xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision 95d45410b5100e07f6f98450bcd841a8945d4726)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27  * POSSIBILITY OF SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
31  * Copyright (C) 1995, 1996 TooLs GmbH.
32  * All rights reserved.
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. All advertising materials mentioning features or use of this software
43  *    must display the following acknowledgement:
44  *	This product includes software developed by TooLs GmbH.
45  * 4. The name of TooLs GmbH may not be used to endorse or promote products
46  *    derived from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
49  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
50  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
51  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
53  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
54  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
55  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
56  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
57  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
58  *
59  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
60  */
61 /*-
62  * Copyright (C) 2001 Benno Rice.
63  * All rights reserved.
64  *
65  * Redistribution and use in source and binary forms, with or without
66  * modification, are permitted provided that the following conditions
67  * are met:
68  * 1. Redistributions of source code must retain the above copyright
69  *    notice, this list of conditions and the following disclaimer.
70  * 2. Redistributions in binary form must reproduce the above copyright
71  *    notice, this list of conditions and the following disclaimer in the
72  *    documentation and/or other materials provided with the distribution.
73  *
74  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
75  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
76  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
77  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
78  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
79  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
80  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
81  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
82  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
83  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
84  */
85 
86 #include <sys/cdefs.h>
87 __FBSDID("$FreeBSD$");
88 
89 /*
90  * Manages physical address maps.
91  *
92  * Since the information managed by this module is also stored by the
93  * logical address mapping module, this module may throw away valid virtual
94  * to physical mappings at almost any time.  However, invalidations of
95  * mappings must be done as requested.
96  *
97  * In order to cope with hardware architectures which make virtual to
98  * physical map invalidates expensive, this module may delay invalidate
99  * reduced protection operations until such time as they are actually
100  * necessary.  This module is given full information as to which processors
101  * are currently using which maps, and to when physical maps must be made
102  * correct.
103  */
104 
105 #include "opt_kstack_pages.h"
106 
107 #include <sys/param.h>
108 #include <sys/kernel.h>
109 #include <sys/queue.h>
110 #include <sys/cpuset.h>
111 #include <sys/ktr.h>
112 #include <sys/lock.h>
113 #include <sys/msgbuf.h>
114 #include <sys/mutex.h>
115 #include <sys/proc.h>
116 #include <sys/rwlock.h>
117 #include <sys/sched.h>
118 #include <sys/sysctl.h>
119 #include <sys/systm.h>
120 #include <sys/vmmeter.h>
121 
122 #include <dev/ofw/openfirm.h>
123 
124 #include <vm/vm.h>
125 #include <vm/vm_param.h>
126 #include <vm/vm_kern.h>
127 #include <vm/vm_page.h>
128 #include <vm/vm_map.h>
129 #include <vm/vm_object.h>
130 #include <vm/vm_extern.h>
131 #include <vm/vm_pageout.h>
132 #include <vm/uma.h>
133 
134 #include <machine/cpu.h>
135 #include <machine/platform.h>
136 #include <machine/bat.h>
137 #include <machine/frame.h>
138 #include <machine/md_var.h>
139 #include <machine/psl.h>
140 #include <machine/pte.h>
141 #include <machine/smp.h>
142 #include <machine/sr.h>
143 #include <machine/mmuvar.h>
144 #include <machine/trap.h>
145 
146 #include "mmu_if.h"
147 
148 #define	MOEA_DEBUG
149 
150 #define TODO	panic("%s: not implemented", __func__);
151 
152 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
153 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
154 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
155 
156 struct ofw_map {
157 	vm_offset_t	om_va;
158 	vm_size_t	om_len;
159 	vm_offset_t	om_pa;
160 	u_int		om_mode;
161 };
162 
163 extern unsigned char _etext[];
164 extern unsigned char _end[];
165 
166 extern int dumpsys_minidump;
167 
168 /*
169  * Map of physical memory regions.
170  */
171 static struct	mem_region *regions;
172 static struct	mem_region *pregions;
173 static u_int    phys_avail_count;
174 static int	regions_sz, pregions_sz;
175 static struct	ofw_map *translations;
176 
177 /*
178  * Lock for the pteg and pvo tables.
179  */
180 struct mtx	moea_table_mutex;
181 struct mtx	moea_vsid_mutex;
182 
183 /* tlbie instruction synchronization */
184 static struct mtx tlbie_mtx;
185 
186 /*
187  * PTEG data.
188  */
189 static struct	pteg *moea_pteg_table;
190 u_int		moea_pteg_count;
191 u_int		moea_pteg_mask;
192 
193 /*
194  * PVO data.
195  */
196 struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
197 struct	pvo_head moea_pvo_kunmanaged =
198     LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
199 
200 static struct rwlock_padalign pvh_global_lock;
201 
202 uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
203 uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
204 
205 #define	BPVO_POOL_SIZE	32768
206 static struct	pvo_entry *moea_bpvo_pool;
207 static int	moea_bpvo_pool_index = 0;
208 
209 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
210 static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
211 
212 static boolean_t moea_initialized = FALSE;
213 
214 /*
215  * Statistics.
216  */
217 u_int	moea_pte_valid = 0;
218 u_int	moea_pte_overflow = 0;
219 u_int	moea_pte_replacements = 0;
220 u_int	moea_pvo_entries = 0;
221 u_int	moea_pvo_enter_calls = 0;
222 u_int	moea_pvo_remove_calls = 0;
223 u_int	moea_pte_spills = 0;
224 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
225     0, "");
226 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
227     &moea_pte_overflow, 0, "");
228 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
229     &moea_pte_replacements, 0, "");
230 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
231     0, "");
232 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
233     &moea_pvo_enter_calls, 0, "");
234 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
235     &moea_pvo_remove_calls, 0, "");
236 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
237     &moea_pte_spills, 0, "");
238 
239 /*
240  * Allocate physical memory for use in moea_bootstrap.
241  */
242 static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
243 
244 /*
245  * PTE calls.
246  */
247 static int		moea_pte_insert(u_int, struct pte *);
248 
249 /*
250  * PVO calls.
251  */
252 static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
253 		    vm_offset_t, vm_offset_t, u_int, int);
254 static void	moea_pvo_remove(struct pvo_entry *, int);
255 static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
256 static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
257 
258 /*
259  * Utility routines.
260  */
261 static void		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
262 			    vm_prot_t, boolean_t);
263 static void		moea_syncicache(vm_offset_t, vm_size_t);
264 static boolean_t	moea_query_bit(vm_page_t, int);
265 static u_int		moea_clear_bit(vm_page_t, int);
266 static void		moea_kremove(mmu_t, vm_offset_t);
267 int		moea_pte_spill(vm_offset_t);
268 
269 /*
270  * Kernel MMU interface
271  */
272 void moea_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
273 void moea_clear_modify(mmu_t, vm_page_t);
274 void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
275 void moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
276     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
277 void moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
278 void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
279     vm_prot_t);
280 void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
281 vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
282 vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
283 void moea_init(mmu_t);
284 boolean_t moea_is_modified(mmu_t, vm_page_t);
285 boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
286 boolean_t moea_is_referenced(mmu_t, vm_page_t);
287 int moea_ts_referenced(mmu_t, vm_page_t);
288 vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
289 boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
290 int moea_page_wired_mappings(mmu_t, vm_page_t);
291 void moea_pinit(mmu_t, pmap_t);
292 void moea_pinit0(mmu_t, pmap_t);
293 void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
294 void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
295 void moea_qremove(mmu_t, vm_offset_t, int);
296 void moea_release(mmu_t, pmap_t);
297 void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
298 void moea_remove_all(mmu_t, vm_page_t);
299 void moea_remove_write(mmu_t, vm_page_t);
300 void moea_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
301 void moea_zero_page(mmu_t, vm_page_t);
302 void moea_zero_page_area(mmu_t, vm_page_t, int, int);
303 void moea_zero_page_idle(mmu_t, vm_page_t);
304 void moea_activate(mmu_t, struct thread *);
305 void moea_deactivate(mmu_t, struct thread *);
306 void moea_cpu_bootstrap(mmu_t, int);
307 void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
308 void *moea_mapdev(mmu_t, vm_paddr_t, vm_size_t);
309 void *moea_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
310 void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
311 vm_paddr_t moea_kextract(mmu_t, vm_offset_t);
312 void moea_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t);
313 void moea_kenter(mmu_t, vm_offset_t, vm_paddr_t);
314 void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
315 boolean_t moea_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
316 static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
317 vm_offset_t moea_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
318     vm_size_t *sz);
319 struct pmap_md * moea_scan_md(mmu_t mmu, struct pmap_md *prev);
320 
321 static mmu_method_t moea_methods[] = {
322 	MMUMETHOD(mmu_change_wiring,	moea_change_wiring),
323 	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
324 	MMUMETHOD(mmu_copy_page,	moea_copy_page),
325 	MMUMETHOD(mmu_copy_pages,	moea_copy_pages),
326 	MMUMETHOD(mmu_enter,		moea_enter),
327 	MMUMETHOD(mmu_enter_object,	moea_enter_object),
328 	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
329 	MMUMETHOD(mmu_extract,		moea_extract),
330 	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
331 	MMUMETHOD(mmu_init,		moea_init),
332 	MMUMETHOD(mmu_is_modified,	moea_is_modified),
333 	MMUMETHOD(mmu_is_prefaultable,	moea_is_prefaultable),
334 	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
335 	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
336 	MMUMETHOD(mmu_map,     		moea_map),
337 	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
338 	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
339 	MMUMETHOD(mmu_pinit,		moea_pinit),
340 	MMUMETHOD(mmu_pinit0,		moea_pinit0),
341 	MMUMETHOD(mmu_protect,		moea_protect),
342 	MMUMETHOD(mmu_qenter,		moea_qenter),
343 	MMUMETHOD(mmu_qremove,		moea_qremove),
344 	MMUMETHOD(mmu_release,		moea_release),
345 	MMUMETHOD(mmu_remove,		moea_remove),
346 	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
347 	MMUMETHOD(mmu_remove_write,	moea_remove_write),
348 	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
349 	MMUMETHOD(mmu_unwire,		moea_unwire),
350 	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
351 	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
352 	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
353 	MMUMETHOD(mmu_activate,		moea_activate),
354 	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
355 	MMUMETHOD(mmu_page_set_memattr,	moea_page_set_memattr),
356 
357 	/* Internal interfaces */
358 	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
359 	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
360 	MMUMETHOD(mmu_mapdev_attr,	moea_mapdev_attr),
361 	MMUMETHOD(mmu_mapdev,		moea_mapdev),
362 	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
363 	MMUMETHOD(mmu_kextract,		moea_kextract),
364 	MMUMETHOD(mmu_kenter,		moea_kenter),
365 	MMUMETHOD(mmu_kenter_attr,	moea_kenter_attr),
366 	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
367 	MMUMETHOD(mmu_scan_md,		moea_scan_md),
368 	MMUMETHOD(mmu_dumpsys_map,	moea_dumpsys_map),
369 
370 	{ 0, 0 }
371 };
372 
373 MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
374 
375 static __inline uint32_t
376 moea_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
377 {
378 	uint32_t pte_lo;
379 	int i;
380 
381 	if (ma != VM_MEMATTR_DEFAULT) {
382 		switch (ma) {
383 		case VM_MEMATTR_UNCACHEABLE:
384 			return (PTE_I | PTE_G);
385 		case VM_MEMATTR_WRITE_COMBINING:
386 		case VM_MEMATTR_WRITE_BACK:
387 		case VM_MEMATTR_PREFETCHABLE:
388 			return (PTE_I);
389 		case VM_MEMATTR_WRITE_THROUGH:
390 			return (PTE_W | PTE_M);
391 		}
392 	}
393 
394 	/*
395 	 * Assume the page is cache inhibited and access is guarded unless
396 	 * it's in our available memory array.
397 	 */
398 	pte_lo = PTE_I | PTE_G;
399 	for (i = 0; i < pregions_sz; i++) {
400 		if ((pa >= pregions[i].mr_start) &&
401 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
402 			pte_lo = PTE_M;
403 			break;
404 		}
405 	}
406 
407 	return pte_lo;
408 }
409 
410 static void
411 tlbie(vm_offset_t va)
412 {
413 
414 	mtx_lock_spin(&tlbie_mtx);
415 	__asm __volatile("ptesync");
416 	__asm __volatile("tlbie %0" :: "r"(va));
417 	__asm __volatile("eieio; tlbsync; ptesync");
418 	mtx_unlock_spin(&tlbie_mtx);
419 }
420 
421 static void
422 tlbia(void)
423 {
424 	vm_offset_t va;
425 
426 	for (va = 0; va < 0x00040000; va += 0x00001000) {
427 		__asm __volatile("tlbie %0" :: "r"(va));
428 		powerpc_sync();
429 	}
430 	__asm __volatile("tlbsync");
431 	powerpc_sync();
432 }
433 
434 static __inline int
435 va_to_sr(u_int *sr, vm_offset_t va)
436 {
437 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
438 }
439 
440 static __inline u_int
441 va_to_pteg(u_int sr, vm_offset_t addr)
442 {
443 	u_int hash;
444 
445 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
446 	    ADDR_PIDX_SHFT);
447 	return (hash & moea_pteg_mask);
448 }
449 
450 static __inline struct pvo_head *
451 vm_page_to_pvoh(vm_page_t m)
452 {
453 
454 	return (&m->md.mdpg_pvoh);
455 }
456 
457 static __inline void
458 moea_attr_clear(vm_page_t m, int ptebit)
459 {
460 
461 	rw_assert(&pvh_global_lock, RA_WLOCKED);
462 	m->md.mdpg_attrs &= ~ptebit;
463 }
464 
465 static __inline int
466 moea_attr_fetch(vm_page_t m)
467 {
468 
469 	return (m->md.mdpg_attrs);
470 }
471 
472 static __inline void
473 moea_attr_save(vm_page_t m, int ptebit)
474 {
475 
476 	rw_assert(&pvh_global_lock, RA_WLOCKED);
477 	m->md.mdpg_attrs |= ptebit;
478 }
479 
480 static __inline int
481 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
482 {
483 	if (pt->pte_hi == pvo_pt->pte_hi)
484 		return (1);
485 
486 	return (0);
487 }
488 
489 static __inline int
490 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
491 {
492 	return (pt->pte_hi & ~PTE_VALID) ==
493 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
494 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
495 }
496 
497 static __inline void
498 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
499 {
500 
501 	mtx_assert(&moea_table_mutex, MA_OWNED);
502 
503 	/*
504 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
505 	 * set when the real pte is set in memory.
506 	 *
507 	 * Note: Don't set the valid bit for correct operation of tlb update.
508 	 */
509 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
510 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
511 	pt->pte_lo = pte_lo;
512 }
513 
514 static __inline void
515 moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
516 {
517 
518 	mtx_assert(&moea_table_mutex, MA_OWNED);
519 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
520 }
521 
522 static __inline void
523 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
524 {
525 
526 	mtx_assert(&moea_table_mutex, MA_OWNED);
527 
528 	/*
529 	 * As shown in Section 7.6.3.2.3
530 	 */
531 	pt->pte_lo &= ~ptebit;
532 	tlbie(va);
533 }
534 
535 static __inline void
536 moea_pte_set(struct pte *pt, struct pte *pvo_pt)
537 {
538 
539 	mtx_assert(&moea_table_mutex, MA_OWNED);
540 	pvo_pt->pte_hi |= PTE_VALID;
541 
542 	/*
543 	 * Update the PTE as defined in section 7.6.3.1.
544 	 * Note that the REF/CHG bits are from pvo_pt and thus should have
545 	 * been saved so this routine can restore them (if desired).
546 	 */
547 	pt->pte_lo = pvo_pt->pte_lo;
548 	powerpc_sync();
549 	pt->pte_hi = pvo_pt->pte_hi;
550 	powerpc_sync();
551 	moea_pte_valid++;
552 }
553 
554 static __inline void
555 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
556 {
557 
558 	mtx_assert(&moea_table_mutex, MA_OWNED);
559 	pvo_pt->pte_hi &= ~PTE_VALID;
560 
561 	/*
562 	 * Force the reg & chg bits back into the PTEs.
563 	 */
564 	powerpc_sync();
565 
566 	/*
567 	 * Invalidate the pte.
568 	 */
569 	pt->pte_hi &= ~PTE_VALID;
570 
571 	tlbie(va);
572 
573 	/*
574 	 * Save the reg & chg bits.
575 	 */
576 	moea_pte_synch(pt, pvo_pt);
577 	moea_pte_valid--;
578 }
579 
580 static __inline void
581 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
582 {
583 
584 	/*
585 	 * Invalidate the PTE
586 	 */
587 	moea_pte_unset(pt, pvo_pt, va);
588 	moea_pte_set(pt, pvo_pt);
589 }
590 
591 /*
592  * Quick sort callout for comparing memory regions.
593  */
594 static int	om_cmp(const void *a, const void *b);
595 
596 static int
597 om_cmp(const void *a, const void *b)
598 {
599 	const struct	ofw_map *mapa;
600 	const struct	ofw_map *mapb;
601 
602 	mapa = a;
603 	mapb = b;
604 	if (mapa->om_pa < mapb->om_pa)
605 		return (-1);
606 	else if (mapa->om_pa > mapb->om_pa)
607 		return (1);
608 	else
609 		return (0);
610 }
611 
612 void
613 moea_cpu_bootstrap(mmu_t mmup, int ap)
614 {
615 	u_int sdr;
616 	int i;
617 
618 	if (ap) {
619 		powerpc_sync();
620 		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
621 		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
622 		isync();
623 		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
624 		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
625 		isync();
626 	}
627 
628 #ifdef WII
629 	/*
630 	 * Special case for the Wii: don't install the PCI BAT.
631 	 */
632 	if (strcmp(installed_platform(), "wii") != 0) {
633 #endif
634 		__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
635 		__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
636 #ifdef WII
637 	}
638 #endif
639 	isync();
640 
641 	__asm __volatile("mtibatu 1,%0" :: "r"(0));
642 	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
643 	__asm __volatile("mtibatu 2,%0" :: "r"(0));
644 	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
645 	__asm __volatile("mtibatu 3,%0" :: "r"(0));
646 	isync();
647 
648 	for (i = 0; i < 16; i++)
649 		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
650 	powerpc_sync();
651 
652 	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
653 	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
654 	isync();
655 
656 	tlbia();
657 }
658 
659 void
660 moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
661 {
662 	ihandle_t	mmui;
663 	phandle_t	chosen, mmu;
664 	int		sz;
665 	int		i, j;
666 	vm_size_t	size, physsz, hwphyssz;
667 	vm_offset_t	pa, va, off;
668 	void		*dpcpu;
669 	register_t	msr;
670 
671         /*
672          * Set up BAT0 to map the lowest 256 MB area
673          */
674         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
675         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
676 
677 	/*
678 	 * Map PCI memory space.
679 	 */
680 	battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
681 	battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
682 
683 	battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
684 	battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
685 
686 	battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
687 	battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
688 
689 	battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
690 	battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
691 
692 	/*
693 	 * Map obio devices.
694 	 */
695 	battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
696 	battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
697 
698 	/*
699 	 * Use an IBAT and a DBAT to map the bottom segment of memory
700 	 * where we are. Turn off instruction relocation temporarily
701 	 * to prevent faults while reprogramming the IBAT.
702 	 */
703 	msr = mfmsr();
704 	mtmsr(msr & ~PSL_IR);
705 	__asm (".balign 32; \n"
706 	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
707 	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
708 	    :: "r"(battable[0].batu), "r"(battable[0].batl));
709 	mtmsr(msr);
710 
711 #ifdef WII
712         if (strcmp(installed_platform(), "wii") != 0) {
713 #endif
714 		/* map pci space */
715 		__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
716 		__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
717 #ifdef WII
718 	}
719 #endif
720 	isync();
721 
722 	/* set global direct map flag */
723 	hw_direct_map = 1;
724 
725 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
726 	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
727 
728 	for (i = 0; i < pregions_sz; i++) {
729 		vm_offset_t pa;
730 		vm_offset_t end;
731 
732 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
733 			pregions[i].mr_start,
734 			pregions[i].mr_start + pregions[i].mr_size,
735 			pregions[i].mr_size);
736 		/*
737 		 * Install entries into the BAT table to allow all
738 		 * of physmem to be convered by on-demand BAT entries.
739 		 * The loop will sometimes set the same battable element
740 		 * twice, but that's fine since they won't be used for
741 		 * a while yet.
742 		 */
743 		pa = pregions[i].mr_start & 0xf0000000;
744 		end = pregions[i].mr_start + pregions[i].mr_size;
745 		do {
746                         u_int n = pa >> ADDR_SR_SHFT;
747 
748 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
749 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
750 			pa += SEGMENT_LENGTH;
751 		} while (pa < end);
752 	}
753 
754 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
755 		panic("moea_bootstrap: phys_avail too small");
756 
757 	phys_avail_count = 0;
758 	physsz = 0;
759 	hwphyssz = 0;
760 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
761 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
762 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
763 		    regions[i].mr_start + regions[i].mr_size,
764 		    regions[i].mr_size);
765 		if (hwphyssz != 0 &&
766 		    (physsz + regions[i].mr_size) >= hwphyssz) {
767 			if (physsz < hwphyssz) {
768 				phys_avail[j] = regions[i].mr_start;
769 				phys_avail[j + 1] = regions[i].mr_start +
770 				    hwphyssz - physsz;
771 				physsz = hwphyssz;
772 				phys_avail_count++;
773 			}
774 			break;
775 		}
776 		phys_avail[j] = regions[i].mr_start;
777 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
778 		phys_avail_count++;
779 		physsz += regions[i].mr_size;
780 	}
781 
782 	/* Check for overlap with the kernel and exception vectors */
783 	for (j = 0; j < 2*phys_avail_count; j+=2) {
784 		if (phys_avail[j] < EXC_LAST)
785 			phys_avail[j] += EXC_LAST;
786 
787 		if (kernelstart >= phys_avail[j] &&
788 		    kernelstart < phys_avail[j+1]) {
789 			if (kernelend < phys_avail[j+1]) {
790 				phys_avail[2*phys_avail_count] =
791 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
792 				phys_avail[2*phys_avail_count + 1] =
793 				    phys_avail[j+1];
794 				phys_avail_count++;
795 			}
796 
797 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
798 		}
799 
800 		if (kernelend >= phys_avail[j] &&
801 		    kernelend < phys_avail[j+1]) {
802 			if (kernelstart > phys_avail[j]) {
803 				phys_avail[2*phys_avail_count] = phys_avail[j];
804 				phys_avail[2*phys_avail_count + 1] =
805 				    kernelstart & ~PAGE_MASK;
806 				phys_avail_count++;
807 			}
808 
809 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
810 		}
811 	}
812 
813 	physmem = btoc(physsz);
814 
815 	/*
816 	 * Allocate PTEG table.
817 	 */
818 #ifdef PTEGCOUNT
819 	moea_pteg_count = PTEGCOUNT;
820 #else
821 	moea_pteg_count = 0x1000;
822 
823 	while (moea_pteg_count < physmem)
824 		moea_pteg_count <<= 1;
825 
826 	moea_pteg_count >>= 1;
827 #endif /* PTEGCOUNT */
828 
829 	size = moea_pteg_count * sizeof(struct pteg);
830 	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
831 	    size);
832 	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
833 	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
834 	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
835 	moea_pteg_mask = moea_pteg_count - 1;
836 
837 	/*
838 	 * Allocate pv/overflow lists.
839 	 */
840 	size = sizeof(struct pvo_head) * moea_pteg_count;
841 	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
842 	    PAGE_SIZE);
843 	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
844 	for (i = 0; i < moea_pteg_count; i++)
845 		LIST_INIT(&moea_pvo_table[i]);
846 
847 	/*
848 	 * Initialize the lock that synchronizes access to the pteg and pvo
849 	 * tables.
850 	 */
851 	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
852 	    MTX_RECURSE);
853 	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
854 
855 	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
856 
857 	/*
858 	 * Initialise the unmanaged pvo pool.
859 	 */
860 	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
861 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
862 	moea_bpvo_pool_index = 0;
863 
864 	/*
865 	 * Make sure kernel vsid is allocated as well as VSID 0.
866 	 */
867 	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
868 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
869 	moea_vsid_bitmap[0] |= 1;
870 
871 	/*
872 	 * Initialize the kernel pmap (which is statically allocated).
873 	 */
874 	PMAP_LOCK_INIT(kernel_pmap);
875 	for (i = 0; i < 16; i++)
876 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
877 	CPU_FILL(&kernel_pmap->pm_active);
878 	RB_INIT(&kernel_pmap->pmap_pvo);
879 
880  	/*
881 	 * Initialize the global pv list lock.
882 	 */
883 	rw_init(&pvh_global_lock, "pmap pv global");
884 
885 	/*
886 	 * Set up the Open Firmware mappings
887 	 */
888 	chosen = OF_finddevice("/chosen");
889 	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
890 	    (mmu = OF_instance_to_package(mmui)) != -1 &&
891 	    (sz = OF_getproplen(mmu, "translations")) != -1) {
892 		translations = NULL;
893 		for (i = 0; phys_avail[i] != 0; i += 2) {
894 			if (phys_avail[i + 1] >= sz) {
895 				translations = (struct ofw_map *)phys_avail[i];
896 				break;
897 			}
898 		}
899 		if (translations == NULL)
900 			panic("moea_bootstrap: no space to copy translations");
901 		bzero(translations, sz);
902 		if (OF_getprop(mmu, "translations", translations, sz) == -1)
903 			panic("moea_bootstrap: can't get ofw translations");
904 		CTR0(KTR_PMAP, "moea_bootstrap: translations");
905 		sz /= sizeof(*translations);
906 		qsort(translations, sz, sizeof (*translations), om_cmp);
907 		for (i = 0; i < sz; i++) {
908 			CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
909 			    translations[i].om_pa, translations[i].om_va,
910 			    translations[i].om_len);
911 
912 			/*
913 			 * If the mapping is 1:1, let the RAM and device
914 			 * on-demand BAT tables take care of the translation.
915 			 */
916 			if (translations[i].om_va == translations[i].om_pa)
917 				continue;
918 
919 			/* Enter the pages */
920 			for (off = 0; off < translations[i].om_len;
921 			    off += PAGE_SIZE)
922 				moea_kenter(mmup, translations[i].om_va + off,
923 					    translations[i].om_pa + off);
924 		}
925 	}
926 
927 	/*
928 	 * Calculate the last available physical address.
929 	 */
930 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
931 		;
932 	Maxmem = powerpc_btop(phys_avail[i + 1]);
933 
934 	moea_cpu_bootstrap(mmup,0);
935 
936 	pmap_bootstrapped++;
937 
938 	/*
939 	 * Set the start and end of kva.
940 	 */
941 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
942 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
943 
944 	/*
945 	 * Allocate a kernel stack with a guard page for thread0 and map it
946 	 * into the kernel page map.
947 	 */
948 	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
949 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
950 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
951 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
952 	thread0.td_kstack = va;
953 	thread0.td_kstack_pages = KSTACK_PAGES;
954 	for (i = 0; i < KSTACK_PAGES; i++) {
955 		moea_kenter(mmup, va, pa);
956 		pa += PAGE_SIZE;
957 		va += PAGE_SIZE;
958 	}
959 
960 	/*
961 	 * Allocate virtual address space for the message buffer.
962 	 */
963 	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
964 	msgbufp = (struct msgbuf *)virtual_avail;
965 	va = virtual_avail;
966 	virtual_avail += round_page(msgbufsize);
967 	while (va < virtual_avail) {
968 		moea_kenter(mmup, va, pa);
969 		pa += PAGE_SIZE;
970 		va += PAGE_SIZE;
971 	}
972 
973 	/*
974 	 * Allocate virtual address space for the dynamic percpu area.
975 	 */
976 	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
977 	dpcpu = (void *)virtual_avail;
978 	va = virtual_avail;
979 	virtual_avail += DPCPU_SIZE;
980 	while (va < virtual_avail) {
981 		moea_kenter(mmup, va, pa);
982 		pa += PAGE_SIZE;
983 		va += PAGE_SIZE;
984 	}
985 	dpcpu_init(dpcpu, 0);
986 }
987 
988 /*
989  * Activate a user pmap.  The pmap must be activated before it's address
990  * space can be accessed in any way.
991  */
992 void
993 moea_activate(mmu_t mmu, struct thread *td)
994 {
995 	pmap_t	pm, pmr;
996 
997 	/*
998 	 * Load all the data we need up front to encourage the compiler to
999 	 * not issue any loads while we have interrupts disabled below.
1000 	 */
1001 	pm = &td->td_proc->p_vmspace->vm_pmap;
1002 	pmr = pm->pmap_phys;
1003 
1004 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1005 	PCPU_SET(curpmap, pmr);
1006 }
1007 
1008 void
1009 moea_deactivate(mmu_t mmu, struct thread *td)
1010 {
1011 	pmap_t	pm;
1012 
1013 	pm = &td->td_proc->p_vmspace->vm_pmap;
1014 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1015 	PCPU_SET(curpmap, NULL);
1016 }
1017 
1018 void
1019 moea_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1020 {
1021 	struct	pvo_entry *pvo;
1022 
1023 	PMAP_LOCK(pm);
1024 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1025 
1026 	if (pvo != NULL) {
1027 		if (wired) {
1028 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1029 				pm->pm_stats.wired_count++;
1030 			pvo->pvo_vaddr |= PVO_WIRED;
1031 		} else {
1032 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1033 				pm->pm_stats.wired_count--;
1034 			pvo->pvo_vaddr &= ~PVO_WIRED;
1035 		}
1036 	}
1037 	PMAP_UNLOCK(pm);
1038 }
1039 
1040 void
1041 moea_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1042 {
1043 	struct	pvo_entry key, *pvo;
1044 
1045 	PMAP_LOCK(pm);
1046 	key.pvo_vaddr = sva;
1047 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1048 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1049 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1050 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1051 			panic("moea_unwire: pvo %p is missing PVO_WIRED", pvo);
1052 		pvo->pvo_vaddr &= ~PVO_WIRED;
1053 		pm->pm_stats.wired_count--;
1054 	}
1055 	PMAP_UNLOCK(pm);
1056 }
1057 
1058 void
1059 moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1060 {
1061 	vm_offset_t	dst;
1062 	vm_offset_t	src;
1063 
1064 	dst = VM_PAGE_TO_PHYS(mdst);
1065 	src = VM_PAGE_TO_PHYS(msrc);
1066 
1067 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
1068 }
1069 
1070 void
1071 moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1072     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1073 {
1074 	void *a_cp, *b_cp;
1075 	vm_offset_t a_pg_offset, b_pg_offset;
1076 	int cnt;
1077 
1078 	while (xfersize > 0) {
1079 		a_pg_offset = a_offset & PAGE_MASK;
1080 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1081 		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1082 		    a_pg_offset;
1083 		b_pg_offset = b_offset & PAGE_MASK;
1084 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1085 		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1086 		    b_pg_offset;
1087 		bcopy(a_cp, b_cp, cnt);
1088 		a_offset += cnt;
1089 		b_offset += cnt;
1090 		xfersize -= cnt;
1091 	}
1092 }
1093 
1094 /*
1095  * Zero a page of physical memory by temporarily mapping it into the tlb.
1096  */
1097 void
1098 moea_zero_page(mmu_t mmu, vm_page_t m)
1099 {
1100 	vm_offset_t off, pa = VM_PAGE_TO_PHYS(m);
1101 
1102 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1103 		__asm __volatile("dcbz 0,%0" :: "r"(pa + off));
1104 }
1105 
1106 void
1107 moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1108 {
1109 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1110 	void *va = (void *)(pa + off);
1111 
1112 	bzero(va, size);
1113 }
1114 
1115 void
1116 moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1117 {
1118 
1119 	moea_zero_page(mmu, m);
1120 }
1121 
1122 /*
1123  * Map the given physical page at the specified virtual address in the
1124  * target pmap with the protection requested.  If specified the page
1125  * will be wired down.
1126  */
1127 void
1128 moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1129 	   boolean_t wired)
1130 {
1131 
1132 	rw_wlock(&pvh_global_lock);
1133 	PMAP_LOCK(pmap);
1134 	moea_enter_locked(pmap, va, m, prot, wired);
1135 	rw_wunlock(&pvh_global_lock);
1136 	PMAP_UNLOCK(pmap);
1137 }
1138 
1139 /*
1140  * Map the given physical page at the specified virtual address in the
1141  * target pmap with the protection requested.  If specified the page
1142  * will be wired down.
1143  *
1144  * The global pvh and pmap must be locked.
1145  */
1146 static void
1147 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1148     boolean_t wired)
1149 {
1150 	struct		pvo_head *pvo_head;
1151 	uma_zone_t	zone;
1152 	u_int		pte_lo, pvo_flags;
1153 	int		error;
1154 
1155 	if (!moea_initialized) {
1156 		pvo_head = &moea_pvo_kunmanaged;
1157 		zone = moea_upvo_zone;
1158 		pvo_flags = 0;
1159 	} else {
1160 		pvo_head = vm_page_to_pvoh(m);
1161 		zone = moea_mpvo_zone;
1162 		pvo_flags = PVO_MANAGED;
1163 	}
1164 	if (pmap_bootstrapped)
1165 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1166 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1167 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1168 		VM_OBJECT_ASSERT_LOCKED(m->object);
1169 
1170 	/* XXX change the pvo head for unmanaged pages */
1171 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1172 		pvo_flags &= ~PVO_MANAGED;
1173 		pvo_head = &moea_pvo_kunmanaged;
1174 		zone = moea_upvo_zone;
1175 	}
1176 
1177 	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1178 
1179 	if (prot & VM_PROT_WRITE) {
1180 		pte_lo |= PTE_BW;
1181 		if (pmap_bootstrapped &&
1182 		    (m->oflags & VPO_UNMANAGED) == 0)
1183 			vm_page_aflag_set(m, PGA_WRITEABLE);
1184 	} else
1185 		pte_lo |= PTE_BR;
1186 
1187 	if (prot & VM_PROT_EXECUTE)
1188 		pvo_flags |= PVO_EXECUTABLE;
1189 
1190 	if (wired)
1191 		pvo_flags |= PVO_WIRED;
1192 
1193 	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1194 	    pte_lo, pvo_flags);
1195 
1196 	/*
1197 	 * Flush the real page from the instruction cache. This has be done
1198 	 * for all user mappings to prevent information leakage via the
1199 	 * instruction cache. moea_pvo_enter() returns ENOENT for the first
1200 	 * mapping for a page.
1201 	 */
1202 	if (pmap != kernel_pmap && error == ENOENT &&
1203 	    (pte_lo & (PTE_I | PTE_G)) == 0)
1204 		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1205 }
1206 
1207 /*
1208  * Maps a sequence of resident pages belonging to the same object.
1209  * The sequence begins with the given page m_start.  This page is
1210  * mapped at the given virtual address start.  Each subsequent page is
1211  * mapped at a virtual address that is offset from start by the same
1212  * amount as the page is offset from m_start within the object.  The
1213  * last page in the sequence is the page with the largest offset from
1214  * m_start that can be mapped at a virtual address less than the given
1215  * virtual address end.  Not every virtual page between start and end
1216  * is mapped; only those for which a resident page exists with the
1217  * corresponding offset from m_start are mapped.
1218  */
1219 void
1220 moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1221     vm_page_t m_start, vm_prot_t prot)
1222 {
1223 	vm_page_t m;
1224 	vm_pindex_t diff, psize;
1225 
1226 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1227 
1228 	psize = atop(end - start);
1229 	m = m_start;
1230 	rw_wlock(&pvh_global_lock);
1231 	PMAP_LOCK(pm);
1232 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1233 		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1234 		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1235 		m = TAILQ_NEXT(m, listq);
1236 	}
1237 	rw_wunlock(&pvh_global_lock);
1238 	PMAP_UNLOCK(pm);
1239 }
1240 
1241 void
1242 moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1243     vm_prot_t prot)
1244 {
1245 
1246 	rw_wlock(&pvh_global_lock);
1247 	PMAP_LOCK(pm);
1248 	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1249 	    FALSE);
1250 	rw_wunlock(&pvh_global_lock);
1251 	PMAP_UNLOCK(pm);
1252 }
1253 
1254 vm_paddr_t
1255 moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1256 {
1257 	struct	pvo_entry *pvo;
1258 	vm_paddr_t pa;
1259 
1260 	PMAP_LOCK(pm);
1261 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1262 	if (pvo == NULL)
1263 		pa = 0;
1264 	else
1265 		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1266 	PMAP_UNLOCK(pm);
1267 	return (pa);
1268 }
1269 
1270 /*
1271  * Atomically extract and hold the physical page with the given
1272  * pmap and virtual address pair if that mapping permits the given
1273  * protection.
1274  */
1275 vm_page_t
1276 moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1277 {
1278 	struct	pvo_entry *pvo;
1279 	vm_page_t m;
1280         vm_paddr_t pa;
1281 
1282 	m = NULL;
1283 	pa = 0;
1284 	PMAP_LOCK(pmap);
1285 retry:
1286 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1287 	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1288 	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1289 	     (prot & VM_PROT_WRITE) == 0)) {
1290 		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1291 			goto retry;
1292 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1293 		vm_page_hold(m);
1294 	}
1295 	PA_UNLOCK_COND(pa);
1296 	PMAP_UNLOCK(pmap);
1297 	return (m);
1298 }
1299 
1300 void
1301 moea_init(mmu_t mmu)
1302 {
1303 
1304 	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1305 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1306 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1307 	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1308 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1309 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1310 	moea_initialized = TRUE;
1311 }
1312 
1313 boolean_t
1314 moea_is_referenced(mmu_t mmu, vm_page_t m)
1315 {
1316 	boolean_t rv;
1317 
1318 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1319 	    ("moea_is_referenced: page %p is not managed", m));
1320 	rw_wlock(&pvh_global_lock);
1321 	rv = moea_query_bit(m, PTE_REF);
1322 	rw_wunlock(&pvh_global_lock);
1323 	return (rv);
1324 }
1325 
1326 boolean_t
1327 moea_is_modified(mmu_t mmu, vm_page_t m)
1328 {
1329 	boolean_t rv;
1330 
1331 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1332 	    ("moea_is_modified: page %p is not managed", m));
1333 
1334 	/*
1335 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1336 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1337 	 * is clear, no PTEs can have PTE_CHG set.
1338 	 */
1339 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1340 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1341 		return (FALSE);
1342 	rw_wlock(&pvh_global_lock);
1343 	rv = moea_query_bit(m, PTE_CHG);
1344 	rw_wunlock(&pvh_global_lock);
1345 	return (rv);
1346 }
1347 
1348 boolean_t
1349 moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1350 {
1351 	struct pvo_entry *pvo;
1352 	boolean_t rv;
1353 
1354 	PMAP_LOCK(pmap);
1355 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1356 	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1357 	PMAP_UNLOCK(pmap);
1358 	return (rv);
1359 }
1360 
1361 void
1362 moea_clear_modify(mmu_t mmu, vm_page_t m)
1363 {
1364 
1365 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1366 	    ("moea_clear_modify: page %p is not managed", m));
1367 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1368 	KASSERT(!vm_page_xbusied(m),
1369 	    ("moea_clear_modify: page %p is exclusive busy", m));
1370 
1371 	/*
1372 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_CHG
1373 	 * set.  If the object containing the page is locked and the page is
1374 	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1375 	 */
1376 	if ((m->aflags & PGA_WRITEABLE) == 0)
1377 		return;
1378 	rw_wlock(&pvh_global_lock);
1379 	moea_clear_bit(m, PTE_CHG);
1380 	rw_wunlock(&pvh_global_lock);
1381 }
1382 
1383 /*
1384  * Clear the write and modified bits in each of the given page's mappings.
1385  */
1386 void
1387 moea_remove_write(mmu_t mmu, vm_page_t m)
1388 {
1389 	struct	pvo_entry *pvo;
1390 	struct	pte *pt;
1391 	pmap_t	pmap;
1392 	u_int	lo;
1393 
1394 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1395 	    ("moea_remove_write: page %p is not managed", m));
1396 
1397 	/*
1398 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1399 	 * set by another thread while the object is locked.  Thus,
1400 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1401 	 */
1402 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1403 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1404 		return;
1405 	rw_wlock(&pvh_global_lock);
1406 	lo = moea_attr_fetch(m);
1407 	powerpc_sync();
1408 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1409 		pmap = pvo->pvo_pmap;
1410 		PMAP_LOCK(pmap);
1411 		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1412 			pt = moea_pvo_to_pte(pvo, -1);
1413 			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1414 			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1415 			if (pt != NULL) {
1416 				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1417 				lo |= pvo->pvo_pte.pte.pte_lo;
1418 				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1419 				moea_pte_change(pt, &pvo->pvo_pte.pte,
1420 				    pvo->pvo_vaddr);
1421 				mtx_unlock(&moea_table_mutex);
1422 			}
1423 		}
1424 		PMAP_UNLOCK(pmap);
1425 	}
1426 	if ((lo & PTE_CHG) != 0) {
1427 		moea_attr_clear(m, PTE_CHG);
1428 		vm_page_dirty(m);
1429 	}
1430 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1431 	rw_wunlock(&pvh_global_lock);
1432 }
1433 
1434 /*
1435  *	moea_ts_referenced:
1436  *
1437  *	Return a count of reference bits for a page, clearing those bits.
1438  *	It is not necessary for every reference bit to be cleared, but it
1439  *	is necessary that 0 only be returned when there are truly no
1440  *	reference bits set.
1441  *
1442  *	XXX: The exact number of bits to check and clear is a matter that
1443  *	should be tested and standardized at some point in the future for
1444  *	optimal aging of shared pages.
1445  */
1446 int
1447 moea_ts_referenced(mmu_t mmu, vm_page_t m)
1448 {
1449 	int count;
1450 
1451 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1452 	    ("moea_ts_referenced: page %p is not managed", m));
1453 	rw_wlock(&pvh_global_lock);
1454 	count = moea_clear_bit(m, PTE_REF);
1455 	rw_wunlock(&pvh_global_lock);
1456 	return (count);
1457 }
1458 
1459 /*
1460  * Modify the WIMG settings of all mappings for a page.
1461  */
1462 void
1463 moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1464 {
1465 	struct	pvo_entry *pvo;
1466 	struct	pvo_head *pvo_head;
1467 	struct	pte *pt;
1468 	pmap_t	pmap;
1469 	u_int	lo;
1470 
1471 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1472 		m->md.mdpg_cache_attrs = ma;
1473 		return;
1474 	}
1475 
1476 	rw_wlock(&pvh_global_lock);
1477 	pvo_head = vm_page_to_pvoh(m);
1478 	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1479 
1480 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1481 		pmap = pvo->pvo_pmap;
1482 		PMAP_LOCK(pmap);
1483 		pt = moea_pvo_to_pte(pvo, -1);
1484 		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1485 		pvo->pvo_pte.pte.pte_lo |= lo;
1486 		if (pt != NULL) {
1487 			moea_pte_change(pt, &pvo->pvo_pte.pte,
1488 			    pvo->pvo_vaddr);
1489 			if (pvo->pvo_pmap == kernel_pmap)
1490 				isync();
1491 		}
1492 		mtx_unlock(&moea_table_mutex);
1493 		PMAP_UNLOCK(pmap);
1494 	}
1495 	m->md.mdpg_cache_attrs = ma;
1496 	rw_wunlock(&pvh_global_lock);
1497 }
1498 
1499 /*
1500  * Map a wired page into kernel virtual address space.
1501  */
1502 void
1503 moea_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1504 {
1505 
1506 	moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1507 }
1508 
1509 void
1510 moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1511 {
1512 	u_int		pte_lo;
1513 	int		error;
1514 
1515 #if 0
1516 	if (va < VM_MIN_KERNEL_ADDRESS)
1517 		panic("moea_kenter: attempt to enter non-kernel address %#x",
1518 		    va);
1519 #endif
1520 
1521 	pte_lo = moea_calc_wimg(pa, ma);
1522 
1523 	PMAP_LOCK(kernel_pmap);
1524 	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1525 	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1526 
1527 	if (error != 0 && error != ENOENT)
1528 		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1529 		    pa, error);
1530 
1531 	PMAP_UNLOCK(kernel_pmap);
1532 }
1533 
1534 /*
1535  * Extract the physical page address associated with the given kernel virtual
1536  * address.
1537  */
1538 vm_paddr_t
1539 moea_kextract(mmu_t mmu, vm_offset_t va)
1540 {
1541 	struct		pvo_entry *pvo;
1542 	vm_paddr_t pa;
1543 
1544 	/*
1545 	 * Allow direct mappings on 32-bit OEA
1546 	 */
1547 	if (va < VM_MIN_KERNEL_ADDRESS) {
1548 		return (va);
1549 	}
1550 
1551 	PMAP_LOCK(kernel_pmap);
1552 	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1553 	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1554 	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1555 	PMAP_UNLOCK(kernel_pmap);
1556 	return (pa);
1557 }
1558 
1559 /*
1560  * Remove a wired page from kernel virtual address space.
1561  */
1562 void
1563 moea_kremove(mmu_t mmu, vm_offset_t va)
1564 {
1565 
1566 	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1567 }
1568 
1569 /*
1570  * Map a range of physical addresses into kernel virtual address space.
1571  *
1572  * The value passed in *virt is a suggested virtual address for the mapping.
1573  * Architectures which can support a direct-mapped physical to virtual region
1574  * can return the appropriate address within that region, leaving '*virt'
1575  * unchanged.  We cannot and therefore do not; *virt is updated with the
1576  * first usable address after the mapped region.
1577  */
1578 vm_offset_t
1579 moea_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1580     vm_paddr_t pa_end, int prot)
1581 {
1582 	vm_offset_t	sva, va;
1583 
1584 	sva = *virt;
1585 	va = sva;
1586 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1587 		moea_kenter(mmu, va, pa_start);
1588 	*virt = va;
1589 	return (sva);
1590 }
1591 
1592 /*
1593  * Returns true if the pmap's pv is one of the first
1594  * 16 pvs linked to from this page.  This count may
1595  * be changed upwards or downwards in the future; it
1596  * is only necessary that true be returned for a small
1597  * subset of pmaps for proper page aging.
1598  */
1599 boolean_t
1600 moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1601 {
1602         int loops;
1603 	struct pvo_entry *pvo;
1604 	boolean_t rv;
1605 
1606 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1607 	    ("moea_page_exists_quick: page %p is not managed", m));
1608 	loops = 0;
1609 	rv = FALSE;
1610 	rw_wlock(&pvh_global_lock);
1611 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1612 		if (pvo->pvo_pmap == pmap) {
1613 			rv = TRUE;
1614 			break;
1615 		}
1616 		if (++loops >= 16)
1617 			break;
1618 	}
1619 	rw_wunlock(&pvh_global_lock);
1620 	return (rv);
1621 }
1622 
1623 /*
1624  * Return the number of managed mappings to the given physical page
1625  * that are wired.
1626  */
1627 int
1628 moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1629 {
1630 	struct pvo_entry *pvo;
1631 	int count;
1632 
1633 	count = 0;
1634 	if ((m->oflags & VPO_UNMANAGED) != 0)
1635 		return (count);
1636 	rw_wlock(&pvh_global_lock);
1637 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1638 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1639 			count++;
1640 	rw_wunlock(&pvh_global_lock);
1641 	return (count);
1642 }
1643 
1644 static u_int	moea_vsidcontext;
1645 
1646 void
1647 moea_pinit(mmu_t mmu, pmap_t pmap)
1648 {
1649 	int	i, mask;
1650 	u_int	entropy;
1651 
1652 	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1653 	RB_INIT(&pmap->pmap_pvo);
1654 
1655 	entropy = 0;
1656 	__asm __volatile("mftb %0" : "=r"(entropy));
1657 
1658 	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1659 	    == NULL) {
1660 		pmap->pmap_phys = pmap;
1661 	}
1662 
1663 
1664 	mtx_lock(&moea_vsid_mutex);
1665 	/*
1666 	 * Allocate some segment registers for this pmap.
1667 	 */
1668 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1669 		u_int	hash, n;
1670 
1671 		/*
1672 		 * Create a new value by mutiplying by a prime and adding in
1673 		 * entropy from the timebase register.  This is to make the
1674 		 * VSID more random so that the PT hash function collides
1675 		 * less often.  (Note that the prime casues gcc to do shifts
1676 		 * instead of a multiply.)
1677 		 */
1678 		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1679 		hash = moea_vsidcontext & (NPMAPS - 1);
1680 		if (hash == 0)		/* 0 is special, avoid it */
1681 			continue;
1682 		n = hash >> 5;
1683 		mask = 1 << (hash & (VSID_NBPW - 1));
1684 		hash = (moea_vsidcontext & 0xfffff);
1685 		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1686 			/* anything free in this bucket? */
1687 			if (moea_vsid_bitmap[n] == 0xffffffff) {
1688 				entropy = (moea_vsidcontext >> 20);
1689 				continue;
1690 			}
1691 			i = ffs(~moea_vsid_bitmap[n]) - 1;
1692 			mask = 1 << i;
1693 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1694 			hash |= i;
1695 		}
1696 		KASSERT(!(moea_vsid_bitmap[n] & mask),
1697 		    ("Allocating in-use VSID group %#x\n", hash));
1698 		moea_vsid_bitmap[n] |= mask;
1699 		for (i = 0; i < 16; i++)
1700 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1701 		mtx_unlock(&moea_vsid_mutex);
1702 		return;
1703 	}
1704 
1705 	mtx_unlock(&moea_vsid_mutex);
1706 	panic("moea_pinit: out of segments");
1707 }
1708 
1709 /*
1710  * Initialize the pmap associated with process 0.
1711  */
1712 void
1713 moea_pinit0(mmu_t mmu, pmap_t pm)
1714 {
1715 
1716 	PMAP_LOCK_INIT(pm);
1717 	moea_pinit(mmu, pm);
1718 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1719 }
1720 
1721 /*
1722  * Set the physical protection on the specified range of this map as requested.
1723  */
1724 void
1725 moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1726     vm_prot_t prot)
1727 {
1728 	struct	pvo_entry *pvo, *tpvo, key;
1729 	struct	pte *pt;
1730 
1731 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1732 	    ("moea_protect: non current pmap"));
1733 
1734 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1735 		moea_remove(mmu, pm, sva, eva);
1736 		return;
1737 	}
1738 
1739 	rw_wlock(&pvh_global_lock);
1740 	PMAP_LOCK(pm);
1741 	key.pvo_vaddr = sva;
1742 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1743 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1744 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1745 		if ((prot & VM_PROT_EXECUTE) == 0)
1746 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1747 
1748 		/*
1749 		 * Grab the PTE pointer before we diddle with the cached PTE
1750 		 * copy.
1751 		 */
1752 		pt = moea_pvo_to_pte(pvo, -1);
1753 		/*
1754 		 * Change the protection of the page.
1755 		 */
1756 		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1757 		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1758 
1759 		/*
1760 		 * If the PVO is in the page table, update that pte as well.
1761 		 */
1762 		if (pt != NULL) {
1763 			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1764 			mtx_unlock(&moea_table_mutex);
1765 		}
1766 	}
1767 	rw_wunlock(&pvh_global_lock);
1768 	PMAP_UNLOCK(pm);
1769 }
1770 
1771 /*
1772  * Map a list of wired pages into kernel virtual address space.  This is
1773  * intended for temporary mappings which do not need page modification or
1774  * references recorded.  Existing mappings in the region are overwritten.
1775  */
1776 void
1777 moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1778 {
1779 	vm_offset_t va;
1780 
1781 	va = sva;
1782 	while (count-- > 0) {
1783 		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1784 		va += PAGE_SIZE;
1785 		m++;
1786 	}
1787 }
1788 
1789 /*
1790  * Remove page mappings from kernel virtual address space.  Intended for
1791  * temporary mappings entered by moea_qenter.
1792  */
1793 void
1794 moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1795 {
1796 	vm_offset_t va;
1797 
1798 	va = sva;
1799 	while (count-- > 0) {
1800 		moea_kremove(mmu, va);
1801 		va += PAGE_SIZE;
1802 	}
1803 }
1804 
1805 void
1806 moea_release(mmu_t mmu, pmap_t pmap)
1807 {
1808         int idx, mask;
1809 
1810 	/*
1811 	 * Free segment register's VSID
1812 	 */
1813         if (pmap->pm_sr[0] == 0)
1814                 panic("moea_release");
1815 
1816 	mtx_lock(&moea_vsid_mutex);
1817         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1818         mask = 1 << (idx % VSID_NBPW);
1819         idx /= VSID_NBPW;
1820         moea_vsid_bitmap[idx] &= ~mask;
1821 	mtx_unlock(&moea_vsid_mutex);
1822 }
1823 
1824 /*
1825  * Remove the given range of addresses from the specified map.
1826  */
1827 void
1828 moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1829 {
1830 	struct	pvo_entry *pvo, *tpvo, key;
1831 
1832 	rw_wlock(&pvh_global_lock);
1833 	PMAP_LOCK(pm);
1834 	key.pvo_vaddr = sva;
1835 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1836 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1837 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1838 		moea_pvo_remove(pvo, -1);
1839 	}
1840 	PMAP_UNLOCK(pm);
1841 	rw_wunlock(&pvh_global_lock);
1842 }
1843 
1844 /*
1845  * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1846  * will reflect changes in pte's back to the vm_page.
1847  */
1848 void
1849 moea_remove_all(mmu_t mmu, vm_page_t m)
1850 {
1851 	struct  pvo_head *pvo_head;
1852 	struct	pvo_entry *pvo, *next_pvo;
1853 	pmap_t	pmap;
1854 
1855 	rw_wlock(&pvh_global_lock);
1856 	pvo_head = vm_page_to_pvoh(m);
1857 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1858 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1859 
1860 		pmap = pvo->pvo_pmap;
1861 		PMAP_LOCK(pmap);
1862 		moea_pvo_remove(pvo, -1);
1863 		PMAP_UNLOCK(pmap);
1864 	}
1865 	if ((m->aflags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
1866 		moea_attr_clear(m, PTE_CHG);
1867 		vm_page_dirty(m);
1868 	}
1869 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1870 	rw_wunlock(&pvh_global_lock);
1871 }
1872 
1873 /*
1874  * Allocate a physical page of memory directly from the phys_avail map.
1875  * Can only be called from moea_bootstrap before avail start and end are
1876  * calculated.
1877  */
1878 static vm_offset_t
1879 moea_bootstrap_alloc(vm_size_t size, u_int align)
1880 {
1881 	vm_offset_t	s, e;
1882 	int		i, j;
1883 
1884 	size = round_page(size);
1885 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1886 		if (align != 0)
1887 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1888 		else
1889 			s = phys_avail[i];
1890 		e = s + size;
1891 
1892 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1893 			continue;
1894 
1895 		if (s == phys_avail[i]) {
1896 			phys_avail[i] += size;
1897 		} else if (e == phys_avail[i + 1]) {
1898 			phys_avail[i + 1] -= size;
1899 		} else {
1900 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1901 				phys_avail[j] = phys_avail[j - 2];
1902 				phys_avail[j + 1] = phys_avail[j - 1];
1903 			}
1904 
1905 			phys_avail[i + 3] = phys_avail[i + 1];
1906 			phys_avail[i + 1] = s;
1907 			phys_avail[i + 2] = e;
1908 			phys_avail_count++;
1909 		}
1910 
1911 		return (s);
1912 	}
1913 	panic("moea_bootstrap_alloc: could not allocate memory");
1914 }
1915 
1916 static void
1917 moea_syncicache(vm_offset_t pa, vm_size_t len)
1918 {
1919 	__syncicache((void *)pa, len);
1920 }
1921 
1922 static int
1923 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1924     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1925 {
1926 	struct	pvo_entry *pvo;
1927 	u_int	sr;
1928 	int	first;
1929 	u_int	ptegidx;
1930 	int	i;
1931 	int     bootstrap;
1932 
1933 	moea_pvo_enter_calls++;
1934 	first = 0;
1935 	bootstrap = 0;
1936 
1937 	/*
1938 	 * Compute the PTE Group index.
1939 	 */
1940 	va &= ~ADDR_POFF;
1941 	sr = va_to_sr(pm->pm_sr, va);
1942 	ptegidx = va_to_pteg(sr, va);
1943 
1944 	/*
1945 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1946 	 * there is a mapping.
1947 	 */
1948 	mtx_lock(&moea_table_mutex);
1949 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1950 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1951 			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
1952 			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
1953 			    (pte_lo & PTE_PP)) {
1954 				mtx_unlock(&moea_table_mutex);
1955 				return (0);
1956 			}
1957 			moea_pvo_remove(pvo, -1);
1958 			break;
1959 		}
1960 	}
1961 
1962 	/*
1963 	 * If we aren't overwriting a mapping, try to allocate.
1964 	 */
1965 	if (moea_initialized) {
1966 		pvo = uma_zalloc(zone, M_NOWAIT);
1967 	} else {
1968 		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1969 			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1970 			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1971 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1972 		}
1973 		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1974 		moea_bpvo_pool_index++;
1975 		bootstrap = 1;
1976 	}
1977 
1978 	if (pvo == NULL) {
1979 		mtx_unlock(&moea_table_mutex);
1980 		return (ENOMEM);
1981 	}
1982 
1983 	moea_pvo_entries++;
1984 	pvo->pvo_vaddr = va;
1985 	pvo->pvo_pmap = pm;
1986 	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1987 	pvo->pvo_vaddr &= ~ADDR_POFF;
1988 	if (flags & VM_PROT_EXECUTE)
1989 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1990 	if (flags & PVO_WIRED)
1991 		pvo->pvo_vaddr |= PVO_WIRED;
1992 	if (pvo_head != &moea_pvo_kunmanaged)
1993 		pvo->pvo_vaddr |= PVO_MANAGED;
1994 	if (bootstrap)
1995 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1996 
1997 	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
1998 
1999 	/*
2000 	 * Add to pmap list
2001 	 */
2002 	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2003 
2004 	/*
2005 	 * Remember if the list was empty and therefore will be the first
2006 	 * item.
2007 	 */
2008 	if (LIST_FIRST(pvo_head) == NULL)
2009 		first = 1;
2010 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2011 
2012 	if (pvo->pvo_vaddr & PVO_WIRED)
2013 		pm->pm_stats.wired_count++;
2014 	pm->pm_stats.resident_count++;
2015 
2016 	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2017 	KASSERT(i < 8, ("Invalid PTE index"));
2018 	if (i >= 0) {
2019 		PVO_PTEGIDX_SET(pvo, i);
2020 	} else {
2021 		panic("moea_pvo_enter: overflow");
2022 		moea_pte_overflow++;
2023 	}
2024 	mtx_unlock(&moea_table_mutex);
2025 
2026 	return (first ? ENOENT : 0);
2027 }
2028 
2029 static void
2030 moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
2031 {
2032 	struct	pte *pt;
2033 
2034 	/*
2035 	 * If there is an active pte entry, we need to deactivate it (and
2036 	 * save the ref & cfg bits).
2037 	 */
2038 	pt = moea_pvo_to_pte(pvo, pteidx);
2039 	if (pt != NULL) {
2040 		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2041 		mtx_unlock(&moea_table_mutex);
2042 		PVO_PTEGIDX_CLR(pvo);
2043 	} else {
2044 		moea_pte_overflow--;
2045 	}
2046 
2047 	/*
2048 	 * Update our statistics.
2049 	 */
2050 	pvo->pvo_pmap->pm_stats.resident_count--;
2051 	if (pvo->pvo_vaddr & PVO_WIRED)
2052 		pvo->pvo_pmap->pm_stats.wired_count--;
2053 
2054 	/*
2055 	 * Save the REF/CHG bits into their cache if the page is managed.
2056 	 */
2057 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2058 		struct	vm_page *pg;
2059 
2060 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
2061 		if (pg != NULL) {
2062 			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2063 			    (PTE_REF | PTE_CHG));
2064 		}
2065 	}
2066 
2067 	/*
2068 	 * Remove this PVO from the PV and pmap lists.
2069 	 */
2070 	LIST_REMOVE(pvo, pvo_vlink);
2071 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2072 
2073 	/*
2074 	 * Remove this from the overflow list and return it to the pool
2075 	 * if we aren't going to reuse it.
2076 	 */
2077 	LIST_REMOVE(pvo, pvo_olink);
2078 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2079 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2080 		    moea_upvo_zone, pvo);
2081 	moea_pvo_entries--;
2082 	moea_pvo_remove_calls++;
2083 }
2084 
2085 static __inline int
2086 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2087 {
2088 	int	pteidx;
2089 
2090 	/*
2091 	 * We can find the actual pte entry without searching by grabbing
2092 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2093 	 * noticing the HID bit.
2094 	 */
2095 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2096 	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2097 		pteidx ^= moea_pteg_mask * 8;
2098 
2099 	return (pteidx);
2100 }
2101 
2102 static struct pvo_entry *
2103 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2104 {
2105 	struct	pvo_entry *pvo;
2106 	int	ptegidx;
2107 	u_int	sr;
2108 
2109 	va &= ~ADDR_POFF;
2110 	sr = va_to_sr(pm->pm_sr, va);
2111 	ptegidx = va_to_pteg(sr, va);
2112 
2113 	mtx_lock(&moea_table_mutex);
2114 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2115 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2116 			if (pteidx_p)
2117 				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2118 			break;
2119 		}
2120 	}
2121 	mtx_unlock(&moea_table_mutex);
2122 
2123 	return (pvo);
2124 }
2125 
2126 static struct pte *
2127 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2128 {
2129 	struct	pte *pt;
2130 
2131 	/*
2132 	 * If we haven't been supplied the ptegidx, calculate it.
2133 	 */
2134 	if (pteidx == -1) {
2135 		int	ptegidx;
2136 		u_int	sr;
2137 
2138 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2139 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2140 		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2141 	}
2142 
2143 	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2144 	mtx_lock(&moea_table_mutex);
2145 
2146 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2147 		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2148 		    "valid pte index", pvo);
2149 	}
2150 
2151 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2152 		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2153 		    "pvo but no valid pte", pvo);
2154 	}
2155 
2156 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2157 		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2158 			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2159 			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2160 		}
2161 
2162 		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2163 		    != 0) {
2164 			panic("moea_pvo_to_pte: pvo %p pte does not match "
2165 			    "pte %p in moea_pteg_table", pvo, pt);
2166 		}
2167 
2168 		mtx_assert(&moea_table_mutex, MA_OWNED);
2169 		return (pt);
2170 	}
2171 
2172 	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2173 		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2174 		    "moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2175 	}
2176 
2177 	mtx_unlock(&moea_table_mutex);
2178 	return (NULL);
2179 }
2180 
2181 /*
2182  * XXX: THIS STUFF SHOULD BE IN pte.c?
2183  */
2184 int
2185 moea_pte_spill(vm_offset_t addr)
2186 {
2187 	struct	pvo_entry *source_pvo, *victim_pvo;
2188 	struct	pvo_entry *pvo;
2189 	int	ptegidx, i, j;
2190 	u_int	sr;
2191 	struct	pteg *pteg;
2192 	struct	pte *pt;
2193 
2194 	moea_pte_spills++;
2195 
2196 	sr = mfsrin(addr);
2197 	ptegidx = va_to_pteg(sr, addr);
2198 
2199 	/*
2200 	 * Have to substitute some entry.  Use the primary hash for this.
2201 	 * Use low bits of timebase as random generator.
2202 	 */
2203 	pteg = &moea_pteg_table[ptegidx];
2204 	mtx_lock(&moea_table_mutex);
2205 	__asm __volatile("mftb %0" : "=r"(i));
2206 	i &= 7;
2207 	pt = &pteg->pt[i];
2208 
2209 	source_pvo = NULL;
2210 	victim_pvo = NULL;
2211 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2212 		/*
2213 		 * We need to find a pvo entry for this address.
2214 		 */
2215 		if (source_pvo == NULL &&
2216 		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2217 		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2218 			/*
2219 			 * Now found an entry to be spilled into the pteg.
2220 			 * The PTE is now valid, so we know it's active.
2221 			 */
2222 			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2223 
2224 			if (j >= 0) {
2225 				PVO_PTEGIDX_SET(pvo, j);
2226 				moea_pte_overflow--;
2227 				mtx_unlock(&moea_table_mutex);
2228 				return (1);
2229 			}
2230 
2231 			source_pvo = pvo;
2232 
2233 			if (victim_pvo != NULL)
2234 				break;
2235 		}
2236 
2237 		/*
2238 		 * We also need the pvo entry of the victim we are replacing
2239 		 * so save the R & C bits of the PTE.
2240 		 */
2241 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2242 		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2243 			victim_pvo = pvo;
2244 			if (source_pvo != NULL)
2245 				break;
2246 		}
2247 	}
2248 
2249 	if (source_pvo == NULL) {
2250 		mtx_unlock(&moea_table_mutex);
2251 		return (0);
2252 	}
2253 
2254 	if (victim_pvo == NULL) {
2255 		if ((pt->pte_hi & PTE_HID) == 0)
2256 			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2257 			    "entry", pt);
2258 
2259 		/*
2260 		 * If this is a secondary PTE, we need to search it's primary
2261 		 * pvo bucket for the matching PVO.
2262 		 */
2263 		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2264 		    pvo_olink) {
2265 			/*
2266 			 * We also need the pvo entry of the victim we are
2267 			 * replacing so save the R & C bits of the PTE.
2268 			 */
2269 			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2270 				victim_pvo = pvo;
2271 				break;
2272 			}
2273 		}
2274 
2275 		if (victim_pvo == NULL)
2276 			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2277 			    "entry", pt);
2278 	}
2279 
2280 	/*
2281 	 * We are invalidating the TLB entry for the EA we are replacing even
2282 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2283 	 * contained in the TLB entry.
2284 	 */
2285 	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2286 
2287 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2288 	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2289 
2290 	PVO_PTEGIDX_CLR(victim_pvo);
2291 	PVO_PTEGIDX_SET(source_pvo, i);
2292 	moea_pte_replacements++;
2293 
2294 	mtx_unlock(&moea_table_mutex);
2295 	return (1);
2296 }
2297 
2298 static __inline struct pvo_entry *
2299 moea_pte_spillable_ident(u_int ptegidx)
2300 {
2301 	struct	pte *pt;
2302 	struct	pvo_entry *pvo_walk, *pvo = NULL;
2303 
2304 	LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) {
2305 		if (pvo_walk->pvo_vaddr & PVO_WIRED)
2306 			continue;
2307 
2308 		if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID))
2309 			continue;
2310 
2311 		pt = moea_pvo_to_pte(pvo_walk, -1);
2312 
2313 		if (pt == NULL)
2314 			continue;
2315 
2316 		pvo = pvo_walk;
2317 
2318 		mtx_unlock(&moea_table_mutex);
2319 		if (!(pt->pte_lo & PTE_REF))
2320 			return (pvo_walk);
2321 	}
2322 
2323 	return (pvo);
2324 }
2325 
2326 static int
2327 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2328 {
2329 	struct	pte *pt;
2330 	struct	pvo_entry *victim_pvo;
2331 	int	i;
2332 	int	victim_idx;
2333 	u_int	pteg_bkpidx = ptegidx;
2334 
2335 	mtx_assert(&moea_table_mutex, MA_OWNED);
2336 
2337 	/*
2338 	 * First try primary hash.
2339 	 */
2340 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2341 		if ((pt->pte_hi & PTE_VALID) == 0) {
2342 			pvo_pt->pte_hi &= ~PTE_HID;
2343 			moea_pte_set(pt, pvo_pt);
2344 			return (i);
2345 		}
2346 	}
2347 
2348 	/*
2349 	 * Now try secondary hash.
2350 	 */
2351 	ptegidx ^= moea_pteg_mask;
2352 
2353 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2354 		if ((pt->pte_hi & PTE_VALID) == 0) {
2355 			pvo_pt->pte_hi |= PTE_HID;
2356 			moea_pte_set(pt, pvo_pt);
2357 			return (i);
2358 		}
2359 	}
2360 
2361 	/* Try again, but this time try to force a PTE out. */
2362 	ptegidx = pteg_bkpidx;
2363 
2364 	victim_pvo = moea_pte_spillable_ident(ptegidx);
2365 	if (victim_pvo == NULL) {
2366 		ptegidx ^= moea_pteg_mask;
2367 		victim_pvo = moea_pte_spillable_ident(ptegidx);
2368 	}
2369 
2370 	if (victim_pvo == NULL) {
2371 		panic("moea_pte_insert: overflow");
2372 		return (-1);
2373 	}
2374 
2375 	victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx);
2376 
2377 	if (pteg_bkpidx == ptegidx)
2378 		pvo_pt->pte_hi &= ~PTE_HID;
2379 	else
2380 		pvo_pt->pte_hi |= PTE_HID;
2381 
2382 	/*
2383 	 * Synchronize the sacrifice PTE with its PVO, then mark both
2384 	 * invalid. The PVO will be reused when/if the VM system comes
2385 	 * here after a fault.
2386 	 */
2387 	pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7];
2388 
2389 	if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi)
2390 	    panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2391 
2392 	/*
2393 	 * Set the new PTE.
2394 	 */
2395 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2396 	PVO_PTEGIDX_CLR(victim_pvo);
2397 	moea_pte_overflow++;
2398 	moea_pte_set(pt, pvo_pt);
2399 
2400 	return (victim_idx & 7);
2401 }
2402 
2403 static boolean_t
2404 moea_query_bit(vm_page_t m, int ptebit)
2405 {
2406 	struct	pvo_entry *pvo;
2407 	struct	pte *pt;
2408 
2409 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2410 	if (moea_attr_fetch(m) & ptebit)
2411 		return (TRUE);
2412 
2413 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2414 
2415 		/*
2416 		 * See if we saved the bit off.  If so, cache it and return
2417 		 * success.
2418 		 */
2419 		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2420 			moea_attr_save(m, ptebit);
2421 			return (TRUE);
2422 		}
2423 	}
2424 
2425 	/*
2426 	 * No luck, now go through the hard part of looking at the PTEs
2427 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2428 	 * the PTEs.
2429 	 */
2430 	powerpc_sync();
2431 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2432 
2433 		/*
2434 		 * See if this pvo has a valid PTE.  if so, fetch the
2435 		 * REF/CHG bits from the valid PTE.  If the appropriate
2436 		 * ptebit is set, cache it and return success.
2437 		 */
2438 		pt = moea_pvo_to_pte(pvo, -1);
2439 		if (pt != NULL) {
2440 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2441 			mtx_unlock(&moea_table_mutex);
2442 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2443 				moea_attr_save(m, ptebit);
2444 				return (TRUE);
2445 			}
2446 		}
2447 	}
2448 
2449 	return (FALSE);
2450 }
2451 
2452 static u_int
2453 moea_clear_bit(vm_page_t m, int ptebit)
2454 {
2455 	u_int	count;
2456 	struct	pvo_entry *pvo;
2457 	struct	pte *pt;
2458 
2459 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2460 
2461 	/*
2462 	 * Clear the cached value.
2463 	 */
2464 	moea_attr_clear(m, ptebit);
2465 
2466 	/*
2467 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2468 	 * we can reset the right ones).  note that since the pvo entries and
2469 	 * list heads are accessed via BAT0 and are never placed in the page
2470 	 * table, we don't have to worry about further accesses setting the
2471 	 * REF/CHG bits.
2472 	 */
2473 	powerpc_sync();
2474 
2475 	/*
2476 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2477 	 * valid pte clear the ptebit from the valid pte.
2478 	 */
2479 	count = 0;
2480 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2481 		pt = moea_pvo_to_pte(pvo, -1);
2482 		if (pt != NULL) {
2483 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2484 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2485 				count++;
2486 				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2487 			}
2488 			mtx_unlock(&moea_table_mutex);
2489 		}
2490 		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2491 	}
2492 
2493 	return (count);
2494 }
2495 
2496 /*
2497  * Return true if the physical range is encompassed by the battable[idx]
2498  */
2499 static int
2500 moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2501 {
2502 	u_int prot;
2503 	u_int32_t start;
2504 	u_int32_t end;
2505 	u_int32_t bat_ble;
2506 
2507 	/*
2508 	 * Return immediately if not a valid mapping
2509 	 */
2510 	if (!(battable[idx].batu & BAT_Vs))
2511 		return (EINVAL);
2512 
2513 	/*
2514 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2515 	 * so it can function as an i/o page
2516 	 */
2517 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2518 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2519 		return (EPERM);
2520 
2521 	/*
2522 	 * The address should be within the BAT range. Assume that the
2523 	 * start address in the BAT has the correct alignment (thus
2524 	 * not requiring masking)
2525 	 */
2526 	start = battable[idx].batl & BAT_PBS;
2527 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2528 	end = start | (bat_ble << 15) | 0x7fff;
2529 
2530 	if ((pa < start) || ((pa + size) > end))
2531 		return (ERANGE);
2532 
2533 	return (0);
2534 }
2535 
2536 boolean_t
2537 moea_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2538 {
2539 	int i;
2540 
2541 	/*
2542 	 * This currently does not work for entries that
2543 	 * overlap 256M BAT segments.
2544 	 */
2545 
2546 	for(i = 0; i < 16; i++)
2547 		if (moea_bat_mapped(i, pa, size) == 0)
2548 			return (0);
2549 
2550 	return (EFAULT);
2551 }
2552 
2553 /*
2554  * Map a set of physical memory pages into the kernel virtual
2555  * address space. Return a pointer to where it is mapped. This
2556  * routine is intended to be used for mapping device memory,
2557  * NOT real memory.
2558  */
2559 void *
2560 moea_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2561 {
2562 
2563 	return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2564 }
2565 
2566 void *
2567 moea_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2568 {
2569 	vm_offset_t va, tmpva, ppa, offset;
2570 	int i;
2571 
2572 	ppa = trunc_page(pa);
2573 	offset = pa & PAGE_MASK;
2574 	size = roundup(offset + size, PAGE_SIZE);
2575 
2576 	/*
2577 	 * If the physical address lies within a valid BAT table entry,
2578 	 * return the 1:1 mapping. This currently doesn't work
2579 	 * for regions that overlap 256M BAT segments.
2580 	 */
2581 	for (i = 0; i < 16; i++) {
2582 		if (moea_bat_mapped(i, pa, size) == 0)
2583 			return ((void *) pa);
2584 	}
2585 
2586 	va = kva_alloc(size);
2587 	if (!va)
2588 		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2589 
2590 	for (tmpva = va; size > 0;) {
2591 		moea_kenter_attr(mmu, tmpva, ppa, ma);
2592 		tlbie(tmpva);
2593 		size -= PAGE_SIZE;
2594 		tmpva += PAGE_SIZE;
2595 		ppa += PAGE_SIZE;
2596 	}
2597 
2598 	return ((void *)(va + offset));
2599 }
2600 
2601 void
2602 moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2603 {
2604 	vm_offset_t base, offset;
2605 
2606 	/*
2607 	 * If this is outside kernel virtual space, then it's a
2608 	 * battable entry and doesn't require unmapping
2609 	 */
2610 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2611 		base = trunc_page(va);
2612 		offset = va & PAGE_MASK;
2613 		size = roundup(offset + size, PAGE_SIZE);
2614 		kva_free(base, size);
2615 	}
2616 }
2617 
2618 static void
2619 moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2620 {
2621 	struct pvo_entry *pvo;
2622 	vm_offset_t lim;
2623 	vm_paddr_t pa;
2624 	vm_size_t len;
2625 
2626 	PMAP_LOCK(pm);
2627 	while (sz > 0) {
2628 		lim = round_page(va);
2629 		len = MIN(lim - va, sz);
2630 		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2631 		if (pvo != NULL) {
2632 			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2633 			    (va & ADDR_POFF);
2634 			moea_syncicache(pa, len);
2635 		}
2636 		va += len;
2637 		sz -= len;
2638 	}
2639 	PMAP_UNLOCK(pm);
2640 }
2641 
2642 vm_offset_t
2643 moea_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2644     vm_size_t *sz)
2645 {
2646 	if (md->md_vaddr == ~0UL)
2647 	    return (md->md_paddr + ofs);
2648 	else
2649 	    return (md->md_vaddr + ofs);
2650 }
2651 
2652 struct pmap_md *
2653 moea_scan_md(mmu_t mmu, struct pmap_md *prev)
2654 {
2655 	static struct pmap_md md;
2656 	struct pvo_entry *pvo;
2657 	vm_offset_t va;
2658 
2659 	if (dumpsys_minidump) {
2660 		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2661 		if (prev == NULL) {
2662 			/* 1st: kernel .data and .bss. */
2663 			md.md_index = 1;
2664 			md.md_vaddr = trunc_page((uintptr_t)_etext);
2665 			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2666 			return (&md);
2667 		}
2668 		switch (prev->md_index) {
2669 		case 1:
2670 			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2671 			md.md_index = 2;
2672 			md.md_vaddr = (vm_offset_t)msgbufp->msg_ptr;
2673 			md.md_size = round_page(msgbufp->msg_size);
2674 			break;
2675 		case 2:
2676 			/* 3rd: kernel VM. */
2677 			va = prev->md_vaddr + prev->md_size;
2678 			/* Find start of next chunk (from va). */
2679 			while (va < virtual_end) {
2680 				/* Don't dump the buffer cache. */
2681 				if (va >= kmi.buffer_sva &&
2682 				    va < kmi.buffer_eva) {
2683 					va = kmi.buffer_eva;
2684 					continue;
2685 				}
2686 				pvo = moea_pvo_find_va(kernel_pmap,
2687 				    va & ~ADDR_POFF, NULL);
2688 				if (pvo != NULL &&
2689 				    (pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2690 					break;
2691 				va += PAGE_SIZE;
2692 			}
2693 			if (va < virtual_end) {
2694 				md.md_vaddr = va;
2695 				va += PAGE_SIZE;
2696 				/* Find last page in chunk. */
2697 				while (va < virtual_end) {
2698 					/* Don't run into the buffer cache. */
2699 					if (va == kmi.buffer_sva)
2700 						break;
2701 					pvo = moea_pvo_find_va(kernel_pmap,
2702 					    va & ~ADDR_POFF, NULL);
2703 					if (pvo == NULL ||
2704 					    !(pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2705 						break;
2706 					va += PAGE_SIZE;
2707 				}
2708 				md.md_size = va - md.md_vaddr;
2709 				break;
2710 			}
2711 			md.md_index = 3;
2712 			/* FALLTHROUGH */
2713 		default:
2714 			return (NULL);
2715 		}
2716 	} else { /* minidumps */
2717 		mem_regions(&pregions, &pregions_sz,
2718 		    &regions, &regions_sz);
2719 
2720 		if (prev == NULL) {
2721 			/* first physical chunk. */
2722 			md.md_paddr = pregions[0].mr_start;
2723 			md.md_size = pregions[0].mr_size;
2724 			md.md_vaddr = ~0UL;
2725 			md.md_index = 1;
2726 		} else if (md.md_index < pregions_sz) {
2727 			md.md_paddr = pregions[md.md_index].mr_start;
2728 			md.md_size = pregions[md.md_index].mr_size;
2729 			md.md_vaddr = ~0UL;
2730 			md.md_index++;
2731 		} else {
2732 			/* There's no next physical chunk. */
2733 			return (NULL);
2734 		}
2735 	}
2736 
2737 	return (&md);
2738 }
2739