xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision 09e8dea79366f1e5b3a73e8a271b26e4b6bf2e6a)
1 /*
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #ifndef lint
94 static const char rcsid[] =
95   "$FreeBSD$";
96 #endif /* not lint */
97 
98 /*
99  * Manages physical address maps.
100  *
101  * In addition to hardware address maps, this module is called upon to
102  * provide software-use-only maps which may or may not be stored in the
103  * same form as hardware maps.  These pseudo-maps are used to store
104  * intermediate results from copy operations to and from address spaces.
105  *
106  * Since the information managed by this module is also stored by the
107  * logical address mapping module, this module may throw away valid virtual
108  * to physical mappings at almost any time.  However, invalidations of
109  * mappings must be done as requested.
110  *
111  * In order to cope with hardware architectures which make virtual to
112  * physical map invalidates expensive, this module may delay invalidate
113  * reduced protection operations until such time as they are actually
114  * necessary.  This module is given full information as to which processors
115  * are currently using which maps, and to when physical maps must be made
116  * correct.
117  */
118 
119 #include <sys/param.h>
120 #include <sys/kernel.h>
121 #include <sys/ktr.h>
122 #include <sys/lock.h>
123 #include <sys/msgbuf.h>
124 #include <sys/mutex.h>
125 #include <sys/proc.h>
126 #include <sys/sysctl.h>
127 #include <sys/systm.h>
128 #include <sys/vmmeter.h>
129 
130 #include <dev/ofw/openfirm.h>
131 
132 #include <vm/vm.h>
133 #include <vm/vm_param.h>
134 #include <vm/vm_kern.h>
135 #include <vm/vm_page.h>
136 #include <vm/vm_map.h>
137 #include <vm/vm_object.h>
138 #include <vm/vm_extern.h>
139 #include <vm/vm_pageout.h>
140 #include <vm/vm_pager.h>
141 #include <vm/uma.h>
142 
143 #include <machine/powerpc.h>
144 #include <machine/bat.h>
145 #include <machine/frame.h>
146 #include <machine/md_var.h>
147 #include <machine/psl.h>
148 #include <machine/pte.h>
149 #include <machine/sr.h>
150 
151 #define	PMAP_DEBUG
152 
153 #define TODO	panic("%s: not implemented", __func__);
154 
155 #define	PMAP_LOCK(pm)
156 #define	PMAP_UNLOCK(pm)
157 
158 #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
159 #define	TLBSYNC()	__asm __volatile("tlbsync");
160 #define	SYNC()		__asm __volatile("sync");
161 #define	EIEIO()		__asm __volatile("eieio");
162 
163 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
164 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
165 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
166 
167 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
168 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
169 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
170 #define	PVO_MANAGED		0x0020		/* PVO entry is managed */
171 #define	PVO_EXECUTABLE		0x0040		/* PVO entry is executable */
172 #define	PVO_BOOTSTRAP		0x0080		/* PVO entry allocated during
173 						   bootstrap */
174 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
175 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
176 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
177 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
178 #define	PVO_PTEGIDX_CLR(pvo)	\
179 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
180 #define	PVO_PTEGIDX_SET(pvo, i)	\
181 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
182 
183 #define	PMAP_PVO_CHECK(pvo)
184 
185 struct ofw_map {
186 	vm_offset_t	om_va;
187 	vm_size_t	om_len;
188 	vm_offset_t	om_pa;
189 	u_int		om_mode;
190 };
191 
192 int	pmap_bootstrapped = 0;
193 
194 /*
195  * Virtual and physical address of message buffer.
196  */
197 struct		msgbuf *msgbufp;
198 vm_offset_t	msgbuf_phys;
199 
200 /*
201  * Physical addresses of first and last available physical page.
202  */
203 vm_offset_t avail_start;
204 vm_offset_t avail_end;
205 
206 /*
207  * Map of physical memory regions.
208  */
209 vm_offset_t	phys_avail[128];
210 u_int		phys_avail_count;
211 static struct	mem_region *regions;
212 static struct	mem_region *pregions;
213 int		regions_sz, pregions_sz;
214 static struct	ofw_map translations[128];
215 static int	translations_size;
216 
217 /*
218  * First and last available kernel virtual addresses.
219  */
220 vm_offset_t virtual_avail;
221 vm_offset_t virtual_end;
222 vm_offset_t kernel_vm_end;
223 
224 /*
225  * Kernel pmap.
226  */
227 struct pmap kernel_pmap_store;
228 extern struct pmap ofw_pmap;
229 
230 /*
231  * PTEG data.
232  */
233 static struct	pteg *pmap_pteg_table;
234 u_int		pmap_pteg_count;
235 u_int		pmap_pteg_mask;
236 
237 /*
238  * PVO data.
239  */
240 struct	pvo_head *pmap_pvo_table;		/* pvo entries by pteg index */
241 struct	pvo_head pmap_pvo_kunmanaged =
242     LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
243 struct	pvo_head pmap_pvo_unmanaged =
244     LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
245 
246 uma_zone_t	pmap_upvo_zone;	/* zone for pvo entries for unmanaged pages */
247 uma_zone_t	pmap_mpvo_zone;	/* zone for pvo entries for managed pages */
248 struct		vm_object pmap_upvo_zone_obj;
249 struct		vm_object pmap_mpvo_zone_obj;
250 static vm_object_t	pmap_pvo_obj;
251 static u_int		pmap_pvo_count;
252 
253 #define	PMAP_PVO_SIZE	1024
254 static struct	pvo_entry *pmap_bpvo_pool;
255 static int	pmap_bpvo_pool_index;
256 static int	pmap_bpvo_pool_count;
257 
258 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
259 static u_int	pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
260 
261 static boolean_t pmap_initialized = FALSE;
262 
263 /*
264  * Statistics.
265  */
266 u_int	pmap_pte_valid = 0;
267 u_int	pmap_pte_overflow = 0;
268 u_int	pmap_pte_replacements = 0;
269 u_int	pmap_pvo_entries = 0;
270 u_int	pmap_pvo_enter_calls = 0;
271 u_int	pmap_pvo_remove_calls = 0;
272 u_int	pmap_pte_spills = 0;
273 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
274     0, "");
275 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
276     &pmap_pte_overflow, 0, "");
277 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
278     &pmap_pte_replacements, 0, "");
279 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
280     0, "");
281 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
282     &pmap_pvo_enter_calls, 0, "");
283 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
284     &pmap_pvo_remove_calls, 0, "");
285 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
286     &pmap_pte_spills, 0, "");
287 
288 struct	pvo_entry *pmap_pvo_zeropage;
289 
290 vm_offset_t	pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
291 u_int		pmap_rkva_count = 4;
292 
293 /*
294  * Allocate physical memory for use in pmap_bootstrap.
295  */
296 static vm_offset_t	pmap_bootstrap_alloc(vm_size_t, u_int);
297 
298 /*
299  * PTE calls.
300  */
301 static int		pmap_pte_insert(u_int, struct pte *);
302 
303 /*
304  * PVO calls.
305  */
306 static int	pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
307 		    vm_offset_t, vm_offset_t, u_int, int);
308 static void	pmap_pvo_remove(struct pvo_entry *, int);
309 static struct	pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
310 static struct	pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
311 
312 /*
313  * Utility routines.
314  */
315 static void *		pmap_pvo_allocf(uma_zone_t, int, u_int8_t *, int);
316 static struct		pvo_entry *pmap_rkva_alloc(void);
317 static void		pmap_pa_map(struct pvo_entry *, vm_offset_t,
318 			    struct pte *, int *);
319 static void		pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
320 static void		pmap_syncicache(vm_offset_t, vm_size_t);
321 static boolean_t	pmap_query_bit(vm_page_t, int);
322 static boolean_t	pmap_clear_bit(vm_page_t, int);
323 static void		tlbia(void);
324 
325 static __inline int
326 va_to_sr(u_int *sr, vm_offset_t va)
327 {
328 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
329 }
330 
331 static __inline u_int
332 va_to_pteg(u_int sr, vm_offset_t addr)
333 {
334 	u_int hash;
335 
336 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
337 	    ADDR_PIDX_SHFT);
338 	return (hash & pmap_pteg_mask);
339 }
340 
341 static __inline struct pvo_head *
342 pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
343 {
344 	struct	vm_page *pg;
345 
346 	pg = PHYS_TO_VM_PAGE(pa);
347 
348 	if (pg_p != NULL)
349 		*pg_p = pg;
350 
351 	if (pg == NULL)
352 		return (&pmap_pvo_unmanaged);
353 
354 	return (&pg->md.mdpg_pvoh);
355 }
356 
357 static __inline struct pvo_head *
358 vm_page_to_pvoh(vm_page_t m)
359 {
360 
361 	return (&m->md.mdpg_pvoh);
362 }
363 
364 static __inline void
365 pmap_attr_clear(vm_page_t m, int ptebit)
366 {
367 
368 	m->md.mdpg_attrs &= ~ptebit;
369 }
370 
371 static __inline int
372 pmap_attr_fetch(vm_page_t m)
373 {
374 
375 	return (m->md.mdpg_attrs);
376 }
377 
378 static __inline void
379 pmap_attr_save(vm_page_t m, int ptebit)
380 {
381 
382 	m->md.mdpg_attrs |= ptebit;
383 }
384 
385 static __inline int
386 pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
387 {
388 	if (pt->pte_hi == pvo_pt->pte_hi)
389 		return (1);
390 
391 	return (0);
392 }
393 
394 static __inline int
395 pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
396 {
397 	return (pt->pte_hi & ~PTE_VALID) ==
398 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
399 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
400 }
401 
402 static __inline void
403 pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
404 {
405 	/*
406 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
407 	 * set when the real pte is set in memory.
408 	 *
409 	 * Note: Don't set the valid bit for correct operation of tlb update.
410 	 */
411 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
412 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
413 	pt->pte_lo = pte_lo;
414 }
415 
416 static __inline void
417 pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
418 {
419 
420 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
421 }
422 
423 static __inline void
424 pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
425 {
426 
427 	/*
428 	 * As shown in Section 7.6.3.2.3
429 	 */
430 	pt->pte_lo &= ~ptebit;
431 	TLBIE(va);
432 	EIEIO();
433 	TLBSYNC();
434 	SYNC();
435 }
436 
437 static __inline void
438 pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
439 {
440 
441 	pvo_pt->pte_hi |= PTE_VALID;
442 
443 	/*
444 	 * Update the PTE as defined in section 7.6.3.1.
445 	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
446 	 * been saved so this routine can restore them (if desired).
447 	 */
448 	pt->pte_lo = pvo_pt->pte_lo;
449 	EIEIO();
450 	pt->pte_hi = pvo_pt->pte_hi;
451 	SYNC();
452 	pmap_pte_valid++;
453 }
454 
455 static __inline void
456 pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
457 {
458 
459 	pvo_pt->pte_hi &= ~PTE_VALID;
460 
461 	/*
462 	 * Force the reg & chg bits back into the PTEs.
463 	 */
464 	SYNC();
465 
466 	/*
467 	 * Invalidate the pte.
468 	 */
469 	pt->pte_hi &= ~PTE_VALID;
470 
471 	SYNC();
472 	TLBIE(va);
473 	EIEIO();
474 	TLBSYNC();
475 	SYNC();
476 
477 	/*
478 	 * Save the reg & chg bits.
479 	 */
480 	pmap_pte_synch(pt, pvo_pt);
481 	pmap_pte_valid--;
482 }
483 
484 static __inline void
485 pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
486 {
487 
488 	/*
489 	 * Invalidate the PTE
490 	 */
491 	pmap_pte_unset(pt, pvo_pt, va);
492 	pmap_pte_set(pt, pvo_pt);
493 }
494 
495 /*
496  * Quick sort callout for comparing memory regions.
497  */
498 static int	mr_cmp(const void *a, const void *b);
499 static int	om_cmp(const void *a, const void *b);
500 
501 static int
502 mr_cmp(const void *a, const void *b)
503 {
504 	const struct	mem_region *regiona;
505 	const struct	mem_region *regionb;
506 
507 	regiona = a;
508 	regionb = b;
509 	if (regiona->mr_start < regionb->mr_start)
510 		return (-1);
511 	else if (regiona->mr_start > regionb->mr_start)
512 		return (1);
513 	else
514 		return (0);
515 }
516 
517 static int
518 om_cmp(const void *a, const void *b)
519 {
520 	const struct	ofw_map *mapa;
521 	const struct	ofw_map *mapb;
522 
523 	mapa = a;
524 	mapb = b;
525 	if (mapa->om_pa < mapb->om_pa)
526 		return (-1);
527 	else if (mapa->om_pa > mapb->om_pa)
528 		return (1);
529 	else
530 		return (0);
531 }
532 
533 void
534 pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
535 {
536 	ihandle_t	mmui;
537 	phandle_t	chosen, mmu;
538 	int		sz;
539 	int		i, j;
540 	vm_size_t	size, physsz;
541 	vm_offset_t	pa, va, off;
542 	u_int		batl, batu;
543 
544 	/*
545 	 * Use an IBAT and a DBAT to map the bottom segment of memory
546 	 * where we are.
547 	 */
548 	batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
549 	batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
550 	__asm ("mtibatu 0,%0; mtibatl 0,%1; mtdbatu 0,%0; mtdbatl 0,%1"
551 	    :: "r"(batu), "r"(batl));
552 #if 0
553 	batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
554 	batl = BATL(0x80000000, BAT_M, BAT_PP_RW);
555 	__asm ("mtibatu 1,%0; mtibatl 1,%1; mtdbatu 1,%0; mtdbatl 1,%1"
556 	    :: "r"(batu), "r"(batl));
557 #endif
558 
559 	/*
560 	 * Set the start and end of kva.
561 	 */
562 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
563 	virtual_end = VM_MAX_KERNEL_ADDRESS;
564 
565 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
566 	CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
567 
568 	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
569 	for (i = 0; i < pregions_sz; i++) {
570 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
571 			pregions[i].mr_start,
572 			pregions[i].mr_start + pregions[i].mr_size,
573 			pregions[i].mr_size);
574 	}
575 
576 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
577 		panic("pmap_bootstrap: phys_avail too small");
578 	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
579 	phys_avail_count = 0;
580 	physsz = 0;
581 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
582 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
583 		    regions[i].mr_start + regions[i].mr_size,
584 		    regions[i].mr_size);
585 		phys_avail[j] = regions[i].mr_start;
586 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
587 		phys_avail_count++;
588 		physsz += regions[i].mr_size;
589 	}
590 	physmem = btoc(physsz);
591 
592 	/*
593 	 * Allocate PTEG table.
594 	 */
595 #ifdef PTEGCOUNT
596 	pmap_pteg_count = PTEGCOUNT;
597 #else
598 	pmap_pteg_count = 0x1000;
599 
600 	while (pmap_pteg_count < physmem)
601 		pmap_pteg_count <<= 1;
602 
603 	pmap_pteg_count >>= 1;
604 #endif /* PTEGCOUNT */
605 
606 	size = pmap_pteg_count * sizeof(struct pteg);
607 	CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
608 	    size);
609 	pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
610 	CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
611 	bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
612 	pmap_pteg_mask = pmap_pteg_count - 1;
613 
614 	/*
615 	 * Allocate pv/overflow lists.
616 	 */
617 	size = sizeof(struct pvo_head) * pmap_pteg_count;
618 	pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
619 	    PAGE_SIZE);
620 	CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
621 	for (i = 0; i < pmap_pteg_count; i++)
622 		LIST_INIT(&pmap_pvo_table[i]);
623 
624 	/*
625 	 * Allocate the message buffer.
626 	 */
627 	msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
628 
629 	/*
630 	 * Initialise the unmanaged pvo pool.
631 	 */
632 	pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(PAGE_SIZE, 0);
633 	pmap_bpvo_pool_index = 0;
634 	pmap_bpvo_pool_count = (int)PAGE_SIZE / sizeof(struct pvo_entry);
635 
636 	/*
637 	 * Make sure kernel vsid is allocated as well as VSID 0.
638 	 */
639 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
640 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
641 	pmap_vsid_bitmap[0] |= 1;
642 
643 	/*
644 	 * Set up the OpenFirmware pmap and add it's mappings.
645 	 */
646 	pmap_pinit(&ofw_pmap);
647 	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
648 	if ((chosen = OF_finddevice("/chosen")) == -1)
649 		panic("pmap_bootstrap: can't find /chosen");
650 	OF_getprop(chosen, "mmu", &mmui, 4);
651 	if ((mmu = OF_instance_to_package(mmui)) == -1)
652 		panic("pmap_bootstrap: can't get mmu package");
653 	if ((sz = OF_getproplen(mmu, "translations")) == -1)
654 		panic("pmap_bootstrap: can't get ofw translation count");
655 	if (sizeof(translations) < sz)
656 		panic("pmap_bootstrap: translations too small");
657 	bzero(translations, sz);
658 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
659 		panic("pmap_bootstrap: can't get ofw translations");
660 	CTR0(KTR_PMAP, "pmap_bootstrap: translations");
661 	sz /= sizeof(*translations);
662 	qsort(translations, sz, sizeof (*translations), om_cmp);
663 	for (i = 0; i < sz; i++) {
664 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
665 		    translations[i].om_pa, translations[i].om_va,
666 		    translations[i].om_len);
667 
668 		/* Drop stuff below something? */
669 
670 		/* Enter the pages? */
671 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
672 			struct	vm_page m;
673 
674 			m.phys_addr = translations[i].om_pa + off;
675 			pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
676 			    VM_PROT_ALL, 1);
677 		}
678 	}
679 #ifdef SMP
680 	TLBSYNC();
681 #endif
682 
683 	/*
684 	 * Initialize the kernel pmap (which is statically allocated).
685 	 */
686 	for (i = 0; i < 16; i++) {
687 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
688 	}
689 	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
690 	kernel_pmap->pm_active = ~0;
691 
692 	/*
693 	 * Allocate a kernel stack with a guard page for thread0 and map it
694 	 * into the kernel page map.
695 	 */
696 	pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
697 	kstack0_phys = pa;
698 	kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
699 	CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
700 	    kstack0);
701 	virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
702 	for (i = 0; i < KSTACK_PAGES; i++) {
703 		pa = kstack0_phys + i * PAGE_SIZE;
704 		va = kstack0 + i * PAGE_SIZE;
705 		pmap_kenter(va, pa);
706 		TLBIE(va);
707 	}
708 
709 	/*
710 	 * Calculate the first and last available physical addresses.
711 	 */
712 	avail_start = phys_avail[0];
713 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
714 		;
715 	avail_end = phys_avail[i + 1];
716 	Maxmem = powerpc_btop(avail_end);
717 
718 	/*
719 	 * Allocate virtual address space for the message buffer.
720 	 */
721 	msgbufp = (struct msgbuf *)virtual_avail;
722 	virtual_avail += round_page(MSGBUF_SIZE);
723 
724 	/*
725 	 * Initialize hardware.
726 	 */
727 	for (i = 0; i < 16; i++) {
728 		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
729 	}
730 	__asm __volatile ("mtsr %0,%1"
731 	    :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
732 	__asm __volatile ("sync; mtsdr1 %0; isync"
733 	    :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
734 	tlbia();
735 
736 	pmap_bootstrapped++;
737 }
738 
739 /*
740  * Activate a user pmap.  The pmap must be activated before it's address
741  * space can be accessed in any way.
742  */
743 void
744 pmap_activate(struct thread *td)
745 {
746 	pmap_t	pm, pmr;
747 
748 	/*
749 	 * Load all the data we need up front to encourasge the compiler to
750 	 * not issue any loads while we have interrupts disabled below.
751 	 */
752 	pm = &td->td_proc->p_vmspace->vm_pmap;
753 
754 	KASSERT(pm->pm_active == 0, ("pmap_activate: pmap already active?"));
755 
756 	if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL)
757 		pmr = pm;
758 
759 	pm->pm_active |= PCPU_GET(cpumask);
760 	PCPU_SET(curpmap, pmr);
761 }
762 
763 void
764 pmap_deactivate(struct thread *td)
765 {
766 	pmap_t	pm;
767 
768 	pm = &td->td_proc->p_vmspace->vm_pmap;
769 	pm->pm_active &= ~(PCPU_GET(cpumask));
770 	PCPU_SET(curpmap, NULL);
771 }
772 
773 vm_offset_t
774 pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
775 {
776 
777 	return (va);
778 }
779 
780 void
781 pmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired)
782 {
783 	struct	pvo_entry *pvo;
784 
785 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
786 
787 	if (pvo != NULL) {
788 		if (wired) {
789 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
790 				pm->pm_stats.wired_count++;
791 			pvo->pvo_vaddr |= PVO_WIRED;
792 		} else {
793 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
794 				pm->pm_stats.wired_count--;
795 			pvo->pvo_vaddr &= ~PVO_WIRED;
796 		}
797 	}
798 }
799 
800 void
801 pmap_clear_modify(vm_page_t m)
802 {
803 
804 	if (m->flags * PG_FICTITIOUS)
805 		return;
806 	pmap_clear_bit(m, PTE_CHG);
807 }
808 
809 void
810 pmap_collect(void)
811 {
812 	TODO;
813 }
814 
815 void
816 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
817 	  vm_size_t len, vm_offset_t src_addr)
818 {
819 
820 	/*
821 	 * This is not needed as it's mainly an optimisation.
822 	 * It may want to be implemented later though.
823 	 */
824 }
825 
826 void
827 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
828 {
829 	vm_offset_t	dst;
830 	vm_offset_t	src;
831 
832 	dst = VM_PAGE_TO_PHYS(mdst);
833 	src = VM_PAGE_TO_PHYS(msrc);
834 
835 	kcopy((void *)src, (void *)dst, PAGE_SIZE);
836 }
837 
838 /*
839  * Zero a page of physical memory by temporarily mapping it into the tlb.
840  */
841 void
842 pmap_zero_page(vm_page_t m)
843 {
844 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
845 	caddr_t	va;
846 	int	i;
847 
848 	if (pa < SEGMENT_LENGTH) {
849 		va = (caddr_t) pa;
850 	} else if (pmap_initialized) {
851 		if (pmap_pvo_zeropage == NULL)
852 			pmap_pvo_zeropage = pmap_rkva_alloc();
853 		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
854 		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
855 	} else {
856 		panic("pmap_zero_page: can't zero pa %#x", pa);
857 	}
858 
859 	bzero(va, PAGE_SIZE);
860 
861 	for (i = PAGE_SIZE / CACHELINESIZE; i > 0; i--) {
862 		__asm __volatile("dcbz 0,%0" :: "r"(va));
863 		va += CACHELINESIZE;
864 	}
865 
866 	if (pa >= SEGMENT_LENGTH)
867 		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
868 }
869 
870 void
871 pmap_zero_page_area(vm_page_t m, int off, int size)
872 {
873 	TODO;
874 }
875 
876 /*
877  * Map the given physical page at the specified virtual address in the
878  * target pmap with the protection requested.  If specified the page
879  * will be wired down.
880  */
881 void
882 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
883 	   boolean_t wired)
884 {
885 	struct		pvo_head *pvo_head;
886 	uma_zone_t	zone;
887 	vm_page_t	pg;
888 	u_int		pte_lo, pvo_flags, was_exec, i;
889 	int		error;
890 
891 	if (!pmap_initialized) {
892 		pvo_head = &pmap_pvo_kunmanaged;
893 		zone = pmap_upvo_zone;
894 		pvo_flags = 0;
895 		pg = NULL;
896 		was_exec = PTE_EXEC;
897 	} else {
898 		pvo_head = pa_to_pvoh(VM_PAGE_TO_PHYS(m), &pg);
899 		zone = pmap_mpvo_zone;
900 		pvo_flags = PVO_MANAGED;
901 		was_exec = 0;
902 	}
903 
904 	/*
905 	 * If this is a managed page, and it's the first reference to the page,
906 	 * clear the execness of the page.  Otherwise fetch the execness.
907 	 */
908 	if (pg != NULL) {
909 		if (LIST_EMPTY(pvo_head)) {
910 			pmap_attr_clear(pg, PTE_EXEC);
911 		} else {
912 			was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
913 		}
914 	}
915 
916 
917 	/*
918 	 * Assume the page is cache inhibited and access is guarded unless
919 	 * it's in our available memory array.
920 	 */
921 	pte_lo = PTE_I | PTE_G;
922 	for (i = 0; i < pregions_sz; i++) {
923 		if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
924 		    (VM_PAGE_TO_PHYS(m) <
925 			(pregions[i].mr_start + pregions[i].mr_size))) {
926 			pte_lo &= ~(PTE_I | PTE_G);
927 			break;
928 		}
929 	}
930 
931 	if (prot & VM_PROT_WRITE)
932 		pte_lo |= PTE_BW;
933 	else
934 		pte_lo |= PTE_BR;
935 
936 	pvo_flags |= (prot & VM_PROT_EXECUTE);
937 
938 	if (wired)
939 		pvo_flags |= PVO_WIRED;
940 
941 	error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
942 	    pte_lo, pvo_flags);
943 
944 	/*
945 	 * Flush the real page from the instruction cache if this page is
946 	 * mapped executable and cacheable and was not previously mapped (or
947 	 * was not mapped executable).
948 	 */
949 	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
950 	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
951 		/*
952 		 * Flush the real memory from the cache.
953 		 */
954 		pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
955 		if (pg != NULL)
956 			pmap_attr_save(pg, PTE_EXEC);
957 	}
958 }
959 
960 vm_offset_t
961 pmap_extract(pmap_t pm, vm_offset_t va)
962 {
963 	struct	pvo_entry *pvo;
964 
965 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
966 
967 	if (pvo != NULL) {
968 		return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
969 	}
970 
971 	return (0);
972 }
973 
974 /*
975  * Grow the number of kernel page table entries.  Unneeded.
976  */
977 void
978 pmap_growkernel(vm_offset_t addr)
979 {
980 }
981 
982 void
983 pmap_init(vm_offset_t phys_start, vm_offset_t phys_end)
984 {
985 
986 	CTR0(KTR_PMAP, "pmap_init");
987 }
988 
989 void
990 pmap_init2(void)
991 {
992 
993 	CTR0(KTR_PMAP, "pmap_init2");
994 
995 	pmap_pvo_obj = vm_object_allocate(OBJT_PHYS, 16);
996 	pmap_pvo_count = 0;
997 	pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
998 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
999 	uma_zone_set_allocf(pmap_upvo_zone, pmap_pvo_allocf);
1000 	pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1001 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
1002 	uma_zone_set_allocf(pmap_mpvo_zone, pmap_pvo_allocf);
1003 	pmap_initialized = TRUE;
1004 }
1005 
1006 boolean_t
1007 pmap_is_modified(vm_page_t m)
1008 {
1009 
1010 	if (m->flags & PG_FICTITIOUS)
1011 		return (FALSE);
1012 
1013 	return (pmap_query_bit(m, PTE_CHG));
1014 }
1015 
1016 void
1017 pmap_clear_reference(vm_page_t m)
1018 {
1019 	TODO;
1020 }
1021 
1022 /*
1023  *	pmap_ts_referenced:
1024  *
1025  *	Return a count of reference bits for a page, clearing those bits.
1026  *	It is not necessary for every reference bit to be cleared, but it
1027  *	is necessary that 0 only be returned when there are truly no
1028  *	reference bits set.
1029  *
1030  *	XXX: The exact number of bits to check and clear is a matter that
1031  *	should be tested and standardized at some point in the future for
1032  *	optimal aging of shared pages.
1033  */
1034 
1035 int
1036 pmap_ts_referenced(vm_page_t m)
1037 {
1038 	TODO;
1039 	return (0);
1040 }
1041 
1042 /*
1043  * Map a wired page into kernel virtual address space.
1044  */
1045 void
1046 pmap_kenter(vm_offset_t va, vm_offset_t pa)
1047 {
1048 	u_int		pte_lo;
1049 	int		error;
1050 	int		i;
1051 
1052 #if 0
1053 	if (va < VM_MIN_KERNEL_ADDRESS)
1054 		panic("pmap_kenter: attempt to enter non-kernel address %#x",
1055 		    va);
1056 #endif
1057 
1058 	pte_lo = PTE_I | PTE_G | PTE_BW;
1059 	for (i = 0; phys_avail[i + 2] != 0; i += 2) {
1060 		if (pa >= phys_avail[i] && pa < phys_avail[i + 1]) {
1061 			pte_lo &= ~(PTE_I | PTE_G);
1062 			break;
1063 		}
1064 	}
1065 
1066 	error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
1067 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1068 
1069 	if (error != 0 && error != ENOENT)
1070 		panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
1071 		    pa, error);
1072 
1073 	/*
1074 	 * Flush the real memory from the instruction cache.
1075 	 */
1076 	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1077 		pmap_syncicache(pa, PAGE_SIZE);
1078 	}
1079 }
1080 
1081 /*
1082  * Extract the physical page address associated with the given kernel virtual
1083  * address.
1084  */
1085 vm_offset_t
1086 pmap_kextract(vm_offset_t va)
1087 {
1088 	struct		pvo_entry *pvo;
1089 
1090 	pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1091 	if (pvo == NULL) {
1092 		return (0);
1093 	}
1094 
1095 	return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1096 }
1097 
1098 /*
1099  * Remove a wired page from kernel virtual address space.
1100  */
1101 void
1102 pmap_kremove(vm_offset_t va)
1103 {
1104 
1105 	pmap_remove(kernel_pmap, va, roundup(va, PAGE_SIZE));
1106 }
1107 
1108 /*
1109  * Map a range of physical addresses into kernel virtual address space.
1110  *
1111  * The value passed in *virt is a suggested virtual address for the mapping.
1112  * Architectures which can support a direct-mapped physical to virtual region
1113  * can return the appropriate address within that region, leaving '*virt'
1114  * unchanged.  We cannot and therefore do not; *virt is updated with the
1115  * first usable address after the mapped region.
1116  */
1117 vm_offset_t
1118 pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
1119 {
1120 	vm_offset_t	sva, va;
1121 
1122 	sva = *virt;
1123 	va = sva;
1124 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1125 		pmap_kenter(va, pa_start);
1126 	*virt = va;
1127 	return (sva);
1128 }
1129 
1130 int
1131 pmap_mincore(pmap_t pmap, vm_offset_t addr)
1132 {
1133 	TODO;
1134 	return (0);
1135 }
1136 
1137 /*
1138  * Create the uarea for a new process.
1139  * This routine directly affects the fork perf for a process.
1140  */
1141 void
1142 pmap_new_proc(struct proc *p)
1143 {
1144 	vm_object_t	upobj;
1145 	vm_offset_t	up;
1146 	vm_page_t	m;
1147 	u_int		i;
1148 
1149 	/*
1150 	 * Allocate the object for the upages.
1151 	 */
1152 	upobj = p->p_upages_obj;
1153 	if (upobj == NULL) {
1154 		upobj = vm_object_allocate(OBJT_DEFAULT, UAREA_PAGES);
1155 		p->p_upages_obj = upobj;
1156 	}
1157 
1158 	/*
1159 	 * Get a kernel virtual address for the uarea for this process.
1160 	 */
1161 	up = (vm_offset_t)p->p_uarea;
1162 	if (up == 0) {
1163 		up = kmem_alloc_nofault(kernel_map, UAREA_PAGES * PAGE_SIZE);
1164 		if (up == 0)
1165 			panic("pmap_new_proc: upage allocation failed");
1166 		p->p_uarea = (struct user *)up;
1167 	}
1168 
1169 	for (i = 0; i < UAREA_PAGES; i++) {
1170 		/*
1171 		 * Get a uarea page.
1172 		 */
1173 		m = vm_page_grab(upobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1174 
1175 		/*
1176 		 * Wire the page.
1177 		 */
1178 		m->wire_count++;
1179 
1180 		/*
1181 		 * Enter the page into the kernel address space.
1182 		 */
1183 		pmap_kenter(up + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1184 
1185 		vm_page_wakeup(m);
1186 		vm_page_flag_clear(m, PG_ZERO);
1187 		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1188 		m->valid = VM_PAGE_BITS_ALL;
1189 	}
1190 }
1191 
1192 void
1193 pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
1194 		    vm_pindex_t pindex, vm_size_t size, int limit)
1195 {
1196 
1197 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1198 	    ("pmap_remove_pages: non current pmap"));
1199 	/* XXX */
1200 }
1201 
1202 /*
1203  * Lower the permission for all mappings to a given page.
1204  */
1205 void
1206 pmap_page_protect(vm_page_t m, vm_prot_t prot)
1207 {
1208 	struct	pvo_head *pvo_head;
1209 	struct	pvo_entry *pvo, *next_pvo;
1210 	struct	pte *pt;
1211 
1212 	/*
1213 	 * Since the routine only downgrades protection, if the
1214 	 * maximal protection is desired, there isn't any change
1215 	 * to be made.
1216 	 */
1217 	if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
1218 	    (VM_PROT_READ|VM_PROT_WRITE))
1219 		return;
1220 
1221 	pvo_head = vm_page_to_pvoh(m);
1222 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1223 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1224 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1225 
1226 		/*
1227 		 * Downgrading to no mapping at all, we just remove the entry.
1228 		 */
1229 		if ((prot & VM_PROT_READ) == 0) {
1230 			pmap_pvo_remove(pvo, -1);
1231 			continue;
1232 		}
1233 
1234 		/*
1235 		 * If EXEC permission is being revoked, just clear the flag
1236 		 * in the PVO.
1237 		 */
1238 		if ((prot & VM_PROT_EXECUTE) == 0)
1239 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1240 
1241 		/*
1242 		 * If this entry is already RO, don't diddle with the page
1243 		 * table.
1244 		 */
1245 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
1246 			PMAP_PVO_CHECK(pvo);
1247 			continue;
1248 		}
1249 
1250 		/*
1251 		 * Grab the PTE before we diddle the bits so pvo_to_pte can
1252 		 * verify the pte contents are as expected.
1253 		 */
1254 		pt = pmap_pvo_to_pte(pvo, -1);
1255 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1256 		pvo->pvo_pte.pte_lo |= PTE_BR;
1257 		if (pt != NULL)
1258 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1259 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1260 	}
1261 }
1262 
1263 /*
1264  * Make the specified page pageable (or not).  Unneeded.
1265  */
1266 void
1267 pmap_pageable(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1268 	      boolean_t pageable)
1269 {
1270 }
1271 
1272 /*
1273  * Returns true if the pmap's pv is one of the first
1274  * 16 pvs linked to from this page.  This count may
1275  * be changed upwards or downwards in the future; it
1276  * is only necessary that true be returned for a small
1277  * subset of pmaps for proper page aging.
1278  */
1279 boolean_t
1280 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
1281 {
1282 	TODO;
1283 	return (0);
1284 }
1285 
1286 static u_int	pmap_vsidcontext;
1287 
1288 void
1289 pmap_pinit(pmap_t pmap)
1290 {
1291 	int	i, mask;
1292 	u_int	entropy;
1293 
1294 	entropy = 0;
1295 	__asm __volatile("mftb %0" : "=r"(entropy));
1296 
1297 	/*
1298 	 * Allocate some segment registers for this pmap.
1299 	 */
1300 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1301 		u_int	hash, n;
1302 
1303 		/*
1304 		 * Create a new value by mutiplying by a prime and adding in
1305 		 * entropy from the timebase register.  This is to make the
1306 		 * VSID more random so that the PT hash function collides
1307 		 * less often.  (Note that the prime casues gcc to do shifts
1308 		 * instead of a multiply.)
1309 		 */
1310 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1311 		hash = pmap_vsidcontext & (NPMAPS - 1);
1312 		if (hash == 0)		/* 0 is special, avoid it */
1313 			continue;
1314 		n = hash >> 5;
1315 		mask = 1 << (hash & (VSID_NBPW - 1));
1316 		hash = (pmap_vsidcontext & 0xfffff);
1317 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1318 			/* anything free in this bucket? */
1319 			if (pmap_vsid_bitmap[n] == 0xffffffff) {
1320 				entropy = (pmap_vsidcontext >> 20);
1321 				continue;
1322 			}
1323 			i = ffs(~pmap_vsid_bitmap[i]) - 1;
1324 			mask = 1 << i;
1325 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1326 			hash |= i;
1327 		}
1328 		pmap_vsid_bitmap[n] |= mask;
1329 		for (i = 0; i < 16; i++)
1330 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1331 		return;
1332 	}
1333 
1334 	panic("pmap_pinit: out of segments");
1335 }
1336 
1337 /*
1338  * Initialize the pmap associated with process 0.
1339  */
1340 void
1341 pmap_pinit0(pmap_t pm)
1342 {
1343 
1344 	pmap_pinit(pm);
1345 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1346 }
1347 
1348 void
1349 pmap_pinit2(pmap_t pmap)
1350 {
1351 	/* XXX: Remove this stub when no longer called */
1352 }
1353 
1354 void
1355 pmap_prefault(pmap_t pm, vm_offset_t va, vm_map_entry_t entry)
1356 {
1357 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1358 	    ("pmap_prefault: non current pmap"));
1359 	/* XXX */
1360 }
1361 
1362 /*
1363  * Set the physical protection on the specified range of this map as requested.
1364  */
1365 void
1366 pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1367 {
1368 	struct	pvo_entry *pvo;
1369 	struct	pte *pt;
1370 	int	pteidx;
1371 
1372 	CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1373 	    eva, prot);
1374 
1375 
1376 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1377 	    ("pmap_protect: non current pmap"));
1378 
1379 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1380 		pmap_remove(pm, sva, eva);
1381 		return;
1382 	}
1383 
1384 	for (; sva < eva; sva += PAGE_SIZE) {
1385 		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1386 		if (pvo == NULL)
1387 			continue;
1388 
1389 		if ((prot & VM_PROT_EXECUTE) == 0)
1390 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1391 
1392 		/*
1393 		 * Grab the PTE pointer before we diddle with the cached PTE
1394 		 * copy.
1395 		 */
1396 		pt = pmap_pvo_to_pte(pvo, pteidx);
1397 		/*
1398 		 * Change the protection of the page.
1399 		 */
1400 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1401 		pvo->pvo_pte.pte_lo |= PTE_BR;
1402 
1403 		/*
1404 		 * If the PVO is in the page table, update that pte as well.
1405 		 */
1406 		if (pt != NULL)
1407 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1408 	}
1409 }
1410 
1411 vm_offset_t
1412 pmap_phys_address(int ppn)
1413 {
1414 	TODO;
1415 	return (0);
1416 }
1417 
1418 /*
1419  * Map a list of wired pages into kernel virtual address space.  This is
1420  * intended for temporary mappings which do not need page modification or
1421  * references recorded.  Existing mappings in the region are overwritten.
1422  */
1423 void
1424 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1425 {
1426 	int	i;
1427 
1428 	for (i = 0; i < count; i++, va += PAGE_SIZE)
1429 		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
1430 }
1431 
1432 /*
1433  * Remove page mappings from kernel virtual address space.  Intended for
1434  * temporary mappings entered by pmap_qenter.
1435  */
1436 void
1437 pmap_qremove(vm_offset_t va, int count)
1438 {
1439 	int	i;
1440 
1441 	for (i = 0; i < count; i++, va += PAGE_SIZE)
1442 		pmap_kremove(va);
1443 }
1444 
1445 void
1446 pmap_release(pmap_t pmap)
1447 {
1448 	TODO;
1449 }
1450 
1451 /*
1452  * Remove the given range of addresses from the specified map.
1453  */
1454 void
1455 pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1456 {
1457 	struct	pvo_entry *pvo;
1458 	int	pteidx;
1459 
1460 	for (; sva < eva; sva += PAGE_SIZE) {
1461 		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1462 		if (pvo != NULL) {
1463 			pmap_pvo_remove(pvo, pteidx);
1464 		}
1465 	}
1466 }
1467 
1468 /*
1469  * Remove all pages from specified address space, this aids process exit
1470  * speeds.  This is much faster than pmap_remove in the case of running down
1471  * an entire address space.  Only works for the current pmap.
1472  */
1473 void
1474 pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1475 {
1476 
1477 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1478 	    ("pmap_remove_pages: non current pmap"));
1479 	pmap_remove(pm, sva, eva);
1480 }
1481 
1482 void
1483 pmap_swapin_proc(struct proc *p)
1484 {
1485 	TODO;
1486 }
1487 
1488 void
1489 pmap_swapout_proc(struct proc *p)
1490 {
1491 	TODO;
1492 }
1493 
1494 /*
1495  * Create the kernel stack and pcb for a new thread.
1496  * This routine directly affects the fork perf for a process and
1497  * create performance for a thread.
1498  */
1499 void
1500 pmap_new_thread(struct thread *td)
1501 {
1502 	vm_object_t	ksobj;
1503 	vm_offset_t	ks;
1504 	vm_page_t	m;
1505 	u_int		i;
1506 
1507 	/*
1508 	 * Allocate object for the kstack.
1509 	 */
1510 	ksobj = td->td_kstack_obj;
1511 	if (ksobj == NULL) {
1512 		ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
1513 		td->td_kstack_obj = ksobj;
1514 	}
1515 
1516 	/*
1517 	 * Get a kernel virtual address for the kstack for this thread.
1518 	 */
1519 	ks = td->td_kstack;
1520 	if (ks == 0) {
1521 		ks = kmem_alloc_nofault(kernel_map,
1522 		    (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE);
1523 		if (ks == 0)
1524 			panic("pmap_new_thread: kstack allocation failed");
1525 		TLBIE(ks);
1526 		ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
1527 		td->td_kstack = ks;
1528 	}
1529 
1530 	for (i = 0; i < KSTACK_PAGES; i++) {
1531 		/*
1532 		 * Get a kernel stack page.
1533 		 */
1534 		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1535 
1536 		/*
1537 		 * Wire the page.
1538 		 */
1539 		m->wire_count++;
1540 
1541 		/*
1542 		 * Enter the page into the kernel address space.
1543 		 */
1544 		pmap_kenter(ks + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1545 
1546 		vm_page_wakeup(m);
1547 		vm_page_flag_clear(m, PG_ZERO);
1548 		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1549 		m->valid = VM_PAGE_BITS_ALL;
1550 	}
1551 }
1552 
1553 void
1554 pmap_dispose_proc(struct proc *p)
1555 {
1556 	TODO;
1557 }
1558 
1559 void
1560 pmap_dispose_thread(struct thread *td)
1561 {
1562 	TODO;
1563 }
1564 
1565 void
1566 pmap_swapin_thread(struct thread *td)
1567 {
1568 	TODO;
1569 }
1570 
1571 void
1572 pmap_swapout_thread(struct thread *td)
1573 {
1574 	TODO;
1575 }
1576 
1577 /*
1578  * Allocate a physical page of memory directly from the phys_avail map.
1579  * Can only be called from pmap_bootstrap before avail start and end are
1580  * calculated.
1581  */
1582 static vm_offset_t
1583 pmap_bootstrap_alloc(vm_size_t size, u_int align)
1584 {
1585 	vm_offset_t	s, e;
1586 	int		i, j;
1587 
1588 	size = round_page(size);
1589 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1590 		if (align != 0)
1591 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1592 		else
1593 			s = phys_avail[i];
1594 		e = s + size;
1595 
1596 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1597 			continue;
1598 
1599 		if (s == phys_avail[i]) {
1600 			phys_avail[i] += size;
1601 		} else if (e == phys_avail[i + 1]) {
1602 			phys_avail[i + 1] -= size;
1603 		} else {
1604 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1605 				phys_avail[j] = phys_avail[j - 2];
1606 				phys_avail[j + 1] = phys_avail[j - 1];
1607 			}
1608 
1609 			phys_avail[i + 3] = phys_avail[i + 1];
1610 			phys_avail[i + 1] = s;
1611 			phys_avail[i + 2] = e;
1612 			phys_avail_count++;
1613 		}
1614 
1615 		return (s);
1616 	}
1617 	panic("pmap_bootstrap_alloc: could not allocate memory");
1618 }
1619 
1620 /*
1621  * Return an unmapped pvo for a kernel virtual address.
1622  * Used by pmap functions that operate on physical pages.
1623  */
1624 static struct pvo_entry *
1625 pmap_rkva_alloc(void)
1626 {
1627 	struct		pvo_entry *pvo;
1628 	struct		pte *pt;
1629 	vm_offset_t	kva;
1630 	int		pteidx;
1631 
1632 	if (pmap_rkva_count == 0)
1633 		panic("pmap_rkva_alloc: no more reserved KVAs");
1634 
1635 	kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
1636 	pmap_kenter(kva, 0);
1637 
1638 	pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
1639 
1640 	if (pvo == NULL)
1641 		panic("pmap_kva_alloc: pmap_pvo_find_va failed");
1642 
1643 	pt = pmap_pvo_to_pte(pvo, pteidx);
1644 
1645 	if (pt == NULL)
1646 		panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
1647 
1648 	pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1649 	PVO_PTEGIDX_CLR(pvo);
1650 
1651 	pmap_pte_overflow++;
1652 
1653 	return (pvo);
1654 }
1655 
1656 static void
1657 pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1658     int *depth_p)
1659 {
1660 	struct	pte *pt;
1661 
1662 	/*
1663 	 * If this pvo already has a valid pte, we need to save it so it can
1664 	 * be restored later.  We then just reload the new PTE over the old
1665 	 * slot.
1666 	 */
1667 	if (saved_pt != NULL) {
1668 		pt = pmap_pvo_to_pte(pvo, -1);
1669 
1670 		if (pt != NULL) {
1671 			pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1672 			PVO_PTEGIDX_CLR(pvo);
1673 			pmap_pte_overflow++;
1674 		}
1675 
1676 		*saved_pt = pvo->pvo_pte;
1677 
1678 		pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1679 	}
1680 
1681 	pvo->pvo_pte.pte_lo |= pa;
1682 
1683 	if (!pmap_pte_spill(pvo->pvo_vaddr))
1684 		panic("pmap_pa_map: could not spill pvo %p", pvo);
1685 
1686 	if (depth_p != NULL)
1687 		(*depth_p)++;
1688 }
1689 
1690 static void
1691 pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1692 {
1693 	struct	pte *pt;
1694 
1695 	pt = pmap_pvo_to_pte(pvo, -1);
1696 
1697 	if (pt != NULL) {
1698 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1699 		PVO_PTEGIDX_CLR(pvo);
1700 		pmap_pte_overflow++;
1701 	}
1702 
1703 	pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1704 
1705 	/*
1706 	 * If there is a saved PTE and it's valid, restore it and return.
1707 	 */
1708 	if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1709 		if (depth_p != NULL && --(*depth_p) == 0)
1710 			panic("pmap_pa_unmap: restoring but depth == 0");
1711 
1712 		pvo->pvo_pte = *saved_pt;
1713 
1714 		if (!pmap_pte_spill(pvo->pvo_vaddr))
1715 			panic("pmap_pa_unmap: could not spill pvo %p", pvo);
1716 	}
1717 }
1718 
1719 static void
1720 pmap_syncicache(vm_offset_t pa, vm_size_t len)
1721 {
1722 	__syncicache((void *)pa, len);
1723 }
1724 
1725 static void
1726 tlbia(void)
1727 {
1728 	caddr_t	i;
1729 
1730 	SYNC();
1731 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1732 		TLBIE(i);
1733 		EIEIO();
1734 	}
1735 	TLBSYNC();
1736 	SYNC();
1737 }
1738 
1739 static int
1740 pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1741     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1742 {
1743 	struct	pvo_entry *pvo;
1744 	u_int	sr;
1745 	int	first;
1746 	u_int	ptegidx;
1747 	int	i;
1748 
1749 	pmap_pvo_enter_calls++;
1750 	first = 0;
1751 
1752 	/*
1753 	 * Compute the PTE Group index.
1754 	 */
1755 	va &= ~ADDR_POFF;
1756 	sr = va_to_sr(pm->pm_sr, va);
1757 	ptegidx = va_to_pteg(sr, va);
1758 
1759 	/*
1760 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1761 	 * there is a mapping.
1762 	 */
1763 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1764 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1765 			if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
1766 			    (pvo->pvo_pte.pte_lo & PTE_PP) ==
1767 			    (pte_lo & PTE_PP)) {
1768 				return (0);
1769 			}
1770 			pmap_pvo_remove(pvo, -1);
1771 			break;
1772 		}
1773 	}
1774 
1775 	/*
1776 	 * If we aren't overwriting a mapping, try to allocate.
1777 	 */
1778 	if (pmap_initialized) {
1779 		pvo = uma_zalloc(zone, M_NOWAIT);
1780 	} else {
1781 		if (pmap_bpvo_pool_index >= pmap_bpvo_pool_count) {
1782 			pmap_bpvo_pool = (struct pvo_entry *)
1783 			    pmap_bootstrap_alloc(PAGE_SIZE, 0);
1784 			pmap_bpvo_pool_index = 0;
1785 		}
1786 		pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
1787 		pmap_bpvo_pool_index++;
1788 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1789 	}
1790 
1791 	if (pvo == NULL) {
1792 		return (ENOMEM);
1793 	}
1794 
1795 	pmap_pvo_entries++;
1796 	pvo->pvo_vaddr = va;
1797 	pvo->pvo_pmap = pm;
1798 	LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1799 	pvo->pvo_vaddr &= ~ADDR_POFF;
1800 	if (flags & VM_PROT_EXECUTE)
1801 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1802 	if (flags & PVO_WIRED)
1803 		pvo->pvo_vaddr |= PVO_WIRED;
1804 	if (pvo_head != &pmap_pvo_kunmanaged)
1805 		pvo->pvo_vaddr |= PVO_MANAGED;
1806 	pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1807 
1808 	/*
1809 	 * Remember if the list was empty and therefore will be the first
1810 	 * item.
1811 	 */
1812 	if (LIST_FIRST(pvo_head) == NULL)
1813 		first = 1;
1814 
1815 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1816 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1817 		pvo->pvo_pmap->pm_stats.wired_count++;
1818 	pvo->pvo_pmap->pm_stats.resident_count++;
1819 
1820 	/*
1821 	 * We hope this succeeds but it isn't required.
1822 	 */
1823 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1824 	if (i >= 0) {
1825 		PVO_PTEGIDX_SET(pvo, i);
1826 	} else {
1827 		panic("pmap_pvo_enter: overflow");
1828 		pmap_pte_overflow++;
1829 	}
1830 
1831 	return (first ? ENOENT : 0);
1832 }
1833 
1834 static void
1835 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1836 {
1837 	struct	pte *pt;
1838 
1839 	/*
1840 	 * If there is an active pte entry, we need to deactivate it (and
1841 	 * save the ref & cfg bits).
1842 	 */
1843 	pt = pmap_pvo_to_pte(pvo, pteidx);
1844 	if (pt != NULL) {
1845 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1846 		PVO_PTEGIDX_CLR(pvo);
1847 	} else {
1848 		pmap_pte_overflow--;
1849 	}
1850 
1851 	/*
1852 	 * Update our statistics.
1853 	 */
1854 	pvo->pvo_pmap->pm_stats.resident_count--;
1855 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1856 		pvo->pvo_pmap->pm_stats.wired_count--;
1857 
1858 	/*
1859 	 * Save the REF/CHG bits into their cache if the page is managed.
1860 	 */
1861 	if (pvo->pvo_vaddr & PVO_MANAGED) {
1862 		struct	vm_page *pg;
1863 
1864 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1865 		if (pg != NULL) {
1866 			pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
1867 			    (PTE_REF | PTE_CHG));
1868 		}
1869 	}
1870 
1871 	/*
1872 	 * Remove this PVO from the PV list.
1873 	 */
1874 	LIST_REMOVE(pvo, pvo_vlink);
1875 
1876 	/*
1877 	 * Remove this from the overflow list and return it to the pool
1878 	 * if we aren't going to reuse it.
1879 	 */
1880 	LIST_REMOVE(pvo, pvo_olink);
1881 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
1882 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
1883 		    pmap_upvo_zone, pvo);
1884 	pmap_pvo_entries--;
1885 	pmap_pvo_remove_calls++;
1886 }
1887 
1888 static __inline int
1889 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1890 {
1891 	int	pteidx;
1892 
1893 	/*
1894 	 * We can find the actual pte entry without searching by grabbing
1895 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
1896 	 * noticing the HID bit.
1897 	 */
1898 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1899 	if (pvo->pvo_pte.pte_hi & PTE_HID)
1900 		pteidx ^= pmap_pteg_mask * 8;
1901 
1902 	return (pteidx);
1903 }
1904 
1905 static struct pvo_entry *
1906 pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
1907 {
1908 	struct	pvo_entry *pvo;
1909 	int	ptegidx;
1910 	u_int	sr;
1911 
1912 	va &= ~ADDR_POFF;
1913 	sr = va_to_sr(pm->pm_sr, va);
1914 	ptegidx = va_to_pteg(sr, va);
1915 
1916 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1917 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1918 			if (pteidx_p)
1919 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1920 			return (pvo);
1921 		}
1922 	}
1923 
1924 	return (NULL);
1925 }
1926 
1927 static struct pte *
1928 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1929 {
1930 	struct	pte *pt;
1931 
1932 	/*
1933 	 * If we haven't been supplied the ptegidx, calculate it.
1934 	 */
1935 	if (pteidx == -1) {
1936 		int	ptegidx;
1937 		u_int	sr;
1938 
1939 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
1940 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
1941 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1942 	}
1943 
1944 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1945 
1946 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1947 		panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
1948 		    "valid pte index", pvo);
1949 	}
1950 
1951 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1952 		panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
1953 		    "pvo but no valid pte", pvo);
1954 	}
1955 
1956 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1957 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1958 			panic("pmap_pvo_to_pte: pvo %p has valid pte in "
1959 			    "pmap_pteg_table %p but invalid in pvo", pvo, pt);
1960 		}
1961 
1962 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
1963 		    != 0) {
1964 			panic("pmap_pvo_to_pte: pvo %p pte does not match "
1965 			    "pte %p in pmap_pteg_table", pvo, pt);
1966 		}
1967 
1968 		return (pt);
1969 	}
1970 
1971 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1972 		panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
1973 		    "pmap_pteg_table but valid in pvo", pvo, pt);
1974 	}
1975 
1976 	return (NULL);
1977 }
1978 
1979 static void *
1980 pmap_pvo_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1981 {
1982 	vm_page_t	m;
1983 
1984 	if (bytes != PAGE_SIZE)
1985 		panic("pmap_pvo_allocf: benno was shortsighted.  hit him.");
1986 
1987 	*flags = UMA_SLAB_PRIV;
1988 	m = vm_page_alloc(pmap_pvo_obj, pmap_pvo_count, VM_ALLOC_SYSTEM);
1989 	if (m == NULL)
1990 		return (NULL);
1991 	pmap_pvo_count++;
1992 	return ((void *)VM_PAGE_TO_PHYS(m));
1993 }
1994 
1995 /*
1996  * XXX: THIS STUFF SHOULD BE IN pte.c?
1997  */
1998 int
1999 pmap_pte_spill(vm_offset_t addr)
2000 {
2001 	struct	pvo_entry *source_pvo, *victim_pvo;
2002 	struct	pvo_entry *pvo;
2003 	int	ptegidx, i, j;
2004 	u_int	sr;
2005 	struct	pteg *pteg;
2006 	struct	pte *pt;
2007 
2008 	pmap_pte_spills++;
2009 
2010 	sr = mfsrin(addr);
2011 	ptegidx = va_to_pteg(sr, addr);
2012 
2013 	/*
2014 	 * Have to substitute some entry.  Use the primary hash for this.
2015 	 * Use low bits of timebase as random generator.
2016 	 */
2017 	pteg = &pmap_pteg_table[ptegidx];
2018 	__asm __volatile("mftb %0" : "=r"(i));
2019 	i &= 7;
2020 	pt = &pteg->pt[i];
2021 
2022 	source_pvo = NULL;
2023 	victim_pvo = NULL;
2024 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2025 		/*
2026 		 * We need to find a pvo entry for this address.
2027 		 */
2028 		PMAP_PVO_CHECK(pvo);
2029 		if (source_pvo == NULL &&
2030 		    pmap_pte_match(&pvo->pvo_pte, sr, addr,
2031 		    pvo->pvo_pte.pte_hi & PTE_HID)) {
2032 			/*
2033 			 * Now found an entry to be spilled into the pteg.
2034 			 * The PTE is now valid, so we know it's active.
2035 			 */
2036 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
2037 
2038 			if (j >= 0) {
2039 				PVO_PTEGIDX_SET(pvo, j);
2040 				pmap_pte_overflow--;
2041 				PMAP_PVO_CHECK(pvo);
2042 				return (1);
2043 			}
2044 
2045 			source_pvo = pvo;
2046 
2047 			if (victim_pvo != NULL)
2048 				break;
2049 		}
2050 
2051 		/*
2052 		 * We also need the pvo entry of the victim we are replacing
2053 		 * so save the R & C bits of the PTE.
2054 		 */
2055 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2056 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
2057 			victim_pvo = pvo;
2058 			if (source_pvo != NULL)
2059 				break;
2060 		}
2061 	}
2062 
2063 	if (source_pvo == NULL)
2064 		return (0);
2065 
2066 	if (victim_pvo == NULL) {
2067 		if ((pt->pte_hi & PTE_HID) == 0)
2068 			panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
2069 			    "entry", pt);
2070 
2071 		/*
2072 		 * If this is a secondary PTE, we need to search it's primary
2073 		 * pvo bucket for the matching PVO.
2074 		 */
2075 		LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
2076 		    pvo_olink) {
2077 			PMAP_PVO_CHECK(pvo);
2078 			/*
2079 			 * We also need the pvo entry of the victim we are
2080 			 * replacing so save the R & C bits of the PTE.
2081 			 */
2082 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
2083 				victim_pvo = pvo;
2084 				break;
2085 			}
2086 		}
2087 
2088 		if (victim_pvo == NULL)
2089 			panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
2090 			    "entry", pt);
2091 	}
2092 
2093 	/*
2094 	 * We are invalidating the TLB entry for the EA we are replacing even
2095 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2096 	 * contained in the TLB entry.
2097 	 */
2098 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
2099 
2100 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
2101 	pmap_pte_set(pt, &source_pvo->pvo_pte);
2102 
2103 	PVO_PTEGIDX_CLR(victim_pvo);
2104 	PVO_PTEGIDX_SET(source_pvo, i);
2105 	pmap_pte_replacements++;
2106 
2107 	PMAP_PVO_CHECK(victim_pvo);
2108 	PMAP_PVO_CHECK(source_pvo);
2109 
2110 	return (1);
2111 }
2112 
2113 static int
2114 pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2115 {
2116 	struct	pte *pt;
2117 	int	i;
2118 
2119 	/*
2120 	 * First try primary hash.
2121 	 */
2122 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2123 		if ((pt->pte_hi & PTE_VALID) == 0) {
2124 			pvo_pt->pte_hi &= ~PTE_HID;
2125 			pmap_pte_set(pt, pvo_pt);
2126 			return (i);
2127 		}
2128 	}
2129 
2130 	/*
2131 	 * Now try secondary hash.
2132 	 */
2133 	ptegidx ^= pmap_pteg_mask;
2134 	ptegidx++;
2135 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2136 		if ((pt->pte_hi & PTE_VALID) == 0) {
2137 			pvo_pt->pte_hi |= PTE_HID;
2138 			pmap_pte_set(pt, pvo_pt);
2139 			return (i);
2140 		}
2141 	}
2142 
2143 	panic("pmap_pte_insert: overflow");
2144 	return (-1);
2145 }
2146 
2147 static boolean_t
2148 pmap_query_bit(vm_page_t m, int ptebit)
2149 {
2150 	struct	pvo_entry *pvo;
2151 	struct	pte *pt;
2152 
2153 	if (pmap_attr_fetch(m) & ptebit)
2154 		return (TRUE);
2155 
2156 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2157 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2158 
2159 		/*
2160 		 * See if we saved the bit off.  If so, cache it and return
2161 		 * success.
2162 		 */
2163 		if (pvo->pvo_pte.pte_lo & ptebit) {
2164 			pmap_attr_save(m, ptebit);
2165 			PMAP_PVO_CHECK(pvo);	/* sanity check */
2166 			return (TRUE);
2167 		}
2168 	}
2169 
2170 	/*
2171 	 * No luck, now go through the hard part of looking at the PTEs
2172 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2173 	 * the PTEs.
2174 	 */
2175 	SYNC();
2176 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2177 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2178 
2179 		/*
2180 		 * See if this pvo has a valid PTE.  if so, fetch the
2181 		 * REF/CHG bits from the valid PTE.  If the appropriate
2182 		 * ptebit is set, cache it and return success.
2183 		 */
2184 		pt = pmap_pvo_to_pte(pvo, -1);
2185 		if (pt != NULL) {
2186 			pmap_pte_synch(pt, &pvo->pvo_pte);
2187 			if (pvo->pvo_pte.pte_lo & ptebit) {
2188 				pmap_attr_save(m, ptebit);
2189 				PMAP_PVO_CHECK(pvo);	/* sanity check */
2190 				return (TRUE);
2191 			}
2192 		}
2193 	}
2194 
2195 	return (TRUE);
2196 }
2197 
2198 static boolean_t
2199 pmap_clear_bit(vm_page_t m, int ptebit)
2200 {
2201 	struct	pvo_entry *pvo;
2202 	struct	pte *pt;
2203 	int	rv;
2204 
2205 	/*
2206 	 * Clear the cached value.
2207 	 */
2208 	rv = pmap_attr_fetch(m);
2209 	pmap_attr_clear(m, ptebit);
2210 
2211 	/*
2212 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2213 	 * we can reset the right ones).  note that since the pvo entries and
2214 	 * list heads are accessed via BAT0 and are never placed in the page
2215 	 * table, we don't have to worry about further accesses setting the
2216 	 * REF/CHG bits.
2217 	 */
2218 	SYNC();
2219 
2220 	/*
2221 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2222 	 * valid pte clear the ptebit from the valid pte.
2223 	 */
2224 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2225 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2226 		pt = pmap_pvo_to_pte(pvo, -1);
2227 		if (pt != NULL) {
2228 			pmap_pte_synch(pt, &pvo->pvo_pte);
2229 			if (pvo->pvo_pte.pte_lo & ptebit)
2230 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2231 		}
2232 		rv |= pvo->pvo_pte.pte_lo;
2233 		pvo->pvo_pte.pte_lo &= ~ptebit;
2234 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2235 	}
2236 
2237 	return ((rv & ptebit) != 0);
2238 }
2239