xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision 07159f9c56de91cb7d7bd6b6a795eebfee78133e)
1 /*
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #ifndef lint
94 static const char rcsid[] =
95    "$FreeBSD$";
96 #endif /* not lint */
97 
98 /*
99  * Manages physical address maps.
100  *
101  * In addition to hardware address maps, this module is called upon to
102  * provide software-use-only maps which may or may not be stored in the
103  * same form as hardware maps.  These pseudo-maps are used to store
104  * intermediate results from copy operations to and from address spaces.
105  *
106  * Since the information managed by this module is also stored by the
107  * logical address mapping module, this module may throw away valid virtual
108  * to physical mappings at almost any time.  However, invalidations of
109  * mappings must be done as requested.
110  *
111  * In order to cope with hardware architectures which make virtual to
112  * physical map invalidates expensive, this module may delay invalidate
113  * reduced protection operations until such time as they are actually
114  * necessary.  This module is given full information as to which processors
115  * are currently using which maps, and to when physical maps must be made
116  * correct.
117  */
118 
119 #include <sys/param.h>
120 #include <sys/kernel.h>
121 #include <sys/ktr.h>
122 #include <sys/lock.h>
123 #include <sys/msgbuf.h>
124 #include <sys/mutex.h>
125 #include <sys/proc.h>
126 #include <sys/sysctl.h>
127 #include <sys/systm.h>
128 #include <sys/vmmeter.h>
129 
130 #include <dev/ofw/openfirm.h>
131 
132 #include <vm/vm.h>
133 #include <vm/vm_param.h>
134 #include <vm/vm_kern.h>
135 #include <vm/vm_page.h>
136 #include <vm/vm_map.h>
137 #include <vm/vm_object.h>
138 #include <vm/vm_extern.h>
139 #include <vm/vm_pageout.h>
140 #include <vm/vm_pager.h>
141 #include <vm/uma.h>
142 
143 #include <machine/powerpc.h>
144 #include <machine/bat.h>
145 #include <machine/frame.h>
146 #include <machine/md_var.h>
147 #include <machine/psl.h>
148 #include <machine/pte.h>
149 #include <machine/sr.h>
150 
151 #define	PMAP_DEBUG
152 
153 #define TODO	panic("%s: not implemented", __func__);
154 
155 #define	PMAP_LOCK(pm)
156 #define	PMAP_UNLOCK(pm)
157 
158 #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
159 #define	TLBSYNC()	__asm __volatile("tlbsync");
160 #define	SYNC()		__asm __volatile("sync");
161 #define	EIEIO()		__asm __volatile("eieio");
162 
163 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
164 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
165 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
166 
167 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
168 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
169 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
170 #define	PVO_MANAGED		0x0020		/* PVO entry is managed */
171 #define	PVO_EXECUTABLE		0x0040		/* PVO entry is executable */
172 #define	PVO_BOOTSTRAP		0x0080		/* PVO entry allocated during
173 						   bootstrap */
174 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
175 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
176 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
177 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
178 #define	PVO_PTEGIDX_CLR(pvo)	\
179 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
180 #define	PVO_PTEGIDX_SET(pvo, i)	\
181 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
182 
183 #define	PMAP_PVO_CHECK(pvo)
184 
185 struct ofw_map {
186 	vm_offset_t	om_va;
187 	vm_size_t	om_len;
188 	vm_offset_t	om_pa;
189 	u_int		om_mode;
190 };
191 
192 int	pmap_bootstrapped = 0;
193 
194 /*
195  * Virtual and physical address of message buffer.
196  */
197 struct		msgbuf *msgbufp;
198 vm_offset_t	msgbuf_phys;
199 
200 /*
201  * Physical addresses of first and last available physical page.
202  */
203 vm_offset_t avail_start;
204 vm_offset_t avail_end;
205 
206 int pmap_pagedaemon_waken;
207 
208 /*
209  * Map of physical memory regions.
210  */
211 vm_offset_t	phys_avail[128];
212 u_int		phys_avail_count;
213 static struct	mem_region *regions;
214 static struct	mem_region *pregions;
215 int		regions_sz, pregions_sz;
216 static struct	ofw_map *translations;
217 
218 /*
219  * First and last available kernel virtual addresses.
220  */
221 vm_offset_t virtual_avail;
222 vm_offset_t virtual_end;
223 vm_offset_t kernel_vm_end;
224 
225 /*
226  * Kernel pmap.
227  */
228 struct pmap kernel_pmap_store;
229 extern struct pmap ofw_pmap;
230 
231 /*
232  * PTEG data.
233  */
234 static struct	pteg *pmap_pteg_table;
235 u_int		pmap_pteg_count;
236 u_int		pmap_pteg_mask;
237 
238 /*
239  * PVO data.
240  */
241 struct	pvo_head *pmap_pvo_table;		/* pvo entries by pteg index */
242 struct	pvo_head pmap_pvo_kunmanaged =
243     LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
244 struct	pvo_head pmap_pvo_unmanaged =
245     LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
246 
247 uma_zone_t	pmap_upvo_zone;	/* zone for pvo entries for unmanaged pages */
248 uma_zone_t	pmap_mpvo_zone;	/* zone for pvo entries for managed pages */
249 struct		vm_object pmap_upvo_zone_obj;
250 struct		vm_object pmap_mpvo_zone_obj;
251 static vm_object_t	pmap_pvo_obj;
252 static u_int		pmap_pvo_count;
253 
254 #define	BPVO_POOL_SIZE	32768
255 static struct	pvo_entry *pmap_bpvo_pool;
256 static int	pmap_bpvo_pool_index = 0;
257 
258 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
259 static u_int	pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
260 
261 static boolean_t pmap_initialized = FALSE;
262 
263 /*
264  * Statistics.
265  */
266 u_int	pmap_pte_valid = 0;
267 u_int	pmap_pte_overflow = 0;
268 u_int	pmap_pte_replacements = 0;
269 u_int	pmap_pvo_entries = 0;
270 u_int	pmap_pvo_enter_calls = 0;
271 u_int	pmap_pvo_remove_calls = 0;
272 u_int	pmap_pte_spills = 0;
273 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
274     0, "");
275 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
276     &pmap_pte_overflow, 0, "");
277 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
278     &pmap_pte_replacements, 0, "");
279 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
280     0, "");
281 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
282     &pmap_pvo_enter_calls, 0, "");
283 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
284     &pmap_pvo_remove_calls, 0, "");
285 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
286     &pmap_pte_spills, 0, "");
287 
288 struct	pvo_entry *pmap_pvo_zeropage;
289 
290 vm_offset_t	pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
291 u_int		pmap_rkva_count = 4;
292 
293 /*
294  * Allocate physical memory for use in pmap_bootstrap.
295  */
296 static vm_offset_t	pmap_bootstrap_alloc(vm_size_t, u_int);
297 
298 /*
299  * PTE calls.
300  */
301 static int		pmap_pte_insert(u_int, struct pte *);
302 
303 /*
304  * PVO calls.
305  */
306 static int	pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
307 		    vm_offset_t, vm_offset_t, u_int, int);
308 static void	pmap_pvo_remove(struct pvo_entry *, int);
309 static struct	pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
310 static struct	pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
311 
312 /*
313  * Utility routines.
314  */
315 static void *		pmap_pvo_allocf(uma_zone_t, int, u_int8_t *, int);
316 static struct		pvo_entry *pmap_rkva_alloc(void);
317 static void		pmap_pa_map(struct pvo_entry *, vm_offset_t,
318 			    struct pte *, int *);
319 static void		pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
320 static void		pmap_syncicache(vm_offset_t, vm_size_t);
321 static boolean_t	pmap_query_bit(vm_page_t, int);
322 static u_int		pmap_clear_bit(vm_page_t, int, int *);
323 static void		tlbia(void);
324 
325 static __inline int
326 va_to_sr(u_int *sr, vm_offset_t va)
327 {
328 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
329 }
330 
331 static __inline u_int
332 va_to_pteg(u_int sr, vm_offset_t addr)
333 {
334 	u_int hash;
335 
336 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
337 	    ADDR_PIDX_SHFT);
338 	return (hash & pmap_pteg_mask);
339 }
340 
341 static __inline struct pvo_head *
342 pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
343 {
344 	struct	vm_page *pg;
345 
346 	pg = PHYS_TO_VM_PAGE(pa);
347 
348 	if (pg_p != NULL)
349 		*pg_p = pg;
350 
351 	if (pg == NULL)
352 		return (&pmap_pvo_unmanaged);
353 
354 	return (&pg->md.mdpg_pvoh);
355 }
356 
357 static __inline struct pvo_head *
358 vm_page_to_pvoh(vm_page_t m)
359 {
360 
361 	return (&m->md.mdpg_pvoh);
362 }
363 
364 static __inline void
365 pmap_attr_clear(vm_page_t m, int ptebit)
366 {
367 
368 	m->md.mdpg_attrs &= ~ptebit;
369 }
370 
371 static __inline int
372 pmap_attr_fetch(vm_page_t m)
373 {
374 
375 	return (m->md.mdpg_attrs);
376 }
377 
378 static __inline void
379 pmap_attr_save(vm_page_t m, int ptebit)
380 {
381 
382 	m->md.mdpg_attrs |= ptebit;
383 }
384 
385 static __inline int
386 pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
387 {
388 	if (pt->pte_hi == pvo_pt->pte_hi)
389 		return (1);
390 
391 	return (0);
392 }
393 
394 static __inline int
395 pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
396 {
397 	return (pt->pte_hi & ~PTE_VALID) ==
398 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
399 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
400 }
401 
402 static __inline void
403 pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
404 {
405 	/*
406 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
407 	 * set when the real pte is set in memory.
408 	 *
409 	 * Note: Don't set the valid bit for correct operation of tlb update.
410 	 */
411 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
412 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
413 	pt->pte_lo = pte_lo;
414 }
415 
416 static __inline void
417 pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
418 {
419 
420 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
421 }
422 
423 static __inline void
424 pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
425 {
426 
427 	/*
428 	 * As shown in Section 7.6.3.2.3
429 	 */
430 	pt->pte_lo &= ~ptebit;
431 	TLBIE(va);
432 	EIEIO();
433 	TLBSYNC();
434 	SYNC();
435 }
436 
437 static __inline void
438 pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
439 {
440 
441 	pvo_pt->pte_hi |= PTE_VALID;
442 
443 	/*
444 	 * Update the PTE as defined in section 7.6.3.1.
445 	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
446 	 * been saved so this routine can restore them (if desired).
447 	 */
448 	pt->pte_lo = pvo_pt->pte_lo;
449 	EIEIO();
450 	pt->pte_hi = pvo_pt->pte_hi;
451 	SYNC();
452 	pmap_pte_valid++;
453 }
454 
455 static __inline void
456 pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
457 {
458 
459 	pvo_pt->pte_hi &= ~PTE_VALID;
460 
461 	/*
462 	 * Force the reg & chg bits back into the PTEs.
463 	 */
464 	SYNC();
465 
466 	/*
467 	 * Invalidate the pte.
468 	 */
469 	pt->pte_hi &= ~PTE_VALID;
470 
471 	SYNC();
472 	TLBIE(va);
473 	EIEIO();
474 	TLBSYNC();
475 	SYNC();
476 
477 	/*
478 	 * Save the reg & chg bits.
479 	 */
480 	pmap_pte_synch(pt, pvo_pt);
481 	pmap_pte_valid--;
482 }
483 
484 static __inline void
485 pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
486 {
487 
488 	/*
489 	 * Invalidate the PTE
490 	 */
491 	pmap_pte_unset(pt, pvo_pt, va);
492 	pmap_pte_set(pt, pvo_pt);
493 }
494 
495 /*
496  * Quick sort callout for comparing memory regions.
497  */
498 static int	mr_cmp(const void *a, const void *b);
499 static int	om_cmp(const void *a, const void *b);
500 
501 static int
502 mr_cmp(const void *a, const void *b)
503 {
504 	const struct	mem_region *regiona;
505 	const struct	mem_region *regionb;
506 
507 	regiona = a;
508 	regionb = b;
509 	if (regiona->mr_start < regionb->mr_start)
510 		return (-1);
511 	else if (regiona->mr_start > regionb->mr_start)
512 		return (1);
513 	else
514 		return (0);
515 }
516 
517 static int
518 om_cmp(const void *a, const void *b)
519 {
520 	const struct	ofw_map *mapa;
521 	const struct	ofw_map *mapb;
522 
523 	mapa = a;
524 	mapb = b;
525 	if (mapa->om_pa < mapb->om_pa)
526 		return (-1);
527 	else if (mapa->om_pa > mapb->om_pa)
528 		return (1);
529 	else
530 		return (0);
531 }
532 
533 void
534 pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
535 {
536 	ihandle_t	mmui;
537 	phandle_t	chosen, mmu;
538 	int		sz;
539 	int		i, j;
540 	int		ofw_mappings;
541 	vm_size_t	size, physsz;
542 	vm_offset_t	pa, va, off;
543 	u_int		batl, batu;
544 
545         /*
546          * Set up BAT0 to map the lowest 256 MB area
547          */
548         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
549         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
550 
551         /*
552          * Map PCI memory space.
553          */
554         battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
555         battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
556 
557         battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
558         battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
559 
560         battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
561         battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
562 
563         battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
564         battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
565 
566         /*
567          * Map obio devices.
568          */
569         battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
570         battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
571 
572 	/*
573 	 * Use an IBAT and a DBAT to map the bottom segment of memory
574 	 * where we are.
575 	 */
576 	batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
577 	batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
578 	__asm ("mtibatu 0,%0; mtibatl 0,%1; mtdbatu 0,%0; mtdbatl 0,%1"
579 	    :: "r"(batu), "r"(batl));
580 
581 #if 0
582 	/* map frame buffer */
583 	batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
584 	batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
585 	__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
586 	    :: "r"(batu), "r"(batl));
587 #endif
588 
589 #if 1
590 	/* map pci space */
591 	batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
592 	batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
593 	__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
594 	    :: "r"(batu), "r"(batl));
595 #endif
596 
597 	/*
598 	 * Set the start and end of kva.
599 	 */
600 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
601 	virtual_end = VM_MAX_KERNEL_ADDRESS;
602 
603 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
604 	CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
605 
606 	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
607 	for (i = 0; i < pregions_sz; i++) {
608 		vm_offset_t pa;
609 		vm_offset_t end;
610 
611 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
612 			pregions[i].mr_start,
613 			pregions[i].mr_start + pregions[i].mr_size,
614 			pregions[i].mr_size);
615 		/*
616 		 * Install entries into the BAT table to allow all
617 		 * of physmem to be convered by on-demand BAT entries.
618 		 * The loop will sometimes set the same battable element
619 		 * twice, but that's fine since they won't be used for
620 		 * a while yet.
621 		 */
622 		pa = pregions[i].mr_start & 0xf0000000;
623 		end = pregions[i].mr_start + pregions[i].mr_size;
624 		do {
625                         u_int n = pa >> ADDR_SR_SHFT;
626 
627 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
628 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
629 			pa += SEGMENT_LENGTH;
630 		} while (pa < end);
631 	}
632 
633 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
634 		panic("pmap_bootstrap: phys_avail too small");
635 	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
636 	phys_avail_count = 0;
637 	physsz = 0;
638 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
639 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
640 		    regions[i].mr_start + regions[i].mr_size,
641 		    regions[i].mr_size);
642 		phys_avail[j] = regions[i].mr_start;
643 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
644 		phys_avail_count++;
645 		physsz += regions[i].mr_size;
646 	}
647 	physmem = btoc(physsz);
648 
649 	/*
650 	 * Allocate PTEG table.
651 	 */
652 #ifdef PTEGCOUNT
653 	pmap_pteg_count = PTEGCOUNT;
654 #else
655 	pmap_pteg_count = 0x1000;
656 
657 	while (pmap_pteg_count < physmem)
658 		pmap_pteg_count <<= 1;
659 
660 	pmap_pteg_count >>= 1;
661 #endif /* PTEGCOUNT */
662 
663 	size = pmap_pteg_count * sizeof(struct pteg);
664 	CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
665 	    size);
666 	pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
667 	CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
668 	bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
669 	pmap_pteg_mask = pmap_pteg_count - 1;
670 
671 	/*
672 	 * Allocate pv/overflow lists.
673 	 */
674 	size = sizeof(struct pvo_head) * pmap_pteg_count;
675 	pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
676 	    PAGE_SIZE);
677 	CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
678 	for (i = 0; i < pmap_pteg_count; i++)
679 		LIST_INIT(&pmap_pvo_table[i]);
680 
681 	/*
682 	 * Allocate the message buffer.
683 	 */
684 	msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
685 
686 	/*
687 	 * Initialise the unmanaged pvo pool.
688 	 */
689 	pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(
690 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
691 	pmap_bpvo_pool_index = 0;
692 
693 	/*
694 	 * Make sure kernel vsid is allocated as well as VSID 0.
695 	 */
696 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
697 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
698 	pmap_vsid_bitmap[0] |= 1;
699 
700 	/*
701 	 * Set up the OpenFirmware pmap and add it's mappings.
702 	 */
703 	pmap_pinit(&ofw_pmap);
704 	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
705 	if ((chosen = OF_finddevice("/chosen")) == -1)
706 		panic("pmap_bootstrap: can't find /chosen");
707 	OF_getprop(chosen, "mmu", &mmui, 4);
708 	if ((mmu = OF_instance_to_package(mmui)) == -1)
709 		panic("pmap_bootstrap: can't get mmu package");
710 	if ((sz = OF_getproplen(mmu, "translations")) == -1)
711 		panic("pmap_bootstrap: can't get ofw translation count");
712 	translations = NULL;
713 	for (i = 0; phys_avail[i + 2] != 0; i += 2) {
714 		if (phys_avail[i + 1] >= sz)
715 			translations = (struct ofw_map *)phys_avail[i];
716 	}
717 	if (translations == NULL)
718 		panic("pmap_bootstrap: no space to copy translations");
719 	bzero(translations, sz);
720 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
721 		panic("pmap_bootstrap: can't get ofw translations");
722 	CTR0(KTR_PMAP, "pmap_bootstrap: translations");
723 	sz /= sizeof(*translations);
724 	qsort(translations, sz, sizeof (*translations), om_cmp);
725 	for (i = 0, ofw_mappings = 0; i < sz; i++) {
726 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
727 		    translations[i].om_pa, translations[i].om_va,
728 		    translations[i].om_len);
729 
730 		/*
731 		 * If the mapping is 1:1, let the RAM and device on-demand
732 		 * BAT tables take care of the translation.
733 		 */
734 		if (translations[i].om_va == translations[i].om_pa)
735 			continue;
736 
737 		/* Enter the pages */
738 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
739 			struct	vm_page m;
740 
741 			m.phys_addr = translations[i].om_pa + off;
742 			pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
743 				   VM_PROT_ALL, 1);
744 			ofw_mappings++;
745 		}
746 	}
747 #ifdef SMP
748 	TLBSYNC();
749 #endif
750 
751 	/*
752 	 * Initialize the kernel pmap (which is statically allocated).
753 	 */
754 	for (i = 0; i < 16; i++) {
755 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
756 	}
757 	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
758 	kernel_pmap->pm_active = ~0;
759 
760 	/*
761 	 * Allocate a kernel stack with a guard page for thread0 and map it
762 	 * into the kernel page map.
763 	 */
764 	pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
765 	kstack0_phys = pa;
766 	kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
767 	CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
768 	    kstack0);
769 	virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
770 	for (i = 0; i < KSTACK_PAGES; i++) {
771 		pa = kstack0_phys + i * PAGE_SIZE;
772 		va = kstack0 + i * PAGE_SIZE;
773 		pmap_kenter(va, pa);
774 		TLBIE(va);
775 	}
776 
777 	/*
778 	 * Calculate the first and last available physical addresses.
779 	 */
780 	avail_start = phys_avail[0];
781 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
782 		;
783 	avail_end = phys_avail[i + 1];
784 	Maxmem = powerpc_btop(avail_end);
785 
786 	/*
787 	 * Allocate virtual address space for the message buffer.
788 	 */
789 	msgbufp = (struct msgbuf *)virtual_avail;
790 	virtual_avail += round_page(MSGBUF_SIZE);
791 
792 	/*
793 	 * Initialize hardware.
794 	 */
795 	for (i = 0; i < 16; i++) {
796 		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
797 	}
798 	__asm __volatile ("mtsr %0,%1"
799 	    :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
800 	__asm __volatile ("sync; mtsdr1 %0; isync"
801 	    :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
802 	tlbia();
803 
804 	pmap_bootstrapped++;
805 }
806 
807 /*
808  * Activate a user pmap.  The pmap must be activated before it's address
809  * space can be accessed in any way.
810  */
811 void
812 pmap_activate(struct thread *td)
813 {
814 	pmap_t	pm, pmr;
815 
816 	/*
817 	 * Load all the data we need up front to encourage the compiler to
818 	 * not issue any loads while we have interrupts disabled below.
819 	 */
820 	pm = &td->td_proc->p_vmspace->vm_pmap;
821 
822 	if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL)
823 		pmr = pm;
824 
825 	pm->pm_active |= PCPU_GET(cpumask);
826 	PCPU_SET(curpmap, pmr);
827 }
828 
829 void
830 pmap_deactivate(struct thread *td)
831 {
832 	pmap_t	pm;
833 
834 	pm = &td->td_proc->p_vmspace->vm_pmap;
835 	pm->pm_active &= ~(PCPU_GET(cpumask));
836 	PCPU_SET(curpmap, NULL);
837 }
838 
839 vm_offset_t
840 pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
841 {
842 
843 	return (va);
844 }
845 
846 void
847 pmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired)
848 {
849 	struct	pvo_entry *pvo;
850 
851 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
852 
853 	if (pvo != NULL) {
854 		if (wired) {
855 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
856 				pm->pm_stats.wired_count++;
857 			pvo->pvo_vaddr |= PVO_WIRED;
858 		} else {
859 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
860 				pm->pm_stats.wired_count--;
861 			pvo->pvo_vaddr &= ~PVO_WIRED;
862 		}
863 	}
864 }
865 
866 void
867 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
868 	  vm_size_t len, vm_offset_t src_addr)
869 {
870 
871 	/*
872 	 * This is not needed as it's mainly an optimisation.
873 	 * It may want to be implemented later though.
874 	 */
875 }
876 
877 void
878 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
879 {
880 	vm_offset_t	dst;
881 	vm_offset_t	src;
882 
883 	dst = VM_PAGE_TO_PHYS(mdst);
884 	src = VM_PAGE_TO_PHYS(msrc);
885 
886 	kcopy((void *)src, (void *)dst, PAGE_SIZE);
887 }
888 
889 /*
890  * Zero a page of physical memory by temporarily mapping it into the tlb.
891  */
892 void
893 pmap_zero_page(vm_page_t m)
894 {
895 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
896 	caddr_t va;
897 
898 	if (pa < SEGMENT_LENGTH) {
899 		va = (caddr_t) pa;
900 	} else if (pmap_initialized) {
901 		if (pmap_pvo_zeropage == NULL)
902 			pmap_pvo_zeropage = pmap_rkva_alloc();
903 		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
904 		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
905 	} else {
906 		panic("pmap_zero_page: can't zero pa %#x", pa);
907 	}
908 
909 	bzero(va, PAGE_SIZE);
910 
911 	if (pa >= SEGMENT_LENGTH)
912 		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
913 }
914 
915 void
916 pmap_zero_page_area(vm_page_t m, int off, int size)
917 {
918 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
919 	caddr_t va;
920 
921 	if (pa < SEGMENT_LENGTH) {
922 		va = (caddr_t) pa;
923 	} else if (pmap_initialized) {
924 		if (pmap_pvo_zeropage == NULL)
925 			pmap_pvo_zeropage = pmap_rkva_alloc();
926 		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
927 		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
928 	} else {
929 		panic("pmap_zero_page: can't zero pa %#x", pa);
930 	}
931 
932 	bzero(va + off, size);
933 
934 	if (pa >= SEGMENT_LENGTH)
935 		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
936 }
937 
938 void
939 pmap_zero_page_idle(vm_page_t m)
940 {
941 
942 	/* XXX this is called outside of Giant, is pmap_zero_page safe? */
943 	/* XXX maybe have a dedicated mapping for this to avoid the problem? */
944 	mtx_lock(&Giant);
945 	pmap_zero_page(m);
946 	mtx_unlock(&Giant);
947 }
948 
949 /*
950  * Map the given physical page at the specified virtual address in the
951  * target pmap with the protection requested.  If specified the page
952  * will be wired down.
953  */
954 void
955 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
956 	   boolean_t wired)
957 {
958 	struct		pvo_head *pvo_head;
959 	uma_zone_t	zone;
960 	vm_page_t	pg;
961 	u_int		pte_lo, pvo_flags, was_exec, i;
962 	int		error;
963 
964 	if (!pmap_initialized) {
965 		pvo_head = &pmap_pvo_kunmanaged;
966 		zone = pmap_upvo_zone;
967 		pvo_flags = 0;
968 		pg = NULL;
969 		was_exec = PTE_EXEC;
970 	} else {
971 		pvo_head = vm_page_to_pvoh(m);
972 		pg = m;
973 		zone = pmap_mpvo_zone;
974 		pvo_flags = PVO_MANAGED;
975 		was_exec = 0;
976 	}
977 
978 	/*
979 	 * If this is a managed page, and it's the first reference to the page,
980 	 * clear the execness of the page.  Otherwise fetch the execness.
981 	 */
982 	if (pg != NULL) {
983 		if (LIST_EMPTY(pvo_head)) {
984 			pmap_attr_clear(pg, PTE_EXEC);
985 		} else {
986 			was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
987 		}
988 	}
989 
990 
991 	/*
992 	 * Assume the page is cache inhibited and access is guarded unless
993 	 * it's in our available memory array.
994 	 */
995 	pte_lo = PTE_I | PTE_G;
996 	for (i = 0; i < pregions_sz; i++) {
997 		if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
998 		    (VM_PAGE_TO_PHYS(m) <
999 			(pregions[i].mr_start + pregions[i].mr_size))) {
1000 			pte_lo &= ~(PTE_I | PTE_G);
1001 			break;
1002 		}
1003 	}
1004 
1005 	if (prot & VM_PROT_WRITE)
1006 		pte_lo |= PTE_BW;
1007 	else
1008 		pte_lo |= PTE_BR;
1009 
1010 	pvo_flags |= (prot & VM_PROT_EXECUTE);
1011 
1012 	if (wired)
1013 		pvo_flags |= PVO_WIRED;
1014 
1015 	error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1016 	    pte_lo, pvo_flags);
1017 
1018 	/*
1019 	 * Flush the real page from the instruction cache if this page is
1020 	 * mapped executable and cacheable and was not previously mapped (or
1021 	 * was not mapped executable).
1022 	 */
1023 	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1024 	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1025 		/*
1026 		 * Flush the real memory from the cache.
1027 		 */
1028 		pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1029 		if (pg != NULL)
1030 			pmap_attr_save(pg, PTE_EXEC);
1031 	}
1032 
1033 	/* XXX syncicache always until problems are sorted */
1034 	pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1035 }
1036 
1037 vm_offset_t
1038 pmap_extract(pmap_t pm, vm_offset_t va)
1039 {
1040 	struct	pvo_entry *pvo;
1041 
1042 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1043 
1044 	if (pvo != NULL) {
1045 		return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1046 	}
1047 
1048 	return (0);
1049 }
1050 
1051 /*
1052  * Grow the number of kernel page table entries.  Unneeded.
1053  */
1054 void
1055 pmap_growkernel(vm_offset_t addr)
1056 {
1057 }
1058 
1059 void
1060 pmap_init(vm_offset_t phys_start, vm_offset_t phys_end)
1061 {
1062 
1063 	CTR0(KTR_PMAP, "pmap_init");
1064 
1065 	pmap_pvo_obj = vm_object_allocate(OBJT_PHYS, 16);
1066 	pmap_pvo_count = 0;
1067 	pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1068 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
1069 	uma_zone_set_allocf(pmap_upvo_zone, pmap_pvo_allocf);
1070 	pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1071 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
1072 	uma_zone_set_allocf(pmap_mpvo_zone, pmap_pvo_allocf);
1073 	pmap_initialized = TRUE;
1074 }
1075 
1076 void
1077 pmap_init2(void)
1078 {
1079 
1080 	CTR0(KTR_PMAP, "pmap_init2");
1081 }
1082 
1083 boolean_t
1084 pmap_is_modified(vm_page_t m)
1085 {
1086 
1087 	if ((m->flags & (PG_FICTITIOUS |PG_UNMANAGED)) != 0)
1088 		return (FALSE);
1089 
1090 	return (pmap_query_bit(m, PTE_CHG));
1091 }
1092 
1093 void
1094 pmap_clear_reference(vm_page_t m)
1095 {
1096 
1097 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1098 		return;
1099 	pmap_clear_bit(m, PTE_REF, NULL);
1100 }
1101 
1102 void
1103 pmap_clear_modify(vm_page_t m)
1104 {
1105 
1106 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1107 		return;
1108 	pmap_clear_bit(m, PTE_CHG, NULL);
1109 }
1110 
1111 /*
1112  *	pmap_ts_referenced:
1113  *
1114  *	Return a count of reference bits for a page, clearing those bits.
1115  *	It is not necessary for every reference bit to be cleared, but it
1116  *	is necessary that 0 only be returned when there are truly no
1117  *	reference bits set.
1118  *
1119  *	XXX: The exact number of bits to check and clear is a matter that
1120  *	should be tested and standardized at some point in the future for
1121  *	optimal aging of shared pages.
1122  */
1123 int
1124 pmap_ts_referenced(vm_page_t m)
1125 {
1126 	int count;
1127 
1128 	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) != 0)
1129 		return (0);
1130 
1131 	count = pmap_clear_bit(m, PTE_REF, NULL);
1132 
1133 	return (count);
1134 }
1135 
1136 /*
1137  * Map a wired page into kernel virtual address space.
1138  */
1139 void
1140 pmap_kenter(vm_offset_t va, vm_offset_t pa)
1141 {
1142 	u_int		pte_lo;
1143 	int		error;
1144 	int		i;
1145 
1146 #if 0
1147 	if (va < VM_MIN_KERNEL_ADDRESS)
1148 		panic("pmap_kenter: attempt to enter non-kernel address %#x",
1149 		    va);
1150 #endif
1151 
1152 	pte_lo = PTE_I | PTE_G;
1153 	for (i = 0; i < pregions_sz; i++) {
1154 		if ((pa >= pregions[i].mr_start) &&
1155 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
1156 			pte_lo &= ~(PTE_I | PTE_G);
1157 			break;
1158 		}
1159 	}
1160 
1161 	error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
1162 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1163 
1164 	if (error != 0 && error != ENOENT)
1165 		panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
1166 		    pa, error);
1167 
1168 	/*
1169 	 * Flush the real memory from the instruction cache.
1170 	 */
1171 	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1172 		pmap_syncicache(pa, PAGE_SIZE);
1173 	}
1174 }
1175 
1176 /*
1177  * Extract the physical page address associated with the given kernel virtual
1178  * address.
1179  */
1180 vm_offset_t
1181 pmap_kextract(vm_offset_t va)
1182 {
1183 	struct		pvo_entry *pvo;
1184 
1185 	pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1186 	if (pvo == NULL) {
1187 		return (0);
1188 	}
1189 
1190 	return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1191 }
1192 
1193 /*
1194  * Remove a wired page from kernel virtual address space.
1195  */
1196 void
1197 pmap_kremove(vm_offset_t va)
1198 {
1199 
1200 	pmap_remove(kernel_pmap, va, va + PAGE_SIZE);
1201 }
1202 
1203 /*
1204  * Map a range of physical addresses into kernel virtual address space.
1205  *
1206  * The value passed in *virt is a suggested virtual address for the mapping.
1207  * Architectures which can support a direct-mapped physical to virtual region
1208  * can return the appropriate address within that region, leaving '*virt'
1209  * unchanged.  We cannot and therefore do not; *virt is updated with the
1210  * first usable address after the mapped region.
1211  */
1212 vm_offset_t
1213 pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
1214 {
1215 	vm_offset_t	sva, va;
1216 
1217 	sva = *virt;
1218 	va = sva;
1219 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1220 		pmap_kenter(va, pa_start);
1221 	*virt = va;
1222 	return (sva);
1223 }
1224 
1225 int
1226 pmap_mincore(pmap_t pmap, vm_offset_t addr)
1227 {
1228 	TODO;
1229 	return (0);
1230 }
1231 
1232 void
1233 pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
1234 		    vm_pindex_t pindex, vm_size_t size, int limit)
1235 {
1236 
1237 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1238 	    ("pmap_remove_pages: non current pmap"));
1239 	/* XXX */
1240 }
1241 
1242 /*
1243  * Lower the permission for all mappings to a given page.
1244  */
1245 void
1246 pmap_page_protect(vm_page_t m, vm_prot_t prot)
1247 {
1248 	struct	pvo_head *pvo_head;
1249 	struct	pvo_entry *pvo, *next_pvo;
1250 	struct	pte *pt;
1251 
1252 	/*
1253 	 * Since the routine only downgrades protection, if the
1254 	 * maximal protection is desired, there isn't any change
1255 	 * to be made.
1256 	 */
1257 	if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
1258 	    (VM_PROT_READ|VM_PROT_WRITE))
1259 		return;
1260 
1261 	pvo_head = vm_page_to_pvoh(m);
1262 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1263 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1264 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1265 
1266 		/*
1267 		 * Downgrading to no mapping at all, we just remove the entry.
1268 		 */
1269 		if ((prot & VM_PROT_READ) == 0) {
1270 			pmap_pvo_remove(pvo, -1);
1271 			continue;
1272 		}
1273 
1274 		/*
1275 		 * If EXEC permission is being revoked, just clear the flag
1276 		 * in the PVO.
1277 		 */
1278 		if ((prot & VM_PROT_EXECUTE) == 0)
1279 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1280 
1281 		/*
1282 		 * If this entry is already RO, don't diddle with the page
1283 		 * table.
1284 		 */
1285 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
1286 			PMAP_PVO_CHECK(pvo);
1287 			continue;
1288 		}
1289 
1290 		/*
1291 		 * Grab the PTE before we diddle the bits so pvo_to_pte can
1292 		 * verify the pte contents are as expected.
1293 		 */
1294 		pt = pmap_pvo_to_pte(pvo, -1);
1295 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1296 		pvo->pvo_pte.pte_lo |= PTE_BR;
1297 		if (pt != NULL)
1298 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1299 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1300 	}
1301 }
1302 
1303 /*
1304  * Returns true if the pmap's pv is one of the first
1305  * 16 pvs linked to from this page.  This count may
1306  * be changed upwards or downwards in the future; it
1307  * is only necessary that true be returned for a small
1308  * subset of pmaps for proper page aging.
1309  */
1310 boolean_t
1311 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
1312 {
1313         int loops;
1314 	struct pvo_entry *pvo;
1315 
1316         if (!pmap_initialized || (m->flags & PG_FICTITIOUS))
1317                 return FALSE;
1318 
1319 	loops = 0;
1320 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1321 		if (pvo->pvo_pmap == pmap)
1322 			return (TRUE);
1323 		if (++loops >= 16)
1324 			break;
1325 	}
1326 
1327 	return (FALSE);
1328 }
1329 
1330 static u_int	pmap_vsidcontext;
1331 
1332 void
1333 pmap_pinit(pmap_t pmap)
1334 {
1335 	int	i, mask;
1336 	u_int	entropy;
1337 
1338 	entropy = 0;
1339 	__asm __volatile("mftb %0" : "=r"(entropy));
1340 
1341 	/*
1342 	 * Allocate some segment registers for this pmap.
1343 	 */
1344 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1345 		u_int	hash, n;
1346 
1347 		/*
1348 		 * Create a new value by mutiplying by a prime and adding in
1349 		 * entropy from the timebase register.  This is to make the
1350 		 * VSID more random so that the PT hash function collides
1351 		 * less often.  (Note that the prime casues gcc to do shifts
1352 		 * instead of a multiply.)
1353 		 */
1354 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1355 		hash = pmap_vsidcontext & (NPMAPS - 1);
1356 		if (hash == 0)		/* 0 is special, avoid it */
1357 			continue;
1358 		n = hash >> 5;
1359 		mask = 1 << (hash & (VSID_NBPW - 1));
1360 		hash = (pmap_vsidcontext & 0xfffff);
1361 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1362 			/* anything free in this bucket? */
1363 			if (pmap_vsid_bitmap[n] == 0xffffffff) {
1364 				entropy = (pmap_vsidcontext >> 20);
1365 				continue;
1366 			}
1367 			i = ffs(~pmap_vsid_bitmap[i]) - 1;
1368 			mask = 1 << i;
1369 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1370 			hash |= i;
1371 		}
1372 		pmap_vsid_bitmap[n] |= mask;
1373 		for (i = 0; i < 16; i++)
1374 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1375 		return;
1376 	}
1377 
1378 	panic("pmap_pinit: out of segments");
1379 }
1380 
1381 /*
1382  * Initialize the pmap associated with process 0.
1383  */
1384 void
1385 pmap_pinit0(pmap_t pm)
1386 {
1387 
1388 	pmap_pinit(pm);
1389 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1390 }
1391 
1392 void
1393 pmap_pinit2(pmap_t pmap)
1394 {
1395 	/* XXX: Remove this stub when no longer called */
1396 }
1397 
1398 void
1399 pmap_prefault(pmap_t pm, vm_offset_t va, vm_map_entry_t entry)
1400 {
1401 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1402 	    ("pmap_prefault: non current pmap"));
1403 	/* XXX */
1404 }
1405 
1406 /*
1407  * Set the physical protection on the specified range of this map as requested.
1408  */
1409 void
1410 pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1411 {
1412 	struct	pvo_entry *pvo;
1413 	struct	pte *pt;
1414 	int	pteidx;
1415 
1416 	CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1417 	    eva, prot);
1418 
1419 
1420 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1421 	    ("pmap_protect: non current pmap"));
1422 
1423 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1424 		pmap_remove(pm, sva, eva);
1425 		return;
1426 	}
1427 
1428 	for (; sva < eva; sva += PAGE_SIZE) {
1429 		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1430 		if (pvo == NULL)
1431 			continue;
1432 
1433 		if ((prot & VM_PROT_EXECUTE) == 0)
1434 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1435 
1436 		/*
1437 		 * Grab the PTE pointer before we diddle with the cached PTE
1438 		 * copy.
1439 		 */
1440 		pt = pmap_pvo_to_pte(pvo, pteidx);
1441 		/*
1442 		 * Change the protection of the page.
1443 		 */
1444 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1445 		pvo->pvo_pte.pte_lo |= PTE_BR;
1446 
1447 		/*
1448 		 * If the PVO is in the page table, update that pte as well.
1449 		 */
1450 		if (pt != NULL)
1451 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1452 	}
1453 }
1454 
1455 /*
1456  * Map a list of wired pages into kernel virtual address space.  This is
1457  * intended for temporary mappings which do not need page modification or
1458  * references recorded.  Existing mappings in the region are overwritten.
1459  */
1460 void
1461 pmap_qenter(vm_offset_t sva, vm_page_t *m, int count)
1462 {
1463 	vm_offset_t va;
1464 
1465 	va = sva;
1466 	while (count-- > 0) {
1467 		pmap_kenter(va, VM_PAGE_TO_PHYS(*m));
1468 		va += PAGE_SIZE;
1469 		m++;
1470 	}
1471 }
1472 
1473 /*
1474  * Remove page mappings from kernel virtual address space.  Intended for
1475  * temporary mappings entered by pmap_qenter.
1476  */
1477 void
1478 pmap_qremove(vm_offset_t sva, int count)
1479 {
1480 	vm_offset_t va;
1481 
1482 	va = sva;
1483 	while (count-- > 0) {
1484 		pmap_kremove(va);
1485 		va += PAGE_SIZE;
1486 	}
1487 }
1488 
1489 void
1490 pmap_release(pmap_t pmap)
1491 {
1492         int idx, mask;
1493 
1494 	/*
1495 	 * Free segment register's VSID
1496 	 */
1497         if (pmap->pm_sr[0] == 0)
1498                 panic("pmap_release");
1499 
1500         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1501         mask = 1 << (idx % VSID_NBPW);
1502         idx /= VSID_NBPW;
1503         pmap_vsid_bitmap[idx] &= ~mask;
1504 }
1505 
1506 /*
1507  * Remove the given range of addresses from the specified map.
1508  */
1509 void
1510 pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1511 {
1512 	struct	pvo_entry *pvo;
1513 	int	pteidx;
1514 
1515 	for (; sva < eva; sva += PAGE_SIZE) {
1516 		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1517 		if (pvo != NULL) {
1518 			pmap_pvo_remove(pvo, pteidx);
1519 		}
1520 	}
1521 }
1522 
1523 /*
1524  * Remove physical page from all pmaps in which it resides. pmap_pvo_remove()
1525  * will reflect changes in pte's back to the vm_page.
1526  */
1527 void
1528 pmap_remove_all(vm_page_t m)
1529 {
1530 	struct  pvo_head *pvo_head;
1531 	struct	pvo_entry *pvo, *next_pvo;
1532 
1533 	KASSERT((m->flags & (PG_FICTITIOUS|PG_UNMANAGED)) == 0,
1534 	    ("pv_remove_all: illegal for unmanaged page %#x",
1535 	    VM_PAGE_TO_PHYS(m)));
1536 
1537 	pvo_head = vm_page_to_pvoh(m);
1538 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1539 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1540 
1541 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1542 		pmap_pvo_remove(pvo, -1);
1543 	}
1544 	vm_page_flag_clear(m, PG_WRITEABLE);
1545 }
1546 
1547 /*
1548  * Remove all pages from specified address space, this aids process exit
1549  * speeds.  This is much faster than pmap_remove in the case of running down
1550  * an entire address space.  Only works for the current pmap.
1551  */
1552 void
1553 pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1554 {
1555 
1556 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1557 	    ("pmap_remove_pages: non current pmap"));
1558 	pmap_remove(pm, sva, eva);
1559 }
1560 
1561 #ifndef KSTACK_MAX_PAGES
1562 #define KSTACK_MAX_PAGES 32
1563 #endif
1564 
1565 /*
1566  * Create the kernel stack and pcb for a new thread.
1567  * This routine directly affects the fork perf for a process and
1568  * create performance for a thread.
1569  */
1570 void
1571 pmap_new_thread(struct thread *td, int pages)
1572 {
1573 	vm_page_t	ma[KSTACK_MAX_PAGES];
1574 	vm_object_t	ksobj;
1575 	vm_offset_t	ks;
1576 	vm_page_t	m;
1577 	u_int		i;
1578 
1579 	/* Bounds check */
1580 	if (pages <= 1)
1581 		pages = KSTACK_PAGES;
1582 	else if (pages > KSTACK_MAX_PAGES)
1583 		pages = KSTACK_MAX_PAGES;
1584 
1585 	/*
1586 	 * Allocate object for the kstack.
1587 	 */
1588 	ksobj = vm_object_allocate(OBJT_DEFAULT, pages);
1589 	td->td_kstack_obj = ksobj;
1590 
1591 	/*
1592 	 * Get a kernel virtual address for the kstack for this thread.
1593 	 */
1594 	ks = kmem_alloc_nofault(kernel_map,
1595 	    (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
1596 	if (ks == 0)
1597 		panic("pmap_new_thread: kstack allocation failed");
1598 	TLBIE(ks);
1599 	ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
1600 	td->td_kstack = ks;
1601 
1602 	/*
1603 	 * Knowing the number of pages allocated is useful when you
1604 	 * want to deallocate them.
1605 	 */
1606 	td->td_kstack_pages = pages;
1607 
1608 	for (i = 0; i < pages; i++) {
1609 		/*
1610 		 * Get a kernel stack page.
1611 		 */
1612 		m = vm_page_grab(ksobj, i,
1613 		    VM_ALLOC_NORMAL | VM_ALLOC_RETRY | VM_ALLOC_WIRED);
1614 		ma[i] = m;
1615 
1616                 vm_page_lock_queues();
1617 		vm_page_wakeup(m);
1618 		vm_page_flag_clear(m, PG_ZERO);
1619 		m->valid = VM_PAGE_BITS_ALL;
1620 		vm_page_unlock_queues();
1621 	}
1622 
1623 	/*
1624 	 * Enter the page into the kernel address space
1625 	 */
1626 	pmap_qenter(ks, ma, pages);
1627 }
1628 
1629 void
1630 pmap_dispose_thread(struct thread *td)
1631 {
1632 	vm_object_t ksobj;
1633 	vm_offset_t ks;
1634 	vm_page_t m;
1635 	int i;
1636 	int pages;
1637 
1638 	pages = td->td_kstack_pages;
1639 	ksobj = td->td_kstack_obj;
1640 	ks = td->td_kstack;
1641 	for (i = 0; i < pages ; i++) {
1642 		m = vm_page_lookup(ksobj, i);
1643 		if (m == NULL)
1644 			panic("pmap_dispose_thread: kstack already missing?");
1645 		vm_page_lock_queues();
1646 		vm_page_busy(m);
1647 		vm_page_unwire(m, 0);
1648 		vm_page_free(m);
1649 		vm_page_unlock_queues();
1650 	}
1651 	pmap_qremove(ks, pages);
1652 	kmem_free(kernel_map, ks - (KSTACK_GUARD_PAGES * PAGE_SIZE),
1653 	   (pages + KSTACK_GUARD_PAGES) * PAGE_SIZE);
1654 	vm_object_deallocate(ksobj);
1655 }
1656 
1657 void
1658 pmap_new_altkstack(struct thread *td, int pages)
1659 {
1660 	/* shuffle the original stack */
1661 	td->td_altkstack_obj = td->td_kstack_obj;
1662 	td->td_altkstack = td->td_kstack;
1663 	td->td_altkstack_pages = td->td_kstack_pages;
1664 
1665 	pmap_new_thread(td, pages);
1666 }
1667 
1668 void
1669 pmap_dispose_altkstack(struct thread *td)
1670 {
1671 	pmap_dispose_thread(td);
1672 
1673 	/* restore the original kstack */
1674 	td->td_kstack = td->td_altkstack;
1675 	td->td_kstack_obj = td->td_altkstack_obj;
1676 	td->td_kstack_pages = td->td_altkstack_pages;
1677 	td->td_altkstack = 0;
1678 	td->td_altkstack_obj = NULL;
1679 	td->td_altkstack_pages = 0;
1680 }
1681 
1682 void
1683 pmap_swapin_thread(struct thread *td)
1684 {
1685 	vm_page_t ma[KSTACK_MAX_PAGES];
1686 	vm_object_t ksobj;
1687 	vm_offset_t ks;
1688 	vm_page_t m;
1689 	int rv;
1690 	int i;
1691 	int pages;
1692 
1693 	pages = td->td_kstack_pages;
1694 	ksobj = td->td_kstack_obj;
1695 	ks = td->td_kstack;
1696 	for (i = 0; i < pages; i++) {
1697 		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1698 		if (m->valid != VM_PAGE_BITS_ALL) {
1699 			rv = vm_pager_get_pages(ksobj, &m, 1, 0);
1700 			if (rv != VM_PAGER_OK)
1701 				panic("pmap_swapin_thread: cannot get kstack");
1702 			m = vm_page_lookup(ksobj, i);
1703 			m->valid = VM_PAGE_BITS_ALL;
1704 		}
1705 		ma[i] = m;
1706 		vm_page_lock_queues();
1707 		vm_page_wire(m);
1708 		vm_page_wakeup(m);
1709 		vm_page_unlock_queues();
1710 	}
1711 	pmap_qenter(ks, ma, pages);
1712 }
1713 
1714 
1715 void
1716 pmap_swapout_thread(struct thread *td)
1717 {
1718 	vm_object_t ksobj;
1719 	vm_offset_t ks;
1720 	vm_page_t m;
1721 	int i;
1722 	int pages;
1723 
1724 	pages = td->td_kstack_pages;
1725 	ksobj = td->td_kstack_obj;
1726 	ks = (vm_offset_t)td->td_kstack;
1727 	for (i = 0; i < pages; i++) {
1728 		m = vm_page_lookup(ksobj, i);
1729 		if (m == NULL)
1730 			panic("pmap_swapout_thread: kstack already missing?");
1731 		vm_page_lock_queues();
1732 		vm_page_dirty(m);
1733 		vm_page_unwire(m, 0);
1734 		vm_page_unlock_queues();
1735 	}
1736 	pmap_qremove(ks, pages);
1737 }
1738 
1739 /*
1740  * Allocate a physical page of memory directly from the phys_avail map.
1741  * Can only be called from pmap_bootstrap before avail start and end are
1742  * calculated.
1743  */
1744 static vm_offset_t
1745 pmap_bootstrap_alloc(vm_size_t size, u_int align)
1746 {
1747 	vm_offset_t	s, e;
1748 	int		i, j;
1749 
1750 	size = round_page(size);
1751 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1752 		if (align != 0)
1753 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1754 		else
1755 			s = phys_avail[i];
1756 		e = s + size;
1757 
1758 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1759 			continue;
1760 
1761 		if (s == phys_avail[i]) {
1762 			phys_avail[i] += size;
1763 		} else if (e == phys_avail[i + 1]) {
1764 			phys_avail[i + 1] -= size;
1765 		} else {
1766 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1767 				phys_avail[j] = phys_avail[j - 2];
1768 				phys_avail[j + 1] = phys_avail[j - 1];
1769 			}
1770 
1771 			phys_avail[i + 3] = phys_avail[i + 1];
1772 			phys_avail[i + 1] = s;
1773 			phys_avail[i + 2] = e;
1774 			phys_avail_count++;
1775 		}
1776 
1777 		return (s);
1778 	}
1779 	panic("pmap_bootstrap_alloc: could not allocate memory");
1780 }
1781 
1782 /*
1783  * Return an unmapped pvo for a kernel virtual address.
1784  * Used by pmap functions that operate on physical pages.
1785  */
1786 static struct pvo_entry *
1787 pmap_rkva_alloc(void)
1788 {
1789 	struct		pvo_entry *pvo;
1790 	struct		pte *pt;
1791 	vm_offset_t	kva;
1792 	int		pteidx;
1793 
1794 	if (pmap_rkva_count == 0)
1795 		panic("pmap_rkva_alloc: no more reserved KVAs");
1796 
1797 	kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
1798 	pmap_kenter(kva, 0);
1799 
1800 	pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
1801 
1802 	if (pvo == NULL)
1803 		panic("pmap_kva_alloc: pmap_pvo_find_va failed");
1804 
1805 	pt = pmap_pvo_to_pte(pvo, pteidx);
1806 
1807 	if (pt == NULL)
1808 		panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
1809 
1810 	pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1811 	PVO_PTEGIDX_CLR(pvo);
1812 
1813 	pmap_pte_overflow++;
1814 
1815 	return (pvo);
1816 }
1817 
1818 static void
1819 pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1820     int *depth_p)
1821 {
1822 	struct	pte *pt;
1823 
1824 	/*
1825 	 * If this pvo already has a valid pte, we need to save it so it can
1826 	 * be restored later.  We then just reload the new PTE over the old
1827 	 * slot.
1828 	 */
1829 	if (saved_pt != NULL) {
1830 		pt = pmap_pvo_to_pte(pvo, -1);
1831 
1832 		if (pt != NULL) {
1833 			pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1834 			PVO_PTEGIDX_CLR(pvo);
1835 			pmap_pte_overflow++;
1836 		}
1837 
1838 		*saved_pt = pvo->pvo_pte;
1839 
1840 		pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1841 	}
1842 
1843 	pvo->pvo_pte.pte_lo |= pa;
1844 
1845 	if (!pmap_pte_spill(pvo->pvo_vaddr))
1846 		panic("pmap_pa_map: could not spill pvo %p", pvo);
1847 
1848 	if (depth_p != NULL)
1849 		(*depth_p)++;
1850 }
1851 
1852 static void
1853 pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1854 {
1855 	struct	pte *pt;
1856 
1857 	pt = pmap_pvo_to_pte(pvo, -1);
1858 
1859 	if (pt != NULL) {
1860 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1861 		PVO_PTEGIDX_CLR(pvo);
1862 		pmap_pte_overflow++;
1863 	}
1864 
1865 	pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1866 
1867 	/*
1868 	 * If there is a saved PTE and it's valid, restore it and return.
1869 	 */
1870 	if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1871 		if (depth_p != NULL && --(*depth_p) == 0)
1872 			panic("pmap_pa_unmap: restoring but depth == 0");
1873 
1874 		pvo->pvo_pte = *saved_pt;
1875 
1876 		if (!pmap_pte_spill(pvo->pvo_vaddr))
1877 			panic("pmap_pa_unmap: could not spill pvo %p", pvo);
1878 	}
1879 }
1880 
1881 static void
1882 pmap_syncicache(vm_offset_t pa, vm_size_t len)
1883 {
1884 	__syncicache((void *)pa, len);
1885 }
1886 
1887 static void
1888 tlbia(void)
1889 {
1890 	caddr_t	i;
1891 
1892 	SYNC();
1893 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1894 		TLBIE(i);
1895 		EIEIO();
1896 	}
1897 	TLBSYNC();
1898 	SYNC();
1899 }
1900 
1901 static int
1902 pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1903     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1904 {
1905 	struct	pvo_entry *pvo;
1906 	u_int	sr;
1907 	int	first;
1908 	u_int	ptegidx;
1909 	int	i;
1910 	int     bootstrap;
1911 
1912 	pmap_pvo_enter_calls++;
1913 	first = 0;
1914 
1915 	bootstrap = 0;
1916 
1917 	/*
1918 	 * Compute the PTE Group index.
1919 	 */
1920 	va &= ~ADDR_POFF;
1921 	sr = va_to_sr(pm->pm_sr, va);
1922 	ptegidx = va_to_pteg(sr, va);
1923 
1924 	/*
1925 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1926 	 * there is a mapping.
1927 	 */
1928 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1929 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1930 			if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
1931 			    (pvo->pvo_pte.pte_lo & PTE_PP) ==
1932 			    (pte_lo & PTE_PP)) {
1933 				return (0);
1934 			}
1935 			pmap_pvo_remove(pvo, -1);
1936 			break;
1937 		}
1938 	}
1939 
1940 	/*
1941 	 * If we aren't overwriting a mapping, try to allocate.
1942 	 */
1943 	if (pmap_initialized) {
1944 		pvo = uma_zalloc(zone, M_NOWAIT);
1945 	} else {
1946 		if (pmap_bpvo_pool_index >= BPVO_POOL_SIZE) {
1947 			panic("pmap_enter: bpvo pool exhausted, %d, %d, %d",
1948 			      pmap_bpvo_pool_index, BPVO_POOL_SIZE,
1949 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1950 		}
1951 		pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
1952 		pmap_bpvo_pool_index++;
1953 		bootstrap = 1;
1954 	}
1955 
1956 	if (pvo == NULL) {
1957 		return (ENOMEM);
1958 	}
1959 
1960 	pmap_pvo_entries++;
1961 	pvo->pvo_vaddr = va;
1962 	pvo->pvo_pmap = pm;
1963 	LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1964 	pvo->pvo_vaddr &= ~ADDR_POFF;
1965 	if (flags & VM_PROT_EXECUTE)
1966 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1967 	if (flags & PVO_WIRED)
1968 		pvo->pvo_vaddr |= PVO_WIRED;
1969 	if (pvo_head != &pmap_pvo_kunmanaged)
1970 		pvo->pvo_vaddr |= PVO_MANAGED;
1971 	if (bootstrap)
1972 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1973 	pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1974 
1975 	/*
1976 	 * Remember if the list was empty and therefore will be the first
1977 	 * item.
1978 	 */
1979 	if (LIST_FIRST(pvo_head) == NULL)
1980 		first = 1;
1981 
1982 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1983 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1984 		pvo->pvo_pmap->pm_stats.wired_count++;
1985 	pvo->pvo_pmap->pm_stats.resident_count++;
1986 
1987 	/*
1988 	 * We hope this succeeds but it isn't required.
1989 	 */
1990 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1991 	if (i >= 0) {
1992 		PVO_PTEGIDX_SET(pvo, i);
1993 	} else {
1994 		panic("pmap_pvo_enter: overflow");
1995 		pmap_pte_overflow++;
1996 	}
1997 
1998 	return (first ? ENOENT : 0);
1999 }
2000 
2001 static void
2002 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
2003 {
2004 	struct	pte *pt;
2005 
2006 	/*
2007 	 * If there is an active pte entry, we need to deactivate it (and
2008 	 * save the ref & cfg bits).
2009 	 */
2010 	pt = pmap_pvo_to_pte(pvo, pteidx);
2011 	if (pt != NULL) {
2012 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
2013 		PVO_PTEGIDX_CLR(pvo);
2014 	} else {
2015 		pmap_pte_overflow--;
2016 	}
2017 
2018 	/*
2019 	 * Update our statistics.
2020 	 */
2021 	pvo->pvo_pmap->pm_stats.resident_count--;
2022 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
2023 		pvo->pvo_pmap->pm_stats.wired_count--;
2024 
2025 	/*
2026 	 * Save the REF/CHG bits into their cache if the page is managed.
2027 	 */
2028 	if (pvo->pvo_vaddr & PVO_MANAGED) {
2029 		struct	vm_page *pg;
2030 
2031 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
2032 		if (pg != NULL) {
2033 			pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
2034 			    (PTE_REF | PTE_CHG));
2035 		}
2036 	}
2037 
2038 	/*
2039 	 * Remove this PVO from the PV list.
2040 	 */
2041 	LIST_REMOVE(pvo, pvo_vlink);
2042 
2043 	/*
2044 	 * Remove this from the overflow list and return it to the pool
2045 	 * if we aren't going to reuse it.
2046 	 */
2047 	LIST_REMOVE(pvo, pvo_olink);
2048 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2049 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
2050 		    pmap_upvo_zone, pvo);
2051 	pmap_pvo_entries--;
2052 	pmap_pvo_remove_calls++;
2053 }
2054 
2055 static __inline int
2056 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2057 {
2058 	int	pteidx;
2059 
2060 	/*
2061 	 * We can find the actual pte entry without searching by grabbing
2062 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2063 	 * noticing the HID bit.
2064 	 */
2065 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2066 	if (pvo->pvo_pte.pte_hi & PTE_HID)
2067 		pteidx ^= pmap_pteg_mask * 8;
2068 
2069 	return (pteidx);
2070 }
2071 
2072 static struct pvo_entry *
2073 pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2074 {
2075 	struct	pvo_entry *pvo;
2076 	int	ptegidx;
2077 	u_int	sr;
2078 
2079 	va &= ~ADDR_POFF;
2080 	sr = va_to_sr(pm->pm_sr, va);
2081 	ptegidx = va_to_pteg(sr, va);
2082 
2083 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2084 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2085 			if (pteidx_p)
2086 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
2087 			return (pvo);
2088 		}
2089 	}
2090 
2091 	return (NULL);
2092 }
2093 
2094 static struct pte *
2095 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2096 {
2097 	struct	pte *pt;
2098 
2099 	/*
2100 	 * If we haven't been supplied the ptegidx, calculate it.
2101 	 */
2102 	if (pteidx == -1) {
2103 		int	ptegidx;
2104 		u_int	sr;
2105 
2106 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2107 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2108 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
2109 	}
2110 
2111 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
2112 
2113 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2114 		panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
2115 		    "valid pte index", pvo);
2116 	}
2117 
2118 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2119 		panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
2120 		    "pvo but no valid pte", pvo);
2121 	}
2122 
2123 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2124 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
2125 			panic("pmap_pvo_to_pte: pvo %p has valid pte in "
2126 			    "pmap_pteg_table %p but invalid in pvo", pvo, pt);
2127 		}
2128 
2129 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2130 		    != 0) {
2131 			panic("pmap_pvo_to_pte: pvo %p pte does not match "
2132 			    "pte %p in pmap_pteg_table", pvo, pt);
2133 		}
2134 
2135 		return (pt);
2136 	}
2137 
2138 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
2139 		panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
2140 		    "pmap_pteg_table but valid in pvo", pvo, pt);
2141 	}
2142 
2143 	return (NULL);
2144 }
2145 
2146 static void *
2147 pmap_pvo_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
2148 {
2149 	vm_page_t	m;
2150 
2151 	if (bytes != PAGE_SIZE)
2152 		panic("pmap_pvo_allocf: benno was shortsighted.  hit him.");
2153 
2154 	*flags = UMA_SLAB_PRIV;
2155 	m = vm_page_alloc(pmap_pvo_obj, pmap_pvo_count, VM_ALLOC_SYSTEM);
2156 	if (m == NULL)
2157 		return (NULL);
2158 	pmap_pvo_count++;
2159 	return ((void *)VM_PAGE_TO_PHYS(m));
2160 }
2161 
2162 /*
2163  * XXX: THIS STUFF SHOULD BE IN pte.c?
2164  */
2165 int
2166 pmap_pte_spill(vm_offset_t addr)
2167 {
2168 	struct	pvo_entry *source_pvo, *victim_pvo;
2169 	struct	pvo_entry *pvo;
2170 	int	ptegidx, i, j;
2171 	u_int	sr;
2172 	struct	pteg *pteg;
2173 	struct	pte *pt;
2174 
2175 	pmap_pte_spills++;
2176 
2177 	sr = mfsrin(addr);
2178 	ptegidx = va_to_pteg(sr, addr);
2179 
2180 	/*
2181 	 * Have to substitute some entry.  Use the primary hash for this.
2182 	 * Use low bits of timebase as random generator.
2183 	 */
2184 	pteg = &pmap_pteg_table[ptegidx];
2185 	__asm __volatile("mftb %0" : "=r"(i));
2186 	i &= 7;
2187 	pt = &pteg->pt[i];
2188 
2189 	source_pvo = NULL;
2190 	victim_pvo = NULL;
2191 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2192 		/*
2193 		 * We need to find a pvo entry for this address.
2194 		 */
2195 		PMAP_PVO_CHECK(pvo);
2196 		if (source_pvo == NULL &&
2197 		    pmap_pte_match(&pvo->pvo_pte, sr, addr,
2198 		    pvo->pvo_pte.pte_hi & PTE_HID)) {
2199 			/*
2200 			 * Now found an entry to be spilled into the pteg.
2201 			 * The PTE is now valid, so we know it's active.
2202 			 */
2203 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
2204 
2205 			if (j >= 0) {
2206 				PVO_PTEGIDX_SET(pvo, j);
2207 				pmap_pte_overflow--;
2208 				PMAP_PVO_CHECK(pvo);
2209 				return (1);
2210 			}
2211 
2212 			source_pvo = pvo;
2213 
2214 			if (victim_pvo != NULL)
2215 				break;
2216 		}
2217 
2218 		/*
2219 		 * We also need the pvo entry of the victim we are replacing
2220 		 * so save the R & C bits of the PTE.
2221 		 */
2222 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2223 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
2224 			victim_pvo = pvo;
2225 			if (source_pvo != NULL)
2226 				break;
2227 		}
2228 	}
2229 
2230 	if (source_pvo == NULL)
2231 		return (0);
2232 
2233 	if (victim_pvo == NULL) {
2234 		if ((pt->pte_hi & PTE_HID) == 0)
2235 			panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
2236 			    "entry", pt);
2237 
2238 		/*
2239 		 * If this is a secondary PTE, we need to search it's primary
2240 		 * pvo bucket for the matching PVO.
2241 		 */
2242 		LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
2243 		    pvo_olink) {
2244 			PMAP_PVO_CHECK(pvo);
2245 			/*
2246 			 * We also need the pvo entry of the victim we are
2247 			 * replacing so save the R & C bits of the PTE.
2248 			 */
2249 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
2250 				victim_pvo = pvo;
2251 				break;
2252 			}
2253 		}
2254 
2255 		if (victim_pvo == NULL)
2256 			panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
2257 			    "entry", pt);
2258 	}
2259 
2260 	/*
2261 	 * We are invalidating the TLB entry for the EA we are replacing even
2262 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2263 	 * contained in the TLB entry.
2264 	 */
2265 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
2266 
2267 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
2268 	pmap_pte_set(pt, &source_pvo->pvo_pte);
2269 
2270 	PVO_PTEGIDX_CLR(victim_pvo);
2271 	PVO_PTEGIDX_SET(source_pvo, i);
2272 	pmap_pte_replacements++;
2273 
2274 	PMAP_PVO_CHECK(victim_pvo);
2275 	PMAP_PVO_CHECK(source_pvo);
2276 
2277 	return (1);
2278 }
2279 
2280 static int
2281 pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2282 {
2283 	struct	pte *pt;
2284 	int	i;
2285 
2286 	/*
2287 	 * First try primary hash.
2288 	 */
2289 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2290 		if ((pt->pte_hi & PTE_VALID) == 0) {
2291 			pvo_pt->pte_hi &= ~PTE_HID;
2292 			pmap_pte_set(pt, pvo_pt);
2293 			return (i);
2294 		}
2295 	}
2296 
2297 	/*
2298 	 * Now try secondary hash.
2299 	 */
2300 	ptegidx ^= pmap_pteg_mask;
2301 	ptegidx++;
2302 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2303 		if ((pt->pte_hi & PTE_VALID) == 0) {
2304 			pvo_pt->pte_hi |= PTE_HID;
2305 			pmap_pte_set(pt, pvo_pt);
2306 			return (i);
2307 		}
2308 	}
2309 
2310 	panic("pmap_pte_insert: overflow");
2311 	return (-1);
2312 }
2313 
2314 static boolean_t
2315 pmap_query_bit(vm_page_t m, int ptebit)
2316 {
2317 	struct	pvo_entry *pvo;
2318 	struct	pte *pt;
2319 
2320 	if (pmap_attr_fetch(m) & ptebit)
2321 		return (TRUE);
2322 
2323 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2324 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2325 
2326 		/*
2327 		 * See if we saved the bit off.  If so, cache it and return
2328 		 * success.
2329 		 */
2330 		if (pvo->pvo_pte.pte_lo & ptebit) {
2331 			pmap_attr_save(m, ptebit);
2332 			PMAP_PVO_CHECK(pvo);	/* sanity check */
2333 			return (TRUE);
2334 		}
2335 	}
2336 
2337 	/*
2338 	 * No luck, now go through the hard part of looking at the PTEs
2339 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2340 	 * the PTEs.
2341 	 */
2342 	SYNC();
2343 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2344 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2345 
2346 		/*
2347 		 * See if this pvo has a valid PTE.  if so, fetch the
2348 		 * REF/CHG bits from the valid PTE.  If the appropriate
2349 		 * ptebit is set, cache it and return success.
2350 		 */
2351 		pt = pmap_pvo_to_pte(pvo, -1);
2352 		if (pt != NULL) {
2353 			pmap_pte_synch(pt, &pvo->pvo_pte);
2354 			if (pvo->pvo_pte.pte_lo & ptebit) {
2355 				pmap_attr_save(m, ptebit);
2356 				PMAP_PVO_CHECK(pvo);	/* sanity check */
2357 				return (TRUE);
2358 			}
2359 		}
2360 	}
2361 
2362 	return (TRUE);
2363 }
2364 
2365 static u_int
2366 pmap_clear_bit(vm_page_t m, int ptebit, int *origbit)
2367 {
2368 	u_int	count;
2369 	struct	pvo_entry *pvo;
2370 	struct	pte *pt;
2371 	int	rv;
2372 
2373 	/*
2374 	 * Clear the cached value.
2375 	 */
2376 	rv = pmap_attr_fetch(m);
2377 	pmap_attr_clear(m, ptebit);
2378 
2379 	/*
2380 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2381 	 * we can reset the right ones).  note that since the pvo entries and
2382 	 * list heads are accessed via BAT0 and are never placed in the page
2383 	 * table, we don't have to worry about further accesses setting the
2384 	 * REF/CHG bits.
2385 	 */
2386 	SYNC();
2387 
2388 	/*
2389 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2390 	 * valid pte clear the ptebit from the valid pte.
2391 	 */
2392 	count = 0;
2393 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2394 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2395 		pt = pmap_pvo_to_pte(pvo, -1);
2396 		if (pt != NULL) {
2397 			pmap_pte_synch(pt, &pvo->pvo_pte);
2398 			if (pvo->pvo_pte.pte_lo & ptebit) {
2399 				count++;
2400 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2401 			}
2402 		}
2403 		rv |= pvo->pvo_pte.pte_lo;
2404 		pvo->pvo_pte.pte_lo &= ~ptebit;
2405 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2406 	}
2407 
2408 	if (origbit != NULL) {
2409 		*origbit = rv;
2410 	}
2411 
2412 	return (count);
2413 }
2414 
2415 /*
2416  * Return true if the physical range is encompassed by the battable[idx]
2417  */
2418 static int
2419 pmap_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2420 {
2421 	u_int prot;
2422 	u_int32_t start;
2423 	u_int32_t end;
2424 	u_int32_t bat_ble;
2425 
2426 	/*
2427 	 * Return immediately if not a valid mapping
2428 	 */
2429 	if (!battable[idx].batu & BAT_Vs)
2430 		return (EINVAL);
2431 
2432 	/*
2433 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2434 	 * so it can function as an i/o page
2435 	 */
2436 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2437 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2438 		return (EPERM);
2439 
2440 	/*
2441 	 * The address should be within the BAT range. Assume that the
2442 	 * start address in the BAT has the correct alignment (thus
2443 	 * not requiring masking)
2444 	 */
2445 	start = battable[idx].batl & BAT_PBS;
2446 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2447 	end = start | (bat_ble << 15) | 0x7fff;
2448 
2449 	if ((pa < start) || ((pa + size) > end))
2450 		return (ERANGE);
2451 
2452 	return (0);
2453 }
2454 
2455 
2456 /*
2457  * Map a set of physical memory pages into the kernel virtual
2458  * address space. Return a pointer to where it is mapped. This
2459  * routine is intended to be used for mapping device memory,
2460  * NOT real memory.
2461  */
2462 void *
2463 pmap_mapdev(vm_offset_t pa, vm_size_t size)
2464 {
2465 	vm_offset_t va, tmpva, ppa, offset;
2466 	int i;
2467 
2468 	ppa = trunc_page(pa);
2469 	offset = pa & PAGE_MASK;
2470 	size = roundup(offset + size, PAGE_SIZE);
2471 
2472 	GIANT_REQUIRED;
2473 
2474 	/*
2475 	 * If the physical address lies within a valid BAT table entry,
2476 	 * return the 1:1 mapping. This currently doesn't work
2477 	 * for regions that overlap 256M BAT segments.
2478 	 */
2479 	for (i = 0; i < 16; i++) {
2480 		if (pmap_bat_mapped(i, pa, size) == 0)
2481 			return ((void *) pa);
2482 	}
2483 
2484 	va = kmem_alloc_pageable(kernel_map, size);
2485 	if (!va)
2486 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2487 
2488 	for (tmpva = va; size > 0;) {
2489 		pmap_kenter(tmpva, ppa);
2490 		TLBIE(tmpva); /* XXX or should it be invalidate-all ? */
2491 		size -= PAGE_SIZE;
2492 		tmpva += PAGE_SIZE;
2493 		ppa += PAGE_SIZE;
2494 	}
2495 
2496 	return ((void *)(va + offset));
2497 }
2498 
2499 void
2500 pmap_unmapdev(vm_offset_t va, vm_size_t size)
2501 {
2502 	vm_offset_t base, offset;
2503 
2504 	/*
2505 	 * If this is outside kernel virtual space, then it's a
2506 	 * battable entry and doesn't require unmapping
2507 	 */
2508 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2509 		base = trunc_page(va);
2510 		offset = va & PAGE_MASK;
2511 		size = roundup(offset + size, PAGE_SIZE);
2512 		kmem_free(kernel_map, base, size);
2513 	}
2514 }
2515