xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision 4b2eaea43fec8e8792be611dea204071a10b655a)
1 /*
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #ifndef lint
94 static const char rcsid[] =
95    "$FreeBSD$";
96 #endif /* not lint */
97 
98 /*
99  * Manages physical address maps.
100  *
101  * In addition to hardware address maps, this module is called upon to
102  * provide software-use-only maps which may or may not be stored in the
103  * same form as hardware maps.  These pseudo-maps are used to store
104  * intermediate results from copy operations to and from address spaces.
105  *
106  * Since the information managed by this module is also stored by the
107  * logical address mapping module, this module may throw away valid virtual
108  * to physical mappings at almost any time.  However, invalidations of
109  * mappings must be done as requested.
110  *
111  * In order to cope with hardware architectures which make virtual to
112  * physical map invalidates expensive, this module may delay invalidate
113  * reduced protection operations until such time as they are actually
114  * necessary.  This module is given full information as to which processors
115  * are currently using which maps, and to when physical maps must be made
116  * correct.
117  */
118 
119 #include <sys/param.h>
120 #include <sys/kernel.h>
121 #include <sys/ktr.h>
122 #include <sys/lock.h>
123 #include <sys/msgbuf.h>
124 #include <sys/mutex.h>
125 #include <sys/proc.h>
126 #include <sys/sysctl.h>
127 #include <sys/systm.h>
128 #include <sys/vmmeter.h>
129 
130 #include <dev/ofw/openfirm.h>
131 
132 #include <vm/vm.h>
133 #include <vm/vm_param.h>
134 #include <vm/vm_kern.h>
135 #include <vm/vm_page.h>
136 #include <vm/vm_map.h>
137 #include <vm/vm_object.h>
138 #include <vm/vm_extern.h>
139 #include <vm/vm_pageout.h>
140 #include <vm/vm_pager.h>
141 #include <vm/uma.h>
142 
143 #include <machine/powerpc.h>
144 #include <machine/bat.h>
145 #include <machine/frame.h>
146 #include <machine/md_var.h>
147 #include <machine/psl.h>
148 #include <machine/pte.h>
149 #include <machine/sr.h>
150 
151 #define	PMAP_DEBUG
152 
153 #define TODO	panic("%s: not implemented", __func__);
154 
155 #define	PMAP_LOCK(pm)
156 #define	PMAP_UNLOCK(pm)
157 
158 #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
159 #define	TLBSYNC()	__asm __volatile("tlbsync");
160 #define	SYNC()		__asm __volatile("sync");
161 #define	EIEIO()		__asm __volatile("eieio");
162 
163 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
164 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
165 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
166 
167 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
168 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
169 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
170 #define	PVO_MANAGED		0x0020		/* PVO entry is managed */
171 #define	PVO_EXECUTABLE		0x0040		/* PVO entry is executable */
172 #define	PVO_BOOTSTRAP		0x0080		/* PVO entry allocated during
173 						   bootstrap */
174 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
175 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
176 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
177 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
178 #define	PVO_PTEGIDX_CLR(pvo)	\
179 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
180 #define	PVO_PTEGIDX_SET(pvo, i)	\
181 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
182 
183 #define	PMAP_PVO_CHECK(pvo)
184 
185 struct ofw_map {
186 	vm_offset_t	om_va;
187 	vm_size_t	om_len;
188 	vm_offset_t	om_pa;
189 	u_int		om_mode;
190 };
191 
192 int	pmap_bootstrapped = 0;
193 
194 /*
195  * Virtual and physical address of message buffer.
196  */
197 struct		msgbuf *msgbufp;
198 vm_offset_t	msgbuf_phys;
199 
200 /*
201  * Physical addresses of first and last available physical page.
202  */
203 vm_offset_t avail_start;
204 vm_offset_t avail_end;
205 
206 /*
207  * Map of physical memory regions.
208  */
209 vm_offset_t	phys_avail[128];
210 u_int		phys_avail_count;
211 static struct	mem_region *regions;
212 static struct	mem_region *pregions;
213 int		regions_sz, pregions_sz;
214 static struct	ofw_map *translations;
215 
216 /*
217  * First and last available kernel virtual addresses.
218  */
219 vm_offset_t virtual_avail;
220 vm_offset_t virtual_end;
221 vm_offset_t kernel_vm_end;
222 
223 /*
224  * Kernel pmap.
225  */
226 struct pmap kernel_pmap_store;
227 extern struct pmap ofw_pmap;
228 
229 /*
230  * PTEG data.
231  */
232 static struct	pteg *pmap_pteg_table;
233 u_int		pmap_pteg_count;
234 u_int		pmap_pteg_mask;
235 
236 /*
237  * PVO data.
238  */
239 struct	pvo_head *pmap_pvo_table;		/* pvo entries by pteg index */
240 struct	pvo_head pmap_pvo_kunmanaged =
241     LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
242 struct	pvo_head pmap_pvo_unmanaged =
243     LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
244 
245 uma_zone_t	pmap_upvo_zone;	/* zone for pvo entries for unmanaged pages */
246 uma_zone_t	pmap_mpvo_zone;	/* zone for pvo entries for managed pages */
247 struct		vm_object pmap_upvo_zone_obj;
248 struct		vm_object pmap_mpvo_zone_obj;
249 static vm_object_t	pmap_pvo_obj;
250 static u_int		pmap_pvo_count;
251 
252 #define	BPVO_POOL_SIZE	32768
253 static struct	pvo_entry *pmap_bpvo_pool;
254 static int	pmap_bpvo_pool_index = 0;
255 
256 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
257 static u_int	pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
258 
259 static boolean_t pmap_initialized = FALSE;
260 
261 /*
262  * Statistics.
263  */
264 u_int	pmap_pte_valid = 0;
265 u_int	pmap_pte_overflow = 0;
266 u_int	pmap_pte_replacements = 0;
267 u_int	pmap_pvo_entries = 0;
268 u_int	pmap_pvo_enter_calls = 0;
269 u_int	pmap_pvo_remove_calls = 0;
270 u_int	pmap_pte_spills = 0;
271 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
272     0, "");
273 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
274     &pmap_pte_overflow, 0, "");
275 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
276     &pmap_pte_replacements, 0, "");
277 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
278     0, "");
279 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
280     &pmap_pvo_enter_calls, 0, "");
281 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
282     &pmap_pvo_remove_calls, 0, "");
283 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
284     &pmap_pte_spills, 0, "");
285 
286 struct	pvo_entry *pmap_pvo_zeropage;
287 
288 vm_offset_t	pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
289 u_int		pmap_rkva_count = 4;
290 
291 /*
292  * Allocate physical memory for use in pmap_bootstrap.
293  */
294 static vm_offset_t	pmap_bootstrap_alloc(vm_size_t, u_int);
295 
296 /*
297  * PTE calls.
298  */
299 static int		pmap_pte_insert(u_int, struct pte *);
300 
301 /*
302  * PVO calls.
303  */
304 static int	pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
305 		    vm_offset_t, vm_offset_t, u_int, int);
306 static void	pmap_pvo_remove(struct pvo_entry *, int);
307 static struct	pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
308 static struct	pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
309 
310 /*
311  * Utility routines.
312  */
313 static void *		pmap_pvo_allocf(uma_zone_t, int, u_int8_t *, int);
314 static struct		pvo_entry *pmap_rkva_alloc(void);
315 static void		pmap_pa_map(struct pvo_entry *, vm_offset_t,
316 			    struct pte *, int *);
317 static void		pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
318 static void		pmap_syncicache(vm_offset_t, vm_size_t);
319 static boolean_t	pmap_query_bit(vm_page_t, int);
320 static boolean_t	pmap_clear_bit(vm_page_t, int);
321 static void		tlbia(void);
322 
323 static __inline int
324 va_to_sr(u_int *sr, vm_offset_t va)
325 {
326 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
327 }
328 
329 static __inline u_int
330 va_to_pteg(u_int sr, vm_offset_t addr)
331 {
332 	u_int hash;
333 
334 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
335 	    ADDR_PIDX_SHFT);
336 	return (hash & pmap_pteg_mask);
337 }
338 
339 static __inline struct pvo_head *
340 pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
341 {
342 	struct	vm_page *pg;
343 
344 	pg = PHYS_TO_VM_PAGE(pa);
345 
346 	if (pg_p != NULL)
347 		*pg_p = pg;
348 
349 	if (pg == NULL)
350 		return (&pmap_pvo_unmanaged);
351 
352 	return (&pg->md.mdpg_pvoh);
353 }
354 
355 static __inline struct pvo_head *
356 vm_page_to_pvoh(vm_page_t m)
357 {
358 
359 	return (&m->md.mdpg_pvoh);
360 }
361 
362 static __inline void
363 pmap_attr_clear(vm_page_t m, int ptebit)
364 {
365 
366 	m->md.mdpg_attrs &= ~ptebit;
367 }
368 
369 static __inline int
370 pmap_attr_fetch(vm_page_t m)
371 {
372 
373 	return (m->md.mdpg_attrs);
374 }
375 
376 static __inline void
377 pmap_attr_save(vm_page_t m, int ptebit)
378 {
379 
380 	m->md.mdpg_attrs |= ptebit;
381 }
382 
383 static __inline int
384 pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
385 {
386 	if (pt->pte_hi == pvo_pt->pte_hi)
387 		return (1);
388 
389 	return (0);
390 }
391 
392 static __inline int
393 pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
394 {
395 	return (pt->pte_hi & ~PTE_VALID) ==
396 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
397 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
398 }
399 
400 static __inline void
401 pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
402 {
403 	/*
404 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
405 	 * set when the real pte is set in memory.
406 	 *
407 	 * Note: Don't set the valid bit for correct operation of tlb update.
408 	 */
409 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
410 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
411 	pt->pte_lo = pte_lo;
412 }
413 
414 static __inline void
415 pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
416 {
417 
418 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
419 }
420 
421 static __inline void
422 pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
423 {
424 
425 	/*
426 	 * As shown in Section 7.6.3.2.3
427 	 */
428 	pt->pte_lo &= ~ptebit;
429 	TLBIE(va);
430 	EIEIO();
431 	TLBSYNC();
432 	SYNC();
433 }
434 
435 static __inline void
436 pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
437 {
438 
439 	pvo_pt->pte_hi |= PTE_VALID;
440 
441 	/*
442 	 * Update the PTE as defined in section 7.6.3.1.
443 	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
444 	 * been saved so this routine can restore them (if desired).
445 	 */
446 	pt->pte_lo = pvo_pt->pte_lo;
447 	EIEIO();
448 	pt->pte_hi = pvo_pt->pte_hi;
449 	SYNC();
450 	pmap_pte_valid++;
451 }
452 
453 static __inline void
454 pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
455 {
456 
457 	pvo_pt->pte_hi &= ~PTE_VALID;
458 
459 	/*
460 	 * Force the reg & chg bits back into the PTEs.
461 	 */
462 	SYNC();
463 
464 	/*
465 	 * Invalidate the pte.
466 	 */
467 	pt->pte_hi &= ~PTE_VALID;
468 
469 	SYNC();
470 	TLBIE(va);
471 	EIEIO();
472 	TLBSYNC();
473 	SYNC();
474 
475 	/*
476 	 * Save the reg & chg bits.
477 	 */
478 	pmap_pte_synch(pt, pvo_pt);
479 	pmap_pte_valid--;
480 }
481 
482 static __inline void
483 pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
484 {
485 
486 	/*
487 	 * Invalidate the PTE
488 	 */
489 	pmap_pte_unset(pt, pvo_pt, va);
490 	pmap_pte_set(pt, pvo_pt);
491 }
492 
493 /*
494  * Quick sort callout for comparing memory regions.
495  */
496 static int	mr_cmp(const void *a, const void *b);
497 static int	om_cmp(const void *a, const void *b);
498 
499 static int
500 mr_cmp(const void *a, const void *b)
501 {
502 	const struct	mem_region *regiona;
503 	const struct	mem_region *regionb;
504 
505 	regiona = a;
506 	regionb = b;
507 	if (regiona->mr_start < regionb->mr_start)
508 		return (-1);
509 	else if (regiona->mr_start > regionb->mr_start)
510 		return (1);
511 	else
512 		return (0);
513 }
514 
515 static int
516 om_cmp(const void *a, const void *b)
517 {
518 	const struct	ofw_map *mapa;
519 	const struct	ofw_map *mapb;
520 
521 	mapa = a;
522 	mapb = b;
523 	if (mapa->om_pa < mapb->om_pa)
524 		return (-1);
525 	else if (mapa->om_pa > mapb->om_pa)
526 		return (1);
527 	else
528 		return (0);
529 }
530 
531 void
532 pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
533 {
534 	ihandle_t	mmui;
535 	phandle_t	chosen, mmu;
536 	int		sz;
537 	int		i, j;
538 	int		ofw_mappings;
539 	vm_size_t	size, physsz;
540 	vm_offset_t	pa, va, off;
541 	u_int		batl, batu;
542 
543         /*
544          * Set up BAT0 to map the lowest 256 MB area
545          */
546         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
547         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
548 
549         /*
550          * Map PCI memory space.
551          */
552         battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
553         battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
554 
555         battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
556         battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
557 
558         battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
559         battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
560 
561         battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
562         battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
563 
564         /*
565          * Map obio devices.
566          */
567         battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
568         battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
569 
570 	/*
571 	 * Use an IBAT and a DBAT to map the bottom segment of memory
572 	 * where we are.
573 	 */
574 	batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
575 	batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
576 	__asm ("mtibatu 0,%0; mtibatl 0,%1; mtdbatu 0,%0; mtdbatl 0,%1"
577 	    :: "r"(batu), "r"(batl));
578 
579 #if 0
580 	/* map frame buffer */
581 	batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
582 	batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
583 	__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
584 	    :: "r"(batu), "r"(batl));
585 #endif
586 
587 #if 1
588 	/* map pci space */
589 	batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
590 	batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
591 	__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
592 	    :: "r"(batu), "r"(batl));
593 #endif
594 
595 	/*
596 	 * Set the start and end of kva.
597 	 */
598 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
599 	virtual_end = VM_MAX_KERNEL_ADDRESS;
600 
601 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
602 	CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
603 
604 	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
605 	for (i = 0; i < pregions_sz; i++) {
606 		vm_offset_t pa;
607 		vm_offset_t end;
608 
609 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
610 			pregions[i].mr_start,
611 			pregions[i].mr_start + pregions[i].mr_size,
612 			pregions[i].mr_size);
613 		/*
614 		 * Install entries into the BAT table to allow all
615 		 * of physmem to be convered by on-demand BAT entries.
616 		 * The loop will sometimes set the same battable element
617 		 * twice, but that's fine since they won't be used for
618 		 * a while yet.
619 		 */
620 		pa = pregions[i].mr_start & 0xf0000000;
621 		end = pregions[i].mr_start + pregions[i].mr_size;
622 		do {
623                         u_int n = pa >> ADDR_SR_SHFT;
624 
625 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
626 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
627 			pa += SEGMENT_LENGTH;
628 		} while (pa < end);
629 	}
630 
631 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
632 		panic("pmap_bootstrap: phys_avail too small");
633 	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
634 	phys_avail_count = 0;
635 	physsz = 0;
636 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
637 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
638 		    regions[i].mr_start + regions[i].mr_size,
639 		    regions[i].mr_size);
640 		phys_avail[j] = regions[i].mr_start;
641 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
642 		phys_avail_count++;
643 		physsz += regions[i].mr_size;
644 	}
645 	physmem = btoc(physsz);
646 
647 	/*
648 	 * Allocate PTEG table.
649 	 */
650 #ifdef PTEGCOUNT
651 	pmap_pteg_count = PTEGCOUNT;
652 #else
653 	pmap_pteg_count = 0x1000;
654 
655 	while (pmap_pteg_count < physmem)
656 		pmap_pteg_count <<= 1;
657 
658 	pmap_pteg_count >>= 1;
659 #endif /* PTEGCOUNT */
660 
661 	size = pmap_pteg_count * sizeof(struct pteg);
662 	CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
663 	    size);
664 	pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
665 	CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
666 	bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
667 	pmap_pteg_mask = pmap_pteg_count - 1;
668 
669 	/*
670 	 * Allocate pv/overflow lists.
671 	 */
672 	size = sizeof(struct pvo_head) * pmap_pteg_count;
673 	pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
674 	    PAGE_SIZE);
675 	CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
676 	for (i = 0; i < pmap_pteg_count; i++)
677 		LIST_INIT(&pmap_pvo_table[i]);
678 
679 	/*
680 	 * Allocate the message buffer.
681 	 */
682 	msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
683 
684 	/*
685 	 * Initialise the unmanaged pvo pool.
686 	 */
687 	pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(
688 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
689 	pmap_bpvo_pool_index = 0;
690 
691 	/*
692 	 * Make sure kernel vsid is allocated as well as VSID 0.
693 	 */
694 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
695 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
696 	pmap_vsid_bitmap[0] |= 1;
697 
698 	/*
699 	 * Set up the OpenFirmware pmap and add it's mappings.
700 	 */
701 	pmap_pinit(&ofw_pmap);
702 	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
703 	if ((chosen = OF_finddevice("/chosen")) == -1)
704 		panic("pmap_bootstrap: can't find /chosen");
705 	OF_getprop(chosen, "mmu", &mmui, 4);
706 	if ((mmu = OF_instance_to_package(mmui)) == -1)
707 		panic("pmap_bootstrap: can't get mmu package");
708 	if ((sz = OF_getproplen(mmu, "translations")) == -1)
709 		panic("pmap_bootstrap: can't get ofw translation count");
710 	translations = NULL;
711 	for (i = 0; phys_avail[i + 2] != 0; i += 2) {
712 		if (phys_avail[i + 1] >= sz)
713 			translations = (struct ofw_map *)phys_avail[i];
714 	}
715 	if (translations == NULL)
716 		panic("pmap_bootstrap: no space to copy translations");
717 	bzero(translations, sz);
718 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
719 		panic("pmap_bootstrap: can't get ofw translations");
720 	CTR0(KTR_PMAP, "pmap_bootstrap: translations");
721 	sz /= sizeof(*translations);
722 	qsort(translations, sz, sizeof (*translations), om_cmp);
723 	for (i = 0, ofw_mappings = 0; i < sz; i++) {
724 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
725 		    translations[i].om_pa, translations[i].om_va,
726 		    translations[i].om_len);
727 
728 		/*
729 		 * If the mapping is 1:1, let the RAM and device on-demand
730 		 * BAT tables take care of the translation.
731 		 */
732 		if (translations[i].om_va == translations[i].om_pa)
733 			continue;
734 
735 		/* Enter the pages */
736 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
737 			struct	vm_page m;
738 
739 			m.phys_addr = translations[i].om_pa + off;
740 			pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
741 				   VM_PROT_ALL, 1);
742 			ofw_mappings++;
743 		}
744 	}
745 #ifdef SMP
746 	TLBSYNC();
747 #endif
748 
749 	/*
750 	 * Initialize the kernel pmap (which is statically allocated).
751 	 */
752 	for (i = 0; i < 16; i++) {
753 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
754 	}
755 	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
756 	kernel_pmap->pm_active = ~0;
757 
758 	/*
759 	 * Allocate a kernel stack with a guard page for thread0 and map it
760 	 * into the kernel page map.
761 	 */
762 	pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
763 	kstack0_phys = pa;
764 	kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
765 	CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
766 	    kstack0);
767 	virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
768 	for (i = 0; i < KSTACK_PAGES; i++) {
769 		pa = kstack0_phys + i * PAGE_SIZE;
770 		va = kstack0 + i * PAGE_SIZE;
771 		pmap_kenter(va, pa);
772 		TLBIE(va);
773 	}
774 
775 	/*
776 	 * Calculate the first and last available physical addresses.
777 	 */
778 	avail_start = phys_avail[0];
779 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
780 		;
781 	avail_end = phys_avail[i + 1];
782 	Maxmem = powerpc_btop(avail_end);
783 
784 	/*
785 	 * Allocate virtual address space for the message buffer.
786 	 */
787 	msgbufp = (struct msgbuf *)virtual_avail;
788 	virtual_avail += round_page(MSGBUF_SIZE);
789 
790 	/*
791 	 * Initialize hardware.
792 	 */
793 	for (i = 0; i < 16; i++) {
794 		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
795 	}
796 	__asm __volatile ("mtsr %0,%1"
797 	    :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
798 	__asm __volatile ("sync; mtsdr1 %0; isync"
799 	    :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
800 	tlbia();
801 
802 	pmap_bootstrapped++;
803 }
804 
805 /*
806  * Activate a user pmap.  The pmap must be activated before it's address
807  * space can be accessed in any way.
808  */
809 void
810 pmap_activate(struct thread *td)
811 {
812 	pmap_t	pm, pmr;
813 
814 	/*
815 	 * Load all the data we need up front to encourage the compiler to
816 	 * not issue any loads while we have interrupts disabled below.
817 	 */
818 	pm = &td->td_proc->p_vmspace->vm_pmap;
819 
820 	if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL)
821 		pmr = pm;
822 
823 	pm->pm_active |= PCPU_GET(cpumask);
824 	PCPU_SET(curpmap, pmr);
825 }
826 
827 void
828 pmap_deactivate(struct thread *td)
829 {
830 	pmap_t	pm;
831 
832 	pm = &td->td_proc->p_vmspace->vm_pmap;
833 	pm->pm_active &= ~(PCPU_GET(cpumask));
834 	PCPU_SET(curpmap, NULL);
835 }
836 
837 vm_offset_t
838 pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
839 {
840 
841 	return (va);
842 }
843 
844 void
845 pmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired)
846 {
847 	struct	pvo_entry *pvo;
848 
849 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
850 
851 	if (pvo != NULL) {
852 		if (wired) {
853 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
854 				pm->pm_stats.wired_count++;
855 			pvo->pvo_vaddr |= PVO_WIRED;
856 		} else {
857 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
858 				pm->pm_stats.wired_count--;
859 			pvo->pvo_vaddr &= ~PVO_WIRED;
860 		}
861 	}
862 }
863 
864 void
865 pmap_clear_modify(vm_page_t m)
866 {
867 
868 	if (m->flags * PG_FICTITIOUS)
869 		return;
870 	pmap_clear_bit(m, PTE_CHG);
871 }
872 
873 void
874 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
875 	  vm_size_t len, vm_offset_t src_addr)
876 {
877 
878 	/*
879 	 * This is not needed as it's mainly an optimisation.
880 	 * It may want to be implemented later though.
881 	 */
882 }
883 
884 void
885 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
886 {
887 	vm_offset_t	dst;
888 	vm_offset_t	src;
889 
890 	dst = VM_PAGE_TO_PHYS(mdst);
891 	src = VM_PAGE_TO_PHYS(msrc);
892 
893 	kcopy((void *)src, (void *)dst, PAGE_SIZE);
894 }
895 
896 /*
897  * Zero a page of physical memory by temporarily mapping it into the tlb.
898  */
899 void
900 pmap_zero_page(vm_page_t m)
901 {
902 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
903 	caddr_t	va;
904 	int	i;
905 
906 	if (pa < SEGMENT_LENGTH) {
907 		va = (caddr_t) pa;
908 	} else if (pmap_initialized) {
909 		if (pmap_pvo_zeropage == NULL)
910 			pmap_pvo_zeropage = pmap_rkva_alloc();
911 		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
912 		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
913 	} else {
914 		panic("pmap_zero_page: can't zero pa %#x", pa);
915 	}
916 
917 	bzero(va, PAGE_SIZE);
918 
919 #if 0
920 	for (i = PAGE_SIZE / CACHELINESIZE; i > 0; i--) {
921 		__asm __volatile("dcbz 0,%0" :: "r"(va));
922 		va += CACHELINESIZE;
923 	}
924 #endif
925 
926 	if (pa >= SEGMENT_LENGTH)
927 		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
928 }
929 
930 void
931 pmap_zero_page_area(vm_page_t m, int off, int size)
932 {
933 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
934 	caddr_t va;
935 	int     i;
936 
937 	if (pa < SEGMENT_LENGTH) {
938 		va = (caddr_t) pa;
939 	} else if (pmap_initialized) {
940 		if (pmap_pvo_zeropage == NULL)
941 			pmap_pvo_zeropage = pmap_rkva_alloc();
942 		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
943 		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
944 	} else {
945 		panic("pmap_zero_page: can't zero pa %#x", pa);
946 	}
947 
948 	bzero(va + off, size);
949 
950 #if 0
951 	for (i = size / CACHELINESIZE; i > 0; i--) {
952 		__asm __volatile("dcbz 0,%0" :: "r"(va));
953 		va += CACHELINESIZE;
954 	}
955 #endif
956 
957 	if (pa >= SEGMENT_LENGTH)
958 		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
959 }
960 
961 void
962 pmap_zero_page_idle(vm_page_t m)
963 {
964 
965 	/* XXX this is called outside of Giant, is pmap_zero_page safe? */
966 	/* XXX maybe have a dedicated mapping for this to avoid the problem? */
967 	mtx_lock(&Giant);
968 	pmap_zero_page(m);
969 	mtx_unlock(&Giant);
970 }
971 
972 /*
973  * Map the given physical page at the specified virtual address in the
974  * target pmap with the protection requested.  If specified the page
975  * will be wired down.
976  */
977 void
978 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
979 	   boolean_t wired)
980 {
981 	struct		pvo_head *pvo_head;
982 	uma_zone_t	zone;
983 	vm_page_t	pg;
984 	u_int		pte_lo, pvo_flags, was_exec, i;
985 	int		error;
986 
987 	if (!pmap_initialized) {
988 		pvo_head = &pmap_pvo_kunmanaged;
989 		zone = pmap_upvo_zone;
990 		pvo_flags = 0;
991 		pg = NULL;
992 		was_exec = PTE_EXEC;
993 	} else {
994 		pvo_head = pa_to_pvoh(VM_PAGE_TO_PHYS(m), &pg);
995 		zone = pmap_mpvo_zone;
996 		pvo_flags = PVO_MANAGED;
997 		was_exec = 0;
998 	}
999 
1000 	/*
1001 	 * If this is a managed page, and it's the first reference to the page,
1002 	 * clear the execness of the page.  Otherwise fetch the execness.
1003 	 */
1004 	if (pg != NULL) {
1005 		if (LIST_EMPTY(pvo_head)) {
1006 			pmap_attr_clear(pg, PTE_EXEC);
1007 		} else {
1008 			was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
1009 		}
1010 	}
1011 
1012 
1013 	/*
1014 	 * Assume the page is cache inhibited and access is guarded unless
1015 	 * it's in our available memory array.
1016 	 */
1017 	pte_lo = PTE_I | PTE_G;
1018 	for (i = 0; i < pregions_sz; i++) {
1019 		if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
1020 		    (VM_PAGE_TO_PHYS(m) <
1021 			(pregions[i].mr_start + pregions[i].mr_size))) {
1022 			pte_lo &= ~(PTE_I | PTE_G);
1023 			break;
1024 		}
1025 	}
1026 
1027 	if (prot & VM_PROT_WRITE)
1028 		pte_lo |= PTE_BW;
1029 	else
1030 		pte_lo |= PTE_BR;
1031 
1032 	pvo_flags |= (prot & VM_PROT_EXECUTE);
1033 
1034 	if (wired)
1035 		pvo_flags |= PVO_WIRED;
1036 
1037 	error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1038 	    pte_lo, pvo_flags);
1039 
1040 	/*
1041 	 * Flush the real page from the instruction cache if this page is
1042 	 * mapped executable and cacheable and was not previously mapped (or
1043 	 * was not mapped executable).
1044 	 */
1045 	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1046 	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1047 		/*
1048 		 * Flush the real memory from the cache.
1049 		 */
1050 		pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1051 		if (pg != NULL)
1052 			pmap_attr_save(pg, PTE_EXEC);
1053 	}
1054 
1055 	/* XXX syncicache always until problems are sorted */
1056 	pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1057 }
1058 
1059 vm_offset_t
1060 pmap_extract(pmap_t pm, vm_offset_t va)
1061 {
1062 	struct	pvo_entry *pvo;
1063 
1064 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1065 
1066 	if (pvo != NULL) {
1067 		return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1068 	}
1069 
1070 	return (0);
1071 }
1072 
1073 /*
1074  * Grow the number of kernel page table entries.  Unneeded.
1075  */
1076 void
1077 pmap_growkernel(vm_offset_t addr)
1078 {
1079 }
1080 
1081 void
1082 pmap_init(vm_offset_t phys_start, vm_offset_t phys_end)
1083 {
1084 
1085 	CTR0(KTR_PMAP, "pmap_init");
1086 
1087 	pmap_pvo_obj = vm_object_allocate(OBJT_PHYS, 16);
1088 	pmap_pvo_count = 0;
1089 	pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1090 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
1091 	uma_zone_set_allocf(pmap_upvo_zone, pmap_pvo_allocf);
1092 	pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1093 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
1094 	uma_zone_set_allocf(pmap_mpvo_zone, pmap_pvo_allocf);
1095 	pmap_initialized = TRUE;
1096 }
1097 
1098 void
1099 pmap_init2(void)
1100 {
1101 
1102 	CTR0(KTR_PMAP, "pmap_init2");
1103 }
1104 
1105 boolean_t
1106 pmap_is_modified(vm_page_t m)
1107 {
1108 
1109 	if (m->flags & PG_FICTITIOUS)
1110 		return (FALSE);
1111 
1112 	return (pmap_query_bit(m, PTE_CHG));
1113 }
1114 
1115 void
1116 pmap_clear_reference(vm_page_t m)
1117 {
1118 	TODO;
1119 }
1120 
1121 /*
1122  *	pmap_ts_referenced:
1123  *
1124  *	Return a count of reference bits for a page, clearing those bits.
1125  *	It is not necessary for every reference bit to be cleared, but it
1126  *	is necessary that 0 only be returned when there are truly no
1127  *	reference bits set.
1128  *
1129  *	XXX: The exact number of bits to check and clear is a matter that
1130  *	should be tested and standardized at some point in the future for
1131  *	optimal aging of shared pages.
1132  */
1133 
1134 int
1135 pmap_ts_referenced(vm_page_t m)
1136 {
1137 	TODO;
1138 	return (0);
1139 }
1140 
1141 /*
1142  * Map a wired page into kernel virtual address space.
1143  */
1144 void
1145 pmap_kenter(vm_offset_t va, vm_offset_t pa)
1146 {
1147 	u_int		pte_lo;
1148 	int		error;
1149 	int		i;
1150 
1151 #if 0
1152 	if (va < VM_MIN_KERNEL_ADDRESS)
1153 		panic("pmap_kenter: attempt to enter non-kernel address %#x",
1154 		    va);
1155 #endif
1156 
1157 	pte_lo = PTE_I | PTE_G;
1158 	for (i = 0; i < pregions_sz; i++) {
1159 		if ((pa >= pregions[i].mr_start) &&
1160 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
1161 			pte_lo &= ~(PTE_I | PTE_G);
1162 			break;
1163 		}
1164 	}
1165 
1166 	error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
1167 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1168 
1169 	if (error != 0 && error != ENOENT)
1170 		panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
1171 		    pa, error);
1172 
1173 	/*
1174 	 * Flush the real memory from the instruction cache.
1175 	 */
1176 	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1177 		pmap_syncicache(pa, PAGE_SIZE);
1178 	}
1179 }
1180 
1181 /*
1182  * Extract the physical page address associated with the given kernel virtual
1183  * address.
1184  */
1185 vm_offset_t
1186 pmap_kextract(vm_offset_t va)
1187 {
1188 	struct		pvo_entry *pvo;
1189 
1190 	pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1191 	if (pvo == NULL) {
1192 		return (0);
1193 	}
1194 
1195 	return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1196 }
1197 
1198 /*
1199  * Remove a wired page from kernel virtual address space.
1200  */
1201 void
1202 pmap_kremove(vm_offset_t va)
1203 {
1204 
1205 	pmap_remove(kernel_pmap, va, va + PAGE_SIZE);
1206 }
1207 
1208 /*
1209  * Map a range of physical addresses into kernel virtual address space.
1210  *
1211  * The value passed in *virt is a suggested virtual address for the mapping.
1212  * Architectures which can support a direct-mapped physical to virtual region
1213  * can return the appropriate address within that region, leaving '*virt'
1214  * unchanged.  We cannot and therefore do not; *virt is updated with the
1215  * first usable address after the mapped region.
1216  */
1217 vm_offset_t
1218 pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
1219 {
1220 	vm_offset_t	sva, va;
1221 
1222 	sva = *virt;
1223 	va = sva;
1224 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1225 		pmap_kenter(va, pa_start);
1226 	*virt = va;
1227 	return (sva);
1228 }
1229 
1230 int
1231 pmap_mincore(pmap_t pmap, vm_offset_t addr)
1232 {
1233 	TODO;
1234 	return (0);
1235 }
1236 
1237 void
1238 pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
1239 		    vm_pindex_t pindex, vm_size_t size, int limit)
1240 {
1241 
1242 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1243 	    ("pmap_remove_pages: non current pmap"));
1244 	/* XXX */
1245 }
1246 
1247 /*
1248  * Lower the permission for all mappings to a given page.
1249  */
1250 void
1251 pmap_page_protect(vm_page_t m, vm_prot_t prot)
1252 {
1253 	struct	pvo_head *pvo_head;
1254 	struct	pvo_entry *pvo, *next_pvo;
1255 	struct	pte *pt;
1256 
1257 	/*
1258 	 * Since the routine only downgrades protection, if the
1259 	 * maximal protection is desired, there isn't any change
1260 	 * to be made.
1261 	 */
1262 	if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
1263 	    (VM_PROT_READ|VM_PROT_WRITE))
1264 		return;
1265 
1266 	pvo_head = vm_page_to_pvoh(m);
1267 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1268 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1269 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1270 
1271 		/*
1272 		 * Downgrading to no mapping at all, we just remove the entry.
1273 		 */
1274 		if ((prot & VM_PROT_READ) == 0) {
1275 			pmap_pvo_remove(pvo, -1);
1276 			continue;
1277 		}
1278 
1279 		/*
1280 		 * If EXEC permission is being revoked, just clear the flag
1281 		 * in the PVO.
1282 		 */
1283 		if ((prot & VM_PROT_EXECUTE) == 0)
1284 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1285 
1286 		/*
1287 		 * If this entry is already RO, don't diddle with the page
1288 		 * table.
1289 		 */
1290 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
1291 			PMAP_PVO_CHECK(pvo);
1292 			continue;
1293 		}
1294 
1295 		/*
1296 		 * Grab the PTE before we diddle the bits so pvo_to_pte can
1297 		 * verify the pte contents are as expected.
1298 		 */
1299 		pt = pmap_pvo_to_pte(pvo, -1);
1300 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1301 		pvo->pvo_pte.pte_lo |= PTE_BR;
1302 		if (pt != NULL)
1303 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1304 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1305 	}
1306 }
1307 
1308 /*
1309  * Returns true if the pmap's pv is one of the first
1310  * 16 pvs linked to from this page.  This count may
1311  * be changed upwards or downwards in the future; it
1312  * is only necessary that true be returned for a small
1313  * subset of pmaps for proper page aging.
1314  */
1315 boolean_t
1316 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
1317 {
1318 	TODO;
1319 	return (0);
1320 }
1321 
1322 static u_int	pmap_vsidcontext;
1323 
1324 void
1325 pmap_pinit(pmap_t pmap)
1326 {
1327 	int	i, mask;
1328 	u_int	entropy;
1329 
1330 	entropy = 0;
1331 	__asm __volatile("mftb %0" : "=r"(entropy));
1332 
1333 	/*
1334 	 * Allocate some segment registers for this pmap.
1335 	 */
1336 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1337 		u_int	hash, n;
1338 
1339 		/*
1340 		 * Create a new value by mutiplying by a prime and adding in
1341 		 * entropy from the timebase register.  This is to make the
1342 		 * VSID more random so that the PT hash function collides
1343 		 * less often.  (Note that the prime casues gcc to do shifts
1344 		 * instead of a multiply.)
1345 		 */
1346 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1347 		hash = pmap_vsidcontext & (NPMAPS - 1);
1348 		if (hash == 0)		/* 0 is special, avoid it */
1349 			continue;
1350 		n = hash >> 5;
1351 		mask = 1 << (hash & (VSID_NBPW - 1));
1352 		hash = (pmap_vsidcontext & 0xfffff);
1353 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1354 			/* anything free in this bucket? */
1355 			if (pmap_vsid_bitmap[n] == 0xffffffff) {
1356 				entropy = (pmap_vsidcontext >> 20);
1357 				continue;
1358 			}
1359 			i = ffs(~pmap_vsid_bitmap[i]) - 1;
1360 			mask = 1 << i;
1361 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1362 			hash |= i;
1363 		}
1364 		pmap_vsid_bitmap[n] |= mask;
1365 		for (i = 0; i < 16; i++)
1366 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1367 		return;
1368 	}
1369 
1370 	panic("pmap_pinit: out of segments");
1371 }
1372 
1373 /*
1374  * Initialize the pmap associated with process 0.
1375  */
1376 void
1377 pmap_pinit0(pmap_t pm)
1378 {
1379 
1380 	pmap_pinit(pm);
1381 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1382 }
1383 
1384 void
1385 pmap_pinit2(pmap_t pmap)
1386 {
1387 	/* XXX: Remove this stub when no longer called */
1388 }
1389 
1390 void
1391 pmap_prefault(pmap_t pm, vm_offset_t va, vm_map_entry_t entry)
1392 {
1393 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1394 	    ("pmap_prefault: non current pmap"));
1395 	/* XXX */
1396 }
1397 
1398 /*
1399  * Set the physical protection on the specified range of this map as requested.
1400  */
1401 void
1402 pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1403 {
1404 	struct	pvo_entry *pvo;
1405 	struct	pte *pt;
1406 	int	pteidx;
1407 
1408 	CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1409 	    eva, prot);
1410 
1411 
1412 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1413 	    ("pmap_protect: non current pmap"));
1414 
1415 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1416 		pmap_remove(pm, sva, eva);
1417 		return;
1418 	}
1419 
1420 	for (; sva < eva; sva += PAGE_SIZE) {
1421 		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1422 		if (pvo == NULL)
1423 			continue;
1424 
1425 		if ((prot & VM_PROT_EXECUTE) == 0)
1426 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1427 
1428 		/*
1429 		 * Grab the PTE pointer before we diddle with the cached PTE
1430 		 * copy.
1431 		 */
1432 		pt = pmap_pvo_to_pte(pvo, pteidx);
1433 		/*
1434 		 * Change the protection of the page.
1435 		 */
1436 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1437 		pvo->pvo_pte.pte_lo |= PTE_BR;
1438 
1439 		/*
1440 		 * If the PVO is in the page table, update that pte as well.
1441 		 */
1442 		if (pt != NULL)
1443 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1444 	}
1445 }
1446 
1447 vm_offset_t
1448 pmap_phys_address(int ppn)
1449 {
1450 	TODO;
1451 	return (0);
1452 }
1453 
1454 /*
1455  * Map a list of wired pages into kernel virtual address space.  This is
1456  * intended for temporary mappings which do not need page modification or
1457  * references recorded.  Existing mappings in the region are overwritten.
1458  */
1459 void
1460 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1461 {
1462 	int	i;
1463 
1464 	for (i = 0; i < count; i++, va += PAGE_SIZE)
1465 		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
1466 }
1467 
1468 /*
1469  * Remove page mappings from kernel virtual address space.  Intended for
1470  * temporary mappings entered by pmap_qenter.
1471  */
1472 void
1473 pmap_qremove(vm_offset_t va, int count)
1474 {
1475 	int	i;
1476 
1477 	for (i = 0; i < count; i++, va += PAGE_SIZE)
1478 		pmap_kremove(va);
1479 }
1480 
1481 void
1482 pmap_release(pmap_t pmap)
1483 {
1484         int idx, mask;
1485 
1486 	/*
1487 	 * Free segment register's VSID
1488 	 */
1489         if (pmap->pm_sr[0] == 0)
1490                 panic("pmap_release");
1491 
1492         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1493         mask = 1 << (idx % VSID_NBPW);
1494         idx /= VSID_NBPW;
1495         pmap_vsid_bitmap[idx] &= ~mask;
1496 }
1497 
1498 /*
1499  * Remove the given range of addresses from the specified map.
1500  */
1501 void
1502 pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1503 {
1504 	struct	pvo_entry *pvo;
1505 	int	pteidx;
1506 
1507 	for (; sva < eva; sva += PAGE_SIZE) {
1508 		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1509 		if (pvo != NULL) {
1510 			pmap_pvo_remove(pvo, pteidx);
1511 		}
1512 	}
1513 }
1514 
1515 /*
1516  * Remove all pages from specified address space, this aids process exit
1517  * speeds.  This is much faster than pmap_remove in the case of running down
1518  * an entire address space.  Only works for the current pmap.
1519  */
1520 void
1521 pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1522 {
1523 
1524 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1525 	    ("pmap_remove_pages: non current pmap"));
1526 	pmap_remove(pm, sva, eva);
1527 }
1528 
1529 #ifndef KSTACK_MAX_PAGES
1530 #define KSTACK_MAX_PAGES 32
1531 #endif
1532 
1533 /*
1534  * Create the kernel stack and pcb for a new thread.
1535  * This routine directly affects the fork perf for a process and
1536  * create performance for a thread.
1537  */
1538 void
1539 pmap_new_thread(struct thread *td, int pages)
1540 {
1541 	vm_page_t	ma[KSTACK_MAX_PAGES];
1542 	vm_object_t	ksobj;
1543 	vm_offset_t	ks;
1544 	vm_page_t	m;
1545 	u_int		i;
1546 
1547 	/* Bounds check */
1548 	if (pages <= 1)
1549 		pages = KSTACK_PAGES;
1550 	else if (pages > KSTACK_MAX_PAGES)
1551 		pages = KSTACK_MAX_PAGES;
1552 
1553 	/*
1554 	 * Allocate object for the kstack.
1555 	 */
1556 	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
1557 	td->td_kstack_obj = ksobj;
1558 
1559 	/*
1560 	 * Get a kernel virtual address for the kstack for this thread.
1561 	 */
1562 	ks = kmem_alloc_nofault(kernel_map,
1563 	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
1564 	if (ks == 0)
1565 		panic("pmap_new_thread: kstack allocation failed");
1566 	TLBIE(ks);
1567 	ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
1568 	td->td_kstack = ks;
1569 
1570 	/*
1571 	 * Knowing the number of pages allocated is useful when you
1572 	 * want to deallocate them.
1573 	 */
1574 	td->td_kstack_pages = pages;
1575 
1576 	for (i = 0; i < pages; i++) {
1577 		/*
1578 		 * Get a kernel stack page.
1579 		 */
1580 		m = vm_page_grab(ksobj, i,
1581 		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
1582 		ma[i] = m;
1583 
1584 		vm_page_wakeup(m);
1585 		vm_page_flag_clear(m, PG_ZERO);
1586 		m->valid = VM_PAGE_BITS_ALL;
1587 	}
1588 
1589 	/*
1590 	 * Enter the page into the kernel address space
1591 	 */
1592 	pmap_qenter(ks, ma, pages);
1593 }
1594 
1595 void
1596 pmap_dispose_thread(struct thread *td)
1597 {
1598 	vm_object_t ksobj;
1599 	vm_offset_t ks;
1600 	vm_page_t m;
1601 	int i;
1602 	int pages;
1603 
1604 	pages = td->td_kstack_pages;
1605 	ksobj = td->td_kstack_obj;
1606 	ks = td->td_kstack;
1607 	for (i = 0; i < pages ; i++) {
1608 		m = vm_page_lookup(ksobj, i);
1609 		if (m == NULL)
1610 			panic("pmap_dispose_thread: kstack already missing?");
1611 		vm_page_lock_queues();
1612 		vm_page_busy(m);
1613 		vm_page_unwire(m, 0);
1614 		vm_page_free(m);
1615 		vm_page_unlock_queues();
1616 	}
1617 	pmap_qremove(ks, pages);
1618 	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
1619 	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
1620 	vm_object_deallocate(ksobj);
1621 }
1622 
1623 void
1624 pmap_new_altkstack(struct thread *td, int pages)
1625 {
1626 	/* shuffle the original stack */
1627 	td->td_altkstack_obj = td->td_kstack_obj;
1628 	td->td_altkstack = td->td_kstack;
1629 	td->td_altkstack_pages = td->td_kstack_pages;
1630 
1631 	pmap_new_thread(td, pages);
1632 }
1633 
1634 void
1635 pmap_dispose_altkstack(struct thread *td)
1636 {
1637 	pmap_dispose_thread(td);
1638 
1639 	/* restore the original kstack */
1640 	td->td_kstack = td->td_altkstack;
1641 	td->td_kstack_obj = td->td_altkstack_obj;
1642 	td->td_kstack_pages = td->td_altkstack_pages;
1643 	td->td_altkstack = 0;
1644 	td->td_altkstack_obj = NULL;
1645 	td->td_altkstack_pages = 0;
1646 }
1647 
1648 void
1649 pmap_swapin_thread(struct thread *td)
1650 {
1651 	vm_page_t ma[KSTACK_MAX_PAGES];
1652 	vm_object_t ksobj;
1653 	vm_offset_t ks;
1654 	vm_page_t m;
1655 	int rv;
1656 	int i;
1657 	int pages;
1658 
1659 	pages = td->td_kstack_pages;
1660 	ksobj = td->td_kstack_obj;
1661 	ks = td->td_kstack;
1662 	for (i = 0; i < pages; i++) {
1663 		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1664 		if (m->valid != VM_PAGE_BITS_ALL) {
1665 			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1666 			if (rv != VM_PAGER_OK)
1667 				panic("pmap_swapin_thread: cannot get kstack");
1668 			m = vm_page_lookup(ksobj, i);
1669 			m->valid = VM_PAGE_BITS_ALL;
1670 		}
1671 		ma[i] = m;
1672 		vm_page_lock_queues();
1673 		vm_page_wire(m);
1674 		vm_page_wakeup(m);
1675 		vm_page_unlock_queues();
1676 	}
1677 	pmap_qenter(ks, ma, pages);
1678 }
1679 
1680 
1681 void
1682 pmap_swapout_thread(struct thread *td)
1683 {
1684 	vm_object_t ksobj;
1685 	vm_offset_t ks;
1686 	vm_page_t m;
1687 	int i;
1688 	int pages;
1689 
1690 	pages = td->td_kstack_pages;
1691 	ksobj = td->td_kstack_obj;
1692 	ks = (vm_offset_t)td->td_kstack;
1693 	for (i = 0; i < pages; i++) {
1694 		m = vm_page_lookup(ksobj, i);
1695 		if (m == NULL)
1696 			panic("pmap_swapout_thread: kstack already missing?");
1697 		vm_page_lock_queues();
1698 		vm_page_dirty(m);
1699 		vm_page_unwire(m, 0);
1700 		vm_page_unlock_queues();
1701 	}
1702 	pmap_qremove(ks, pages);
1703 }
1704 
1705 /*
1706  * Allocate a physical page of memory directly from the phys_avail map.
1707  * Can only be called from pmap_bootstrap before avail start and end are
1708  * calculated.
1709  */
1710 static vm_offset_t
1711 pmap_bootstrap_alloc(vm_size_t size, u_int align)
1712 {
1713 	vm_offset_t	s, e;
1714 	int		i, j;
1715 
1716 	size = round_page(size);
1717 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1718 		if (align != 0)
1719 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1720 		else
1721 			s = phys_avail[i];
1722 		e = s + size;
1723 
1724 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1725 			continue;
1726 
1727 		if (s == phys_avail[i]) {
1728 			phys_avail[i] += size;
1729 		} else if (e == phys_avail[i + 1]) {
1730 			phys_avail[i + 1] -= size;
1731 		} else {
1732 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1733 				phys_avail[j] = phys_avail[j - 2];
1734 				phys_avail[j + 1] = phys_avail[j - 1];
1735 			}
1736 
1737 			phys_avail[i + 3] = phys_avail[i + 1];
1738 			phys_avail[i + 1] = s;
1739 			phys_avail[i + 2] = e;
1740 			phys_avail_count++;
1741 		}
1742 
1743 		return (s);
1744 	}
1745 	panic("pmap_bootstrap_alloc: could not allocate memory");
1746 }
1747 
1748 /*
1749  * Return an unmapped pvo for a kernel virtual address.
1750  * Used by pmap functions that operate on physical pages.
1751  */
1752 static struct pvo_entry *
1753 pmap_rkva_alloc(void)
1754 {
1755 	struct		pvo_entry *pvo;
1756 	struct		pte *pt;
1757 	vm_offset_t	kva;
1758 	int		pteidx;
1759 
1760 	if (pmap_rkva_count == 0)
1761 		panic("pmap_rkva_alloc: no more reserved KVAs");
1762 
1763 	kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
1764 	pmap_kenter(kva, 0);
1765 
1766 	pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
1767 
1768 	if (pvo == NULL)
1769 		panic("pmap_kva_alloc: pmap_pvo_find_va failed");
1770 
1771 	pt = pmap_pvo_to_pte(pvo, pteidx);
1772 
1773 	if (pt == NULL)
1774 		panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
1775 
1776 	pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1777 	PVO_PTEGIDX_CLR(pvo);
1778 
1779 	pmap_pte_overflow++;
1780 
1781 	return (pvo);
1782 }
1783 
1784 static void
1785 pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1786     int *depth_p)
1787 {
1788 	struct	pte *pt;
1789 
1790 	/*
1791 	 * If this pvo already has a valid pte, we need to save it so it can
1792 	 * be restored later.  We then just reload the new PTE over the old
1793 	 * slot.
1794 	 */
1795 	if (saved_pt != NULL) {
1796 		pt = pmap_pvo_to_pte(pvo, -1);
1797 
1798 		if (pt != NULL) {
1799 			pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1800 			PVO_PTEGIDX_CLR(pvo);
1801 			pmap_pte_overflow++;
1802 		}
1803 
1804 		*saved_pt = pvo->pvo_pte;
1805 
1806 		pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1807 	}
1808 
1809 	pvo->pvo_pte.pte_lo |= pa;
1810 
1811 	if (!pmap_pte_spill(pvo->pvo_vaddr))
1812 		panic("pmap_pa_map: could not spill pvo %p", pvo);
1813 
1814 	if (depth_p != NULL)
1815 		(*depth_p)++;
1816 }
1817 
1818 static void
1819 pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1820 {
1821 	struct	pte *pt;
1822 
1823 	pt = pmap_pvo_to_pte(pvo, -1);
1824 
1825 	if (pt != NULL) {
1826 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1827 		PVO_PTEGIDX_CLR(pvo);
1828 		pmap_pte_overflow++;
1829 	}
1830 
1831 	pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1832 
1833 	/*
1834 	 * If there is a saved PTE and it's valid, restore it and return.
1835 	 */
1836 	if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1837 		if (depth_p != NULL && --(*depth_p) == 0)
1838 			panic("pmap_pa_unmap: restoring but depth == 0");
1839 
1840 		pvo->pvo_pte = *saved_pt;
1841 
1842 		if (!pmap_pte_spill(pvo->pvo_vaddr))
1843 			panic("pmap_pa_unmap: could not spill pvo %p", pvo);
1844 	}
1845 }
1846 
1847 static void
1848 pmap_syncicache(vm_offset_t pa, vm_size_t len)
1849 {
1850 	__syncicache((void *)pa, len);
1851 }
1852 
1853 static void
1854 tlbia(void)
1855 {
1856 	caddr_t	i;
1857 
1858 	SYNC();
1859 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1860 		TLBIE(i);
1861 		EIEIO();
1862 	}
1863 	TLBSYNC();
1864 	SYNC();
1865 }
1866 
1867 static int
1868 pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1869     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1870 {
1871 	struct	pvo_entry *pvo;
1872 	u_int	sr;
1873 	int	first;
1874 	u_int	ptegidx;
1875 	int	i;
1876 	int     bootstrap;
1877 
1878 	pmap_pvo_enter_calls++;
1879 	first = 0;
1880 
1881 	bootstrap = 0;
1882 
1883 	/*
1884 	 * Compute the PTE Group index.
1885 	 */
1886 	va &= ~ADDR_POFF;
1887 	sr = va_to_sr(pm->pm_sr, va);
1888 	ptegidx = va_to_pteg(sr, va);
1889 
1890 	/*
1891 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1892 	 * there is a mapping.
1893 	 */
1894 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1895 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1896 			if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
1897 			    (pvo->pvo_pte.pte_lo & PTE_PP) ==
1898 			    (pte_lo & PTE_PP)) {
1899 				return (0);
1900 			}
1901 			pmap_pvo_remove(pvo, -1);
1902 			break;
1903 		}
1904 	}
1905 
1906 	/*
1907 	 * If we aren't overwriting a mapping, try to allocate.
1908 	 */
1909 	if (pmap_initialized) {
1910 		pvo = uma_zalloc(zone, M_NOWAIT);
1911 	} else {
1912 		if (pmap_bpvo_pool_index >= BPVO_POOL_SIZE) {
1913 			panic("pmap_enter: bpvo pool exhausted, %d, %d, %d",
1914 			      pmap_bpvo_pool_index, BPVO_POOL_SIZE,
1915 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1916 		}
1917 		pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
1918 		pmap_bpvo_pool_index++;
1919 		bootstrap = 1;
1920 	}
1921 
1922 	if (pvo == NULL) {
1923 		return (ENOMEM);
1924 	}
1925 
1926 	pmap_pvo_entries++;
1927 	pvo->pvo_vaddr = va;
1928 	pvo->pvo_pmap = pm;
1929 	LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1930 	pvo->pvo_vaddr &= ~ADDR_POFF;
1931 	if (flags & VM_PROT_EXECUTE)
1932 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1933 	if (flags & PVO_WIRED)
1934 		pvo->pvo_vaddr |= PVO_WIRED;
1935 	if (pvo_head != &pmap_pvo_kunmanaged)
1936 		pvo->pvo_vaddr |= PVO_MANAGED;
1937 	if (bootstrap)
1938 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1939 	pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1940 
1941 	/*
1942 	 * Remember if the list was empty and therefore will be the first
1943 	 * item.
1944 	 */
1945 	if (LIST_FIRST(pvo_head) == NULL)
1946 		first = 1;
1947 
1948 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1949 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1950 		pvo->pvo_pmap->pm_stats.wired_count++;
1951 	pvo->pvo_pmap->pm_stats.resident_count++;
1952 
1953 	/*
1954 	 * We hope this succeeds but it isn't required.
1955 	 */
1956 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1957 	if (i >= 0) {
1958 		PVO_PTEGIDX_SET(pvo, i);
1959 	} else {
1960 		panic("pmap_pvo_enter: overflow");
1961 		pmap_pte_overflow++;
1962 	}
1963 
1964 	return (first ? ENOENT : 0);
1965 }
1966 
1967 static void
1968 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1969 {
1970 	struct	pte *pt;
1971 
1972 	/*
1973 	 * If there is an active pte entry, we need to deactivate it (and
1974 	 * save the ref & cfg bits).
1975 	 */
1976 	pt = pmap_pvo_to_pte(pvo, pteidx);
1977 	if (pt != NULL) {
1978 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1979 		PVO_PTEGIDX_CLR(pvo);
1980 	} else {
1981 		pmap_pte_overflow--;
1982 	}
1983 
1984 	/*
1985 	 * Update our statistics.
1986 	 */
1987 	pvo->pvo_pmap->pm_stats.resident_count--;
1988 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1989 		pvo->pvo_pmap->pm_stats.wired_count--;
1990 
1991 	/*
1992 	 * Save the REF/CHG bits into their cache if the page is managed.
1993 	 */
1994 	if (pvo->pvo_vaddr & PVO_MANAGED) {
1995 		struct	vm_page *pg;
1996 
1997 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1998 		if (pg != NULL) {
1999 			pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
2000 			    (PTE_REF | PTE_CHG));
2001 		}
2002 	}
2003 
2004 	/*
2005 	 * Remove this PVO from the PV list.
2006 	 */
2007 	LIST_REMOVE(pvo, pvo_vlink);
2008 
2009 	/*
2010 	 * Remove this from the overflow list and return it to the pool
2011 	 * if we aren't going to reuse it.
2012 	 */
2013 	LIST_REMOVE(pvo, pvo_olink);
2014 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2015 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
2016 		    pmap_upvo_zone, pvo);
2017 	pmap_pvo_entries--;
2018 	pmap_pvo_remove_calls++;
2019 }
2020 
2021 static __inline int
2022 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2023 {
2024 	int	pteidx;
2025 
2026 	/*
2027 	 * We can find the actual pte entry without searching by grabbing
2028 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2029 	 * noticing the HID bit.
2030 	 */
2031 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2032 	if (pvo->pvo_pte.pte_hi & PTE_HID)
2033 		pteidx ^= pmap_pteg_mask * 8;
2034 
2035 	return (pteidx);
2036 }
2037 
2038 static struct pvo_entry *
2039 pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2040 {
2041 	struct	pvo_entry *pvo;
2042 	int	ptegidx;
2043 	u_int	sr;
2044 
2045 	va &= ~ADDR_POFF;
2046 	sr = va_to_sr(pm->pm_sr, va);
2047 	ptegidx = va_to_pteg(sr, va);
2048 
2049 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2050 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2051 			if (pteidx_p)
2052 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
2053 			return (pvo);
2054 		}
2055 	}
2056 
2057 	return (NULL);
2058 }
2059 
2060 static struct pte *
2061 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2062 {
2063 	struct	pte *pt;
2064 
2065 	/*
2066 	 * If we haven't been supplied the ptegidx, calculate it.
2067 	 */
2068 	if (pteidx == -1) {
2069 		int	ptegidx;
2070 		u_int	sr;
2071 
2072 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2073 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2074 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
2075 	}
2076 
2077 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
2078 
2079 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2080 		panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
2081 		    "valid pte index", pvo);
2082 	}
2083 
2084 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2085 		panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
2086 		    "pvo but no valid pte", pvo);
2087 	}
2088 
2089 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2090 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
2091 			panic("pmap_pvo_to_pte: pvo %p has valid pte in "
2092 			    "pmap_pteg_table %p but invalid in pvo", pvo, pt);
2093 		}
2094 
2095 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2096 		    != 0) {
2097 			panic("pmap_pvo_to_pte: pvo %p pte does not match "
2098 			    "pte %p in pmap_pteg_table", pvo, pt);
2099 		}
2100 
2101 		return (pt);
2102 	}
2103 
2104 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
2105 		panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
2106 		    "pmap_pteg_table but valid in pvo", pvo, pt);
2107 	}
2108 
2109 	return (NULL);
2110 }
2111 
2112 static void *
2113 pmap_pvo_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
2114 {
2115 	vm_page_t	m;
2116 
2117 	if (bytes != PAGE_SIZE)
2118 		panic("pmap_pvo_allocf: benno was shortsighted.  hit him.");
2119 
2120 	*flags = UMA_SLAB_PRIV;
2121 	m = vm_page_alloc(pmap_pvo_obj, pmap_pvo_count, VM_ALLOC_SYSTEM);
2122 	if (m == NULL)
2123 		return (NULL);
2124 	pmap_pvo_count++;
2125 	return ((void *)VM_PAGE_TO_PHYS(m));
2126 }
2127 
2128 /*
2129  * XXX: THIS STUFF SHOULD BE IN pte.c?
2130  */
2131 int
2132 pmap_pte_spill(vm_offset_t addr)
2133 {
2134 	struct	pvo_entry *source_pvo, *victim_pvo;
2135 	struct	pvo_entry *pvo;
2136 	int	ptegidx, i, j;
2137 	u_int	sr;
2138 	struct	pteg *pteg;
2139 	struct	pte *pt;
2140 
2141 	pmap_pte_spills++;
2142 
2143 	sr = mfsrin(addr);
2144 	ptegidx = va_to_pteg(sr, addr);
2145 
2146 	/*
2147 	 * Have to substitute some entry.  Use the primary hash for this.
2148 	 * Use low bits of timebase as random generator.
2149 	 */
2150 	pteg = &pmap_pteg_table[ptegidx];
2151 	__asm __volatile("mftb %0" : "=r"(i));
2152 	i &= 7;
2153 	pt = &pteg->pt[i];
2154 
2155 	source_pvo = NULL;
2156 	victim_pvo = NULL;
2157 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2158 		/*
2159 		 * We need to find a pvo entry for this address.
2160 		 */
2161 		PMAP_PVO_CHECK(pvo);
2162 		if (source_pvo == NULL &&
2163 		    pmap_pte_match(&pvo->pvo_pte, sr, addr,
2164 		    pvo->pvo_pte.pte_hi & PTE_HID)) {
2165 			/*
2166 			 * Now found an entry to be spilled into the pteg.
2167 			 * The PTE is now valid, so we know it's active.
2168 			 */
2169 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
2170 
2171 			if (j >= 0) {
2172 				PVO_PTEGIDX_SET(pvo, j);
2173 				pmap_pte_overflow--;
2174 				PMAP_PVO_CHECK(pvo);
2175 				return (1);
2176 			}
2177 
2178 			source_pvo = pvo;
2179 
2180 			if (victim_pvo != NULL)
2181 				break;
2182 		}
2183 
2184 		/*
2185 		 * We also need the pvo entry of the victim we are replacing
2186 		 * so save the R & C bits of the PTE.
2187 		 */
2188 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2189 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
2190 			victim_pvo = pvo;
2191 			if (source_pvo != NULL)
2192 				break;
2193 		}
2194 	}
2195 
2196 	if (source_pvo == NULL)
2197 		return (0);
2198 
2199 	if (victim_pvo == NULL) {
2200 		if ((pt->pte_hi & PTE_HID) == 0)
2201 			panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
2202 			    "entry", pt);
2203 
2204 		/*
2205 		 * If this is a secondary PTE, we need to search it's primary
2206 		 * pvo bucket for the matching PVO.
2207 		 */
2208 		LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
2209 		    pvo_olink) {
2210 			PMAP_PVO_CHECK(pvo);
2211 			/*
2212 			 * We also need the pvo entry of the victim we are
2213 			 * replacing so save the R & C bits of the PTE.
2214 			 */
2215 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
2216 				victim_pvo = pvo;
2217 				break;
2218 			}
2219 		}
2220 
2221 		if (victim_pvo == NULL)
2222 			panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
2223 			    "entry", pt);
2224 	}
2225 
2226 	/*
2227 	 * We are invalidating the TLB entry for the EA we are replacing even
2228 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2229 	 * contained in the TLB entry.
2230 	 */
2231 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
2232 
2233 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
2234 	pmap_pte_set(pt, &source_pvo->pvo_pte);
2235 
2236 	PVO_PTEGIDX_CLR(victim_pvo);
2237 	PVO_PTEGIDX_SET(source_pvo, i);
2238 	pmap_pte_replacements++;
2239 
2240 	PMAP_PVO_CHECK(victim_pvo);
2241 	PMAP_PVO_CHECK(source_pvo);
2242 
2243 	return (1);
2244 }
2245 
2246 static int
2247 pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2248 {
2249 	struct	pte *pt;
2250 	int	i;
2251 
2252 	/*
2253 	 * First try primary hash.
2254 	 */
2255 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2256 		if ((pt->pte_hi & PTE_VALID) == 0) {
2257 			pvo_pt->pte_hi &= ~PTE_HID;
2258 			pmap_pte_set(pt, pvo_pt);
2259 			return (i);
2260 		}
2261 	}
2262 
2263 	/*
2264 	 * Now try secondary hash.
2265 	 */
2266 	ptegidx ^= pmap_pteg_mask;
2267 	ptegidx++;
2268 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2269 		if ((pt->pte_hi & PTE_VALID) == 0) {
2270 			pvo_pt->pte_hi |= PTE_HID;
2271 			pmap_pte_set(pt, pvo_pt);
2272 			return (i);
2273 		}
2274 	}
2275 
2276 	panic("pmap_pte_insert: overflow");
2277 	return (-1);
2278 }
2279 
2280 static boolean_t
2281 pmap_query_bit(vm_page_t m, int ptebit)
2282 {
2283 	struct	pvo_entry *pvo;
2284 	struct	pte *pt;
2285 
2286 	if (pmap_attr_fetch(m) & ptebit)
2287 		return (TRUE);
2288 
2289 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2290 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2291 
2292 		/*
2293 		 * See if we saved the bit off.  If so, cache it and return
2294 		 * success.
2295 		 */
2296 		if (pvo->pvo_pte.pte_lo & ptebit) {
2297 			pmap_attr_save(m, ptebit);
2298 			PMAP_PVO_CHECK(pvo);	/* sanity check */
2299 			return (TRUE);
2300 		}
2301 	}
2302 
2303 	/*
2304 	 * No luck, now go through the hard part of looking at the PTEs
2305 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2306 	 * the PTEs.
2307 	 */
2308 	SYNC();
2309 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2310 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2311 
2312 		/*
2313 		 * See if this pvo has a valid PTE.  if so, fetch the
2314 		 * REF/CHG bits from the valid PTE.  If the appropriate
2315 		 * ptebit is set, cache it and return success.
2316 		 */
2317 		pt = pmap_pvo_to_pte(pvo, -1);
2318 		if (pt != NULL) {
2319 			pmap_pte_synch(pt, &pvo->pvo_pte);
2320 			if (pvo->pvo_pte.pte_lo & ptebit) {
2321 				pmap_attr_save(m, ptebit);
2322 				PMAP_PVO_CHECK(pvo);	/* sanity check */
2323 				return (TRUE);
2324 			}
2325 		}
2326 	}
2327 
2328 	return (TRUE);
2329 }
2330 
2331 static boolean_t
2332 pmap_clear_bit(vm_page_t m, int ptebit)
2333 {
2334 	struct	pvo_entry *pvo;
2335 	struct	pte *pt;
2336 	int	rv;
2337 
2338 	/*
2339 	 * Clear the cached value.
2340 	 */
2341 	rv = pmap_attr_fetch(m);
2342 	pmap_attr_clear(m, ptebit);
2343 
2344 	/*
2345 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2346 	 * we can reset the right ones).  note that since the pvo entries and
2347 	 * list heads are accessed via BAT0 and are never placed in the page
2348 	 * table, we don't have to worry about further accesses setting the
2349 	 * REF/CHG bits.
2350 	 */
2351 	SYNC();
2352 
2353 	/*
2354 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2355 	 * valid pte clear the ptebit from the valid pte.
2356 	 */
2357 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2358 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2359 		pt = pmap_pvo_to_pte(pvo, -1);
2360 		if (pt != NULL) {
2361 			pmap_pte_synch(pt, &pvo->pvo_pte);
2362 			if (pvo->pvo_pte.pte_lo & ptebit)
2363 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2364 		}
2365 		rv |= pvo->pvo_pte.pte_lo;
2366 		pvo->pvo_pte.pte_lo &= ~ptebit;
2367 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2368 	}
2369 
2370 	return ((rv & ptebit) != 0);
2371 }
2372 
2373 /*
2374  * Return true if the physical range is encompassed by the battable[idx]
2375  */
2376 static int
2377 pmap_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2378 {
2379 	u_int prot;
2380 	u_int32_t start;
2381 	u_int32_t end;
2382 	u_int32_t bat_ble;
2383 
2384 	/*
2385 	 * Return immediately if not a valid mapping
2386 	 */
2387 	if (!battable[idx].batu & BAT_Vs)
2388 		return (EINVAL);
2389 
2390 	/*
2391 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2392 	 * so it can function as an i/o page
2393 	 */
2394 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2395 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2396 		return (EPERM);
2397 
2398 	/*
2399 	 * The address should be within the BAT range. Assume that the
2400 	 * start address in the BAT has the correct alignment (thus
2401 	 * not requiring masking)
2402 	 */
2403 	start = battable[idx].batl & BAT_PBS;
2404 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2405 	end = start | (bat_ble << 15) | 0x7fff;
2406 
2407 	if ((pa < start) || ((pa + size) > end))
2408 		return (ERANGE);
2409 
2410 	return (0);
2411 }
2412 
2413 
2414 /*
2415  * Map a set of physical memory pages into the kernel virtual
2416  * address space. Return a pointer to where it is mapped. This
2417  * routine is intended to be used for mapping device memory,
2418  * NOT real memory.
2419  */
2420 void *
2421 pmap_mapdev(vm_offset_t pa, vm_size_t size)
2422 {
2423 	vm_offset_t va, tmpva, ppa, offset;
2424 	int i;
2425 
2426 	ppa = trunc_page(pa);
2427 	offset = pa & PAGE_MASK;
2428 	size = roundup(offset + size, PAGE_SIZE);
2429 
2430 	GIANT_REQUIRED;
2431 
2432 	/*
2433 	 * If the physical address lies within a valid BAT table entry,
2434 	 * return the 1:1 mapping. This currently doesn't work
2435 	 * for regions that overlap 256M BAT segments.
2436 	 */
2437 	for (i = 0; i < 16; i++) {
2438 		if (pmap_bat_mapped(i, pa, size) == 0)
2439 			return ((void *) pa);
2440 	}
2441 
2442 	va = kmem_alloc_pageable(kernel_map, size);
2443 	if (!va)
2444 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2445 
2446 	for (tmpva = va; size > 0;) {
2447 		pmap_kenter(tmpva, ppa);
2448 		TLBIE(tmpva); /* XXX or should it be invalidate-all ? */
2449 		size -= PAGE_SIZE;
2450 		tmpva += PAGE_SIZE;
2451 		ppa += PAGE_SIZE;
2452 	}
2453 
2454 	return ((void *)(va + offset));
2455 }
2456 
2457 void
2458 pmap_unmapdev(vm_offset_t va, vm_size_t size)
2459 {
2460 	vm_offset_t base, offset;
2461 
2462 	/*
2463 	 * If this is outside kernel virtual space, then it's a
2464 	 * battable entry and doesn't require unmapping
2465 	 */
2466 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2467 		base = trunc_page(va);
2468 		offset = va & PAGE_MASK;
2469 		size = roundup(offset + size, PAGE_SIZE);
2470 		kmem_free(kernel_map, base, size);
2471 	}
2472 }
2473