xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*-
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 /*
97  * Manages physical address maps.
98  *
99  * In addition to hardware address maps, this module is called upon to
100  * provide software-use-only maps which may or may not be stored in the
101  * same form as hardware maps.  These pseudo-maps are used to store
102  * intermediate results from copy operations to and from address spaces.
103  *
104  * Since the information managed by this module is also stored by the
105  * logical address mapping module, this module may throw away valid virtual
106  * to physical mappings at almost any time.  However, invalidations of
107  * mappings must be done as requested.
108  *
109  * In order to cope with hardware architectures which make virtual to
110  * physical map invalidates expensive, this module may delay invalidate
111  * reduced protection operations until such time as they are actually
112  * necessary.  This module is given full information as to which processors
113  * are currently using which maps, and to when physical maps must be made
114  * correct.
115  */
116 
117 #include "opt_kstack_pages.h"
118 
119 #include <sys/param.h>
120 #include <sys/kernel.h>
121 #include <sys/ktr.h>
122 #include <sys/lock.h>
123 #include <sys/msgbuf.h>
124 #include <sys/mutex.h>
125 #include <sys/proc.h>
126 #include <sys/sysctl.h>
127 #include <sys/systm.h>
128 #include <sys/vmmeter.h>
129 
130 #include <dev/ofw/openfirm.h>
131 
132 #include <vm/vm.h>
133 #include <vm/vm_param.h>
134 #include <vm/vm_kern.h>
135 #include <vm/vm_page.h>
136 #include <vm/vm_map.h>
137 #include <vm/vm_object.h>
138 #include <vm/vm_extern.h>
139 #include <vm/vm_pageout.h>
140 #include <vm/vm_pager.h>
141 #include <vm/uma.h>
142 
143 #include <machine/cpu.h>
144 #include <machine/platform.h>
145 #include <machine/bat.h>
146 #include <machine/frame.h>
147 #include <machine/md_var.h>
148 #include <machine/psl.h>
149 #include <machine/pte.h>
150 #include <machine/smp.h>
151 #include <machine/sr.h>
152 #include <machine/mmuvar.h>
153 
154 #include "mmu_if.h"
155 
156 #define	MOEA_DEBUG
157 
158 #define TODO	panic("%s: not implemented", __func__);
159 
160 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
161 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
162 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
163 
164 struct ofw_map {
165 	vm_offset_t	om_va;
166 	vm_size_t	om_len;
167 	vm_offset_t	om_pa;
168 	u_int		om_mode;
169 };
170 
171 /*
172  * Map of physical memory regions.
173  */
174 static struct	mem_region *regions;
175 static struct	mem_region *pregions;
176 static u_int    phys_avail_count;
177 static int	regions_sz, pregions_sz;
178 static struct	ofw_map *translations;
179 
180 /*
181  * Lock for the pteg and pvo tables.
182  */
183 struct mtx	moea_table_mutex;
184 struct mtx	moea_vsid_mutex;
185 
186 /* tlbie instruction synchronization */
187 static struct mtx tlbie_mtx;
188 
189 /*
190  * PTEG data.
191  */
192 static struct	pteg *moea_pteg_table;
193 u_int		moea_pteg_count;
194 u_int		moea_pteg_mask;
195 
196 /*
197  * PVO data.
198  */
199 struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
200 struct	pvo_head moea_pvo_kunmanaged =
201     LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
202 
203 uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
204 uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
205 
206 #define	BPVO_POOL_SIZE	32768
207 static struct	pvo_entry *moea_bpvo_pool;
208 static int	moea_bpvo_pool_index = 0;
209 
210 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
211 static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
212 
213 static boolean_t moea_initialized = FALSE;
214 
215 /*
216  * Statistics.
217  */
218 u_int	moea_pte_valid = 0;
219 u_int	moea_pte_overflow = 0;
220 u_int	moea_pte_replacements = 0;
221 u_int	moea_pvo_entries = 0;
222 u_int	moea_pvo_enter_calls = 0;
223 u_int	moea_pvo_remove_calls = 0;
224 u_int	moea_pte_spills = 0;
225 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
226     0, "");
227 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
228     &moea_pte_overflow, 0, "");
229 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
230     &moea_pte_replacements, 0, "");
231 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
232     0, "");
233 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
234     &moea_pvo_enter_calls, 0, "");
235 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
236     &moea_pvo_remove_calls, 0, "");
237 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
238     &moea_pte_spills, 0, "");
239 
240 /*
241  * Allocate physical memory for use in moea_bootstrap.
242  */
243 static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
244 
245 /*
246  * PTE calls.
247  */
248 static int		moea_pte_insert(u_int, struct pte *);
249 
250 /*
251  * PVO calls.
252  */
253 static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
254 		    vm_offset_t, vm_offset_t, u_int, int);
255 static void	moea_pvo_remove(struct pvo_entry *, int);
256 static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
257 static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
258 
259 /*
260  * Utility routines.
261  */
262 static void		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
263 			    vm_prot_t, boolean_t);
264 static void		moea_syncicache(vm_offset_t, vm_size_t);
265 static boolean_t	moea_query_bit(vm_page_t, int);
266 static u_int		moea_clear_bit(vm_page_t, int);
267 static void		moea_kremove(mmu_t, vm_offset_t);
268 int		moea_pte_spill(vm_offset_t);
269 
270 /*
271  * Kernel MMU interface
272  */
273 void moea_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
274 void moea_clear_modify(mmu_t, vm_page_t);
275 void moea_clear_reference(mmu_t, vm_page_t);
276 void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
277 void moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
278 void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
279     vm_prot_t);
280 void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
281 vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
282 vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
283 void moea_init(mmu_t);
284 boolean_t moea_is_modified(mmu_t, vm_page_t);
285 boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
286 boolean_t moea_is_referenced(mmu_t, vm_page_t);
287 boolean_t moea_ts_referenced(mmu_t, vm_page_t);
288 vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
289 boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
290 int moea_page_wired_mappings(mmu_t, vm_page_t);
291 void moea_pinit(mmu_t, pmap_t);
292 void moea_pinit0(mmu_t, pmap_t);
293 void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
294 void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
295 void moea_qremove(mmu_t, vm_offset_t, int);
296 void moea_release(mmu_t, pmap_t);
297 void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
298 void moea_remove_all(mmu_t, vm_page_t);
299 void moea_remove_write(mmu_t, vm_page_t);
300 void moea_zero_page(mmu_t, vm_page_t);
301 void moea_zero_page_area(mmu_t, vm_page_t, int, int);
302 void moea_zero_page_idle(mmu_t, vm_page_t);
303 void moea_activate(mmu_t, struct thread *);
304 void moea_deactivate(mmu_t, struct thread *);
305 void moea_cpu_bootstrap(mmu_t, int);
306 void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
307 void *moea_mapdev(mmu_t, vm_offset_t, vm_size_t);
308 void *moea_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
309 void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
310 vm_offset_t moea_kextract(mmu_t, vm_offset_t);
311 void moea_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t);
312 void moea_kenter(mmu_t, vm_offset_t, vm_offset_t);
313 void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
314 boolean_t moea_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
315 static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
316 
317 static mmu_method_t moea_methods[] = {
318 	MMUMETHOD(mmu_change_wiring,	moea_change_wiring),
319 	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
320 	MMUMETHOD(mmu_clear_reference,	moea_clear_reference),
321 	MMUMETHOD(mmu_copy_page,	moea_copy_page),
322 	MMUMETHOD(mmu_enter,		moea_enter),
323 	MMUMETHOD(mmu_enter_object,	moea_enter_object),
324 	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
325 	MMUMETHOD(mmu_extract,		moea_extract),
326 	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
327 	MMUMETHOD(mmu_init,		moea_init),
328 	MMUMETHOD(mmu_is_modified,	moea_is_modified),
329 	MMUMETHOD(mmu_is_prefaultable,	moea_is_prefaultable),
330 	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
331 	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
332 	MMUMETHOD(mmu_map,     		moea_map),
333 	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
334 	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
335 	MMUMETHOD(mmu_pinit,		moea_pinit),
336 	MMUMETHOD(mmu_pinit0,		moea_pinit0),
337 	MMUMETHOD(mmu_protect,		moea_protect),
338 	MMUMETHOD(mmu_qenter,		moea_qenter),
339 	MMUMETHOD(mmu_qremove,		moea_qremove),
340 	MMUMETHOD(mmu_release,		moea_release),
341 	MMUMETHOD(mmu_remove,		moea_remove),
342 	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
343 	MMUMETHOD(mmu_remove_write,	moea_remove_write),
344 	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
345 	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
346 	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
347 	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
348 	MMUMETHOD(mmu_activate,		moea_activate),
349 	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
350 	MMUMETHOD(mmu_page_set_memattr,	moea_page_set_memattr),
351 
352 	/* Internal interfaces */
353 	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
354 	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
355 	MMUMETHOD(mmu_mapdev_attr,	moea_mapdev_attr),
356 	MMUMETHOD(mmu_mapdev,		moea_mapdev),
357 	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
358 	MMUMETHOD(mmu_kextract,		moea_kextract),
359 	MMUMETHOD(mmu_kenter,		moea_kenter),
360 	MMUMETHOD(mmu_kenter_attr,	moea_kenter_attr),
361 	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
362 
363 	{ 0, 0 }
364 };
365 
366 MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
367 
368 static __inline uint32_t
369 moea_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
370 {
371 	uint32_t pte_lo;
372 	int i;
373 
374 	if (ma != VM_MEMATTR_DEFAULT) {
375 		switch (ma) {
376 		case VM_MEMATTR_UNCACHEABLE:
377 			return (PTE_I | PTE_G);
378 		case VM_MEMATTR_WRITE_COMBINING:
379 		case VM_MEMATTR_WRITE_BACK:
380 		case VM_MEMATTR_PREFETCHABLE:
381 			return (PTE_I);
382 		case VM_MEMATTR_WRITE_THROUGH:
383 			return (PTE_W | PTE_M);
384 		}
385 	}
386 
387 	/*
388 	 * Assume the page is cache inhibited and access is guarded unless
389 	 * it's in our available memory array.
390 	 */
391 	pte_lo = PTE_I | PTE_G;
392 	for (i = 0; i < pregions_sz; i++) {
393 		if ((pa >= pregions[i].mr_start) &&
394 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
395 			pte_lo = PTE_M;
396 			break;
397 		}
398 	}
399 
400 	return pte_lo;
401 }
402 
403 static void
404 tlbie(vm_offset_t va)
405 {
406 
407 	mtx_lock_spin(&tlbie_mtx);
408 	__asm __volatile("ptesync");
409 	__asm __volatile("tlbie %0" :: "r"(va));
410 	__asm __volatile("eieio; tlbsync; ptesync");
411 	mtx_unlock_spin(&tlbie_mtx);
412 }
413 
414 static void
415 tlbia(void)
416 {
417 	vm_offset_t va;
418 
419 	for (va = 0; va < 0x00040000; va += 0x00001000) {
420 		__asm __volatile("tlbie %0" :: "r"(va));
421 		powerpc_sync();
422 	}
423 	__asm __volatile("tlbsync");
424 	powerpc_sync();
425 }
426 
427 static __inline int
428 va_to_sr(u_int *sr, vm_offset_t va)
429 {
430 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
431 }
432 
433 static __inline u_int
434 va_to_pteg(u_int sr, vm_offset_t addr)
435 {
436 	u_int hash;
437 
438 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
439 	    ADDR_PIDX_SHFT);
440 	return (hash & moea_pteg_mask);
441 }
442 
443 static __inline struct pvo_head *
444 vm_page_to_pvoh(vm_page_t m)
445 {
446 
447 	return (&m->md.mdpg_pvoh);
448 }
449 
450 static __inline void
451 moea_attr_clear(vm_page_t m, int ptebit)
452 {
453 
454 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
455 	m->md.mdpg_attrs &= ~ptebit;
456 }
457 
458 static __inline int
459 moea_attr_fetch(vm_page_t m)
460 {
461 
462 	return (m->md.mdpg_attrs);
463 }
464 
465 static __inline void
466 moea_attr_save(vm_page_t m, int ptebit)
467 {
468 
469 	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
470 	m->md.mdpg_attrs |= ptebit;
471 }
472 
473 static __inline int
474 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
475 {
476 	if (pt->pte_hi == pvo_pt->pte_hi)
477 		return (1);
478 
479 	return (0);
480 }
481 
482 static __inline int
483 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
484 {
485 	return (pt->pte_hi & ~PTE_VALID) ==
486 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
487 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
488 }
489 
490 static __inline void
491 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
492 {
493 
494 	mtx_assert(&moea_table_mutex, MA_OWNED);
495 
496 	/*
497 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
498 	 * set when the real pte is set in memory.
499 	 *
500 	 * Note: Don't set the valid bit for correct operation of tlb update.
501 	 */
502 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
503 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
504 	pt->pte_lo = pte_lo;
505 }
506 
507 static __inline void
508 moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
509 {
510 
511 	mtx_assert(&moea_table_mutex, MA_OWNED);
512 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
513 }
514 
515 static __inline void
516 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
517 {
518 
519 	mtx_assert(&moea_table_mutex, MA_OWNED);
520 
521 	/*
522 	 * As shown in Section 7.6.3.2.3
523 	 */
524 	pt->pte_lo &= ~ptebit;
525 	tlbie(va);
526 }
527 
528 static __inline void
529 moea_pte_set(struct pte *pt, struct pte *pvo_pt)
530 {
531 
532 	mtx_assert(&moea_table_mutex, MA_OWNED);
533 	pvo_pt->pte_hi |= PTE_VALID;
534 
535 	/*
536 	 * Update the PTE as defined in section 7.6.3.1.
537 	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
538 	 * been saved so this routine can restore them (if desired).
539 	 */
540 	pt->pte_lo = pvo_pt->pte_lo;
541 	powerpc_sync();
542 	pt->pte_hi = pvo_pt->pte_hi;
543 	powerpc_sync();
544 	moea_pte_valid++;
545 }
546 
547 static __inline void
548 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
549 {
550 
551 	mtx_assert(&moea_table_mutex, MA_OWNED);
552 	pvo_pt->pte_hi &= ~PTE_VALID;
553 
554 	/*
555 	 * Force the reg & chg bits back into the PTEs.
556 	 */
557 	powerpc_sync();
558 
559 	/*
560 	 * Invalidate the pte.
561 	 */
562 	pt->pte_hi &= ~PTE_VALID;
563 
564 	tlbie(va);
565 
566 	/*
567 	 * Save the reg & chg bits.
568 	 */
569 	moea_pte_synch(pt, pvo_pt);
570 	moea_pte_valid--;
571 }
572 
573 static __inline void
574 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
575 {
576 
577 	/*
578 	 * Invalidate the PTE
579 	 */
580 	moea_pte_unset(pt, pvo_pt, va);
581 	moea_pte_set(pt, pvo_pt);
582 }
583 
584 /*
585  * Quick sort callout for comparing memory regions.
586  */
587 static int	om_cmp(const void *a, const void *b);
588 
589 static int
590 om_cmp(const void *a, const void *b)
591 {
592 	const struct	ofw_map *mapa;
593 	const struct	ofw_map *mapb;
594 
595 	mapa = a;
596 	mapb = b;
597 	if (mapa->om_pa < mapb->om_pa)
598 		return (-1);
599 	else if (mapa->om_pa > mapb->om_pa)
600 		return (1);
601 	else
602 		return (0);
603 }
604 
605 void
606 moea_cpu_bootstrap(mmu_t mmup, int ap)
607 {
608 	u_int sdr;
609 	int i;
610 
611 	if (ap) {
612 		powerpc_sync();
613 		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
614 		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
615 		isync();
616 		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
617 		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
618 		isync();
619 	}
620 
621 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
622 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
623 	isync();
624 
625 	__asm __volatile("mtibatu 1,%0" :: "r"(0));
626 	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
627 	__asm __volatile("mtibatu 2,%0" :: "r"(0));
628 	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
629 	__asm __volatile("mtibatu 3,%0" :: "r"(0));
630 	isync();
631 
632 	for (i = 0; i < 16; i++)
633 		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
634 	powerpc_sync();
635 
636 	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
637 	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
638 	isync();
639 
640 	tlbia();
641 }
642 
643 void
644 moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
645 {
646 	ihandle_t	mmui;
647 	phandle_t	chosen, mmu;
648 	int		sz;
649 	int		i, j;
650 	vm_size_t	size, physsz, hwphyssz;
651 	vm_offset_t	pa, va, off;
652 	void		*dpcpu;
653 	register_t	msr;
654 
655         /*
656          * Set up BAT0 to map the lowest 256 MB area
657          */
658         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
659         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
660 
661         /*
662          * Map PCI memory space.
663          */
664         battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
665         battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
666 
667         battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
668         battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
669 
670         battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
671         battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
672 
673         battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
674         battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
675 
676         /*
677          * Map obio devices.
678          */
679         battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
680         battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
681 
682 	/*
683 	 * Use an IBAT and a DBAT to map the bottom segment of memory
684 	 * where we are. Turn off instruction relocation temporarily
685 	 * to prevent faults while reprogramming the IBAT.
686 	 */
687 	msr = mfmsr();
688 	mtmsr(msr & ~PSL_IR);
689 	__asm (".balign 32; \n"
690 	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
691 	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
692 	    :: "r"(battable[0].batu), "r"(battable[0].batl));
693 	mtmsr(msr);
694 
695 	/* map pci space */
696 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
697 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
698 	isync();
699 
700 	/* set global direct map flag */
701 	hw_direct_map = 1;
702 
703 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
704 	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
705 
706 	for (i = 0; i < pregions_sz; i++) {
707 		vm_offset_t pa;
708 		vm_offset_t end;
709 
710 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
711 			pregions[i].mr_start,
712 			pregions[i].mr_start + pregions[i].mr_size,
713 			pregions[i].mr_size);
714 		/*
715 		 * Install entries into the BAT table to allow all
716 		 * of physmem to be convered by on-demand BAT entries.
717 		 * The loop will sometimes set the same battable element
718 		 * twice, but that's fine since they won't be used for
719 		 * a while yet.
720 		 */
721 		pa = pregions[i].mr_start & 0xf0000000;
722 		end = pregions[i].mr_start + pregions[i].mr_size;
723 		do {
724                         u_int n = pa >> ADDR_SR_SHFT;
725 
726 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
727 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
728 			pa += SEGMENT_LENGTH;
729 		} while (pa < end);
730 	}
731 
732 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
733 		panic("moea_bootstrap: phys_avail too small");
734 
735 	phys_avail_count = 0;
736 	physsz = 0;
737 	hwphyssz = 0;
738 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
739 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
740 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
741 		    regions[i].mr_start + regions[i].mr_size,
742 		    regions[i].mr_size);
743 		if (hwphyssz != 0 &&
744 		    (physsz + regions[i].mr_size) >= hwphyssz) {
745 			if (physsz < hwphyssz) {
746 				phys_avail[j] = regions[i].mr_start;
747 				phys_avail[j + 1] = regions[i].mr_start +
748 				    hwphyssz - physsz;
749 				physsz = hwphyssz;
750 				phys_avail_count++;
751 			}
752 			break;
753 		}
754 		phys_avail[j] = regions[i].mr_start;
755 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
756 		phys_avail_count++;
757 		physsz += regions[i].mr_size;
758 	}
759 	physmem = btoc(physsz);
760 
761 	/*
762 	 * Allocate PTEG table.
763 	 */
764 #ifdef PTEGCOUNT
765 	moea_pteg_count = PTEGCOUNT;
766 #else
767 	moea_pteg_count = 0x1000;
768 
769 	while (moea_pteg_count < physmem)
770 		moea_pteg_count <<= 1;
771 
772 	moea_pteg_count >>= 1;
773 #endif /* PTEGCOUNT */
774 
775 	size = moea_pteg_count * sizeof(struct pteg);
776 	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
777 	    size);
778 	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
779 	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
780 	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
781 	moea_pteg_mask = moea_pteg_count - 1;
782 
783 	/*
784 	 * Allocate pv/overflow lists.
785 	 */
786 	size = sizeof(struct pvo_head) * moea_pteg_count;
787 	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
788 	    PAGE_SIZE);
789 	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
790 	for (i = 0; i < moea_pteg_count; i++)
791 		LIST_INIT(&moea_pvo_table[i]);
792 
793 	/*
794 	 * Initialize the lock that synchronizes access to the pteg and pvo
795 	 * tables.
796 	 */
797 	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
798 	    MTX_RECURSE);
799 	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
800 
801 	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
802 
803 	/*
804 	 * Initialise the unmanaged pvo pool.
805 	 */
806 	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
807 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
808 	moea_bpvo_pool_index = 0;
809 
810 	/*
811 	 * Make sure kernel vsid is allocated as well as VSID 0.
812 	 */
813 	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
814 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
815 	moea_vsid_bitmap[0] |= 1;
816 
817 	/*
818 	 * Initialize the kernel pmap (which is statically allocated).
819 	 */
820 	PMAP_LOCK_INIT(kernel_pmap);
821 	for (i = 0; i < 16; i++)
822 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
823 	kernel_pmap->pm_active = ~0;
824 
825 	/*
826 	 * Set up the Open Firmware mappings
827 	 */
828 	if ((chosen = OF_finddevice("/chosen")) == -1)
829 		panic("moea_bootstrap: can't find /chosen");
830 	OF_getprop(chosen, "mmu", &mmui, 4);
831 	if ((mmu = OF_instance_to_package(mmui)) == -1)
832 		panic("moea_bootstrap: can't get mmu package");
833 	if ((sz = OF_getproplen(mmu, "translations")) == -1)
834 		panic("moea_bootstrap: can't get ofw translation count");
835 	translations = NULL;
836 	for (i = 0; phys_avail[i] != 0; i += 2) {
837 		if (phys_avail[i + 1] >= sz) {
838 			translations = (struct ofw_map *)phys_avail[i];
839 			break;
840 		}
841 	}
842 	if (translations == NULL)
843 		panic("moea_bootstrap: no space to copy translations");
844 	bzero(translations, sz);
845 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
846 		panic("moea_bootstrap: can't get ofw translations");
847 	CTR0(KTR_PMAP, "moea_bootstrap: translations");
848 	sz /= sizeof(*translations);
849 	qsort(translations, sz, sizeof (*translations), om_cmp);
850 	for (i = 0; i < sz; i++) {
851 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
852 		    translations[i].om_pa, translations[i].om_va,
853 		    translations[i].om_len);
854 
855 		/*
856 		 * If the mapping is 1:1, let the RAM and device on-demand
857 		 * BAT tables take care of the translation.
858 		 */
859 		if (translations[i].om_va == translations[i].om_pa)
860 			continue;
861 
862 		/* Enter the pages */
863 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE)
864 			moea_kenter(mmup, translations[i].om_va + off,
865 				    translations[i].om_pa + off);
866 	}
867 
868 	/*
869 	 * Calculate the last available physical address.
870 	 */
871 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
872 		;
873 	Maxmem = powerpc_btop(phys_avail[i + 1]);
874 
875 	moea_cpu_bootstrap(mmup,0);
876 
877 	pmap_bootstrapped++;
878 
879 	/*
880 	 * Set the start and end of kva.
881 	 */
882 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
883 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
884 
885 	/*
886 	 * Allocate a kernel stack with a guard page for thread0 and map it
887 	 * into the kernel page map.
888 	 */
889 	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
890 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
891 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
892 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
893 	thread0.td_kstack = va;
894 	thread0.td_kstack_pages = KSTACK_PAGES;
895 	for (i = 0; i < KSTACK_PAGES; i++) {
896 		moea_kenter(mmup, va, pa);
897 		pa += PAGE_SIZE;
898 		va += PAGE_SIZE;
899 	}
900 
901 	/*
902 	 * Allocate virtual address space for the message buffer.
903 	 */
904 	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
905 	msgbufp = (struct msgbuf *)virtual_avail;
906 	va = virtual_avail;
907 	virtual_avail += round_page(msgbufsize);
908 	while (va < virtual_avail) {
909 		moea_kenter(mmup, va, pa);
910 		pa += PAGE_SIZE;
911 		va += PAGE_SIZE;
912 	}
913 
914 	/*
915 	 * Allocate virtual address space for the dynamic percpu area.
916 	 */
917 	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
918 	dpcpu = (void *)virtual_avail;
919 	va = virtual_avail;
920 	virtual_avail += DPCPU_SIZE;
921 	while (va < virtual_avail) {
922 		moea_kenter(mmup, va, pa);
923 		pa += PAGE_SIZE;
924 		va += PAGE_SIZE;
925 	}
926 	dpcpu_init(dpcpu, 0);
927 }
928 
929 /*
930  * Activate a user pmap.  The pmap must be activated before it's address
931  * space can be accessed in any way.
932  */
933 void
934 moea_activate(mmu_t mmu, struct thread *td)
935 {
936 	pmap_t	pm, pmr;
937 
938 	/*
939 	 * Load all the data we need up front to encourage the compiler to
940 	 * not issue any loads while we have interrupts disabled below.
941 	 */
942 	pm = &td->td_proc->p_vmspace->vm_pmap;
943 	pmr = pm->pmap_phys;
944 
945 	pm->pm_active |= PCPU_GET(cpumask);
946 	PCPU_SET(curpmap, pmr);
947 }
948 
949 void
950 moea_deactivate(mmu_t mmu, struct thread *td)
951 {
952 	pmap_t	pm;
953 
954 	pm = &td->td_proc->p_vmspace->vm_pmap;
955 	pm->pm_active &= ~PCPU_GET(cpumask);
956 	PCPU_SET(curpmap, NULL);
957 }
958 
959 void
960 moea_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
961 {
962 	struct	pvo_entry *pvo;
963 
964 	PMAP_LOCK(pm);
965 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
966 
967 	if (pvo != NULL) {
968 		if (wired) {
969 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
970 				pm->pm_stats.wired_count++;
971 			pvo->pvo_vaddr |= PVO_WIRED;
972 		} else {
973 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
974 				pm->pm_stats.wired_count--;
975 			pvo->pvo_vaddr &= ~PVO_WIRED;
976 		}
977 	}
978 	PMAP_UNLOCK(pm);
979 }
980 
981 void
982 moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
983 {
984 	vm_offset_t	dst;
985 	vm_offset_t	src;
986 
987 	dst = VM_PAGE_TO_PHYS(mdst);
988 	src = VM_PAGE_TO_PHYS(msrc);
989 
990 	kcopy((void *)src, (void *)dst, PAGE_SIZE);
991 }
992 
993 /*
994  * Zero a page of physical memory by temporarily mapping it into the tlb.
995  */
996 void
997 moea_zero_page(mmu_t mmu, vm_page_t m)
998 {
999 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1000 	void *va = (void *)pa;
1001 
1002 	bzero(va, PAGE_SIZE);
1003 }
1004 
1005 void
1006 moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1007 {
1008 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1009 	void *va = (void *)(pa + off);
1010 
1011 	bzero(va, size);
1012 }
1013 
1014 void
1015 moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1016 {
1017 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1018 	void *va = (void *)pa;
1019 
1020 	bzero(va, PAGE_SIZE);
1021 }
1022 
1023 /*
1024  * Map the given physical page at the specified virtual address in the
1025  * target pmap with the protection requested.  If specified the page
1026  * will be wired down.
1027  */
1028 void
1029 moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1030 	   boolean_t wired)
1031 {
1032 
1033 	vm_page_lock_queues();
1034 	PMAP_LOCK(pmap);
1035 	moea_enter_locked(pmap, va, m, prot, wired);
1036 	vm_page_unlock_queues();
1037 	PMAP_UNLOCK(pmap);
1038 }
1039 
1040 /*
1041  * Map the given physical page at the specified virtual address in the
1042  * target pmap with the protection requested.  If specified the page
1043  * will be wired down.
1044  *
1045  * The page queues and pmap must be locked.
1046  */
1047 static void
1048 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1049     boolean_t wired)
1050 {
1051 	struct		pvo_head *pvo_head;
1052 	uma_zone_t	zone;
1053 	vm_page_t	pg;
1054 	u_int		pte_lo, pvo_flags, was_exec;
1055 	int		error;
1056 
1057 	if (!moea_initialized) {
1058 		pvo_head = &moea_pvo_kunmanaged;
1059 		zone = moea_upvo_zone;
1060 		pvo_flags = 0;
1061 		pg = NULL;
1062 		was_exec = PTE_EXEC;
1063 	} else {
1064 		pvo_head = vm_page_to_pvoh(m);
1065 		pg = m;
1066 		zone = moea_mpvo_zone;
1067 		pvo_flags = PVO_MANAGED;
1068 		was_exec = 0;
1069 	}
1070 	if (pmap_bootstrapped)
1071 		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1072 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1073 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0 ||
1074 	    (m->oflags & VPO_BUSY) != 0 || VM_OBJECT_LOCKED(m->object),
1075 	    ("moea_enter_locked: page %p is not busy", m));
1076 
1077 	/* XXX change the pvo head for fake pages */
1078 	if ((m->flags & PG_FICTITIOUS) == PG_FICTITIOUS) {
1079 		pvo_flags &= ~PVO_MANAGED;
1080 		pvo_head = &moea_pvo_kunmanaged;
1081 		zone = moea_upvo_zone;
1082 	}
1083 
1084 	/*
1085 	 * If this is a managed page, and it's the first reference to the page,
1086 	 * clear the execness of the page.  Otherwise fetch the execness.
1087 	 */
1088 	if ((pg != NULL) && ((m->flags & PG_FICTITIOUS) == 0)) {
1089 		if (LIST_EMPTY(pvo_head)) {
1090 			moea_attr_clear(pg, PTE_EXEC);
1091 		} else {
1092 			was_exec = moea_attr_fetch(pg) & PTE_EXEC;
1093 		}
1094 	}
1095 
1096 	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1097 
1098 	if (prot & VM_PROT_WRITE) {
1099 		pte_lo |= PTE_BW;
1100 		if (pmap_bootstrapped &&
1101 		    (m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
1102 			vm_page_flag_set(m, PG_WRITEABLE);
1103 	} else
1104 		pte_lo |= PTE_BR;
1105 
1106 	if (prot & VM_PROT_EXECUTE)
1107 		pvo_flags |= PVO_EXECUTABLE;
1108 
1109 	if (wired)
1110 		pvo_flags |= PVO_WIRED;
1111 
1112 	if ((m->flags & PG_FICTITIOUS) != 0)
1113 		pvo_flags |= PVO_FAKE;
1114 
1115 	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1116 	    pte_lo, pvo_flags);
1117 
1118 	/*
1119 	 * Flush the real page from the instruction cache if this page is
1120 	 * mapped executable and cacheable and was not previously mapped (or
1121 	 * was not mapped executable).
1122 	 */
1123 	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1124 	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1125 		/*
1126 		 * Flush the real memory from the cache.
1127 		 */
1128 		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1129 		if (pg != NULL)
1130 			moea_attr_save(pg, PTE_EXEC);
1131 	}
1132 
1133 	/* XXX syncicache always until problems are sorted */
1134 	moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1135 }
1136 
1137 /*
1138  * Maps a sequence of resident pages belonging to the same object.
1139  * The sequence begins with the given page m_start.  This page is
1140  * mapped at the given virtual address start.  Each subsequent page is
1141  * mapped at a virtual address that is offset from start by the same
1142  * amount as the page is offset from m_start within the object.  The
1143  * last page in the sequence is the page with the largest offset from
1144  * m_start that can be mapped at a virtual address less than the given
1145  * virtual address end.  Not every virtual page between start and end
1146  * is mapped; only those for which a resident page exists with the
1147  * corresponding offset from m_start are mapped.
1148  */
1149 void
1150 moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1151     vm_page_t m_start, vm_prot_t prot)
1152 {
1153 	vm_page_t m;
1154 	vm_pindex_t diff, psize;
1155 
1156 	psize = atop(end - start);
1157 	m = m_start;
1158 	vm_page_lock_queues();
1159 	PMAP_LOCK(pm);
1160 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1161 		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1162 		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1163 		m = TAILQ_NEXT(m, listq);
1164 	}
1165 	vm_page_unlock_queues();
1166 	PMAP_UNLOCK(pm);
1167 }
1168 
1169 void
1170 moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1171     vm_prot_t prot)
1172 {
1173 
1174 	vm_page_lock_queues();
1175 	PMAP_LOCK(pm);
1176 	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1177 	    FALSE);
1178 	vm_page_unlock_queues();
1179 	PMAP_UNLOCK(pm);
1180 }
1181 
1182 vm_paddr_t
1183 moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1184 {
1185 	struct	pvo_entry *pvo;
1186 	vm_paddr_t pa;
1187 
1188 	PMAP_LOCK(pm);
1189 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1190 	if (pvo == NULL)
1191 		pa = 0;
1192 	else
1193 		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1194 	PMAP_UNLOCK(pm);
1195 	return (pa);
1196 }
1197 
1198 /*
1199  * Atomically extract and hold the physical page with the given
1200  * pmap and virtual address pair if that mapping permits the given
1201  * protection.
1202  */
1203 vm_page_t
1204 moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1205 {
1206 	struct	pvo_entry *pvo;
1207 	vm_page_t m;
1208         vm_paddr_t pa;
1209 
1210 	m = NULL;
1211 	pa = 0;
1212 	PMAP_LOCK(pmap);
1213 retry:
1214 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1215 	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1216 	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1217 	     (prot & VM_PROT_WRITE) == 0)) {
1218 		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1219 			goto retry;
1220 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1221 		vm_page_hold(m);
1222 	}
1223 	PA_UNLOCK_COND(pa);
1224 	PMAP_UNLOCK(pmap);
1225 	return (m);
1226 }
1227 
1228 void
1229 moea_init(mmu_t mmu)
1230 {
1231 
1232 	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1233 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1234 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1235 	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1236 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1237 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1238 	moea_initialized = TRUE;
1239 }
1240 
1241 boolean_t
1242 moea_is_referenced(mmu_t mmu, vm_page_t m)
1243 {
1244 
1245 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1246 	    ("moea_is_referenced: page %p is not managed", m));
1247 	return (moea_query_bit(m, PTE_REF));
1248 }
1249 
1250 boolean_t
1251 moea_is_modified(mmu_t mmu, vm_page_t m)
1252 {
1253 
1254 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1255 	    ("moea_is_modified: page %p is not managed", m));
1256 
1257 	/*
1258 	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be
1259 	 * concurrently set while the object is locked.  Thus, if PG_WRITEABLE
1260 	 * is clear, no PTEs can have PTE_CHG set.
1261 	 */
1262 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1263 	if ((m->oflags & VPO_BUSY) == 0 &&
1264 	    (m->flags & PG_WRITEABLE) == 0)
1265 		return (FALSE);
1266 	return (moea_query_bit(m, PTE_CHG));
1267 }
1268 
1269 boolean_t
1270 moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1271 {
1272 	struct pvo_entry *pvo;
1273 	boolean_t rv;
1274 
1275 	PMAP_LOCK(pmap);
1276 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1277 	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1278 	PMAP_UNLOCK(pmap);
1279 	return (rv);
1280 }
1281 
1282 void
1283 moea_clear_reference(mmu_t mmu, vm_page_t m)
1284 {
1285 
1286 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1287 	    ("moea_clear_reference: page %p is not managed", m));
1288 	moea_clear_bit(m, PTE_REF);
1289 }
1290 
1291 void
1292 moea_clear_modify(mmu_t mmu, vm_page_t m)
1293 {
1294 
1295 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1296 	    ("moea_clear_modify: page %p is not managed", m));
1297 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1298 	KASSERT((m->oflags & VPO_BUSY) == 0,
1299 	    ("moea_clear_modify: page %p is busy", m));
1300 
1301 	/*
1302 	 * If the page is not PG_WRITEABLE, then no PTEs can have PTE_CHG
1303 	 * set.  If the object containing the page is locked and the page is
1304 	 * not VPO_BUSY, then PG_WRITEABLE cannot be concurrently set.
1305 	 */
1306 	if ((m->flags & PG_WRITEABLE) == 0)
1307 		return;
1308 	moea_clear_bit(m, PTE_CHG);
1309 }
1310 
1311 /*
1312  * Clear the write and modified bits in each of the given page's mappings.
1313  */
1314 void
1315 moea_remove_write(mmu_t mmu, vm_page_t m)
1316 {
1317 	struct	pvo_entry *pvo;
1318 	struct	pte *pt;
1319 	pmap_t	pmap;
1320 	u_int	lo;
1321 
1322 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1323 	    ("moea_remove_write: page %p is not managed", m));
1324 
1325 	/*
1326 	 * If the page is not VPO_BUSY, then PG_WRITEABLE cannot be set by
1327 	 * another thread while the object is locked.  Thus, if PG_WRITEABLE
1328 	 * is clear, no page table entries need updating.
1329 	 */
1330 	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1331 	if ((m->oflags & VPO_BUSY) == 0 &&
1332 	    (m->flags & PG_WRITEABLE) == 0)
1333 		return;
1334 	vm_page_lock_queues();
1335 	lo = moea_attr_fetch(m);
1336 	powerpc_sync();
1337 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1338 		pmap = pvo->pvo_pmap;
1339 		PMAP_LOCK(pmap);
1340 		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1341 			pt = moea_pvo_to_pte(pvo, -1);
1342 			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1343 			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1344 			if (pt != NULL) {
1345 				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1346 				lo |= pvo->pvo_pte.pte.pte_lo;
1347 				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1348 				moea_pte_change(pt, &pvo->pvo_pte.pte,
1349 				    pvo->pvo_vaddr);
1350 				mtx_unlock(&moea_table_mutex);
1351 			}
1352 		}
1353 		PMAP_UNLOCK(pmap);
1354 	}
1355 	if ((lo & PTE_CHG) != 0) {
1356 		moea_attr_clear(m, PTE_CHG);
1357 		vm_page_dirty(m);
1358 	}
1359 	vm_page_flag_clear(m, PG_WRITEABLE);
1360 	vm_page_unlock_queues();
1361 }
1362 
1363 /*
1364  *	moea_ts_referenced:
1365  *
1366  *	Return a count of reference bits for a page, clearing those bits.
1367  *	It is not necessary for every reference bit to be cleared, but it
1368  *	is necessary that 0 only be returned when there are truly no
1369  *	reference bits set.
1370  *
1371  *	XXX: The exact number of bits to check and clear is a matter that
1372  *	should be tested and standardized at some point in the future for
1373  *	optimal aging of shared pages.
1374  */
1375 boolean_t
1376 moea_ts_referenced(mmu_t mmu, vm_page_t m)
1377 {
1378 
1379 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1380 	    ("moea_ts_referenced: page %p is not managed", m));
1381 	return (moea_clear_bit(m, PTE_REF));
1382 }
1383 
1384 /*
1385  * Modify the WIMG settings of all mappings for a page.
1386  */
1387 void
1388 moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1389 {
1390 	struct	pvo_entry *pvo;
1391 	struct	pvo_head *pvo_head;
1392 	struct	pte *pt;
1393 	pmap_t	pmap;
1394 	u_int	lo;
1395 
1396 	if (m->flags & PG_FICTITIOUS) {
1397 		m->md.mdpg_cache_attrs = ma;
1398 		return;
1399 	}
1400 
1401 	vm_page_lock_queues();
1402 	pvo_head = vm_page_to_pvoh(m);
1403 	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1404 
1405 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1406 		pmap = pvo->pvo_pmap;
1407 		PMAP_LOCK(pmap);
1408 		pt = moea_pvo_to_pte(pvo, -1);
1409 		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1410 		pvo->pvo_pte.pte.pte_lo |= lo;
1411 		if (pt != NULL) {
1412 			moea_pte_change(pt, &pvo->pvo_pte.pte,
1413 			    pvo->pvo_vaddr);
1414 			if (pvo->pvo_pmap == kernel_pmap)
1415 				isync();
1416 		}
1417 		mtx_unlock(&moea_table_mutex);
1418 		PMAP_UNLOCK(pmap);
1419 	}
1420 	m->md.mdpg_cache_attrs = ma;
1421 	vm_page_unlock_queues();
1422 }
1423 
1424 /*
1425  * Map a wired page into kernel virtual address space.
1426  */
1427 void
1428 moea_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1429 {
1430 
1431 	moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1432 }
1433 
1434 void
1435 moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1436 {
1437 	u_int		pte_lo;
1438 	int		error;
1439 
1440 #if 0
1441 	if (va < VM_MIN_KERNEL_ADDRESS)
1442 		panic("moea_kenter: attempt to enter non-kernel address %#x",
1443 		    va);
1444 #endif
1445 
1446 	pte_lo = moea_calc_wimg(pa, ma);
1447 
1448 	PMAP_LOCK(kernel_pmap);
1449 	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1450 	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1451 
1452 	if (error != 0 && error != ENOENT)
1453 		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1454 		    pa, error);
1455 
1456 	/*
1457 	 * Flush the real memory from the instruction cache.
1458 	 */
1459 	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1460 		moea_syncicache(pa, PAGE_SIZE);
1461 	}
1462 	PMAP_UNLOCK(kernel_pmap);
1463 }
1464 
1465 /*
1466  * Extract the physical page address associated with the given kernel virtual
1467  * address.
1468  */
1469 vm_offset_t
1470 moea_kextract(mmu_t mmu, vm_offset_t va)
1471 {
1472 	struct		pvo_entry *pvo;
1473 	vm_paddr_t pa;
1474 
1475 	/*
1476 	 * Allow direct mappings on 32-bit OEA
1477 	 */
1478 	if (va < VM_MIN_KERNEL_ADDRESS) {
1479 		return (va);
1480 	}
1481 
1482 	PMAP_LOCK(kernel_pmap);
1483 	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1484 	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1485 	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1486 	PMAP_UNLOCK(kernel_pmap);
1487 	return (pa);
1488 }
1489 
1490 /*
1491  * Remove a wired page from kernel virtual address space.
1492  */
1493 void
1494 moea_kremove(mmu_t mmu, vm_offset_t va)
1495 {
1496 
1497 	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1498 }
1499 
1500 /*
1501  * Map a range of physical addresses into kernel virtual address space.
1502  *
1503  * The value passed in *virt is a suggested virtual address for the mapping.
1504  * Architectures which can support a direct-mapped physical to virtual region
1505  * can return the appropriate address within that region, leaving '*virt'
1506  * unchanged.  We cannot and therefore do not; *virt is updated with the
1507  * first usable address after the mapped region.
1508  */
1509 vm_offset_t
1510 moea_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1511     vm_offset_t pa_end, int prot)
1512 {
1513 	vm_offset_t	sva, va;
1514 
1515 	sva = *virt;
1516 	va = sva;
1517 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1518 		moea_kenter(mmu, va, pa_start);
1519 	*virt = va;
1520 	return (sva);
1521 }
1522 
1523 /*
1524  * Returns true if the pmap's pv is one of the first
1525  * 16 pvs linked to from this page.  This count may
1526  * be changed upwards or downwards in the future; it
1527  * is only necessary that true be returned for a small
1528  * subset of pmaps for proper page aging.
1529  */
1530 boolean_t
1531 moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1532 {
1533         int loops;
1534 	struct pvo_entry *pvo;
1535 	boolean_t rv;
1536 
1537 	KASSERT((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0,
1538 	    ("moea_page_exists_quick: page %p is not managed", m));
1539 	loops = 0;
1540 	rv = FALSE;
1541 	vm_page_lock_queues();
1542 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1543 		if (pvo->pvo_pmap == pmap) {
1544 			rv = TRUE;
1545 			break;
1546 		}
1547 		if (++loops >= 16)
1548 			break;
1549 	}
1550 	vm_page_unlock_queues();
1551 	return (rv);
1552 }
1553 
1554 /*
1555  * Return the number of managed mappings to the given physical page
1556  * that are wired.
1557  */
1558 int
1559 moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1560 {
1561 	struct pvo_entry *pvo;
1562 	int count;
1563 
1564 	count = 0;
1565 	if ((m->flags & PG_FICTITIOUS) != 0)
1566 		return (count);
1567 	vm_page_lock_queues();
1568 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1569 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1570 			count++;
1571 	vm_page_unlock_queues();
1572 	return (count);
1573 }
1574 
1575 static u_int	moea_vsidcontext;
1576 
1577 void
1578 moea_pinit(mmu_t mmu, pmap_t pmap)
1579 {
1580 	int	i, mask;
1581 	u_int	entropy;
1582 
1583 	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1584 	PMAP_LOCK_INIT(pmap);
1585 
1586 	entropy = 0;
1587 	__asm __volatile("mftb %0" : "=r"(entropy));
1588 
1589 	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1590 	    == NULL) {
1591 		pmap->pmap_phys = pmap;
1592 	}
1593 
1594 
1595 	mtx_lock(&moea_vsid_mutex);
1596 	/*
1597 	 * Allocate some segment registers for this pmap.
1598 	 */
1599 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1600 		u_int	hash, n;
1601 
1602 		/*
1603 		 * Create a new value by mutiplying by a prime and adding in
1604 		 * entropy from the timebase register.  This is to make the
1605 		 * VSID more random so that the PT hash function collides
1606 		 * less often.  (Note that the prime casues gcc to do shifts
1607 		 * instead of a multiply.)
1608 		 */
1609 		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1610 		hash = moea_vsidcontext & (NPMAPS - 1);
1611 		if (hash == 0)		/* 0 is special, avoid it */
1612 			continue;
1613 		n = hash >> 5;
1614 		mask = 1 << (hash & (VSID_NBPW - 1));
1615 		hash = (moea_vsidcontext & 0xfffff);
1616 		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1617 			/* anything free in this bucket? */
1618 			if (moea_vsid_bitmap[n] == 0xffffffff) {
1619 				entropy = (moea_vsidcontext >> 20);
1620 				continue;
1621 			}
1622 			i = ffs(~moea_vsid_bitmap[n]) - 1;
1623 			mask = 1 << i;
1624 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1625 			hash |= i;
1626 		}
1627 		moea_vsid_bitmap[n] |= mask;
1628 		for (i = 0; i < 16; i++)
1629 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1630 		mtx_unlock(&moea_vsid_mutex);
1631 		return;
1632 	}
1633 
1634 	mtx_unlock(&moea_vsid_mutex);
1635 	panic("moea_pinit: out of segments");
1636 }
1637 
1638 /*
1639  * Initialize the pmap associated with process 0.
1640  */
1641 void
1642 moea_pinit0(mmu_t mmu, pmap_t pm)
1643 {
1644 
1645 	moea_pinit(mmu, pm);
1646 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1647 }
1648 
1649 /*
1650  * Set the physical protection on the specified range of this map as requested.
1651  */
1652 void
1653 moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1654     vm_prot_t prot)
1655 {
1656 	struct	pvo_entry *pvo;
1657 	struct	pte *pt;
1658 	int	pteidx;
1659 
1660 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1661 	    ("moea_protect: non current pmap"));
1662 
1663 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1664 		moea_remove(mmu, pm, sva, eva);
1665 		return;
1666 	}
1667 
1668 	vm_page_lock_queues();
1669 	PMAP_LOCK(pm);
1670 	for (; sva < eva; sva += PAGE_SIZE) {
1671 		pvo = moea_pvo_find_va(pm, sva, &pteidx);
1672 		if (pvo == NULL)
1673 			continue;
1674 
1675 		if ((prot & VM_PROT_EXECUTE) == 0)
1676 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1677 
1678 		/*
1679 		 * Grab the PTE pointer before we diddle with the cached PTE
1680 		 * copy.
1681 		 */
1682 		pt = moea_pvo_to_pte(pvo, pteidx);
1683 		/*
1684 		 * Change the protection of the page.
1685 		 */
1686 		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1687 		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1688 
1689 		/*
1690 		 * If the PVO is in the page table, update that pte as well.
1691 		 */
1692 		if (pt != NULL) {
1693 			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1694 			mtx_unlock(&moea_table_mutex);
1695 		}
1696 	}
1697 	vm_page_unlock_queues();
1698 	PMAP_UNLOCK(pm);
1699 }
1700 
1701 /*
1702  * Map a list of wired pages into kernel virtual address space.  This is
1703  * intended for temporary mappings which do not need page modification or
1704  * references recorded.  Existing mappings in the region are overwritten.
1705  */
1706 void
1707 moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1708 {
1709 	vm_offset_t va;
1710 
1711 	va = sva;
1712 	while (count-- > 0) {
1713 		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1714 		va += PAGE_SIZE;
1715 		m++;
1716 	}
1717 }
1718 
1719 /*
1720  * Remove page mappings from kernel virtual address space.  Intended for
1721  * temporary mappings entered by moea_qenter.
1722  */
1723 void
1724 moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1725 {
1726 	vm_offset_t va;
1727 
1728 	va = sva;
1729 	while (count-- > 0) {
1730 		moea_kremove(mmu, va);
1731 		va += PAGE_SIZE;
1732 	}
1733 }
1734 
1735 void
1736 moea_release(mmu_t mmu, pmap_t pmap)
1737 {
1738         int idx, mask;
1739 
1740 	/*
1741 	 * Free segment register's VSID
1742 	 */
1743         if (pmap->pm_sr[0] == 0)
1744                 panic("moea_release");
1745 
1746 	mtx_lock(&moea_vsid_mutex);
1747         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1748         mask = 1 << (idx % VSID_NBPW);
1749         idx /= VSID_NBPW;
1750         moea_vsid_bitmap[idx] &= ~mask;
1751 	mtx_unlock(&moea_vsid_mutex);
1752 	PMAP_LOCK_DESTROY(pmap);
1753 }
1754 
1755 /*
1756  * Remove the given range of addresses from the specified map.
1757  */
1758 void
1759 moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1760 {
1761 	struct	pvo_entry *pvo;
1762 	int	pteidx;
1763 
1764 	vm_page_lock_queues();
1765 	PMAP_LOCK(pm);
1766 	for (; sva < eva; sva += PAGE_SIZE) {
1767 		pvo = moea_pvo_find_va(pm, sva, &pteidx);
1768 		if (pvo != NULL) {
1769 			moea_pvo_remove(pvo, pteidx);
1770 		}
1771 	}
1772 	PMAP_UNLOCK(pm);
1773 	vm_page_unlock_queues();
1774 }
1775 
1776 /*
1777  * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1778  * will reflect changes in pte's back to the vm_page.
1779  */
1780 void
1781 moea_remove_all(mmu_t mmu, vm_page_t m)
1782 {
1783 	struct  pvo_head *pvo_head;
1784 	struct	pvo_entry *pvo, *next_pvo;
1785 	pmap_t	pmap;
1786 
1787 	vm_page_lock_queues();
1788 	pvo_head = vm_page_to_pvoh(m);
1789 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1790 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1791 
1792 		pmap = pvo->pvo_pmap;
1793 		PMAP_LOCK(pmap);
1794 		moea_pvo_remove(pvo, -1);
1795 		PMAP_UNLOCK(pmap);
1796 	}
1797 	if ((m->flags & PG_WRITEABLE) && moea_is_modified(mmu, m)) {
1798 		moea_attr_clear(m, PTE_CHG);
1799 		vm_page_dirty(m);
1800 	}
1801 	vm_page_flag_clear(m, PG_WRITEABLE);
1802 	vm_page_unlock_queues();
1803 }
1804 
1805 /*
1806  * Allocate a physical page of memory directly from the phys_avail map.
1807  * Can only be called from moea_bootstrap before avail start and end are
1808  * calculated.
1809  */
1810 static vm_offset_t
1811 moea_bootstrap_alloc(vm_size_t size, u_int align)
1812 {
1813 	vm_offset_t	s, e;
1814 	int		i, j;
1815 
1816 	size = round_page(size);
1817 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1818 		if (align != 0)
1819 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1820 		else
1821 			s = phys_avail[i];
1822 		e = s + size;
1823 
1824 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1825 			continue;
1826 
1827 		if (s == phys_avail[i]) {
1828 			phys_avail[i] += size;
1829 		} else if (e == phys_avail[i + 1]) {
1830 			phys_avail[i + 1] -= size;
1831 		} else {
1832 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1833 				phys_avail[j] = phys_avail[j - 2];
1834 				phys_avail[j + 1] = phys_avail[j - 1];
1835 			}
1836 
1837 			phys_avail[i + 3] = phys_avail[i + 1];
1838 			phys_avail[i + 1] = s;
1839 			phys_avail[i + 2] = e;
1840 			phys_avail_count++;
1841 		}
1842 
1843 		return (s);
1844 	}
1845 	panic("moea_bootstrap_alloc: could not allocate memory");
1846 }
1847 
1848 static void
1849 moea_syncicache(vm_offset_t pa, vm_size_t len)
1850 {
1851 	__syncicache((void *)pa, len);
1852 }
1853 
1854 static int
1855 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1856     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1857 {
1858 	struct	pvo_entry *pvo;
1859 	u_int	sr;
1860 	int	first;
1861 	u_int	ptegidx;
1862 	int	i;
1863 	int     bootstrap;
1864 
1865 	moea_pvo_enter_calls++;
1866 	first = 0;
1867 	bootstrap = 0;
1868 
1869 	/*
1870 	 * Compute the PTE Group index.
1871 	 */
1872 	va &= ~ADDR_POFF;
1873 	sr = va_to_sr(pm->pm_sr, va);
1874 	ptegidx = va_to_pteg(sr, va);
1875 
1876 	/*
1877 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1878 	 * there is a mapping.
1879 	 */
1880 	mtx_lock(&moea_table_mutex);
1881 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1882 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1883 			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
1884 			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
1885 			    (pte_lo & PTE_PP)) {
1886 				mtx_unlock(&moea_table_mutex);
1887 				return (0);
1888 			}
1889 			moea_pvo_remove(pvo, -1);
1890 			break;
1891 		}
1892 	}
1893 
1894 	/*
1895 	 * If we aren't overwriting a mapping, try to allocate.
1896 	 */
1897 	if (moea_initialized) {
1898 		pvo = uma_zalloc(zone, M_NOWAIT);
1899 	} else {
1900 		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1901 			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1902 			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1903 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1904 		}
1905 		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1906 		moea_bpvo_pool_index++;
1907 		bootstrap = 1;
1908 	}
1909 
1910 	if (pvo == NULL) {
1911 		mtx_unlock(&moea_table_mutex);
1912 		return (ENOMEM);
1913 	}
1914 
1915 	moea_pvo_entries++;
1916 	pvo->pvo_vaddr = va;
1917 	pvo->pvo_pmap = pm;
1918 	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1919 	pvo->pvo_vaddr &= ~ADDR_POFF;
1920 	if (flags & VM_PROT_EXECUTE)
1921 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1922 	if (flags & PVO_WIRED)
1923 		pvo->pvo_vaddr |= PVO_WIRED;
1924 	if (pvo_head != &moea_pvo_kunmanaged)
1925 		pvo->pvo_vaddr |= PVO_MANAGED;
1926 	if (bootstrap)
1927 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1928 	if (flags & PVO_FAKE)
1929 		pvo->pvo_vaddr |= PVO_FAKE;
1930 
1931 	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
1932 
1933 	/*
1934 	 * Remember if the list was empty and therefore will be the first
1935 	 * item.
1936 	 */
1937 	if (LIST_FIRST(pvo_head) == NULL)
1938 		first = 1;
1939 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1940 
1941 	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
1942 		pm->pm_stats.wired_count++;
1943 	pm->pm_stats.resident_count++;
1944 
1945 	/*
1946 	 * We hope this succeeds but it isn't required.
1947 	 */
1948 	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
1949 	if (i >= 0) {
1950 		PVO_PTEGIDX_SET(pvo, i);
1951 	} else {
1952 		panic("moea_pvo_enter: overflow");
1953 		moea_pte_overflow++;
1954 	}
1955 	mtx_unlock(&moea_table_mutex);
1956 
1957 	return (first ? ENOENT : 0);
1958 }
1959 
1960 static void
1961 moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
1962 {
1963 	struct	pte *pt;
1964 
1965 	/*
1966 	 * If there is an active pte entry, we need to deactivate it (and
1967 	 * save the ref & cfg bits).
1968 	 */
1969 	pt = moea_pvo_to_pte(pvo, pteidx);
1970 	if (pt != NULL) {
1971 		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1972 		mtx_unlock(&moea_table_mutex);
1973 		PVO_PTEGIDX_CLR(pvo);
1974 	} else {
1975 		moea_pte_overflow--;
1976 	}
1977 
1978 	/*
1979 	 * Update our statistics.
1980 	 */
1981 	pvo->pvo_pmap->pm_stats.resident_count--;
1982 	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
1983 		pvo->pvo_pmap->pm_stats.wired_count--;
1984 
1985 	/*
1986 	 * Save the REF/CHG bits into their cache if the page is managed.
1987 	 */
1988 	if ((pvo->pvo_vaddr & (PVO_MANAGED|PVO_FAKE)) == PVO_MANAGED) {
1989 		struct	vm_page *pg;
1990 
1991 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1992 		if (pg != NULL) {
1993 			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
1994 			    (PTE_REF | PTE_CHG));
1995 		}
1996 	}
1997 
1998 	/*
1999 	 * Remove this PVO from the PV list.
2000 	 */
2001 	LIST_REMOVE(pvo, pvo_vlink);
2002 
2003 	/*
2004 	 * Remove this from the overflow list and return it to the pool
2005 	 * if we aren't going to reuse it.
2006 	 */
2007 	LIST_REMOVE(pvo, pvo_olink);
2008 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2009 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2010 		    moea_upvo_zone, pvo);
2011 	moea_pvo_entries--;
2012 	moea_pvo_remove_calls++;
2013 }
2014 
2015 static __inline int
2016 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2017 {
2018 	int	pteidx;
2019 
2020 	/*
2021 	 * We can find the actual pte entry without searching by grabbing
2022 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2023 	 * noticing the HID bit.
2024 	 */
2025 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2026 	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2027 		pteidx ^= moea_pteg_mask * 8;
2028 
2029 	return (pteidx);
2030 }
2031 
2032 static struct pvo_entry *
2033 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2034 {
2035 	struct	pvo_entry *pvo;
2036 	int	ptegidx;
2037 	u_int	sr;
2038 
2039 	va &= ~ADDR_POFF;
2040 	sr = va_to_sr(pm->pm_sr, va);
2041 	ptegidx = va_to_pteg(sr, va);
2042 
2043 	mtx_lock(&moea_table_mutex);
2044 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2045 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2046 			if (pteidx_p)
2047 				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2048 			break;
2049 		}
2050 	}
2051 	mtx_unlock(&moea_table_mutex);
2052 
2053 	return (pvo);
2054 }
2055 
2056 static struct pte *
2057 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2058 {
2059 	struct	pte *pt;
2060 
2061 	/*
2062 	 * If we haven't been supplied the ptegidx, calculate it.
2063 	 */
2064 	if (pteidx == -1) {
2065 		int	ptegidx;
2066 		u_int	sr;
2067 
2068 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2069 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2070 		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2071 	}
2072 
2073 	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2074 	mtx_lock(&moea_table_mutex);
2075 
2076 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2077 		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2078 		    "valid pte index", pvo);
2079 	}
2080 
2081 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2082 		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2083 		    "pvo but no valid pte", pvo);
2084 	}
2085 
2086 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2087 		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2088 			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2089 			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2090 		}
2091 
2092 		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2093 		    != 0) {
2094 			panic("moea_pvo_to_pte: pvo %p pte does not match "
2095 			    "pte %p in moea_pteg_table", pvo, pt);
2096 		}
2097 
2098 		mtx_assert(&moea_table_mutex, MA_OWNED);
2099 		return (pt);
2100 	}
2101 
2102 	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2103 		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2104 		    "moea_pteg_table but valid in pvo", pvo, pt);
2105 	}
2106 
2107 	mtx_unlock(&moea_table_mutex);
2108 	return (NULL);
2109 }
2110 
2111 /*
2112  * XXX: THIS STUFF SHOULD BE IN pte.c?
2113  */
2114 int
2115 moea_pte_spill(vm_offset_t addr)
2116 {
2117 	struct	pvo_entry *source_pvo, *victim_pvo;
2118 	struct	pvo_entry *pvo;
2119 	int	ptegidx, i, j;
2120 	u_int	sr;
2121 	struct	pteg *pteg;
2122 	struct	pte *pt;
2123 
2124 	moea_pte_spills++;
2125 
2126 	sr = mfsrin(addr);
2127 	ptegidx = va_to_pteg(sr, addr);
2128 
2129 	/*
2130 	 * Have to substitute some entry.  Use the primary hash for this.
2131 	 * Use low bits of timebase as random generator.
2132 	 */
2133 	pteg = &moea_pteg_table[ptegidx];
2134 	mtx_lock(&moea_table_mutex);
2135 	__asm __volatile("mftb %0" : "=r"(i));
2136 	i &= 7;
2137 	pt = &pteg->pt[i];
2138 
2139 	source_pvo = NULL;
2140 	victim_pvo = NULL;
2141 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2142 		/*
2143 		 * We need to find a pvo entry for this address.
2144 		 */
2145 		if (source_pvo == NULL &&
2146 		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2147 		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2148 			/*
2149 			 * Now found an entry to be spilled into the pteg.
2150 			 * The PTE is now valid, so we know it's active.
2151 			 */
2152 			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2153 
2154 			if (j >= 0) {
2155 				PVO_PTEGIDX_SET(pvo, j);
2156 				moea_pte_overflow--;
2157 				mtx_unlock(&moea_table_mutex);
2158 				return (1);
2159 			}
2160 
2161 			source_pvo = pvo;
2162 
2163 			if (victim_pvo != NULL)
2164 				break;
2165 		}
2166 
2167 		/*
2168 		 * We also need the pvo entry of the victim we are replacing
2169 		 * so save the R & C bits of the PTE.
2170 		 */
2171 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2172 		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2173 			victim_pvo = pvo;
2174 			if (source_pvo != NULL)
2175 				break;
2176 		}
2177 	}
2178 
2179 	if (source_pvo == NULL) {
2180 		mtx_unlock(&moea_table_mutex);
2181 		return (0);
2182 	}
2183 
2184 	if (victim_pvo == NULL) {
2185 		if ((pt->pte_hi & PTE_HID) == 0)
2186 			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2187 			    "entry", pt);
2188 
2189 		/*
2190 		 * If this is a secondary PTE, we need to search it's primary
2191 		 * pvo bucket for the matching PVO.
2192 		 */
2193 		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2194 		    pvo_olink) {
2195 			/*
2196 			 * We also need the pvo entry of the victim we are
2197 			 * replacing so save the R & C bits of the PTE.
2198 			 */
2199 			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2200 				victim_pvo = pvo;
2201 				break;
2202 			}
2203 		}
2204 
2205 		if (victim_pvo == NULL)
2206 			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2207 			    "entry", pt);
2208 	}
2209 
2210 	/*
2211 	 * We are invalidating the TLB entry for the EA we are replacing even
2212 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2213 	 * contained in the TLB entry.
2214 	 */
2215 	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2216 
2217 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2218 	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2219 
2220 	PVO_PTEGIDX_CLR(victim_pvo);
2221 	PVO_PTEGIDX_SET(source_pvo, i);
2222 	moea_pte_replacements++;
2223 
2224 	mtx_unlock(&moea_table_mutex);
2225 	return (1);
2226 }
2227 
2228 static int
2229 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2230 {
2231 	struct	pte *pt;
2232 	int	i;
2233 
2234 	mtx_assert(&moea_table_mutex, MA_OWNED);
2235 
2236 	/*
2237 	 * First try primary hash.
2238 	 */
2239 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2240 		if ((pt->pte_hi & PTE_VALID) == 0) {
2241 			pvo_pt->pte_hi &= ~PTE_HID;
2242 			moea_pte_set(pt, pvo_pt);
2243 			return (i);
2244 		}
2245 	}
2246 
2247 	/*
2248 	 * Now try secondary hash.
2249 	 */
2250 	ptegidx ^= moea_pteg_mask;
2251 
2252 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2253 		if ((pt->pte_hi & PTE_VALID) == 0) {
2254 			pvo_pt->pte_hi |= PTE_HID;
2255 			moea_pte_set(pt, pvo_pt);
2256 			return (i);
2257 		}
2258 	}
2259 
2260 	panic("moea_pte_insert: overflow");
2261 	return (-1);
2262 }
2263 
2264 static boolean_t
2265 moea_query_bit(vm_page_t m, int ptebit)
2266 {
2267 	struct	pvo_entry *pvo;
2268 	struct	pte *pt;
2269 
2270 	if (moea_attr_fetch(m) & ptebit)
2271 		return (TRUE);
2272 
2273 	vm_page_lock_queues();
2274 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2275 
2276 		/*
2277 		 * See if we saved the bit off.  If so, cache it and return
2278 		 * success.
2279 		 */
2280 		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2281 			moea_attr_save(m, ptebit);
2282 			vm_page_unlock_queues();
2283 			return (TRUE);
2284 		}
2285 	}
2286 
2287 	/*
2288 	 * No luck, now go through the hard part of looking at the PTEs
2289 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2290 	 * the PTEs.
2291 	 */
2292 	powerpc_sync();
2293 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2294 
2295 		/*
2296 		 * See if this pvo has a valid PTE.  if so, fetch the
2297 		 * REF/CHG bits from the valid PTE.  If the appropriate
2298 		 * ptebit is set, cache it and return success.
2299 		 */
2300 		pt = moea_pvo_to_pte(pvo, -1);
2301 		if (pt != NULL) {
2302 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2303 			mtx_unlock(&moea_table_mutex);
2304 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2305 				moea_attr_save(m, ptebit);
2306 				vm_page_unlock_queues();
2307 				return (TRUE);
2308 			}
2309 		}
2310 	}
2311 
2312 	vm_page_unlock_queues();
2313 	return (FALSE);
2314 }
2315 
2316 static u_int
2317 moea_clear_bit(vm_page_t m, int ptebit)
2318 {
2319 	u_int	count;
2320 	struct	pvo_entry *pvo;
2321 	struct	pte *pt;
2322 
2323 	vm_page_lock_queues();
2324 
2325 	/*
2326 	 * Clear the cached value.
2327 	 */
2328 	moea_attr_clear(m, ptebit);
2329 
2330 	/*
2331 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2332 	 * we can reset the right ones).  note that since the pvo entries and
2333 	 * list heads are accessed via BAT0 and are never placed in the page
2334 	 * table, we don't have to worry about further accesses setting the
2335 	 * REF/CHG bits.
2336 	 */
2337 	powerpc_sync();
2338 
2339 	/*
2340 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2341 	 * valid pte clear the ptebit from the valid pte.
2342 	 */
2343 	count = 0;
2344 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2345 		pt = moea_pvo_to_pte(pvo, -1);
2346 		if (pt != NULL) {
2347 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2348 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2349 				count++;
2350 				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2351 			}
2352 			mtx_unlock(&moea_table_mutex);
2353 		}
2354 		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2355 	}
2356 
2357 	vm_page_unlock_queues();
2358 	return (count);
2359 }
2360 
2361 /*
2362  * Return true if the physical range is encompassed by the battable[idx]
2363  */
2364 static int
2365 moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2366 {
2367 	u_int prot;
2368 	u_int32_t start;
2369 	u_int32_t end;
2370 	u_int32_t bat_ble;
2371 
2372 	/*
2373 	 * Return immediately if not a valid mapping
2374 	 */
2375 	if (!(battable[idx].batu & BAT_Vs))
2376 		return (EINVAL);
2377 
2378 	/*
2379 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2380 	 * so it can function as an i/o page
2381 	 */
2382 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2383 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2384 		return (EPERM);
2385 
2386 	/*
2387 	 * The address should be within the BAT range. Assume that the
2388 	 * start address in the BAT has the correct alignment (thus
2389 	 * not requiring masking)
2390 	 */
2391 	start = battable[idx].batl & BAT_PBS;
2392 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2393 	end = start | (bat_ble << 15) | 0x7fff;
2394 
2395 	if ((pa < start) || ((pa + size) > end))
2396 		return (ERANGE);
2397 
2398 	return (0);
2399 }
2400 
2401 boolean_t
2402 moea_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2403 {
2404 	int i;
2405 
2406 	/*
2407 	 * This currently does not work for entries that
2408 	 * overlap 256M BAT segments.
2409 	 */
2410 
2411 	for(i = 0; i < 16; i++)
2412 		if (moea_bat_mapped(i, pa, size) == 0)
2413 			return (0);
2414 
2415 	return (EFAULT);
2416 }
2417 
2418 /*
2419  * Map a set of physical memory pages into the kernel virtual
2420  * address space. Return a pointer to where it is mapped. This
2421  * routine is intended to be used for mapping device memory,
2422  * NOT real memory.
2423  */
2424 void *
2425 moea_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2426 {
2427 
2428 	return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2429 }
2430 
2431 void *
2432 moea_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2433 {
2434 	vm_offset_t va, tmpva, ppa, offset;
2435 	int i;
2436 
2437 	ppa = trunc_page(pa);
2438 	offset = pa & PAGE_MASK;
2439 	size = roundup(offset + size, PAGE_SIZE);
2440 
2441 	/*
2442 	 * If the physical address lies within a valid BAT table entry,
2443 	 * return the 1:1 mapping. This currently doesn't work
2444 	 * for regions that overlap 256M BAT segments.
2445 	 */
2446 	for (i = 0; i < 16; i++) {
2447 		if (moea_bat_mapped(i, pa, size) == 0)
2448 			return ((void *) pa);
2449 	}
2450 
2451 	va = kmem_alloc_nofault(kernel_map, size);
2452 	if (!va)
2453 		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2454 
2455 	for (tmpva = va; size > 0;) {
2456 		moea_kenter_attr(mmu, tmpva, ppa, ma);
2457 		tlbie(tmpva);
2458 		size -= PAGE_SIZE;
2459 		tmpva += PAGE_SIZE;
2460 		ppa += PAGE_SIZE;
2461 	}
2462 
2463 	return ((void *)(va + offset));
2464 }
2465 
2466 void
2467 moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2468 {
2469 	vm_offset_t base, offset;
2470 
2471 	/*
2472 	 * If this is outside kernel virtual space, then it's a
2473 	 * battable entry and doesn't require unmapping
2474 	 */
2475 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2476 		base = trunc_page(va);
2477 		offset = va & PAGE_MASK;
2478 		size = roundup(offset + size, PAGE_SIZE);
2479 		kmem_free(kernel_map, base, size);
2480 	}
2481 }
2482 
2483 static void
2484 moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2485 {
2486 	struct pvo_entry *pvo;
2487 	vm_offset_t lim;
2488 	vm_paddr_t pa;
2489 	vm_size_t len;
2490 
2491 	PMAP_LOCK(pm);
2492 	while (sz > 0) {
2493 		lim = round_page(va);
2494 		len = MIN(lim - va, sz);
2495 		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2496 		if (pvo != NULL) {
2497 			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2498 			    (va & ADDR_POFF);
2499 			moea_syncicache(pa, len);
2500 		}
2501 		va += len;
2502 		sz -= len;
2503 	}
2504 	PMAP_UNLOCK(pm);
2505 }
2506