xref: /freebsd/sys/opencrypto/crypto.c (revision e9d419a05357036ea2fd37218d853d2c713d55cc)
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  */
24 
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27 
28 /*
29  * Cryptographic Subsystem.
30  *
31  * This code is derived from the Openbsd Cryptographic Framework (OCF)
32  * that has the copyright shown below.  Very little of the original
33  * code remains.
34  */
35 
36 /*-
37  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
38  *
39  * This code was written by Angelos D. Keromytis in Athens, Greece, in
40  * February 2000. Network Security Technologies Inc. (NSTI) kindly
41  * supported the development of this code.
42  *
43  * Copyright (c) 2000, 2001 Angelos D. Keromytis
44  *
45  * Permission to use, copy, and modify this software with or without fee
46  * is hereby granted, provided that this entire notice is included in
47  * all source code copies of any software which is or includes a copy or
48  * modification of this software.
49  *
50  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
51  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
52  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
53  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
54  * PURPOSE.
55  */
56 
57 #include "opt_compat.h"
58 #include "opt_ddb.h"
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/counter.h>
63 #include <sys/kernel.h>
64 #include <sys/kthread.h>
65 #include <sys/linker.h>
66 #include <sys/lock.h>
67 #include <sys/module.h>
68 #include <sys/mutex.h>
69 #include <sys/malloc.h>
70 #include <sys/mbuf.h>
71 #include <sys/proc.h>
72 #include <sys/refcount.h>
73 #include <sys/sdt.h>
74 #include <sys/smp.h>
75 #include <sys/sysctl.h>
76 #include <sys/taskqueue.h>
77 #include <sys/uio.h>
78 
79 #include <ddb/ddb.h>
80 
81 #include <machine/vmparam.h>
82 #include <vm/uma.h>
83 
84 #include <crypto/intake.h>
85 #include <opencrypto/cryptodev.h>
86 #include <opencrypto/xform_auth.h>
87 #include <opencrypto/xform_enc.h>
88 
89 #include <sys/kobj.h>
90 #include <sys/bus.h>
91 #include "cryptodev_if.h"
92 
93 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
94 #include <machine/pcb.h>
95 #endif
96 
97 SDT_PROVIDER_DEFINE(opencrypto);
98 
99 /*
100  * Crypto drivers register themselves by allocating a slot in the
101  * crypto_drivers table with crypto_get_driverid() and then registering
102  * each asym algorithm they support with crypto_kregister().
103  */
104 static	struct mtx crypto_drivers_mtx;		/* lock on driver table */
105 #define	CRYPTO_DRIVER_LOCK()	mtx_lock(&crypto_drivers_mtx)
106 #define	CRYPTO_DRIVER_UNLOCK()	mtx_unlock(&crypto_drivers_mtx)
107 #define	CRYPTO_DRIVER_ASSERT()	mtx_assert(&crypto_drivers_mtx, MA_OWNED)
108 
109 /*
110  * Crypto device/driver capabilities structure.
111  *
112  * Synchronization:
113  * (d) - protected by CRYPTO_DRIVER_LOCK()
114  * (q) - protected by CRYPTO_Q_LOCK()
115  * Not tagged fields are read-only.
116  */
117 struct cryptocap {
118 	device_t	cc_dev;
119 	uint32_t	cc_hid;
120 	uint32_t	cc_sessions;		/* (d) # of sessions */
121 	uint32_t	cc_koperations;		/* (d) # os asym operations */
122 	uint8_t		cc_kalg[CRK_ALGORITHM_MAX + 1];
123 
124 	int		cc_flags;		/* (d) flags */
125 #define CRYPTOCAP_F_CLEANUP	0x80000000	/* needs resource cleanup */
126 	int		cc_qblocked;		/* (q) symmetric q blocked */
127 	int		cc_kqblocked;		/* (q) asymmetric q blocked */
128 	size_t		cc_session_size;
129 	volatile int	cc_refs;
130 };
131 
132 static	struct cryptocap **crypto_drivers = NULL;
133 static	int crypto_drivers_size = 0;
134 
135 struct crypto_session {
136 	struct cryptocap *cap;
137 	struct crypto_session_params csp;
138 	uint64_t id;
139 	/* Driver softc follows. */
140 };
141 
142 /*
143  * There are two queues for crypto requests; one for symmetric (e.g.
144  * cipher) operations and one for asymmetric (e.g. MOD)operations.
145  * A single mutex is used to lock access to both queues.  We could
146  * have one per-queue but having one simplifies handling of block/unblock
147  * operations.
148  */
149 static	int crp_sleep = 0;
150 static	TAILQ_HEAD(cryptop_q ,cryptop) crp_q;		/* request queues */
151 static	TAILQ_HEAD(,cryptkop) crp_kq;
152 static	struct mtx crypto_q_mtx;
153 #define	CRYPTO_Q_LOCK()		mtx_lock(&crypto_q_mtx)
154 #define	CRYPTO_Q_UNLOCK()	mtx_unlock(&crypto_q_mtx)
155 
156 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
157     "In-kernel cryptography");
158 
159 /*
160  * Taskqueue used to dispatch the crypto requests
161  * that have the CRYPTO_F_ASYNC flag
162  */
163 static struct taskqueue *crypto_tq;
164 
165 /*
166  * Crypto seq numbers are operated on with modular arithmetic
167  */
168 #define	CRYPTO_SEQ_GT(a,b)	((int)((a)-(b)) > 0)
169 
170 struct crypto_ret_worker {
171 	struct mtx crypto_ret_mtx;
172 
173 	TAILQ_HEAD(,cryptop) crp_ordered_ret_q;	/* ordered callback queue for symetric jobs */
174 	TAILQ_HEAD(,cryptop) crp_ret_q;		/* callback queue for symetric jobs */
175 	TAILQ_HEAD(,cryptkop) crp_ret_kq;	/* callback queue for asym jobs */
176 
177 	uint32_t reorder_ops;		/* total ordered sym jobs received */
178 	uint32_t reorder_cur_seq;	/* current sym job dispatched */
179 
180 	struct proc *cryptoretproc;
181 };
182 static struct crypto_ret_worker *crypto_ret_workers = NULL;
183 
184 #define CRYPTO_RETW(i)		(&crypto_ret_workers[i])
185 #define CRYPTO_RETW_ID(w)	((w) - crypto_ret_workers)
186 #define FOREACH_CRYPTO_RETW(w) \
187 	for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
188 
189 #define	CRYPTO_RETW_LOCK(w)	mtx_lock(&w->crypto_ret_mtx)
190 #define	CRYPTO_RETW_UNLOCK(w)	mtx_unlock(&w->crypto_ret_mtx)
191 
192 static int crypto_workers_num = 0;
193 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
194 	   &crypto_workers_num, 0,
195 	   "Number of crypto workers used to dispatch crypto jobs");
196 #ifdef COMPAT_FREEBSD12
197 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
198 	   &crypto_workers_num, 0,
199 	   "Number of crypto workers used to dispatch crypto jobs");
200 #endif
201 
202 static	uma_zone_t cryptop_zone;
203 
204 int	crypto_userasymcrypto = 1;
205 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW,
206 	   &crypto_userasymcrypto, 0,
207 	   "Enable user-mode access to asymmetric crypto support");
208 #ifdef COMPAT_FREEBSD12
209 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
210 	   &crypto_userasymcrypto, 0,
211 	   "Enable/disable user-mode access to asymmetric crypto support");
212 #endif
213 
214 int	crypto_devallowsoft = 0;
215 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW,
216 	   &crypto_devallowsoft, 0,
217 	   "Enable use of software crypto by /dev/crypto");
218 #ifdef COMPAT_FREEBSD12
219 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
220 	   &crypto_devallowsoft, 0,
221 	   "Enable/disable use of software crypto by /dev/crypto");
222 #endif
223 
224 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
225 
226 static	void crypto_proc(void);
227 static	struct proc *cryptoproc;
228 static	void crypto_ret_proc(struct crypto_ret_worker *ret_worker);
229 static	void crypto_destroy(void);
230 static	int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
231 static	int crypto_kinvoke(struct cryptkop *krp);
232 static	void crypto_task_invoke(void *ctx, int pending);
233 static void crypto_batch_enqueue(struct cryptop *crp);
234 
235 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
236 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
237     cryptostats, nitems(cryptostats),
238     "Crypto system statistics");
239 
240 #define	CRYPTOSTAT_INC(stat) do {					\
241 	counter_u64_add(						\
242 	    cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
243 	    1);								\
244 } while (0)
245 
246 static void
247 cryptostats_init(void *arg __unused)
248 {
249 	COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
250 }
251 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
252 
253 static void
254 cryptostats_fini(void *arg __unused)
255 {
256 	COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
257 }
258 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
259     NULL);
260 
261 /* Try to avoid directly exposing the key buffer as a symbol */
262 static struct keybuf *keybuf;
263 
264 static struct keybuf empty_keybuf = {
265         .kb_nents = 0
266 };
267 
268 /* Obtain the key buffer from boot metadata */
269 static void
270 keybuf_init(void)
271 {
272 	caddr_t kmdp;
273 
274 	kmdp = preload_search_by_type("elf kernel");
275 
276 	if (kmdp == NULL)
277 		kmdp = preload_search_by_type("elf64 kernel");
278 
279 	keybuf = (struct keybuf *)preload_search_info(kmdp,
280 	    MODINFO_METADATA | MODINFOMD_KEYBUF);
281 
282         if (keybuf == NULL)
283                 keybuf = &empty_keybuf;
284 }
285 
286 /* It'd be nice if we could store these in some kind of secure memory... */
287 struct keybuf *
288 get_keybuf(void)
289 {
290 
291         return (keybuf);
292 }
293 
294 static struct cryptocap *
295 cap_ref(struct cryptocap *cap)
296 {
297 
298 	refcount_acquire(&cap->cc_refs);
299 	return (cap);
300 }
301 
302 static void
303 cap_rele(struct cryptocap *cap)
304 {
305 
306 	if (refcount_release(&cap->cc_refs) == 0)
307 		return;
308 
309 	KASSERT(cap->cc_sessions == 0,
310 	    ("freeing crypto driver with active sessions"));
311 	KASSERT(cap->cc_koperations == 0,
312 	    ("freeing crypto driver with active key operations"));
313 
314 	free(cap, M_CRYPTO_DATA);
315 }
316 
317 static int
318 crypto_init(void)
319 {
320 	struct crypto_ret_worker *ret_worker;
321 	int error;
322 
323 	mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
324 		MTX_DEF|MTX_QUIET);
325 
326 	TAILQ_INIT(&crp_q);
327 	TAILQ_INIT(&crp_kq);
328 	mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
329 
330 	cryptop_zone = uma_zcreate("cryptop",
331 	    sizeof(struct cryptop), NULL, NULL, NULL, NULL,
332 	    UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
333 
334 	crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
335 	crypto_drivers = malloc(crypto_drivers_size *
336 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
337 
338 	if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
339 		crypto_workers_num = mp_ncpus;
340 
341 	crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
342 	    taskqueue_thread_enqueue, &crypto_tq);
343 
344 	taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
345 	    "crypto");
346 
347 	error = kproc_create((void (*)(void *)) crypto_proc, NULL,
348 		    &cryptoproc, 0, 0, "crypto");
349 	if (error) {
350 		printf("crypto_init: cannot start crypto thread; error %d",
351 			error);
352 		goto bad;
353 	}
354 
355 	crypto_ret_workers = mallocarray(crypto_workers_num,
356 	    sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
357 
358 	FOREACH_CRYPTO_RETW(ret_worker) {
359 		TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
360 		TAILQ_INIT(&ret_worker->crp_ret_q);
361 		TAILQ_INIT(&ret_worker->crp_ret_kq);
362 
363 		ret_worker->reorder_ops = 0;
364 		ret_worker->reorder_cur_seq = 0;
365 
366 		mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF);
367 
368 		error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker,
369 				&ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker));
370 		if (error) {
371 			printf("crypto_init: cannot start cryptoret thread; error %d",
372 				error);
373 			goto bad;
374 		}
375 	}
376 
377 	keybuf_init();
378 
379 	return 0;
380 bad:
381 	crypto_destroy();
382 	return error;
383 }
384 
385 /*
386  * Signal a crypto thread to terminate.  We use the driver
387  * table lock to synchronize the sleep/wakeups so that we
388  * are sure the threads have terminated before we release
389  * the data structures they use.  See crypto_finis below
390  * for the other half of this song-and-dance.
391  */
392 static void
393 crypto_terminate(struct proc **pp, void *q)
394 {
395 	struct proc *p;
396 
397 	mtx_assert(&crypto_drivers_mtx, MA_OWNED);
398 	p = *pp;
399 	*pp = NULL;
400 	if (p) {
401 		wakeup_one(q);
402 		PROC_LOCK(p);		/* NB: insure we don't miss wakeup */
403 		CRYPTO_DRIVER_UNLOCK();	/* let crypto_finis progress */
404 		msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
405 		PROC_UNLOCK(p);
406 		CRYPTO_DRIVER_LOCK();
407 	}
408 }
409 
410 static void
411 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen,
412     void *auth_ctx, uint8_t padval)
413 {
414 	uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
415 	u_int i;
416 
417 	KASSERT(axf->blocksize <= sizeof(hmac_key),
418 	    ("Invalid HMAC block size %d", axf->blocksize));
419 
420 	/*
421 	 * If the key is larger than the block size, use the digest of
422 	 * the key as the key instead.
423 	 */
424 	memset(hmac_key, 0, sizeof(hmac_key));
425 	if (klen > axf->blocksize) {
426 		axf->Init(auth_ctx);
427 		axf->Update(auth_ctx, key, klen);
428 		axf->Final(hmac_key, auth_ctx);
429 		klen = axf->hashsize;
430 	} else
431 		memcpy(hmac_key, key, klen);
432 
433 	for (i = 0; i < axf->blocksize; i++)
434 		hmac_key[i] ^= padval;
435 
436 	axf->Init(auth_ctx);
437 	axf->Update(auth_ctx, hmac_key, axf->blocksize);
438 	explicit_bzero(hmac_key, sizeof(hmac_key));
439 }
440 
441 void
442 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen,
443     void *auth_ctx)
444 {
445 
446 	hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
447 }
448 
449 void
450 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen,
451     void *auth_ctx)
452 {
453 
454 	hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
455 }
456 
457 static void
458 crypto_destroy(void)
459 {
460 	struct crypto_ret_worker *ret_worker;
461 	int i;
462 
463 	/*
464 	 * Terminate any crypto threads.
465 	 */
466 	if (crypto_tq != NULL)
467 		taskqueue_drain_all(crypto_tq);
468 	CRYPTO_DRIVER_LOCK();
469 	crypto_terminate(&cryptoproc, &crp_q);
470 	FOREACH_CRYPTO_RETW(ret_worker)
471 		crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q);
472 	CRYPTO_DRIVER_UNLOCK();
473 
474 	/* XXX flush queues??? */
475 
476 	/*
477 	 * Reclaim dynamically allocated resources.
478 	 */
479 	for (i = 0; i < crypto_drivers_size; i++) {
480 		if (crypto_drivers[i] != NULL)
481 			cap_rele(crypto_drivers[i]);
482 	}
483 	free(crypto_drivers, M_CRYPTO_DATA);
484 
485 	if (cryptop_zone != NULL)
486 		uma_zdestroy(cryptop_zone);
487 	mtx_destroy(&crypto_q_mtx);
488 	FOREACH_CRYPTO_RETW(ret_worker)
489 		mtx_destroy(&ret_worker->crypto_ret_mtx);
490 	free(crypto_ret_workers, M_CRYPTO_DATA);
491 	if (crypto_tq != NULL)
492 		taskqueue_free(crypto_tq);
493 	mtx_destroy(&crypto_drivers_mtx);
494 }
495 
496 uint32_t
497 crypto_ses2hid(crypto_session_t crypto_session)
498 {
499 	return (crypto_session->cap->cc_hid);
500 }
501 
502 uint32_t
503 crypto_ses2caps(crypto_session_t crypto_session)
504 {
505 	return (crypto_session->cap->cc_flags & 0xff000000);
506 }
507 
508 void *
509 crypto_get_driver_session(crypto_session_t crypto_session)
510 {
511 	return (crypto_session + 1);
512 }
513 
514 const struct crypto_session_params *
515 crypto_get_params(crypto_session_t crypto_session)
516 {
517 	return (&crypto_session->csp);
518 }
519 
520 struct auth_hash *
521 crypto_auth_hash(const struct crypto_session_params *csp)
522 {
523 
524 	switch (csp->csp_auth_alg) {
525 	case CRYPTO_SHA1_HMAC:
526 		return (&auth_hash_hmac_sha1);
527 	case CRYPTO_SHA2_224_HMAC:
528 		return (&auth_hash_hmac_sha2_224);
529 	case CRYPTO_SHA2_256_HMAC:
530 		return (&auth_hash_hmac_sha2_256);
531 	case CRYPTO_SHA2_384_HMAC:
532 		return (&auth_hash_hmac_sha2_384);
533 	case CRYPTO_SHA2_512_HMAC:
534 		return (&auth_hash_hmac_sha2_512);
535 	case CRYPTO_NULL_HMAC:
536 		return (&auth_hash_null);
537 	case CRYPTO_RIPEMD160_HMAC:
538 		return (&auth_hash_hmac_ripemd_160);
539 	case CRYPTO_SHA1:
540 		return (&auth_hash_sha1);
541 	case CRYPTO_SHA2_224:
542 		return (&auth_hash_sha2_224);
543 	case CRYPTO_SHA2_256:
544 		return (&auth_hash_sha2_256);
545 	case CRYPTO_SHA2_384:
546 		return (&auth_hash_sha2_384);
547 	case CRYPTO_SHA2_512:
548 		return (&auth_hash_sha2_512);
549 	case CRYPTO_AES_NIST_GMAC:
550 		switch (csp->csp_auth_klen) {
551 		case 128 / 8:
552 			return (&auth_hash_nist_gmac_aes_128);
553 		case 192 / 8:
554 			return (&auth_hash_nist_gmac_aes_192);
555 		case 256 / 8:
556 			return (&auth_hash_nist_gmac_aes_256);
557 		default:
558 			return (NULL);
559 		}
560 	case CRYPTO_BLAKE2B:
561 		return (&auth_hash_blake2b);
562 	case CRYPTO_BLAKE2S:
563 		return (&auth_hash_blake2s);
564 	case CRYPTO_POLY1305:
565 		return (&auth_hash_poly1305);
566 	case CRYPTO_AES_CCM_CBC_MAC:
567 		switch (csp->csp_auth_klen) {
568 		case 128 / 8:
569 			return (&auth_hash_ccm_cbc_mac_128);
570 		case 192 / 8:
571 			return (&auth_hash_ccm_cbc_mac_192);
572 		case 256 / 8:
573 			return (&auth_hash_ccm_cbc_mac_256);
574 		default:
575 			return (NULL);
576 		}
577 	default:
578 		return (NULL);
579 	}
580 }
581 
582 struct enc_xform *
583 crypto_cipher(const struct crypto_session_params *csp)
584 {
585 
586 	switch (csp->csp_cipher_alg) {
587 	case CRYPTO_RIJNDAEL128_CBC:
588 		return (&enc_xform_rijndael128);
589 	case CRYPTO_AES_XTS:
590 		return (&enc_xform_aes_xts);
591 	case CRYPTO_AES_ICM:
592 		return (&enc_xform_aes_icm);
593 	case CRYPTO_AES_NIST_GCM_16:
594 		return (&enc_xform_aes_nist_gcm);
595 	case CRYPTO_CAMELLIA_CBC:
596 		return (&enc_xform_camellia);
597 	case CRYPTO_NULL_CBC:
598 		return (&enc_xform_null);
599 	case CRYPTO_CHACHA20:
600 		return (&enc_xform_chacha20);
601 	case CRYPTO_AES_CCM_16:
602 		return (&enc_xform_ccm);
603 	default:
604 		return (NULL);
605 	}
606 }
607 
608 static struct cryptocap *
609 crypto_checkdriver(uint32_t hid)
610 {
611 
612 	return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
613 }
614 
615 /*
616  * Select a driver for a new session that supports the specified
617  * algorithms and, optionally, is constrained according to the flags.
618  */
619 static struct cryptocap *
620 crypto_select_driver(const struct crypto_session_params *csp, int flags)
621 {
622 	struct cryptocap *cap, *best;
623 	int best_match, error, hid;
624 
625 	CRYPTO_DRIVER_ASSERT();
626 
627 	best = NULL;
628 	for (hid = 0; hid < crypto_drivers_size; hid++) {
629 		/*
630 		 * If there is no driver for this slot, or the driver
631 		 * is not appropriate (hardware or software based on
632 		 * match), then skip.
633 		 */
634 		cap = crypto_drivers[hid];
635 		if (cap == NULL ||
636 		    (cap->cc_flags & flags) == 0)
637 			continue;
638 
639 		error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
640 		if (error >= 0)
641 			continue;
642 
643 		/*
644 		 * Use the driver with the highest probe value.
645 		 * Hardware drivers use a higher probe value than
646 		 * software.  In case of a tie, prefer the driver with
647 		 * the fewest active sessions.
648 		 */
649 		if (best == NULL || error > best_match ||
650 		    (error == best_match &&
651 		    cap->cc_sessions < best->cc_sessions)) {
652 			best = cap;
653 			best_match = error;
654 		}
655 	}
656 	return best;
657 }
658 
659 static enum alg_type {
660 	ALG_NONE = 0,
661 	ALG_CIPHER,
662 	ALG_DIGEST,
663 	ALG_KEYED_DIGEST,
664 	ALG_COMPRESSION,
665 	ALG_AEAD
666 } alg_types[] = {
667 	[CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
668 	[CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
669 	[CRYPTO_AES_CBC] = ALG_CIPHER,
670 	[CRYPTO_SHA1] = ALG_DIGEST,
671 	[CRYPTO_NULL_HMAC] = ALG_DIGEST,
672 	[CRYPTO_NULL_CBC] = ALG_CIPHER,
673 	[CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
674 	[CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
675 	[CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
676 	[CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
677 	[CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
678 	[CRYPTO_AES_XTS] = ALG_CIPHER,
679 	[CRYPTO_AES_ICM] = ALG_CIPHER,
680 	[CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
681 	[CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
682 	[CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
683 	[CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
684 	[CRYPTO_CHACHA20] = ALG_CIPHER,
685 	[CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
686 	[CRYPTO_RIPEMD160] = ALG_DIGEST,
687 	[CRYPTO_SHA2_224] = ALG_DIGEST,
688 	[CRYPTO_SHA2_256] = ALG_DIGEST,
689 	[CRYPTO_SHA2_384] = ALG_DIGEST,
690 	[CRYPTO_SHA2_512] = ALG_DIGEST,
691 	[CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
692 	[CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
693 	[CRYPTO_AES_CCM_16] = ALG_AEAD,
694 };
695 
696 static enum alg_type
697 alg_type(int alg)
698 {
699 
700 	if (alg < nitems(alg_types))
701 		return (alg_types[alg]);
702 	return (ALG_NONE);
703 }
704 
705 static bool
706 alg_is_compression(int alg)
707 {
708 
709 	return (alg_type(alg) == ALG_COMPRESSION);
710 }
711 
712 static bool
713 alg_is_cipher(int alg)
714 {
715 
716 	return (alg_type(alg) == ALG_CIPHER);
717 }
718 
719 static bool
720 alg_is_digest(int alg)
721 {
722 
723 	return (alg_type(alg) == ALG_DIGEST ||
724 	    alg_type(alg) == ALG_KEYED_DIGEST);
725 }
726 
727 static bool
728 alg_is_keyed_digest(int alg)
729 {
730 
731 	return (alg_type(alg) == ALG_KEYED_DIGEST);
732 }
733 
734 static bool
735 alg_is_aead(int alg)
736 {
737 
738 	return (alg_type(alg) == ALG_AEAD);
739 }
740 
741 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
742 
743 /* Various sanity checks on crypto session parameters. */
744 static bool
745 check_csp(const struct crypto_session_params *csp)
746 {
747 	struct auth_hash *axf;
748 
749 	/* Mode-independent checks. */
750 	if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
751 		return (false);
752 	if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
753 	    csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
754 		return (false);
755 	if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
756 		return (false);
757 	if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
758 		return (false);
759 
760 	switch (csp->csp_mode) {
761 	case CSP_MODE_COMPRESS:
762 		if (!alg_is_compression(csp->csp_cipher_alg))
763 			return (false);
764 		if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
765 			return (false);
766 		if (csp->csp_flags & CSP_F_SEPARATE_AAD)
767 			return (false);
768 		if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
769 		    csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
770 		    csp->csp_auth_mlen != 0)
771 			return (false);
772 		break;
773 	case CSP_MODE_CIPHER:
774 		if (!alg_is_cipher(csp->csp_cipher_alg))
775 			return (false);
776 		if (csp->csp_flags & CSP_F_SEPARATE_AAD)
777 			return (false);
778 		if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
779 			if (csp->csp_cipher_klen == 0)
780 				return (false);
781 			if (csp->csp_ivlen == 0)
782 				return (false);
783 		}
784 		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
785 			return (false);
786 		if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
787 		    csp->csp_auth_mlen != 0)
788 			return (false);
789 		break;
790 	case CSP_MODE_DIGEST:
791 		if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
792 			return (false);
793 
794 		if (csp->csp_flags & CSP_F_SEPARATE_AAD)
795 			return (false);
796 
797 		/* IV is optional for digests (e.g. GMAC). */
798 		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
799 			return (false);
800 		if (!alg_is_digest(csp->csp_auth_alg))
801 			return (false);
802 
803 		/* Key is optional for BLAKE2 digests. */
804 		if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
805 		    csp->csp_auth_alg == CRYPTO_BLAKE2S)
806 			;
807 		else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
808 			if (csp->csp_auth_klen == 0)
809 				return (false);
810 		} else {
811 			if (csp->csp_auth_klen != 0)
812 				return (false);
813 		}
814 		if (csp->csp_auth_mlen != 0) {
815 			axf = crypto_auth_hash(csp);
816 			if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
817 				return (false);
818 		}
819 		break;
820 	case CSP_MODE_AEAD:
821 		if (!alg_is_aead(csp->csp_cipher_alg))
822 			return (false);
823 		if (csp->csp_cipher_klen == 0)
824 			return (false);
825 		if (csp->csp_ivlen == 0 ||
826 		    csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
827 			return (false);
828 		if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
829 			return (false);
830 
831 		/*
832 		 * XXX: Would be nice to have a better way to get this
833 		 * value.
834 		 */
835 		switch (csp->csp_cipher_alg) {
836 		case CRYPTO_AES_NIST_GCM_16:
837 		case CRYPTO_AES_CCM_16:
838 			if (csp->csp_auth_mlen > 16)
839 				return (false);
840 			break;
841 		}
842 		break;
843 	case CSP_MODE_ETA:
844 		if (!alg_is_cipher(csp->csp_cipher_alg))
845 			return (false);
846 		if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
847 			if (csp->csp_cipher_klen == 0)
848 				return (false);
849 			if (csp->csp_ivlen == 0)
850 				return (false);
851 		}
852 		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
853 			return (false);
854 		if (!alg_is_digest(csp->csp_auth_alg))
855 			return (false);
856 
857 		/* Key is optional for BLAKE2 digests. */
858 		if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
859 		    csp->csp_auth_alg == CRYPTO_BLAKE2S)
860 			;
861 		else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
862 			if (csp->csp_auth_klen == 0)
863 				return (false);
864 		} else {
865 			if (csp->csp_auth_klen != 0)
866 				return (false);
867 		}
868 		if (csp->csp_auth_mlen != 0) {
869 			axf = crypto_auth_hash(csp);
870 			if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
871 				return (false);
872 		}
873 		break;
874 	default:
875 		return (false);
876 	}
877 
878 	return (true);
879 }
880 
881 /*
882  * Delete a session after it has been detached from its driver.
883  */
884 static void
885 crypto_deletesession(crypto_session_t cses)
886 {
887 	struct cryptocap *cap;
888 
889 	cap = cses->cap;
890 
891 	zfree(cses, M_CRYPTO_DATA);
892 
893 	CRYPTO_DRIVER_LOCK();
894 	cap->cc_sessions--;
895 	if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
896 		wakeup(cap);
897 	CRYPTO_DRIVER_UNLOCK();
898 	cap_rele(cap);
899 }
900 
901 /*
902  * Create a new session.  The crid argument specifies a crypto
903  * driver to use or constraints on a driver to select (hardware
904  * only, software only, either).  Whatever driver is selected
905  * must be capable of the requested crypto algorithms.
906  */
907 int
908 crypto_newsession(crypto_session_t *cses,
909     const struct crypto_session_params *csp, int crid)
910 {
911 	static uint64_t sessid = 0;
912 	crypto_session_t res;
913 	struct cryptocap *cap;
914 	int err;
915 
916 	if (!check_csp(csp))
917 		return (EINVAL);
918 
919 	res = NULL;
920 
921 	CRYPTO_DRIVER_LOCK();
922 	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
923 		/*
924 		 * Use specified driver; verify it is capable.
925 		 */
926 		cap = crypto_checkdriver(crid);
927 		if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
928 			cap = NULL;
929 	} else {
930 		/*
931 		 * No requested driver; select based on crid flags.
932 		 */
933 		cap = crypto_select_driver(csp, crid);
934 	}
935 	if (cap == NULL) {
936 		CRYPTO_DRIVER_UNLOCK();
937 		CRYPTDEB("no driver");
938 		return (EOPNOTSUPP);
939 	}
940 	cap_ref(cap);
941 	cap->cc_sessions++;
942 	CRYPTO_DRIVER_UNLOCK();
943 
944 	/* Allocate a single block for the generic session and driver softc. */
945 	res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA,
946 	    M_WAITOK | M_ZERO);
947 	res->cap = cap;
948 	res->csp = *csp;
949 	res->id = atomic_fetchadd_64(&sessid, 1);
950 
951 	/* Call the driver initialization routine. */
952 	err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
953 	if (err != 0) {
954 		CRYPTDEB("dev newsession failed: %d", err);
955 		crypto_deletesession(res);
956 		return (err);
957 	}
958 
959 	*cses = res;
960 	return (0);
961 }
962 
963 /*
964  * Delete an existing session (or a reserved session on an unregistered
965  * driver).
966  */
967 void
968 crypto_freesession(crypto_session_t cses)
969 {
970 	struct cryptocap *cap;
971 
972 	if (cses == NULL)
973 		return;
974 
975 	cap = cses->cap;
976 
977 	/* Call the driver cleanup routine, if available. */
978 	CRYPTODEV_FREESESSION(cap->cc_dev, cses);
979 
980 	crypto_deletesession(cses);
981 }
982 
983 /*
984  * Return a new driver id.  Registers a driver with the system so that
985  * it can be probed by subsequent sessions.
986  */
987 int32_t
988 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
989 {
990 	struct cryptocap *cap, **newdrv;
991 	int i;
992 
993 	if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
994 		device_printf(dev,
995 		    "no flags specified when registering driver\n");
996 		return -1;
997 	}
998 
999 	cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1000 	cap->cc_dev = dev;
1001 	cap->cc_session_size = sessionsize;
1002 	cap->cc_flags = flags;
1003 	refcount_init(&cap->cc_refs, 1);
1004 
1005 	CRYPTO_DRIVER_LOCK();
1006 	for (;;) {
1007 		for (i = 0; i < crypto_drivers_size; i++) {
1008 			if (crypto_drivers[i] == NULL)
1009 				break;
1010 		}
1011 
1012 		if (i < crypto_drivers_size)
1013 			break;
1014 
1015 		/* Out of entries, allocate some more. */
1016 
1017 		if (2 * crypto_drivers_size <= crypto_drivers_size) {
1018 			CRYPTO_DRIVER_UNLOCK();
1019 			printf("crypto: driver count wraparound!\n");
1020 			cap_rele(cap);
1021 			return (-1);
1022 		}
1023 		CRYPTO_DRIVER_UNLOCK();
1024 
1025 		newdrv = malloc(2 * crypto_drivers_size *
1026 		    sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1027 
1028 		CRYPTO_DRIVER_LOCK();
1029 		memcpy(newdrv, crypto_drivers,
1030 		    crypto_drivers_size * sizeof(*crypto_drivers));
1031 
1032 		crypto_drivers_size *= 2;
1033 
1034 		free(crypto_drivers, M_CRYPTO_DATA);
1035 		crypto_drivers = newdrv;
1036 	}
1037 
1038 	cap->cc_hid = i;
1039 	crypto_drivers[i] = cap;
1040 	CRYPTO_DRIVER_UNLOCK();
1041 
1042 	if (bootverbose)
1043 		printf("crypto: assign %s driver id %u, flags 0x%x\n",
1044 		    device_get_nameunit(dev), i, flags);
1045 
1046 	return i;
1047 }
1048 
1049 /*
1050  * Lookup a driver by name.  We match against the full device
1051  * name and unit, and against just the name.  The latter gives
1052  * us a simple widlcarding by device name.  On success return the
1053  * driver/hardware identifier; otherwise return -1.
1054  */
1055 int
1056 crypto_find_driver(const char *match)
1057 {
1058 	struct cryptocap *cap;
1059 	int i, len = strlen(match);
1060 
1061 	CRYPTO_DRIVER_LOCK();
1062 	for (i = 0; i < crypto_drivers_size; i++) {
1063 		if (crypto_drivers[i] == NULL)
1064 			continue;
1065 		cap = crypto_drivers[i];
1066 		if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1067 		    strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1068 			CRYPTO_DRIVER_UNLOCK();
1069 			return (i);
1070 		}
1071 	}
1072 	CRYPTO_DRIVER_UNLOCK();
1073 	return (-1);
1074 }
1075 
1076 /*
1077  * Return the device_t for the specified driver or NULL
1078  * if the driver identifier is invalid.
1079  */
1080 device_t
1081 crypto_find_device_byhid(int hid)
1082 {
1083 	struct cryptocap *cap;
1084 	device_t dev;
1085 
1086 	dev = NULL;
1087 	CRYPTO_DRIVER_LOCK();
1088 	cap = crypto_checkdriver(hid);
1089 	if (cap != NULL)
1090 		dev = cap->cc_dev;
1091 	CRYPTO_DRIVER_UNLOCK();
1092 	return (dev);
1093 }
1094 
1095 /*
1096  * Return the device/driver capabilities.
1097  */
1098 int
1099 crypto_getcaps(int hid)
1100 {
1101 	struct cryptocap *cap;
1102 	int flags;
1103 
1104 	flags = 0;
1105 	CRYPTO_DRIVER_LOCK();
1106 	cap = crypto_checkdriver(hid);
1107 	if (cap != NULL)
1108 		flags = cap->cc_flags;
1109 	CRYPTO_DRIVER_UNLOCK();
1110 	return (flags);
1111 }
1112 
1113 /*
1114  * Register support for a key-related algorithm.  This routine
1115  * is called once for each algorithm supported a driver.
1116  */
1117 int
1118 crypto_kregister(uint32_t driverid, int kalg, uint32_t flags)
1119 {
1120 	struct cryptocap *cap;
1121 	int err;
1122 
1123 	CRYPTO_DRIVER_LOCK();
1124 
1125 	cap = crypto_checkdriver(driverid);
1126 	if (cap != NULL &&
1127 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
1128 		/*
1129 		 * XXX Do some performance testing to determine placing.
1130 		 * XXX We probably need an auxiliary data structure that
1131 		 * XXX describes relative performances.
1132 		 */
1133 
1134 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1135 		if (bootverbose)
1136 			printf("crypto: %s registers key alg %u flags %u\n"
1137 				, device_get_nameunit(cap->cc_dev)
1138 				, kalg
1139 				, flags
1140 			);
1141 		gone_in_dev(cap->cc_dev, 14, "asymmetric crypto");
1142 		err = 0;
1143 	} else
1144 		err = EINVAL;
1145 
1146 	CRYPTO_DRIVER_UNLOCK();
1147 	return err;
1148 }
1149 
1150 /*
1151  * Unregister all algorithms associated with a crypto driver.
1152  * If there are pending sessions using it, leave enough information
1153  * around so that subsequent calls using those sessions will
1154  * correctly detect the driver has been unregistered and reroute
1155  * requests.
1156  */
1157 int
1158 crypto_unregister_all(uint32_t driverid)
1159 {
1160 	struct cryptocap *cap;
1161 
1162 	CRYPTO_DRIVER_LOCK();
1163 	cap = crypto_checkdriver(driverid);
1164 	if (cap == NULL) {
1165 		CRYPTO_DRIVER_UNLOCK();
1166 		return (EINVAL);
1167 	}
1168 
1169 	cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1170 	crypto_drivers[driverid] = NULL;
1171 
1172 	/*
1173 	 * XXX: This doesn't do anything to kick sessions that
1174 	 * have no pending operations.
1175 	 */
1176 	while (cap->cc_sessions != 0 || cap->cc_koperations != 0)
1177 		mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1178 	CRYPTO_DRIVER_UNLOCK();
1179 	cap_rele(cap);
1180 
1181 	return (0);
1182 }
1183 
1184 /*
1185  * Clear blockage on a driver.  The what parameter indicates whether
1186  * the driver is now ready for cryptop's and/or cryptokop's.
1187  */
1188 int
1189 crypto_unblock(uint32_t driverid, int what)
1190 {
1191 	struct cryptocap *cap;
1192 	int err;
1193 
1194 	CRYPTO_Q_LOCK();
1195 	cap = crypto_checkdriver(driverid);
1196 	if (cap != NULL) {
1197 		if (what & CRYPTO_SYMQ)
1198 			cap->cc_qblocked = 0;
1199 		if (what & CRYPTO_ASYMQ)
1200 			cap->cc_kqblocked = 0;
1201 		if (crp_sleep)
1202 			wakeup_one(&crp_q);
1203 		err = 0;
1204 	} else
1205 		err = EINVAL;
1206 	CRYPTO_Q_UNLOCK();
1207 
1208 	return err;
1209 }
1210 
1211 size_t
1212 crypto_buffer_len(struct crypto_buffer *cb)
1213 {
1214 	switch (cb->cb_type) {
1215 	case CRYPTO_BUF_CONTIG:
1216 		return (cb->cb_buf_len);
1217 	case CRYPTO_BUF_MBUF:
1218 		if (cb->cb_mbuf->m_flags & M_PKTHDR)
1219 			return (cb->cb_mbuf->m_pkthdr.len);
1220 		return (m_length(cb->cb_mbuf, NULL));
1221 	case CRYPTO_BUF_VMPAGE:
1222 		return (cb->cb_vm_page_len);
1223 	case CRYPTO_BUF_UIO:
1224 		return (cb->cb_uio->uio_resid);
1225 	default:
1226 		return (0);
1227 	}
1228 }
1229 
1230 #ifdef INVARIANTS
1231 /* Various sanity checks on crypto requests. */
1232 static void
1233 cb_sanity(struct crypto_buffer *cb, const char *name)
1234 {
1235 	KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1236 	    ("incoming crp with invalid %s buffer type", name));
1237 	switch (cb->cb_type) {
1238 	case CRYPTO_BUF_CONTIG:
1239 		KASSERT(cb->cb_buf_len >= 0,
1240 		    ("incoming crp with -ve %s buffer length", name));
1241 		break;
1242 	case CRYPTO_BUF_VMPAGE:
1243 		KASSERT(CRYPTO_HAS_VMPAGE,
1244 		    ("incoming crp uses dmap on supported arch"));
1245 		KASSERT(cb->cb_vm_page_len >= 0,
1246 		    ("incoming crp with -ve %s buffer length", name));
1247 		KASSERT(cb->cb_vm_page_offset >= 0,
1248 		    ("incoming crp with -ve %s buffer offset", name));
1249 		KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1250 		    ("incoming crp with %s buffer offset greater than page size"
1251 		     , name));
1252 		break;
1253 	default:
1254 		break;
1255 	}
1256 }
1257 
1258 static void
1259 crp_sanity(struct cryptop *crp)
1260 {
1261 	struct crypto_session_params *csp;
1262 	struct crypto_buffer *out;
1263 	size_t ilen, len, olen;
1264 
1265 	KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1266 	KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1267 	    crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1268 	    ("incoming crp with invalid output buffer type"));
1269 	KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1270 	KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1271 	    ("incoming crp already done"));
1272 
1273 	csp = &crp->crp_session->csp;
1274 	cb_sanity(&crp->crp_buf, "input");
1275 	ilen = crypto_buffer_len(&crp->crp_buf);
1276 	olen = ilen;
1277 	out = NULL;
1278 	if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1279 		if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1280 			cb_sanity(&crp->crp_obuf, "output");
1281 			out = &crp->crp_obuf;
1282 			olen = crypto_buffer_len(out);
1283 		}
1284 	} else
1285 		KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1286 		    ("incoming crp with separate output buffer "
1287 		    "but no session support"));
1288 
1289 	switch (csp->csp_mode) {
1290 	case CSP_MODE_COMPRESS:
1291 		KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1292 		    crp->crp_op == CRYPTO_OP_DECOMPRESS,
1293 		    ("invalid compression op %x", crp->crp_op));
1294 		break;
1295 	case CSP_MODE_CIPHER:
1296 		KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1297 		    crp->crp_op == CRYPTO_OP_DECRYPT,
1298 		    ("invalid cipher op %x", crp->crp_op));
1299 		break;
1300 	case CSP_MODE_DIGEST:
1301 		KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1302 		    crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1303 		    ("invalid digest op %x", crp->crp_op));
1304 		break;
1305 	case CSP_MODE_AEAD:
1306 		KASSERT(crp->crp_op ==
1307 		    (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1308 		    crp->crp_op ==
1309 		    (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1310 		    ("invalid AEAD op %x", crp->crp_op));
1311 		if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16)
1312 			KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1313 			    ("GCM without a separate IV"));
1314 		if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16)
1315 			KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1316 			    ("CCM without a separate IV"));
1317 		break;
1318 	case CSP_MODE_ETA:
1319 		KASSERT(crp->crp_op ==
1320 		    (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1321 		    crp->crp_op ==
1322 		    (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1323 		    ("invalid ETA op %x", crp->crp_op));
1324 		break;
1325 	}
1326 	if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1327 		if (crp->crp_aad == NULL) {
1328 			KASSERT(crp->crp_aad_start == 0 ||
1329 			    crp->crp_aad_start < ilen,
1330 			    ("invalid AAD start"));
1331 			KASSERT(crp->crp_aad_length != 0 ||
1332 			    crp->crp_aad_start == 0,
1333 			    ("AAD with zero length and non-zero start"));
1334 			KASSERT(crp->crp_aad_length == 0 ||
1335 			    crp->crp_aad_start + crp->crp_aad_length <= ilen,
1336 			    ("AAD outside input length"));
1337 		} else {
1338 			KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1339 			    ("session doesn't support separate AAD buffer"));
1340 			KASSERT(crp->crp_aad_start == 0,
1341 			    ("separate AAD buffer with non-zero AAD start"));
1342 			KASSERT(crp->crp_aad_length != 0,
1343 			    ("separate AAD buffer with zero length"));
1344 		}
1345 	} else {
1346 		KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1347 		    crp->crp_aad_length == 0,
1348 		    ("AAD region in request not supporting AAD"));
1349 	}
1350 	if (csp->csp_ivlen == 0) {
1351 		KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1352 		    ("IV_SEPARATE set when IV isn't used"));
1353 		KASSERT(crp->crp_iv_start == 0,
1354 		    ("crp_iv_start set when IV isn't used"));
1355 	} else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1356 		KASSERT(crp->crp_iv_start == 0,
1357 		    ("IV_SEPARATE used with non-zero IV start"));
1358 	} else {
1359 		KASSERT(crp->crp_iv_start < ilen,
1360 		    ("invalid IV start"));
1361 		KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1362 		    ("IV outside buffer length"));
1363 	}
1364 	/* XXX: payload_start of 0 should always be < ilen? */
1365 	KASSERT(crp->crp_payload_start == 0 ||
1366 	    crp->crp_payload_start < ilen,
1367 	    ("invalid payload start"));
1368 	KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1369 	    ilen, ("payload outside input buffer"));
1370 	if (out == NULL) {
1371 		KASSERT(crp->crp_payload_output_start == 0,
1372 		    ("payload output start non-zero without output buffer"));
1373 	} else {
1374 		KASSERT(crp->crp_payload_output_start < olen,
1375 		    ("invalid payload output start"));
1376 		KASSERT(crp->crp_payload_output_start +
1377 		    crp->crp_payload_length <= olen,
1378 		    ("payload outside output buffer"));
1379 	}
1380 	if (csp->csp_mode == CSP_MODE_DIGEST ||
1381 	    csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1382 		if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1383 			len = ilen;
1384 		else
1385 			len = olen;
1386 		KASSERT(crp->crp_digest_start == 0 ||
1387 		    crp->crp_digest_start < len,
1388 		    ("invalid digest start"));
1389 		/* XXX: For the mlen == 0 case this check isn't perfect. */
1390 		KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1391 		    ("digest outside buffer"));
1392 	} else {
1393 		KASSERT(crp->crp_digest_start == 0,
1394 		    ("non-zero digest start for request without a digest"));
1395 	}
1396 	if (csp->csp_cipher_klen != 0)
1397 		KASSERT(csp->csp_cipher_key != NULL ||
1398 		    crp->crp_cipher_key != NULL,
1399 		    ("cipher request without a key"));
1400 	if (csp->csp_auth_klen != 0)
1401 		KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1402 		    ("auth request without a key"));
1403 	KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1404 }
1405 #endif
1406 
1407 static int
1408 crypto_dispatch_one(struct cryptop *crp, int hint)
1409 {
1410 	struct cryptocap *cap;
1411 	int result;
1412 
1413 #ifdef INVARIANTS
1414 	crp_sanity(crp);
1415 #endif
1416 	CRYPTOSTAT_INC(cs_ops);
1417 
1418 	crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1419 
1420 	/*
1421 	 * Caller marked the request to be processed immediately; dispatch it
1422 	 * directly to the driver unless the driver is currently blocked, in
1423 	 * which case it is queued for deferred dispatch.
1424 	 */
1425 	cap = crp->crp_session->cap;
1426 	if (!atomic_load_int(&cap->cc_qblocked)) {
1427 		result = crypto_invoke(cap, crp, hint);
1428 		if (result != ERESTART)
1429 			return (result);
1430 
1431 		/*
1432 		 * The driver ran out of resources, put the request on the
1433 		 * queue.
1434 		 */
1435 	}
1436 	crypto_batch_enqueue(crp);
1437 	return (0);
1438 }
1439 
1440 int
1441 crypto_dispatch(struct cryptop *crp)
1442 {
1443 	return (crypto_dispatch_one(crp, 0));
1444 }
1445 
1446 int
1447 crypto_dispatch_async(struct cryptop *crp, int flags)
1448 {
1449 	struct crypto_ret_worker *ret_worker;
1450 
1451 	if (!CRYPTO_SESS_SYNC(crp->crp_session)) {
1452 		/*
1453 		 * The driver issues completions asynchonously, don't bother
1454 		 * deferring dispatch to a worker thread.
1455 		 */
1456 		return (crypto_dispatch(crp));
1457 	}
1458 
1459 #ifdef INVARIANTS
1460 	crp_sanity(crp);
1461 #endif
1462 	CRYPTOSTAT_INC(cs_ops);
1463 
1464 	crp->crp_retw_id = crp->crp_session->id % crypto_workers_num;
1465 	if ((flags & CRYPTO_ASYNC_ORDERED) != 0) {
1466 		crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED;
1467 		ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1468 		CRYPTO_RETW_LOCK(ret_worker);
1469 		crp->crp_seq = ret_worker->reorder_ops++;
1470 		CRYPTO_RETW_UNLOCK(ret_worker);
1471 	}
1472 	TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1473 	taskqueue_enqueue(crypto_tq, &crp->crp_task);
1474 	return (0);
1475 }
1476 
1477 void
1478 crypto_dispatch_batch(struct cryptopq *crpq, int flags)
1479 {
1480 	struct cryptop *crp;
1481 	int hint;
1482 
1483 	while ((crp = TAILQ_FIRST(crpq)) != NULL) {
1484 		hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0;
1485 		TAILQ_REMOVE(crpq, crp, crp_next);
1486 		if (crypto_dispatch_one(crp, hint) != 0)
1487 			crypto_batch_enqueue(crp);
1488 	}
1489 }
1490 
1491 static void
1492 crypto_batch_enqueue(struct cryptop *crp)
1493 {
1494 
1495 	CRYPTO_Q_LOCK();
1496 	TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1497 	if (crp_sleep)
1498 		wakeup_one(&crp_q);
1499 	CRYPTO_Q_UNLOCK();
1500 }
1501 
1502 /*
1503  * Add an asymetric crypto request to a queue,
1504  * to be processed by the kernel thread.
1505  */
1506 int
1507 crypto_kdispatch(struct cryptkop *krp)
1508 {
1509 	int error;
1510 
1511 	CRYPTOSTAT_INC(cs_kops);
1512 
1513 	krp->krp_cap = NULL;
1514 	error = crypto_kinvoke(krp);
1515 	if (error == ERESTART) {
1516 		CRYPTO_Q_LOCK();
1517 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1518 		if (crp_sleep)
1519 			wakeup_one(&crp_q);
1520 		CRYPTO_Q_UNLOCK();
1521 		error = 0;
1522 	}
1523 	return error;
1524 }
1525 
1526 /*
1527  * Verify a driver is suitable for the specified operation.
1528  */
1529 static __inline int
1530 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
1531 {
1532 	return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
1533 }
1534 
1535 /*
1536  * Select a driver for an asym operation.  The driver must
1537  * support the necessary algorithm.  The caller can constrain
1538  * which device is selected with the flags parameter.  The
1539  * algorithm we use here is pretty stupid; just use the first
1540  * driver that supports the algorithms we need. If there are
1541  * multiple suitable drivers we choose the driver with the
1542  * fewest active operations.  We prefer hardware-backed
1543  * drivers to software ones when either may be used.
1544  */
1545 static struct cryptocap *
1546 crypto_select_kdriver(const struct cryptkop *krp, int flags)
1547 {
1548 	struct cryptocap *cap, *best;
1549 	int match, hid;
1550 
1551 	CRYPTO_DRIVER_ASSERT();
1552 
1553 	/*
1554 	 * Look first for hardware crypto devices if permitted.
1555 	 */
1556 	if (flags & CRYPTOCAP_F_HARDWARE)
1557 		match = CRYPTOCAP_F_HARDWARE;
1558 	else
1559 		match = CRYPTOCAP_F_SOFTWARE;
1560 	best = NULL;
1561 again:
1562 	for (hid = 0; hid < crypto_drivers_size; hid++) {
1563 		/*
1564 		 * If there is no driver for this slot, or the driver
1565 		 * is not appropriate (hardware or software based on
1566 		 * match), then skip.
1567 		 */
1568 		cap = crypto_drivers[hid];
1569 		if (cap == NULL ||
1570 		    (cap->cc_flags & match) == 0)
1571 			continue;
1572 
1573 		/* verify all the algorithms are supported. */
1574 		if (kdriver_suitable(cap, krp)) {
1575 			if (best == NULL ||
1576 			    cap->cc_koperations < best->cc_koperations)
1577 				best = cap;
1578 		}
1579 	}
1580 	if (best != NULL)
1581 		return best;
1582 	if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
1583 		/* sort of an Algol 68-style for loop */
1584 		match = CRYPTOCAP_F_SOFTWARE;
1585 		goto again;
1586 	}
1587 	return best;
1588 }
1589 
1590 /*
1591  * Choose a driver for an asymmetric crypto request.
1592  */
1593 static struct cryptocap *
1594 crypto_lookup_kdriver(struct cryptkop *krp)
1595 {
1596 	struct cryptocap *cap;
1597 	uint32_t crid;
1598 
1599 	/* If this request is requeued, it might already have a driver. */
1600 	cap = krp->krp_cap;
1601 	if (cap != NULL)
1602 		return (cap);
1603 
1604 	/* Use krp_crid to choose a driver. */
1605 	crid = krp->krp_crid;
1606 	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1607 		cap = crypto_checkdriver(crid);
1608 		if (cap != NULL) {
1609 			/*
1610 			 * Driver present, it must support the
1611 			 * necessary algorithm and, if s/w drivers are
1612 			 * excluded, it must be registered as
1613 			 * hardware-backed.
1614 			 */
1615 			if (!kdriver_suitable(cap, krp) ||
1616 			    (!crypto_devallowsoft &&
1617 			    (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
1618 				cap = NULL;
1619 		}
1620 	} else {
1621 		/*
1622 		 * No requested driver; select based on crid flags.
1623 		 */
1624 		if (!crypto_devallowsoft)	/* NB: disallow s/w drivers */
1625 			crid &= ~CRYPTOCAP_F_SOFTWARE;
1626 		cap = crypto_select_kdriver(krp, crid);
1627 	}
1628 
1629 	if (cap != NULL) {
1630 		krp->krp_cap = cap_ref(cap);
1631 		krp->krp_hid = cap->cc_hid;
1632 	}
1633 	return (cap);
1634 }
1635 
1636 /*
1637  * Dispatch an asymmetric crypto request.
1638  */
1639 static int
1640 crypto_kinvoke(struct cryptkop *krp)
1641 {
1642 	struct cryptocap *cap = NULL;
1643 	int error;
1644 
1645 	KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
1646 	KASSERT(krp->krp_callback != NULL,
1647 	    ("%s: krp->crp_callback == NULL", __func__));
1648 
1649 	CRYPTO_DRIVER_LOCK();
1650 	cap = crypto_lookup_kdriver(krp);
1651 	if (cap == NULL) {
1652 		CRYPTO_DRIVER_UNLOCK();
1653 		krp->krp_status = ENODEV;
1654 		crypto_kdone(krp);
1655 		return (0);
1656 	}
1657 
1658 	/*
1659 	 * If the device is blocked, return ERESTART to requeue it.
1660 	 */
1661 	if (cap->cc_kqblocked) {
1662 		/*
1663 		 * XXX: Previously this set krp_status to ERESTART and
1664 		 * invoked crypto_kdone but the caller would still
1665 		 * requeue it.
1666 		 */
1667 		CRYPTO_DRIVER_UNLOCK();
1668 		return (ERESTART);
1669 	}
1670 
1671 	cap->cc_koperations++;
1672 	CRYPTO_DRIVER_UNLOCK();
1673 	error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
1674 	if (error == ERESTART) {
1675 		CRYPTO_DRIVER_LOCK();
1676 		cap->cc_koperations--;
1677 		CRYPTO_DRIVER_UNLOCK();
1678 		return (error);
1679 	}
1680 
1681 	KASSERT(error == 0, ("error %d returned from crypto_kprocess", error));
1682 	return (0);
1683 }
1684 
1685 static void
1686 crypto_task_invoke(void *ctx, int pending)
1687 {
1688 	struct cryptocap *cap;
1689 	struct cryptop *crp;
1690 	int result;
1691 
1692 	crp = (struct cryptop *)ctx;
1693 	cap = crp->crp_session->cap;
1694 	result = crypto_invoke(cap, crp, 0);
1695 	if (result == ERESTART)
1696 		crypto_batch_enqueue(crp);
1697 }
1698 
1699 /*
1700  * Dispatch a crypto request to the appropriate crypto devices.
1701  */
1702 static int
1703 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1704 {
1705 
1706 	KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1707 	KASSERT(crp->crp_callback != NULL,
1708 	    ("%s: crp->crp_callback == NULL", __func__));
1709 	KASSERT(crp->crp_session != NULL,
1710 	    ("%s: crp->crp_session == NULL", __func__));
1711 
1712 	if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1713 		struct crypto_session_params csp;
1714 		crypto_session_t nses;
1715 
1716 		/*
1717 		 * Driver has unregistered; migrate the session and return
1718 		 * an error to the caller so they'll resubmit the op.
1719 		 *
1720 		 * XXX: What if there are more already queued requests for this
1721 		 *      session?
1722 		 *
1723 		 * XXX: Real solution is to make sessions refcounted
1724 		 * and force callers to hold a reference when
1725 		 * assigning to crp_session.  Could maybe change
1726 		 * crypto_getreq to accept a session pointer to make
1727 		 * that work.  Alternatively, we could abandon the
1728 		 * notion of rewriting crp_session in requests forcing
1729 		 * the caller to deal with allocating a new session.
1730 		 * Perhaps provide a method to allow a crp's session to
1731 		 * be swapped that callers could use.
1732 		 */
1733 		csp = crp->crp_session->csp;
1734 		crypto_freesession(crp->crp_session);
1735 
1736 		/*
1737 		 * XXX: Key pointers may no longer be valid.  If we
1738 		 * really want to support this we need to define the
1739 		 * KPI such that 'csp' is required to be valid for the
1740 		 * duration of a session by the caller perhaps.
1741 		 *
1742 		 * XXX: If the keys have been changed this will reuse
1743 		 * the old keys.  This probably suggests making
1744 		 * rekeying more explicit and updating the key
1745 		 * pointers in 'csp' when the keys change.
1746 		 */
1747 		if (crypto_newsession(&nses, &csp,
1748 		    CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1749 			crp->crp_session = nses;
1750 
1751 		crp->crp_etype = EAGAIN;
1752 		crypto_done(crp);
1753 		return 0;
1754 	} else {
1755 		/*
1756 		 * Invoke the driver to process the request.
1757 		 */
1758 		return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1759 	}
1760 }
1761 
1762 void
1763 crypto_destroyreq(struct cryptop *crp)
1764 {
1765 #ifdef DIAGNOSTIC
1766 	{
1767 		struct cryptop *crp2;
1768 		struct crypto_ret_worker *ret_worker;
1769 
1770 		CRYPTO_Q_LOCK();
1771 		TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1772 			KASSERT(crp2 != crp,
1773 			    ("Freeing cryptop from the crypto queue (%p).",
1774 			    crp));
1775 		}
1776 		CRYPTO_Q_UNLOCK();
1777 
1778 		FOREACH_CRYPTO_RETW(ret_worker) {
1779 			CRYPTO_RETW_LOCK(ret_worker);
1780 			TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1781 				KASSERT(crp2 != crp,
1782 				    ("Freeing cryptop from the return queue (%p).",
1783 				    crp));
1784 			}
1785 			CRYPTO_RETW_UNLOCK(ret_worker);
1786 		}
1787 	}
1788 #endif
1789 }
1790 
1791 void
1792 crypto_freereq(struct cryptop *crp)
1793 {
1794 	if (crp == NULL)
1795 		return;
1796 
1797 	crypto_destroyreq(crp);
1798 	uma_zfree(cryptop_zone, crp);
1799 }
1800 
1801 static void
1802 _crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1803 {
1804 	crp->crp_session = cses;
1805 }
1806 
1807 void
1808 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1809 {
1810 	memset(crp, 0, sizeof(*crp));
1811 	_crypto_initreq(crp, cses);
1812 }
1813 
1814 struct cryptop *
1815 crypto_getreq(crypto_session_t cses, int how)
1816 {
1817 	struct cryptop *crp;
1818 
1819 	MPASS(how == M_WAITOK || how == M_NOWAIT);
1820 	crp = uma_zalloc(cryptop_zone, how | M_ZERO);
1821 	if (crp != NULL)
1822 		_crypto_initreq(crp, cses);
1823 	return (crp);
1824 }
1825 
1826 /*
1827  * Invoke the callback on behalf of the driver.
1828  */
1829 void
1830 crypto_done(struct cryptop *crp)
1831 {
1832 	KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1833 		("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1834 	crp->crp_flags |= CRYPTO_F_DONE;
1835 	if (crp->crp_etype != 0)
1836 		CRYPTOSTAT_INC(cs_errs);
1837 
1838 	/*
1839 	 * CBIMM means unconditionally do the callback immediately;
1840 	 * CBIFSYNC means do the callback immediately only if the
1841 	 * operation was done synchronously.  Both are used to avoid
1842 	 * doing extraneous context switches; the latter is mostly
1843 	 * used with the software crypto driver.
1844 	 */
1845 	if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 &&
1846 	    ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 ||
1847 	    ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 &&
1848 	    CRYPTO_SESS_SYNC(crp->crp_session)))) {
1849 		/*
1850 		 * Do the callback directly.  This is ok when the
1851 		 * callback routine does very little (e.g. the
1852 		 * /dev/crypto callback method just does a wakeup).
1853 		 */
1854 		crp->crp_callback(crp);
1855 	} else {
1856 		struct crypto_ret_worker *ret_worker;
1857 		bool wake;
1858 
1859 		ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1860 
1861 		/*
1862 		 * Normal case; queue the callback for the thread.
1863 		 */
1864 		CRYPTO_RETW_LOCK(ret_worker);
1865 		if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) {
1866 			struct cryptop *tmp;
1867 
1868 			TAILQ_FOREACH_REVERSE(tmp,
1869 			    &ret_worker->crp_ordered_ret_q, cryptop_q,
1870 			    crp_next) {
1871 				if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1872 					TAILQ_INSERT_AFTER(
1873 					    &ret_worker->crp_ordered_ret_q, tmp,
1874 					    crp, crp_next);
1875 					break;
1876 				}
1877 			}
1878 			if (tmp == NULL) {
1879 				TAILQ_INSERT_HEAD(
1880 				    &ret_worker->crp_ordered_ret_q, crp,
1881 				    crp_next);
1882 			}
1883 
1884 			wake = crp->crp_seq == ret_worker->reorder_cur_seq;
1885 		} else {
1886 			wake = TAILQ_EMPTY(&ret_worker->crp_ret_q);
1887 			TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp,
1888 			    crp_next);
1889 		}
1890 
1891 		if (wake)
1892 			wakeup_one(&ret_worker->crp_ret_q);	/* shared wait channel */
1893 		CRYPTO_RETW_UNLOCK(ret_worker);
1894 	}
1895 }
1896 
1897 /*
1898  * Invoke the callback on behalf of the driver.
1899  */
1900 void
1901 crypto_kdone(struct cryptkop *krp)
1902 {
1903 	struct crypto_ret_worker *ret_worker;
1904 	struct cryptocap *cap;
1905 
1906 	if (krp->krp_status != 0)
1907 		CRYPTOSTAT_INC(cs_kerrs);
1908 	cap = krp->krp_cap;
1909 	if (cap != NULL) {
1910 		CRYPTO_DRIVER_LOCK();
1911 		KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0"));
1912 		cap->cc_koperations--;
1913 		if (cap->cc_koperations == 0 &&
1914 		    cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1915 			wakeup(cap);
1916 		CRYPTO_DRIVER_UNLOCK();
1917 		krp->krp_cap = NULL;
1918 		cap_rele(cap);
1919 	}
1920 
1921 	ret_worker = CRYPTO_RETW(0);
1922 
1923 	CRYPTO_RETW_LOCK(ret_worker);
1924 	if (TAILQ_EMPTY(&ret_worker->crp_ret_kq))
1925 		wakeup_one(&ret_worker->crp_ret_q);		/* shared wait channel */
1926 	TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next);
1927 	CRYPTO_RETW_UNLOCK(ret_worker);
1928 }
1929 
1930 int
1931 crypto_getfeat(int *featp)
1932 {
1933 	int hid, kalg, feat = 0;
1934 
1935 	CRYPTO_DRIVER_LOCK();
1936 	for (hid = 0; hid < crypto_drivers_size; hid++) {
1937 		const struct cryptocap *cap = crypto_drivers[hid];
1938 
1939 		if (cap == NULL ||
1940 		    ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1941 		    !crypto_devallowsoft)) {
1942 			continue;
1943 		}
1944 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1945 			if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1946 				feat |=  1 << kalg;
1947 	}
1948 	CRYPTO_DRIVER_UNLOCK();
1949 	*featp = feat;
1950 	return (0);
1951 }
1952 
1953 /*
1954  * Terminate a thread at module unload.  The process that
1955  * initiated this is waiting for us to signal that we're gone;
1956  * wake it up and exit.  We use the driver table lock to insure
1957  * we don't do the wakeup before they're waiting.  There is no
1958  * race here because the waiter sleeps on the proc lock for the
1959  * thread so it gets notified at the right time because of an
1960  * extra wakeup that's done in exit1().
1961  */
1962 static void
1963 crypto_finis(void *chan)
1964 {
1965 	CRYPTO_DRIVER_LOCK();
1966 	wakeup_one(chan);
1967 	CRYPTO_DRIVER_UNLOCK();
1968 	kproc_exit(0);
1969 }
1970 
1971 /*
1972  * Crypto thread, dispatches crypto requests.
1973  */
1974 static void
1975 crypto_proc(void)
1976 {
1977 	struct cryptop *crp, *submit;
1978 	struct cryptkop *krp;
1979 	struct cryptocap *cap;
1980 	int result, hint;
1981 
1982 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1983 	fpu_kern_thread(FPU_KERN_NORMAL);
1984 #endif
1985 
1986 	CRYPTO_Q_LOCK();
1987 	for (;;) {
1988 		/*
1989 		 * Find the first element in the queue that can be
1990 		 * processed and look-ahead to see if multiple ops
1991 		 * are ready for the same driver.
1992 		 */
1993 		submit = NULL;
1994 		hint = 0;
1995 		TAILQ_FOREACH(crp, &crp_q, crp_next) {
1996 			cap = crp->crp_session->cap;
1997 			/*
1998 			 * Driver cannot disappeared when there is an active
1999 			 * session.
2000 			 */
2001 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
2002 			    __func__, __LINE__));
2003 			if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
2004 				/* Op needs to be migrated, process it. */
2005 				if (submit == NULL)
2006 					submit = crp;
2007 				break;
2008 			}
2009 			if (!cap->cc_qblocked) {
2010 				if (submit != NULL) {
2011 					/*
2012 					 * We stop on finding another op,
2013 					 * regardless whether its for the same
2014 					 * driver or not.  We could keep
2015 					 * searching the queue but it might be
2016 					 * better to just use a per-driver
2017 					 * queue instead.
2018 					 */
2019 					if (submit->crp_session->cap == cap)
2020 						hint = CRYPTO_HINT_MORE;
2021 				} else {
2022 					submit = crp;
2023 				}
2024 				break;
2025 			}
2026 		}
2027 		if (submit != NULL) {
2028 			TAILQ_REMOVE(&crp_q, submit, crp_next);
2029 			cap = submit->crp_session->cap;
2030 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
2031 			    __func__, __LINE__));
2032 			CRYPTO_Q_UNLOCK();
2033 			result = crypto_invoke(cap, submit, hint);
2034 			CRYPTO_Q_LOCK();
2035 			if (result == ERESTART) {
2036 				/*
2037 				 * The driver ran out of resources, mark the
2038 				 * driver ``blocked'' for cryptop's and put
2039 				 * the request back in the queue.  It would
2040 				 * best to put the request back where we got
2041 				 * it but that's hard so for now we put it
2042 				 * at the front.  This should be ok; putting
2043 				 * it at the end does not work.
2044 				 */
2045 				cap->cc_qblocked = 1;
2046 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
2047 				CRYPTOSTAT_INC(cs_blocks);
2048 			}
2049 		}
2050 
2051 		/* As above, but for key ops */
2052 		TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2053 			cap = krp->krp_cap;
2054 			if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
2055 				/*
2056 				 * Operation needs to be migrated,
2057 				 * clear krp_cap so a new driver is
2058 				 * selected.
2059 				 */
2060 				krp->krp_cap = NULL;
2061 				cap_rele(cap);
2062 				break;
2063 			}
2064 			if (!cap->cc_kqblocked)
2065 				break;
2066 		}
2067 		if (krp != NULL) {
2068 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
2069 			CRYPTO_Q_UNLOCK();
2070 			result = crypto_kinvoke(krp);
2071 			CRYPTO_Q_LOCK();
2072 			if (result == ERESTART) {
2073 				/*
2074 				 * The driver ran out of resources, mark the
2075 				 * driver ``blocked'' for cryptkop's and put
2076 				 * the request back in the queue.  It would
2077 				 * best to put the request back where we got
2078 				 * it but that's hard so for now we put it
2079 				 * at the front.  This should be ok; putting
2080 				 * it at the end does not work.
2081 				 */
2082 				krp->krp_cap->cc_kqblocked = 1;
2083 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
2084 				CRYPTOSTAT_INC(cs_kblocks);
2085 			}
2086 		}
2087 
2088 		if (submit == NULL && krp == NULL) {
2089 			/*
2090 			 * Nothing more to be processed.  Sleep until we're
2091 			 * woken because there are more ops to process.
2092 			 * This happens either by submission or by a driver
2093 			 * becoming unblocked and notifying us through
2094 			 * crypto_unblock.  Note that when we wakeup we
2095 			 * start processing each queue again from the
2096 			 * front. It's not clear that it's important to
2097 			 * preserve this ordering since ops may finish
2098 			 * out of order if dispatched to different devices
2099 			 * and some become blocked while others do not.
2100 			 */
2101 			crp_sleep = 1;
2102 			msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
2103 			crp_sleep = 0;
2104 			if (cryptoproc == NULL)
2105 				break;
2106 			CRYPTOSTAT_INC(cs_intrs);
2107 		}
2108 	}
2109 	CRYPTO_Q_UNLOCK();
2110 
2111 	crypto_finis(&crp_q);
2112 }
2113 
2114 /*
2115  * Crypto returns thread, does callbacks for processed crypto requests.
2116  * Callbacks are done here, rather than in the crypto drivers, because
2117  * callbacks typically are expensive and would slow interrupt handling.
2118  */
2119 static void
2120 crypto_ret_proc(struct crypto_ret_worker *ret_worker)
2121 {
2122 	struct cryptop *crpt;
2123 	struct cryptkop *krpt;
2124 
2125 	CRYPTO_RETW_LOCK(ret_worker);
2126 	for (;;) {
2127 		/* Harvest return q's for completed ops */
2128 		crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
2129 		if (crpt != NULL) {
2130 			if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
2131 				TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
2132 				ret_worker->reorder_cur_seq++;
2133 			} else {
2134 				crpt = NULL;
2135 			}
2136 		}
2137 
2138 		if (crpt == NULL) {
2139 			crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
2140 			if (crpt != NULL)
2141 				TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
2142 		}
2143 
2144 		krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq);
2145 		if (krpt != NULL)
2146 			TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next);
2147 
2148 		if (crpt != NULL || krpt != NULL) {
2149 			CRYPTO_RETW_UNLOCK(ret_worker);
2150 			/*
2151 			 * Run callbacks unlocked.
2152 			 */
2153 			if (crpt != NULL)
2154 				crpt->crp_callback(crpt);
2155 			if (krpt != NULL)
2156 				krpt->krp_callback(krpt);
2157 			CRYPTO_RETW_LOCK(ret_worker);
2158 		} else {
2159 			/*
2160 			 * Nothing more to be processed.  Sleep until we're
2161 			 * woken because there are more returns to process.
2162 			 */
2163 			msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
2164 				"crypto_ret_wait", 0);
2165 			if (ret_worker->cryptoretproc == NULL)
2166 				break;
2167 			CRYPTOSTAT_INC(cs_rets);
2168 		}
2169 	}
2170 	CRYPTO_RETW_UNLOCK(ret_worker);
2171 
2172 	crypto_finis(&ret_worker->crp_ret_q);
2173 }
2174 
2175 #ifdef DDB
2176 static void
2177 db_show_drivers(void)
2178 {
2179 	int hid;
2180 
2181 	db_printf("%12s %4s %4s %8s %2s %2s\n"
2182 		, "Device"
2183 		, "Ses"
2184 		, "Kops"
2185 		, "Flags"
2186 		, "QB"
2187 		, "KB"
2188 	);
2189 	for (hid = 0; hid < crypto_drivers_size; hid++) {
2190 		const struct cryptocap *cap = crypto_drivers[hid];
2191 		if (cap == NULL)
2192 			continue;
2193 		db_printf("%-12s %4u %4u %08x %2u %2u\n"
2194 		    , device_get_nameunit(cap->cc_dev)
2195 		    , cap->cc_sessions
2196 		    , cap->cc_koperations
2197 		    , cap->cc_flags
2198 		    , cap->cc_qblocked
2199 		    , cap->cc_kqblocked
2200 		);
2201 	}
2202 }
2203 
2204 DB_SHOW_COMMAND(crypto, db_show_crypto)
2205 {
2206 	struct cryptop *crp;
2207 	struct crypto_ret_worker *ret_worker;
2208 
2209 	db_show_drivers();
2210 	db_printf("\n");
2211 
2212 	db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
2213 	    "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
2214 	    "Device", "Callback");
2215 	TAILQ_FOREACH(crp, &crp_q, crp_next) {
2216 		db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
2217 		    , crp->crp_session->cap->cc_hid
2218 		    , (int) crypto_ses2caps(crp->crp_session)
2219 		    , crp->crp_olen
2220 		    , crp->crp_etype
2221 		    , crp->crp_flags
2222 		    , device_get_nameunit(crp->crp_session->cap->cc_dev)
2223 		    , crp->crp_callback
2224 		);
2225 	}
2226 	FOREACH_CRYPTO_RETW(ret_worker) {
2227 		db_printf("\n%8s %4s %4s %4s %8s\n",
2228 		    "ret_worker", "HID", "Etype", "Flags", "Callback");
2229 		if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2230 			TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
2231 				db_printf("%8td %4u %4u %04x %8p\n"
2232 				    , CRYPTO_RETW_ID(ret_worker)
2233 				    , crp->crp_session->cap->cc_hid
2234 				    , crp->crp_etype
2235 				    , crp->crp_flags
2236 				    , crp->crp_callback
2237 				);
2238 			}
2239 		}
2240 	}
2241 }
2242 
2243 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
2244 {
2245 	struct cryptkop *krp;
2246 	struct crypto_ret_worker *ret_worker;
2247 
2248 	db_show_drivers();
2249 	db_printf("\n");
2250 
2251 	db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
2252 	    "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
2253 	TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2254 		db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
2255 		    , krp->krp_op
2256 		    , krp->krp_status
2257 		    , krp->krp_iparams, krp->krp_oparams
2258 		    , krp->krp_crid, krp->krp_hid
2259 		    , krp->krp_callback
2260 		);
2261 	}
2262 
2263 	ret_worker = CRYPTO_RETW(0);
2264 	if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2265 		db_printf("%4s %5s %8s %4s %8s\n",
2266 		    "Op", "Status", "CRID", "HID", "Callback");
2267 		TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) {
2268 			db_printf("%4u %5u %08x %4u %8p\n"
2269 			    , krp->krp_op
2270 			    , krp->krp_status
2271 			    , krp->krp_crid, krp->krp_hid
2272 			    , krp->krp_callback
2273 			);
2274 		}
2275 	}
2276 }
2277 #endif
2278 
2279 int crypto_modevent(module_t mod, int type, void *unused);
2280 
2281 /*
2282  * Initialization code, both for static and dynamic loading.
2283  * Note this is not invoked with the usual MODULE_DECLARE
2284  * mechanism but instead is listed as a dependency by the
2285  * cryptosoft driver.  This guarantees proper ordering of
2286  * calls on module load/unload.
2287  */
2288 int
2289 crypto_modevent(module_t mod, int type, void *unused)
2290 {
2291 	int error = EINVAL;
2292 
2293 	switch (type) {
2294 	case MOD_LOAD:
2295 		error = crypto_init();
2296 		if (error == 0 && bootverbose)
2297 			printf("crypto: <crypto core>\n");
2298 		break;
2299 	case MOD_UNLOAD:
2300 		/*XXX disallow if active sessions */
2301 		error = 0;
2302 		crypto_destroy();
2303 		return 0;
2304 	}
2305 	return error;
2306 }
2307 MODULE_VERSION(crypto, 1);
2308 MODULE_DEPEND(crypto, zlib, 1, 1, 1);
2309