
2000 			phys_avail[i] += size;
2001 		} else if (e == phys_avail[i + 1]) {
2002 			phys_avail[i + 1] -= size;
2003 		} else {
2004 			for (j = phys_avail_count * 2; j > i; j -= 2) {
2005 				phys_avail[j] = phys_avail[j - 2];
2006 				phys_avail[j + 1] = phys_avail[j - 1];
2007 			}
2008 
2009 			phys_avail[i + 3] = phys_avail[i + 1];
2010 			phys_avail[i + 1] = s;
2011 			phys_avail[i + 2] = e;
2012 			phys_avail_count++;
2013 		}
2014 
2015 		return (s);
2016 	}
2017 	panic("moea_bootstrap_alloc: could not allocate memory");
2018 }
2019 
2020 static void
2021 moea_syncicache(vm_paddr_t pa, vm_size_t len)
2022 {
2023 	__syncicache((void *)pa, len);
2024 }
2025 
2026 static int
2027 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
2028     vm_offset_t va, vm_paddr_t pa, u_int pte_lo, int flags)
2029 {
2030 	struct	pvo_entry *pvo;
2031 	u_int	sr;
2032 	int	first;
2033 	u_int	ptegidx;
2034 	int	i;
2035 	int     bootstrap;
2036 
2037 	moea_pvo_enter_calls++;
2038 	first = 0;
2039 	bootstrap = 0;
2040 
2041 	/*
2042 	 * Compute the PTE Group index.
2043 	 */
2044 	va &= ~ADDR_POFF;
2045 	sr = va_to_sr(pm->pm_sr, va);
2046 	ptegidx = va_to_pteg(sr, va);
2047 
2048 	/*
2049 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2050 	 * there is a mapping.
2051 	 */
2052 	mtx_lock(&moea_table_mutex);
2053 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2054 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2055 			if (PVO_PADDR(pvo) == pa &&
2056 			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
2057 			    (pte_lo & PTE_PP)) {
2058 				/*
2059 				 * The PTE is not changing.  Instead, this may
2060 				 * be a request to change the mapping's wired
2061 				 * attribute.
2062 				 */
2063 				mtx_unlock(&moea_table_mutex);
2064 				if ((flags & PVO_WIRED) != 0 &&
2065 				    (pvo->pvo_vaddr & PVO_WIRED) == 0) {
2066 					pvo->pvo_vaddr |= PVO_WIRED;
2067 					pm->pm_stats.wired_count++;
2068 				} else if ((flags & PVO_WIRED) == 0 &&
2069 				    (pvo->pvo_vaddr & PVO_WIRED) != 0) {
2070 					pvo->pvo_vaddr &= ~PVO_WIRED;
2071 					pm->pm_stats.wired_count--;
2072 				}
2073 				return (0);
2074 			}
2075 			moea_pvo_remove(pvo, -1);
2076 			break;
2077 		}
2078 	}
2079 
2080 	/*
2081 	 * If we aren't overwriting a mapping, try to allocate.
2082 	 */
2083 	if (moea_initialized) {
2084 		pvo = uma_zalloc(zone, M_NOWAIT);
2085 	} else {
2086 		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
2087 			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
2088 			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
2089 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2090 		}
2091 		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
2092 		moea_bpvo_pool_index++;
2093 		bootstrap = 1;
2094 	}
2095 
2096 	if (pvo == NULL) {
2097 		mtx_unlock(&moea_table_mutex);
2098 		return (ENOMEM);
2099 	}
2100 
2101 	moea_pvo_entries++;
2102 	pvo->pvo_vaddr = va;
2103 	pvo->pvo_pmap = pm;
2104 	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
2105 	pvo->pvo_vaddr &= ~ADDR_POFF;
2106 	if (flags & PVO_WIRED)
2107 		pvo->pvo_vaddr |= PVO_WIRED;
2108 	if (pvo_head != &moea_pvo_kunmanaged)
2109 		pvo->pvo_vaddr |= PVO_MANAGED;
2110 	if (bootstrap)
2111 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2112 
2113 	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
2114 
2115 	/*
2116 	 * Add to pmap list
2117 	 */
2118 	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2119 
2120 	/*
2121 	 * Remember if the list was empty and therefore will be the first
2122 	 * item.
2123 	 */
2124 	if (LIST_FIRST(pvo_head) == NULL)
2125 		first = 1;
2126 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2127 
2128 	if (pvo->pvo_vaddr & PVO_WIRED)
2129 		pm->pm_stats.wired_count++;
2130 	pm->pm_stats.resident_count++;
2131 
2132 	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2133 	KASSERT(i < 8, ("Invalid PTE index"));
2134 	if (i >= 0) {
2135 		PVO_PTEGIDX_SET(pvo, i);
2136 	} else {
2137 		panic("moea_pvo_enter: overflow");
2138 		moea_pte_overflow++;
2139 	}
2140 	mtx_unlock(&moea_table_mutex);
2141 
2142 	return (first ? ENOENT : 0);
2143 }
2144 
2145 static void
2146 moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
2147 {
2148 	struct	pte *pt;
2149 
2150 	/*
2151 	 * If there is an active pte entry, we need to deactivate it (and
2152 	 * save the ref & cfg bits).
2153 	 */
2154 	pt = moea_pvo_to_pte(pvo, pteidx);
2155 	if (pt != NULL) {
2156 		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2157 		mtx_unlock(&moea_table_mutex);
2158 		PVO_PTEGIDX_CLR(pvo);
2159 	} else {
2160 		moea_pte_overflow--;
2161 	}
2162 
2163 	/*
2164 	 * Update our statistics.
2165 	 */
2166 	pvo->pvo_pmap->pm_stats.resident_count--;
2167 	if (pvo->pvo_vaddr & PVO_WIRED)
2168 		pvo->pvo_pmap->pm_stats.wired_count--;
2169 
2170 	/*
2171 	 * Remove this PVO from the PV and pmap lists.
2172 	 */
2173 	LIST_REMOVE(pvo, pvo_vlink);
2174 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2175 
2176 	/*
2177 	 * Save the REF/CHG bits into their cache if the page is managed.
2178 	 * Clear PGA_WRITEABLE if all mappings of the page have been removed.
2179 	 */
2180 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2181 		struct vm_page *pg;
2182 
2183 		pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo));
2184 		if (pg != NULL) {
2185 			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2186 			    (PTE_REF | PTE_CHG));
2187 			if (LIST_EMPTY(&pg->md.mdpg_pvoh))
2188 				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2189 		}
2190 	}
2191 
2192 	/*
2193 	 * Remove this from the overflow list and return it to the pool
2194 	 * if we aren't going to reuse it.
2195 	 */
2196 	LIST_REMOVE(pvo, pvo_olink);
2197 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2198 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2199 		    moea_upvo_zone, pvo);
2200 	moea_pvo_entries--;
2201 	moea_pvo_remove_calls++;
2202 }
2203 
2204 static __inline int
2205 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2206 {
2207 	int	pteidx;
2208 
2209 	/*
2210 	 * We can find the actual pte entry without searching by grabbing
2211 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2212 	 * noticing the HID bit.
2213 	 */
2214 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2215 	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2216 		pteidx ^= moea_pteg_mask * 8;
2217 
2218 	return (pteidx);
2219 }
2220 
2221 static struct pvo_entry *
2222 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2223 {
2224 	struct	pvo_entry *pvo;
2225 	int	ptegidx;
2226 	u_int	sr;
2227 
2228 	va &= ~ADDR_POFF;
2229 	sr = va_to_sr(pm->pm_sr, va);
2230 	ptegidx = va_to_pteg(sr, va);
2231 
2232 	mtx_lock(&moea_table_mutex);
2233 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2234 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2235 			if (pteidx_p)
2236 				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2237 			break;
2238 		}
2239 	}
2240 	mtx_unlock(&moea_table_mutex);
2241 
2242 	return (pvo);
2243 }
2244 
2245 static struct pte *
2246 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2247 {
2248 	struct	pte *pt;
2249 
2250 	/*
2251 	 * If we haven't been supplied the ptegidx, calculate it.
2252 	 */
2253 	if (pteidx == -1) {
2254 		int	ptegidx;
2255 		u_int	sr;
2256 
2257 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2258 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2259 		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2260 	}
2261 
2262 	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2263 	mtx_lock(&moea_table_mutex);
2264 
2265 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2266 		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2267 		    "valid pte index", pvo);
2268 	}
2269 
2270 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2271 		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2272 		    "pvo but no valid pte", pvo);
2273 	}
2274 
2275 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2276 		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2277 			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2278 			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2279 		}
2280 
2281 		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2282 		    != 0) {
2283 			panic("moea_pvo_to_pte: pvo %p pte does not match "
2284 			    "pte %p in moea_pteg_table", pvo, pt);
2285 		}
2286 
2287 		mtx_assert(&moea_table_mutex, MA_OWNED);
2288 		return (pt);
2289 	}
2290 
2291 	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2292 		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2293 		    "moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2294 	}
2295 
2296 	mtx_unlock(&moea_table_mutex);
2297 	return (NULL);
2298 }
2299 
2300 /*
2301  * XXX: THIS STUFF SHOULD BE IN pte.c?
2302  */
2303 int
2304 moea_pte_spill(vm_offset_t addr)
2305 {
2306 	struct	pvo_entry *source_pvo, *victim_pvo;
2307 	struct	pvo_entry *pvo;
2308 	int	ptegidx, i, j;
2309 	u_int	sr;
2310 	struct	pteg *pteg;
2311 	struct	pte *pt;
2312 
2313 	moea_pte_spills++;
2314 
2315 	sr = mfsrin(addr);
2316 	ptegidx = va_to_pteg(sr, addr);
2317 
2318 	/*
2319 	 * Have to substitute some entry.  Use the primary hash for this.
2320 	 * Use low bits of timebase as random generator.
2321 	 */
2322 	pteg = &moea_pteg_table[ptegidx];
2323 	mtx_lock(&moea_table_mutex);
2324 	__asm __volatile("mftb %0" : "=r"(i));
2325 	i &= 7;
2326 	pt = &pteg->pt[i];
2327 
2328 	source_pvo = NULL;
2329 	victim_pvo = NULL;
2330 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2331 		/*
2332 		 * We need to find a pvo entry for this address.
2333 		 */
2334 		if (source_pvo == NULL &&
2335 		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2336 		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2337 			/*
2338 			 * Now found an entry to be spilled into the pteg.
2339 			 * The PTE is now valid, so we know it's active.
2340 			 */
2341 			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2342 
2343 			if (j >= 0) {
2344 				PVO_PTEGIDX_SET(pvo, j);
2345 				moea_pte_overflow--;
2346 				mtx_unlock(&moea_table_mutex);
2347 				return (1);
2348 			}
2349 
2350 			source_pvo = pvo;
2351 
2352 			if (victim_pvo != NULL)
2353 				break;
2354 		}
2355 
2356 		/*
2357 		 * We also need the pvo entry of the victim we are replacing
2358 		 * so save the R & C bits of the PTE.
2359 		 */
2360 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2361 		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2362 			victim_pvo = pvo;
2363 			if (source_pvo != NULL)
2364 				break;
2365 		}
2366 	}
2367 
2368 	if (source_pvo == NULL) {
2369 		mtx_unlock(&moea_table_mutex);
2370 		return (0);
2371 	}
2372 
2373 	if (victim_pvo == NULL) {
2374 		if ((pt->pte_hi & PTE_HID) == 0)
2375 			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2376 			    "entry", pt);
2377 
2378 		/*
2379 		 * If this is a secondary PTE, we need to search it's primary
2380 		 * pvo bucket for the matching PVO.
2381 		 */
2382 		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2383 		    pvo_olink) {
2384 			/*
2385 			 * We also need the pvo entry of the victim we are
2386 			 * replacing so save the R & C bits of the PTE.
2387 			 */
2388 			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2389 				victim_pvo = pvo;
2390 				break;
2391 			}
2392 		}
2393 
2394 		if (victim_pvo == NULL)
2395 			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2396 			    "entry", pt);
2397 	}
2398 
2399 	/*
2400 	 * We are invalidating the TLB entry for the EA we are replacing even
2401 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2402 	 * contained in the TLB entry.
2403 	 */
2404 	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2405 
2406 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2407 	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2408 
2409 	PVO_PTEGIDX_CLR(victim_pvo);
2410 	PVO_PTEGIDX_SET(source_pvo, i);
2411 	moea_pte_replacements++;
2412 
2413 	mtx_unlock(&moea_table_mutex);
2414 	return (1);
2415 }
2416 
2417 static __inline struct pvo_entry *
2418 moea_pte_spillable_ident(u_int ptegidx)
2419 {
2420 	struct	pte *pt;
2421 	struct	pvo_entry *pvo_walk, *pvo = NULL;
2422 
2423 	LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) {
2424 		if (pvo_walk->pvo_vaddr & PVO_WIRED)
2425 			continue;
2426 
2427 		if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID))
2428 			continue;
2429 
2430 		pt = moea_pvo_to_pte(pvo_walk, -1);
2431 
2432 		if (pt == NULL)
2433 			continue;
2434 
2435 		pvo = pvo_walk;
2436 
2437 		mtx_unlock(&moea_table_mutex);
2438 		if (!(pt->pte_lo & PTE_REF))
2439 			return (pvo_walk);
2440 	}
2441 
2442 	return (pvo);
2443 }
2444 
2445 static int
2446 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2447 {
2448 	struct	pte *pt;
2449 	struct	pvo_entry *victim_pvo;
2450 	int	i;
2451 	int	victim_idx;
2452 	u_int	pteg_bkpidx = ptegidx;
2453 
2454 	mtx_assert(&moea_table_mutex, MA_OWNED);
2455 
2456 	/*
2457 	 * First try primary hash.
2458 	 */
2459 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2460 		if ((pt->pte_hi & PTE_VALID) == 0) {
2461 			pvo_pt->pte_hi &= ~PTE_HID;
2462 			moea_pte_set(pt, pvo_pt);
2463 			return (i);
2464 		}
2465 	}
2466 
2467 	/*
2468 	 * Now try secondary hash.
2469 	 */
2470 	ptegidx ^= moea_pteg_mask;
2471 
2472 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2473 		if ((pt->pte_hi & PTE_VALID) == 0) {
2474 			pvo_pt->pte_hi |= PTE_HID;
2475 			moea_pte_set(pt, pvo_pt);
2476 			return (i);
2477 		}
2478 	}
2479 
2480 	/* Try again, but this time try to force a PTE out. */
2481 	ptegidx = pteg_bkpidx;
2482 
2483 	victim_pvo = moea_pte_spillable_ident(ptegidx);
2484 	if (victim_pvo == NULL) {
2485 		ptegidx ^= moea_pteg_mask;
2486 		victim_pvo = moea_pte_spillable_ident(ptegidx);
2487 	}
2488 
2489 	if (victim_pvo == NULL) {
2490 		panic("moea_pte_insert: overflow");
2491 		return (-1);
2492 	}
2493 
2494 	victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx);
2495 
2496 	if (pteg_bkpidx == ptegidx)
2497 		pvo_pt->pte_hi &= ~PTE_HID;
2498 	else
2499 		pvo_pt->pte_hi |= PTE_HID;
2500 
2501 	/*
2502 	 * Synchronize the sacrifice PTE with its PVO, then mark both
2503 	 * invalid. The PVO will be reused when/if the VM system comes
2504 	 * here after a fault.
2505 	 */
2506 	pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7];
2507 
2508 	if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi)
2509 	    panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2510 
2511 	/*
2512 	 * Set the new PTE.
2513 	 */
2514 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2515 	PVO_PTEGIDX_CLR(victim_pvo);
2516 	moea_pte_overflow++;
2517 	moea_pte_set(pt, pvo_pt);
2518 
2519 	return (victim_idx & 7);
2520 }
2521 
2522 static boolean_t
2523 moea_query_bit(vm_page_t m, int ptebit)
2524 {
2525 	struct	pvo_entry *pvo;
2526 	struct	pte *pt;
2527 
2528 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2529 	if (moea_attr_fetch(m) & ptebit)
2530 		return (TRUE);
2531 
2532 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2533 		/*
2534 		 * See if we saved the bit off.  If so, cache it and return
2535 		 * success.
2536 		 */
2537 		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2538 			moea_attr_save(m, ptebit);
2539 			return (TRUE);
2540 		}
2541 	}
2542 
2543 	/*
2544 	 * No luck, now go through the hard part of looking at the PTEs
2545 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2546 	 * the PTEs.
2547 	 */
2548 	powerpc_sync();
2549 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2550 		/*
2551 		 * See if this pvo has a valid PTE.  if so, fetch the
2552 		 * REF/CHG bits from the valid PTE.  If the appropriate
2553 		 * ptebit is set, cache it and return success.
2554 		 */
2555 		pt = moea_pvo_to_pte(pvo, -1);
2556 		if (pt != NULL) {
2557 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2558 			mtx_unlock(&moea_table_mutex);
2559 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2560 				moea_attr_save(m, ptebit);
2561 				return (TRUE);
2562 			}
2563 		}
2564 	}
2565 
2566 	return (FALSE);
2567 }
2568 
2569 static u_int
2570 moea_clear_bit(vm_page_t m, int ptebit)
2571 {
2572 	u_int	count;
2573 	struct	pvo_entry *pvo;
2574 	struct	pte *pt;
2575 
2576 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2577 
2578 	/*
2579 	 * Clear the cached value.
2580 	 */
2581 	moea_attr_clear(m, ptebit);
2582 
2583 	/*
2584 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2585 	 * we can reset the right ones).  note that since the pvo entries and
2586 	 * list heads are accessed via BAT0 and are never placed in the page
2587 	 * table, we don't have to worry about further accesses setting the
2588 	 * REF/CHG bits.
2589 	 */
2590 	powerpc_sync();
2591 
2592 	/*
2593 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2594 	 * valid pte clear the ptebit from the valid pte.
2595 	 */
2596 	count = 0;
2597 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2598 		pt = moea_pvo_to_pte(pvo, -1);
2599 		if (pt != NULL) {
2600 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2601 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2602 				count++;
2603 				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2604 			}
2605 			mtx_unlock(&moea_table_mutex);
2606 		}
2607 		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2608 	}
2609 
2610 	return (count);
2611 }
2612 
2613 /*
2614  * Return true if the physical range is encompassed by the battable[idx]
2615  */
2616 static int
2617 moea_bat_mapped(int idx, vm_paddr_t pa, vm_size_t size)
2618 {
2619 	u_int prot;
2620 	u_int32_t start;
2621 	u_int32_t end;
2622 	u_int32_t bat_ble;
2623 
2624 	/*
2625 	 * Return immediately if not a valid mapping
2626 	 */
2627 	if (!(battable[idx].batu & BAT_Vs))
2628 		return (EINVAL);
2629 
2630 	/*
2631 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2632 	 * so it can function as an i/o page
2633 	 */
2634 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2635 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2636 		return (EPERM);
2637 
2638 	/*
2639 	 * The address should be within the BAT range. Assume that the
2640 	 * start address in the BAT has the correct alignment (thus
2641 	 * not requiring masking)
2642 	 */
2643 	start = battable[idx].batl & BAT_PBS;
2644 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2645 	end = start | (bat_ble << 15) | 0x7fff;
2646 
2647 	if ((pa < start) || ((pa + size) > end))
2648 		return (ERANGE);
2649 
2650 	return (0);
2651 }
2652 
2653 boolean_t
2654 moea_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
2655 {
2656 	int i;
2657 
2658 	/*
2659 	 * This currently does not work for entries that
2660 	 * overlap 256M BAT segments.
2661 	 */
2662 
2663 	for(i = 0; i < 16; i++)
2664 		if (moea_bat_mapped(i, pa, size) == 0)
2665 			return (0);
2666 
2667 	return (EFAULT);
2668 }
2669 
2670 /*
2671  * Map a set of physical memory pages into the kernel virtual
2672  * address space. Return a pointer to where it is mapped. This
2673  * routine is intended to be used for mapping device memory,
2674  * NOT real memory.
2675  */
2676 void *
2677 moea_mapdev(vm_paddr_t pa, vm_size_t size)
2678 {
2679 
2680 	return (moea_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
2681 }
2682 
2683 void *
2684 moea_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2685 {
2686 	vm_offset_t va, tmpva, ppa, offset;
2687 	int i;
2688 
2689 	ppa = trunc_page(pa);
2690 	offset = pa & PAGE_MASK;
2691 	size = roundup(offset + size, PAGE_SIZE);
2692 
2693 	/*
2694 	 * If the physical address lies within a valid BAT table entry,
2695 	 * return the 1:1 mapping. This currently doesn't work
2696 	 * for regions that overlap 256M BAT segments.
2697 	 */
2698 	for (i = 0; i < 16; i++) {
2699 		if (moea_bat_mapped(i, pa, size) == 0)
2700 			return ((void *) pa);
2701 	}
2702 
2703 	va = kva_alloc(size);
2704 	if (!va)
2705 		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2706 
2707 	for (tmpva = va; size > 0;) {
2708 		moea_kenter_attr(tmpva, ppa, ma);
2709 		tlbie(tmpva);
2710 		size -= PAGE_SIZE;
2711 		tmpva += PAGE_SIZE;
2712 		ppa += PAGE_SIZE;
2713 	}
2714 
2715 	return ((void *)(va + offset));
2716 }
2717 
2718 void
2719 moea_unmapdev(vm_offset_t va, vm_size_t size)
2720 {
2721 	vm_offset_t base, offset;
2722 
2723 	/*
2724 	 * If this is outside kernel virtual space, then it's a
2725 	 * battable entry and doesn't require unmapping
2726 	 */
2727 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2728 		base = trunc_page(va);
2729 		offset = va & PAGE_MASK;
2730 		size = roundup(offset + size, PAGE_SIZE);
2731 		moea_qremove(base, atop(size));
2732 		kva_free(base, size);
2733 	}
2734 }
2735 
2736 static void
2737 moea_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
2738 {
2739 	struct pvo_entry *pvo;
2740 	vm_offset_t lim;
2741 	vm_paddr_t pa;
2742 	vm_size_t len;
2743 
2744 	PMAP_LOCK(pm);
2745 	while (sz > 0) {
2746 		lim = round_page(va + 1);
2747 		len = MIN(lim - va, sz);
2748 		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2749 		if (pvo != NULL) {
2750 			pa = PVO_PADDR(pvo) | (va & ADDR_POFF);
2751 			moea_syncicache(pa, len);
2752 		}
2753 		va += len;
2754 		sz -= len;
2755 	}
2756 	PMAP_UNLOCK(pm);
2757 }
2758 
2759 void
2760 moea_dumpsys_map(vm_paddr_t pa, size_t sz, void **va)
2761 {
2762 
2763 	*va = (void *)pa;
2764 }
2765 
2766 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2767 
2768 void
2769 moea_scan_init()
2770 {
2771 	struct pvo_entry *pvo;
2772 	vm_offset_t va;
2773 	int i;
2774 
2775 	if (!do_minidump) {
2776 		/* Initialize phys. segments for dumpsys(). */
2777 		memset(&dump_map, 0, sizeof(dump_map));
2778 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2779 		for (i = 0; i < pregions_sz; i++) {
2780 			dump_map[i].pa_start = pregions[i].mr_start;
2781 			dump_map[i].pa_size = pregions[i].mr_size;
2782 		}
2783 		return;
2784 	}
2785 
2786 	/* Virtual segments for minidumps: */
2787 	memset(&dump_map, 0, sizeof(dump_map));
2788 
2789 	/* 1st: kernel .data and .bss. */
2790 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2791 	dump_map[0].pa_size =
2792 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2793 
2794 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2795 	dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
2796 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2797 
2798 	/* 3rd: kernel VM. */
2799 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2800 	/* Find start of next chunk (from va). */
2801 	while (va < virtual_end) {
2802 		/* Don't dump the buffer cache. */
2803 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2804 			va = kmi.buffer_eva;
2805 			continue;
2806 		}
2807 		pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
2808 		if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2809 			break;
2810 		va += PAGE_SIZE;
2811 	}
2812 	if (va < virtual_end) {
2813 		dump_map[2].pa_start = va;
2814 		va += PAGE_SIZE;
2815 		/* Find last page in chunk. */
2816 		while (va < virtual_end) {
2817 			/* Don't run into the buffer cache. */
2818 			if (va == kmi.buffer_sva)
2819 				break;
2820 			pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF,
2821 			    NULL);
2822 			if (pvo == NULL ||
2823 			    !(pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2824 				break;
2825 			va += PAGE_SIZE;
2826 		}
2827 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2828 	}
2829 }
2830