xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision 730cecb05aaf016ac52ef7cfc691ccec3a0408cd)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*-
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*-
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #include <sys/cdefs.h>
94 __FBSDID("$FreeBSD$");
95 
96 /*
97  * Manages physical address maps.
98  *
99  * Since the information managed by this module is also stored by the
100  * logical address mapping module, this module may throw away valid virtual
101  * to physical mappings at almost any time.  However, invalidations of
102  * mappings must be done as requested.
103  *
104  * In order to cope with hardware architectures which make virtual to
105  * physical map invalidates expensive, this module may delay invalidate
106  * reduced protection operations until such time as they are actually
107  * necessary.  This module is given full information as to which processors
108  * are currently using which maps, and to when physical maps must be made
109  * correct.
110  */
111 
112 #include "opt_kstack_pages.h"
113 
114 #include <sys/param.h>
115 #include <sys/kernel.h>
116 #include <sys/queue.h>
117 #include <sys/cpuset.h>
118 #include <sys/ktr.h>
119 #include <sys/lock.h>
120 #include <sys/msgbuf.h>
121 #include <sys/mutex.h>
122 #include <sys/proc.h>
123 #include <sys/rwlock.h>
124 #include <sys/sched.h>
125 #include <sys/sysctl.h>
126 #include <sys/systm.h>
127 #include <sys/vmmeter.h>
128 
129 #include <dev/ofw/openfirm.h>
130 
131 #include <vm/vm.h>
132 #include <vm/vm_param.h>
133 #include <vm/vm_kern.h>
134 #include <vm/vm_page.h>
135 #include <vm/vm_map.h>
136 #include <vm/vm_object.h>
137 #include <vm/vm_extern.h>
138 #include <vm/vm_pageout.h>
139 #include <vm/uma.h>
140 
141 #include <machine/cpu.h>
142 #include <machine/platform.h>
143 #include <machine/bat.h>
144 #include <machine/frame.h>
145 #include <machine/md_var.h>
146 #include <machine/psl.h>
147 #include <machine/pte.h>
148 #include <machine/smp.h>
149 #include <machine/sr.h>
150 #include <machine/mmuvar.h>
151 #include <machine/trap_aim.h>
152 
153 #include "mmu_if.h"
154 
155 #define	MOEA_DEBUG
156 
157 #define TODO	panic("%s: not implemented", __func__);
158 
159 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
160 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
161 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
162 
163 struct ofw_map {
164 	vm_offset_t	om_va;
165 	vm_size_t	om_len;
166 	vm_offset_t	om_pa;
167 	u_int		om_mode;
168 };
169 
170 /*
171  * Map of physical memory regions.
172  */
173 static struct	mem_region *regions;
174 static struct	mem_region *pregions;
175 static u_int    phys_avail_count;
176 static int	regions_sz, pregions_sz;
177 static struct	ofw_map *translations;
178 
179 /*
180  * Lock for the pteg and pvo tables.
181  */
182 struct mtx	moea_table_mutex;
183 struct mtx	moea_vsid_mutex;
184 
185 /* tlbie instruction synchronization */
186 static struct mtx tlbie_mtx;
187 
188 /*
189  * PTEG data.
190  */
191 static struct	pteg *moea_pteg_table;
192 u_int		moea_pteg_count;
193 u_int		moea_pteg_mask;
194 
195 /*
196  * PVO data.
197  */
198 struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
199 struct	pvo_head moea_pvo_kunmanaged =
200     LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
201 
202 static struct rwlock_padalign pvh_global_lock;
203 
204 uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
205 uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
206 
207 #define	BPVO_POOL_SIZE	32768
208 static struct	pvo_entry *moea_bpvo_pool;
209 static int	moea_bpvo_pool_index = 0;
210 
211 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
212 static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
213 
214 static boolean_t moea_initialized = FALSE;
215 
216 /*
217  * Statistics.
218  */
219 u_int	moea_pte_valid = 0;
220 u_int	moea_pte_overflow = 0;
221 u_int	moea_pte_replacements = 0;
222 u_int	moea_pvo_entries = 0;
223 u_int	moea_pvo_enter_calls = 0;
224 u_int	moea_pvo_remove_calls = 0;
225 u_int	moea_pte_spills = 0;
226 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
227     0, "");
228 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
229     &moea_pte_overflow, 0, "");
230 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
231     &moea_pte_replacements, 0, "");
232 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
233     0, "");
234 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
235     &moea_pvo_enter_calls, 0, "");
236 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
237     &moea_pvo_remove_calls, 0, "");
238 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
239     &moea_pte_spills, 0, "");
240 
241 /*
242  * Allocate physical memory for use in moea_bootstrap.
243  */
244 static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
245 
246 /*
247  * PTE calls.
248  */
249 static int		moea_pte_insert(u_int, struct pte *);
250 
251 /*
252  * PVO calls.
253  */
254 static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
255 		    vm_offset_t, vm_offset_t, u_int, int);
256 static void	moea_pvo_remove(struct pvo_entry *, int);
257 static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
258 static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
259 
260 /*
261  * Utility routines.
262  */
263 static void		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
264 			    vm_prot_t, boolean_t);
265 static void		moea_syncicache(vm_offset_t, vm_size_t);
266 static boolean_t	moea_query_bit(vm_page_t, int);
267 static u_int		moea_clear_bit(vm_page_t, int);
268 static void		moea_kremove(mmu_t, vm_offset_t);
269 int		moea_pte_spill(vm_offset_t);
270 
271 /*
272  * Kernel MMU interface
273  */
274 void moea_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
275 void moea_clear_modify(mmu_t, vm_page_t);
276 void moea_clear_reference(mmu_t, vm_page_t);
277 void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
278 void moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
279     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
280 void moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
281 void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
282     vm_prot_t);
283 void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
284 vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
285 vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
286 void moea_init(mmu_t);
287 boolean_t moea_is_modified(mmu_t, vm_page_t);
288 boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
289 boolean_t moea_is_referenced(mmu_t, vm_page_t);
290 int moea_ts_referenced(mmu_t, vm_page_t);
291 vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
292 boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
293 int moea_page_wired_mappings(mmu_t, vm_page_t);
294 void moea_pinit(mmu_t, pmap_t);
295 void moea_pinit0(mmu_t, pmap_t);
296 void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
297 void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
298 void moea_qremove(mmu_t, vm_offset_t, int);
299 void moea_release(mmu_t, pmap_t);
300 void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
301 void moea_remove_all(mmu_t, vm_page_t);
302 void moea_remove_write(mmu_t, vm_page_t);
303 void moea_zero_page(mmu_t, vm_page_t);
304 void moea_zero_page_area(mmu_t, vm_page_t, int, int);
305 void moea_zero_page_idle(mmu_t, vm_page_t);
306 void moea_activate(mmu_t, struct thread *);
307 void moea_deactivate(mmu_t, struct thread *);
308 void moea_cpu_bootstrap(mmu_t, int);
309 void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
310 void *moea_mapdev(mmu_t, vm_paddr_t, vm_size_t);
311 void *moea_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
312 void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
313 vm_paddr_t moea_kextract(mmu_t, vm_offset_t);
314 void moea_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t);
315 void moea_kenter(mmu_t, vm_offset_t, vm_paddr_t);
316 void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
317 boolean_t moea_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
318 static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
319 
320 static mmu_method_t moea_methods[] = {
321 	MMUMETHOD(mmu_change_wiring,	moea_change_wiring),
322 	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
323 	MMUMETHOD(mmu_clear_reference,	moea_clear_reference),
324 	MMUMETHOD(mmu_copy_page,	moea_copy_page),
325 	MMUMETHOD(mmu_copy_pages,	moea_copy_pages),
326 	MMUMETHOD(mmu_enter,		moea_enter),
327 	MMUMETHOD(mmu_enter_object,	moea_enter_object),
328 	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
329 	MMUMETHOD(mmu_extract,		moea_extract),
330 	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
331 	MMUMETHOD(mmu_init,		moea_init),
332 	MMUMETHOD(mmu_is_modified,	moea_is_modified),
333 	MMUMETHOD(mmu_is_prefaultable,	moea_is_prefaultable),
334 	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
335 	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
336 	MMUMETHOD(mmu_map,     		moea_map),
337 	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
338 	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
339 	MMUMETHOD(mmu_pinit,		moea_pinit),
340 	MMUMETHOD(mmu_pinit0,		moea_pinit0),
341 	MMUMETHOD(mmu_protect,		moea_protect),
342 	MMUMETHOD(mmu_qenter,		moea_qenter),
343 	MMUMETHOD(mmu_qremove,		moea_qremove),
344 	MMUMETHOD(mmu_release,		moea_release),
345 	MMUMETHOD(mmu_remove,		moea_remove),
346 	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
347 	MMUMETHOD(mmu_remove_write,	moea_remove_write),
348 	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
349 	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
350 	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
351 	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
352 	MMUMETHOD(mmu_activate,		moea_activate),
353 	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
354 	MMUMETHOD(mmu_page_set_memattr,	moea_page_set_memattr),
355 
356 	/* Internal interfaces */
357 	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
358 	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
359 	MMUMETHOD(mmu_mapdev_attr,	moea_mapdev_attr),
360 	MMUMETHOD(mmu_mapdev,		moea_mapdev),
361 	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
362 	MMUMETHOD(mmu_kextract,		moea_kextract),
363 	MMUMETHOD(mmu_kenter,		moea_kenter),
364 	MMUMETHOD(mmu_kenter_attr,	moea_kenter_attr),
365 	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
366 
367 	{ 0, 0 }
368 };
369 
370 MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
371 
372 static __inline uint32_t
373 moea_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
374 {
375 	uint32_t pte_lo;
376 	int i;
377 
378 	if (ma != VM_MEMATTR_DEFAULT) {
379 		switch (ma) {
380 		case VM_MEMATTR_UNCACHEABLE:
381 			return (PTE_I | PTE_G);
382 		case VM_MEMATTR_WRITE_COMBINING:
383 		case VM_MEMATTR_WRITE_BACK:
384 		case VM_MEMATTR_PREFETCHABLE:
385 			return (PTE_I);
386 		case VM_MEMATTR_WRITE_THROUGH:
387 			return (PTE_W | PTE_M);
388 		}
389 	}
390 
391 	/*
392 	 * Assume the page is cache inhibited and access is guarded unless
393 	 * it's in our available memory array.
394 	 */
395 	pte_lo = PTE_I | PTE_G;
396 	for (i = 0; i < pregions_sz; i++) {
397 		if ((pa >= pregions[i].mr_start) &&
398 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
399 			pte_lo = PTE_M;
400 			break;
401 		}
402 	}
403 
404 	return pte_lo;
405 }
406 
407 static void
408 tlbie(vm_offset_t va)
409 {
410 
411 	mtx_lock_spin(&tlbie_mtx);
412 	__asm __volatile("ptesync");
413 	__asm __volatile("tlbie %0" :: "r"(va));
414 	__asm __volatile("eieio; tlbsync; ptesync");
415 	mtx_unlock_spin(&tlbie_mtx);
416 }
417 
418 static void
419 tlbia(void)
420 {
421 	vm_offset_t va;
422 
423 	for (va = 0; va < 0x00040000; va += 0x00001000) {
424 		__asm __volatile("tlbie %0" :: "r"(va));
425 		powerpc_sync();
426 	}
427 	__asm __volatile("tlbsync");
428 	powerpc_sync();
429 }
430 
431 static __inline int
432 va_to_sr(u_int *sr, vm_offset_t va)
433 {
434 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
435 }
436 
437 static __inline u_int
438 va_to_pteg(u_int sr, vm_offset_t addr)
439 {
440 	u_int hash;
441 
442 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
443 	    ADDR_PIDX_SHFT);
444 	return (hash & moea_pteg_mask);
445 }
446 
447 static __inline struct pvo_head *
448 vm_page_to_pvoh(vm_page_t m)
449 {
450 
451 	return (&m->md.mdpg_pvoh);
452 }
453 
454 static __inline void
455 moea_attr_clear(vm_page_t m, int ptebit)
456 {
457 
458 	rw_assert(&pvh_global_lock, RA_WLOCKED);
459 	m->md.mdpg_attrs &= ~ptebit;
460 }
461 
462 static __inline int
463 moea_attr_fetch(vm_page_t m)
464 {
465 
466 	return (m->md.mdpg_attrs);
467 }
468 
469 static __inline void
470 moea_attr_save(vm_page_t m, int ptebit)
471 {
472 
473 	rw_assert(&pvh_global_lock, RA_WLOCKED);
474 	m->md.mdpg_attrs |= ptebit;
475 }
476 
477 static __inline int
478 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
479 {
480 	if (pt->pte_hi == pvo_pt->pte_hi)
481 		return (1);
482 
483 	return (0);
484 }
485 
486 static __inline int
487 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
488 {
489 	return (pt->pte_hi & ~PTE_VALID) ==
490 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
491 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
492 }
493 
494 static __inline void
495 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
496 {
497 
498 	mtx_assert(&moea_table_mutex, MA_OWNED);
499 
500 	/*
501 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
502 	 * set when the real pte is set in memory.
503 	 *
504 	 * Note: Don't set the valid bit for correct operation of tlb update.
505 	 */
506 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
507 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
508 	pt->pte_lo = pte_lo;
509 }
510 
511 static __inline void
512 moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
513 {
514 
515 	mtx_assert(&moea_table_mutex, MA_OWNED);
516 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
517 }
518 
519 static __inline void
520 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
521 {
522 
523 	mtx_assert(&moea_table_mutex, MA_OWNED);
524 
525 	/*
526 	 * As shown in Section 7.6.3.2.3
527 	 */
528 	pt->pte_lo &= ~ptebit;
529 	tlbie(va);
530 }
531 
532 static __inline void
533 moea_pte_set(struct pte *pt, struct pte *pvo_pt)
534 {
535 
536 	mtx_assert(&moea_table_mutex, MA_OWNED);
537 	pvo_pt->pte_hi |= PTE_VALID;
538 
539 	/*
540 	 * Update the PTE as defined in section 7.6.3.1.
541 	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
542 	 * been saved so this routine can restore them (if desired).
543 	 */
544 	pt->pte_lo = pvo_pt->pte_lo;
545 	powerpc_sync();
546 	pt->pte_hi = pvo_pt->pte_hi;
547 	powerpc_sync();
548 	moea_pte_valid++;
549 }
550 
551 static __inline void
552 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
553 {
554 
555 	mtx_assert(&moea_table_mutex, MA_OWNED);
556 	pvo_pt->pte_hi &= ~PTE_VALID;
557 
558 	/*
559 	 * Force the reg & chg bits back into the PTEs.
560 	 */
561 	powerpc_sync();
562 
563 	/*
564 	 * Invalidate the pte.
565 	 */
566 	pt->pte_hi &= ~PTE_VALID;
567 
568 	tlbie(va);
569 
570 	/*
571 	 * Save the reg & chg bits.
572 	 */
573 	moea_pte_synch(pt, pvo_pt);
574 	moea_pte_valid--;
575 }
576 
577 static __inline void
578 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
579 {
580 
581 	/*
582 	 * Invalidate the PTE
583 	 */
584 	moea_pte_unset(pt, pvo_pt, va);
585 	moea_pte_set(pt, pvo_pt);
586 }
587 
588 /*
589  * Quick sort callout for comparing memory regions.
590  */
591 static int	om_cmp(const void *a, const void *b);
592 
593 static int
594 om_cmp(const void *a, const void *b)
595 {
596 	const struct	ofw_map *mapa;
597 	const struct	ofw_map *mapb;
598 
599 	mapa = a;
600 	mapb = b;
601 	if (mapa->om_pa < mapb->om_pa)
602 		return (-1);
603 	else if (mapa->om_pa > mapb->om_pa)
604 		return (1);
605 	else
606 		return (0);
607 }
608 
609 void
610 moea_cpu_bootstrap(mmu_t mmup, int ap)
611 {
612 	u_int sdr;
613 	int i;
614 
615 	if (ap) {
616 		powerpc_sync();
617 		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
618 		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
619 		isync();
620 		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
621 		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
622 		isync();
623 	}
624 
625 #ifdef WII
626 	/*
627 	 * Special case for the Wii: don't install the PCI BAT.
628 	 */
629 	if (strcmp(installed_platform(), "wii") != 0) {
630 #endif
631 		__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
632 		__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
633 #ifdef WII
634 	}
635 #endif
636 	isync();
637 
638 	__asm __volatile("mtibatu 1,%0" :: "r"(0));
639 	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
640 	__asm __volatile("mtibatu 2,%0" :: "r"(0));
641 	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
642 	__asm __volatile("mtibatu 3,%0" :: "r"(0));
643 	isync();
644 
645 	for (i = 0; i < 16; i++)
646 		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
647 	powerpc_sync();
648 
649 	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
650 	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
651 	isync();
652 
653 	tlbia();
654 }
655 
656 void
657 moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
658 {
659 	ihandle_t	mmui;
660 	phandle_t	chosen, mmu;
661 	int		sz;
662 	int		i, j;
663 	vm_size_t	size, physsz, hwphyssz;
664 	vm_offset_t	pa, va, off;
665 	void		*dpcpu;
666 	register_t	msr;
667 
668         /*
669          * Set up BAT0 to map the lowest 256 MB area
670          */
671         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
672         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
673 
674 	/*
675 	 * Map PCI memory space.
676 	 */
677 	battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
678 	battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
679 
680 	battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
681 	battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
682 
683 	battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
684 	battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
685 
686 	battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
687 	battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
688 
689 	/*
690 	 * Map obio devices.
691 	 */
692 	battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
693 	battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
694 
695 	/*
696 	 * Use an IBAT and a DBAT to map the bottom segment of memory
697 	 * where we are. Turn off instruction relocation temporarily
698 	 * to prevent faults while reprogramming the IBAT.
699 	 */
700 	msr = mfmsr();
701 	mtmsr(msr & ~PSL_IR);
702 	__asm (".balign 32; \n"
703 	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
704 	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
705 	    :: "r"(battable[0].batu), "r"(battable[0].batl));
706 	mtmsr(msr);
707 
708 #ifdef WII
709         if (strcmp(installed_platform(), "wii") != 0) {
710 #endif
711 		/* map pci space */
712 		__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
713 		__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
714 #ifdef WII
715 	}
716 #endif
717 	isync();
718 
719 	/* set global direct map flag */
720 	hw_direct_map = 1;
721 
722 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
723 	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
724 
725 	for (i = 0; i < pregions_sz; i++) {
726 		vm_offset_t pa;
727 		vm_offset_t end;
728 
729 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
730 			pregions[i].mr_start,
731 			pregions[i].mr_start + pregions[i].mr_size,
732 			pregions[i].mr_size);
733 		/*
734 		 * Install entries into the BAT table to allow all
735 		 * of physmem to be convered by on-demand BAT entries.
736 		 * The loop will sometimes set the same battable element
737 		 * twice, but that's fine since they won't be used for
738 		 * a while yet.
739 		 */
740 		pa = pregions[i].mr_start & 0xf0000000;
741 		end = pregions[i].mr_start + pregions[i].mr_size;
742 		do {
743                         u_int n = pa >> ADDR_SR_SHFT;
744 
745 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
746 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
747 			pa += SEGMENT_LENGTH;
748 		} while (pa < end);
749 	}
750 
751 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
752 		panic("moea_bootstrap: phys_avail too small");
753 
754 	phys_avail_count = 0;
755 	physsz = 0;
756 	hwphyssz = 0;
757 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
758 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
759 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
760 		    regions[i].mr_start + regions[i].mr_size,
761 		    regions[i].mr_size);
762 		if (hwphyssz != 0 &&
763 		    (physsz + regions[i].mr_size) >= hwphyssz) {
764 			if (physsz < hwphyssz) {
765 				phys_avail[j] = regions[i].mr_start;
766 				phys_avail[j + 1] = regions[i].mr_start +
767 				    hwphyssz - physsz;
768 				physsz = hwphyssz;
769 				phys_avail_count++;
770 			}
771 			break;
772 		}
773 		phys_avail[j] = regions[i].mr_start;
774 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
775 		phys_avail_count++;
776 		physsz += regions[i].mr_size;
777 	}
778 
779 	/* Check for overlap with the kernel and exception vectors */
780 	for (j = 0; j < 2*phys_avail_count; j+=2) {
781 		if (phys_avail[j] < EXC_LAST)
782 			phys_avail[j] += EXC_LAST;
783 
784 		if (kernelstart >= phys_avail[j] &&
785 		    kernelstart < phys_avail[j+1]) {
786 			if (kernelend < phys_avail[j+1]) {
787 				phys_avail[2*phys_avail_count] =
788 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
789 				phys_avail[2*phys_avail_count + 1] =
790 				    phys_avail[j+1];
791 				phys_avail_count++;
792 			}
793 
794 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
795 		}
796 
797 		if (kernelend >= phys_avail[j] &&
798 		    kernelend < phys_avail[j+1]) {
799 			if (kernelstart > phys_avail[j]) {
800 				phys_avail[2*phys_avail_count] = phys_avail[j];
801 				phys_avail[2*phys_avail_count + 1] =
802 				    kernelstart & ~PAGE_MASK;
803 				phys_avail_count++;
804 			}
805 
806 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
807 		}
808 	}
809 
810 	physmem = btoc(physsz);
811 
812 	/*
813 	 * Allocate PTEG table.
814 	 */
815 #ifdef PTEGCOUNT
816 	moea_pteg_count = PTEGCOUNT;
817 #else
818 	moea_pteg_count = 0x1000;
819 
820 	while (moea_pteg_count < physmem)
821 		moea_pteg_count <<= 1;
822 
823 	moea_pteg_count >>= 1;
824 #endif /* PTEGCOUNT */
825 
826 	size = moea_pteg_count * sizeof(struct pteg);
827 	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
828 	    size);
829 	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
830 	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
831 	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
832 	moea_pteg_mask = moea_pteg_count - 1;
833 
834 	/*
835 	 * Allocate pv/overflow lists.
836 	 */
837 	size = sizeof(struct pvo_head) * moea_pteg_count;
838 	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
839 	    PAGE_SIZE);
840 	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
841 	for (i = 0; i < moea_pteg_count; i++)
842 		LIST_INIT(&moea_pvo_table[i]);
843 
844 	/*
845 	 * Initialize the lock that synchronizes access to the pteg and pvo
846 	 * tables.
847 	 */
848 	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
849 	    MTX_RECURSE);
850 	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
851 
852 	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
853 
854 	/*
855 	 * Initialise the unmanaged pvo pool.
856 	 */
857 	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
858 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
859 	moea_bpvo_pool_index = 0;
860 
861 	/*
862 	 * Make sure kernel vsid is allocated as well as VSID 0.
863 	 */
864 	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
865 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
866 	moea_vsid_bitmap[0] |= 1;
867 
868 	/*
869 	 * Initialize the kernel pmap (which is statically allocated).
870 	 */
871 	PMAP_LOCK_INIT(kernel_pmap);
872 	for (i = 0; i < 16; i++)
873 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
874 	CPU_FILL(&kernel_pmap->pm_active);
875 	RB_INIT(&kernel_pmap->pmap_pvo);
876 
877  	/*
878 	 * Initialize the global pv list lock.
879 	 */
880 	rw_init(&pvh_global_lock, "pmap pv global");
881 
882 	/*
883 	 * Set up the Open Firmware mappings
884 	 */
885 	chosen = OF_finddevice("/chosen");
886 	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
887 	    (mmu = OF_instance_to_package(mmui)) != -1 &&
888 	    (sz = OF_getproplen(mmu, "translations")) != -1) {
889 		translations = NULL;
890 		for (i = 0; phys_avail[i] != 0; i += 2) {
891 			if (phys_avail[i + 1] >= sz) {
892 				translations = (struct ofw_map *)phys_avail[i];
893 				break;
894 			}
895 		}
896 		if (translations == NULL)
897 			panic("moea_bootstrap: no space to copy translations");
898 		bzero(translations, sz);
899 		if (OF_getprop(mmu, "translations", translations, sz) == -1)
900 			panic("moea_bootstrap: can't get ofw translations");
901 		CTR0(KTR_PMAP, "moea_bootstrap: translations");
902 		sz /= sizeof(*translations);
903 		qsort(translations, sz, sizeof (*translations), om_cmp);
904 		for (i = 0; i < sz; i++) {
905 			CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
906 			    translations[i].om_pa, translations[i].om_va,
907 			    translations[i].om_len);
908 
909 			/*
910 			 * If the mapping is 1:1, let the RAM and device
911 			 * on-demand BAT tables take care of the translation.
912 			 */
913 			if (translations[i].om_va == translations[i].om_pa)
914 				continue;
915 
916 			/* Enter the pages */
917 			for (off = 0; off < translations[i].om_len;
918 			    off += PAGE_SIZE)
919 				moea_kenter(mmup, translations[i].om_va + off,
920 					    translations[i].om_pa + off);
921 		}
922 	}
923 
924 	/*
925 	 * Calculate the last available physical address.
926 	 */
927 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
928 		;
929 	Maxmem = powerpc_btop(phys_avail[i + 1]);
930 
931 	moea_cpu_bootstrap(mmup,0);
932 
933 	pmap_bootstrapped++;
934 
935 	/*
936 	 * Set the start and end of kva.
937 	 */
938 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
939 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
940 
941 	/*
942 	 * Allocate a kernel stack with a guard page for thread0 and map it
943 	 * into the kernel page map.
944 	 */
945 	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
946 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
947 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
948 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
949 	thread0.td_kstack = va;
950 	thread0.td_kstack_pages = KSTACK_PAGES;
951 	for (i = 0; i < KSTACK_PAGES; i++) {
952 		moea_kenter(mmup, va, pa);
953 		pa += PAGE_SIZE;
954 		va += PAGE_SIZE;
955 	}
956 
957 	/*
958 	 * Allocate virtual address space for the message buffer.
959 	 */
960 	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
961 	msgbufp = (struct msgbuf *)virtual_avail;
962 	va = virtual_avail;
963 	virtual_avail += round_page(msgbufsize);
964 	while (va < virtual_avail) {
965 		moea_kenter(mmup, va, pa);
966 		pa += PAGE_SIZE;
967 		va += PAGE_SIZE;
968 	}
969 
970 	/*
971 	 * Allocate virtual address space for the dynamic percpu area.
972 	 */
973 	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
974 	dpcpu = (void *)virtual_avail;
975 	va = virtual_avail;
976 	virtual_avail += DPCPU_SIZE;
977 	while (va < virtual_avail) {
978 		moea_kenter(mmup, va, pa);
979 		pa += PAGE_SIZE;
980 		va += PAGE_SIZE;
981 	}
982 	dpcpu_init(dpcpu, 0);
983 }
984 
985 /*
986  * Activate a user pmap.  The pmap must be activated before it's address
987  * space can be accessed in any way.
988  */
989 void
990 moea_activate(mmu_t mmu, struct thread *td)
991 {
992 	pmap_t	pm, pmr;
993 
994 	/*
995 	 * Load all the data we need up front to encourage the compiler to
996 	 * not issue any loads while we have interrupts disabled below.
997 	 */
998 	pm = &td->td_proc->p_vmspace->vm_pmap;
999 	pmr = pm->pmap_phys;
1000 
1001 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1002 	PCPU_SET(curpmap, pmr);
1003 }
1004 
1005 void
1006 moea_deactivate(mmu_t mmu, struct thread *td)
1007 {
1008 	pmap_t	pm;
1009 
1010 	pm = &td->td_proc->p_vmspace->vm_pmap;
1011 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1012 	PCPU_SET(curpmap, NULL);
1013 }
1014 
1015 void
1016 moea_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1017 {
1018 	struct	pvo_entry *pvo;
1019 
1020 	PMAP_LOCK(pm);
1021 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1022 
1023 	if (pvo != NULL) {
1024 		if (wired) {
1025 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1026 				pm->pm_stats.wired_count++;
1027 			pvo->pvo_vaddr |= PVO_WIRED;
1028 		} else {
1029 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1030 				pm->pm_stats.wired_count--;
1031 			pvo->pvo_vaddr &= ~PVO_WIRED;
1032 		}
1033 	}
1034 	PMAP_UNLOCK(pm);
1035 }
1036 
1037 void
1038 moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1039 {
1040 	vm_offset_t	dst;
1041 	vm_offset_t	src;
1042 
1043 	dst = VM_PAGE_TO_PHYS(mdst);
1044 	src = VM_PAGE_TO_PHYS(msrc);
1045 
1046 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
1047 }
1048 
1049 void
1050 moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1051     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1052 {
1053 	void *a_cp, *b_cp;
1054 	vm_offset_t a_pg_offset, b_pg_offset;
1055 	int cnt;
1056 
1057 	while (xfersize > 0) {
1058 		a_pg_offset = a_offset & PAGE_MASK;
1059 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1060 		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1061 		    a_pg_offset;
1062 		b_pg_offset = b_offset & PAGE_MASK;
1063 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1064 		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1065 		    b_pg_offset;
1066 		bcopy(a_cp, b_cp, cnt);
1067 		a_offset += cnt;
1068 		b_offset += cnt;
1069 		xfersize -= cnt;
1070 	}
1071 }
1072 
1073 /*
1074  * Zero a page of physical memory by temporarily mapping it into the tlb.
1075  */
1076 void
1077 moea_zero_page(mmu_t mmu, vm_page_t m)
1078 {
1079 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1080 	void *va = (void *)pa;
1081 
1082 	bzero(va, PAGE_SIZE);
1083 }
1084 
1085 void
1086 moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1087 {
1088 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1089 	void *va = (void *)(pa + off);
1090 
1091 	bzero(va, size);
1092 }
1093 
1094 void
1095 moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1096 {
1097 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1098 	void *va = (void *)pa;
1099 
1100 	bzero(va, PAGE_SIZE);
1101 }
1102 
1103 /*
1104  * Map the given physical page at the specified virtual address in the
1105  * target pmap with the protection requested.  If specified the page
1106  * will be wired down.
1107  */
1108 void
1109 moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1110 	   boolean_t wired)
1111 {
1112 
1113 	rw_wlock(&pvh_global_lock);
1114 	PMAP_LOCK(pmap);
1115 	moea_enter_locked(pmap, va, m, prot, wired);
1116 	rw_wunlock(&pvh_global_lock);
1117 	PMAP_UNLOCK(pmap);
1118 }
1119 
1120 /*
1121  * Map the given physical page at the specified virtual address in the
1122  * target pmap with the protection requested.  If specified the page
1123  * will be wired down.
1124  *
1125  * The page queues and pmap must be locked.
1126  */
1127 static void
1128 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1129     boolean_t wired)
1130 {
1131 	struct		pvo_head *pvo_head;
1132 	uma_zone_t	zone;
1133 	vm_page_t	pg;
1134 	u_int		pte_lo, pvo_flags;
1135 	int		error;
1136 
1137 	if (!moea_initialized) {
1138 		pvo_head = &moea_pvo_kunmanaged;
1139 		zone = moea_upvo_zone;
1140 		pvo_flags = 0;
1141 		pg = NULL;
1142 	} else {
1143 		pvo_head = vm_page_to_pvoh(m);
1144 		pg = m;
1145 		zone = moea_mpvo_zone;
1146 		pvo_flags = PVO_MANAGED;
1147 	}
1148 	if (pmap_bootstrapped)
1149 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1150 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1151 	if ((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) == 0)
1152 		VM_OBJECT_ASSERT_WLOCKED(m->object);
1153 
1154 	/* XXX change the pvo head for fake pages */
1155 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1156 		pvo_flags &= ~PVO_MANAGED;
1157 		pvo_head = &moea_pvo_kunmanaged;
1158 		zone = moea_upvo_zone;
1159 	}
1160 
1161 	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1162 
1163 	if (prot & VM_PROT_WRITE) {
1164 		pte_lo |= PTE_BW;
1165 		if (pmap_bootstrapped &&
1166 		    (m->oflags & VPO_UNMANAGED) == 0)
1167 			vm_page_aflag_set(m, PGA_WRITEABLE);
1168 	} else
1169 		pte_lo |= PTE_BR;
1170 
1171 	if (prot & VM_PROT_EXECUTE)
1172 		pvo_flags |= PVO_EXECUTABLE;
1173 
1174 	if (wired)
1175 		pvo_flags |= PVO_WIRED;
1176 
1177 	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1178 	    pte_lo, pvo_flags);
1179 
1180 	/*
1181 	 * Flush the real page from the instruction cache. This has be done
1182 	 * for all user mappings to prevent information leakage via the
1183 	 * instruction cache. moea_pvo_enter() returns ENOENT for the first
1184 	 * mapping for a page.
1185 	 */
1186 	if (pmap != kernel_pmap && error == ENOENT &&
1187 	    (pte_lo & (PTE_I | PTE_G)) == 0)
1188 		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1189 }
1190 
1191 /*
1192  * Maps a sequence of resident pages belonging to the same object.
1193  * The sequence begins with the given page m_start.  This page is
1194  * mapped at the given virtual address start.  Each subsequent page is
1195  * mapped at a virtual address that is offset from start by the same
1196  * amount as the page is offset from m_start within the object.  The
1197  * last page in the sequence is the page with the largest offset from
1198  * m_start that can be mapped at a virtual address less than the given
1199  * virtual address end.  Not every virtual page between start and end
1200  * is mapped; only those for which a resident page exists with the
1201  * corresponding offset from m_start are mapped.
1202  */
1203 void
1204 moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1205     vm_page_t m_start, vm_prot_t prot)
1206 {
1207 	vm_page_t m;
1208 	vm_pindex_t diff, psize;
1209 
1210 	psize = atop(end - start);
1211 	m = m_start;
1212 	rw_wlock(&pvh_global_lock);
1213 	PMAP_LOCK(pm);
1214 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1215 		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1216 		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1217 		m = TAILQ_NEXT(m, listq);
1218 	}
1219 	rw_wunlock(&pvh_global_lock);
1220 	PMAP_UNLOCK(pm);
1221 }
1222 
1223 void
1224 moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1225     vm_prot_t prot)
1226 {
1227 
1228 	rw_wlock(&pvh_global_lock);
1229 	PMAP_LOCK(pm);
1230 	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1231 	    FALSE);
1232 	rw_wunlock(&pvh_global_lock);
1233 	PMAP_UNLOCK(pm);
1234 }
1235 
1236 vm_paddr_t
1237 moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1238 {
1239 	struct	pvo_entry *pvo;
1240 	vm_paddr_t pa;
1241 
1242 	PMAP_LOCK(pm);
1243 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1244 	if (pvo == NULL)
1245 		pa = 0;
1246 	else
1247 		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1248 	PMAP_UNLOCK(pm);
1249 	return (pa);
1250 }
1251 
1252 /*
1253  * Atomically extract and hold the physical page with the given
1254  * pmap and virtual address pair if that mapping permits the given
1255  * protection.
1256  */
1257 vm_page_t
1258 moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1259 {
1260 	struct	pvo_entry *pvo;
1261 	vm_page_t m;
1262         vm_paddr_t pa;
1263 
1264 	m = NULL;
1265 	pa = 0;
1266 	PMAP_LOCK(pmap);
1267 retry:
1268 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1269 	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1270 	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1271 	     (prot & VM_PROT_WRITE) == 0)) {
1272 		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1273 			goto retry;
1274 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1275 		vm_page_hold(m);
1276 	}
1277 	PA_UNLOCK_COND(pa);
1278 	PMAP_UNLOCK(pmap);
1279 	return (m);
1280 }
1281 
1282 void
1283 moea_init(mmu_t mmu)
1284 {
1285 
1286 	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1287 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1288 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1289 	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1290 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1291 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1292 	moea_initialized = TRUE;
1293 }
1294 
1295 boolean_t
1296 moea_is_referenced(mmu_t mmu, vm_page_t m)
1297 {
1298 	boolean_t rv;
1299 
1300 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1301 	    ("moea_is_referenced: page %p is not managed", m));
1302 	rw_wlock(&pvh_global_lock);
1303 	rv = moea_query_bit(m, PTE_REF);
1304 	rw_wunlock(&pvh_global_lock);
1305 	return (rv);
1306 }
1307 
1308 boolean_t
1309 moea_is_modified(mmu_t mmu, vm_page_t m)
1310 {
1311 	boolean_t rv;
1312 
1313 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1314 	    ("moea_is_modified: page %p is not managed", m));
1315 
1316 	/*
1317 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
1318 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1319 	 * is clear, no PTEs can have PTE_CHG set.
1320 	 */
1321 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1322 	if ((m->oflags & VPO_BUSY) == 0 &&
1323 	    (m->aflags & PGA_WRITEABLE) == 0)
1324 		return (FALSE);
1325 	rw_wlock(&pvh_global_lock);
1326 	rv = moea_query_bit(m, PTE_CHG);
1327 	rw_wunlock(&pvh_global_lock);
1328 	return (rv);
1329 }
1330 
1331 boolean_t
1332 moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1333 {
1334 	struct pvo_entry *pvo;
1335 	boolean_t rv;
1336 
1337 	PMAP_LOCK(pmap);
1338 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1339 	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1340 	PMAP_UNLOCK(pmap);
1341 	return (rv);
1342 }
1343 
1344 void
1345 moea_clear_reference(mmu_t mmu, vm_page_t m)
1346 {
1347 
1348 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1349 	    ("moea_clear_reference: page %p is not managed", m));
1350 	rw_wlock(&pvh_global_lock);
1351 	moea_clear_bit(m, PTE_REF);
1352 	rw_wunlock(&pvh_global_lock);
1353 }
1354 
1355 void
1356 moea_clear_modify(mmu_t mmu, vm_page_t m)
1357 {
1358 
1359 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1360 	    ("moea_clear_modify: page %p is not managed", m));
1361 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1362 	KASSERT((m->oflags & VPO_BUSY) == 0,
1363 	    ("moea_clear_modify: page %p is busy", m));
1364 
1365 	/*
1366 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_CHG
1367 	 * set.  If the object containing the page is locked and the page is
1368 	 * not VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
1369 	 */
1370 	if ((m->aflags & PGA_WRITEABLE) == 0)
1371 		return;
1372 	rw_wlock(&pvh_global_lock);
1373 	moea_clear_bit(m, PTE_CHG);
1374 	rw_wunlock(&pvh_global_lock);
1375 }
1376 
1377 /*
1378  * Clear the write and modified bits in each of the given page's mappings.
1379  */
1380 void
1381 moea_remove_write(mmu_t mmu, vm_page_t m)
1382 {
1383 	struct	pvo_entry *pvo;
1384 	struct	pte *pt;
1385 	pmap_t	pmap;
1386 	u_int	lo;
1387 
1388 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1389 	    ("moea_remove_write: page %p is not managed", m));
1390 
1391 	/*
1392 	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1393 	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
1394 	 * is clear, no page table entries need updating.
1395 	 */
1396 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1397 	if ((m->oflags & VPO_BUSY) == 0 &&
1398 	    (m->aflags & PGA_WRITEABLE) == 0)
1399 		return;
1400 	rw_wlock(&pvh_global_lock);
1401 	lo = moea_attr_fetch(m);
1402 	powerpc_sync();
1403 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1404 		pmap = pvo->pvo_pmap;
1405 		PMAP_LOCK(pmap);
1406 		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1407 			pt = moea_pvo_to_pte(pvo, -1);
1408 			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1409 			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1410 			if (pt != NULL) {
1411 				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1412 				lo |= pvo->pvo_pte.pte.pte_lo;
1413 				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1414 				moea_pte_change(pt, &pvo->pvo_pte.pte,
1415 				    pvo->pvo_vaddr);
1416 				mtx_unlock(&moea_table_mutex);
1417 			}
1418 		}
1419 		PMAP_UNLOCK(pmap);
1420 	}
1421 	if ((lo & PTE_CHG) != 0) {
1422 		moea_attr_clear(m, PTE_CHG);
1423 		vm_page_dirty(m);
1424 	}
1425 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1426 	rw_wunlock(&pvh_global_lock);
1427 }
1428 
1429 /*
1430  *	moea_ts_referenced:
1431  *
1432  *	Return a count of reference bits for a page, clearing those bits.
1433  *	It is not necessary for every reference bit to be cleared, but it
1434  *	is necessary that 0 only be returned when there are truly no
1435  *	reference bits set.
1436  *
1437  *	XXX: The exact number of bits to check and clear is a matter that
1438  *	should be tested and standardized at some point in the future for
1439  *	optimal aging of shared pages.
1440  */
1441 int
1442 moea_ts_referenced(mmu_t mmu, vm_page_t m)
1443 {
1444 	int count;
1445 
1446 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1447 	    ("moea_ts_referenced: page %p is not managed", m));
1448 	rw_wlock(&pvh_global_lock);
1449 	count = moea_clear_bit(m, PTE_REF);
1450 	rw_wunlock(&pvh_global_lock);
1451 	return (count);
1452 }
1453 
1454 /*
1455  * Modify the WIMG settings of all mappings for a page.
1456  */
1457 void
1458 moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1459 {
1460 	struct	pvo_entry *pvo;
1461 	struct	pvo_head *pvo_head;
1462 	struct	pte *pt;
1463 	pmap_t	pmap;
1464 	u_int	lo;
1465 
1466 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1467 		m->md.mdpg_cache_attrs = ma;
1468 		return;
1469 	}
1470 
1471 	rw_wlock(&pvh_global_lock);
1472 	pvo_head = vm_page_to_pvoh(m);
1473 	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1474 
1475 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1476 		pmap = pvo->pvo_pmap;
1477 		PMAP_LOCK(pmap);
1478 		pt = moea_pvo_to_pte(pvo, -1);
1479 		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1480 		pvo->pvo_pte.pte.pte_lo |= lo;
1481 		if (pt != NULL) {
1482 			moea_pte_change(pt, &pvo->pvo_pte.pte,
1483 			    pvo->pvo_vaddr);
1484 			if (pvo->pvo_pmap == kernel_pmap)
1485 				isync();
1486 		}
1487 		mtx_unlock(&moea_table_mutex);
1488 		PMAP_UNLOCK(pmap);
1489 	}
1490 	m->md.mdpg_cache_attrs = ma;
1491 	rw_wunlock(&pvh_global_lock);
1492 }
1493 
1494 /*
1495  * Map a wired page into kernel virtual address space.
1496  */
1497 void
1498 moea_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1499 {
1500 
1501 	moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1502 }
1503 
1504 void
1505 moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1506 {
1507 	u_int		pte_lo;
1508 	int		error;
1509 
1510 #if 0
1511 	if (va < VM_MIN_KERNEL_ADDRESS)
1512 		panic("moea_kenter: attempt to enter non-kernel address %#x",
1513 		    va);
1514 #endif
1515 
1516 	pte_lo = moea_calc_wimg(pa, ma);
1517 
1518 	PMAP_LOCK(kernel_pmap);
1519 	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1520 	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1521 
1522 	if (error != 0 && error != ENOENT)
1523 		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1524 		    pa, error);
1525 
1526 	PMAP_UNLOCK(kernel_pmap);
1527 }
1528 
1529 /*
1530  * Extract the physical page address associated with the given kernel virtual
1531  * address.
1532  */
1533 vm_paddr_t
1534 moea_kextract(mmu_t mmu, vm_offset_t va)
1535 {
1536 	struct		pvo_entry *pvo;
1537 	vm_paddr_t pa;
1538 
1539 	/*
1540 	 * Allow direct mappings on 32-bit OEA
1541 	 */
1542 	if (va < VM_MIN_KERNEL_ADDRESS) {
1543 		return (va);
1544 	}
1545 
1546 	PMAP_LOCK(kernel_pmap);
1547 	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1548 	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1549 	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1550 	PMAP_UNLOCK(kernel_pmap);
1551 	return (pa);
1552 }
1553 
1554 /*
1555  * Remove a wired page from kernel virtual address space.
1556  */
1557 void
1558 moea_kremove(mmu_t mmu, vm_offset_t va)
1559 {
1560 
1561 	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1562 }
1563 
1564 /*
1565  * Map a range of physical addresses into kernel virtual address space.
1566  *
1567  * The value passed in *virt is a suggested virtual address for the mapping.
1568  * Architectures which can support a direct-mapped physical to virtual region
1569  * can return the appropriate address within that region, leaving '*virt'
1570  * unchanged.  We cannot and therefore do not; *virt is updated with the
1571  * first usable address after the mapped region.
1572  */
1573 vm_offset_t
1574 moea_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1575     vm_paddr_t pa_end, int prot)
1576 {
1577 	vm_offset_t	sva, va;
1578 
1579 	sva = *virt;
1580 	va = sva;
1581 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1582 		moea_kenter(mmu, va, pa_start);
1583 	*virt = va;
1584 	return (sva);
1585 }
1586 
1587 /*
1588  * Returns true if the pmap's pv is one of the first
1589  * 16 pvs linked to from this page.  This count may
1590  * be changed upwards or downwards in the future; it
1591  * is only necessary that true be returned for a small
1592  * subset of pmaps for proper page aging.
1593  */
1594 boolean_t
1595 moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1596 {
1597         int loops;
1598 	struct pvo_entry *pvo;
1599 	boolean_t rv;
1600 
1601 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1602 	    ("moea_page_exists_quick: page %p is not managed", m));
1603 	loops = 0;
1604 	rv = FALSE;
1605 	rw_wlock(&pvh_global_lock);
1606 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1607 		if (pvo->pvo_pmap == pmap) {
1608 			rv = TRUE;
1609 			break;
1610 		}
1611 		if (++loops >= 16)
1612 			break;
1613 	}
1614 	rw_wunlock(&pvh_global_lock);
1615 	return (rv);
1616 }
1617 
1618 /*
1619  * Return the number of managed mappings to the given physical page
1620  * that are wired.
1621  */
1622 int
1623 moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1624 {
1625 	struct pvo_entry *pvo;
1626 	int count;
1627 
1628 	count = 0;
1629 	if ((m->oflags & VPO_UNMANAGED) != 0)
1630 		return (count);
1631 	rw_wlock(&pvh_global_lock);
1632 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1633 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1634 			count++;
1635 	rw_wunlock(&pvh_global_lock);
1636 	return (count);
1637 }
1638 
1639 static u_int	moea_vsidcontext;
1640 
1641 void
1642 moea_pinit(mmu_t mmu, pmap_t pmap)
1643 {
1644 	int	i, mask;
1645 	u_int	entropy;
1646 
1647 	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1648 	PMAP_LOCK_INIT(pmap);
1649 	RB_INIT(&pmap->pmap_pvo);
1650 
1651 	entropy = 0;
1652 	__asm __volatile("mftb %0" : "=r"(entropy));
1653 
1654 	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1655 	    == NULL) {
1656 		pmap->pmap_phys = pmap;
1657 	}
1658 
1659 
1660 	mtx_lock(&moea_vsid_mutex);
1661 	/*
1662 	 * Allocate some segment registers for this pmap.
1663 	 */
1664 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1665 		u_int	hash, n;
1666 
1667 		/*
1668 		 * Create a new value by mutiplying by a prime and adding in
1669 		 * entropy from the timebase register.  This is to make the
1670 		 * VSID more random so that the PT hash function collides
1671 		 * less often.  (Note that the prime casues gcc to do shifts
1672 		 * instead of a multiply.)
1673 		 */
1674 		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1675 		hash = moea_vsidcontext & (NPMAPS - 1);
1676 		if (hash == 0)		/* 0 is special, avoid it */
1677 			continue;
1678 		n = hash >> 5;
1679 		mask = 1 << (hash & (VSID_NBPW - 1));
1680 		hash = (moea_vsidcontext & 0xfffff);
1681 		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1682 			/* anything free in this bucket? */
1683 			if (moea_vsid_bitmap[n] == 0xffffffff) {
1684 				entropy = (moea_vsidcontext >> 20);
1685 				continue;
1686 			}
1687 			i = ffs(~moea_vsid_bitmap[n]) - 1;
1688 			mask = 1 << i;
1689 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1690 			hash |= i;
1691 		}
1692 		KASSERT(!(moea_vsid_bitmap[n] & mask),
1693 		    ("Allocating in-use VSID group %#x\n", hash));
1694 		moea_vsid_bitmap[n] |= mask;
1695 		for (i = 0; i < 16; i++)
1696 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1697 		mtx_unlock(&moea_vsid_mutex);
1698 		return;
1699 	}
1700 
1701 	mtx_unlock(&moea_vsid_mutex);
1702 	panic("moea_pinit: out of segments");
1703 }
1704 
1705 /*
1706  * Initialize the pmap associated with process 0.
1707  */
1708 void
1709 moea_pinit0(mmu_t mmu, pmap_t pm)
1710 {
1711 
1712 	moea_pinit(mmu, pm);
1713 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1714 }
1715 
1716 /*
1717  * Set the physical protection on the specified range of this map as requested.
1718  */
1719 void
1720 moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1721     vm_prot_t prot)
1722 {
1723 	struct	pvo_entry *pvo, *tpvo, key;
1724 	struct	pte *pt;
1725 
1726 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1727 	    ("moea_protect: non current pmap"));
1728 
1729 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1730 		moea_remove(mmu, pm, sva, eva);
1731 		return;
1732 	}
1733 
1734 	rw_wlock(&pvh_global_lock);
1735 	PMAP_LOCK(pm);
1736 	key.pvo_vaddr = sva;
1737 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1738 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1739 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1740 		if ((prot & VM_PROT_EXECUTE) == 0)
1741 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1742 
1743 		/*
1744 		 * Grab the PTE pointer before we diddle with the cached PTE
1745 		 * copy.
1746 		 */
1747 		pt = moea_pvo_to_pte(pvo, -1);
1748 		/*
1749 		 * Change the protection of the page.
1750 		 */
1751 		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1752 		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1753 
1754 		/*
1755 		 * If the PVO is in the page table, update that pte as well.
1756 		 */
1757 		if (pt != NULL) {
1758 			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1759 			mtx_unlock(&moea_table_mutex);
1760 		}
1761 	}
1762 	rw_wunlock(&pvh_global_lock);
1763 	PMAP_UNLOCK(pm);
1764 }
1765 
1766 /*
1767  * Map a list of wired pages into kernel virtual address space.  This is
1768  * intended for temporary mappings which do not need page modification or
1769  * references recorded.  Existing mappings in the region are overwritten.
1770  */
1771 void
1772 moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1773 {
1774 	vm_offset_t va;
1775 
1776 	va = sva;
1777 	while (count-- > 0) {
1778 		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1779 		va += PAGE_SIZE;
1780 		m++;
1781 	}
1782 }
1783 
1784 /*
1785  * Remove page mappings from kernel virtual address space.  Intended for
1786  * temporary mappings entered by moea_qenter.
1787  */
1788 void
1789 moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1790 {
1791 	vm_offset_t va;
1792 
1793 	va = sva;
1794 	while (count-- > 0) {
1795 		moea_kremove(mmu, va);
1796 		va += PAGE_SIZE;
1797 	}
1798 }
1799 
1800 void
1801 moea_release(mmu_t mmu, pmap_t pmap)
1802 {
1803         int idx, mask;
1804 
1805 	/*
1806 	 * Free segment register's VSID
1807 	 */
1808         if (pmap->pm_sr[0] == 0)
1809                 panic("moea_release");
1810 
1811 	mtx_lock(&moea_vsid_mutex);
1812         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1813         mask = 1 << (idx % VSID_NBPW);
1814         idx /= VSID_NBPW;
1815         moea_vsid_bitmap[idx] &= ~mask;
1816 	mtx_unlock(&moea_vsid_mutex);
1817 	PMAP_LOCK_DESTROY(pmap);
1818 }
1819 
1820 /*
1821  * Remove the given range of addresses from the specified map.
1822  */
1823 void
1824 moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1825 {
1826 	struct	pvo_entry *pvo, *tpvo, key;
1827 
1828 	rw_wlock(&pvh_global_lock);
1829 	PMAP_LOCK(pm);
1830 	key.pvo_vaddr = sva;
1831 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1832 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1833 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1834 		moea_pvo_remove(pvo, -1);
1835 	}
1836 	PMAP_UNLOCK(pm);
1837 	rw_wunlock(&pvh_global_lock);
1838 }
1839 
1840 /*
1841  * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1842  * will reflect changes in pte's back to the vm_page.
1843  */
1844 void
1845 moea_remove_all(mmu_t mmu, vm_page_t m)
1846 {
1847 	struct  pvo_head *pvo_head;
1848 	struct	pvo_entry *pvo, *next_pvo;
1849 	pmap_t	pmap;
1850 
1851 	rw_wlock(&pvh_global_lock);
1852 	pvo_head = vm_page_to_pvoh(m);
1853 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1854 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1855 
1856 		pmap = pvo->pvo_pmap;
1857 		PMAP_LOCK(pmap);
1858 		moea_pvo_remove(pvo, -1);
1859 		PMAP_UNLOCK(pmap);
1860 	}
1861 	if ((m->aflags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
1862 		moea_attr_clear(m, PTE_CHG);
1863 		vm_page_dirty(m);
1864 	}
1865 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1866 	rw_wunlock(&pvh_global_lock);
1867 }
1868 
1869 /*
1870  * Allocate a physical page of memory directly from the phys_avail map.
1871  * Can only be called from moea_bootstrap before avail start and end are
1872  * calculated.
1873  */
1874 static vm_offset_t
1875 moea_bootstrap_alloc(vm_size_t size, u_int align)
1876 {
1877 	vm_offset_t	s, e;
1878 	int		i, j;
1879 
1880 	size = round_page(size);
1881 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1882 		if (align != 0)
1883 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1884 		else
1885 			s = phys_avail[i];
1886 		e = s + size;
1887 
1888 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1889 			continue;
1890 
1891 		if (s == phys_avail[i]) {
1892 			phys_avail[i] += size;
1893 		} else if (e == phys_avail[i + 1]) {
1894 			phys_avail[i + 1] -= size;
1895 		} else {
1896 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1897 				phys_avail[j] = phys_avail[j - 2];
1898 				phys_avail[j + 1] = phys_avail[j - 1];
1899 			}
1900 
1901 			phys_avail[i + 3] = phys_avail[i + 1];
1902 			phys_avail[i + 1] = s;
1903 			phys_avail[i + 2] = e;
1904 			phys_avail_count++;
1905 		}
1906 
1907 		return (s);
1908 	}
1909 	panic("moea_bootstrap_alloc: could not allocate memory");
1910 }
1911 
1912 static void
1913 moea_syncicache(vm_offset_t pa, vm_size_t len)
1914 {
1915 	__syncicache((void *)pa, len);
1916 }
1917 
1918 static int
1919 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1920     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1921 {
1922 	struct	pvo_entry *pvo;
1923 	u_int	sr;
1924 	int	first;
1925 	u_int	ptegidx;
1926 	int	i;
1927 	int     bootstrap;
1928 
1929 	moea_pvo_enter_calls++;
1930 	first = 0;
1931 	bootstrap = 0;
1932 
1933 	/*
1934 	 * Compute the PTE Group index.
1935 	 */
1936 	va &= ~ADDR_POFF;
1937 	sr = va_to_sr(pm->pm_sr, va);
1938 	ptegidx = va_to_pteg(sr, va);
1939 
1940 	/*
1941 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1942 	 * there is a mapping.
1943 	 */
1944 	mtx_lock(&moea_table_mutex);
1945 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1946 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1947 			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
1948 			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
1949 			    (pte_lo & PTE_PP)) {
1950 				mtx_unlock(&moea_table_mutex);
1951 				return (0);
1952 			}
1953 			moea_pvo_remove(pvo, -1);
1954 			break;
1955 		}
1956 	}
1957 
1958 	/*
1959 	 * If we aren't overwriting a mapping, try to allocate.
1960 	 */
1961 	if (moea_initialized) {
1962 		pvo = uma_zalloc(zone, M_NOWAIT);
1963 	} else {
1964 		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1965 			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1966 			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1967 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1968 		}
1969 		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1970 		moea_bpvo_pool_index++;
1971 		bootstrap = 1;
1972 	}
1973 
1974 	if (pvo == NULL) {
1975 		mtx_unlock(&moea_table_mutex);
1976 		return (ENOMEM);
1977 	}
1978 
1979 	moea_pvo_entries++;
1980 	pvo->pvo_vaddr = va;
1981 	pvo->pvo_pmap = pm;
1982 	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1983 	pvo->pvo_vaddr &= ~ADDR_POFF;
1984 	if (flags & VM_PROT_EXECUTE)
1985 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1986 	if (flags & PVO_WIRED)
1987 		pvo->pvo_vaddr |= PVO_WIRED;
1988 	if (pvo_head != &moea_pvo_kunmanaged)
1989 		pvo->pvo_vaddr |= PVO_MANAGED;
1990 	if (bootstrap)
1991 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1992 
1993 	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
1994 
1995 	/*
1996 	 * Add to pmap list
1997 	 */
1998 	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
1999 
2000 	/*
2001 	 * Remember if the list was empty and therefore will be the first
2002 	 * item.
2003 	 */
2004 	if (LIST_FIRST(pvo_head) == NULL)
2005 		first = 1;
2006 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2007 
2008 	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
2009 		pm->pm_stats.wired_count++;
2010 	pm->pm_stats.resident_count++;
2011 
2012 	/*
2013 	 * We hope this succeeds but it isn't required.
2014 	 */
2015 	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2016 	if (i >= 0) {
2017 		PVO_PTEGIDX_SET(pvo, i);
2018 	} else {
2019 		panic("moea_pvo_enter: overflow");
2020 		moea_pte_overflow++;
2021 	}
2022 	mtx_unlock(&moea_table_mutex);
2023 
2024 	return (first ? ENOENT : 0);
2025 }
2026 
2027 static void
2028 moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
2029 {
2030 	struct	pte *pt;
2031 
2032 	/*
2033 	 * If there is an active pte entry, we need to deactivate it (and
2034 	 * save the ref & cfg bits).
2035 	 */
2036 	pt = moea_pvo_to_pte(pvo, pteidx);
2037 	if (pt != NULL) {
2038 		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2039 		mtx_unlock(&moea_table_mutex);
2040 		PVO_PTEGIDX_CLR(pvo);
2041 	} else {
2042 		moea_pte_overflow--;
2043 	}
2044 
2045 	/*
2046 	 * Update our statistics.
2047 	 */
2048 	pvo->pvo_pmap->pm_stats.resident_count--;
2049 	if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED)
2050 		pvo->pvo_pmap->pm_stats.wired_count--;
2051 
2052 	/*
2053 	 * Save the REF/CHG bits into their cache if the page is managed.
2054 	 */
2055 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2056 		struct	vm_page *pg;
2057 
2058 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
2059 		if (pg != NULL) {
2060 			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2061 			    (PTE_REF | PTE_CHG));
2062 		}
2063 	}
2064 
2065 	/*
2066 	 * Remove this PVO from the PV and pmap lists.
2067 	 */
2068 	LIST_REMOVE(pvo, pvo_vlink);
2069 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2070 
2071 	/*
2072 	 * Remove this from the overflow list and return it to the pool
2073 	 * if we aren't going to reuse it.
2074 	 */
2075 	LIST_REMOVE(pvo, pvo_olink);
2076 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2077 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2078 		    moea_upvo_zone, pvo);
2079 	moea_pvo_entries--;
2080 	moea_pvo_remove_calls++;
2081 }
2082 
2083 static __inline int
2084 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2085 {
2086 	int	pteidx;
2087 
2088 	/*
2089 	 * We can find the actual pte entry without searching by grabbing
2090 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2091 	 * noticing the HID bit.
2092 	 */
2093 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2094 	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2095 		pteidx ^= moea_pteg_mask * 8;
2096 
2097 	return (pteidx);
2098 }
2099 
2100 static struct pvo_entry *
2101 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2102 {
2103 	struct	pvo_entry *pvo;
2104 	int	ptegidx;
2105 	u_int	sr;
2106 
2107 	va &= ~ADDR_POFF;
2108 	sr = va_to_sr(pm->pm_sr, va);
2109 	ptegidx = va_to_pteg(sr, va);
2110 
2111 	mtx_lock(&moea_table_mutex);
2112 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2113 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2114 			if (pteidx_p)
2115 				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2116 			break;
2117 		}
2118 	}
2119 	mtx_unlock(&moea_table_mutex);
2120 
2121 	return (pvo);
2122 }
2123 
2124 static struct pte *
2125 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2126 {
2127 	struct	pte *pt;
2128 
2129 	/*
2130 	 * If we haven't been supplied the ptegidx, calculate it.
2131 	 */
2132 	if (pteidx == -1) {
2133 		int	ptegidx;
2134 		u_int	sr;
2135 
2136 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2137 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2138 		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2139 	}
2140 
2141 	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2142 	mtx_lock(&moea_table_mutex);
2143 
2144 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2145 		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2146 		    "valid pte index", pvo);
2147 	}
2148 
2149 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2150 		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2151 		    "pvo but no valid pte", pvo);
2152 	}
2153 
2154 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2155 		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2156 			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2157 			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2158 		}
2159 
2160 		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2161 		    != 0) {
2162 			panic("moea_pvo_to_pte: pvo %p pte does not match "
2163 			    "pte %p in moea_pteg_table", pvo, pt);
2164 		}
2165 
2166 		mtx_assert(&moea_table_mutex, MA_OWNED);
2167 		return (pt);
2168 	}
2169 
2170 	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2171 		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2172 		    "moea_pteg_table but valid in pvo", pvo, pt);
2173 	}
2174 
2175 	mtx_unlock(&moea_table_mutex);
2176 	return (NULL);
2177 }
2178 
2179 /*
2180  * XXX: THIS STUFF SHOULD BE IN pte.c?
2181  */
2182 int
2183 moea_pte_spill(vm_offset_t addr)
2184 {
2185 	struct	pvo_entry *source_pvo, *victim_pvo;
2186 	struct	pvo_entry *pvo;
2187 	int	ptegidx, i, j;
2188 	u_int	sr;
2189 	struct	pteg *pteg;
2190 	struct	pte *pt;
2191 
2192 	moea_pte_spills++;
2193 
2194 	sr = mfsrin(addr);
2195 	ptegidx = va_to_pteg(sr, addr);
2196 
2197 	/*
2198 	 * Have to substitute some entry.  Use the primary hash for this.
2199 	 * Use low bits of timebase as random generator.
2200 	 */
2201 	pteg = &moea_pteg_table[ptegidx];
2202 	mtx_lock(&moea_table_mutex);
2203 	__asm __volatile("mftb %0" : "=r"(i));
2204 	i &= 7;
2205 	pt = &pteg->pt[i];
2206 
2207 	source_pvo = NULL;
2208 	victim_pvo = NULL;
2209 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2210 		/*
2211 		 * We need to find a pvo entry for this address.
2212 		 */
2213 		if (source_pvo == NULL &&
2214 		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2215 		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2216 			/*
2217 			 * Now found an entry to be spilled into the pteg.
2218 			 * The PTE is now valid, so we know it's active.
2219 			 */
2220 			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2221 
2222 			if (j >= 0) {
2223 				PVO_PTEGIDX_SET(pvo, j);
2224 				moea_pte_overflow--;
2225 				mtx_unlock(&moea_table_mutex);
2226 				return (1);
2227 			}
2228 
2229 			source_pvo = pvo;
2230 
2231 			if (victim_pvo != NULL)
2232 				break;
2233 		}
2234 
2235 		/*
2236 		 * We also need the pvo entry of the victim we are replacing
2237 		 * so save the R & C bits of the PTE.
2238 		 */
2239 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2240 		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2241 			victim_pvo = pvo;
2242 			if (source_pvo != NULL)
2243 				break;
2244 		}
2245 	}
2246 
2247 	if (source_pvo == NULL) {
2248 		mtx_unlock(&moea_table_mutex);
2249 		return (0);
2250 	}
2251 
2252 	if (victim_pvo == NULL) {
2253 		if ((pt->pte_hi & PTE_HID) == 0)
2254 			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2255 			    "entry", pt);
2256 
2257 		/*
2258 		 * If this is a secondary PTE, we need to search it's primary
2259 		 * pvo bucket for the matching PVO.
2260 		 */
2261 		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2262 		    pvo_olink) {
2263 			/*
2264 			 * We also need the pvo entry of the victim we are
2265 			 * replacing so save the R & C bits of the PTE.
2266 			 */
2267 			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2268 				victim_pvo = pvo;
2269 				break;
2270 			}
2271 		}
2272 
2273 		if (victim_pvo == NULL)
2274 			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2275 			    "entry", pt);
2276 	}
2277 
2278 	/*
2279 	 * We are invalidating the TLB entry for the EA we are replacing even
2280 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2281 	 * contained in the TLB entry.
2282 	 */
2283 	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2284 
2285 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2286 	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2287 
2288 	PVO_PTEGIDX_CLR(victim_pvo);
2289 	PVO_PTEGIDX_SET(source_pvo, i);
2290 	moea_pte_replacements++;
2291 
2292 	mtx_unlock(&moea_table_mutex);
2293 	return (1);
2294 }
2295 
2296 static int
2297 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2298 {
2299 	struct	pte *pt;
2300 	int	i;
2301 
2302 	mtx_assert(&moea_table_mutex, MA_OWNED);
2303 
2304 	/*
2305 	 * First try primary hash.
2306 	 */
2307 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2308 		if ((pt->pte_hi & PTE_VALID) == 0) {
2309 			pvo_pt->pte_hi &= ~PTE_HID;
2310 			moea_pte_set(pt, pvo_pt);
2311 			return (i);
2312 		}
2313 	}
2314 
2315 	/*
2316 	 * Now try secondary hash.
2317 	 */
2318 	ptegidx ^= moea_pteg_mask;
2319 
2320 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2321 		if ((pt->pte_hi & PTE_VALID) == 0) {
2322 			pvo_pt->pte_hi |= PTE_HID;
2323 			moea_pte_set(pt, pvo_pt);
2324 			return (i);
2325 		}
2326 	}
2327 
2328 	panic("moea_pte_insert: overflow");
2329 	return (-1);
2330 }
2331 
2332 static boolean_t
2333 moea_query_bit(vm_page_t m, int ptebit)
2334 {
2335 	struct	pvo_entry *pvo;
2336 	struct	pte *pt;
2337 
2338 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2339 	if (moea_attr_fetch(m) & ptebit)
2340 		return (TRUE);
2341 
2342 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2343 
2344 		/*
2345 		 * See if we saved the bit off.  If so, cache it and return
2346 		 * success.
2347 		 */
2348 		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2349 			moea_attr_save(m, ptebit);
2350 			return (TRUE);
2351 		}
2352 	}
2353 
2354 	/*
2355 	 * No luck, now go through the hard part of looking at the PTEs
2356 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2357 	 * the PTEs.
2358 	 */
2359 	powerpc_sync();
2360 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2361 
2362 		/*
2363 		 * See if this pvo has a valid PTE.  if so, fetch the
2364 		 * REF/CHG bits from the valid PTE.  If the appropriate
2365 		 * ptebit is set, cache it and return success.
2366 		 */
2367 		pt = moea_pvo_to_pte(pvo, -1);
2368 		if (pt != NULL) {
2369 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2370 			mtx_unlock(&moea_table_mutex);
2371 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2372 				moea_attr_save(m, ptebit);
2373 				return (TRUE);
2374 			}
2375 		}
2376 	}
2377 
2378 	return (FALSE);
2379 }
2380 
2381 static u_int
2382 moea_clear_bit(vm_page_t m, int ptebit)
2383 {
2384 	u_int	count;
2385 	struct	pvo_entry *pvo;
2386 	struct	pte *pt;
2387 
2388 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2389 
2390 	/*
2391 	 * Clear the cached value.
2392 	 */
2393 	moea_attr_clear(m, ptebit);
2394 
2395 	/*
2396 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2397 	 * we can reset the right ones).  note that since the pvo entries and
2398 	 * list heads are accessed via BAT0 and are never placed in the page
2399 	 * table, we don't have to worry about further accesses setting the
2400 	 * REF/CHG bits.
2401 	 */
2402 	powerpc_sync();
2403 
2404 	/*
2405 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2406 	 * valid pte clear the ptebit from the valid pte.
2407 	 */
2408 	count = 0;
2409 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2410 		pt = moea_pvo_to_pte(pvo, -1);
2411 		if (pt != NULL) {
2412 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2413 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2414 				count++;
2415 				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2416 			}
2417 			mtx_unlock(&moea_table_mutex);
2418 		}
2419 		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2420 	}
2421 
2422 	return (count);
2423 }
2424 
2425 /*
2426  * Return true if the physical range is encompassed by the battable[idx]
2427  */
2428 static int
2429 moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2430 {
2431 	u_int prot;
2432 	u_int32_t start;
2433 	u_int32_t end;
2434 	u_int32_t bat_ble;
2435 
2436 	/*
2437 	 * Return immediately if not a valid mapping
2438 	 */
2439 	if (!(battable[idx].batu & BAT_Vs))
2440 		return (EINVAL);
2441 
2442 	/*
2443 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2444 	 * so it can function as an i/o page
2445 	 */
2446 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2447 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2448 		return (EPERM);
2449 
2450 	/*
2451 	 * The address should be within the BAT range. Assume that the
2452 	 * start address in the BAT has the correct alignment (thus
2453 	 * not requiring masking)
2454 	 */
2455 	start = battable[idx].batl & BAT_PBS;
2456 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2457 	end = start | (bat_ble << 15) | 0x7fff;
2458 
2459 	if ((pa < start) || ((pa + size) > end))
2460 		return (ERANGE);
2461 
2462 	return (0);
2463 }
2464 
2465 boolean_t
2466 moea_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2467 {
2468 	int i;
2469 
2470 	/*
2471 	 * This currently does not work for entries that
2472 	 * overlap 256M BAT segments.
2473 	 */
2474 
2475 	for(i = 0; i < 16; i++)
2476 		if (moea_bat_mapped(i, pa, size) == 0)
2477 			return (0);
2478 
2479 	return (EFAULT);
2480 }
2481 
2482 /*
2483  * Map a set of physical memory pages into the kernel virtual
2484  * address space. Return a pointer to where it is mapped. This
2485  * routine is intended to be used for mapping device memory,
2486  * NOT real memory.
2487  */
2488 void *
2489 moea_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2490 {
2491 
2492 	return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2493 }
2494 
2495 void *
2496 moea_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2497 {
2498 	vm_offset_t va, tmpva, ppa, offset;
2499 	int i;
2500 
2501 	ppa = trunc_page(pa);
2502 	offset = pa & PAGE_MASK;
2503 	size = roundup(offset + size, PAGE_SIZE);
2504 
2505 	/*
2506 	 * If the physical address lies within a valid BAT table entry,
2507 	 * return the 1:1 mapping. This currently doesn't work
2508 	 * for regions that overlap 256M BAT segments.
2509 	 */
2510 	for (i = 0; i < 16; i++) {
2511 		if (moea_bat_mapped(i, pa, size) == 0)
2512 			return ((void *) pa);
2513 	}
2514 
2515 	va = kmem_alloc_nofault(kernel_map, size);
2516 	if (!va)
2517 		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2518 
2519 	for (tmpva = va; size > 0;) {
2520 		moea_kenter_attr(mmu, tmpva, ppa, ma);
2521 		tlbie(tmpva);
2522 		size -= PAGE_SIZE;
2523 		tmpva += PAGE_SIZE;
2524 		ppa += PAGE_SIZE;
2525 	}
2526 
2527 	return ((void *)(va + offset));
2528 }
2529 
2530 void
2531 moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2532 {
2533 	vm_offset_t base, offset;
2534 
2535 	/*
2536 	 * If this is outside kernel virtual space, then it's a
2537 	 * battable entry and doesn't require unmapping
2538 	 */
2539 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2540 		base = trunc_page(va);
2541 		offset = va & PAGE_MASK;
2542 		size = roundup(offset + size, PAGE_SIZE);
2543 		kmem_free(kernel_map, base, size);
2544 	}
2545 }
2546 
2547 static void
2548 moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2549 {
2550 	struct pvo_entry *pvo;
2551 	vm_offset_t lim;
2552 	vm_paddr_t pa;
2553 	vm_size_t len;
2554 
2555 	PMAP_LOCK(pm);
2556 	while (sz > 0) {
2557 		lim = round_page(va);
2558 		len = MIN(lim - va, sz);
2559 		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2560 		if (pvo != NULL) {
2561 			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2562 			    (va & ADDR_POFF);
2563 			moea_syncicache(pa, len);
2564 		}
2565 		va += len;
2566 		sz -= len;
2567 	}
2568 	PMAP_UNLOCK(pm);
2569 }
2570