xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision 77b7cdf1999ee965ad494fddd184b18f532ac91a)
1 /*
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 /*
97  * Manages physical address maps.
98  *
99  * In addition to hardware address maps, this module is called upon to
100  * provide software-use-only maps which may or may not be stored in the
101  * same form as hardware maps.  These pseudo-maps are used to store
102  * intermediate results from copy operations to and from address spaces.
103  *
104  * Since the information managed by this module is also stored by the
105  * logical address mapping module, this module may throw away valid virtual
106  * to physical mappings at almost any time.  However, invalidations of
107  * mappings must be done as requested.
108  *
109  * In order to cope with hardware architectures which make virtual to
110  * physical map invalidates expensive, this module may delay invalidate
111  * reduced protection operations until such time as they are actually
112  * necessary.  This module is given full information as to which processors
113  * are currently using which maps, and to when physical maps must be made
114  * correct.
115  */
116 
117 #include <sys/param.h>
118 #include <sys/kernel.h>
119 #include <sys/ktr.h>
120 #include <sys/lock.h>
121 #include <sys/msgbuf.h>
122 #include <sys/mutex.h>
123 #include <sys/proc.h>
124 #include <sys/sysctl.h>
125 #include <sys/systm.h>
126 #include <sys/vmmeter.h>
127 
128 #include <dev/ofw/openfirm.h>
129 
130 #include <vm/vm.h>
131 #include <vm/vm_param.h>
132 #include <vm/vm_kern.h>
133 #include <vm/vm_page.h>
134 #include <vm/vm_map.h>
135 #include <vm/vm_object.h>
136 #include <vm/vm_extern.h>
137 #include <vm/vm_pageout.h>
138 #include <vm/vm_pager.h>
139 #include <vm/uma.h>
140 
141 #include <machine/powerpc.h>
142 #include <machine/bat.h>
143 #include <machine/frame.h>
144 #include <machine/md_var.h>
145 #include <machine/psl.h>
146 #include <machine/pte.h>
147 #include <machine/sr.h>
148 
149 #define	PMAP_DEBUG
150 
151 #define TODO	panic("%s: not implemented", __func__);
152 
153 #define	PMAP_LOCK(pm)
154 #define	PMAP_UNLOCK(pm)
155 
156 #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
157 #define	TLBSYNC()	__asm __volatile("tlbsync");
158 #define	SYNC()		__asm __volatile("sync");
159 #define	EIEIO()		__asm __volatile("eieio");
160 
161 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
162 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
163 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
164 
165 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
166 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
167 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
168 #define	PVO_MANAGED		0x0020		/* PVO entry is managed */
169 #define	PVO_EXECUTABLE		0x0040		/* PVO entry is executable */
170 #define	PVO_BOOTSTRAP		0x0080		/* PVO entry allocated during
171 						   bootstrap */
172 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
173 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
174 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
175 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
176 #define	PVO_PTEGIDX_CLR(pvo)	\
177 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
178 #define	PVO_PTEGIDX_SET(pvo, i)	\
179 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
180 
181 #define	PMAP_PVO_CHECK(pvo)
182 
183 struct ofw_map {
184 	vm_offset_t	om_va;
185 	vm_size_t	om_len;
186 	vm_offset_t	om_pa;
187 	u_int		om_mode;
188 };
189 
190 int	pmap_bootstrapped = 0;
191 
192 /*
193  * Virtual and physical address of message buffer.
194  */
195 struct		msgbuf *msgbufp;
196 vm_offset_t	msgbuf_phys;
197 
198 /*
199  * Physical addresses of first and last available physical page.
200  */
201 vm_offset_t avail_start;
202 vm_offset_t avail_end;
203 
204 int pmap_pagedaemon_waken;
205 
206 /*
207  * Map of physical memory regions.
208  */
209 vm_offset_t	phys_avail[128];
210 u_int		phys_avail_count;
211 static struct	mem_region *regions;
212 static struct	mem_region *pregions;
213 int		regions_sz, pregions_sz;
214 static struct	ofw_map *translations;
215 
216 /*
217  * First and last available kernel virtual addresses.
218  */
219 vm_offset_t virtual_avail;
220 vm_offset_t virtual_end;
221 vm_offset_t kernel_vm_end;
222 
223 /*
224  * Kernel pmap.
225  */
226 struct pmap kernel_pmap_store;
227 extern struct pmap ofw_pmap;
228 
229 /*
230  * PTEG data.
231  */
232 static struct	pteg *pmap_pteg_table;
233 u_int		pmap_pteg_count;
234 u_int		pmap_pteg_mask;
235 
236 /*
237  * PVO data.
238  */
239 struct	pvo_head *pmap_pvo_table;		/* pvo entries by pteg index */
240 struct	pvo_head pmap_pvo_kunmanaged =
241     LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
242 struct	pvo_head pmap_pvo_unmanaged =
243     LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
244 
245 uma_zone_t	pmap_upvo_zone;	/* zone for pvo entries for unmanaged pages */
246 uma_zone_t	pmap_mpvo_zone;	/* zone for pvo entries for managed pages */
247 struct		vm_object pmap_upvo_zone_obj;
248 struct		vm_object pmap_mpvo_zone_obj;
249 static vm_object_t	pmap_pvo_obj;
250 static u_int		pmap_pvo_count;
251 
252 #define	BPVO_POOL_SIZE	32768
253 static struct	pvo_entry *pmap_bpvo_pool;
254 static int	pmap_bpvo_pool_index = 0;
255 
256 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
257 static u_int	pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
258 
259 static boolean_t pmap_initialized = FALSE;
260 
261 /*
262  * Statistics.
263  */
264 u_int	pmap_pte_valid = 0;
265 u_int	pmap_pte_overflow = 0;
266 u_int	pmap_pte_replacements = 0;
267 u_int	pmap_pvo_entries = 0;
268 u_int	pmap_pvo_enter_calls = 0;
269 u_int	pmap_pvo_remove_calls = 0;
270 u_int	pmap_pte_spills = 0;
271 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
272     0, "");
273 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
274     &pmap_pte_overflow, 0, "");
275 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
276     &pmap_pte_replacements, 0, "");
277 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
278     0, "");
279 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
280     &pmap_pvo_enter_calls, 0, "");
281 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
282     &pmap_pvo_remove_calls, 0, "");
283 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
284     &pmap_pte_spills, 0, "");
285 
286 struct	pvo_entry *pmap_pvo_zeropage;
287 
288 vm_offset_t	pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
289 u_int		pmap_rkva_count = 4;
290 
291 /*
292  * Allocate physical memory for use in pmap_bootstrap.
293  */
294 static vm_offset_t	pmap_bootstrap_alloc(vm_size_t, u_int);
295 
296 /*
297  * PTE calls.
298  */
299 static int		pmap_pte_insert(u_int, struct pte *);
300 
301 /*
302  * PVO calls.
303  */
304 static int	pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
305 		    vm_offset_t, vm_offset_t, u_int, int);
306 static void	pmap_pvo_remove(struct pvo_entry *, int);
307 static struct	pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
308 static struct	pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
309 
310 /*
311  * Utility routines.
312  */
313 static void *		pmap_pvo_allocf(uma_zone_t, int, u_int8_t *, int);
314 static struct		pvo_entry *pmap_rkva_alloc(void);
315 static void		pmap_pa_map(struct pvo_entry *, vm_offset_t,
316 			    struct pte *, int *);
317 static void		pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
318 static void		pmap_syncicache(vm_offset_t, vm_size_t);
319 static boolean_t	pmap_query_bit(vm_page_t, int);
320 static u_int		pmap_clear_bit(vm_page_t, int, int *);
321 static void		tlbia(void);
322 
323 static __inline int
324 va_to_sr(u_int *sr, vm_offset_t va)
325 {
326 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
327 }
328 
329 static __inline u_int
330 va_to_pteg(u_int sr, vm_offset_t addr)
331 {
332 	u_int hash;
333 
334 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
335 	    ADDR_PIDX_SHFT);
336 	return (hash & pmap_pteg_mask);
337 }
338 
339 static __inline struct pvo_head *
340 pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
341 {
342 	struct	vm_page *pg;
343 
344 	pg = PHYS_TO_VM_PAGE(pa);
345 
346 	if (pg_p != NULL)
347 		*pg_p = pg;
348 
349 	if (pg == NULL)
350 		return (&pmap_pvo_unmanaged);
351 
352 	return (&pg->md.mdpg_pvoh);
353 }
354 
355 static __inline struct pvo_head *
356 vm_page_to_pvoh(vm_page_t m)
357 {
358 
359 	return (&m->md.mdpg_pvoh);
360 }
361 
362 static __inline void
363 pmap_attr_clear(vm_page_t m, int ptebit)
364 {
365 
366 	m->md.mdpg_attrs &= ~ptebit;
367 }
368 
369 static __inline int
370 pmap_attr_fetch(vm_page_t m)
371 {
372 
373 	return (m->md.mdpg_attrs);
374 }
375 
376 static __inline void
377 pmap_attr_save(vm_page_t m, int ptebit)
378 {
379 
380 	m->md.mdpg_attrs |= ptebit;
381 }
382 
383 static __inline int
384 pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
385 {
386 	if (pt->pte_hi == pvo_pt->pte_hi)
387 		return (1);
388 
389 	return (0);
390 }
391 
392 static __inline int
393 pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
394 {
395 	return (pt->pte_hi & ~PTE_VALID) ==
396 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
397 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
398 }
399 
400 static __inline void
401 pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
402 {
403 	/*
404 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
405 	 * set when the real pte is set in memory.
406 	 *
407 	 * Note: Don't set the valid bit for correct operation of tlb update.
408 	 */
409 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
410 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
411 	pt->pte_lo = pte_lo;
412 }
413 
414 static __inline void
415 pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
416 {
417 
418 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
419 }
420 
421 static __inline void
422 pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
423 {
424 
425 	/*
426 	 * As shown in Section 7.6.3.2.3
427 	 */
428 	pt->pte_lo &= ~ptebit;
429 	TLBIE(va);
430 	EIEIO();
431 	TLBSYNC();
432 	SYNC();
433 }
434 
435 static __inline void
436 pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
437 {
438 
439 	pvo_pt->pte_hi |= PTE_VALID;
440 
441 	/*
442 	 * Update the PTE as defined in section 7.6.3.1.
443 	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
444 	 * been saved so this routine can restore them (if desired).
445 	 */
446 	pt->pte_lo = pvo_pt->pte_lo;
447 	EIEIO();
448 	pt->pte_hi = pvo_pt->pte_hi;
449 	SYNC();
450 	pmap_pte_valid++;
451 }
452 
453 static __inline void
454 pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
455 {
456 
457 	pvo_pt->pte_hi &= ~PTE_VALID;
458 
459 	/*
460 	 * Force the reg & chg bits back into the PTEs.
461 	 */
462 	SYNC();
463 
464 	/*
465 	 * Invalidate the pte.
466 	 */
467 	pt->pte_hi &= ~PTE_VALID;
468 
469 	SYNC();
470 	TLBIE(va);
471 	EIEIO();
472 	TLBSYNC();
473 	SYNC();
474 
475 	/*
476 	 * Save the reg & chg bits.
477 	 */
478 	pmap_pte_synch(pt, pvo_pt);
479 	pmap_pte_valid--;
480 }
481 
482 static __inline void
483 pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
484 {
485 
486 	/*
487 	 * Invalidate the PTE
488 	 */
489 	pmap_pte_unset(pt, pvo_pt, va);
490 	pmap_pte_set(pt, pvo_pt);
491 }
492 
493 /*
494  * Quick sort callout for comparing memory regions.
495  */
496 static int	mr_cmp(const void *a, const void *b);
497 static int	om_cmp(const void *a, const void *b);
498 
499 static int
500 mr_cmp(const void *a, const void *b)
501 {
502 	const struct	mem_region *regiona;
503 	const struct	mem_region *regionb;
504 
505 	regiona = a;
506 	regionb = b;
507 	if (regiona->mr_start < regionb->mr_start)
508 		return (-1);
509 	else if (regiona->mr_start > regionb->mr_start)
510 		return (1);
511 	else
512 		return (0);
513 }
514 
515 static int
516 om_cmp(const void *a, const void *b)
517 {
518 	const struct	ofw_map *mapa;
519 	const struct	ofw_map *mapb;
520 
521 	mapa = a;
522 	mapb = b;
523 	if (mapa->om_pa < mapb->om_pa)
524 		return (-1);
525 	else if (mapa->om_pa > mapb->om_pa)
526 		return (1);
527 	else
528 		return (0);
529 }
530 
531 void
532 pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
533 {
534 	ihandle_t	mmui;
535 	phandle_t	chosen, mmu;
536 	int		sz;
537 	int		i, j;
538 	int		ofw_mappings;
539 	vm_size_t	size, physsz;
540 	vm_offset_t	pa, va, off;
541 	u_int		batl, batu;
542 
543         /*
544          * Set up BAT0 to map the lowest 256 MB area
545          */
546         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
547         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
548 
549         /*
550          * Map PCI memory space.
551          */
552         battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
553         battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
554 
555         battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
556         battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
557 
558         battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
559         battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
560 
561         battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
562         battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
563 
564         /*
565          * Map obio devices.
566          */
567         battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
568         battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
569 
570 	/*
571 	 * Use an IBAT and a DBAT to map the bottom segment of memory
572 	 * where we are.
573 	 */
574 	batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
575 	batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
576 	__asm ("mtibatu 0,%0; mtibatl 0,%1; mtdbatu 0,%0; mtdbatl 0,%1"
577 	    :: "r"(batu), "r"(batl));
578 
579 #if 0
580 	/* map frame buffer */
581 	batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
582 	batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
583 	__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
584 	    :: "r"(batu), "r"(batl));
585 #endif
586 
587 #if 1
588 	/* map pci space */
589 	batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
590 	batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
591 	__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
592 	    :: "r"(batu), "r"(batl));
593 #endif
594 
595 	/*
596 	 * Set the start and end of kva.
597 	 */
598 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
599 	virtual_end = VM_MAX_KERNEL_ADDRESS;
600 
601 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
602 	CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
603 
604 	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
605 	for (i = 0; i < pregions_sz; i++) {
606 		vm_offset_t pa;
607 		vm_offset_t end;
608 
609 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
610 			pregions[i].mr_start,
611 			pregions[i].mr_start + pregions[i].mr_size,
612 			pregions[i].mr_size);
613 		/*
614 		 * Install entries into the BAT table to allow all
615 		 * of physmem to be convered by on-demand BAT entries.
616 		 * The loop will sometimes set the same battable element
617 		 * twice, but that's fine since they won't be used for
618 		 * a while yet.
619 		 */
620 		pa = pregions[i].mr_start & 0xf0000000;
621 		end = pregions[i].mr_start + pregions[i].mr_size;
622 		do {
623                         u_int n = pa >> ADDR_SR_SHFT;
624 
625 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
626 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
627 			pa += SEGMENT_LENGTH;
628 		} while (pa < end);
629 	}
630 
631 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
632 		panic("pmap_bootstrap: phys_avail too small");
633 	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
634 	phys_avail_count = 0;
635 	physsz = 0;
636 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
637 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
638 		    regions[i].mr_start + regions[i].mr_size,
639 		    regions[i].mr_size);
640 		phys_avail[j] = regions[i].mr_start;
641 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
642 		phys_avail_count++;
643 		physsz += regions[i].mr_size;
644 	}
645 	physmem = btoc(physsz);
646 
647 	/*
648 	 * Allocate PTEG table.
649 	 */
650 #ifdef PTEGCOUNT
651 	pmap_pteg_count = PTEGCOUNT;
652 #else
653 	pmap_pteg_count = 0x1000;
654 
655 	while (pmap_pteg_count < physmem)
656 		pmap_pteg_count <<= 1;
657 
658 	pmap_pteg_count >>= 1;
659 #endif /* PTEGCOUNT */
660 
661 	size = pmap_pteg_count * sizeof(struct pteg);
662 	CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
663 	    size);
664 	pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
665 	CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
666 	bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
667 	pmap_pteg_mask = pmap_pteg_count - 1;
668 
669 	/*
670 	 * Allocate pv/overflow lists.
671 	 */
672 	size = sizeof(struct pvo_head) * pmap_pteg_count;
673 	pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
674 	    PAGE_SIZE);
675 	CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
676 	for (i = 0; i < pmap_pteg_count; i++)
677 		LIST_INIT(&pmap_pvo_table[i]);
678 
679 	/*
680 	 * Allocate the message buffer.
681 	 */
682 	msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
683 
684 	/*
685 	 * Initialise the unmanaged pvo pool.
686 	 */
687 	pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(
688 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
689 	pmap_bpvo_pool_index = 0;
690 
691 	/*
692 	 * Make sure kernel vsid is allocated as well as VSID 0.
693 	 */
694 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
695 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
696 	pmap_vsid_bitmap[0] |= 1;
697 
698 	/*
699 	 * Set up the OpenFirmware pmap and add it's mappings.
700 	 */
701 	pmap_pinit(&ofw_pmap);
702 	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
703 	if ((chosen = OF_finddevice("/chosen")) == -1)
704 		panic("pmap_bootstrap: can't find /chosen");
705 	OF_getprop(chosen, "mmu", &mmui, 4);
706 	if ((mmu = OF_instance_to_package(mmui)) == -1)
707 		panic("pmap_bootstrap: can't get mmu package");
708 	if ((sz = OF_getproplen(mmu, "translations")) == -1)
709 		panic("pmap_bootstrap: can't get ofw translation count");
710 	translations = NULL;
711 	for (i = 0; phys_avail[i + 2] != 0; i += 2) {
712 		if (phys_avail[i + 1] >= sz)
713 			translations = (struct ofw_map *)phys_avail[i];
714 	}
715 	if (translations == NULL)
716 		panic("pmap_bootstrap: no space to copy translations");
717 	bzero(translations, sz);
718 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
719 		panic("pmap_bootstrap: can't get ofw translations");
720 	CTR0(KTR_PMAP, "pmap_bootstrap: translations");
721 	sz /= sizeof(*translations);
722 	qsort(translations, sz, sizeof (*translations), om_cmp);
723 	for (i = 0, ofw_mappings = 0; i < sz; i++) {
724 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
725 		    translations[i].om_pa, translations[i].om_va,
726 		    translations[i].om_len);
727 
728 		/*
729 		 * If the mapping is 1:1, let the RAM and device on-demand
730 		 * BAT tables take care of the translation.
731 		 */
732 		if (translations[i].om_va == translations[i].om_pa)
733 			continue;
734 
735 		/* Enter the pages */
736 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
737 			struct	vm_page m;
738 
739 			m.phys_addr = translations[i].om_pa + off;
740 			pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
741 				   VM_PROT_ALL, 1);
742 			ofw_mappings++;
743 		}
744 	}
745 #ifdef SMP
746 	TLBSYNC();
747 #endif
748 
749 	/*
750 	 * Initialize the kernel pmap (which is statically allocated).
751 	 */
752 	for (i = 0; i < 16; i++) {
753 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
754 	}
755 	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
756 	kernel_pmap->pm_active = ~0;
757 
758 	/*
759 	 * Allocate a kernel stack with a guard page for thread0 and map it
760 	 * into the kernel page map.
761 	 */
762 	pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
763 	kstack0_phys = pa;
764 	kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
765 	CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
766 	    kstack0);
767 	virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
768 	for (i = 0; i < KSTACK_PAGES; i++) {
769 		pa = kstack0_phys + i * PAGE_SIZE;
770 		va = kstack0 + i * PAGE_SIZE;
771 		pmap_kenter(va, pa);
772 		TLBIE(va);
773 	}
774 
775 	/*
776 	 * Calculate the first and last available physical addresses.
777 	 */
778 	avail_start = phys_avail[0];
779 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
780 		;
781 	avail_end = phys_avail[i + 1];
782 	Maxmem = powerpc_btop(avail_end);
783 
784 	/*
785 	 * Allocate virtual address space for the message buffer.
786 	 */
787 	msgbufp = (struct msgbuf *)virtual_avail;
788 	virtual_avail += round_page(MSGBUF_SIZE);
789 
790 	/*
791 	 * Initialize hardware.
792 	 */
793 	for (i = 0; i < 16; i++) {
794 		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
795 	}
796 	__asm __volatile ("mtsr %0,%1"
797 	    :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
798 	__asm __volatile ("sync; mtsdr1 %0; isync"
799 	    :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
800 	tlbia();
801 
802 	pmap_bootstrapped++;
803 }
804 
805 /*
806  * Activate a user pmap.  The pmap must be activated before it's address
807  * space can be accessed in any way.
808  */
809 void
810 pmap_activate(struct thread *td)
811 {
812 	pmap_t	pm, pmr;
813 
814 	/*
815 	 * Load all the data we need up front to encourage the compiler to
816 	 * not issue any loads while we have interrupts disabled below.
817 	 */
818 	pm = &td->td_proc->p_vmspace->vm_pmap;
819 
820 	if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL)
821 		pmr = pm;
822 
823 	pm->pm_active |= PCPU_GET(cpumask);
824 	PCPU_SET(curpmap, pmr);
825 }
826 
827 void
828 pmap_deactivate(struct thread *td)
829 {
830 	pmap_t	pm;
831 
832 	pm = &td->td_proc->p_vmspace->vm_pmap;
833 	pm->pm_active &= ~(PCPU_GET(cpumask));
834 	PCPU_SET(curpmap, NULL);
835 }
836 
837 vm_offset_t
838 pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
839 {
840 
841 	return (va);
842 }
843 
844 void
845 pmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired)
846 {
847 	struct	pvo_entry *pvo;
848 
849 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
850 
851 	if (pvo != NULL) {
852 		if (wired) {
853 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
854 				pm->pm_stats.wired_count++;
855 			pvo->pvo_vaddr |= PVO_WIRED;
856 		} else {
857 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
858 				pm->pm_stats.wired_count--;
859 			pvo->pvo_vaddr &= ~PVO_WIRED;
860 		}
861 	}
862 }
863 
864 void
865 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
866 	  vm_size_t len, vm_offset_t src_addr)
867 {
868 
869 	/*
870 	 * This is not needed as it's mainly an optimisation.
871 	 * It may want to be implemented later though.
872 	 */
873 }
874 
875 void
876 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
877 {
878 	vm_offset_t	dst;
879 	vm_offset_t	src;
880 
881 	dst = VM_PAGE_TO_PHYS(mdst);
882 	src = VM_PAGE_TO_PHYS(msrc);
883 
884 	kcopy((void *)src, (void *)dst, PAGE_SIZE);
885 }
886 
887 /*
888  * Zero a page of physical memory by temporarily mapping it into the tlb.
889  */
890 void
891 pmap_zero_page(vm_page_t m)
892 {
893 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
894 	caddr_t va;
895 
896 	if (pa < SEGMENT_LENGTH) {
897 		va = (caddr_t) pa;
898 	} else if (pmap_initialized) {
899 		if (pmap_pvo_zeropage == NULL)
900 			pmap_pvo_zeropage = pmap_rkva_alloc();
901 		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
902 		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
903 	} else {
904 		panic("pmap_zero_page: can't zero pa %#x", pa);
905 	}
906 
907 	bzero(va, PAGE_SIZE);
908 
909 	if (pa >= SEGMENT_LENGTH)
910 		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
911 }
912 
913 void
914 pmap_zero_page_area(vm_page_t m, int off, int size)
915 {
916 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
917 	caddr_t va;
918 
919 	if (pa < SEGMENT_LENGTH) {
920 		va = (caddr_t) pa;
921 	} else if (pmap_initialized) {
922 		if (pmap_pvo_zeropage == NULL)
923 			pmap_pvo_zeropage = pmap_rkva_alloc();
924 		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
925 		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
926 	} else {
927 		panic("pmap_zero_page: can't zero pa %#x", pa);
928 	}
929 
930 	bzero(va + off, size);
931 
932 	if (pa >= SEGMENT_LENGTH)
933 		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
934 }
935 
936 void
937 pmap_zero_page_idle(vm_page_t m)
938 {
939 
940 	/* XXX this is called outside of Giant, is pmap_zero_page safe? */
941 	/* XXX maybe have a dedicated mapping for this to avoid the problem? */
942 	mtx_lock(&Giant);
943 	pmap_zero_page(m);
944 	mtx_unlock(&Giant);
945 }
946 
947 /*
948  * Map the given physical page at the specified virtual address in the
949  * target pmap with the protection requested.  If specified the page
950  * will be wired down.
951  */
952 void
953 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
954 	   boolean_t wired)
955 {
956 	struct		pvo_head *pvo_head;
957 	uma_zone_t	zone;
958 	vm_page_t	pg;
959 	u_int		pte_lo, pvo_flags, was_exec, i;
960 	int		error;
961 
962 	if (!pmap_initialized) {
963 		pvo_head = &pmap_pvo_kunmanaged;
964 		zone = pmap_upvo_zone;
965 		pvo_flags = 0;
966 		pg = NULL;
967 		was_exec = PTE_EXEC;
968 	} else {
969 		pvo_head = vm_page_to_pvoh(m);
970 		pg = m;
971 		zone = pmap_mpvo_zone;
972 		pvo_flags = PVO_MANAGED;
973 		was_exec = 0;
974 	}
975 
976 	/*
977 	 * If this is a managed page, and it's the first reference to the page,
978 	 * clear the execness of the page.  Otherwise fetch the execness.
979 	 */
980 	if (pg != NULL) {
981 		if (LIST_EMPTY(pvo_head)) {
982 			pmap_attr_clear(pg, PTE_EXEC);
983 		} else {
984 			was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
985 		}
986 	}
987 
988 
989 	/*
990 	 * Assume the page is cache inhibited and access is guarded unless
991 	 * it's in our available memory array.
992 	 */
993 	pte_lo = PTE_I | PTE_G;
994 	for (i = 0; i < pregions_sz; i++) {
995 		if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
996 		    (VM_PAGE_TO_PHYS(m) <
997 			(pregions[i].mr_start + pregions[i].mr_size))) {
998 			pte_lo &= ~(PTE_I | PTE_G);
999 			break;
1000 		}
1001 	}
1002 
1003 	if (prot & VM_PROT_WRITE)
1004 		pte_lo |= PTE_BW;
1005 	else
1006 		pte_lo |= PTE_BR;
1007 
1008 	pvo_flags |= (prot & VM_PROT_EXECUTE);
1009 
1010 	if (wired)
1011 		pvo_flags |= PVO_WIRED;
1012 
1013 	error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1014 	    pte_lo, pvo_flags);
1015 
1016 	/*
1017 	 * Flush the real page from the instruction cache if this page is
1018 	 * mapped executable and cacheable and was not previously mapped (or
1019 	 * was not mapped executable).
1020 	 */
1021 	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1022 	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1023 		/*
1024 		 * Flush the real memory from the cache.
1025 		 */
1026 		pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1027 		if (pg != NULL)
1028 			pmap_attr_save(pg, PTE_EXEC);
1029 	}
1030 
1031 	/* XXX syncicache always until problems are sorted */
1032 	pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1033 }
1034 
1035 vm_offset_t
1036 pmap_extract(pmap_t pm, vm_offset_t va)
1037 {
1038 	struct	pvo_entry *pvo;
1039 
1040 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1041 
1042 	if (pvo != NULL) {
1043 		return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1044 	}
1045 
1046 	return (0);
1047 }
1048 
1049 /*
1050  * Grow the number of kernel page table entries.  Unneeded.
1051  */
1052 void
1053 pmap_growkernel(vm_offset_t addr)
1054 {
1055 }
1056 
1057 void
1058 pmap_init(vm_offset_t phys_start, vm_offset_t phys_end)
1059 {
1060 
1061 	CTR0(KTR_PMAP, "pmap_init");
1062 
1063 	pmap_pvo_obj = vm_object_allocate(OBJT_PHYS, 16);
1064 	pmap_pvo_count = 0;
1065 	pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1066 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
1067 	uma_zone_set_allocf(pmap_upvo_zone, pmap_pvo_allocf);
1068 	pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1069 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
1070 	uma_zone_set_allocf(pmap_mpvo_zone, pmap_pvo_allocf);
1071 	pmap_initialized = TRUE;
1072 }
1073 
1074 void
1075 pmap_init2(void)
1076 {
1077 
1078 	CTR0(KTR_PMAP, "pmap_init2");
1079 }
1080 
1081 boolean_t
1082 pmap_is_modified(vm_page_t m)
1083 {
1084 
1085 	if ((m->flags & (PG_FICTITIOUS |PG_UNMANAGED)) != 0)
1086 		return (FALSE);
1087 
1088 	return (pmap_query_bit(m, PTE_CHG));
1089 }
1090 
1091 void
1092 pmap_clear_reference(vm_page_t m)
1093 {
1094 
1095 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1096 		return;
1097 	pmap_clear_bit(m, PTE_REF, NULL);
1098 }
1099 
1100 void
1101 pmap_clear_modify(vm_page_t m)
1102 {
1103 
1104 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1105 		return;
1106 	pmap_clear_bit(m, PTE_CHG, NULL);
1107 }
1108 
1109 /*
1110  *	pmap_ts_referenced:
1111  *
1112  *	Return a count of reference bits for a page, clearing those bits.
1113  *	It is not necessary for every reference bit to be cleared, but it
1114  *	is necessary that 0 only be returned when there are truly no
1115  *	reference bits set.
1116  *
1117  *	XXX: The exact number of bits to check and clear is a matter that
1118  *	should be tested and standardized at some point in the future for
1119  *	optimal aging of shared pages.
1120  */
1121 int
1122 pmap_ts_referenced(vm_page_t m)
1123 {
1124 	int count;
1125 
1126 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1127 		return (0);
1128 
1129 	count = pmap_clear_bit(m, PTE_REF, NULL);
1130 
1131 	return (count);
1132 }
1133 
1134 /*
1135  * Map a wired page into kernel virtual address space.
1136  */
1137 void
1138 pmap_kenter(vm_offset_t va, vm_offset_t pa)
1139 {
1140 	u_int		pte_lo;
1141 	int		error;
1142 	int		i;
1143 
1144 #if 0
1145 	if (va < VM_MIN_KERNEL_ADDRESS)
1146 		panic("pmap_kenter: attempt to enter non-kernel address %#x",
1147 		    va);
1148 #endif
1149 
1150 	pte_lo = PTE_I | PTE_G;
1151 	for (i = 0; i < pregions_sz; i++) {
1152 		if ((pa >= pregions[i].mr_start) &&
1153 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
1154 			pte_lo &= ~(PTE_I | PTE_G);
1155 			break;
1156 		}
1157 	}
1158 
1159 	error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
1160 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1161 
1162 	if (error != 0 && error != ENOENT)
1163 		panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
1164 		    pa, error);
1165 
1166 	/*
1167 	 * Flush the real memory from the instruction cache.
1168 	 */
1169 	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1170 		pmap_syncicache(pa, PAGE_SIZE);
1171 	}
1172 }
1173 
1174 /*
1175  * Extract the physical page address associated with the given kernel virtual
1176  * address.
1177  */
1178 vm_offset_t
1179 pmap_kextract(vm_offset_t va)
1180 {
1181 	struct		pvo_entry *pvo;
1182 
1183 	pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1184 	if (pvo == NULL) {
1185 		return (0);
1186 	}
1187 
1188 	return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1189 }
1190 
1191 /*
1192  * Remove a wired page from kernel virtual address space.
1193  */
1194 void
1195 pmap_kremove(vm_offset_t va)
1196 {
1197 
1198 	pmap_remove(kernel_pmap, va, va + PAGE_SIZE);
1199 }
1200 
1201 /*
1202  * Map a range of physical addresses into kernel virtual address space.
1203  *
1204  * The value passed in *virt is a suggested virtual address for the mapping.
1205  * Architectures which can support a direct-mapped physical to virtual region
1206  * can return the appropriate address within that region, leaving '*virt'
1207  * unchanged.  We cannot and therefore do not; *virt is updated with the
1208  * first usable address after the mapped region.
1209  */
1210 vm_offset_t
1211 pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
1212 {
1213 	vm_offset_t	sva, va;
1214 
1215 	sva = *virt;
1216 	va = sva;
1217 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1218 		pmap_kenter(va, pa_start);
1219 	*virt = va;
1220 	return (sva);
1221 }
1222 
1223 int
1224 pmap_mincore(pmap_t pmap, vm_offset_t addr)
1225 {
1226 	TODO;
1227 	return (0);
1228 }
1229 
1230 void
1231 pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
1232 		    vm_pindex_t pindex, vm_size_t size, int limit)
1233 {
1234 
1235 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1236 	    ("pmap_remove_pages: non current pmap"));
1237 	/* XXX */
1238 }
1239 
1240 /*
1241  * Lower the permission for all mappings to a given page.
1242  */
1243 void
1244 pmap_page_protect(vm_page_t m, vm_prot_t prot)
1245 {
1246 	struct	pvo_head *pvo_head;
1247 	struct	pvo_entry *pvo, *next_pvo;
1248 	struct	pte *pt;
1249 
1250 	/*
1251 	 * Since the routine only downgrades protection, if the
1252 	 * maximal protection is desired, there isn't any change
1253 	 * to be made.
1254 	 */
1255 	if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
1256 	    (VM_PROT_READ|VM_PROT_WRITE))
1257 		return;
1258 
1259 	pvo_head = vm_page_to_pvoh(m);
1260 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1261 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1262 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1263 
1264 		/*
1265 		 * Downgrading to no mapping at all, we just remove the entry.
1266 		 */
1267 		if ((prot & VM_PROT_READ) == 0) {
1268 			pmap_pvo_remove(pvo, -1);
1269 			continue;
1270 		}
1271 
1272 		/*
1273 		 * If EXEC permission is being revoked, just clear the flag
1274 		 * in the PVO.
1275 		 */
1276 		if ((prot & VM_PROT_EXECUTE) == 0)
1277 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1278 
1279 		/*
1280 		 * If this entry is already RO, don't diddle with the page
1281 		 * table.
1282 		 */
1283 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
1284 			PMAP_PVO_CHECK(pvo);
1285 			continue;
1286 		}
1287 
1288 		/*
1289 		 * Grab the PTE before we diddle the bits so pvo_to_pte can
1290 		 * verify the pte contents are as expected.
1291 		 */
1292 		pt = pmap_pvo_to_pte(pvo, -1);
1293 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1294 		pvo->pvo_pte.pte_lo |= PTE_BR;
1295 		if (pt != NULL)
1296 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1297 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1298 	}
1299 }
1300 
1301 /*
1302  * Returns true if the pmap's pv is one of the first
1303  * 16 pvs linked to from this page.  This count may
1304  * be changed upwards or downwards in the future; it
1305  * is only necessary that true be returned for a small
1306  * subset of pmaps for proper page aging.
1307  */
1308 boolean_t
1309 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
1310 {
1311         int loops;
1312 	struct pvo_entry *pvo;
1313 
1314         if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
1315                 return FALSE;
1316 
1317 	loops = 0;
1318 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1319 		if (pvo->pvo_pmap == pmap)
1320 			return (TRUE);
1321 		if (++loops >= 16)
1322 			break;
1323 	}
1324 
1325 	return (FALSE);
1326 }
1327 
1328 static u_int	pmap_vsidcontext;
1329 
1330 void
1331 pmap_pinit(pmap_t pmap)
1332 {
1333 	int	i, mask;
1334 	u_int	entropy;
1335 
1336 	entropy = 0;
1337 	__asm __volatile("mftb %0" : "=r"(entropy));
1338 
1339 	/*
1340 	 * Allocate some segment registers for this pmap.
1341 	 */
1342 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1343 		u_int	hash, n;
1344 
1345 		/*
1346 		 * Create a new value by mutiplying by a prime and adding in
1347 		 * entropy from the timebase register.  This is to make the
1348 		 * VSID more random so that the PT hash function collides
1349 		 * less often.  (Note that the prime casues gcc to do shifts
1350 		 * instead of a multiply.)
1351 		 */
1352 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1353 		hash = pmap_vsidcontext & (NPMAPS - 1);
1354 		if (hash == 0)		/* 0 is special, avoid it */
1355 			continue;
1356 		n = hash >> 5;
1357 		mask = 1 << (hash & (VSID_NBPW - 1));
1358 		hash = (pmap_vsidcontext & 0xfffff);
1359 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1360 			/* anything free in this bucket? */
1361 			if (pmap_vsid_bitmap[n] == 0xffffffff) {
1362 				entropy = (pmap_vsidcontext >> 20);
1363 				continue;
1364 			}
1365 			i = ffs(~pmap_vsid_bitmap[i]) - 1;
1366 			mask = 1 << i;
1367 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1368 			hash |= i;
1369 		}
1370 		pmap_vsid_bitmap[n] |= mask;
1371 		for (i = 0; i < 16; i++)
1372 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1373 		return;
1374 	}
1375 
1376 	panic("pmap_pinit: out of segments");
1377 }
1378 
1379 /*
1380  * Initialize the pmap associated with process 0.
1381  */
1382 void
1383 pmap_pinit0(pmap_t pm)
1384 {
1385 
1386 	pmap_pinit(pm);
1387 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1388 }
1389 
1390 void
1391 pmap_pinit2(pmap_t pmap)
1392 {
1393 	/* XXX: Remove this stub when no longer called */
1394 }
1395 
1396 void
1397 pmap_prefault(pmap_t pm, vm_offset_t va, vm_map_entry_t entry)
1398 {
1399 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1400 	    ("pmap_prefault: non current pmap"));
1401 	/* XXX */
1402 }
1403 
1404 /*
1405  * Set the physical protection on the specified range of this map as requested.
1406  */
1407 void
1408 pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1409 {
1410 	struct	pvo_entry *pvo;
1411 	struct	pte *pt;
1412 	int	pteidx;
1413 
1414 	CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1415 	    eva, prot);
1416 
1417 
1418 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1419 	    ("pmap_protect: non current pmap"));
1420 
1421 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1422 		pmap_remove(pm, sva, eva);
1423 		return;
1424 	}
1425 
1426 	for (; sva < eva; sva += PAGE_SIZE) {
1427 		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1428 		if (pvo == NULL)
1429 			continue;
1430 
1431 		if ((prot & VM_PROT_EXECUTE) == 0)
1432 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1433 
1434 		/*
1435 		 * Grab the PTE pointer before we diddle with the cached PTE
1436 		 * copy.
1437 		 */
1438 		pt = pmap_pvo_to_pte(pvo, pteidx);
1439 		/*
1440 		 * Change the protection of the page.
1441 		 */
1442 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1443 		pvo->pvo_pte.pte_lo |= PTE_BR;
1444 
1445 		/*
1446 		 * If the PVO is in the page table, update that pte as well.
1447 		 */
1448 		if (pt != NULL)
1449 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1450 	}
1451 }
1452 
1453 /*
1454  * Map a list of wired pages into kernel virtual address space.  This is
1455  * intended for temporary mappings which do not need page modification or
1456  * references recorded.  Existing mappings in the region are overwritten.
1457  */
1458 void
1459 pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
1460 {
1461 	vm_offset_t va;
1462 
1463 	va = sva;
1464 	while (count-- > 0) {
1465 		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
1466 		va += PAGE_SIZE;
1467 		m++;
1468 	}
1469 }
1470 
1471 /*
1472  * Remove page mappings from kernel virtual address space.  Intended for
1473  * temporary mappings entered by pmap_qenter.
1474  */
1475 void
1476 pmap_qremove(vm_offset_t sva, int count)
1477 {
1478 	vm_offset_t va;
1479 
1480 	va = sva;
1481 	while (count-- > 0) {
1482 		pmap_kremove(va);
1483 		va += PAGE_SIZE;
1484 	}
1485 }
1486 
1487 void
1488 pmap_release(pmap_t pmap)
1489 {
1490         int idx, mask;
1491 
1492 	/*
1493 	 * Free segment register's VSID
1494 	 */
1495         if (pmap->pm_sr[0] == 0)
1496                 panic("pmap_release");
1497 
1498         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1499         mask = 1 << (idx % VSID_NBPW);
1500         idx /= VSID_NBPW;
1501         pmap_vsid_bitmap[idx] &= ~mask;
1502 }
1503 
1504 /*
1505  * Remove the given range of addresses from the specified map.
1506  */
1507 void
1508 pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1509 {
1510 	struct	pvo_entry *pvo;
1511 	int	pteidx;
1512 
1513 	for (; sva < eva; sva += PAGE_SIZE) {
1514 		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1515 		if (pvo != NULL) {
1516 			pmap_pvo_remove(pvo, pteidx);
1517 		}
1518 	}
1519 }
1520 
1521 /*
1522  * Remove physical page from all pmaps in which it resides. pmap_pvo_remove()
1523  * will reflect changes in pte's back to the vm_page.
1524  */
1525 void
1526 pmap_remove_all(vm_page_t m)
1527 {
1528 	struct  pvo_head *pvo_head;
1529 	struct	pvo_entry *pvo, *next_pvo;
1530 
1531 	KASSERT((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0,
1532 	    ("pv_remove_all: illegal for unmanaged page %#x",
1533 	    VM_PAGE_TO_PHYS(m)));
1534 
1535 	pvo_head = vm_page_to_pvoh(m);
1536 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1537 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1538 
1539 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1540 		pmap_pvo_remove(pvo, -1);
1541 	}
1542 	vm_page_flag_clear(m, PG_WRITEABLE);
1543 }
1544 
1545 /*
1546  * Remove all pages from specified address space, this aids process exit
1547  * speeds.  This is much faster than pmap_remove in the case of running down
1548  * an entire address space.  Only works for the current pmap.
1549  */
1550 void
1551 pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1552 {
1553 
1554 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1555 	    ("pmap_remove_pages: non current pmap"));
1556 	pmap_remove(pm, sva, eva);
1557 }
1558 
1559 #ifndef KSTACK_MAX_PAGES
1560 #define KSTACK_MAX_PAGES 32
1561 #endif
1562 
1563 /*
1564  * Create the kernel stack and pcb for a new thread.
1565  * This routine directly affects the fork perf for a process and
1566  * create performance for a thread.
1567  */
1568 void
1569 pmap_new_thread(struct thread *td, int pages)
1570 {
1571 	vm_page_t	ma[KSTACK_MAX_PAGES];
1572 	vm_object_t	ksobj;
1573 	vm_offset_t	ks;
1574 	vm_page_t	m;
1575 	u_int		i;
1576 
1577 	/* Bounds check */
1578 	if (pages <= 1)
1579 		pages = KSTACK_PAGES;
1580 	else if (pages > KSTACK_MAX_PAGES)
1581 		pages = KSTACK_MAX_PAGES;
1582 
1583 	/*
1584 	 * Allocate object for the kstack.
1585 	 */
1586 	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
1587 	td->td_kstack_obj = ksobj;
1588 
1589 	/*
1590 	 * Get a kernel virtual address for the kstack for this thread.
1591 	 */
1592 	ks = kmem_alloc_nofault(kernel_map,
1593 	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
1594 	if (ks == 0)
1595 		panic("pmap_new_thread: kstack allocation failed");
1596 	TLBIE(ks);
1597 	ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
1598 	td->td_kstack = ks;
1599 
1600 	/*
1601 	 * Knowing the number of pages allocated is useful when you
1602 	 * want to deallocate them.
1603 	 */
1604 	td->td_kstack_pages = pages;
1605 
1606 	for (i = 0; i < pages; i++) {
1607 		/*
1608 		 * Get a kernel stack page.
1609 		 */
1610 		m = vm_page_grab(ksobj, i,
1611 		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
1612 		ma[i] = m;
1613 
1614                 vm_page_lock_queues();
1615 		vm_page_wakeup(m);
1616 		vm_page_flag_clear(m, PG_ZERO);
1617 		m->valid = VM_PAGE_BITS_ALL;
1618 		vm_page_unlock_queues();
1619 	}
1620 
1621 	/*
1622 	 * Enter the page into the kernel address space
1623 	 */
1624 	pmap_qenter(ks, ma, pages);
1625 }
1626 
1627 void
1628 pmap_dispose_thread(struct thread *td)
1629 {
1630 	vm_object_t ksobj;
1631 	vm_offset_t ks;
1632 	vm_page_t m;
1633 	int i;
1634 	int pages;
1635 
1636 	pages = td->td_kstack_pages;
1637 	ksobj = td->td_kstack_obj;
1638 	ks = td->td_kstack;
1639 	for (i = 0; i < pages ; i++) {
1640 		m = vm_page_lookup(ksobj, i);
1641 		if (m == NULL)
1642 			panic("pmap_dispose_thread: kstack already missing?");
1643 		vm_page_lock_queues();
1644 		vm_page_busy(m);
1645 		vm_page_unwire(m, 0);
1646 		vm_page_free(m);
1647 		vm_page_unlock_queues();
1648 	}
1649 	pmap_qremove(ks, pages);
1650 	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
1651 	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
1652 	vm_object_deallocate(ksobj);
1653 }
1654 
1655 void
1656 pmap_new_altkstack(struct thread *td, int pages)
1657 {
1658 	/* shuffle the original stack */
1659 	td->td_altkstack_obj = td->td_kstack_obj;
1660 	td->td_altkstack = td->td_kstack;
1661 	td->td_altkstack_pages = td->td_kstack_pages;
1662 
1663 	pmap_new_thread(td, pages);
1664 }
1665 
1666 void
1667 pmap_dispose_altkstack(struct thread *td)
1668 {
1669 	pmap_dispose_thread(td);
1670 
1671 	/* restore the original kstack */
1672 	td->td_kstack = td->td_altkstack;
1673 	td->td_kstack_obj = td->td_altkstack_obj;
1674 	td->td_kstack_pages = td->td_altkstack_pages;
1675 	td->td_altkstack = 0;
1676 	td->td_altkstack_obj = NULL;
1677 	td->td_altkstack_pages = 0;
1678 }
1679 
1680 void
1681 pmap_swapin_thread(struct thread *td)
1682 {
1683 	vm_page_t ma[KSTACK_MAX_PAGES];
1684 	vm_object_t ksobj;
1685 	vm_offset_t ks;
1686 	vm_page_t m;
1687 	int rv;
1688 	int i;
1689 	int pages;
1690 
1691 	pages = td->td_kstack_pages;
1692 	ksobj = td->td_kstack_obj;
1693 	ks = td->td_kstack;
1694 	for (i = 0; i < pages; i++) {
1695 		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1696 		if (m->valid != VM_PAGE_BITS_ALL) {
1697 			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1698 			if (rv != VM_PAGER_OK)
1699 				panic("pmap_swapin_thread: cannot get kstack");
1700 			m = vm_page_lookup(ksobj, i);
1701 			m->valid = VM_PAGE_BITS_ALL;
1702 		}
1703 		ma[i] = m;
1704 		vm_page_lock_queues();
1705 		vm_page_wire(m);
1706 		vm_page_wakeup(m);
1707 		vm_page_unlock_queues();
1708 	}
1709 	pmap_qenter(ks, ma, pages);
1710 }
1711 
1712 
1713 void
1714 pmap_swapout_thread(struct thread *td)
1715 {
1716 	vm_object_t ksobj;
1717 	vm_offset_t ks;
1718 	vm_page_t m;
1719 	int i;
1720 	int pages;
1721 
1722 	pages = td->td_kstack_pages;
1723 	ksobj = td->td_kstack_obj;
1724 	ks = (vm_offset_t)td->td_kstack;
1725 	for (i = 0; i < pages; i++) {
1726 		m = vm_page_lookup(ksobj, i);
1727 		if (m == NULL)
1728 			panic("pmap_swapout_thread: kstack already missing?");
1729 		vm_page_lock_queues();
1730 		vm_page_dirty(m);
1731 		vm_page_unwire(m, 0);
1732 		vm_page_unlock_queues();
1733 	}
1734 	pmap_qremove(ks, pages);
1735 }
1736 
1737 /*
1738  * Allocate a physical page of memory directly from the phys_avail map.
1739  * Can only be called from pmap_bootstrap before avail start and end are
1740  * calculated.
1741  */
1742 static vm_offset_t
1743 pmap_bootstrap_alloc(vm_size_t size, u_int align)
1744 {
1745 	vm_offset_t	s, e;
1746 	int		i, j;
1747 
1748 	size = round_page(size);
1749 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1750 		if (align != 0)
1751 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1752 		else
1753 			s = phys_avail[i];
1754 		e = s + size;
1755 
1756 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1757 			continue;
1758 
1759 		if (s == phys_avail[i]) {
1760 			phys_avail[i] += size;
1761 		} else if (e == phys_avail[i + 1]) {
1762 			phys_avail[i + 1] -= size;
1763 		} else {
1764 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1765 				phys_avail[j] = phys_avail[j - 2];
1766 				phys_avail[j + 1] = phys_avail[j - 1];
1767 			}
1768 
1769 			phys_avail[i + 3] = phys_avail[i + 1];
1770 			phys_avail[i + 1] = s;
1771 			phys_avail[i + 2] = e;
1772 			phys_avail_count++;
1773 		}
1774 
1775 		return (s);
1776 	}
1777 	panic("pmap_bootstrap_alloc: could not allocate memory");
1778 }
1779 
1780 /*
1781  * Return an unmapped pvo for a kernel virtual address.
1782  * Used by pmap functions that operate on physical pages.
1783  */
1784 static struct pvo_entry *
1785 pmap_rkva_alloc(void)
1786 {
1787 	struct		pvo_entry *pvo;
1788 	struct		pte *pt;
1789 	vm_offset_t	kva;
1790 	int		pteidx;
1791 
1792 	if (pmap_rkva_count == 0)
1793 		panic("pmap_rkva_alloc: no more reserved KVAs");
1794 
1795 	kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
1796 	pmap_kenter(kva, 0);
1797 
1798 	pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
1799 
1800 	if (pvo == NULL)
1801 		panic("pmap_kva_alloc: pmap_pvo_find_va failed");
1802 
1803 	pt = pmap_pvo_to_pte(pvo, pteidx);
1804 
1805 	if (pt == NULL)
1806 		panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
1807 
1808 	pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1809 	PVO_PTEGIDX_CLR(pvo);
1810 
1811 	pmap_pte_overflow++;
1812 
1813 	return (pvo);
1814 }
1815 
1816 static void
1817 pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1818     int *depth_p)
1819 {
1820 	struct	pte *pt;
1821 
1822 	/*
1823 	 * If this pvo already has a valid pte, we need to save it so it can
1824 	 * be restored later.  We then just reload the new PTE over the old
1825 	 * slot.
1826 	 */
1827 	if (saved_pt != NULL) {
1828 		pt = pmap_pvo_to_pte(pvo, -1);
1829 
1830 		if (pt != NULL) {
1831 			pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1832 			PVO_PTEGIDX_CLR(pvo);
1833 			pmap_pte_overflow++;
1834 		}
1835 
1836 		*saved_pt = pvo->pvo_pte;
1837 
1838 		pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1839 	}
1840 
1841 	pvo->pvo_pte.pte_lo |= pa;
1842 
1843 	if (!pmap_pte_spill(pvo->pvo_vaddr))
1844 		panic("pmap_pa_map: could not spill pvo %p", pvo);
1845 
1846 	if (depth_p != NULL)
1847 		(*depth_p)++;
1848 }
1849 
1850 static void
1851 pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1852 {
1853 	struct	pte *pt;
1854 
1855 	pt = pmap_pvo_to_pte(pvo, -1);
1856 
1857 	if (pt != NULL) {
1858 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1859 		PVO_PTEGIDX_CLR(pvo);
1860 		pmap_pte_overflow++;
1861 	}
1862 
1863 	pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1864 
1865 	/*
1866 	 * If there is a saved PTE and it's valid, restore it and return.
1867 	 */
1868 	if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1869 		if (depth_p != NULL && --(*depth_p) == 0)
1870 			panic("pmap_pa_unmap: restoring but depth == 0");
1871 
1872 		pvo->pvo_pte = *saved_pt;
1873 
1874 		if (!pmap_pte_spill(pvo->pvo_vaddr))
1875 			panic("pmap_pa_unmap: could not spill pvo %p", pvo);
1876 	}
1877 }
1878 
1879 static void
1880 pmap_syncicache(vm_offset_t pa, vm_size_t len)
1881 {
1882 	__syncicache((void *)pa, len);
1883 }
1884 
1885 static void
1886 tlbia(void)
1887 {
1888 	caddr_t	i;
1889 
1890 	SYNC();
1891 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1892 		TLBIE(i);
1893 		EIEIO();
1894 	}
1895 	TLBSYNC();
1896 	SYNC();
1897 }
1898 
1899 static int
1900 pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1901     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1902 {
1903 	struct	pvo_entry *pvo;
1904 	u_int	sr;
1905 	int	first;
1906 	u_int	ptegidx;
1907 	int	i;
1908 	int     bootstrap;
1909 
1910 	pmap_pvo_enter_calls++;
1911 	first = 0;
1912 
1913 	bootstrap = 0;
1914 
1915 	/*
1916 	 * Compute the PTE Group index.
1917 	 */
1918 	va &= ~ADDR_POFF;
1919 	sr = va_to_sr(pm->pm_sr, va);
1920 	ptegidx = va_to_pteg(sr, va);
1921 
1922 	/*
1923 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1924 	 * there is a mapping.
1925 	 */
1926 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1927 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1928 			if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
1929 			    (pvo->pvo_pte.pte_lo & PTE_PP) ==
1930 			    (pte_lo & PTE_PP)) {
1931 				return (0);
1932 			}
1933 			pmap_pvo_remove(pvo, -1);
1934 			break;
1935 		}
1936 	}
1937 
1938 	/*
1939 	 * If we aren't overwriting a mapping, try to allocate.
1940 	 */
1941 	if (pmap_initialized) {
1942 		pvo = uma_zalloc(zone, M_NOWAIT);
1943 	} else {
1944 		if (pmap_bpvo_pool_index >= BPVO_POOL_SIZE) {
1945 			panic("pmap_enter: bpvo pool exhausted, %d, %d, %d",
1946 			      pmap_bpvo_pool_index, BPVO_POOL_SIZE,
1947 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1948 		}
1949 		pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
1950 		pmap_bpvo_pool_index++;
1951 		bootstrap = 1;
1952 	}
1953 
1954 	if (pvo == NULL) {
1955 		return (ENOMEM);
1956 	}
1957 
1958 	pmap_pvo_entries++;
1959 	pvo->pvo_vaddr = va;
1960 	pvo->pvo_pmap = pm;
1961 	LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1962 	pvo->pvo_vaddr &= ~ADDR_POFF;
1963 	if (flags & VM_PROT_EXECUTE)
1964 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1965 	if (flags & PVO_WIRED)
1966 		pvo->pvo_vaddr |= PVO_WIRED;
1967 	if (pvo_head != &pmap_pvo_kunmanaged)
1968 		pvo->pvo_vaddr |= PVO_MANAGED;
1969 	if (bootstrap)
1970 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1971 	pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1972 
1973 	/*
1974 	 * Remember if the list was empty and therefore will be the first
1975 	 * item.
1976 	 */
1977 	if (LIST_FIRST(pvo_head) == NULL)
1978 		first = 1;
1979 
1980 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1981 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1982 		pvo->pvo_pmap->pm_stats.wired_count++;
1983 	pvo->pvo_pmap->pm_stats.resident_count++;
1984 
1985 	/*
1986 	 * We hope this succeeds but it isn't required.
1987 	 */
1988 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1989 	if (i >= 0) {
1990 		PVO_PTEGIDX_SET(pvo, i);
1991 	} else {
1992 		panic("pmap_pvo_enter: overflow");
1993 		pmap_pte_overflow++;
1994 	}
1995 
1996 	return (first ? ENOENT : 0);
1997 }
1998 
1999 static void
2000 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
2001 {
2002 	struct	pte *pt;
2003 
2004 	/*
2005 	 * If there is an active pte entry, we need to deactivate it (and
2006 	 * save the ref & cfg bits).
2007 	 */
2008 	pt = pmap_pvo_to_pte(pvo, pteidx);
2009 	if (pt != NULL) {
2010 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2011 		PVO_PTEGIDX_CLR(pvo);
2012 	} else {
2013 		pmap_pte_overflow--;
2014 	}
2015 
2016 	/*
2017 	 * Update our statistics.
2018 	 */
2019 	pvo->pvo_pmap->pm_stats.resident_count--;
2020 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
2021 		pvo->pvo_pmap->pm_stats.wired_count--;
2022 
2023 	/*
2024 	 * Save the REF/CHG bits into their cache if the page is managed.
2025 	 */
2026 	if (pvo->pvo_vaddr & PVO_MANAGED) {
2027 		struct	vm_page *pg;
2028 
2029 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
2030 		if (pg != NULL) {
2031 			pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
2032 			    (PTE_REF | PTE_CHG));
2033 		}
2034 	}
2035 
2036 	/*
2037 	 * Remove this PVO from the PV list.
2038 	 */
2039 	LIST_REMOVE(pvo, pvo_vlink);
2040 
2041 	/*
2042 	 * Remove this from the overflow list and return it to the pool
2043 	 * if we aren't going to reuse it.
2044 	 */
2045 	LIST_REMOVE(pvo, pvo_olink);
2046 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2047 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
2048 		    pmap_upvo_zone, pvo);
2049 	pmap_pvo_entries--;
2050 	pmap_pvo_remove_calls++;
2051 }
2052 
2053 static __inline int
2054 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2055 {
2056 	int	pteidx;
2057 
2058 	/*
2059 	 * We can find the actual pte entry without searching by grabbing
2060 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2061 	 * noticing the HID bit.
2062 	 */
2063 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2064 	if (pvo->pvo_pte.pte_hi & PTE_HID)
2065 		pteidx ^= pmap_pteg_mask * 8;
2066 
2067 	return (pteidx);
2068 }
2069 
2070 static struct pvo_entry *
2071 pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2072 {
2073 	struct	pvo_entry *pvo;
2074 	int	ptegidx;
2075 	u_int	sr;
2076 
2077 	va &= ~ADDR_POFF;
2078 	sr = va_to_sr(pm->pm_sr, va);
2079 	ptegidx = va_to_pteg(sr, va);
2080 
2081 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2082 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2083 			if (pteidx_p)
2084 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
2085 			return (pvo);
2086 		}
2087 	}
2088 
2089 	return (NULL);
2090 }
2091 
2092 static struct pte *
2093 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2094 {
2095 	struct	pte *pt;
2096 
2097 	/*
2098 	 * If we haven't been supplied the ptegidx, calculate it.
2099 	 */
2100 	if (pteidx == -1) {
2101 		int	ptegidx;
2102 		u_int	sr;
2103 
2104 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2105 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2106 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
2107 	}
2108 
2109 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
2110 
2111 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2112 		panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
2113 		    "valid pte index", pvo);
2114 	}
2115 
2116 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2117 		panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
2118 		    "pvo but no valid pte", pvo);
2119 	}
2120 
2121 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2122 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
2123 			panic("pmap_pvo_to_pte: pvo %p has valid pte in "
2124 			    "pmap_pteg_table %p but invalid in pvo", pvo, pt);
2125 		}
2126 
2127 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2128 		    != 0) {
2129 			panic("pmap_pvo_to_pte: pvo %p pte does not match "
2130 			    "pte %p in pmap_pteg_table", pvo, pt);
2131 		}
2132 
2133 		return (pt);
2134 	}
2135 
2136 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
2137 		panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
2138 		    "pmap_pteg_table but valid in pvo", pvo, pt);
2139 	}
2140 
2141 	return (NULL);
2142 }
2143 
2144 static void *
2145 pmap_pvo_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
2146 {
2147 	vm_page_t	m;
2148 
2149 	if (bytes != PAGE_SIZE)
2150 		panic("pmap_pvo_allocf: benno was shortsighted.  hit him.");
2151 
2152 	*flags = UMA_SLAB_PRIV;
2153 	m = vm_page_alloc(pmap_pvo_obj, pmap_pvo_count, VM_ALLOC_SYSTEM);
2154 	if (m == NULL)
2155 		return (NULL);
2156 	pmap_pvo_count++;
2157 	return ((void *)VM_PAGE_TO_PHYS(m));
2158 }
2159 
2160 /*
2161  * XXX: THIS STUFF SHOULD BE IN pte.c?
2162  */
2163 int
2164 pmap_pte_spill(vm_offset_t addr)
2165 {
2166 	struct	pvo_entry *source_pvo, *victim_pvo;
2167 	struct	pvo_entry *pvo;
2168 	int	ptegidx, i, j;
2169 	u_int	sr;
2170 	struct	pteg *pteg;
2171 	struct	pte *pt;
2172 
2173 	pmap_pte_spills++;
2174 
2175 	sr = mfsrin(addr);
2176 	ptegidx = va_to_pteg(sr, addr);
2177 
2178 	/*
2179 	 * Have to substitute some entry.  Use the primary hash for this.
2180 	 * Use low bits of timebase as random generator.
2181 	 */
2182 	pteg = &pmap_pteg_table[ptegidx];
2183 	__asm __volatile("mftb %0" : "=r"(i));
2184 	i &= 7;
2185 	pt = &pteg->pt[i];
2186 
2187 	source_pvo = NULL;
2188 	victim_pvo = NULL;
2189 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2190 		/*
2191 		 * We need to find a pvo entry for this address.
2192 		 */
2193 		PMAP_PVO_CHECK(pvo);
2194 		if (source_pvo == NULL &&
2195 		    pmap_pte_match(&pvo->pvo_pte, sr, addr,
2196 		    pvo->pvo_pte.pte_hi & PTE_HID)) {
2197 			/*
2198 			 * Now found an entry to be spilled into the pteg.
2199 			 * The PTE is now valid, so we know it's active.
2200 			 */
2201 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
2202 
2203 			if (j >= 0) {
2204 				PVO_PTEGIDX_SET(pvo, j);
2205 				pmap_pte_overflow--;
2206 				PMAP_PVO_CHECK(pvo);
2207 				return (1);
2208 			}
2209 
2210 			source_pvo = pvo;
2211 
2212 			if (victim_pvo != NULL)
2213 				break;
2214 		}
2215 
2216 		/*
2217 		 * We also need the pvo entry of the victim we are replacing
2218 		 * so save the R & C bits of the PTE.
2219 		 */
2220 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2221 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
2222 			victim_pvo = pvo;
2223 			if (source_pvo != NULL)
2224 				break;
2225 		}
2226 	}
2227 
2228 	if (source_pvo == NULL)
2229 		return (0);
2230 
2231 	if (victim_pvo == NULL) {
2232 		if ((pt->pte_hi & PTE_HID) == 0)
2233 			panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
2234 			    "entry", pt);
2235 
2236 		/*
2237 		 * If this is a secondary PTE, we need to search it's primary
2238 		 * pvo bucket for the matching PVO.
2239 		 */
2240 		LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
2241 		    pvo_olink) {
2242 			PMAP_PVO_CHECK(pvo);
2243 			/*
2244 			 * We also need the pvo entry of the victim we are
2245 			 * replacing so save the R & C bits of the PTE.
2246 			 */
2247 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
2248 				victim_pvo = pvo;
2249 				break;
2250 			}
2251 		}
2252 
2253 		if (victim_pvo == NULL)
2254 			panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
2255 			    "entry", pt);
2256 	}
2257 
2258 	/*
2259 	 * We are invalidating the TLB entry for the EA we are replacing even
2260 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2261 	 * contained in the TLB entry.
2262 	 */
2263 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
2264 
2265 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
2266 	pmap_pte_set(pt, &source_pvo->pvo_pte);
2267 
2268 	PVO_PTEGIDX_CLR(victim_pvo);
2269 	PVO_PTEGIDX_SET(source_pvo, i);
2270 	pmap_pte_replacements++;
2271 
2272 	PMAP_PVO_CHECK(victim_pvo);
2273 	PMAP_PVO_CHECK(source_pvo);
2274 
2275 	return (1);
2276 }
2277 
2278 static int
2279 pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2280 {
2281 	struct	pte *pt;
2282 	int	i;
2283 
2284 	/*
2285 	 * First try primary hash.
2286 	 */
2287 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2288 		if ((pt->pte_hi & PTE_VALID) == 0) {
2289 			pvo_pt->pte_hi &= ~PTE_HID;
2290 			pmap_pte_set(pt, pvo_pt);
2291 			return (i);
2292 		}
2293 	}
2294 
2295 	/*
2296 	 * Now try secondary hash.
2297 	 */
2298 	ptegidx ^= pmap_pteg_mask;
2299 	ptegidx++;
2300 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2301 		if ((pt->pte_hi & PTE_VALID) == 0) {
2302 			pvo_pt->pte_hi |= PTE_HID;
2303 			pmap_pte_set(pt, pvo_pt);
2304 			return (i);
2305 		}
2306 	}
2307 
2308 	panic("pmap_pte_insert: overflow");
2309 	return (-1);
2310 }
2311 
2312 static boolean_t
2313 pmap_query_bit(vm_page_t m, int ptebit)
2314 {
2315 	struct	pvo_entry *pvo;
2316 	struct	pte *pt;
2317 
2318 	if (pmap_attr_fetch(m) & ptebit)
2319 		return (TRUE);
2320 
2321 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2322 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2323 
2324 		/*
2325 		 * See if we saved the bit off.  If so, cache it and return
2326 		 * success.
2327 		 */
2328 		if (pvo->pvo_pte.pte_lo & ptebit) {
2329 			pmap_attr_save(m, ptebit);
2330 			PMAP_PVO_CHECK(pvo);	/* sanity check */
2331 			return (TRUE);
2332 		}
2333 	}
2334 
2335 	/*
2336 	 * No luck, now go through the hard part of looking at the PTEs
2337 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2338 	 * the PTEs.
2339 	 */
2340 	SYNC();
2341 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2342 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2343 
2344 		/*
2345 		 * See if this pvo has a valid PTE.  if so, fetch the
2346 		 * REF/CHG bits from the valid PTE.  If the appropriate
2347 		 * ptebit is set, cache it and return success.
2348 		 */
2349 		pt = pmap_pvo_to_pte(pvo, -1);
2350 		if (pt != NULL) {
2351 			pmap_pte_synch(pt, &pvo->pvo_pte);
2352 			if (pvo->pvo_pte.pte_lo & ptebit) {
2353 				pmap_attr_save(m, ptebit);
2354 				PMAP_PVO_CHECK(pvo);	/* sanity check */
2355 				return (TRUE);
2356 			}
2357 		}
2358 	}
2359 
2360 	return (TRUE);
2361 }
2362 
2363 static u_int
2364 pmap_clear_bit(vm_page_t m, int ptebit, int *origbit)
2365 {
2366 	u_int	count;
2367 	struct	pvo_entry *pvo;
2368 	struct	pte *pt;
2369 	int	rv;
2370 
2371 	/*
2372 	 * Clear the cached value.
2373 	 */
2374 	rv = pmap_attr_fetch(m);
2375 	pmap_attr_clear(m, ptebit);
2376 
2377 	/*
2378 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2379 	 * we can reset the right ones).  note that since the pvo entries and
2380 	 * list heads are accessed via BAT0 and are never placed in the page
2381 	 * table, we don't have to worry about further accesses setting the
2382 	 * REF/CHG bits.
2383 	 */
2384 	SYNC();
2385 
2386 	/*
2387 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2388 	 * valid pte clear the ptebit from the valid pte.
2389 	 */
2390 	count = 0;
2391 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2392 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2393 		pt = pmap_pvo_to_pte(pvo, -1);
2394 		if (pt != NULL) {
2395 			pmap_pte_synch(pt, &pvo->pvo_pte);
2396 			if (pvo->pvo_pte.pte_lo & ptebit) {
2397 				count++;
2398 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2399 			}
2400 		}
2401 		rv |= pvo->pvo_pte.pte_lo;
2402 		pvo->pvo_pte.pte_lo &= ~ptebit;
2403 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2404 	}
2405 
2406 	if (origbit != NULL) {
2407 		*origbit = rv;
2408 	}
2409 
2410 	return (count);
2411 }
2412 
2413 /*
2414  * Return true if the physical range is encompassed by the battable[idx]
2415  */
2416 static int
2417 pmap_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2418 {
2419 	u_int prot;
2420 	u_int32_t start;
2421 	u_int32_t end;
2422 	u_int32_t bat_ble;
2423 
2424 	/*
2425 	 * Return immediately if not a valid mapping
2426 	 */
2427 	if (!battable[idx].batu & BAT_Vs)
2428 		return (EINVAL);
2429 
2430 	/*
2431 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2432 	 * so it can function as an i/o page
2433 	 */
2434 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2435 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2436 		return (EPERM);
2437 
2438 	/*
2439 	 * The address should be within the BAT range. Assume that the
2440 	 * start address in the BAT has the correct alignment (thus
2441 	 * not requiring masking)
2442 	 */
2443 	start = battable[idx].batl & BAT_PBS;
2444 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2445 	end = start | (bat_ble << 15) | 0x7fff;
2446 
2447 	if ((pa < start) || ((pa + size) > end))
2448 		return (ERANGE);
2449 
2450 	return (0);
2451 }
2452 
2453 
2454 /*
2455  * Map a set of physical memory pages into the kernel virtual
2456  * address space. Return a pointer to where it is mapped. This
2457  * routine is intended to be used for mapping device memory,
2458  * NOT real memory.
2459  */
2460 void *
2461 pmap_mapdev(vm_offset_t pa, vm_size_t size)
2462 {
2463 	vm_offset_t va, tmpva, ppa, offset;
2464 	int i;
2465 
2466 	ppa = trunc_page(pa);
2467 	offset = pa & PAGE_MASK;
2468 	size = roundup(offset + size, PAGE_SIZE);
2469 
2470 	GIANT_REQUIRED;
2471 
2472 	/*
2473 	 * If the physical address lies within a valid BAT table entry,
2474 	 * return the 1:1 mapping. This currently doesn't work
2475 	 * for regions that overlap 256M BAT segments.
2476 	 */
2477 	for (i = 0; i < 16; i++) {
2478 		if (pmap_bat_mapped(i, pa, size) == 0)
2479 			return ((void *) pa);
2480 	}
2481 
2482 	va = kmem_alloc_pageable(kernel_map, size);
2483 	if (!va)
2484 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2485 
2486 	for (tmpva = va; size > 0;) {
2487 		pmap_kenter(tmpva, ppa);
2488 		TLBIE(tmpva); /* XXX or should it be invalidate-all ? */
2489 		size -= PAGE_SIZE;
2490 		tmpva += PAGE_SIZE;
2491 		ppa += PAGE_SIZE;
2492 	}
2493 
2494 	return ((void *)(va + offset));
2495 }
2496 
2497 void
2498 pmap_unmapdev(vm_offset_t va, vm_size_t size)
2499 {
2500 	vm_offset_t base, offset;
2501 
2502 	/*
2503 	 * If this is outside kernel virtual space, then it's a
2504 	 * battable entry and doesn't require unmapping
2505 	 */
2506 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2507 		base = trunc_page(va);
2508 		offset = va & PAGE_MASK;
2509 		size = roundup(offset + size, PAGE_SIZE);
2510 		kmem_free(kernel_map, base, size);
2511 	}
2512 }
2513