1 /*- 2 * Copyright (c) 2001 The NetBSD Foundation, Inc. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to The NetBSD Foundation 6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 * POSSIBILITY OF SUCH DAMAGE. 28 */ 29 /*- 30 * Copyright (C) 1995, 1996 Wolfgang Solfrank. 31 * Copyright (C) 1995, 1996 TooLs GmbH. 32 * All rights reserved. 33 * 34 * Redistribution and use in source and binary forms, with or without 35 * modification, are permitted provided that the following conditions 36 * are met: 37 * 1. Redistributions of source code must retain the above copyright 38 * notice, this list of conditions and the following disclaimer. 39 * 2. Redistributions in binary form must reproduce the above copyright 40 * notice, this list of conditions and the following disclaimer in the 41 * documentation and/or other materials provided with the distribution. 42 * 3. All advertising materials mentioning features or use of this software 43 * must display the following acknowledgement: 44 * This product includes software developed by TooLs GmbH. 45 * 4. The name of TooLs GmbH may not be used to endorse or promote products 46 * derived from this software without specific prior written permission. 47 * 48 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 49 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 50 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 51 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 53 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 54 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 55 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 56 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 57 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 58 * 59 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $ 60 */ 61 /*- 62 * Copyright (C) 2001 Benno Rice. 63 * All rights reserved. 64 * 65 * Redistribution and use in source and binary forms, with or without 66 * modification, are permitted provided that the following conditions 67 * are met: 68 * 1. Redistributions of source code must retain the above copyright 69 * notice, this list of conditions and the following disclaimer. 70 * 2. Redistributions in binary form must reproduce the above copyright 71 * notice, this list of conditions and the following disclaimer in the 72 * documentation and/or other materials provided with the distribution. 73 * 74 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR 75 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 76 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 77 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 78 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 79 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 80 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 81 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 82 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 83 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 84 */ 85 86 #include <sys/cdefs.h> 87 __FBSDID("$FreeBSD$"); 88 89 /* 90 * Manages physical address maps. 91 * 92 * Since the information managed by this module is also stored by the 93 * logical address mapping module, this module may throw away valid virtual 94 * to physical mappings at almost any time. However, invalidations of 95 * mappings must be done as requested. 96 * 97 * In order to cope with hardware architectures which make virtual to 98 * physical map invalidates expensive, this module may delay invalidate 99 * reduced protection operations until such time as they are actually 100 * necessary. This module is given full information as to which processors 101 * are currently using which maps, and to when physical maps must be made 102 * correct. 103 */ 104 105 #include "opt_kstack_pages.h" 106 107 #include <sys/param.h> 108 #include <sys/kernel.h> 109 #include <sys/queue.h> 110 #include <sys/cpuset.h> 111 #include <sys/ktr.h> 112 #include <sys/lock.h> 113 #include <sys/msgbuf.h> 114 #include <sys/mutex.h> 115 #include <sys/proc.h> 116 #include <sys/rwlock.h> 117 #include <sys/sched.h> 118 #include <sys/sysctl.h> 119 #include <sys/systm.h> 120 #include <sys/vmmeter.h> 121 122 #include <dev/ofw/openfirm.h> 123 124 #include <vm/vm.h> 125 #include <vm/vm_param.h> 126 #include <vm/vm_kern.h> 127 #include <vm/vm_page.h> 128 #include <vm/vm_map.h> 129 #include <vm/vm_object.h> 130 #include <vm/vm_extern.h> 131 #include <vm/vm_pageout.h> 132 #include <vm/uma.h> 133 134 #include <machine/cpu.h> 135 #include <machine/platform.h> 136 #include <machine/bat.h> 137 #include <machine/frame.h> 138 #include <machine/md_var.h> 139 #include <machine/psl.h> 140 #include <machine/pte.h> 141 #include <machine/smp.h> 142 #include <machine/sr.h> 143 #include <machine/mmuvar.h> 144 #include <machine/trap.h> 145 146 #include "mmu_if.h" 147 148 #define MOEA_DEBUG 149 150 #define TODO panic("%s: not implemented", __func__); 151 152 #define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4)) 153 #define VSID_TO_SR(vsid) ((vsid) & 0xf) 154 #define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff) 155 156 struct ofw_map { 157 vm_offset_t om_va; 158 vm_size_t om_len; 159 vm_offset_t om_pa; 160 u_int om_mode; 161 }; 162 163 extern unsigned char _etext[]; 164 extern unsigned char _end[]; 165 166 extern int dumpsys_minidump; 167 168 /* 169 * Map of physical memory regions. 170 */ 171 static struct mem_region *regions; 172 static struct mem_region *pregions; 173 static u_int phys_avail_count; 174 static int regions_sz, pregions_sz; 175 static struct ofw_map *translations; 176 177 /* 178 * Lock for the pteg and pvo tables. 179 */ 180 struct mtx moea_table_mutex; 181 struct mtx moea_vsid_mutex; 182 183 /* tlbie instruction synchronization */ 184 static struct mtx tlbie_mtx; 185 186 /* 187 * PTEG data. 188 */ 189 static struct pteg *moea_pteg_table; 190 u_int moea_pteg_count; 191 u_int moea_pteg_mask; 192 193 /* 194 * PVO data. 195 */ 196 struct pvo_head *moea_pvo_table; /* pvo entries by pteg index */ 197 struct pvo_head moea_pvo_kunmanaged = 198 LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged); /* list of unmanaged pages */ 199 200 static struct rwlock_padalign pvh_global_lock; 201 202 uma_zone_t moea_upvo_zone; /* zone for pvo entries for unmanaged pages */ 203 uma_zone_t moea_mpvo_zone; /* zone for pvo entries for managed pages */ 204 205 #define BPVO_POOL_SIZE 32768 206 static struct pvo_entry *moea_bpvo_pool; 207 static int moea_bpvo_pool_index = 0; 208 209 #define VSID_NBPW (sizeof(u_int32_t) * 8) 210 static u_int moea_vsid_bitmap[NPMAPS / VSID_NBPW]; 211 212 static boolean_t moea_initialized = FALSE; 213 214 /* 215 * Statistics. 216 */ 217 u_int moea_pte_valid = 0; 218 u_int moea_pte_overflow = 0; 219 u_int moea_pte_replacements = 0; 220 u_int moea_pvo_entries = 0; 221 u_int moea_pvo_enter_calls = 0; 222 u_int moea_pvo_remove_calls = 0; 223 u_int moea_pte_spills = 0; 224 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid, 225 0, ""); 226 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD, 227 &moea_pte_overflow, 0, ""); 228 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD, 229 &moea_pte_replacements, 0, ""); 230 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries, 231 0, ""); 232 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD, 233 &moea_pvo_enter_calls, 0, ""); 234 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD, 235 &moea_pvo_remove_calls, 0, ""); 236 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD, 237 &moea_pte_spills, 0, ""); 238 239 /* 240 * Allocate physical memory for use in moea_bootstrap. 241 */ 242 static vm_offset_t moea_bootstrap_alloc(vm_size_t, u_int); 243 244 /* 245 * PTE calls. 246 */ 247 static int moea_pte_insert(u_int, struct pte *); 248 249 /* 250 * PVO calls. 251 */ 252 static int moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *, 253 vm_offset_t, vm_offset_t, u_int, int); 254 static void moea_pvo_remove(struct pvo_entry *, int); 255 static struct pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *); 256 static struct pte *moea_pvo_to_pte(const struct pvo_entry *, int); 257 258 /* 259 * Utility routines. 260 */ 261 static void moea_enter_locked(pmap_t, vm_offset_t, vm_page_t, 262 vm_prot_t, boolean_t); 263 static void moea_syncicache(vm_offset_t, vm_size_t); 264 static boolean_t moea_query_bit(vm_page_t, int); 265 static u_int moea_clear_bit(vm_page_t, int); 266 static void moea_kremove(mmu_t, vm_offset_t); 267 int moea_pte_spill(vm_offset_t); 268 269 /* 270 * Kernel MMU interface 271 */ 272 void moea_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t); 273 void moea_clear_modify(mmu_t, vm_page_t); 274 void moea_copy_page(mmu_t, vm_page_t, vm_page_t); 275 void moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, 276 vm_page_t *mb, vm_offset_t b_offset, int xfersize); 277 void moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t); 278 void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t, 279 vm_prot_t); 280 void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t); 281 vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t); 282 vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t); 283 void moea_init(mmu_t); 284 boolean_t moea_is_modified(mmu_t, vm_page_t); 285 boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t); 286 boolean_t moea_is_referenced(mmu_t, vm_page_t); 287 int moea_ts_referenced(mmu_t, vm_page_t); 288 vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int); 289 boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t); 290 int moea_page_wired_mappings(mmu_t, vm_page_t); 291 void moea_pinit(mmu_t, pmap_t); 292 void moea_pinit0(mmu_t, pmap_t); 293 void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t); 294 void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int); 295 void moea_qremove(mmu_t, vm_offset_t, int); 296 void moea_release(mmu_t, pmap_t); 297 void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t); 298 void moea_remove_all(mmu_t, vm_page_t); 299 void moea_remove_write(mmu_t, vm_page_t); 300 void moea_zero_page(mmu_t, vm_page_t); 301 void moea_zero_page_area(mmu_t, vm_page_t, int, int); 302 void moea_zero_page_idle(mmu_t, vm_page_t); 303 void moea_activate(mmu_t, struct thread *); 304 void moea_deactivate(mmu_t, struct thread *); 305 void moea_cpu_bootstrap(mmu_t, int); 306 void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t); 307 void *moea_mapdev(mmu_t, vm_paddr_t, vm_size_t); 308 void *moea_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t); 309 void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t); 310 vm_paddr_t moea_kextract(mmu_t, vm_offset_t); 311 void moea_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t); 312 void moea_kenter(mmu_t, vm_offset_t, vm_paddr_t); 313 void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma); 314 boolean_t moea_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t); 315 static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t); 316 vm_offset_t moea_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs, 317 vm_size_t *sz); 318 struct pmap_md * moea_scan_md(mmu_t mmu, struct pmap_md *prev); 319 320 static mmu_method_t moea_methods[] = { 321 MMUMETHOD(mmu_change_wiring, moea_change_wiring), 322 MMUMETHOD(mmu_clear_modify, moea_clear_modify), 323 MMUMETHOD(mmu_copy_page, moea_copy_page), 324 MMUMETHOD(mmu_copy_pages, moea_copy_pages), 325 MMUMETHOD(mmu_enter, moea_enter), 326 MMUMETHOD(mmu_enter_object, moea_enter_object), 327 MMUMETHOD(mmu_enter_quick, moea_enter_quick), 328 MMUMETHOD(mmu_extract, moea_extract), 329 MMUMETHOD(mmu_extract_and_hold, moea_extract_and_hold), 330 MMUMETHOD(mmu_init, moea_init), 331 MMUMETHOD(mmu_is_modified, moea_is_modified), 332 MMUMETHOD(mmu_is_prefaultable, moea_is_prefaultable), 333 MMUMETHOD(mmu_is_referenced, moea_is_referenced), 334 MMUMETHOD(mmu_ts_referenced, moea_ts_referenced), 335 MMUMETHOD(mmu_map, moea_map), 336 MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick), 337 MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings), 338 MMUMETHOD(mmu_pinit, moea_pinit), 339 MMUMETHOD(mmu_pinit0, moea_pinit0), 340 MMUMETHOD(mmu_protect, moea_protect), 341 MMUMETHOD(mmu_qenter, moea_qenter), 342 MMUMETHOD(mmu_qremove, moea_qremove), 343 MMUMETHOD(mmu_release, moea_release), 344 MMUMETHOD(mmu_remove, moea_remove), 345 MMUMETHOD(mmu_remove_all, moea_remove_all), 346 MMUMETHOD(mmu_remove_write, moea_remove_write), 347 MMUMETHOD(mmu_sync_icache, moea_sync_icache), 348 MMUMETHOD(mmu_zero_page, moea_zero_page), 349 MMUMETHOD(mmu_zero_page_area, moea_zero_page_area), 350 MMUMETHOD(mmu_zero_page_idle, moea_zero_page_idle), 351 MMUMETHOD(mmu_activate, moea_activate), 352 MMUMETHOD(mmu_deactivate, moea_deactivate), 353 MMUMETHOD(mmu_page_set_memattr, moea_page_set_memattr), 354 355 /* Internal interfaces */ 356 MMUMETHOD(mmu_bootstrap, moea_bootstrap), 357 MMUMETHOD(mmu_cpu_bootstrap, moea_cpu_bootstrap), 358 MMUMETHOD(mmu_mapdev_attr, moea_mapdev_attr), 359 MMUMETHOD(mmu_mapdev, moea_mapdev), 360 MMUMETHOD(mmu_unmapdev, moea_unmapdev), 361 MMUMETHOD(mmu_kextract, moea_kextract), 362 MMUMETHOD(mmu_kenter, moea_kenter), 363 MMUMETHOD(mmu_kenter_attr, moea_kenter_attr), 364 MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped), 365 MMUMETHOD(mmu_scan_md, moea_scan_md), 366 MMUMETHOD(mmu_dumpsys_map, moea_dumpsys_map), 367 368 { 0, 0 } 369 }; 370 371 MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0); 372 373 static __inline uint32_t 374 moea_calc_wimg(vm_offset_t pa, vm_memattr_t ma) 375 { 376 uint32_t pte_lo; 377 int i; 378 379 if (ma != VM_MEMATTR_DEFAULT) { 380 switch (ma) { 381 case VM_MEMATTR_UNCACHEABLE: 382 return (PTE_I | PTE_G); 383 case VM_MEMATTR_WRITE_COMBINING: 384 case VM_MEMATTR_WRITE_BACK: 385 case VM_MEMATTR_PREFETCHABLE: 386 return (PTE_I); 387 case VM_MEMATTR_WRITE_THROUGH: 388 return (PTE_W | PTE_M); 389 } 390 } 391 392 /* 393 * Assume the page is cache inhibited and access is guarded unless 394 * it's in our available memory array. 395 */ 396 pte_lo = PTE_I | PTE_G; 397 for (i = 0; i < pregions_sz; i++) { 398 if ((pa >= pregions[i].mr_start) && 399 (pa < (pregions[i].mr_start + pregions[i].mr_size))) { 400 pte_lo = PTE_M; 401 break; 402 } 403 } 404 405 return pte_lo; 406 } 407 408 static void 409 tlbie(vm_offset_t va) 410 { 411 412 mtx_lock_spin(&tlbie_mtx); 413 __asm __volatile("ptesync"); 414 __asm __volatile("tlbie %0" :: "r"(va)); 415 __asm __volatile("eieio; tlbsync; ptesync"); 416 mtx_unlock_spin(&tlbie_mtx); 417 } 418 419 static void 420 tlbia(void) 421 { 422 vm_offset_t va; 423 424 for (va = 0; va < 0x00040000; va += 0x00001000) { 425 __asm __volatile("tlbie %0" :: "r"(va)); 426 powerpc_sync(); 427 } 428 __asm __volatile("tlbsync"); 429 powerpc_sync(); 430 } 431 432 static __inline int 433 va_to_sr(u_int *sr, vm_offset_t va) 434 { 435 return (sr[(uintptr_t)va >> ADDR_SR_SHFT]); 436 } 437 438 static __inline u_int 439 va_to_pteg(u_int sr, vm_offset_t addr) 440 { 441 u_int hash; 442 443 hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >> 444 ADDR_PIDX_SHFT); 445 return (hash & moea_pteg_mask); 446 } 447 448 static __inline struct pvo_head * 449 vm_page_to_pvoh(vm_page_t m) 450 { 451 452 return (&m->md.mdpg_pvoh); 453 } 454 455 static __inline void 456 moea_attr_clear(vm_page_t m, int ptebit) 457 { 458 459 rw_assert(&pvh_global_lock, RA_WLOCKED); 460 m->md.mdpg_attrs &= ~ptebit; 461 } 462 463 static __inline int 464 moea_attr_fetch(vm_page_t m) 465 { 466 467 return (m->md.mdpg_attrs); 468 } 469 470 static __inline void 471 moea_attr_save(vm_page_t m, int ptebit) 472 { 473 474 rw_assert(&pvh_global_lock, RA_WLOCKED); 475 m->md.mdpg_attrs |= ptebit; 476 } 477 478 static __inline int 479 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt) 480 { 481 if (pt->pte_hi == pvo_pt->pte_hi) 482 return (1); 483 484 return (0); 485 } 486 487 static __inline int 488 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which) 489 { 490 return (pt->pte_hi & ~PTE_VALID) == 491 (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) | 492 ((va >> ADDR_API_SHFT) & PTE_API) | which); 493 } 494 495 static __inline void 496 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo) 497 { 498 499 mtx_assert(&moea_table_mutex, MA_OWNED); 500 501 /* 502 * Construct a PTE. Default to IMB initially. Valid bit only gets 503 * set when the real pte is set in memory. 504 * 505 * Note: Don't set the valid bit for correct operation of tlb update. 506 */ 507 pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) | 508 (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API); 509 pt->pte_lo = pte_lo; 510 } 511 512 static __inline void 513 moea_pte_synch(struct pte *pt, struct pte *pvo_pt) 514 { 515 516 mtx_assert(&moea_table_mutex, MA_OWNED); 517 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG); 518 } 519 520 static __inline void 521 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit) 522 { 523 524 mtx_assert(&moea_table_mutex, MA_OWNED); 525 526 /* 527 * As shown in Section 7.6.3.2.3 528 */ 529 pt->pte_lo &= ~ptebit; 530 tlbie(va); 531 } 532 533 static __inline void 534 moea_pte_set(struct pte *pt, struct pte *pvo_pt) 535 { 536 537 mtx_assert(&moea_table_mutex, MA_OWNED); 538 pvo_pt->pte_hi |= PTE_VALID; 539 540 /* 541 * Update the PTE as defined in section 7.6.3.1. 542 * Note that the REF/CHG bits are from pvo_pt and thus should have 543 * been saved so this routine can restore them (if desired). 544 */ 545 pt->pte_lo = pvo_pt->pte_lo; 546 powerpc_sync(); 547 pt->pte_hi = pvo_pt->pte_hi; 548 powerpc_sync(); 549 moea_pte_valid++; 550 } 551 552 static __inline void 553 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va) 554 { 555 556 mtx_assert(&moea_table_mutex, MA_OWNED); 557 pvo_pt->pte_hi &= ~PTE_VALID; 558 559 /* 560 * Force the reg & chg bits back into the PTEs. 561 */ 562 powerpc_sync(); 563 564 /* 565 * Invalidate the pte. 566 */ 567 pt->pte_hi &= ~PTE_VALID; 568 569 tlbie(va); 570 571 /* 572 * Save the reg & chg bits. 573 */ 574 moea_pte_synch(pt, pvo_pt); 575 moea_pte_valid--; 576 } 577 578 static __inline void 579 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va) 580 { 581 582 /* 583 * Invalidate the PTE 584 */ 585 moea_pte_unset(pt, pvo_pt, va); 586 moea_pte_set(pt, pvo_pt); 587 } 588 589 /* 590 * Quick sort callout for comparing memory regions. 591 */ 592 static int om_cmp(const void *a, const void *b); 593 594 static int 595 om_cmp(const void *a, const void *b) 596 { 597 const struct ofw_map *mapa; 598 const struct ofw_map *mapb; 599 600 mapa = a; 601 mapb = b; 602 if (mapa->om_pa < mapb->om_pa) 603 return (-1); 604 else if (mapa->om_pa > mapb->om_pa) 605 return (1); 606 else 607 return (0); 608 } 609 610 void 611 moea_cpu_bootstrap(mmu_t mmup, int ap) 612 { 613 u_int sdr; 614 int i; 615 616 if (ap) { 617 powerpc_sync(); 618 __asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu)); 619 __asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl)); 620 isync(); 621 __asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu)); 622 __asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl)); 623 isync(); 624 } 625 626 #ifdef WII 627 /* 628 * Special case for the Wii: don't install the PCI BAT. 629 */ 630 if (strcmp(installed_platform(), "wii") != 0) { 631 #endif 632 __asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu)); 633 __asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl)); 634 #ifdef WII 635 } 636 #endif 637 isync(); 638 639 __asm __volatile("mtibatu 1,%0" :: "r"(0)); 640 __asm __volatile("mtdbatu 2,%0" :: "r"(0)); 641 __asm __volatile("mtibatu 2,%0" :: "r"(0)); 642 __asm __volatile("mtdbatu 3,%0" :: "r"(0)); 643 __asm __volatile("mtibatu 3,%0" :: "r"(0)); 644 isync(); 645 646 for (i = 0; i < 16; i++) 647 mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]); 648 powerpc_sync(); 649 650 sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10); 651 __asm __volatile("mtsdr1 %0" :: "r"(sdr)); 652 isync(); 653 654 tlbia(); 655 } 656 657 void 658 moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend) 659 { 660 ihandle_t mmui; 661 phandle_t chosen, mmu; 662 int sz; 663 int i, j; 664 vm_size_t size, physsz, hwphyssz; 665 vm_offset_t pa, va, off; 666 void *dpcpu; 667 register_t msr; 668 669 /* 670 * Set up BAT0 to map the lowest 256 MB area 671 */ 672 battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW); 673 battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs); 674 675 /* 676 * Map PCI memory space. 677 */ 678 battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW); 679 battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs); 680 681 battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW); 682 battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs); 683 684 battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW); 685 battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs); 686 687 battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW); 688 battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs); 689 690 /* 691 * Map obio devices. 692 */ 693 battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW); 694 battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs); 695 696 /* 697 * Use an IBAT and a DBAT to map the bottom segment of memory 698 * where we are. Turn off instruction relocation temporarily 699 * to prevent faults while reprogramming the IBAT. 700 */ 701 msr = mfmsr(); 702 mtmsr(msr & ~PSL_IR); 703 __asm (".balign 32; \n" 704 "mtibatu 0,%0; mtibatl 0,%1; isync; \n" 705 "mtdbatu 0,%0; mtdbatl 0,%1; isync" 706 :: "r"(battable[0].batu), "r"(battable[0].batl)); 707 mtmsr(msr); 708 709 #ifdef WII 710 if (strcmp(installed_platform(), "wii") != 0) { 711 #endif 712 /* map pci space */ 713 __asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu)); 714 __asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl)); 715 #ifdef WII 716 } 717 #endif 718 isync(); 719 720 /* set global direct map flag */ 721 hw_direct_map = 1; 722 723 mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); 724 CTR0(KTR_PMAP, "moea_bootstrap: physical memory"); 725 726 for (i = 0; i < pregions_sz; i++) { 727 vm_offset_t pa; 728 vm_offset_t end; 729 730 CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)", 731 pregions[i].mr_start, 732 pregions[i].mr_start + pregions[i].mr_size, 733 pregions[i].mr_size); 734 /* 735 * Install entries into the BAT table to allow all 736 * of physmem to be convered by on-demand BAT entries. 737 * The loop will sometimes set the same battable element 738 * twice, but that's fine since they won't be used for 739 * a while yet. 740 */ 741 pa = pregions[i].mr_start & 0xf0000000; 742 end = pregions[i].mr_start + pregions[i].mr_size; 743 do { 744 u_int n = pa >> ADDR_SR_SHFT; 745 746 battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW); 747 battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs); 748 pa += SEGMENT_LENGTH; 749 } while (pa < end); 750 } 751 752 if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz) 753 panic("moea_bootstrap: phys_avail too small"); 754 755 phys_avail_count = 0; 756 physsz = 0; 757 hwphyssz = 0; 758 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); 759 for (i = 0, j = 0; i < regions_sz; i++, j += 2) { 760 CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start, 761 regions[i].mr_start + regions[i].mr_size, 762 regions[i].mr_size); 763 if (hwphyssz != 0 && 764 (physsz + regions[i].mr_size) >= hwphyssz) { 765 if (physsz < hwphyssz) { 766 phys_avail[j] = regions[i].mr_start; 767 phys_avail[j + 1] = regions[i].mr_start + 768 hwphyssz - physsz; 769 physsz = hwphyssz; 770 phys_avail_count++; 771 } 772 break; 773 } 774 phys_avail[j] = regions[i].mr_start; 775 phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size; 776 phys_avail_count++; 777 physsz += regions[i].mr_size; 778 } 779 780 /* Check for overlap with the kernel and exception vectors */ 781 for (j = 0; j < 2*phys_avail_count; j+=2) { 782 if (phys_avail[j] < EXC_LAST) 783 phys_avail[j] += EXC_LAST; 784 785 if (kernelstart >= phys_avail[j] && 786 kernelstart < phys_avail[j+1]) { 787 if (kernelend < phys_avail[j+1]) { 788 phys_avail[2*phys_avail_count] = 789 (kernelend & ~PAGE_MASK) + PAGE_SIZE; 790 phys_avail[2*phys_avail_count + 1] = 791 phys_avail[j+1]; 792 phys_avail_count++; 793 } 794 795 phys_avail[j+1] = kernelstart & ~PAGE_MASK; 796 } 797 798 if (kernelend >= phys_avail[j] && 799 kernelend < phys_avail[j+1]) { 800 if (kernelstart > phys_avail[j]) { 801 phys_avail[2*phys_avail_count] = phys_avail[j]; 802 phys_avail[2*phys_avail_count + 1] = 803 kernelstart & ~PAGE_MASK; 804 phys_avail_count++; 805 } 806 807 phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE; 808 } 809 } 810 811 physmem = btoc(physsz); 812 813 /* 814 * Allocate PTEG table. 815 */ 816 #ifdef PTEGCOUNT 817 moea_pteg_count = PTEGCOUNT; 818 #else 819 moea_pteg_count = 0x1000; 820 821 while (moea_pteg_count < physmem) 822 moea_pteg_count <<= 1; 823 824 moea_pteg_count >>= 1; 825 #endif /* PTEGCOUNT */ 826 827 size = moea_pteg_count * sizeof(struct pteg); 828 CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count, 829 size); 830 moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size); 831 CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table); 832 bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg)); 833 moea_pteg_mask = moea_pteg_count - 1; 834 835 /* 836 * Allocate pv/overflow lists. 837 */ 838 size = sizeof(struct pvo_head) * moea_pteg_count; 839 moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size, 840 PAGE_SIZE); 841 CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table); 842 for (i = 0; i < moea_pteg_count; i++) 843 LIST_INIT(&moea_pvo_table[i]); 844 845 /* 846 * Initialize the lock that synchronizes access to the pteg and pvo 847 * tables. 848 */ 849 mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF | 850 MTX_RECURSE); 851 mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF); 852 853 mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN); 854 855 /* 856 * Initialise the unmanaged pvo pool. 857 */ 858 moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc( 859 BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0); 860 moea_bpvo_pool_index = 0; 861 862 /* 863 * Make sure kernel vsid is allocated as well as VSID 0. 864 */ 865 moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW] 866 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW); 867 moea_vsid_bitmap[0] |= 1; 868 869 /* 870 * Initialize the kernel pmap (which is statically allocated). 871 */ 872 PMAP_LOCK_INIT(kernel_pmap); 873 for (i = 0; i < 16; i++) 874 kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i; 875 CPU_FILL(&kernel_pmap->pm_active); 876 RB_INIT(&kernel_pmap->pmap_pvo); 877 878 /* 879 * Initialize the global pv list lock. 880 */ 881 rw_init(&pvh_global_lock, "pmap pv global"); 882 883 /* 884 * Set up the Open Firmware mappings 885 */ 886 chosen = OF_finddevice("/chosen"); 887 if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 && 888 (mmu = OF_instance_to_package(mmui)) != -1 && 889 (sz = OF_getproplen(mmu, "translations")) != -1) { 890 translations = NULL; 891 for (i = 0; phys_avail[i] != 0; i += 2) { 892 if (phys_avail[i + 1] >= sz) { 893 translations = (struct ofw_map *)phys_avail[i]; 894 break; 895 } 896 } 897 if (translations == NULL) 898 panic("moea_bootstrap: no space to copy translations"); 899 bzero(translations, sz); 900 if (OF_getprop(mmu, "translations", translations, sz) == -1) 901 panic("moea_bootstrap: can't get ofw translations"); 902 CTR0(KTR_PMAP, "moea_bootstrap: translations"); 903 sz /= sizeof(*translations); 904 qsort(translations, sz, sizeof (*translations), om_cmp); 905 for (i = 0; i < sz; i++) { 906 CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x", 907 translations[i].om_pa, translations[i].om_va, 908 translations[i].om_len); 909 910 /* 911 * If the mapping is 1:1, let the RAM and device 912 * on-demand BAT tables take care of the translation. 913 */ 914 if (translations[i].om_va == translations[i].om_pa) 915 continue; 916 917 /* Enter the pages */ 918 for (off = 0; off < translations[i].om_len; 919 off += PAGE_SIZE) 920 moea_kenter(mmup, translations[i].om_va + off, 921 translations[i].om_pa + off); 922 } 923 } 924 925 /* 926 * Calculate the last available physical address. 927 */ 928 for (i = 0; phys_avail[i + 2] != 0; i += 2) 929 ; 930 Maxmem = powerpc_btop(phys_avail[i + 1]); 931 932 moea_cpu_bootstrap(mmup,0); 933 934 pmap_bootstrapped++; 935 936 /* 937 * Set the start and end of kva. 938 */ 939 virtual_avail = VM_MIN_KERNEL_ADDRESS; 940 virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS; 941 942 /* 943 * Allocate a kernel stack with a guard page for thread0 and map it 944 * into the kernel page map. 945 */ 946 pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE); 947 va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; 948 virtual_avail = va + KSTACK_PAGES * PAGE_SIZE; 949 CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va); 950 thread0.td_kstack = va; 951 thread0.td_kstack_pages = KSTACK_PAGES; 952 for (i = 0; i < KSTACK_PAGES; i++) { 953 moea_kenter(mmup, va, pa); 954 pa += PAGE_SIZE; 955 va += PAGE_SIZE; 956 } 957 958 /* 959 * Allocate virtual address space for the message buffer. 960 */ 961 pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE); 962 msgbufp = (struct msgbuf *)virtual_avail; 963 va = virtual_avail; 964 virtual_avail += round_page(msgbufsize); 965 while (va < virtual_avail) { 966 moea_kenter(mmup, va, pa); 967 pa += PAGE_SIZE; 968 va += PAGE_SIZE; 969 } 970 971 /* 972 * Allocate virtual address space for the dynamic percpu area. 973 */ 974 pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE); 975 dpcpu = (void *)virtual_avail; 976 va = virtual_avail; 977 virtual_avail += DPCPU_SIZE; 978 while (va < virtual_avail) { 979 moea_kenter(mmup, va, pa); 980 pa += PAGE_SIZE; 981 va += PAGE_SIZE; 982 } 983 dpcpu_init(dpcpu, 0); 984 } 985 986 /* 987 * Activate a user pmap. The pmap must be activated before it's address 988 * space can be accessed in any way. 989 */ 990 void 991 moea_activate(mmu_t mmu, struct thread *td) 992 { 993 pmap_t pm, pmr; 994 995 /* 996 * Load all the data we need up front to encourage the compiler to 997 * not issue any loads while we have interrupts disabled below. 998 */ 999 pm = &td->td_proc->p_vmspace->vm_pmap; 1000 pmr = pm->pmap_phys; 1001 1002 CPU_SET(PCPU_GET(cpuid), &pm->pm_active); 1003 PCPU_SET(curpmap, pmr); 1004 } 1005 1006 void 1007 moea_deactivate(mmu_t mmu, struct thread *td) 1008 { 1009 pmap_t pm; 1010 1011 pm = &td->td_proc->p_vmspace->vm_pmap; 1012 CPU_CLR(PCPU_GET(cpuid), &pm->pm_active); 1013 PCPU_SET(curpmap, NULL); 1014 } 1015 1016 void 1017 moea_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired) 1018 { 1019 struct pvo_entry *pvo; 1020 1021 PMAP_LOCK(pm); 1022 pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL); 1023 1024 if (pvo != NULL) { 1025 if (wired) { 1026 if ((pvo->pvo_vaddr & PVO_WIRED) == 0) 1027 pm->pm_stats.wired_count++; 1028 pvo->pvo_vaddr |= PVO_WIRED; 1029 } else { 1030 if ((pvo->pvo_vaddr & PVO_WIRED) != 0) 1031 pm->pm_stats.wired_count--; 1032 pvo->pvo_vaddr &= ~PVO_WIRED; 1033 } 1034 } 1035 PMAP_UNLOCK(pm); 1036 } 1037 1038 void 1039 moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst) 1040 { 1041 vm_offset_t dst; 1042 vm_offset_t src; 1043 1044 dst = VM_PAGE_TO_PHYS(mdst); 1045 src = VM_PAGE_TO_PHYS(msrc); 1046 1047 bcopy((void *)src, (void *)dst, PAGE_SIZE); 1048 } 1049 1050 void 1051 moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset, 1052 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 1053 { 1054 void *a_cp, *b_cp; 1055 vm_offset_t a_pg_offset, b_pg_offset; 1056 int cnt; 1057 1058 while (xfersize > 0) { 1059 a_pg_offset = a_offset & PAGE_MASK; 1060 cnt = min(xfersize, PAGE_SIZE - a_pg_offset); 1061 a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) + 1062 a_pg_offset; 1063 b_pg_offset = b_offset & PAGE_MASK; 1064 cnt = min(cnt, PAGE_SIZE - b_pg_offset); 1065 b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) + 1066 b_pg_offset; 1067 bcopy(a_cp, b_cp, cnt); 1068 a_offset += cnt; 1069 b_offset += cnt; 1070 xfersize -= cnt; 1071 } 1072 } 1073 1074 /* 1075 * Zero a page of physical memory by temporarily mapping it into the tlb. 1076 */ 1077 void 1078 moea_zero_page(mmu_t mmu, vm_page_t m) 1079 { 1080 vm_offset_t off, pa = VM_PAGE_TO_PHYS(m); 1081 1082 for (off = 0; off < PAGE_SIZE; off += cacheline_size) 1083 __asm __volatile("dcbz 0,%0" :: "r"(pa + off)); 1084 } 1085 1086 void 1087 moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size) 1088 { 1089 vm_offset_t pa = VM_PAGE_TO_PHYS(m); 1090 void *va = (void *)(pa + off); 1091 1092 bzero(va, size); 1093 } 1094 1095 void 1096 moea_zero_page_idle(mmu_t mmu, vm_page_t m) 1097 { 1098 1099 moea_zero_page(mmu, m); 1100 } 1101 1102 /* 1103 * Map the given physical page at the specified virtual address in the 1104 * target pmap with the protection requested. If specified the page 1105 * will be wired down. 1106 */ 1107 void 1108 moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, 1109 boolean_t wired) 1110 { 1111 1112 rw_wlock(&pvh_global_lock); 1113 PMAP_LOCK(pmap); 1114 moea_enter_locked(pmap, va, m, prot, wired); 1115 rw_wunlock(&pvh_global_lock); 1116 PMAP_UNLOCK(pmap); 1117 } 1118 1119 /* 1120 * Map the given physical page at the specified virtual address in the 1121 * target pmap with the protection requested. If specified the page 1122 * will be wired down. 1123 * 1124 * The page queues and pmap must be locked. 1125 */ 1126 static void 1127 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, 1128 boolean_t wired) 1129 { 1130 struct pvo_head *pvo_head; 1131 uma_zone_t zone; 1132 vm_page_t pg; 1133 u_int pte_lo, pvo_flags; 1134 int error; 1135 1136 if (!moea_initialized) { 1137 pvo_head = &moea_pvo_kunmanaged; 1138 zone = moea_upvo_zone; 1139 pvo_flags = 0; 1140 pg = NULL; 1141 } else { 1142 pvo_head = vm_page_to_pvoh(m); 1143 pg = m; 1144 zone = moea_mpvo_zone; 1145 pvo_flags = PVO_MANAGED; 1146 } 1147 if (pmap_bootstrapped) 1148 rw_assert(&pvh_global_lock, RA_WLOCKED); 1149 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 1150 if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m)) 1151 VM_OBJECT_ASSERT_LOCKED(m->object); 1152 1153 /* XXX change the pvo head for fake pages */ 1154 if ((m->oflags & VPO_UNMANAGED) != 0) { 1155 pvo_flags &= ~PVO_MANAGED; 1156 pvo_head = &moea_pvo_kunmanaged; 1157 zone = moea_upvo_zone; 1158 } 1159 1160 pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m)); 1161 1162 if (prot & VM_PROT_WRITE) { 1163 pte_lo |= PTE_BW; 1164 if (pmap_bootstrapped && 1165 (m->oflags & VPO_UNMANAGED) == 0) 1166 vm_page_aflag_set(m, PGA_WRITEABLE); 1167 } else 1168 pte_lo |= PTE_BR; 1169 1170 if (prot & VM_PROT_EXECUTE) 1171 pvo_flags |= PVO_EXECUTABLE; 1172 1173 if (wired) 1174 pvo_flags |= PVO_WIRED; 1175 1176 error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m), 1177 pte_lo, pvo_flags); 1178 1179 /* 1180 * Flush the real page from the instruction cache. This has be done 1181 * for all user mappings to prevent information leakage via the 1182 * instruction cache. moea_pvo_enter() returns ENOENT for the first 1183 * mapping for a page. 1184 */ 1185 if (pmap != kernel_pmap && error == ENOENT && 1186 (pte_lo & (PTE_I | PTE_G)) == 0) 1187 moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE); 1188 } 1189 1190 /* 1191 * Maps a sequence of resident pages belonging to the same object. 1192 * The sequence begins with the given page m_start. This page is 1193 * mapped at the given virtual address start. Each subsequent page is 1194 * mapped at a virtual address that is offset from start by the same 1195 * amount as the page is offset from m_start within the object. The 1196 * last page in the sequence is the page with the largest offset from 1197 * m_start that can be mapped at a virtual address less than the given 1198 * virtual address end. Not every virtual page between start and end 1199 * is mapped; only those for which a resident page exists with the 1200 * corresponding offset from m_start are mapped. 1201 */ 1202 void 1203 moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end, 1204 vm_page_t m_start, vm_prot_t prot) 1205 { 1206 vm_page_t m; 1207 vm_pindex_t diff, psize; 1208 1209 VM_OBJECT_ASSERT_LOCKED(m_start->object); 1210 1211 psize = atop(end - start); 1212 m = m_start; 1213 rw_wlock(&pvh_global_lock); 1214 PMAP_LOCK(pm); 1215 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { 1216 moea_enter_locked(pm, start + ptoa(diff), m, prot & 1217 (VM_PROT_READ | VM_PROT_EXECUTE), FALSE); 1218 m = TAILQ_NEXT(m, listq); 1219 } 1220 rw_wunlock(&pvh_global_lock); 1221 PMAP_UNLOCK(pm); 1222 } 1223 1224 void 1225 moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m, 1226 vm_prot_t prot) 1227 { 1228 1229 rw_wlock(&pvh_global_lock); 1230 PMAP_LOCK(pm); 1231 moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), 1232 FALSE); 1233 rw_wunlock(&pvh_global_lock); 1234 PMAP_UNLOCK(pm); 1235 } 1236 1237 vm_paddr_t 1238 moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va) 1239 { 1240 struct pvo_entry *pvo; 1241 vm_paddr_t pa; 1242 1243 PMAP_LOCK(pm); 1244 pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL); 1245 if (pvo == NULL) 1246 pa = 0; 1247 else 1248 pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF); 1249 PMAP_UNLOCK(pm); 1250 return (pa); 1251 } 1252 1253 /* 1254 * Atomically extract and hold the physical page with the given 1255 * pmap and virtual address pair if that mapping permits the given 1256 * protection. 1257 */ 1258 vm_page_t 1259 moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot) 1260 { 1261 struct pvo_entry *pvo; 1262 vm_page_t m; 1263 vm_paddr_t pa; 1264 1265 m = NULL; 1266 pa = 0; 1267 PMAP_LOCK(pmap); 1268 retry: 1269 pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL); 1270 if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) && 1271 ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW || 1272 (prot & VM_PROT_WRITE) == 0)) { 1273 if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa)) 1274 goto retry; 1275 m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN); 1276 vm_page_hold(m); 1277 } 1278 PA_UNLOCK_COND(pa); 1279 PMAP_UNLOCK(pmap); 1280 return (m); 1281 } 1282 1283 void 1284 moea_init(mmu_t mmu) 1285 { 1286 1287 moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry), 1288 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1289 UMA_ZONE_VM | UMA_ZONE_NOFREE); 1290 moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry), 1291 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1292 UMA_ZONE_VM | UMA_ZONE_NOFREE); 1293 moea_initialized = TRUE; 1294 } 1295 1296 boolean_t 1297 moea_is_referenced(mmu_t mmu, vm_page_t m) 1298 { 1299 boolean_t rv; 1300 1301 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1302 ("moea_is_referenced: page %p is not managed", m)); 1303 rw_wlock(&pvh_global_lock); 1304 rv = moea_query_bit(m, PTE_REF); 1305 rw_wunlock(&pvh_global_lock); 1306 return (rv); 1307 } 1308 1309 boolean_t 1310 moea_is_modified(mmu_t mmu, vm_page_t m) 1311 { 1312 boolean_t rv; 1313 1314 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1315 ("moea_is_modified: page %p is not managed", m)); 1316 1317 /* 1318 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be 1319 * concurrently set while the object is locked. Thus, if PGA_WRITEABLE 1320 * is clear, no PTEs can have PTE_CHG set. 1321 */ 1322 VM_OBJECT_ASSERT_WLOCKED(m->object); 1323 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) 1324 return (FALSE); 1325 rw_wlock(&pvh_global_lock); 1326 rv = moea_query_bit(m, PTE_CHG); 1327 rw_wunlock(&pvh_global_lock); 1328 return (rv); 1329 } 1330 1331 boolean_t 1332 moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va) 1333 { 1334 struct pvo_entry *pvo; 1335 boolean_t rv; 1336 1337 PMAP_LOCK(pmap); 1338 pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL); 1339 rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0; 1340 PMAP_UNLOCK(pmap); 1341 return (rv); 1342 } 1343 1344 void 1345 moea_clear_modify(mmu_t mmu, vm_page_t m) 1346 { 1347 1348 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1349 ("moea_clear_modify: page %p is not managed", m)); 1350 VM_OBJECT_ASSERT_WLOCKED(m->object); 1351 KASSERT(!vm_page_xbusied(m), 1352 ("moea_clear_modify: page %p is exclusive busy", m)); 1353 1354 /* 1355 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_CHG 1356 * set. If the object containing the page is locked and the page is 1357 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set. 1358 */ 1359 if ((m->aflags & PGA_WRITEABLE) == 0) 1360 return; 1361 rw_wlock(&pvh_global_lock); 1362 moea_clear_bit(m, PTE_CHG); 1363 rw_wunlock(&pvh_global_lock); 1364 } 1365 1366 /* 1367 * Clear the write and modified bits in each of the given page's mappings. 1368 */ 1369 void 1370 moea_remove_write(mmu_t mmu, vm_page_t m) 1371 { 1372 struct pvo_entry *pvo; 1373 struct pte *pt; 1374 pmap_t pmap; 1375 u_int lo; 1376 1377 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1378 ("moea_remove_write: page %p is not managed", m)); 1379 1380 /* 1381 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be 1382 * set by another thread while the object is locked. Thus, 1383 * if PGA_WRITEABLE is clear, no page table entries need updating. 1384 */ 1385 VM_OBJECT_ASSERT_WLOCKED(m->object); 1386 if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0) 1387 return; 1388 rw_wlock(&pvh_global_lock); 1389 lo = moea_attr_fetch(m); 1390 powerpc_sync(); 1391 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 1392 pmap = pvo->pvo_pmap; 1393 PMAP_LOCK(pmap); 1394 if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) { 1395 pt = moea_pvo_to_pte(pvo, -1); 1396 pvo->pvo_pte.pte.pte_lo &= ~PTE_PP; 1397 pvo->pvo_pte.pte.pte_lo |= PTE_BR; 1398 if (pt != NULL) { 1399 moea_pte_synch(pt, &pvo->pvo_pte.pte); 1400 lo |= pvo->pvo_pte.pte.pte_lo; 1401 pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG; 1402 moea_pte_change(pt, &pvo->pvo_pte.pte, 1403 pvo->pvo_vaddr); 1404 mtx_unlock(&moea_table_mutex); 1405 } 1406 } 1407 PMAP_UNLOCK(pmap); 1408 } 1409 if ((lo & PTE_CHG) != 0) { 1410 moea_attr_clear(m, PTE_CHG); 1411 vm_page_dirty(m); 1412 } 1413 vm_page_aflag_clear(m, PGA_WRITEABLE); 1414 rw_wunlock(&pvh_global_lock); 1415 } 1416 1417 /* 1418 * moea_ts_referenced: 1419 * 1420 * Return a count of reference bits for a page, clearing those bits. 1421 * It is not necessary for every reference bit to be cleared, but it 1422 * is necessary that 0 only be returned when there are truly no 1423 * reference bits set. 1424 * 1425 * XXX: The exact number of bits to check and clear is a matter that 1426 * should be tested and standardized at some point in the future for 1427 * optimal aging of shared pages. 1428 */ 1429 int 1430 moea_ts_referenced(mmu_t mmu, vm_page_t m) 1431 { 1432 int count; 1433 1434 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1435 ("moea_ts_referenced: page %p is not managed", m)); 1436 rw_wlock(&pvh_global_lock); 1437 count = moea_clear_bit(m, PTE_REF); 1438 rw_wunlock(&pvh_global_lock); 1439 return (count); 1440 } 1441 1442 /* 1443 * Modify the WIMG settings of all mappings for a page. 1444 */ 1445 void 1446 moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma) 1447 { 1448 struct pvo_entry *pvo; 1449 struct pvo_head *pvo_head; 1450 struct pte *pt; 1451 pmap_t pmap; 1452 u_int lo; 1453 1454 if ((m->oflags & VPO_UNMANAGED) != 0) { 1455 m->md.mdpg_cache_attrs = ma; 1456 return; 1457 } 1458 1459 rw_wlock(&pvh_global_lock); 1460 pvo_head = vm_page_to_pvoh(m); 1461 lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma); 1462 1463 LIST_FOREACH(pvo, pvo_head, pvo_vlink) { 1464 pmap = pvo->pvo_pmap; 1465 PMAP_LOCK(pmap); 1466 pt = moea_pvo_to_pte(pvo, -1); 1467 pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG; 1468 pvo->pvo_pte.pte.pte_lo |= lo; 1469 if (pt != NULL) { 1470 moea_pte_change(pt, &pvo->pvo_pte.pte, 1471 pvo->pvo_vaddr); 1472 if (pvo->pvo_pmap == kernel_pmap) 1473 isync(); 1474 } 1475 mtx_unlock(&moea_table_mutex); 1476 PMAP_UNLOCK(pmap); 1477 } 1478 m->md.mdpg_cache_attrs = ma; 1479 rw_wunlock(&pvh_global_lock); 1480 } 1481 1482 /* 1483 * Map a wired page into kernel virtual address space. 1484 */ 1485 void 1486 moea_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa) 1487 { 1488 1489 moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT); 1490 } 1491 1492 void 1493 moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma) 1494 { 1495 u_int pte_lo; 1496 int error; 1497 1498 #if 0 1499 if (va < VM_MIN_KERNEL_ADDRESS) 1500 panic("moea_kenter: attempt to enter non-kernel address %#x", 1501 va); 1502 #endif 1503 1504 pte_lo = moea_calc_wimg(pa, ma); 1505 1506 PMAP_LOCK(kernel_pmap); 1507 error = moea_pvo_enter(kernel_pmap, moea_upvo_zone, 1508 &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED); 1509 1510 if (error != 0 && error != ENOENT) 1511 panic("moea_kenter: failed to enter va %#x pa %#x: %d", va, 1512 pa, error); 1513 1514 PMAP_UNLOCK(kernel_pmap); 1515 } 1516 1517 /* 1518 * Extract the physical page address associated with the given kernel virtual 1519 * address. 1520 */ 1521 vm_paddr_t 1522 moea_kextract(mmu_t mmu, vm_offset_t va) 1523 { 1524 struct pvo_entry *pvo; 1525 vm_paddr_t pa; 1526 1527 /* 1528 * Allow direct mappings on 32-bit OEA 1529 */ 1530 if (va < VM_MIN_KERNEL_ADDRESS) { 1531 return (va); 1532 } 1533 1534 PMAP_LOCK(kernel_pmap); 1535 pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL); 1536 KASSERT(pvo != NULL, ("moea_kextract: no addr found")); 1537 pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF); 1538 PMAP_UNLOCK(kernel_pmap); 1539 return (pa); 1540 } 1541 1542 /* 1543 * Remove a wired page from kernel virtual address space. 1544 */ 1545 void 1546 moea_kremove(mmu_t mmu, vm_offset_t va) 1547 { 1548 1549 moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE); 1550 } 1551 1552 /* 1553 * Map a range of physical addresses into kernel virtual address space. 1554 * 1555 * The value passed in *virt is a suggested virtual address for the mapping. 1556 * Architectures which can support a direct-mapped physical to virtual region 1557 * can return the appropriate address within that region, leaving '*virt' 1558 * unchanged. We cannot and therefore do not; *virt is updated with the 1559 * first usable address after the mapped region. 1560 */ 1561 vm_offset_t 1562 moea_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start, 1563 vm_paddr_t pa_end, int prot) 1564 { 1565 vm_offset_t sva, va; 1566 1567 sva = *virt; 1568 va = sva; 1569 for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE) 1570 moea_kenter(mmu, va, pa_start); 1571 *virt = va; 1572 return (sva); 1573 } 1574 1575 /* 1576 * Returns true if the pmap's pv is one of the first 1577 * 16 pvs linked to from this page. This count may 1578 * be changed upwards or downwards in the future; it 1579 * is only necessary that true be returned for a small 1580 * subset of pmaps for proper page aging. 1581 */ 1582 boolean_t 1583 moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m) 1584 { 1585 int loops; 1586 struct pvo_entry *pvo; 1587 boolean_t rv; 1588 1589 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1590 ("moea_page_exists_quick: page %p is not managed", m)); 1591 loops = 0; 1592 rv = FALSE; 1593 rw_wlock(&pvh_global_lock); 1594 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 1595 if (pvo->pvo_pmap == pmap) { 1596 rv = TRUE; 1597 break; 1598 } 1599 if (++loops >= 16) 1600 break; 1601 } 1602 rw_wunlock(&pvh_global_lock); 1603 return (rv); 1604 } 1605 1606 /* 1607 * Return the number of managed mappings to the given physical page 1608 * that are wired. 1609 */ 1610 int 1611 moea_page_wired_mappings(mmu_t mmu, vm_page_t m) 1612 { 1613 struct pvo_entry *pvo; 1614 int count; 1615 1616 count = 0; 1617 if ((m->oflags & VPO_UNMANAGED) != 0) 1618 return (count); 1619 rw_wlock(&pvh_global_lock); 1620 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) 1621 if ((pvo->pvo_vaddr & PVO_WIRED) != 0) 1622 count++; 1623 rw_wunlock(&pvh_global_lock); 1624 return (count); 1625 } 1626 1627 static u_int moea_vsidcontext; 1628 1629 void 1630 moea_pinit(mmu_t mmu, pmap_t pmap) 1631 { 1632 int i, mask; 1633 u_int entropy; 1634 1635 KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap")); 1636 RB_INIT(&pmap->pmap_pvo); 1637 1638 entropy = 0; 1639 __asm __volatile("mftb %0" : "=r"(entropy)); 1640 1641 if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap)) 1642 == NULL) { 1643 pmap->pmap_phys = pmap; 1644 } 1645 1646 1647 mtx_lock(&moea_vsid_mutex); 1648 /* 1649 * Allocate some segment registers for this pmap. 1650 */ 1651 for (i = 0; i < NPMAPS; i += VSID_NBPW) { 1652 u_int hash, n; 1653 1654 /* 1655 * Create a new value by mutiplying by a prime and adding in 1656 * entropy from the timebase register. This is to make the 1657 * VSID more random so that the PT hash function collides 1658 * less often. (Note that the prime casues gcc to do shifts 1659 * instead of a multiply.) 1660 */ 1661 moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy; 1662 hash = moea_vsidcontext & (NPMAPS - 1); 1663 if (hash == 0) /* 0 is special, avoid it */ 1664 continue; 1665 n = hash >> 5; 1666 mask = 1 << (hash & (VSID_NBPW - 1)); 1667 hash = (moea_vsidcontext & 0xfffff); 1668 if (moea_vsid_bitmap[n] & mask) { /* collision? */ 1669 /* anything free in this bucket? */ 1670 if (moea_vsid_bitmap[n] == 0xffffffff) { 1671 entropy = (moea_vsidcontext >> 20); 1672 continue; 1673 } 1674 i = ffs(~moea_vsid_bitmap[n]) - 1; 1675 mask = 1 << i; 1676 hash &= 0xfffff & ~(VSID_NBPW - 1); 1677 hash |= i; 1678 } 1679 KASSERT(!(moea_vsid_bitmap[n] & mask), 1680 ("Allocating in-use VSID group %#x\n", hash)); 1681 moea_vsid_bitmap[n] |= mask; 1682 for (i = 0; i < 16; i++) 1683 pmap->pm_sr[i] = VSID_MAKE(i, hash); 1684 mtx_unlock(&moea_vsid_mutex); 1685 return; 1686 } 1687 1688 mtx_unlock(&moea_vsid_mutex); 1689 panic("moea_pinit: out of segments"); 1690 } 1691 1692 /* 1693 * Initialize the pmap associated with process 0. 1694 */ 1695 void 1696 moea_pinit0(mmu_t mmu, pmap_t pm) 1697 { 1698 1699 PMAP_LOCK_INIT(pm); 1700 moea_pinit(mmu, pm); 1701 bzero(&pm->pm_stats, sizeof(pm->pm_stats)); 1702 } 1703 1704 /* 1705 * Set the physical protection on the specified range of this map as requested. 1706 */ 1707 void 1708 moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva, 1709 vm_prot_t prot) 1710 { 1711 struct pvo_entry *pvo, *tpvo, key; 1712 struct pte *pt; 1713 1714 KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap, 1715 ("moea_protect: non current pmap")); 1716 1717 if ((prot & VM_PROT_READ) == VM_PROT_NONE) { 1718 moea_remove(mmu, pm, sva, eva); 1719 return; 1720 } 1721 1722 rw_wlock(&pvh_global_lock); 1723 PMAP_LOCK(pm); 1724 key.pvo_vaddr = sva; 1725 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 1726 pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { 1727 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); 1728 if ((prot & VM_PROT_EXECUTE) == 0) 1729 pvo->pvo_vaddr &= ~PVO_EXECUTABLE; 1730 1731 /* 1732 * Grab the PTE pointer before we diddle with the cached PTE 1733 * copy. 1734 */ 1735 pt = moea_pvo_to_pte(pvo, -1); 1736 /* 1737 * Change the protection of the page. 1738 */ 1739 pvo->pvo_pte.pte.pte_lo &= ~PTE_PP; 1740 pvo->pvo_pte.pte.pte_lo |= PTE_BR; 1741 1742 /* 1743 * If the PVO is in the page table, update that pte as well. 1744 */ 1745 if (pt != NULL) { 1746 moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr); 1747 mtx_unlock(&moea_table_mutex); 1748 } 1749 } 1750 rw_wunlock(&pvh_global_lock); 1751 PMAP_UNLOCK(pm); 1752 } 1753 1754 /* 1755 * Map a list of wired pages into kernel virtual address space. This is 1756 * intended for temporary mappings which do not need page modification or 1757 * references recorded. Existing mappings in the region are overwritten. 1758 */ 1759 void 1760 moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count) 1761 { 1762 vm_offset_t va; 1763 1764 va = sva; 1765 while (count-- > 0) { 1766 moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m)); 1767 va += PAGE_SIZE; 1768 m++; 1769 } 1770 } 1771 1772 /* 1773 * Remove page mappings from kernel virtual address space. Intended for 1774 * temporary mappings entered by moea_qenter. 1775 */ 1776 void 1777 moea_qremove(mmu_t mmu, vm_offset_t sva, int count) 1778 { 1779 vm_offset_t va; 1780 1781 va = sva; 1782 while (count-- > 0) { 1783 moea_kremove(mmu, va); 1784 va += PAGE_SIZE; 1785 } 1786 } 1787 1788 void 1789 moea_release(mmu_t mmu, pmap_t pmap) 1790 { 1791 int idx, mask; 1792 1793 /* 1794 * Free segment register's VSID 1795 */ 1796 if (pmap->pm_sr[0] == 0) 1797 panic("moea_release"); 1798 1799 mtx_lock(&moea_vsid_mutex); 1800 idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1); 1801 mask = 1 << (idx % VSID_NBPW); 1802 idx /= VSID_NBPW; 1803 moea_vsid_bitmap[idx] &= ~mask; 1804 mtx_unlock(&moea_vsid_mutex); 1805 } 1806 1807 /* 1808 * Remove the given range of addresses from the specified map. 1809 */ 1810 void 1811 moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva) 1812 { 1813 struct pvo_entry *pvo, *tpvo, key; 1814 1815 rw_wlock(&pvh_global_lock); 1816 PMAP_LOCK(pm); 1817 key.pvo_vaddr = sva; 1818 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 1819 pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { 1820 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); 1821 moea_pvo_remove(pvo, -1); 1822 } 1823 PMAP_UNLOCK(pm); 1824 rw_wunlock(&pvh_global_lock); 1825 } 1826 1827 /* 1828 * Remove physical page from all pmaps in which it resides. moea_pvo_remove() 1829 * will reflect changes in pte's back to the vm_page. 1830 */ 1831 void 1832 moea_remove_all(mmu_t mmu, vm_page_t m) 1833 { 1834 struct pvo_head *pvo_head; 1835 struct pvo_entry *pvo, *next_pvo; 1836 pmap_t pmap; 1837 1838 rw_wlock(&pvh_global_lock); 1839 pvo_head = vm_page_to_pvoh(m); 1840 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) { 1841 next_pvo = LIST_NEXT(pvo, pvo_vlink); 1842 1843 pmap = pvo->pvo_pmap; 1844 PMAP_LOCK(pmap); 1845 moea_pvo_remove(pvo, -1); 1846 PMAP_UNLOCK(pmap); 1847 } 1848 if ((m->aflags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) { 1849 moea_attr_clear(m, PTE_CHG); 1850 vm_page_dirty(m); 1851 } 1852 vm_page_aflag_clear(m, PGA_WRITEABLE); 1853 rw_wunlock(&pvh_global_lock); 1854 } 1855 1856 /* 1857 * Allocate a physical page of memory directly from the phys_avail map. 1858 * Can only be called from moea_bootstrap before avail start and end are 1859 * calculated. 1860 */ 1861 static vm_offset_t 1862 moea_bootstrap_alloc(vm_size_t size, u_int align) 1863 { 1864 vm_offset_t s, e; 1865 int i, j; 1866 1867 size = round_page(size); 1868 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 1869 if (align != 0) 1870 s = (phys_avail[i] + align - 1) & ~(align - 1); 1871 else 1872 s = phys_avail[i]; 1873 e = s + size; 1874 1875 if (s < phys_avail[i] || e > phys_avail[i + 1]) 1876 continue; 1877 1878 if (s == phys_avail[i]) { 1879 phys_avail[i] += size; 1880 } else if (e == phys_avail[i + 1]) { 1881 phys_avail[i + 1] -= size; 1882 } else { 1883 for (j = phys_avail_count * 2; j > i; j -= 2) { 1884 phys_avail[j] = phys_avail[j - 2]; 1885 phys_avail[j + 1] = phys_avail[j - 1]; 1886 } 1887 1888 phys_avail[i + 3] = phys_avail[i + 1]; 1889 phys_avail[i + 1] = s; 1890 phys_avail[i + 2] = e; 1891 phys_avail_count++; 1892 } 1893 1894 return (s); 1895 } 1896 panic("moea_bootstrap_alloc: could not allocate memory"); 1897 } 1898 1899 static void 1900 moea_syncicache(vm_offset_t pa, vm_size_t len) 1901 { 1902 __syncicache((void *)pa, len); 1903 } 1904 1905 static int 1906 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head, 1907 vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags) 1908 { 1909 struct pvo_entry *pvo; 1910 u_int sr; 1911 int first; 1912 u_int ptegidx; 1913 int i; 1914 int bootstrap; 1915 1916 moea_pvo_enter_calls++; 1917 first = 0; 1918 bootstrap = 0; 1919 1920 /* 1921 * Compute the PTE Group index. 1922 */ 1923 va &= ~ADDR_POFF; 1924 sr = va_to_sr(pm->pm_sr, va); 1925 ptegidx = va_to_pteg(sr, va); 1926 1927 /* 1928 * Remove any existing mapping for this page. Reuse the pvo entry if 1929 * there is a mapping. 1930 */ 1931 mtx_lock(&moea_table_mutex); 1932 LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) { 1933 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) { 1934 if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa && 1935 (pvo->pvo_pte.pte.pte_lo & PTE_PP) == 1936 (pte_lo & PTE_PP)) { 1937 mtx_unlock(&moea_table_mutex); 1938 return (0); 1939 } 1940 moea_pvo_remove(pvo, -1); 1941 break; 1942 } 1943 } 1944 1945 /* 1946 * If we aren't overwriting a mapping, try to allocate. 1947 */ 1948 if (moea_initialized) { 1949 pvo = uma_zalloc(zone, M_NOWAIT); 1950 } else { 1951 if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) { 1952 panic("moea_enter: bpvo pool exhausted, %d, %d, %d", 1953 moea_bpvo_pool_index, BPVO_POOL_SIZE, 1954 BPVO_POOL_SIZE * sizeof(struct pvo_entry)); 1955 } 1956 pvo = &moea_bpvo_pool[moea_bpvo_pool_index]; 1957 moea_bpvo_pool_index++; 1958 bootstrap = 1; 1959 } 1960 1961 if (pvo == NULL) { 1962 mtx_unlock(&moea_table_mutex); 1963 return (ENOMEM); 1964 } 1965 1966 moea_pvo_entries++; 1967 pvo->pvo_vaddr = va; 1968 pvo->pvo_pmap = pm; 1969 LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink); 1970 pvo->pvo_vaddr &= ~ADDR_POFF; 1971 if (flags & VM_PROT_EXECUTE) 1972 pvo->pvo_vaddr |= PVO_EXECUTABLE; 1973 if (flags & PVO_WIRED) 1974 pvo->pvo_vaddr |= PVO_WIRED; 1975 if (pvo_head != &moea_pvo_kunmanaged) 1976 pvo->pvo_vaddr |= PVO_MANAGED; 1977 if (bootstrap) 1978 pvo->pvo_vaddr |= PVO_BOOTSTRAP; 1979 1980 moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo); 1981 1982 /* 1983 * Add to pmap list 1984 */ 1985 RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo); 1986 1987 /* 1988 * Remember if the list was empty and therefore will be the first 1989 * item. 1990 */ 1991 if (LIST_FIRST(pvo_head) == NULL) 1992 first = 1; 1993 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink); 1994 1995 if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED) 1996 pm->pm_stats.wired_count++; 1997 pm->pm_stats.resident_count++; 1998 1999 i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte); 2000 KASSERT(i < 8, ("Invalid PTE index")); 2001 if (i >= 0) { 2002 PVO_PTEGIDX_SET(pvo, i); 2003 } else { 2004 panic("moea_pvo_enter: overflow"); 2005 moea_pte_overflow++; 2006 } 2007 mtx_unlock(&moea_table_mutex); 2008 2009 return (first ? ENOENT : 0); 2010 } 2011 2012 static void 2013 moea_pvo_remove(struct pvo_entry *pvo, int pteidx) 2014 { 2015 struct pte *pt; 2016 2017 /* 2018 * If there is an active pte entry, we need to deactivate it (and 2019 * save the ref & cfg bits). 2020 */ 2021 pt = moea_pvo_to_pte(pvo, pteidx); 2022 if (pt != NULL) { 2023 moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr); 2024 mtx_unlock(&moea_table_mutex); 2025 PVO_PTEGIDX_CLR(pvo); 2026 } else { 2027 moea_pte_overflow--; 2028 } 2029 2030 /* 2031 * Update our statistics. 2032 */ 2033 pvo->pvo_pmap->pm_stats.resident_count--; 2034 if (pvo->pvo_pte.pte.pte_lo & PVO_WIRED) 2035 pvo->pvo_pmap->pm_stats.wired_count--; 2036 2037 /* 2038 * Save the REF/CHG bits into their cache if the page is managed. 2039 */ 2040 if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) { 2041 struct vm_page *pg; 2042 2043 pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN); 2044 if (pg != NULL) { 2045 moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo & 2046 (PTE_REF | PTE_CHG)); 2047 } 2048 } 2049 2050 /* 2051 * Remove this PVO from the PV and pmap lists. 2052 */ 2053 LIST_REMOVE(pvo, pvo_vlink); 2054 RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo); 2055 2056 /* 2057 * Remove this from the overflow list and return it to the pool 2058 * if we aren't going to reuse it. 2059 */ 2060 LIST_REMOVE(pvo, pvo_olink); 2061 if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP)) 2062 uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone : 2063 moea_upvo_zone, pvo); 2064 moea_pvo_entries--; 2065 moea_pvo_remove_calls++; 2066 } 2067 2068 static __inline int 2069 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx) 2070 { 2071 int pteidx; 2072 2073 /* 2074 * We can find the actual pte entry without searching by grabbing 2075 * the PTEG index from 3 unused bits in pte_lo[11:9] and by 2076 * noticing the HID bit. 2077 */ 2078 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo); 2079 if (pvo->pvo_pte.pte.pte_hi & PTE_HID) 2080 pteidx ^= moea_pteg_mask * 8; 2081 2082 return (pteidx); 2083 } 2084 2085 static struct pvo_entry * 2086 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p) 2087 { 2088 struct pvo_entry *pvo; 2089 int ptegidx; 2090 u_int sr; 2091 2092 va &= ~ADDR_POFF; 2093 sr = va_to_sr(pm->pm_sr, va); 2094 ptegidx = va_to_pteg(sr, va); 2095 2096 mtx_lock(&moea_table_mutex); 2097 LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) { 2098 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) { 2099 if (pteidx_p) 2100 *pteidx_p = moea_pvo_pte_index(pvo, ptegidx); 2101 break; 2102 } 2103 } 2104 mtx_unlock(&moea_table_mutex); 2105 2106 return (pvo); 2107 } 2108 2109 static struct pte * 2110 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx) 2111 { 2112 struct pte *pt; 2113 2114 /* 2115 * If we haven't been supplied the ptegidx, calculate it. 2116 */ 2117 if (pteidx == -1) { 2118 int ptegidx; 2119 u_int sr; 2120 2121 sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr); 2122 ptegidx = va_to_pteg(sr, pvo->pvo_vaddr); 2123 pteidx = moea_pvo_pte_index(pvo, ptegidx); 2124 } 2125 2126 pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7]; 2127 mtx_lock(&moea_table_mutex); 2128 2129 if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) { 2130 panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no " 2131 "valid pte index", pvo); 2132 } 2133 2134 if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) { 2135 panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo " 2136 "pvo but no valid pte", pvo); 2137 } 2138 2139 if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) { 2140 if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) { 2141 panic("moea_pvo_to_pte: pvo %p has valid pte in " 2142 "moea_pteg_table %p but invalid in pvo", pvo, pt); 2143 } 2144 2145 if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF)) 2146 != 0) { 2147 panic("moea_pvo_to_pte: pvo %p pte does not match " 2148 "pte %p in moea_pteg_table", pvo, pt); 2149 } 2150 2151 mtx_assert(&moea_table_mutex, MA_OWNED); 2152 return (pt); 2153 } 2154 2155 if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) { 2156 panic("moea_pvo_to_pte: pvo %p has invalid pte %p in " 2157 "moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi); 2158 } 2159 2160 mtx_unlock(&moea_table_mutex); 2161 return (NULL); 2162 } 2163 2164 /* 2165 * XXX: THIS STUFF SHOULD BE IN pte.c? 2166 */ 2167 int 2168 moea_pte_spill(vm_offset_t addr) 2169 { 2170 struct pvo_entry *source_pvo, *victim_pvo; 2171 struct pvo_entry *pvo; 2172 int ptegidx, i, j; 2173 u_int sr; 2174 struct pteg *pteg; 2175 struct pte *pt; 2176 2177 moea_pte_spills++; 2178 2179 sr = mfsrin(addr); 2180 ptegidx = va_to_pteg(sr, addr); 2181 2182 /* 2183 * Have to substitute some entry. Use the primary hash for this. 2184 * Use low bits of timebase as random generator. 2185 */ 2186 pteg = &moea_pteg_table[ptegidx]; 2187 mtx_lock(&moea_table_mutex); 2188 __asm __volatile("mftb %0" : "=r"(i)); 2189 i &= 7; 2190 pt = &pteg->pt[i]; 2191 2192 source_pvo = NULL; 2193 victim_pvo = NULL; 2194 LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) { 2195 /* 2196 * We need to find a pvo entry for this address. 2197 */ 2198 if (source_pvo == NULL && 2199 moea_pte_match(&pvo->pvo_pte.pte, sr, addr, 2200 pvo->pvo_pte.pte.pte_hi & PTE_HID)) { 2201 /* 2202 * Now found an entry to be spilled into the pteg. 2203 * The PTE is now valid, so we know it's active. 2204 */ 2205 j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte); 2206 2207 if (j >= 0) { 2208 PVO_PTEGIDX_SET(pvo, j); 2209 moea_pte_overflow--; 2210 mtx_unlock(&moea_table_mutex); 2211 return (1); 2212 } 2213 2214 source_pvo = pvo; 2215 2216 if (victim_pvo != NULL) 2217 break; 2218 } 2219 2220 /* 2221 * We also need the pvo entry of the victim we are replacing 2222 * so save the R & C bits of the PTE. 2223 */ 2224 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL && 2225 moea_pte_compare(pt, &pvo->pvo_pte.pte)) { 2226 victim_pvo = pvo; 2227 if (source_pvo != NULL) 2228 break; 2229 } 2230 } 2231 2232 if (source_pvo == NULL) { 2233 mtx_unlock(&moea_table_mutex); 2234 return (0); 2235 } 2236 2237 if (victim_pvo == NULL) { 2238 if ((pt->pte_hi & PTE_HID) == 0) 2239 panic("moea_pte_spill: victim p-pte (%p) has no pvo" 2240 "entry", pt); 2241 2242 /* 2243 * If this is a secondary PTE, we need to search it's primary 2244 * pvo bucket for the matching PVO. 2245 */ 2246 LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask], 2247 pvo_olink) { 2248 /* 2249 * We also need the pvo entry of the victim we are 2250 * replacing so save the R & C bits of the PTE. 2251 */ 2252 if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) { 2253 victim_pvo = pvo; 2254 break; 2255 } 2256 } 2257 2258 if (victim_pvo == NULL) 2259 panic("moea_pte_spill: victim s-pte (%p) has no pvo" 2260 "entry", pt); 2261 } 2262 2263 /* 2264 * We are invalidating the TLB entry for the EA we are replacing even 2265 * though it's valid. If we don't, we lose any ref/chg bit changes 2266 * contained in the TLB entry. 2267 */ 2268 source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID; 2269 2270 moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr); 2271 moea_pte_set(pt, &source_pvo->pvo_pte.pte); 2272 2273 PVO_PTEGIDX_CLR(victim_pvo); 2274 PVO_PTEGIDX_SET(source_pvo, i); 2275 moea_pte_replacements++; 2276 2277 mtx_unlock(&moea_table_mutex); 2278 return (1); 2279 } 2280 2281 static __inline struct pvo_entry * 2282 moea_pte_spillable_ident(u_int ptegidx) 2283 { 2284 struct pte *pt; 2285 struct pvo_entry *pvo_walk, *pvo = NULL; 2286 2287 LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) { 2288 if (pvo_walk->pvo_vaddr & PVO_WIRED) 2289 continue; 2290 2291 if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID)) 2292 continue; 2293 2294 pt = moea_pvo_to_pte(pvo_walk, -1); 2295 2296 if (pt == NULL) 2297 continue; 2298 2299 pvo = pvo_walk; 2300 2301 mtx_unlock(&moea_table_mutex); 2302 if (!(pt->pte_lo & PTE_REF)) 2303 return (pvo_walk); 2304 } 2305 2306 return (pvo); 2307 } 2308 2309 static int 2310 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt) 2311 { 2312 struct pte *pt; 2313 struct pvo_entry *victim_pvo; 2314 int i; 2315 int victim_idx; 2316 u_int pteg_bkpidx = ptegidx; 2317 2318 mtx_assert(&moea_table_mutex, MA_OWNED); 2319 2320 /* 2321 * First try primary hash. 2322 */ 2323 for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) { 2324 if ((pt->pte_hi & PTE_VALID) == 0) { 2325 pvo_pt->pte_hi &= ~PTE_HID; 2326 moea_pte_set(pt, pvo_pt); 2327 return (i); 2328 } 2329 } 2330 2331 /* 2332 * Now try secondary hash. 2333 */ 2334 ptegidx ^= moea_pteg_mask; 2335 2336 for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) { 2337 if ((pt->pte_hi & PTE_VALID) == 0) { 2338 pvo_pt->pte_hi |= PTE_HID; 2339 moea_pte_set(pt, pvo_pt); 2340 return (i); 2341 } 2342 } 2343 2344 /* Try again, but this time try to force a PTE out. */ 2345 ptegidx = pteg_bkpidx; 2346 2347 victim_pvo = moea_pte_spillable_ident(ptegidx); 2348 if (victim_pvo == NULL) { 2349 ptegidx ^= moea_pteg_mask; 2350 victim_pvo = moea_pte_spillable_ident(ptegidx); 2351 } 2352 2353 if (victim_pvo == NULL) { 2354 panic("moea_pte_insert: overflow"); 2355 return (-1); 2356 } 2357 2358 victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx); 2359 2360 if (pteg_bkpidx == ptegidx) 2361 pvo_pt->pte_hi &= ~PTE_HID; 2362 else 2363 pvo_pt->pte_hi |= PTE_HID; 2364 2365 /* 2366 * Synchronize the sacrifice PTE with its PVO, then mark both 2367 * invalid. The PVO will be reused when/if the VM system comes 2368 * here after a fault. 2369 */ 2370 pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7]; 2371 2372 if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi) 2373 panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi); 2374 2375 /* 2376 * Set the new PTE. 2377 */ 2378 moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr); 2379 PVO_PTEGIDX_CLR(victim_pvo); 2380 moea_pte_overflow++; 2381 moea_pte_set(pt, pvo_pt); 2382 2383 return (victim_idx & 7); 2384 } 2385 2386 static boolean_t 2387 moea_query_bit(vm_page_t m, int ptebit) 2388 { 2389 struct pvo_entry *pvo; 2390 struct pte *pt; 2391 2392 rw_assert(&pvh_global_lock, RA_WLOCKED); 2393 if (moea_attr_fetch(m) & ptebit) 2394 return (TRUE); 2395 2396 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2397 2398 /* 2399 * See if we saved the bit off. If so, cache it and return 2400 * success. 2401 */ 2402 if (pvo->pvo_pte.pte.pte_lo & ptebit) { 2403 moea_attr_save(m, ptebit); 2404 return (TRUE); 2405 } 2406 } 2407 2408 /* 2409 * No luck, now go through the hard part of looking at the PTEs 2410 * themselves. Sync so that any pending REF/CHG bits are flushed to 2411 * the PTEs. 2412 */ 2413 powerpc_sync(); 2414 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2415 2416 /* 2417 * See if this pvo has a valid PTE. if so, fetch the 2418 * REF/CHG bits from the valid PTE. If the appropriate 2419 * ptebit is set, cache it and return success. 2420 */ 2421 pt = moea_pvo_to_pte(pvo, -1); 2422 if (pt != NULL) { 2423 moea_pte_synch(pt, &pvo->pvo_pte.pte); 2424 mtx_unlock(&moea_table_mutex); 2425 if (pvo->pvo_pte.pte.pte_lo & ptebit) { 2426 moea_attr_save(m, ptebit); 2427 return (TRUE); 2428 } 2429 } 2430 } 2431 2432 return (FALSE); 2433 } 2434 2435 static u_int 2436 moea_clear_bit(vm_page_t m, int ptebit) 2437 { 2438 u_int count; 2439 struct pvo_entry *pvo; 2440 struct pte *pt; 2441 2442 rw_assert(&pvh_global_lock, RA_WLOCKED); 2443 2444 /* 2445 * Clear the cached value. 2446 */ 2447 moea_attr_clear(m, ptebit); 2448 2449 /* 2450 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so 2451 * we can reset the right ones). note that since the pvo entries and 2452 * list heads are accessed via BAT0 and are never placed in the page 2453 * table, we don't have to worry about further accesses setting the 2454 * REF/CHG bits. 2455 */ 2456 powerpc_sync(); 2457 2458 /* 2459 * For each pvo entry, clear the pvo's ptebit. If this pvo has a 2460 * valid pte clear the ptebit from the valid pte. 2461 */ 2462 count = 0; 2463 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2464 pt = moea_pvo_to_pte(pvo, -1); 2465 if (pt != NULL) { 2466 moea_pte_synch(pt, &pvo->pvo_pte.pte); 2467 if (pvo->pvo_pte.pte.pte_lo & ptebit) { 2468 count++; 2469 moea_pte_clear(pt, PVO_VADDR(pvo), ptebit); 2470 } 2471 mtx_unlock(&moea_table_mutex); 2472 } 2473 pvo->pvo_pte.pte.pte_lo &= ~ptebit; 2474 } 2475 2476 return (count); 2477 } 2478 2479 /* 2480 * Return true if the physical range is encompassed by the battable[idx] 2481 */ 2482 static int 2483 moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size) 2484 { 2485 u_int prot; 2486 u_int32_t start; 2487 u_int32_t end; 2488 u_int32_t bat_ble; 2489 2490 /* 2491 * Return immediately if not a valid mapping 2492 */ 2493 if (!(battable[idx].batu & BAT_Vs)) 2494 return (EINVAL); 2495 2496 /* 2497 * The BAT entry must be cache-inhibited, guarded, and r/w 2498 * so it can function as an i/o page 2499 */ 2500 prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW); 2501 if (prot != (BAT_I|BAT_G|BAT_PP_RW)) 2502 return (EPERM); 2503 2504 /* 2505 * The address should be within the BAT range. Assume that the 2506 * start address in the BAT has the correct alignment (thus 2507 * not requiring masking) 2508 */ 2509 start = battable[idx].batl & BAT_PBS; 2510 bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03; 2511 end = start | (bat_ble << 15) | 0x7fff; 2512 2513 if ((pa < start) || ((pa + size) > end)) 2514 return (ERANGE); 2515 2516 return (0); 2517 } 2518 2519 boolean_t 2520 moea_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 2521 { 2522 int i; 2523 2524 /* 2525 * This currently does not work for entries that 2526 * overlap 256M BAT segments. 2527 */ 2528 2529 for(i = 0; i < 16; i++) 2530 if (moea_bat_mapped(i, pa, size) == 0) 2531 return (0); 2532 2533 return (EFAULT); 2534 } 2535 2536 /* 2537 * Map a set of physical memory pages into the kernel virtual 2538 * address space. Return a pointer to where it is mapped. This 2539 * routine is intended to be used for mapping device memory, 2540 * NOT real memory. 2541 */ 2542 void * 2543 moea_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size) 2544 { 2545 2546 return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT)); 2547 } 2548 2549 void * 2550 moea_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma) 2551 { 2552 vm_offset_t va, tmpva, ppa, offset; 2553 int i; 2554 2555 ppa = trunc_page(pa); 2556 offset = pa & PAGE_MASK; 2557 size = roundup(offset + size, PAGE_SIZE); 2558 2559 /* 2560 * If the physical address lies within a valid BAT table entry, 2561 * return the 1:1 mapping. This currently doesn't work 2562 * for regions that overlap 256M BAT segments. 2563 */ 2564 for (i = 0; i < 16; i++) { 2565 if (moea_bat_mapped(i, pa, size) == 0) 2566 return ((void *) pa); 2567 } 2568 2569 va = kva_alloc(size); 2570 if (!va) 2571 panic("moea_mapdev: Couldn't alloc kernel virtual memory"); 2572 2573 for (tmpva = va; size > 0;) { 2574 moea_kenter_attr(mmu, tmpva, ppa, ma); 2575 tlbie(tmpva); 2576 size -= PAGE_SIZE; 2577 tmpva += PAGE_SIZE; 2578 ppa += PAGE_SIZE; 2579 } 2580 2581 return ((void *)(va + offset)); 2582 } 2583 2584 void 2585 moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size) 2586 { 2587 vm_offset_t base, offset; 2588 2589 /* 2590 * If this is outside kernel virtual space, then it's a 2591 * battable entry and doesn't require unmapping 2592 */ 2593 if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) { 2594 base = trunc_page(va); 2595 offset = va & PAGE_MASK; 2596 size = roundup(offset + size, PAGE_SIZE); 2597 kva_free(base, size); 2598 } 2599 } 2600 2601 static void 2602 moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz) 2603 { 2604 struct pvo_entry *pvo; 2605 vm_offset_t lim; 2606 vm_paddr_t pa; 2607 vm_size_t len; 2608 2609 PMAP_LOCK(pm); 2610 while (sz > 0) { 2611 lim = round_page(va); 2612 len = MIN(lim - va, sz); 2613 pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL); 2614 if (pvo != NULL) { 2615 pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | 2616 (va & ADDR_POFF); 2617 moea_syncicache(pa, len); 2618 } 2619 va += len; 2620 sz -= len; 2621 } 2622 PMAP_UNLOCK(pm); 2623 } 2624 2625 vm_offset_t 2626 moea_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs, 2627 vm_size_t *sz) 2628 { 2629 if (md->md_vaddr == ~0UL) 2630 return (md->md_paddr + ofs); 2631 else 2632 return (md->md_vaddr + ofs); 2633 } 2634 2635 struct pmap_md * 2636 moea_scan_md(mmu_t mmu, struct pmap_md *prev) 2637 { 2638 static struct pmap_md md; 2639 struct pvo_entry *pvo; 2640 vm_offset_t va; 2641 2642 if (dumpsys_minidump) { 2643 md.md_paddr = ~0UL; /* Minidumps use virtual addresses. */ 2644 if (prev == NULL) { 2645 /* 1st: kernel .data and .bss. */ 2646 md.md_index = 1; 2647 md.md_vaddr = trunc_page((uintptr_t)_etext); 2648 md.md_size = round_page((uintptr_t)_end) - md.md_vaddr; 2649 return (&md); 2650 } 2651 switch (prev->md_index) { 2652 case 1: 2653 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ 2654 md.md_index = 2; 2655 md.md_vaddr = (vm_offset_t)msgbufp->msg_ptr; 2656 md.md_size = round_page(msgbufp->msg_size); 2657 break; 2658 case 2: 2659 /* 3rd: kernel VM. */ 2660 va = prev->md_vaddr + prev->md_size; 2661 /* Find start of next chunk (from va). */ 2662 while (va < virtual_end) { 2663 /* Don't dump the buffer cache. */ 2664 if (va >= kmi.buffer_sva && 2665 va < kmi.buffer_eva) { 2666 va = kmi.buffer_eva; 2667 continue; 2668 } 2669 pvo = moea_pvo_find_va(kernel_pmap, 2670 va & ~ADDR_POFF, NULL); 2671 if (pvo != NULL && 2672 (pvo->pvo_pte.pte.pte_hi & PTE_VALID)) 2673 break; 2674 va += PAGE_SIZE; 2675 } 2676 if (va < virtual_end) { 2677 md.md_vaddr = va; 2678 va += PAGE_SIZE; 2679 /* Find last page in chunk. */ 2680 while (va < virtual_end) { 2681 /* Don't run into the buffer cache. */ 2682 if (va == kmi.buffer_sva) 2683 break; 2684 pvo = moea_pvo_find_va(kernel_pmap, 2685 va & ~ADDR_POFF, NULL); 2686 if (pvo == NULL || 2687 !(pvo->pvo_pte.pte.pte_hi & PTE_VALID)) 2688 break; 2689 va += PAGE_SIZE; 2690 } 2691 md.md_size = va - md.md_vaddr; 2692 break; 2693 } 2694 md.md_index = 3; 2695 /* FALLTHROUGH */ 2696 default: 2697 return (NULL); 2698 } 2699 } else { /* minidumps */ 2700 mem_regions(&pregions, &pregions_sz, 2701 ®ions, ®ions_sz); 2702 2703 if (prev == NULL) { 2704 /* first physical chunk. */ 2705 md.md_paddr = pregions[0].mr_start; 2706 md.md_size = pregions[0].mr_size; 2707 md.md_vaddr = ~0UL; 2708 md.md_index = 1; 2709 } else if (md.md_index < pregions_sz) { 2710 md.md_paddr = pregions[md.md_index].mr_start; 2711 md.md_size = pregions[md.md_index].mr_size; 2712 md.md_vaddr = ~0UL; 2713 md.md_index++; 2714 } else { 2715 /* There's no next physical chunk. */ 2716 return (NULL); 2717 } 2718 } 2719 2720 return (&md); 2721 } 2722