xref: /freebsd/sys/opencrypto/crypto.c (revision ecaeac805b044f715c98960a8fbf19fe2b76ae6b)
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  * Copyright (c) 2021 The FreeBSD Foundation
4  *
5  * Portions of this software were developed by Ararat River
6  * Consulting, LLC under sponsorship of the FreeBSD Foundation.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 /*
33  * Cryptographic Subsystem.
34  *
35  * This code is derived from the Openbsd Cryptographic Framework (OCF)
36  * that has the copyright shown below.  Very little of the original
37  * code remains.
38  */
39 
40 /*-
41  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
42  *
43  * This code was written by Angelos D. Keromytis in Athens, Greece, in
44  * February 2000. Network Security Technologies Inc. (NSTI) kindly
45  * supported the development of this code.
46  *
47  * Copyright (c) 2000, 2001 Angelos D. Keromytis
48  *
49  * Permission to use, copy, and modify this software with or without fee
50  * is hereby granted, provided that this entire notice is included in
51  * all source code copies of any software which is or includes a copy or
52  * modification of this software.
53  *
54  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
55  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
56  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
57  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
58  * PURPOSE.
59  */
60 
61 #include "opt_ddb.h"
62 
63 #include <sys/param.h>
64 #include <sys/systm.h>
65 #include <sys/counter.h>
66 #include <sys/kernel.h>
67 #include <sys/kthread.h>
68 #include <sys/linker.h>
69 #include <sys/lock.h>
70 #include <sys/module.h>
71 #include <sys/mutex.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/proc.h>
75 #include <sys/refcount.h>
76 #include <sys/sdt.h>
77 #include <sys/smp.h>
78 #include <sys/sysctl.h>
79 #include <sys/taskqueue.h>
80 #include <sys/uio.h>
81 
82 #include <ddb/ddb.h>
83 
84 #include <machine/vmparam.h>
85 #include <vm/uma.h>
86 
87 #include <crypto/intake.h>
88 #include <opencrypto/cryptodev.h>
89 #include <opencrypto/xform_auth.h>
90 #include <opencrypto/xform_enc.h>
91 
92 #include <sys/kobj.h>
93 #include <sys/bus.h>
94 #include "cryptodev_if.h"
95 
96 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
97 #include <machine/pcb.h>
98 #endif
99 
100 SDT_PROVIDER_DEFINE(opencrypto);
101 
102 /*
103  * Crypto drivers register themselves by allocating a slot in the
104  * crypto_drivers table with crypto_get_driverid().
105  */
106 static	struct mtx crypto_drivers_mtx;		/* lock on driver table */
107 #define	CRYPTO_DRIVER_LOCK()	mtx_lock(&crypto_drivers_mtx)
108 #define	CRYPTO_DRIVER_UNLOCK()	mtx_unlock(&crypto_drivers_mtx)
109 #define	CRYPTO_DRIVER_ASSERT()	mtx_assert(&crypto_drivers_mtx, MA_OWNED)
110 
111 /*
112  * Crypto device/driver capabilities structure.
113  *
114  * Synchronization:
115  * (d) - protected by CRYPTO_DRIVER_LOCK()
116  * (q) - protected by CRYPTO_Q_LOCK()
117  * Not tagged fields are read-only.
118  */
119 struct cryptocap {
120 	device_t	cc_dev;
121 	uint32_t	cc_hid;
122 	uint32_t	cc_sessions;		/* (d) # of sessions */
123 
124 	int		cc_flags;		/* (d) flags */
125 #define CRYPTOCAP_F_CLEANUP	0x80000000	/* needs resource cleanup */
126 	int		cc_qblocked;		/* (q) symmetric q blocked */
127 	size_t		cc_session_size;
128 	volatile int	cc_refs;
129 };
130 
131 static	struct cryptocap **crypto_drivers = NULL;
132 static	int crypto_drivers_size = 0;
133 
134 struct crypto_session {
135 	struct cryptocap *cap;
136 	struct crypto_session_params csp;
137 	uint64_t id;
138 	/* Driver softc follows. */
139 };
140 
141 static	int crp_sleep = 0;
142 static	TAILQ_HEAD(cryptop_q ,cryptop) crp_q;		/* request queues */
143 static	struct mtx crypto_q_mtx;
144 #define	CRYPTO_Q_LOCK()		mtx_lock(&crypto_q_mtx)
145 #define	CRYPTO_Q_UNLOCK()	mtx_unlock(&crypto_q_mtx)
146 
147 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
148     "In-kernel cryptography");
149 
150 /*
151  * Taskqueue used to dispatch the crypto requests submitted with
152  * crypto_dispatch_async .
153  */
154 static struct taskqueue *crypto_tq;
155 
156 /*
157  * Crypto seq numbers are operated on with modular arithmetic
158  */
159 #define	CRYPTO_SEQ_GT(a,b)	((int)((a)-(b)) > 0)
160 
161 struct crypto_ret_worker {
162 	struct mtx crypto_ret_mtx;
163 
164 	TAILQ_HEAD(,cryptop) crp_ordered_ret_q;	/* ordered callback queue for symetric jobs */
165 	TAILQ_HEAD(,cryptop) crp_ret_q;		/* callback queue for symetric jobs */
166 
167 	uint32_t reorder_ops;		/* total ordered sym jobs received */
168 	uint32_t reorder_cur_seq;	/* current sym job dispatched */
169 
170 	struct thread *td;
171 };
172 static struct crypto_ret_worker *crypto_ret_workers = NULL;
173 
174 #define CRYPTO_RETW(i)		(&crypto_ret_workers[i])
175 #define CRYPTO_RETW_ID(w)	((w) - crypto_ret_workers)
176 #define FOREACH_CRYPTO_RETW(w) \
177 	for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
178 
179 #define	CRYPTO_RETW_LOCK(w)	mtx_lock(&w->crypto_ret_mtx)
180 #define	CRYPTO_RETW_UNLOCK(w)	mtx_unlock(&w->crypto_ret_mtx)
181 
182 static int crypto_workers_num = 0;
183 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
184 	   &crypto_workers_num, 0,
185 	   "Number of crypto workers used to dispatch crypto jobs");
186 #ifdef COMPAT_FREEBSD12
187 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
188 	   &crypto_workers_num, 0,
189 	   "Number of crypto workers used to dispatch crypto jobs");
190 #endif
191 
192 static	uma_zone_t cryptop_zone;
193 
194 int	crypto_devallowsoft = 0;
195 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RWTUN,
196 	   &crypto_devallowsoft, 0,
197 	   "Enable use of software crypto by /dev/crypto");
198 #ifdef COMPAT_FREEBSD12
199 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RWTUN,
200 	   &crypto_devallowsoft, 0,
201 	   "Enable/disable use of software crypto by /dev/crypto");
202 #endif
203 
204 #ifdef DIAGNOSTIC
205 bool crypto_destroyreq_check;
206 SYSCTL_BOOL(_kern_crypto, OID_AUTO, destroyreq_check, CTLFLAG_RWTUN,
207 	   &crypto_destroyreq_check, 0,
208 	   "Enable checks when destroying a request");
209 #endif
210 
211 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
212 
213 static	void crypto_dispatch_thread(void *arg);
214 static	struct thread *cryptotd;
215 static	void crypto_ret_thread(void *arg);
216 static	void crypto_destroy(void);
217 static	int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
218 static	void crypto_task_invoke(void *ctx, int pending);
219 static void crypto_batch_enqueue(struct cryptop *crp);
220 
221 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
222 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
223     cryptostats, nitems(cryptostats),
224     "Crypto system statistics");
225 
226 #define	CRYPTOSTAT_INC(stat) do {					\
227 	counter_u64_add(						\
228 	    cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
229 	    1);								\
230 } while (0)
231 
232 static void
233 cryptostats_init(void *arg __unused)
234 {
235 	COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
236 }
237 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
238 
239 static void
240 cryptostats_fini(void *arg __unused)
241 {
242 	COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
243 }
244 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
245     NULL);
246 
247 /* Try to avoid directly exposing the key buffer as a symbol */
248 static struct keybuf *keybuf;
249 
250 static struct keybuf empty_keybuf = {
251         .kb_nents = 0
252 };
253 
254 /* Obtain the key buffer from boot metadata */
255 static void
256 keybuf_init(void)
257 {
258 	caddr_t kmdp;
259 
260 	kmdp = preload_search_by_type("elf kernel");
261 
262 	if (kmdp == NULL)
263 		kmdp = preload_search_by_type("elf64 kernel");
264 
265 	keybuf = (struct keybuf *)preload_search_info(kmdp,
266 	    MODINFO_METADATA | MODINFOMD_KEYBUF);
267 
268         if (keybuf == NULL)
269                 keybuf = &empty_keybuf;
270 }
271 
272 /* It'd be nice if we could store these in some kind of secure memory... */
273 struct keybuf *
274 get_keybuf(void)
275 {
276 
277         return (keybuf);
278 }
279 
280 static struct cryptocap *
281 cap_ref(struct cryptocap *cap)
282 {
283 
284 	refcount_acquire(&cap->cc_refs);
285 	return (cap);
286 }
287 
288 static void
289 cap_rele(struct cryptocap *cap)
290 {
291 
292 	if (refcount_release(&cap->cc_refs) == 0)
293 		return;
294 
295 	KASSERT(cap->cc_sessions == 0,
296 	    ("freeing crypto driver with active sessions"));
297 
298 	free(cap, M_CRYPTO_DATA);
299 }
300 
301 static int
302 crypto_init(void)
303 {
304 	struct crypto_ret_worker *ret_worker;
305 	struct proc *p;
306 	int error;
307 
308 	mtx_init(&crypto_drivers_mtx, "crypto driver table", NULL, MTX_DEF);
309 
310 	TAILQ_INIT(&crp_q);
311 	mtx_init(&crypto_q_mtx, "crypto op queues", NULL, MTX_DEF);
312 
313 	cryptop_zone = uma_zcreate("cryptop",
314 	    sizeof(struct cryptop), NULL, NULL, NULL, NULL,
315 	    UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
316 
317 	crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
318 	crypto_drivers = malloc(crypto_drivers_size *
319 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
320 
321 	if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
322 		crypto_workers_num = mp_ncpus;
323 
324 	crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
325 	    taskqueue_thread_enqueue, &crypto_tq);
326 
327 	taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
328 	    "crypto");
329 
330 	p = NULL;
331 	error = kproc_kthread_add(crypto_dispatch_thread, NULL, &p, &cryptotd,
332 	    0, 0, "crypto", "crypto");
333 	if (error) {
334 		printf("crypto_init: cannot start crypto thread; error %d",
335 			error);
336 		goto bad;
337 	}
338 
339 	crypto_ret_workers = mallocarray(crypto_workers_num,
340 	    sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
341 
342 	FOREACH_CRYPTO_RETW(ret_worker) {
343 		TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
344 		TAILQ_INIT(&ret_worker->crp_ret_q);
345 
346 		ret_worker->reorder_ops = 0;
347 		ret_worker->reorder_cur_seq = 0;
348 
349 		mtx_init(&ret_worker->crypto_ret_mtx, "crypto return queues",
350 		    NULL, MTX_DEF);
351 
352 		error = kthread_add(crypto_ret_thread, ret_worker, p,
353 		    &ret_worker->td, 0, 0, "crypto returns %td",
354 		    CRYPTO_RETW_ID(ret_worker));
355 		if (error) {
356 			printf("crypto_init: cannot start cryptoret thread; error %d",
357 				error);
358 			goto bad;
359 		}
360 	}
361 
362 	keybuf_init();
363 
364 	return 0;
365 bad:
366 	crypto_destroy();
367 	return error;
368 }
369 
370 /*
371  * Signal a crypto thread to terminate.  We use the driver
372  * table lock to synchronize the sleep/wakeups so that we
373  * are sure the threads have terminated before we release
374  * the data structures they use.  See crypto_finis below
375  * for the other half of this song-and-dance.
376  */
377 static void
378 crypto_terminate(struct thread **tdp, void *q)
379 {
380 	struct thread *td;
381 
382 	mtx_assert(&crypto_drivers_mtx, MA_OWNED);
383 	td = *tdp;
384 	*tdp = NULL;
385 	if (td != NULL) {
386 		wakeup_one(q);
387 		mtx_sleep(td, &crypto_drivers_mtx, PWAIT, "crypto_destroy", 0);
388 	}
389 }
390 
391 static void
392 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
393     void *auth_ctx, uint8_t padval)
394 {
395 	uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
396 	u_int i;
397 
398 	KASSERT(axf->blocksize <= sizeof(hmac_key),
399 	    ("Invalid HMAC block size %d", axf->blocksize));
400 
401 	/*
402 	 * If the key is larger than the block size, use the digest of
403 	 * the key as the key instead.
404 	 */
405 	memset(hmac_key, 0, sizeof(hmac_key));
406 	if (klen > axf->blocksize) {
407 		axf->Init(auth_ctx);
408 		axf->Update(auth_ctx, key, klen);
409 		axf->Final(hmac_key, auth_ctx);
410 		klen = axf->hashsize;
411 	} else
412 		memcpy(hmac_key, key, klen);
413 
414 	for (i = 0; i < axf->blocksize; i++)
415 		hmac_key[i] ^= padval;
416 
417 	axf->Init(auth_ctx);
418 	axf->Update(auth_ctx, hmac_key, axf->blocksize);
419 	explicit_bzero(hmac_key, sizeof(hmac_key));
420 }
421 
422 void
423 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
424     void *auth_ctx)
425 {
426 
427 	hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
428 }
429 
430 void
431 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
432     void *auth_ctx)
433 {
434 
435 	hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
436 }
437 
438 static void
439 crypto_destroy(void)
440 {
441 	struct crypto_ret_worker *ret_worker;
442 	int i;
443 
444 	/*
445 	 * Terminate any crypto threads.
446 	 */
447 	if (crypto_tq != NULL)
448 		taskqueue_drain_all(crypto_tq);
449 	CRYPTO_DRIVER_LOCK();
450 	crypto_terminate(&cryptotd, &crp_q);
451 	FOREACH_CRYPTO_RETW(ret_worker)
452 		crypto_terminate(&ret_worker->td, &ret_worker->crp_ret_q);
453 	CRYPTO_DRIVER_UNLOCK();
454 
455 	/* XXX flush queues??? */
456 
457 	/*
458 	 * Reclaim dynamically allocated resources.
459 	 */
460 	for (i = 0; i < crypto_drivers_size; i++) {
461 		if (crypto_drivers[i] != NULL)
462 			cap_rele(crypto_drivers[i]);
463 	}
464 	free(crypto_drivers, M_CRYPTO_DATA);
465 
466 	if (cryptop_zone != NULL)
467 		uma_zdestroy(cryptop_zone);
468 	mtx_destroy(&crypto_q_mtx);
469 	FOREACH_CRYPTO_RETW(ret_worker)
470 		mtx_destroy(&ret_worker->crypto_ret_mtx);
471 	free(crypto_ret_workers, M_CRYPTO_DATA);
472 	if (crypto_tq != NULL)
473 		taskqueue_free(crypto_tq);
474 	mtx_destroy(&crypto_drivers_mtx);
475 }
476 
477 uint32_t
478 crypto_ses2hid(crypto_session_t crypto_session)
479 {
480 	return (crypto_session->cap->cc_hid);
481 }
482 
483 uint32_t
484 crypto_ses2caps(crypto_session_t crypto_session)
485 {
486 	return (crypto_session->cap->cc_flags & 0xff000000);
487 }
488 
489 void *
490 crypto_get_driver_session(crypto_session_t crypto_session)
491 {
492 	return (crypto_session + 1);
493 }
494 
495 const struct crypto_session_params *
496 crypto_get_params(crypto_session_t crypto_session)
497 {
498 	return (&crypto_session->csp);
499 }
500 
501 const struct auth_hash *
502 crypto_auth_hash(const struct crypto_session_params *csp)
503 {
504 
505 	switch (csp->csp_auth_alg) {
506 	case CRYPTO_SHA1_HMAC:
507 		return (&auth_hash_hmac_sha1);
508 	case CRYPTO_SHA2_224_HMAC:
509 		return (&auth_hash_hmac_sha2_224);
510 	case CRYPTO_SHA2_256_HMAC:
511 		return (&auth_hash_hmac_sha2_256);
512 	case CRYPTO_SHA2_384_HMAC:
513 		return (&auth_hash_hmac_sha2_384);
514 	case CRYPTO_SHA2_512_HMAC:
515 		return (&auth_hash_hmac_sha2_512);
516 	case CRYPTO_NULL_HMAC:
517 		return (&auth_hash_null);
518 	case CRYPTO_RIPEMD160_HMAC:
519 		return (&auth_hash_hmac_ripemd_160);
520 	case CRYPTO_RIPEMD160:
521 		return (&auth_hash_ripemd_160);
522 	case CRYPTO_SHA1:
523 		return (&auth_hash_sha1);
524 	case CRYPTO_SHA2_224:
525 		return (&auth_hash_sha2_224);
526 	case CRYPTO_SHA2_256:
527 		return (&auth_hash_sha2_256);
528 	case CRYPTO_SHA2_384:
529 		return (&auth_hash_sha2_384);
530 	case CRYPTO_SHA2_512:
531 		return (&auth_hash_sha2_512);
532 	case CRYPTO_AES_NIST_GMAC:
533 		switch (csp->csp_auth_klen) {
534 		case 128 / 8:
535 			return (&auth_hash_nist_gmac_aes_128);
536 		case 192 / 8:
537 			return (&auth_hash_nist_gmac_aes_192);
538 		case 256 / 8:
539 			return (&auth_hash_nist_gmac_aes_256);
540 		default:
541 			return (NULL);
542 		}
543 	case CRYPTO_BLAKE2B:
544 		return (&auth_hash_blake2b);
545 	case CRYPTO_BLAKE2S:
546 		return (&auth_hash_blake2s);
547 	case CRYPTO_POLY1305:
548 		return (&auth_hash_poly1305);
549 	case CRYPTO_AES_CCM_CBC_MAC:
550 		switch (csp->csp_auth_klen) {
551 		case 128 / 8:
552 			return (&auth_hash_ccm_cbc_mac_128);
553 		case 192 / 8:
554 			return (&auth_hash_ccm_cbc_mac_192);
555 		case 256 / 8:
556 			return (&auth_hash_ccm_cbc_mac_256);
557 		default:
558 			return (NULL);
559 		}
560 	default:
561 		return (NULL);
562 	}
563 }
564 
565 const struct enc_xform *
566 crypto_cipher(const struct crypto_session_params *csp)
567 {
568 
569 	switch (csp->csp_cipher_alg) {
570 	case CRYPTO_AES_CBC:
571 		return (&enc_xform_aes_cbc);
572 	case CRYPTO_AES_XTS:
573 		return (&enc_xform_aes_xts);
574 	case CRYPTO_AES_ICM:
575 		return (&enc_xform_aes_icm);
576 	case CRYPTO_AES_NIST_GCM_16:
577 		return (&enc_xform_aes_nist_gcm);
578 	case CRYPTO_CAMELLIA_CBC:
579 		return (&enc_xform_camellia);
580 	case CRYPTO_NULL_CBC:
581 		return (&enc_xform_null);
582 	case CRYPTO_CHACHA20:
583 		return (&enc_xform_chacha20);
584 	case CRYPTO_AES_CCM_16:
585 		return (&enc_xform_ccm);
586 	case CRYPTO_CHACHA20_POLY1305:
587 		return (&enc_xform_chacha20_poly1305);
588 	case CRYPTO_XCHACHA20_POLY1305:
589 		return (&enc_xform_xchacha20_poly1305);
590 	default:
591 		return (NULL);
592 	}
593 }
594 
595 static struct cryptocap *
596 crypto_checkdriver(uint32_t hid)
597 {
598 
599 	return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
600 }
601 
602 /*
603  * Select a driver for a new session that supports the specified
604  * algorithms and, optionally, is constrained according to the flags.
605  */
606 static struct cryptocap *
607 crypto_select_driver(const struct crypto_session_params *csp, int flags)
608 {
609 	struct cryptocap *cap, *best;
610 	int best_match, error, hid;
611 
612 	CRYPTO_DRIVER_ASSERT();
613 
614 	best = NULL;
615 	for (hid = 0; hid < crypto_drivers_size; hid++) {
616 		/*
617 		 * If there is no driver for this slot, or the driver
618 		 * is not appropriate (hardware or software based on
619 		 * match), then skip.
620 		 */
621 		cap = crypto_drivers[hid];
622 		if (cap == NULL ||
623 		    (cap->cc_flags & flags) == 0)
624 			continue;
625 
626 		error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
627 		if (error >= 0)
628 			continue;
629 
630 		/*
631 		 * Use the driver with the highest probe value.
632 		 * Hardware drivers use a higher probe value than
633 		 * software.  In case of a tie, prefer the driver with
634 		 * the fewest active sessions.
635 		 */
636 		if (best == NULL || error > best_match ||
637 		    (error == best_match &&
638 		    cap->cc_sessions < best->cc_sessions)) {
639 			best = cap;
640 			best_match = error;
641 		}
642 	}
643 	return best;
644 }
645 
646 static enum alg_type {
647 	ALG_NONE = 0,
648 	ALG_CIPHER,
649 	ALG_DIGEST,
650 	ALG_KEYED_DIGEST,
651 	ALG_COMPRESSION,
652 	ALG_AEAD
653 } alg_types[] = {
654 	[CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
655 	[CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
656 	[CRYPTO_AES_CBC] = ALG_CIPHER,
657 	[CRYPTO_SHA1] = ALG_DIGEST,
658 	[CRYPTO_NULL_HMAC] = ALG_DIGEST,
659 	[CRYPTO_NULL_CBC] = ALG_CIPHER,
660 	[CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
661 	[CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
662 	[CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
663 	[CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
664 	[CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
665 	[CRYPTO_AES_XTS] = ALG_CIPHER,
666 	[CRYPTO_AES_ICM] = ALG_CIPHER,
667 	[CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
668 	[CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
669 	[CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
670 	[CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
671 	[CRYPTO_CHACHA20] = ALG_CIPHER,
672 	[CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
673 	[CRYPTO_RIPEMD160] = ALG_DIGEST,
674 	[CRYPTO_SHA2_224] = ALG_DIGEST,
675 	[CRYPTO_SHA2_256] = ALG_DIGEST,
676 	[CRYPTO_SHA2_384] = ALG_DIGEST,
677 	[CRYPTO_SHA2_512] = ALG_DIGEST,
678 	[CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
679 	[CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
680 	[CRYPTO_AES_CCM_16] = ALG_AEAD,
681 	[CRYPTO_CHACHA20_POLY1305] = ALG_AEAD,
682 	[CRYPTO_XCHACHA20_POLY1305] = ALG_AEAD,
683 };
684 
685 static enum alg_type
686 alg_type(int alg)
687 {
688 
689 	if (alg < nitems(alg_types))
690 		return (alg_types[alg]);
691 	return (ALG_NONE);
692 }
693 
694 static bool
695 alg_is_compression(int alg)
696 {
697 
698 	return (alg_type(alg) == ALG_COMPRESSION);
699 }
700 
701 static bool
702 alg_is_cipher(int alg)
703 {
704 
705 	return (alg_type(alg) == ALG_CIPHER);
706 }
707 
708 static bool
709 alg_is_digest(int alg)
710 {
711 
712 	return (alg_type(alg) == ALG_DIGEST ||
713 	    alg_type(alg) == ALG_KEYED_DIGEST);
714 }
715 
716 static bool
717 alg_is_keyed_digest(int alg)
718 {
719 
720 	return (alg_type(alg) == ALG_KEYED_DIGEST);
721 }
722 
723 static bool
724 alg_is_aead(int alg)
725 {
726 
727 	return (alg_type(alg) == ALG_AEAD);
728 }
729 
730 static bool
731 ccm_tag_length_valid(int len)
732 {
733 	/* RFC 3610 */
734 	switch (len) {
735 	case 4:
736 	case 6:
737 	case 8:
738 	case 10:
739 	case 12:
740 	case 14:
741 	case 16:
742 		return (true);
743 	default:
744 		return (false);
745 	}
746 }
747 
748 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
749 
750 /* Various sanity checks on crypto session parameters. */
751 static bool
752 check_csp(const struct crypto_session_params *csp)
753 {
754 	const struct auth_hash *axf;
755 
756 	/* Mode-independent checks. */
757 	if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
758 		return (false);
759 	if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
760 	    csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
761 		return (false);
762 	if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
763 		return (false);
764 	if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
765 		return (false);
766 
767 	switch (csp->csp_mode) {
768 	case CSP_MODE_COMPRESS:
769 		if (!alg_is_compression(csp->csp_cipher_alg))
770 			return (false);
771 		if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
772 			return (false);
773 		if (csp->csp_flags & CSP_F_SEPARATE_AAD)
774 			return (false);
775 		if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
776 		    csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
777 		    csp->csp_auth_mlen != 0)
778 			return (false);
779 		break;
780 	case CSP_MODE_CIPHER:
781 		if (!alg_is_cipher(csp->csp_cipher_alg))
782 			return (false);
783 		if (csp->csp_flags & CSP_F_SEPARATE_AAD)
784 			return (false);
785 		if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
786 			if (csp->csp_cipher_klen == 0)
787 				return (false);
788 			if (csp->csp_ivlen == 0)
789 				return (false);
790 		}
791 		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
792 			return (false);
793 		if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
794 		    csp->csp_auth_mlen != 0)
795 			return (false);
796 		break;
797 	case CSP_MODE_DIGEST:
798 		if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
799 			return (false);
800 
801 		if (csp->csp_flags & CSP_F_SEPARATE_AAD)
802 			return (false);
803 
804 		/* IV is optional for digests (e.g. GMAC). */
805 		switch (csp->csp_auth_alg) {
806 		case CRYPTO_AES_CCM_CBC_MAC:
807 			if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
808 				return (false);
809 			break;
810 		case CRYPTO_AES_NIST_GMAC:
811 			if (csp->csp_ivlen != AES_GCM_IV_LEN)
812 				return (false);
813 			break;
814 		default:
815 			if (csp->csp_ivlen != 0)
816 				return (false);
817 			break;
818 		}
819 
820 		if (!alg_is_digest(csp->csp_auth_alg))
821 			return (false);
822 
823 		/* Key is optional for BLAKE2 digests. */
824 		if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
825 		    csp->csp_auth_alg == CRYPTO_BLAKE2S)
826 			;
827 		else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
828 			if (csp->csp_auth_klen == 0)
829 				return (false);
830 		} else {
831 			if (csp->csp_auth_klen != 0)
832 				return (false);
833 		}
834 		if (csp->csp_auth_mlen != 0) {
835 			axf = crypto_auth_hash(csp);
836 			if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
837 				return (false);
838 
839 			if (csp->csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC &&
840 			    !ccm_tag_length_valid(csp->csp_auth_mlen))
841 				return (false);
842 		}
843 		break;
844 	case CSP_MODE_AEAD:
845 		if (!alg_is_aead(csp->csp_cipher_alg))
846 			return (false);
847 		if (csp->csp_cipher_klen == 0)
848 			return (false);
849 		if (csp->csp_ivlen == 0 ||
850 		    csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
851 			return (false);
852 		if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
853 			return (false);
854 
855 		switch (csp->csp_cipher_alg) {
856 		case CRYPTO_AES_CCM_16:
857 			if (csp->csp_auth_mlen != 0 &&
858 			    !ccm_tag_length_valid(csp->csp_auth_mlen))
859 				return (false);
860 
861 			if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13)
862 				return (false);
863 			break;
864 		case CRYPTO_AES_NIST_GCM_16:
865 			if (csp->csp_auth_mlen > AES_GMAC_HASH_LEN)
866 				return (false);
867 
868 			if (csp->csp_ivlen != AES_GCM_IV_LEN)
869 				return (false);
870 			break;
871 		case CRYPTO_CHACHA20_POLY1305:
872 			if (csp->csp_ivlen != 8 && csp->csp_ivlen != 12)
873 				return (false);
874 			if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
875 				return (false);
876 			break;
877 		case CRYPTO_XCHACHA20_POLY1305:
878 			if (csp->csp_ivlen != XCHACHA20_POLY1305_IV_LEN)
879 				return (false);
880 			if (csp->csp_auth_mlen > POLY1305_HASH_LEN)
881 				return (false);
882 			break;
883 		}
884 		break;
885 	case CSP_MODE_ETA:
886 		if (!alg_is_cipher(csp->csp_cipher_alg))
887 			return (false);
888 		if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
889 			if (csp->csp_cipher_klen == 0)
890 				return (false);
891 			if (csp->csp_ivlen == 0)
892 				return (false);
893 		}
894 		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
895 			return (false);
896 		if (!alg_is_digest(csp->csp_auth_alg))
897 			return (false);
898 
899 		/* Key is optional for BLAKE2 digests. */
900 		if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
901 		    csp->csp_auth_alg == CRYPTO_BLAKE2S)
902 			;
903 		else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
904 			if (csp->csp_auth_klen == 0)
905 				return (false);
906 		} else {
907 			if (csp->csp_auth_klen != 0)
908 				return (false);
909 		}
910 		if (csp->csp_auth_mlen != 0) {
911 			axf = crypto_auth_hash(csp);
912 			if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
913 				return (false);
914 		}
915 		break;
916 	default:
917 		return (false);
918 	}
919 
920 	return (true);
921 }
922 
923 /*
924  * Delete a session after it has been detached from its driver.
925  */
926 static void
927 crypto_deletesession(crypto_session_t cses)
928 {
929 	struct cryptocap *cap;
930 
931 	cap = cses->cap;
932 
933 	zfree(cses, M_CRYPTO_DATA);
934 
935 	CRYPTO_DRIVER_LOCK();
936 	cap->cc_sessions--;
937 	if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
938 		wakeup(cap);
939 	CRYPTO_DRIVER_UNLOCK();
940 	cap_rele(cap);
941 }
942 
943 /*
944  * Create a new session.  The crid argument specifies a crypto
945  * driver to use or constraints on a driver to select (hardware
946  * only, software only, either).  Whatever driver is selected
947  * must be capable of the requested crypto algorithms.
948  */
949 int
950 crypto_newsession(crypto_session_t *cses,
951     const struct crypto_session_params *csp, int crid)
952 {
953 	static uint64_t sessid = 0;
954 	crypto_session_t res;
955 	struct cryptocap *cap;
956 	int err;
957 
958 	if (!check_csp(csp))
959 		return (EINVAL);
960 
961 	res = NULL;
962 
963 	CRYPTO_DRIVER_LOCK();
964 	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
965 		/*
966 		 * Use specified driver; verify it is capable.
967 		 */
968 		cap = crypto_checkdriver(crid);
969 		if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
970 			cap = NULL;
971 	} else {
972 		/*
973 		 * No requested driver; select based on crid flags.
974 		 */
975 		cap = crypto_select_driver(csp, crid);
976 	}
977 	if (cap == NULL) {
978 		CRYPTO_DRIVER_UNLOCK();
979 		CRYPTDEB("no driver");
980 		return (EOPNOTSUPP);
981 	}
982 	cap_ref(cap);
983 	cap->cc_sessions++;
984 	CRYPTO_DRIVER_UNLOCK();
985 
986 	/* Allocate a single block for the generic session and driver softc. */
987 	res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA,
988 	    M_WAITOK | M_ZERO);
989 	res->cap = cap;
990 	res->csp = *csp;
991 	res->id = atomic_fetchadd_64(&sessid, 1);
992 
993 	/* Call the driver initialization routine. */
994 	err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
995 	if (err != 0) {
996 		CRYPTDEB("dev newsession failed: %d", err);
997 		crypto_deletesession(res);
998 		return (err);
999 	}
1000 
1001 	*cses = res;
1002 	return (0);
1003 }
1004 
1005 /*
1006  * Delete an existing session (or a reserved session on an unregistered
1007  * driver).
1008  */
1009 void
1010 crypto_freesession(crypto_session_t cses)
1011 {
1012 	struct cryptocap *cap;
1013 
1014 	if (cses == NULL)
1015 		return;
1016 
1017 	cap = cses->cap;
1018 
1019 	/* Call the driver cleanup routine, if available. */
1020 	CRYPTODEV_FREESESSION(cap->cc_dev, cses);
1021 
1022 	crypto_deletesession(cses);
1023 }
1024 
1025 /*
1026  * Return a new driver id.  Registers a driver with the system so that
1027  * it can be probed by subsequent sessions.
1028  */
1029 int32_t
1030 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
1031 {
1032 	struct cryptocap *cap, **newdrv;
1033 	int i;
1034 
1035 	if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1036 		device_printf(dev,
1037 		    "no flags specified when registering driver\n");
1038 		return -1;
1039 	}
1040 
1041 	cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1042 	cap->cc_dev = dev;
1043 	cap->cc_session_size = sessionsize;
1044 	cap->cc_flags = flags;
1045 	refcount_init(&cap->cc_refs, 1);
1046 
1047 	CRYPTO_DRIVER_LOCK();
1048 	for (;;) {
1049 		for (i = 0; i < crypto_drivers_size; i++) {
1050 			if (crypto_drivers[i] == NULL)
1051 				break;
1052 		}
1053 
1054 		if (i < crypto_drivers_size)
1055 			break;
1056 
1057 		/* Out of entries, allocate some more. */
1058 
1059 		if (2 * crypto_drivers_size <= crypto_drivers_size) {
1060 			CRYPTO_DRIVER_UNLOCK();
1061 			printf("crypto: driver count wraparound!\n");
1062 			cap_rele(cap);
1063 			return (-1);
1064 		}
1065 		CRYPTO_DRIVER_UNLOCK();
1066 
1067 		newdrv = malloc(2 * crypto_drivers_size *
1068 		    sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1069 
1070 		CRYPTO_DRIVER_LOCK();
1071 		memcpy(newdrv, crypto_drivers,
1072 		    crypto_drivers_size * sizeof(*crypto_drivers));
1073 
1074 		crypto_drivers_size *= 2;
1075 
1076 		free(crypto_drivers, M_CRYPTO_DATA);
1077 		crypto_drivers = newdrv;
1078 	}
1079 
1080 	cap->cc_hid = i;
1081 	crypto_drivers[i] = cap;
1082 	CRYPTO_DRIVER_UNLOCK();
1083 
1084 	if (bootverbose)
1085 		printf("crypto: assign %s driver id %u, flags 0x%x\n",
1086 		    device_get_nameunit(dev), i, flags);
1087 
1088 	return i;
1089 }
1090 
1091 /*
1092  * Lookup a driver by name.  We match against the full device
1093  * name and unit, and against just the name.  The latter gives
1094  * us a simple widlcarding by device name.  On success return the
1095  * driver/hardware identifier; otherwise return -1.
1096  */
1097 int
1098 crypto_find_driver(const char *match)
1099 {
1100 	struct cryptocap *cap;
1101 	int i, len = strlen(match);
1102 
1103 	CRYPTO_DRIVER_LOCK();
1104 	for (i = 0; i < crypto_drivers_size; i++) {
1105 		if (crypto_drivers[i] == NULL)
1106 			continue;
1107 		cap = crypto_drivers[i];
1108 		if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1109 		    strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1110 			CRYPTO_DRIVER_UNLOCK();
1111 			return (i);
1112 		}
1113 	}
1114 	CRYPTO_DRIVER_UNLOCK();
1115 	return (-1);
1116 }
1117 
1118 /*
1119  * Return the device_t for the specified driver or NULL
1120  * if the driver identifier is invalid.
1121  */
1122 device_t
1123 crypto_find_device_byhid(int hid)
1124 {
1125 	struct cryptocap *cap;
1126 	device_t dev;
1127 
1128 	dev = NULL;
1129 	CRYPTO_DRIVER_LOCK();
1130 	cap = crypto_checkdriver(hid);
1131 	if (cap != NULL)
1132 		dev = cap->cc_dev;
1133 	CRYPTO_DRIVER_UNLOCK();
1134 	return (dev);
1135 }
1136 
1137 /*
1138  * Return the device/driver capabilities.
1139  */
1140 int
1141 crypto_getcaps(int hid)
1142 {
1143 	struct cryptocap *cap;
1144 	int flags;
1145 
1146 	flags = 0;
1147 	CRYPTO_DRIVER_LOCK();
1148 	cap = crypto_checkdriver(hid);
1149 	if (cap != NULL)
1150 		flags = cap->cc_flags;
1151 	CRYPTO_DRIVER_UNLOCK();
1152 	return (flags);
1153 }
1154 
1155 /*
1156  * Unregister all algorithms associated with a crypto driver.
1157  * If there are pending sessions using it, leave enough information
1158  * around so that subsequent calls using those sessions will
1159  * correctly detect the driver has been unregistered and reroute
1160  * requests.
1161  */
1162 int
1163 crypto_unregister_all(uint32_t driverid)
1164 {
1165 	struct cryptocap *cap;
1166 
1167 	CRYPTO_DRIVER_LOCK();
1168 	cap = crypto_checkdriver(driverid);
1169 	if (cap == NULL) {
1170 		CRYPTO_DRIVER_UNLOCK();
1171 		return (EINVAL);
1172 	}
1173 
1174 	cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1175 	crypto_drivers[driverid] = NULL;
1176 
1177 	/*
1178 	 * XXX: This doesn't do anything to kick sessions that
1179 	 * have no pending operations.
1180 	 */
1181 	while (cap->cc_sessions != 0)
1182 		mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1183 	CRYPTO_DRIVER_UNLOCK();
1184 	cap_rele(cap);
1185 
1186 	return (0);
1187 }
1188 
1189 /*
1190  * Clear blockage on a driver.  The what parameter indicates whether
1191  * the driver is now ready for cryptop's and/or cryptokop's.
1192  */
1193 int
1194 crypto_unblock(uint32_t driverid, int what)
1195 {
1196 	struct cryptocap *cap;
1197 	int err;
1198 
1199 	CRYPTO_Q_LOCK();
1200 	cap = crypto_checkdriver(driverid);
1201 	if (cap != NULL) {
1202 		if (what & CRYPTO_SYMQ)
1203 			cap->cc_qblocked = 0;
1204 		if (crp_sleep)
1205 			wakeup_one(&crp_q);
1206 		err = 0;
1207 	} else
1208 		err = EINVAL;
1209 	CRYPTO_Q_UNLOCK();
1210 
1211 	return err;
1212 }
1213 
1214 size_t
1215 crypto_buffer_len(struct crypto_buffer *cb)
1216 {
1217 	switch (cb->cb_type) {
1218 	case CRYPTO_BUF_CONTIG:
1219 		return (cb->cb_buf_len);
1220 	case CRYPTO_BUF_MBUF:
1221 		if (cb->cb_mbuf->m_flags & M_PKTHDR)
1222 			return (cb->cb_mbuf->m_pkthdr.len);
1223 		return (m_length(cb->cb_mbuf, NULL));
1224 	case CRYPTO_BUF_SINGLE_MBUF:
1225 		return (cb->cb_mbuf->m_len);
1226 	case CRYPTO_BUF_VMPAGE:
1227 		return (cb->cb_vm_page_len);
1228 	case CRYPTO_BUF_UIO:
1229 		return (cb->cb_uio->uio_resid);
1230 	default:
1231 		return (0);
1232 	}
1233 }
1234 
1235 #ifdef INVARIANTS
1236 /* Various sanity checks on crypto requests. */
1237 static void
1238 cb_sanity(struct crypto_buffer *cb, const char *name)
1239 {
1240 	KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1241 	    ("incoming crp with invalid %s buffer type", name));
1242 	switch (cb->cb_type) {
1243 	case CRYPTO_BUF_CONTIG:
1244 		KASSERT(cb->cb_buf_len >= 0,
1245 		    ("incoming crp with -ve %s buffer length", name));
1246 		break;
1247 	case CRYPTO_BUF_VMPAGE:
1248 		KASSERT(CRYPTO_HAS_VMPAGE,
1249 		    ("incoming crp uses dmap on supported arch"));
1250 		KASSERT(cb->cb_vm_page_len >= 0,
1251 		    ("incoming crp with -ve %s buffer length", name));
1252 		KASSERT(cb->cb_vm_page_offset >= 0,
1253 		    ("incoming crp with -ve %s buffer offset", name));
1254 		KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1255 		    ("incoming crp with %s buffer offset greater than page size"
1256 		     , name));
1257 		break;
1258 	default:
1259 		break;
1260 	}
1261 }
1262 
1263 static void
1264 crp_sanity(struct cryptop *crp)
1265 {
1266 	struct crypto_session_params *csp;
1267 	struct crypto_buffer *out;
1268 	size_t ilen, len, olen;
1269 
1270 	KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1271 	KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1272 	    crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1273 	    ("incoming crp with invalid output buffer type"));
1274 	KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1275 	KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1276 	    ("incoming crp already done"));
1277 
1278 	csp = &crp->crp_session->csp;
1279 	cb_sanity(&crp->crp_buf, "input");
1280 	ilen = crypto_buffer_len(&crp->crp_buf);
1281 	olen = ilen;
1282 	out = NULL;
1283 	if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1284 		if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1285 			cb_sanity(&crp->crp_obuf, "output");
1286 			out = &crp->crp_obuf;
1287 			olen = crypto_buffer_len(out);
1288 		}
1289 	} else
1290 		KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1291 		    ("incoming crp with separate output buffer "
1292 		    "but no session support"));
1293 
1294 	switch (csp->csp_mode) {
1295 	case CSP_MODE_COMPRESS:
1296 		KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1297 		    crp->crp_op == CRYPTO_OP_DECOMPRESS,
1298 		    ("invalid compression op %x", crp->crp_op));
1299 		break;
1300 	case CSP_MODE_CIPHER:
1301 		KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1302 		    crp->crp_op == CRYPTO_OP_DECRYPT,
1303 		    ("invalid cipher op %x", crp->crp_op));
1304 		break;
1305 	case CSP_MODE_DIGEST:
1306 		KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1307 		    crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1308 		    ("invalid digest op %x", crp->crp_op));
1309 		break;
1310 	case CSP_MODE_AEAD:
1311 		KASSERT(crp->crp_op ==
1312 		    (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1313 		    crp->crp_op ==
1314 		    (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1315 		    ("invalid AEAD op %x", crp->crp_op));
1316 		KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1317 		    ("AEAD without a separate IV"));
1318 		break;
1319 	case CSP_MODE_ETA:
1320 		KASSERT(crp->crp_op ==
1321 		    (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1322 		    crp->crp_op ==
1323 		    (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1324 		    ("invalid ETA op %x", crp->crp_op));
1325 		break;
1326 	}
1327 	if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1328 		if (crp->crp_aad == NULL) {
1329 			KASSERT(crp->crp_aad_start == 0 ||
1330 			    crp->crp_aad_start < ilen,
1331 			    ("invalid AAD start"));
1332 			KASSERT(crp->crp_aad_length != 0 ||
1333 			    crp->crp_aad_start == 0,
1334 			    ("AAD with zero length and non-zero start"));
1335 			KASSERT(crp->crp_aad_length == 0 ||
1336 			    crp->crp_aad_start + crp->crp_aad_length <= ilen,
1337 			    ("AAD outside input length"));
1338 		} else {
1339 			KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1340 			    ("session doesn't support separate AAD buffer"));
1341 			KASSERT(crp->crp_aad_start == 0,
1342 			    ("separate AAD buffer with non-zero AAD start"));
1343 			KASSERT(crp->crp_aad_length != 0,
1344 			    ("separate AAD buffer with zero length"));
1345 		}
1346 	} else {
1347 		KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1348 		    crp->crp_aad_length == 0,
1349 		    ("AAD region in request not supporting AAD"));
1350 	}
1351 	if (csp->csp_ivlen == 0) {
1352 		KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1353 		    ("IV_SEPARATE set when IV isn't used"));
1354 		KASSERT(crp->crp_iv_start == 0,
1355 		    ("crp_iv_start set when IV isn't used"));
1356 	} else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1357 		KASSERT(crp->crp_iv_start == 0,
1358 		    ("IV_SEPARATE used with non-zero IV start"));
1359 	} else {
1360 		KASSERT(crp->crp_iv_start < ilen,
1361 		    ("invalid IV start"));
1362 		KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1363 		    ("IV outside buffer length"));
1364 	}
1365 	/* XXX: payload_start of 0 should always be < ilen? */
1366 	KASSERT(crp->crp_payload_start == 0 ||
1367 	    crp->crp_payload_start < ilen,
1368 	    ("invalid payload start"));
1369 	KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1370 	    ilen, ("payload outside input buffer"));
1371 	if (out == NULL) {
1372 		KASSERT(crp->crp_payload_output_start == 0,
1373 		    ("payload output start non-zero without output buffer"));
1374 	} else if (csp->csp_mode == CSP_MODE_DIGEST) {
1375 		KASSERT(!(crp->crp_op & CRYPTO_OP_VERIFY_DIGEST),
1376 		    ("digest verify with separate output buffer"));
1377 		KASSERT(crp->crp_payload_output_start == 0,
1378 		    ("digest operation with non-zero payload output start"));
1379 	} else {
1380 		KASSERT(crp->crp_payload_output_start == 0 ||
1381 		    crp->crp_payload_output_start < olen,
1382 		    ("invalid payload output start"));
1383 		KASSERT(crp->crp_payload_output_start +
1384 		    crp->crp_payload_length <= olen,
1385 		    ("payload outside output buffer"));
1386 	}
1387 	if (csp->csp_mode == CSP_MODE_DIGEST ||
1388 	    csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1389 		if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1390 			len = ilen;
1391 		else
1392 			len = olen;
1393 		KASSERT(crp->crp_digest_start == 0 ||
1394 		    crp->crp_digest_start < len,
1395 		    ("invalid digest start"));
1396 		/* XXX: For the mlen == 0 case this check isn't perfect. */
1397 		KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1398 		    ("digest outside buffer"));
1399 	} else {
1400 		KASSERT(crp->crp_digest_start == 0,
1401 		    ("non-zero digest start for request without a digest"));
1402 	}
1403 	if (csp->csp_cipher_klen != 0)
1404 		KASSERT(csp->csp_cipher_key != NULL ||
1405 		    crp->crp_cipher_key != NULL,
1406 		    ("cipher request without a key"));
1407 	if (csp->csp_auth_klen != 0)
1408 		KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1409 		    ("auth request without a key"));
1410 	KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1411 }
1412 #endif
1413 
1414 static int
1415 crypto_dispatch_one(struct cryptop *crp, int hint)
1416 {
1417 	struct cryptocap *cap;
1418 	int result;
1419 
1420 #ifdef INVARIANTS
1421 	crp_sanity(crp);
1422 #endif
1423 	CRYPTOSTAT_INC(cs_ops);
1424 
1425 	crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1426 
1427 	/*
1428 	 * Caller marked the request to be processed immediately; dispatch it
1429 	 * directly to the driver unless the driver is currently blocked, in
1430 	 * which case it is queued for deferred dispatch.
1431 	 */
1432 	cap = crp->crp_session->cap;
1433 	if (!atomic_load_int(&cap->cc_qblocked)) {
1434 		result = crypto_invoke(cap, crp, hint);
1435 		if (result != ERESTART)
1436 			return (result);
1437 
1438 		/*
1439 		 * The driver ran out of resources, put the request on the
1440 		 * queue.
1441 		 */
1442 	}
1443 	crypto_batch_enqueue(crp);
1444 	return (0);
1445 }
1446 
1447 int
1448 crypto_dispatch(struct cryptop *crp)
1449 {
1450 	return (crypto_dispatch_one(crp, 0));
1451 }
1452 
1453 int
1454 crypto_dispatch_async(struct cryptop *crp, int flags)
1455 {
1456 	struct crypto_ret_worker *ret_worker;
1457 
1458 	if (!CRYPTO_SESS_SYNC(crp->crp_session)) {
1459 		/*
1460 		 * The driver issues completions asynchonously, don't bother
1461 		 * deferring dispatch to a worker thread.
1462 		 */
1463 		return (crypto_dispatch(crp));
1464 	}
1465 
1466 #ifdef INVARIANTS
1467 	crp_sanity(crp);
1468 #endif
1469 	CRYPTOSTAT_INC(cs_ops);
1470 
1471 	crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1472 	if ((flags & CRYPTO_ASYNC_ORDERED) != 0) {
1473 		crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED;
1474 		ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1475 		CRYPTO_RETW_LOCK(ret_worker);
1476 		crp->crp_seq = ret_worker->reorder_ops++;
1477 		CRYPTO_RETW_UNLOCK(ret_worker);
1478 	}
1479 	TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1480 	taskqueue_enqueue(crypto_tq, &crp->crp_task);
1481 	return (0);
1482 }
1483 
1484 void
1485 crypto_dispatch_batch(struct cryptopq *crpq, int flags)
1486 {
1487 	struct cryptop *crp;
1488 	int hint;
1489 
1490 	while ((crp = TAILQ_FIRST(crpq)) != NULL) {
1491 		hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0;
1492 		TAILQ_REMOVE(crpq, crp, crp_next);
1493 		if (crypto_dispatch_one(crp, hint) != 0)
1494 			crypto_batch_enqueue(crp);
1495 	}
1496 }
1497 
1498 static void
1499 crypto_batch_enqueue(struct cryptop *crp)
1500 {
1501 
1502 	CRYPTO_Q_LOCK();
1503 	TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1504 	if (crp_sleep)
1505 		wakeup_one(&crp_q);
1506 	CRYPTO_Q_UNLOCK();
1507 }
1508 
1509 static void
1510 crypto_task_invoke(void *ctx, int pending)
1511 {
1512 	struct cryptocap *cap;
1513 	struct cryptop *crp;
1514 	int result;
1515 
1516 	crp = (struct cryptop *)ctx;
1517 	cap = crp->crp_session->cap;
1518 	result = crypto_invoke(cap, crp, 0);
1519 	if (result == ERESTART)
1520 		crypto_batch_enqueue(crp);
1521 }
1522 
1523 /*
1524  * Dispatch a crypto request to the appropriate crypto devices.
1525  */
1526 static int
1527 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1528 {
1529 	int error;
1530 
1531 	KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1532 	KASSERT(crp->crp_callback != NULL,
1533 	    ("%s: crp->crp_callback == NULL", __func__));
1534 	KASSERT(crp->crp_session != NULL,
1535 	    ("%s: crp->crp_session == NULL", __func__));
1536 
1537 	if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1538 		struct crypto_session_params csp;
1539 		crypto_session_t nses;
1540 
1541 		/*
1542 		 * Driver has unregistered; migrate the session and return
1543 		 * an error to the caller so they'll resubmit the op.
1544 		 *
1545 		 * XXX: What if there are more already queued requests for this
1546 		 *      session?
1547 		 *
1548 		 * XXX: Real solution is to make sessions refcounted
1549 		 * and force callers to hold a reference when
1550 		 * assigning to crp_session.  Could maybe change
1551 		 * crypto_getreq to accept a session pointer to make
1552 		 * that work.  Alternatively, we could abandon the
1553 		 * notion of rewriting crp_session in requests forcing
1554 		 * the caller to deal with allocating a new session.
1555 		 * Perhaps provide a method to allow a crp's session to
1556 		 * be swapped that callers could use.
1557 		 */
1558 		csp = crp->crp_session->csp;
1559 		crypto_freesession(crp->crp_session);
1560 
1561 		/*
1562 		 * XXX: Key pointers may no longer be valid.  If we
1563 		 * really want to support this we need to define the
1564 		 * KPI such that 'csp' is required to be valid for the
1565 		 * duration of a session by the caller perhaps.
1566 		 *
1567 		 * XXX: If the keys have been changed this will reuse
1568 		 * the old keys.  This probably suggests making
1569 		 * rekeying more explicit and updating the key
1570 		 * pointers in 'csp' when the keys change.
1571 		 */
1572 		if (crypto_newsession(&nses, &csp,
1573 		    CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1574 			crp->crp_session = nses;
1575 
1576 		crp->crp_etype = EAGAIN;
1577 		crypto_done(crp);
1578 		error = 0;
1579 	} else {
1580 		/*
1581 		 * Invoke the driver to process the request.  Errors are
1582 		 * signaled by setting crp_etype before invoking the completion
1583 		 * callback.
1584 		 */
1585 		error = CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1586 		KASSERT(error == 0 || error == ERESTART,
1587 		    ("%s: invalid error %d from CRYPTODEV_PROCESS",
1588 		    __func__, error));
1589 	}
1590 	return (error);
1591 }
1592 
1593 void
1594 crypto_destroyreq(struct cryptop *crp)
1595 {
1596 #ifdef DIAGNOSTIC
1597 	{
1598 		struct cryptop *crp2;
1599 		struct crypto_ret_worker *ret_worker;
1600 
1601 		if (!crypto_destroyreq_check)
1602 			return;
1603 
1604 		CRYPTO_Q_LOCK();
1605 		TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1606 			KASSERT(crp2 != crp,
1607 			    ("Freeing cryptop from the crypto queue (%p).",
1608 			    crp));
1609 		}
1610 		CRYPTO_Q_UNLOCK();
1611 
1612 		FOREACH_CRYPTO_RETW(ret_worker) {
1613 			CRYPTO_RETW_LOCK(ret_worker);
1614 			TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1615 				KASSERT(crp2 != crp,
1616 				    ("Freeing cryptop from the return queue (%p).",
1617 				    crp));
1618 			}
1619 			CRYPTO_RETW_UNLOCK(ret_worker);
1620 		}
1621 	}
1622 #endif
1623 }
1624 
1625 void
1626 crypto_freereq(struct cryptop *crp)
1627 {
1628 	if (crp == NULL)
1629 		return;
1630 
1631 	crypto_destroyreq(crp);
1632 	uma_zfree(cryptop_zone, crp);
1633 }
1634 
1635 void
1636 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1637 {
1638 	memset(crp, 0, sizeof(*crp));
1639 	crp->crp_session = cses;
1640 }
1641 
1642 struct cryptop *
1643 crypto_getreq(crypto_session_t cses, int how)
1644 {
1645 	struct cryptop *crp;
1646 
1647 	MPASS(how == M_WAITOK || how == M_NOWAIT);
1648 	crp = uma_zalloc(cryptop_zone, how);
1649 	if (crp != NULL)
1650 		crypto_initreq(crp, cses);
1651 	return (crp);
1652 }
1653 
1654 /*
1655  * Clone a crypto request, but associate it with the specified session
1656  * rather than inheriting the session from the original request.  The
1657  * fields describing the request buffers are copied, but not the
1658  * opaque field or callback function.
1659  */
1660 struct cryptop *
1661 crypto_clonereq(struct cryptop *crp, crypto_session_t cses, int how)
1662 {
1663 	struct cryptop *new;
1664 
1665 	MPASS((crp->crp_flags & CRYPTO_F_DONE) == 0);
1666 	new = crypto_getreq(cses, how);
1667 	if (new == NULL)
1668 		return (NULL);
1669 
1670 	memcpy(&new->crp_startcopy, &crp->crp_startcopy,
1671 	    __rangeof(struct cryptop, crp_startcopy, crp_endcopy));
1672 	return (new);
1673 }
1674 
1675 /*
1676  * Invoke the callback on behalf of the driver.
1677  */
1678 void
1679 crypto_done(struct cryptop *crp)
1680 {
1681 	KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1682 		("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1683 	crp->crp_flags |= CRYPTO_F_DONE;
1684 	if (crp->crp_etype != 0)
1685 		CRYPTOSTAT_INC(cs_errs);
1686 
1687 	/*
1688 	 * CBIMM means unconditionally do the callback immediately;
1689 	 * CBIFSYNC means do the callback immediately only if the
1690 	 * operation was done synchronously.  Both are used to avoid
1691 	 * doing extraneous context switches; the latter is mostly
1692 	 * used with the software crypto driver.
1693 	 */
1694 	if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 &&
1695 	    ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 ||
1696 	    ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 &&
1697 	    CRYPTO_SESS_SYNC(crp->crp_session)))) {
1698 		/*
1699 		 * Do the callback directly.  This is ok when the
1700 		 * callback routine does very little (e.g. the
1701 		 * /dev/crypto callback method just does a wakeup).
1702 		 */
1703 		crp->crp_callback(crp);
1704 	} else {
1705 		struct crypto_ret_worker *ret_worker;
1706 		bool wake;
1707 
1708 		ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1709 
1710 		/*
1711 		 * Normal case; queue the callback for the thread.
1712 		 */
1713 		CRYPTO_RETW_LOCK(ret_worker);
1714 		if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) {
1715 			struct cryptop *tmp;
1716 
1717 			TAILQ_FOREACH_REVERSE(tmp,
1718 			    &ret_worker->crp_ordered_ret_q, cryptop_q,
1719 			    crp_next) {
1720 				if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1721 					TAILQ_INSERT_AFTER(
1722 					    &ret_worker->crp_ordered_ret_q, tmp,
1723 					    crp, crp_next);
1724 					break;
1725 				}
1726 			}
1727 			if (tmp == NULL) {
1728 				TAILQ_INSERT_HEAD(
1729 				    &ret_worker->crp_ordered_ret_q, crp,
1730 				    crp_next);
1731 			}
1732 
1733 			wake = crp->crp_seq == ret_worker->reorder_cur_seq;
1734 		} else {
1735 			wake = TAILQ_EMPTY(&ret_worker->crp_ret_q);
1736 			TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp,
1737 			    crp_next);
1738 		}
1739 
1740 		if (wake)
1741 			wakeup_one(&ret_worker->crp_ret_q);	/* shared wait channel */
1742 		CRYPTO_RETW_UNLOCK(ret_worker);
1743 	}
1744 }
1745 
1746 /*
1747  * Terminate a thread at module unload.  The process that
1748  * initiated this is waiting for us to signal that we're gone;
1749  * wake it up and exit.  We use the driver table lock to insure
1750  * we don't do the wakeup before they're waiting.  There is no
1751  * race here because the waiter sleeps on the proc lock for the
1752  * thread so it gets notified at the right time because of an
1753  * extra wakeup that's done in exit1().
1754  */
1755 static void
1756 crypto_finis(void *chan)
1757 {
1758 	CRYPTO_DRIVER_LOCK();
1759 	wakeup_one(chan);
1760 	CRYPTO_DRIVER_UNLOCK();
1761 	kthread_exit();
1762 }
1763 
1764 /*
1765  * Crypto thread, dispatches crypto requests.
1766  */
1767 static void
1768 crypto_dispatch_thread(void *arg __unused)
1769 {
1770 	struct cryptop *crp, *submit;
1771 	struct cryptocap *cap;
1772 	int result, hint;
1773 
1774 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1775 	fpu_kern_thread(FPU_KERN_NORMAL);
1776 #endif
1777 
1778 	CRYPTO_Q_LOCK();
1779 	for (;;) {
1780 		/*
1781 		 * Find the first element in the queue that can be
1782 		 * processed and look-ahead to see if multiple ops
1783 		 * are ready for the same driver.
1784 		 */
1785 		submit = NULL;
1786 		hint = 0;
1787 		TAILQ_FOREACH(crp, &crp_q, crp_next) {
1788 			cap = crp->crp_session->cap;
1789 			/*
1790 			 * Driver cannot disappeared when there is an active
1791 			 * session.
1792 			 */
1793 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1794 			    __func__, __LINE__));
1795 			if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1796 				/* Op needs to be migrated, process it. */
1797 				if (submit == NULL)
1798 					submit = crp;
1799 				break;
1800 			}
1801 			if (!cap->cc_qblocked) {
1802 				if (submit != NULL) {
1803 					/*
1804 					 * We stop on finding another op,
1805 					 * regardless whether its for the same
1806 					 * driver or not.  We could keep
1807 					 * searching the queue but it might be
1808 					 * better to just use a per-driver
1809 					 * queue instead.
1810 					 */
1811 					if (submit->crp_session->cap == cap)
1812 						hint = CRYPTO_HINT_MORE;
1813 				} else {
1814 					submit = crp;
1815 				}
1816 				break;
1817 			}
1818 		}
1819 		if (submit != NULL) {
1820 			TAILQ_REMOVE(&crp_q, submit, crp_next);
1821 			cap = submit->crp_session->cap;
1822 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1823 			    __func__, __LINE__));
1824 			CRYPTO_Q_UNLOCK();
1825 			result = crypto_invoke(cap, submit, hint);
1826 			CRYPTO_Q_LOCK();
1827 			if (result == ERESTART) {
1828 				/*
1829 				 * The driver ran out of resources, mark the
1830 				 * driver ``blocked'' for cryptop's and put
1831 				 * the request back in the queue.  It would
1832 				 * best to put the request back where we got
1833 				 * it but that's hard so for now we put it
1834 				 * at the front.  This should be ok; putting
1835 				 * it at the end does not work.
1836 				 */
1837 				cap->cc_qblocked = 1;
1838 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1839 				CRYPTOSTAT_INC(cs_blocks);
1840 			}
1841 		} else {
1842 			/*
1843 			 * Nothing more to be processed.  Sleep until we're
1844 			 * woken because there are more ops to process.
1845 			 * This happens either by submission or by a driver
1846 			 * becoming unblocked and notifying us through
1847 			 * crypto_unblock.  Note that when we wakeup we
1848 			 * start processing each queue again from the
1849 			 * front. It's not clear that it's important to
1850 			 * preserve this ordering since ops may finish
1851 			 * out of order if dispatched to different devices
1852 			 * and some become blocked while others do not.
1853 			 */
1854 			crp_sleep = 1;
1855 			msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
1856 			crp_sleep = 0;
1857 			if (cryptotd == NULL)
1858 				break;
1859 			CRYPTOSTAT_INC(cs_intrs);
1860 		}
1861 	}
1862 	CRYPTO_Q_UNLOCK();
1863 
1864 	crypto_finis(&crp_q);
1865 }
1866 
1867 /*
1868  * Crypto returns thread, does callbacks for processed crypto requests.
1869  * Callbacks are done here, rather than in the crypto drivers, because
1870  * callbacks typically are expensive and would slow interrupt handling.
1871  */
1872 static void
1873 crypto_ret_thread(void *arg)
1874 {
1875 	struct crypto_ret_worker *ret_worker = arg;
1876 	struct cryptop *crpt;
1877 
1878 	CRYPTO_RETW_LOCK(ret_worker);
1879 	for (;;) {
1880 		/* Harvest return q's for completed ops */
1881 		crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
1882 		if (crpt != NULL) {
1883 			if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
1884 				TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
1885 				ret_worker->reorder_cur_seq++;
1886 			} else {
1887 				crpt = NULL;
1888 			}
1889 		}
1890 
1891 		if (crpt == NULL) {
1892 			crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
1893 			if (crpt != NULL)
1894 				TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
1895 		}
1896 
1897 		if (crpt != NULL) {
1898 			CRYPTO_RETW_UNLOCK(ret_worker);
1899 			/*
1900 			 * Run callbacks unlocked.
1901 			 */
1902 			if (crpt != NULL)
1903 				crpt->crp_callback(crpt);
1904 			CRYPTO_RETW_LOCK(ret_worker);
1905 		} else {
1906 			/*
1907 			 * Nothing more to be processed.  Sleep until we're
1908 			 * woken because there are more returns to process.
1909 			 */
1910 			msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
1911 				"crypto_ret_wait", 0);
1912 			if (ret_worker->td == NULL)
1913 				break;
1914 			CRYPTOSTAT_INC(cs_rets);
1915 		}
1916 	}
1917 	CRYPTO_RETW_UNLOCK(ret_worker);
1918 
1919 	crypto_finis(&ret_worker->crp_ret_q);
1920 }
1921 
1922 #ifdef DDB
1923 static void
1924 db_show_drivers(void)
1925 {
1926 	int hid;
1927 
1928 	db_printf("%12s %4s %8s %2s\n"
1929 		, "Device"
1930 		, "Ses"
1931 		, "Flags"
1932 		, "QB"
1933 	);
1934 	for (hid = 0; hid < crypto_drivers_size; hid++) {
1935 		const struct cryptocap *cap = crypto_drivers[hid];
1936 		if (cap == NULL)
1937 			continue;
1938 		db_printf("%-12s %4u %08x %2u\n"
1939 		    , device_get_nameunit(cap->cc_dev)
1940 		    , cap->cc_sessions
1941 		    , cap->cc_flags
1942 		    , cap->cc_qblocked
1943 		);
1944 	}
1945 }
1946 
1947 DB_SHOW_COMMAND_FLAGS(crypto, db_show_crypto, DB_CMD_MEMSAFE)
1948 {
1949 	struct cryptop *crp;
1950 	struct crypto_ret_worker *ret_worker;
1951 
1952 	db_show_drivers();
1953 	db_printf("\n");
1954 
1955 	db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1956 	    "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1957 	    "Device", "Callback");
1958 	TAILQ_FOREACH(crp, &crp_q, crp_next) {
1959 		db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
1960 		    , crp->crp_session->cap->cc_hid
1961 		    , (int) crypto_ses2caps(crp->crp_session)
1962 		    , crp->crp_olen
1963 		    , crp->crp_etype
1964 		    , crp->crp_flags
1965 		    , device_get_nameunit(crp->crp_session->cap->cc_dev)
1966 		    , crp->crp_callback
1967 		);
1968 	}
1969 	FOREACH_CRYPTO_RETW(ret_worker) {
1970 		db_printf("\n%8s %4s %4s %4s %8s\n",
1971 		    "ret_worker", "HID", "Etype", "Flags", "Callback");
1972 		if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
1973 			TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
1974 				db_printf("%8td %4u %4u %04x %8p\n"
1975 				    , CRYPTO_RETW_ID(ret_worker)
1976 				    , crp->crp_session->cap->cc_hid
1977 				    , crp->crp_etype
1978 				    , crp->crp_flags
1979 				    , crp->crp_callback
1980 				);
1981 			}
1982 		}
1983 	}
1984 }
1985 #endif
1986 
1987 int crypto_modevent(module_t mod, int type, void *unused);
1988 
1989 /*
1990  * Initialization code, both for static and dynamic loading.
1991  * Note this is not invoked with the usual MODULE_DECLARE
1992  * mechanism but instead is listed as a dependency by the
1993  * cryptosoft driver.  This guarantees proper ordering of
1994  * calls on module load/unload.
1995  */
1996 int
1997 crypto_modevent(module_t mod, int type, void *unused)
1998 {
1999 	int error = EINVAL;
2000 
2001 	switch (type) {
2002 	case MOD_LOAD:
2003 		error = crypto_init();
2004 		if (error == 0 && bootverbose)
2005 			printf("crypto: <crypto core>\n");
2006 		break;
2007 	case MOD_UNLOAD:
2008 		/*XXX disallow if active sessions */
2009 		error = 0;
2010 		crypto_destroy();
2011 		return 0;
2012 	}
2013 	return error;
2014 }
2015 MODULE_VERSION(crypto, 1);
2016 MODULE_DEPEND(crypto, zlib, 1, 1, 1);
2017