1 /*- 2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 23 */ 24 25 #include <sys/cdefs.h> 26 __FBSDID("$FreeBSD$"); 27 28 /* 29 * Cryptographic Subsystem. 30 * 31 * This code is derived from the Openbsd Cryptographic Framework (OCF) 32 * that has the copyright shown below. Very little of the original 33 * code remains. 34 */ 35 36 /*- 37 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 38 * 39 * This code was written by Angelos D. Keromytis in Athens, Greece, in 40 * February 2000. Network Security Technologies Inc. (NSTI) kindly 41 * supported the development of this code. 42 * 43 * Copyright (c) 2000, 2001 Angelos D. Keromytis 44 * 45 * Permission to use, copy, and modify this software with or without fee 46 * is hereby granted, provided that this entire notice is included in 47 * all source code copies of any software which is or includes a copy or 48 * modification of this software. 49 * 50 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 51 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 52 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 53 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 54 * PURPOSE. 55 */ 56 57 #include "opt_compat.h" 58 #include "opt_ddb.h" 59 60 #include <sys/param.h> 61 #include <sys/systm.h> 62 #include <sys/counter.h> 63 #include <sys/kernel.h> 64 #include <sys/kthread.h> 65 #include <sys/linker.h> 66 #include <sys/lock.h> 67 #include <sys/module.h> 68 #include <sys/mutex.h> 69 #include <sys/malloc.h> 70 #include <sys/mbuf.h> 71 #include <sys/proc.h> 72 #include <sys/refcount.h> 73 #include <sys/sdt.h> 74 #include <sys/smp.h> 75 #include <sys/sysctl.h> 76 #include <sys/taskqueue.h> 77 #include <sys/uio.h> 78 79 #include <ddb/ddb.h> 80 81 #include <machine/vmparam.h> 82 #include <vm/uma.h> 83 84 #include <crypto/intake.h> 85 #include <opencrypto/cryptodev.h> 86 #include <opencrypto/xform_auth.h> 87 #include <opencrypto/xform_enc.h> 88 89 #include <sys/kobj.h> 90 #include <sys/bus.h> 91 #include "cryptodev_if.h" 92 93 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 94 #include <machine/pcb.h> 95 #endif 96 97 SDT_PROVIDER_DEFINE(opencrypto); 98 99 /* 100 * Crypto drivers register themselves by allocating a slot in the 101 * crypto_drivers table with crypto_get_driverid() and then registering 102 * each asym algorithm they support with crypto_kregister(). 103 */ 104 static struct mtx crypto_drivers_mtx; /* lock on driver table */ 105 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx) 106 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx) 107 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED) 108 109 /* 110 * Crypto device/driver capabilities structure. 111 * 112 * Synchronization: 113 * (d) - protected by CRYPTO_DRIVER_LOCK() 114 * (q) - protected by CRYPTO_Q_LOCK() 115 * Not tagged fields are read-only. 116 */ 117 struct cryptocap { 118 device_t cc_dev; 119 uint32_t cc_hid; 120 uint32_t cc_sessions; /* (d) # of sessions */ 121 uint32_t cc_koperations; /* (d) # os asym operations */ 122 uint8_t cc_kalg[CRK_ALGORITHM_MAX + 1]; 123 124 int cc_flags; /* (d) flags */ 125 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ 126 int cc_qblocked; /* (q) symmetric q blocked */ 127 int cc_kqblocked; /* (q) asymmetric q blocked */ 128 size_t cc_session_size; 129 volatile int cc_refs; 130 }; 131 132 static struct cryptocap **crypto_drivers = NULL; 133 static int crypto_drivers_size = 0; 134 135 struct crypto_session { 136 struct cryptocap *cap; 137 struct crypto_session_params csp; 138 uint64_t id; 139 /* Driver softc follows. */ 140 }; 141 142 /* 143 * There are two queues for crypto requests; one for symmetric (e.g. 144 * cipher) operations and one for asymmetric (e.g. MOD)operations. 145 * A single mutex is used to lock access to both queues. We could 146 * have one per-queue but having one simplifies handling of block/unblock 147 * operations. 148 */ 149 static int crp_sleep = 0; 150 static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */ 151 static TAILQ_HEAD(,cryptkop) crp_kq; 152 static struct mtx crypto_q_mtx; 153 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx) 154 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx) 155 156 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0, 157 "In-kernel cryptography"); 158 159 /* 160 * Taskqueue used to dispatch the crypto requests 161 * that have the CRYPTO_F_ASYNC flag 162 */ 163 static struct taskqueue *crypto_tq; 164 165 /* 166 * Crypto seq numbers are operated on with modular arithmetic 167 */ 168 #define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0) 169 170 struct crypto_ret_worker { 171 struct mtx crypto_ret_mtx; 172 173 TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */ 174 TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */ 175 TAILQ_HEAD(,cryptkop) crp_ret_kq; /* callback queue for asym jobs */ 176 177 uint32_t reorder_ops; /* total ordered sym jobs received */ 178 uint32_t reorder_cur_seq; /* current sym job dispatched */ 179 180 struct proc *cryptoretproc; 181 }; 182 static struct crypto_ret_worker *crypto_ret_workers = NULL; 183 184 #define CRYPTO_RETW(i) (&crypto_ret_workers[i]) 185 #define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers) 186 #define FOREACH_CRYPTO_RETW(w) \ 187 for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w) 188 189 #define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx) 190 #define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx) 191 192 static int crypto_workers_num = 0; 193 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN, 194 &crypto_workers_num, 0, 195 "Number of crypto workers used to dispatch crypto jobs"); 196 #ifdef COMPAT_FREEBSD12 197 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN, 198 &crypto_workers_num, 0, 199 "Number of crypto workers used to dispatch crypto jobs"); 200 #endif 201 202 static uma_zone_t cryptop_zone; 203 204 int crypto_userasymcrypto = 1; 205 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW, 206 &crypto_userasymcrypto, 0, 207 "Enable user-mode access to asymmetric crypto support"); 208 #ifdef COMPAT_FREEBSD12 209 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW, 210 &crypto_userasymcrypto, 0, 211 "Enable/disable user-mode access to asymmetric crypto support"); 212 #endif 213 214 int crypto_devallowsoft = 0; 215 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW, 216 &crypto_devallowsoft, 0, 217 "Enable use of software crypto by /dev/crypto"); 218 #ifdef COMPAT_FREEBSD12 219 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW, 220 &crypto_devallowsoft, 0, 221 "Enable/disable use of software crypto by /dev/crypto"); 222 #endif 223 224 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 225 226 static void crypto_proc(void); 227 static struct proc *cryptoproc; 228 static void crypto_ret_proc(struct crypto_ret_worker *ret_worker); 229 static void crypto_destroy(void); 230 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); 231 static int crypto_kinvoke(struct cryptkop *krp); 232 static void crypto_task_invoke(void *ctx, int pending); 233 static void crypto_batch_enqueue(struct cryptop *crp); 234 235 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)]; 236 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW, 237 cryptostats, nitems(cryptostats), 238 "Crypto system statistics"); 239 240 #define CRYPTOSTAT_INC(stat) do { \ 241 counter_u64_add( \ 242 cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\ 243 1); \ 244 } while (0) 245 246 static void 247 cryptostats_init(void *arg __unused) 248 { 249 COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK); 250 } 251 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL); 252 253 static void 254 cryptostats_fini(void *arg __unused) 255 { 256 COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats)); 257 } 258 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini, 259 NULL); 260 261 /* Try to avoid directly exposing the key buffer as a symbol */ 262 static struct keybuf *keybuf; 263 264 static struct keybuf empty_keybuf = { 265 .kb_nents = 0 266 }; 267 268 /* Obtain the key buffer from boot metadata */ 269 static void 270 keybuf_init(void) 271 { 272 caddr_t kmdp; 273 274 kmdp = preload_search_by_type("elf kernel"); 275 276 if (kmdp == NULL) 277 kmdp = preload_search_by_type("elf64 kernel"); 278 279 keybuf = (struct keybuf *)preload_search_info(kmdp, 280 MODINFO_METADATA | MODINFOMD_KEYBUF); 281 282 if (keybuf == NULL) 283 keybuf = &empty_keybuf; 284 } 285 286 /* It'd be nice if we could store these in some kind of secure memory... */ 287 struct keybuf * 288 get_keybuf(void) 289 { 290 291 return (keybuf); 292 } 293 294 static struct cryptocap * 295 cap_ref(struct cryptocap *cap) 296 { 297 298 refcount_acquire(&cap->cc_refs); 299 return (cap); 300 } 301 302 static void 303 cap_rele(struct cryptocap *cap) 304 { 305 306 if (refcount_release(&cap->cc_refs) == 0) 307 return; 308 309 KASSERT(cap->cc_sessions == 0, 310 ("freeing crypto driver with active sessions")); 311 KASSERT(cap->cc_koperations == 0, 312 ("freeing crypto driver with active key operations")); 313 314 free(cap, M_CRYPTO_DATA); 315 } 316 317 static int 318 crypto_init(void) 319 { 320 struct crypto_ret_worker *ret_worker; 321 int error; 322 323 mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table", 324 MTX_DEF|MTX_QUIET); 325 326 TAILQ_INIT(&crp_q); 327 TAILQ_INIT(&crp_kq); 328 mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF); 329 330 cryptop_zone = uma_zcreate("cryptop", 331 sizeof(struct cryptop), NULL, NULL, NULL, NULL, 332 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 333 334 crypto_drivers_size = CRYPTO_DRIVERS_INITIAL; 335 crypto_drivers = malloc(crypto_drivers_size * 336 sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 337 338 if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus) 339 crypto_workers_num = mp_ncpus; 340 341 crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO, 342 taskqueue_thread_enqueue, &crypto_tq); 343 344 taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN, 345 "crypto"); 346 347 error = kproc_create((void (*)(void *)) crypto_proc, NULL, 348 &cryptoproc, 0, 0, "crypto"); 349 if (error) { 350 printf("crypto_init: cannot start crypto thread; error %d", 351 error); 352 goto bad; 353 } 354 355 crypto_ret_workers = mallocarray(crypto_workers_num, 356 sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 357 358 FOREACH_CRYPTO_RETW(ret_worker) { 359 TAILQ_INIT(&ret_worker->crp_ordered_ret_q); 360 TAILQ_INIT(&ret_worker->crp_ret_q); 361 TAILQ_INIT(&ret_worker->crp_ret_kq); 362 363 ret_worker->reorder_ops = 0; 364 ret_worker->reorder_cur_seq = 0; 365 366 mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF); 367 368 error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker, 369 &ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker)); 370 if (error) { 371 printf("crypto_init: cannot start cryptoret thread; error %d", 372 error); 373 goto bad; 374 } 375 } 376 377 keybuf_init(); 378 379 return 0; 380 bad: 381 crypto_destroy(); 382 return error; 383 } 384 385 /* 386 * Signal a crypto thread to terminate. We use the driver 387 * table lock to synchronize the sleep/wakeups so that we 388 * are sure the threads have terminated before we release 389 * the data structures they use. See crypto_finis below 390 * for the other half of this song-and-dance. 391 */ 392 static void 393 crypto_terminate(struct proc **pp, void *q) 394 { 395 struct proc *p; 396 397 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 398 p = *pp; 399 *pp = NULL; 400 if (p) { 401 wakeup_one(q); 402 PROC_LOCK(p); /* NB: insure we don't miss wakeup */ 403 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */ 404 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0); 405 PROC_UNLOCK(p); 406 CRYPTO_DRIVER_LOCK(); 407 } 408 } 409 410 static void 411 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen, 412 void *auth_ctx, uint8_t padval) 413 { 414 uint8_t hmac_key[HMAC_MAX_BLOCK_LEN]; 415 u_int i; 416 417 KASSERT(axf->blocksize <= sizeof(hmac_key), 418 ("Invalid HMAC block size %d", axf->blocksize)); 419 420 /* 421 * If the key is larger than the block size, use the digest of 422 * the key as the key instead. 423 */ 424 memset(hmac_key, 0, sizeof(hmac_key)); 425 if (klen > axf->blocksize) { 426 axf->Init(auth_ctx); 427 axf->Update(auth_ctx, key, klen); 428 axf->Final(hmac_key, auth_ctx); 429 klen = axf->hashsize; 430 } else 431 memcpy(hmac_key, key, klen); 432 433 for (i = 0; i < axf->blocksize; i++) 434 hmac_key[i] ^= padval; 435 436 axf->Init(auth_ctx); 437 axf->Update(auth_ctx, hmac_key, axf->blocksize); 438 explicit_bzero(hmac_key, sizeof(hmac_key)); 439 } 440 441 void 442 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen, 443 void *auth_ctx) 444 { 445 446 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL); 447 } 448 449 void 450 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen, 451 void *auth_ctx) 452 { 453 454 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL); 455 } 456 457 static void 458 crypto_destroy(void) 459 { 460 struct crypto_ret_worker *ret_worker; 461 int i; 462 463 /* 464 * Terminate any crypto threads. 465 */ 466 if (crypto_tq != NULL) 467 taskqueue_drain_all(crypto_tq); 468 CRYPTO_DRIVER_LOCK(); 469 crypto_terminate(&cryptoproc, &crp_q); 470 FOREACH_CRYPTO_RETW(ret_worker) 471 crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q); 472 CRYPTO_DRIVER_UNLOCK(); 473 474 /* XXX flush queues??? */ 475 476 /* 477 * Reclaim dynamically allocated resources. 478 */ 479 for (i = 0; i < crypto_drivers_size; i++) { 480 if (crypto_drivers[i] != NULL) 481 cap_rele(crypto_drivers[i]); 482 } 483 free(crypto_drivers, M_CRYPTO_DATA); 484 485 if (cryptop_zone != NULL) 486 uma_zdestroy(cryptop_zone); 487 mtx_destroy(&crypto_q_mtx); 488 FOREACH_CRYPTO_RETW(ret_worker) 489 mtx_destroy(&ret_worker->crypto_ret_mtx); 490 free(crypto_ret_workers, M_CRYPTO_DATA); 491 if (crypto_tq != NULL) 492 taskqueue_free(crypto_tq); 493 mtx_destroy(&crypto_drivers_mtx); 494 } 495 496 uint32_t 497 crypto_ses2hid(crypto_session_t crypto_session) 498 { 499 return (crypto_session->cap->cc_hid); 500 } 501 502 uint32_t 503 crypto_ses2caps(crypto_session_t crypto_session) 504 { 505 return (crypto_session->cap->cc_flags & 0xff000000); 506 } 507 508 void * 509 crypto_get_driver_session(crypto_session_t crypto_session) 510 { 511 return (crypto_session + 1); 512 } 513 514 const struct crypto_session_params * 515 crypto_get_params(crypto_session_t crypto_session) 516 { 517 return (&crypto_session->csp); 518 } 519 520 struct auth_hash * 521 crypto_auth_hash(const struct crypto_session_params *csp) 522 { 523 524 switch (csp->csp_auth_alg) { 525 case CRYPTO_SHA1_HMAC: 526 return (&auth_hash_hmac_sha1); 527 case CRYPTO_SHA2_224_HMAC: 528 return (&auth_hash_hmac_sha2_224); 529 case CRYPTO_SHA2_256_HMAC: 530 return (&auth_hash_hmac_sha2_256); 531 case CRYPTO_SHA2_384_HMAC: 532 return (&auth_hash_hmac_sha2_384); 533 case CRYPTO_SHA2_512_HMAC: 534 return (&auth_hash_hmac_sha2_512); 535 case CRYPTO_NULL_HMAC: 536 return (&auth_hash_null); 537 case CRYPTO_RIPEMD160_HMAC: 538 return (&auth_hash_hmac_ripemd_160); 539 case CRYPTO_SHA1: 540 return (&auth_hash_sha1); 541 case CRYPTO_SHA2_224: 542 return (&auth_hash_sha2_224); 543 case CRYPTO_SHA2_256: 544 return (&auth_hash_sha2_256); 545 case CRYPTO_SHA2_384: 546 return (&auth_hash_sha2_384); 547 case CRYPTO_SHA2_512: 548 return (&auth_hash_sha2_512); 549 case CRYPTO_AES_NIST_GMAC: 550 switch (csp->csp_auth_klen) { 551 case 128 / 8: 552 return (&auth_hash_nist_gmac_aes_128); 553 case 192 / 8: 554 return (&auth_hash_nist_gmac_aes_192); 555 case 256 / 8: 556 return (&auth_hash_nist_gmac_aes_256); 557 default: 558 return (NULL); 559 } 560 case CRYPTO_BLAKE2B: 561 return (&auth_hash_blake2b); 562 case CRYPTO_BLAKE2S: 563 return (&auth_hash_blake2s); 564 case CRYPTO_POLY1305: 565 return (&auth_hash_poly1305); 566 case CRYPTO_AES_CCM_CBC_MAC: 567 switch (csp->csp_auth_klen) { 568 case 128 / 8: 569 return (&auth_hash_ccm_cbc_mac_128); 570 case 192 / 8: 571 return (&auth_hash_ccm_cbc_mac_192); 572 case 256 / 8: 573 return (&auth_hash_ccm_cbc_mac_256); 574 default: 575 return (NULL); 576 } 577 default: 578 return (NULL); 579 } 580 } 581 582 struct enc_xform * 583 crypto_cipher(const struct crypto_session_params *csp) 584 { 585 586 switch (csp->csp_cipher_alg) { 587 case CRYPTO_RIJNDAEL128_CBC: 588 return (&enc_xform_rijndael128); 589 case CRYPTO_AES_XTS: 590 return (&enc_xform_aes_xts); 591 case CRYPTO_AES_ICM: 592 return (&enc_xform_aes_icm); 593 case CRYPTO_AES_NIST_GCM_16: 594 return (&enc_xform_aes_nist_gcm); 595 case CRYPTO_CAMELLIA_CBC: 596 return (&enc_xform_camellia); 597 case CRYPTO_NULL_CBC: 598 return (&enc_xform_null); 599 case CRYPTO_CHACHA20: 600 return (&enc_xform_chacha20); 601 case CRYPTO_AES_CCM_16: 602 return (&enc_xform_ccm); 603 default: 604 return (NULL); 605 } 606 } 607 608 static struct cryptocap * 609 crypto_checkdriver(uint32_t hid) 610 { 611 612 return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]); 613 } 614 615 /* 616 * Select a driver for a new session that supports the specified 617 * algorithms and, optionally, is constrained according to the flags. 618 */ 619 static struct cryptocap * 620 crypto_select_driver(const struct crypto_session_params *csp, int flags) 621 { 622 struct cryptocap *cap, *best; 623 int best_match, error, hid; 624 625 CRYPTO_DRIVER_ASSERT(); 626 627 best = NULL; 628 for (hid = 0; hid < crypto_drivers_size; hid++) { 629 /* 630 * If there is no driver for this slot, or the driver 631 * is not appropriate (hardware or software based on 632 * match), then skip. 633 */ 634 cap = crypto_drivers[hid]; 635 if (cap == NULL || 636 (cap->cc_flags & flags) == 0) 637 continue; 638 639 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp); 640 if (error >= 0) 641 continue; 642 643 /* 644 * Use the driver with the highest probe value. 645 * Hardware drivers use a higher probe value than 646 * software. In case of a tie, prefer the driver with 647 * the fewest active sessions. 648 */ 649 if (best == NULL || error > best_match || 650 (error == best_match && 651 cap->cc_sessions < best->cc_sessions)) { 652 best = cap; 653 best_match = error; 654 } 655 } 656 return best; 657 } 658 659 static enum alg_type { 660 ALG_NONE = 0, 661 ALG_CIPHER, 662 ALG_DIGEST, 663 ALG_KEYED_DIGEST, 664 ALG_COMPRESSION, 665 ALG_AEAD 666 } alg_types[] = { 667 [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST, 668 [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST, 669 [CRYPTO_AES_CBC] = ALG_CIPHER, 670 [CRYPTO_SHA1] = ALG_DIGEST, 671 [CRYPTO_NULL_HMAC] = ALG_DIGEST, 672 [CRYPTO_NULL_CBC] = ALG_CIPHER, 673 [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION, 674 [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST, 675 [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST, 676 [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST, 677 [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER, 678 [CRYPTO_AES_XTS] = ALG_CIPHER, 679 [CRYPTO_AES_ICM] = ALG_CIPHER, 680 [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST, 681 [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD, 682 [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST, 683 [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST, 684 [CRYPTO_CHACHA20] = ALG_CIPHER, 685 [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST, 686 [CRYPTO_RIPEMD160] = ALG_DIGEST, 687 [CRYPTO_SHA2_224] = ALG_DIGEST, 688 [CRYPTO_SHA2_256] = ALG_DIGEST, 689 [CRYPTO_SHA2_384] = ALG_DIGEST, 690 [CRYPTO_SHA2_512] = ALG_DIGEST, 691 [CRYPTO_POLY1305] = ALG_KEYED_DIGEST, 692 [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST, 693 [CRYPTO_AES_CCM_16] = ALG_AEAD, 694 }; 695 696 static enum alg_type 697 alg_type(int alg) 698 { 699 700 if (alg < nitems(alg_types)) 701 return (alg_types[alg]); 702 return (ALG_NONE); 703 } 704 705 static bool 706 alg_is_compression(int alg) 707 { 708 709 return (alg_type(alg) == ALG_COMPRESSION); 710 } 711 712 static bool 713 alg_is_cipher(int alg) 714 { 715 716 return (alg_type(alg) == ALG_CIPHER); 717 } 718 719 static bool 720 alg_is_digest(int alg) 721 { 722 723 return (alg_type(alg) == ALG_DIGEST || 724 alg_type(alg) == ALG_KEYED_DIGEST); 725 } 726 727 static bool 728 alg_is_keyed_digest(int alg) 729 { 730 731 return (alg_type(alg) == ALG_KEYED_DIGEST); 732 } 733 734 static bool 735 alg_is_aead(int alg) 736 { 737 738 return (alg_type(alg) == ALG_AEAD); 739 } 740 741 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN) 742 743 /* Various sanity checks on crypto session parameters. */ 744 static bool 745 check_csp(const struct crypto_session_params *csp) 746 { 747 struct auth_hash *axf; 748 749 /* Mode-independent checks. */ 750 if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0) 751 return (false); 752 if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 || 753 csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0) 754 return (false); 755 if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0) 756 return (false); 757 if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0) 758 return (false); 759 760 switch (csp->csp_mode) { 761 case CSP_MODE_COMPRESS: 762 if (!alg_is_compression(csp->csp_cipher_alg)) 763 return (false); 764 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) 765 return (false); 766 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 767 return (false); 768 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 || 769 csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 770 csp->csp_auth_mlen != 0) 771 return (false); 772 break; 773 case CSP_MODE_CIPHER: 774 if (!alg_is_cipher(csp->csp_cipher_alg)) 775 return (false); 776 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 777 return (false); 778 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 779 if (csp->csp_cipher_klen == 0) 780 return (false); 781 if (csp->csp_ivlen == 0) 782 return (false); 783 } 784 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 785 return (false); 786 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 787 csp->csp_auth_mlen != 0) 788 return (false); 789 break; 790 case CSP_MODE_DIGEST: 791 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0) 792 return (false); 793 794 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 795 return (false); 796 797 /* IV is optional for digests (e.g. GMAC). */ 798 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 799 return (false); 800 if (!alg_is_digest(csp->csp_auth_alg)) 801 return (false); 802 803 /* Key is optional for BLAKE2 digests. */ 804 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 805 csp->csp_auth_alg == CRYPTO_BLAKE2S) 806 ; 807 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 808 if (csp->csp_auth_klen == 0) 809 return (false); 810 } else { 811 if (csp->csp_auth_klen != 0) 812 return (false); 813 } 814 if (csp->csp_auth_mlen != 0) { 815 axf = crypto_auth_hash(csp); 816 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 817 return (false); 818 } 819 break; 820 case CSP_MODE_AEAD: 821 if (!alg_is_aead(csp->csp_cipher_alg)) 822 return (false); 823 if (csp->csp_cipher_klen == 0) 824 return (false); 825 if (csp->csp_ivlen == 0 || 826 csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 827 return (false); 828 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0) 829 return (false); 830 831 /* 832 * XXX: Would be nice to have a better way to get this 833 * value. 834 */ 835 switch (csp->csp_cipher_alg) { 836 case CRYPTO_AES_NIST_GCM_16: 837 case CRYPTO_AES_CCM_16: 838 if (csp->csp_auth_mlen > 16) 839 return (false); 840 break; 841 } 842 break; 843 case CSP_MODE_ETA: 844 if (!alg_is_cipher(csp->csp_cipher_alg)) 845 return (false); 846 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 847 if (csp->csp_cipher_klen == 0) 848 return (false); 849 if (csp->csp_ivlen == 0) 850 return (false); 851 } 852 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 853 return (false); 854 if (!alg_is_digest(csp->csp_auth_alg)) 855 return (false); 856 857 /* Key is optional for BLAKE2 digests. */ 858 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 859 csp->csp_auth_alg == CRYPTO_BLAKE2S) 860 ; 861 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 862 if (csp->csp_auth_klen == 0) 863 return (false); 864 } else { 865 if (csp->csp_auth_klen != 0) 866 return (false); 867 } 868 if (csp->csp_auth_mlen != 0) { 869 axf = crypto_auth_hash(csp); 870 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 871 return (false); 872 } 873 break; 874 default: 875 return (false); 876 } 877 878 return (true); 879 } 880 881 /* 882 * Delete a session after it has been detached from its driver. 883 */ 884 static void 885 crypto_deletesession(crypto_session_t cses) 886 { 887 struct cryptocap *cap; 888 889 cap = cses->cap; 890 891 zfree(cses, M_CRYPTO_DATA); 892 893 CRYPTO_DRIVER_LOCK(); 894 cap->cc_sessions--; 895 if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 896 wakeup(cap); 897 CRYPTO_DRIVER_UNLOCK(); 898 cap_rele(cap); 899 } 900 901 /* 902 * Create a new session. The crid argument specifies a crypto 903 * driver to use or constraints on a driver to select (hardware 904 * only, software only, either). Whatever driver is selected 905 * must be capable of the requested crypto algorithms. 906 */ 907 int 908 crypto_newsession(crypto_session_t *cses, 909 const struct crypto_session_params *csp, int crid) 910 { 911 static uint64_t sessid = 0; 912 crypto_session_t res; 913 struct cryptocap *cap; 914 int err; 915 916 if (!check_csp(csp)) 917 return (EINVAL); 918 919 res = NULL; 920 921 CRYPTO_DRIVER_LOCK(); 922 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 923 /* 924 * Use specified driver; verify it is capable. 925 */ 926 cap = crypto_checkdriver(crid); 927 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0) 928 cap = NULL; 929 } else { 930 /* 931 * No requested driver; select based on crid flags. 932 */ 933 cap = crypto_select_driver(csp, crid); 934 } 935 if (cap == NULL) { 936 CRYPTO_DRIVER_UNLOCK(); 937 CRYPTDEB("no driver"); 938 return (EOPNOTSUPP); 939 } 940 cap_ref(cap); 941 cap->cc_sessions++; 942 CRYPTO_DRIVER_UNLOCK(); 943 944 /* Allocate a single block for the generic session and driver softc. */ 945 res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA, 946 M_WAITOK | M_ZERO); 947 res->cap = cap; 948 res->csp = *csp; 949 res->id = atomic_fetchadd_64(&sessid, 1); 950 951 /* Call the driver initialization routine. */ 952 err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp); 953 if (err != 0) { 954 CRYPTDEB("dev newsession failed: %d", err); 955 crypto_deletesession(res); 956 return (err); 957 } 958 959 *cses = res; 960 return (0); 961 } 962 963 /* 964 * Delete an existing session (or a reserved session on an unregistered 965 * driver). 966 */ 967 void 968 crypto_freesession(crypto_session_t cses) 969 { 970 struct cryptocap *cap; 971 972 if (cses == NULL) 973 return; 974 975 cap = cses->cap; 976 977 /* Call the driver cleanup routine, if available. */ 978 CRYPTODEV_FREESESSION(cap->cc_dev, cses); 979 980 crypto_deletesession(cses); 981 } 982 983 /* 984 * Return a new driver id. Registers a driver with the system so that 985 * it can be probed by subsequent sessions. 986 */ 987 int32_t 988 crypto_get_driverid(device_t dev, size_t sessionsize, int flags) 989 { 990 struct cryptocap *cap, **newdrv; 991 int i; 992 993 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 994 device_printf(dev, 995 "no flags specified when registering driver\n"); 996 return -1; 997 } 998 999 cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1000 cap->cc_dev = dev; 1001 cap->cc_session_size = sessionsize; 1002 cap->cc_flags = flags; 1003 refcount_init(&cap->cc_refs, 1); 1004 1005 CRYPTO_DRIVER_LOCK(); 1006 for (;;) { 1007 for (i = 0; i < crypto_drivers_size; i++) { 1008 if (crypto_drivers[i] == NULL) 1009 break; 1010 } 1011 1012 if (i < crypto_drivers_size) 1013 break; 1014 1015 /* Out of entries, allocate some more. */ 1016 1017 if (2 * crypto_drivers_size <= crypto_drivers_size) { 1018 CRYPTO_DRIVER_UNLOCK(); 1019 printf("crypto: driver count wraparound!\n"); 1020 cap_rele(cap); 1021 return (-1); 1022 } 1023 CRYPTO_DRIVER_UNLOCK(); 1024 1025 newdrv = malloc(2 * crypto_drivers_size * 1026 sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1027 1028 CRYPTO_DRIVER_LOCK(); 1029 memcpy(newdrv, crypto_drivers, 1030 crypto_drivers_size * sizeof(*crypto_drivers)); 1031 1032 crypto_drivers_size *= 2; 1033 1034 free(crypto_drivers, M_CRYPTO_DATA); 1035 crypto_drivers = newdrv; 1036 } 1037 1038 cap->cc_hid = i; 1039 crypto_drivers[i] = cap; 1040 CRYPTO_DRIVER_UNLOCK(); 1041 1042 if (bootverbose) 1043 printf("crypto: assign %s driver id %u, flags 0x%x\n", 1044 device_get_nameunit(dev), i, flags); 1045 1046 return i; 1047 } 1048 1049 /* 1050 * Lookup a driver by name. We match against the full device 1051 * name and unit, and against just the name. The latter gives 1052 * us a simple widlcarding by device name. On success return the 1053 * driver/hardware identifier; otherwise return -1. 1054 */ 1055 int 1056 crypto_find_driver(const char *match) 1057 { 1058 struct cryptocap *cap; 1059 int i, len = strlen(match); 1060 1061 CRYPTO_DRIVER_LOCK(); 1062 for (i = 0; i < crypto_drivers_size; i++) { 1063 if (crypto_drivers[i] == NULL) 1064 continue; 1065 cap = crypto_drivers[i]; 1066 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 || 1067 strncmp(match, device_get_name(cap->cc_dev), len) == 0) { 1068 CRYPTO_DRIVER_UNLOCK(); 1069 return (i); 1070 } 1071 } 1072 CRYPTO_DRIVER_UNLOCK(); 1073 return (-1); 1074 } 1075 1076 /* 1077 * Return the device_t for the specified driver or NULL 1078 * if the driver identifier is invalid. 1079 */ 1080 device_t 1081 crypto_find_device_byhid(int hid) 1082 { 1083 struct cryptocap *cap; 1084 device_t dev; 1085 1086 dev = NULL; 1087 CRYPTO_DRIVER_LOCK(); 1088 cap = crypto_checkdriver(hid); 1089 if (cap != NULL) 1090 dev = cap->cc_dev; 1091 CRYPTO_DRIVER_UNLOCK(); 1092 return (dev); 1093 } 1094 1095 /* 1096 * Return the device/driver capabilities. 1097 */ 1098 int 1099 crypto_getcaps(int hid) 1100 { 1101 struct cryptocap *cap; 1102 int flags; 1103 1104 flags = 0; 1105 CRYPTO_DRIVER_LOCK(); 1106 cap = crypto_checkdriver(hid); 1107 if (cap != NULL) 1108 flags = cap->cc_flags; 1109 CRYPTO_DRIVER_UNLOCK(); 1110 return (flags); 1111 } 1112 1113 /* 1114 * Register support for a key-related algorithm. This routine 1115 * is called once for each algorithm supported a driver. 1116 */ 1117 int 1118 crypto_kregister(uint32_t driverid, int kalg, uint32_t flags) 1119 { 1120 struct cryptocap *cap; 1121 int err; 1122 1123 CRYPTO_DRIVER_LOCK(); 1124 1125 cap = crypto_checkdriver(driverid); 1126 if (cap != NULL && 1127 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { 1128 /* 1129 * XXX Do some performance testing to determine placing. 1130 * XXX We probably need an auxiliary data structure that 1131 * XXX describes relative performances. 1132 */ 1133 1134 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 1135 if (bootverbose) 1136 printf("crypto: %s registers key alg %u flags %u\n" 1137 , device_get_nameunit(cap->cc_dev) 1138 , kalg 1139 , flags 1140 ); 1141 gone_in_dev(cap->cc_dev, 14, "asymmetric crypto"); 1142 err = 0; 1143 } else 1144 err = EINVAL; 1145 1146 CRYPTO_DRIVER_UNLOCK(); 1147 return err; 1148 } 1149 1150 /* 1151 * Unregister all algorithms associated with a crypto driver. 1152 * If there are pending sessions using it, leave enough information 1153 * around so that subsequent calls using those sessions will 1154 * correctly detect the driver has been unregistered and reroute 1155 * requests. 1156 */ 1157 int 1158 crypto_unregister_all(uint32_t driverid) 1159 { 1160 struct cryptocap *cap; 1161 1162 CRYPTO_DRIVER_LOCK(); 1163 cap = crypto_checkdriver(driverid); 1164 if (cap == NULL) { 1165 CRYPTO_DRIVER_UNLOCK(); 1166 return (EINVAL); 1167 } 1168 1169 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 1170 crypto_drivers[driverid] = NULL; 1171 1172 /* 1173 * XXX: This doesn't do anything to kick sessions that 1174 * have no pending operations. 1175 */ 1176 while (cap->cc_sessions != 0 || cap->cc_koperations != 0) 1177 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0); 1178 CRYPTO_DRIVER_UNLOCK(); 1179 cap_rele(cap); 1180 1181 return (0); 1182 } 1183 1184 /* 1185 * Clear blockage on a driver. The what parameter indicates whether 1186 * the driver is now ready for cryptop's and/or cryptokop's. 1187 */ 1188 int 1189 crypto_unblock(uint32_t driverid, int what) 1190 { 1191 struct cryptocap *cap; 1192 int err; 1193 1194 CRYPTO_Q_LOCK(); 1195 cap = crypto_checkdriver(driverid); 1196 if (cap != NULL) { 1197 if (what & CRYPTO_SYMQ) 1198 cap->cc_qblocked = 0; 1199 if (what & CRYPTO_ASYMQ) 1200 cap->cc_kqblocked = 0; 1201 if (crp_sleep) 1202 wakeup_one(&crp_q); 1203 err = 0; 1204 } else 1205 err = EINVAL; 1206 CRYPTO_Q_UNLOCK(); 1207 1208 return err; 1209 } 1210 1211 size_t 1212 crypto_buffer_len(struct crypto_buffer *cb) 1213 { 1214 switch (cb->cb_type) { 1215 case CRYPTO_BUF_CONTIG: 1216 return (cb->cb_buf_len); 1217 case CRYPTO_BUF_MBUF: 1218 if (cb->cb_mbuf->m_flags & M_PKTHDR) 1219 return (cb->cb_mbuf->m_pkthdr.len); 1220 return (m_length(cb->cb_mbuf, NULL)); 1221 case CRYPTO_BUF_VMPAGE: 1222 return (cb->cb_vm_page_len); 1223 case CRYPTO_BUF_UIO: 1224 return (cb->cb_uio->uio_resid); 1225 default: 1226 return (0); 1227 } 1228 } 1229 1230 #ifdef INVARIANTS 1231 /* Various sanity checks on crypto requests. */ 1232 static void 1233 cb_sanity(struct crypto_buffer *cb, const char *name) 1234 { 1235 KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST, 1236 ("incoming crp with invalid %s buffer type", name)); 1237 switch (cb->cb_type) { 1238 case CRYPTO_BUF_CONTIG: 1239 KASSERT(cb->cb_buf_len >= 0, 1240 ("incoming crp with -ve %s buffer length", name)); 1241 break; 1242 case CRYPTO_BUF_VMPAGE: 1243 KASSERT(CRYPTO_HAS_VMPAGE, 1244 ("incoming crp uses dmap on supported arch")); 1245 KASSERT(cb->cb_vm_page_len >= 0, 1246 ("incoming crp with -ve %s buffer length", name)); 1247 KASSERT(cb->cb_vm_page_offset >= 0, 1248 ("incoming crp with -ve %s buffer offset", name)); 1249 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE, 1250 ("incoming crp with %s buffer offset greater than page size" 1251 , name)); 1252 break; 1253 default: 1254 break; 1255 } 1256 } 1257 1258 static void 1259 crp_sanity(struct cryptop *crp) 1260 { 1261 struct crypto_session_params *csp; 1262 struct crypto_buffer *out; 1263 size_t ilen, len, olen; 1264 1265 KASSERT(crp->crp_session != NULL, ("incoming crp without a session")); 1266 KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE && 1267 crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST, 1268 ("incoming crp with invalid output buffer type")); 1269 KASSERT(crp->crp_etype == 0, ("incoming crp with error")); 1270 KASSERT(!(crp->crp_flags & CRYPTO_F_DONE), 1271 ("incoming crp already done")); 1272 1273 csp = &crp->crp_session->csp; 1274 cb_sanity(&crp->crp_buf, "input"); 1275 ilen = crypto_buffer_len(&crp->crp_buf); 1276 olen = ilen; 1277 out = NULL; 1278 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) { 1279 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) { 1280 cb_sanity(&crp->crp_obuf, "output"); 1281 out = &crp->crp_obuf; 1282 olen = crypto_buffer_len(out); 1283 } 1284 } else 1285 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE, 1286 ("incoming crp with separate output buffer " 1287 "but no session support")); 1288 1289 switch (csp->csp_mode) { 1290 case CSP_MODE_COMPRESS: 1291 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS || 1292 crp->crp_op == CRYPTO_OP_DECOMPRESS, 1293 ("invalid compression op %x", crp->crp_op)); 1294 break; 1295 case CSP_MODE_CIPHER: 1296 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT || 1297 crp->crp_op == CRYPTO_OP_DECRYPT, 1298 ("invalid cipher op %x", crp->crp_op)); 1299 break; 1300 case CSP_MODE_DIGEST: 1301 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST || 1302 crp->crp_op == CRYPTO_OP_VERIFY_DIGEST, 1303 ("invalid digest op %x", crp->crp_op)); 1304 break; 1305 case CSP_MODE_AEAD: 1306 KASSERT(crp->crp_op == 1307 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1308 crp->crp_op == 1309 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1310 ("invalid AEAD op %x", crp->crp_op)); 1311 if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16) 1312 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1313 ("GCM without a separate IV")); 1314 if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16) 1315 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1316 ("CCM without a separate IV")); 1317 break; 1318 case CSP_MODE_ETA: 1319 KASSERT(crp->crp_op == 1320 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1321 crp->crp_op == 1322 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1323 ("invalid ETA op %x", crp->crp_op)); 1324 break; 1325 } 1326 if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1327 if (crp->crp_aad == NULL) { 1328 KASSERT(crp->crp_aad_start == 0 || 1329 crp->crp_aad_start < ilen, 1330 ("invalid AAD start")); 1331 KASSERT(crp->crp_aad_length != 0 || 1332 crp->crp_aad_start == 0, 1333 ("AAD with zero length and non-zero start")); 1334 KASSERT(crp->crp_aad_length == 0 || 1335 crp->crp_aad_start + crp->crp_aad_length <= ilen, 1336 ("AAD outside input length")); 1337 } else { 1338 KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD, 1339 ("session doesn't support separate AAD buffer")); 1340 KASSERT(crp->crp_aad_start == 0, 1341 ("separate AAD buffer with non-zero AAD start")); 1342 KASSERT(crp->crp_aad_length != 0, 1343 ("separate AAD buffer with zero length")); 1344 } 1345 } else { 1346 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 && 1347 crp->crp_aad_length == 0, 1348 ("AAD region in request not supporting AAD")); 1349 } 1350 if (csp->csp_ivlen == 0) { 1351 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0, 1352 ("IV_SEPARATE set when IV isn't used")); 1353 KASSERT(crp->crp_iv_start == 0, 1354 ("crp_iv_start set when IV isn't used")); 1355 } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) { 1356 KASSERT(crp->crp_iv_start == 0, 1357 ("IV_SEPARATE used with non-zero IV start")); 1358 } else { 1359 KASSERT(crp->crp_iv_start < ilen, 1360 ("invalid IV start")); 1361 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen, 1362 ("IV outside buffer length")); 1363 } 1364 /* XXX: payload_start of 0 should always be < ilen? */ 1365 KASSERT(crp->crp_payload_start == 0 || 1366 crp->crp_payload_start < ilen, 1367 ("invalid payload start")); 1368 KASSERT(crp->crp_payload_start + crp->crp_payload_length <= 1369 ilen, ("payload outside input buffer")); 1370 if (out == NULL) { 1371 KASSERT(crp->crp_payload_output_start == 0, 1372 ("payload output start non-zero without output buffer")); 1373 } else { 1374 KASSERT(crp->crp_payload_output_start < olen, 1375 ("invalid payload output start")); 1376 KASSERT(crp->crp_payload_output_start + 1377 crp->crp_payload_length <= olen, 1378 ("payload outside output buffer")); 1379 } 1380 if (csp->csp_mode == CSP_MODE_DIGEST || 1381 csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1382 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) 1383 len = ilen; 1384 else 1385 len = olen; 1386 KASSERT(crp->crp_digest_start == 0 || 1387 crp->crp_digest_start < len, 1388 ("invalid digest start")); 1389 /* XXX: For the mlen == 0 case this check isn't perfect. */ 1390 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len, 1391 ("digest outside buffer")); 1392 } else { 1393 KASSERT(crp->crp_digest_start == 0, 1394 ("non-zero digest start for request without a digest")); 1395 } 1396 if (csp->csp_cipher_klen != 0) 1397 KASSERT(csp->csp_cipher_key != NULL || 1398 crp->crp_cipher_key != NULL, 1399 ("cipher request without a key")); 1400 if (csp->csp_auth_klen != 0) 1401 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL, 1402 ("auth request without a key")); 1403 KASSERT(crp->crp_callback != NULL, ("incoming crp without callback")); 1404 } 1405 #endif 1406 1407 static int 1408 crypto_dispatch_one(struct cryptop *crp, int hint) 1409 { 1410 struct cryptocap *cap; 1411 int result; 1412 1413 #ifdef INVARIANTS 1414 crp_sanity(crp); 1415 #endif 1416 CRYPTOSTAT_INC(cs_ops); 1417 1418 crp->crp_retw_id = crp->crp_session->id % crypto_workers_num; 1419 1420 /* 1421 * Caller marked the request to be processed immediately; dispatch it 1422 * directly to the driver unless the driver is currently blocked, in 1423 * which case it is queued for deferred dispatch. 1424 */ 1425 cap = crp->crp_session->cap; 1426 if (!atomic_load_int(&cap->cc_qblocked)) { 1427 result = crypto_invoke(cap, crp, hint); 1428 if (result != ERESTART) 1429 return (result); 1430 1431 /* 1432 * The driver ran out of resources, put the request on the 1433 * queue. 1434 */ 1435 } 1436 crypto_batch_enqueue(crp); 1437 return (0); 1438 } 1439 1440 int 1441 crypto_dispatch(struct cryptop *crp) 1442 { 1443 return (crypto_dispatch_one(crp, 0)); 1444 } 1445 1446 int 1447 crypto_dispatch_async(struct cryptop *crp, int flags) 1448 { 1449 struct crypto_ret_worker *ret_worker; 1450 1451 if (!CRYPTO_SESS_SYNC(crp->crp_session)) { 1452 /* 1453 * The driver issues completions asynchonously, don't bother 1454 * deferring dispatch to a worker thread. 1455 */ 1456 return (crypto_dispatch(crp)); 1457 } 1458 1459 #ifdef INVARIANTS 1460 crp_sanity(crp); 1461 #endif 1462 CRYPTOSTAT_INC(cs_ops); 1463 1464 crp->crp_retw_id = crp->crp_session->id % crypto_workers_num; 1465 if ((flags & CRYPTO_ASYNC_ORDERED) != 0) { 1466 crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED; 1467 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1468 CRYPTO_RETW_LOCK(ret_worker); 1469 crp->crp_seq = ret_worker->reorder_ops++; 1470 CRYPTO_RETW_UNLOCK(ret_worker); 1471 } 1472 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp); 1473 taskqueue_enqueue(crypto_tq, &crp->crp_task); 1474 return (0); 1475 } 1476 1477 void 1478 crypto_dispatch_batch(struct cryptopq *crpq, int flags) 1479 { 1480 struct cryptop *crp; 1481 int hint; 1482 1483 while ((crp = TAILQ_FIRST(crpq)) != NULL) { 1484 hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0; 1485 TAILQ_REMOVE(crpq, crp, crp_next); 1486 if (crypto_dispatch_one(crp, hint) != 0) 1487 crypto_batch_enqueue(crp); 1488 } 1489 } 1490 1491 static void 1492 crypto_batch_enqueue(struct cryptop *crp) 1493 { 1494 1495 CRYPTO_Q_LOCK(); 1496 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 1497 if (crp_sleep) 1498 wakeup_one(&crp_q); 1499 CRYPTO_Q_UNLOCK(); 1500 } 1501 1502 /* 1503 * Add an asymetric crypto request to a queue, 1504 * to be processed by the kernel thread. 1505 */ 1506 int 1507 crypto_kdispatch(struct cryptkop *krp) 1508 { 1509 int error; 1510 1511 CRYPTOSTAT_INC(cs_kops); 1512 1513 krp->krp_cap = NULL; 1514 error = crypto_kinvoke(krp); 1515 if (error == ERESTART) { 1516 CRYPTO_Q_LOCK(); 1517 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); 1518 if (crp_sleep) 1519 wakeup_one(&crp_q); 1520 CRYPTO_Q_UNLOCK(); 1521 error = 0; 1522 } 1523 return error; 1524 } 1525 1526 /* 1527 * Verify a driver is suitable for the specified operation. 1528 */ 1529 static __inline int 1530 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp) 1531 { 1532 return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0; 1533 } 1534 1535 /* 1536 * Select a driver for an asym operation. The driver must 1537 * support the necessary algorithm. The caller can constrain 1538 * which device is selected with the flags parameter. The 1539 * algorithm we use here is pretty stupid; just use the first 1540 * driver that supports the algorithms we need. If there are 1541 * multiple suitable drivers we choose the driver with the 1542 * fewest active operations. We prefer hardware-backed 1543 * drivers to software ones when either may be used. 1544 */ 1545 static struct cryptocap * 1546 crypto_select_kdriver(const struct cryptkop *krp, int flags) 1547 { 1548 struct cryptocap *cap, *best; 1549 int match, hid; 1550 1551 CRYPTO_DRIVER_ASSERT(); 1552 1553 /* 1554 * Look first for hardware crypto devices if permitted. 1555 */ 1556 if (flags & CRYPTOCAP_F_HARDWARE) 1557 match = CRYPTOCAP_F_HARDWARE; 1558 else 1559 match = CRYPTOCAP_F_SOFTWARE; 1560 best = NULL; 1561 again: 1562 for (hid = 0; hid < crypto_drivers_size; hid++) { 1563 /* 1564 * If there is no driver for this slot, or the driver 1565 * is not appropriate (hardware or software based on 1566 * match), then skip. 1567 */ 1568 cap = crypto_drivers[hid]; 1569 if (cap == NULL || 1570 (cap->cc_flags & match) == 0) 1571 continue; 1572 1573 /* verify all the algorithms are supported. */ 1574 if (kdriver_suitable(cap, krp)) { 1575 if (best == NULL || 1576 cap->cc_koperations < best->cc_koperations) 1577 best = cap; 1578 } 1579 } 1580 if (best != NULL) 1581 return best; 1582 if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { 1583 /* sort of an Algol 68-style for loop */ 1584 match = CRYPTOCAP_F_SOFTWARE; 1585 goto again; 1586 } 1587 return best; 1588 } 1589 1590 /* 1591 * Choose a driver for an asymmetric crypto request. 1592 */ 1593 static struct cryptocap * 1594 crypto_lookup_kdriver(struct cryptkop *krp) 1595 { 1596 struct cryptocap *cap; 1597 uint32_t crid; 1598 1599 /* If this request is requeued, it might already have a driver. */ 1600 cap = krp->krp_cap; 1601 if (cap != NULL) 1602 return (cap); 1603 1604 /* Use krp_crid to choose a driver. */ 1605 crid = krp->krp_crid; 1606 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 1607 cap = crypto_checkdriver(crid); 1608 if (cap != NULL) { 1609 /* 1610 * Driver present, it must support the 1611 * necessary algorithm and, if s/w drivers are 1612 * excluded, it must be registered as 1613 * hardware-backed. 1614 */ 1615 if (!kdriver_suitable(cap, krp) || 1616 (!crypto_devallowsoft && 1617 (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0)) 1618 cap = NULL; 1619 } 1620 } else { 1621 /* 1622 * No requested driver; select based on crid flags. 1623 */ 1624 if (!crypto_devallowsoft) /* NB: disallow s/w drivers */ 1625 crid &= ~CRYPTOCAP_F_SOFTWARE; 1626 cap = crypto_select_kdriver(krp, crid); 1627 } 1628 1629 if (cap != NULL) { 1630 krp->krp_cap = cap_ref(cap); 1631 krp->krp_hid = cap->cc_hid; 1632 } 1633 return (cap); 1634 } 1635 1636 /* 1637 * Dispatch an asymmetric crypto request. 1638 */ 1639 static int 1640 crypto_kinvoke(struct cryptkop *krp) 1641 { 1642 struct cryptocap *cap = NULL; 1643 int error; 1644 1645 KASSERT(krp != NULL, ("%s: krp == NULL", __func__)); 1646 KASSERT(krp->krp_callback != NULL, 1647 ("%s: krp->crp_callback == NULL", __func__)); 1648 1649 CRYPTO_DRIVER_LOCK(); 1650 cap = crypto_lookup_kdriver(krp); 1651 if (cap == NULL) { 1652 CRYPTO_DRIVER_UNLOCK(); 1653 krp->krp_status = ENODEV; 1654 crypto_kdone(krp); 1655 return (0); 1656 } 1657 1658 /* 1659 * If the device is blocked, return ERESTART to requeue it. 1660 */ 1661 if (cap->cc_kqblocked) { 1662 /* 1663 * XXX: Previously this set krp_status to ERESTART and 1664 * invoked crypto_kdone but the caller would still 1665 * requeue it. 1666 */ 1667 CRYPTO_DRIVER_UNLOCK(); 1668 return (ERESTART); 1669 } 1670 1671 cap->cc_koperations++; 1672 CRYPTO_DRIVER_UNLOCK(); 1673 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0); 1674 if (error == ERESTART) { 1675 CRYPTO_DRIVER_LOCK(); 1676 cap->cc_koperations--; 1677 CRYPTO_DRIVER_UNLOCK(); 1678 return (error); 1679 } 1680 1681 KASSERT(error == 0, ("error %d returned from crypto_kprocess", error)); 1682 return (0); 1683 } 1684 1685 static void 1686 crypto_task_invoke(void *ctx, int pending) 1687 { 1688 struct cryptocap *cap; 1689 struct cryptop *crp; 1690 int result; 1691 1692 crp = (struct cryptop *)ctx; 1693 cap = crp->crp_session->cap; 1694 result = crypto_invoke(cap, crp, 0); 1695 if (result == ERESTART) 1696 crypto_batch_enqueue(crp); 1697 } 1698 1699 /* 1700 * Dispatch a crypto request to the appropriate crypto devices. 1701 */ 1702 static int 1703 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) 1704 { 1705 1706 KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); 1707 KASSERT(crp->crp_callback != NULL, 1708 ("%s: crp->crp_callback == NULL", __func__)); 1709 KASSERT(crp->crp_session != NULL, 1710 ("%s: crp->crp_session == NULL", __func__)); 1711 1712 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1713 struct crypto_session_params csp; 1714 crypto_session_t nses; 1715 1716 /* 1717 * Driver has unregistered; migrate the session and return 1718 * an error to the caller so they'll resubmit the op. 1719 * 1720 * XXX: What if there are more already queued requests for this 1721 * session? 1722 * 1723 * XXX: Real solution is to make sessions refcounted 1724 * and force callers to hold a reference when 1725 * assigning to crp_session. Could maybe change 1726 * crypto_getreq to accept a session pointer to make 1727 * that work. Alternatively, we could abandon the 1728 * notion of rewriting crp_session in requests forcing 1729 * the caller to deal with allocating a new session. 1730 * Perhaps provide a method to allow a crp's session to 1731 * be swapped that callers could use. 1732 */ 1733 csp = crp->crp_session->csp; 1734 crypto_freesession(crp->crp_session); 1735 1736 /* 1737 * XXX: Key pointers may no longer be valid. If we 1738 * really want to support this we need to define the 1739 * KPI such that 'csp' is required to be valid for the 1740 * duration of a session by the caller perhaps. 1741 * 1742 * XXX: If the keys have been changed this will reuse 1743 * the old keys. This probably suggests making 1744 * rekeying more explicit and updating the key 1745 * pointers in 'csp' when the keys change. 1746 */ 1747 if (crypto_newsession(&nses, &csp, 1748 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) 1749 crp->crp_session = nses; 1750 1751 crp->crp_etype = EAGAIN; 1752 crypto_done(crp); 1753 return 0; 1754 } else { 1755 /* 1756 * Invoke the driver to process the request. 1757 */ 1758 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); 1759 } 1760 } 1761 1762 void 1763 crypto_destroyreq(struct cryptop *crp) 1764 { 1765 #ifdef DIAGNOSTIC 1766 { 1767 struct cryptop *crp2; 1768 struct crypto_ret_worker *ret_worker; 1769 1770 CRYPTO_Q_LOCK(); 1771 TAILQ_FOREACH(crp2, &crp_q, crp_next) { 1772 KASSERT(crp2 != crp, 1773 ("Freeing cryptop from the crypto queue (%p).", 1774 crp)); 1775 } 1776 CRYPTO_Q_UNLOCK(); 1777 1778 FOREACH_CRYPTO_RETW(ret_worker) { 1779 CRYPTO_RETW_LOCK(ret_worker); 1780 TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) { 1781 KASSERT(crp2 != crp, 1782 ("Freeing cryptop from the return queue (%p).", 1783 crp)); 1784 } 1785 CRYPTO_RETW_UNLOCK(ret_worker); 1786 } 1787 } 1788 #endif 1789 } 1790 1791 void 1792 crypto_freereq(struct cryptop *crp) 1793 { 1794 if (crp == NULL) 1795 return; 1796 1797 crypto_destroyreq(crp); 1798 uma_zfree(cryptop_zone, crp); 1799 } 1800 1801 static void 1802 _crypto_initreq(struct cryptop *crp, crypto_session_t cses) 1803 { 1804 crp->crp_session = cses; 1805 } 1806 1807 void 1808 crypto_initreq(struct cryptop *crp, crypto_session_t cses) 1809 { 1810 memset(crp, 0, sizeof(*crp)); 1811 _crypto_initreq(crp, cses); 1812 } 1813 1814 struct cryptop * 1815 crypto_getreq(crypto_session_t cses, int how) 1816 { 1817 struct cryptop *crp; 1818 1819 MPASS(how == M_WAITOK || how == M_NOWAIT); 1820 crp = uma_zalloc(cryptop_zone, how | M_ZERO); 1821 if (crp != NULL) 1822 _crypto_initreq(crp, cses); 1823 return (crp); 1824 } 1825 1826 /* 1827 * Invoke the callback on behalf of the driver. 1828 */ 1829 void 1830 crypto_done(struct cryptop *crp) 1831 { 1832 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0, 1833 ("crypto_done: op already done, flags 0x%x", crp->crp_flags)); 1834 crp->crp_flags |= CRYPTO_F_DONE; 1835 if (crp->crp_etype != 0) 1836 CRYPTOSTAT_INC(cs_errs); 1837 1838 /* 1839 * CBIMM means unconditionally do the callback immediately; 1840 * CBIFSYNC means do the callback immediately only if the 1841 * operation was done synchronously. Both are used to avoid 1842 * doing extraneous context switches; the latter is mostly 1843 * used with the software crypto driver. 1844 */ 1845 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 && 1846 ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 || 1847 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 && 1848 CRYPTO_SESS_SYNC(crp->crp_session)))) { 1849 /* 1850 * Do the callback directly. This is ok when the 1851 * callback routine does very little (e.g. the 1852 * /dev/crypto callback method just does a wakeup). 1853 */ 1854 crp->crp_callback(crp); 1855 } else { 1856 struct crypto_ret_worker *ret_worker; 1857 bool wake; 1858 1859 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1860 1861 /* 1862 * Normal case; queue the callback for the thread. 1863 */ 1864 CRYPTO_RETW_LOCK(ret_worker); 1865 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) { 1866 struct cryptop *tmp; 1867 1868 TAILQ_FOREACH_REVERSE(tmp, 1869 &ret_worker->crp_ordered_ret_q, cryptop_q, 1870 crp_next) { 1871 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) { 1872 TAILQ_INSERT_AFTER( 1873 &ret_worker->crp_ordered_ret_q, tmp, 1874 crp, crp_next); 1875 break; 1876 } 1877 } 1878 if (tmp == NULL) { 1879 TAILQ_INSERT_HEAD( 1880 &ret_worker->crp_ordered_ret_q, crp, 1881 crp_next); 1882 } 1883 1884 wake = crp->crp_seq == ret_worker->reorder_cur_seq; 1885 } else { 1886 wake = TAILQ_EMPTY(&ret_worker->crp_ret_q); 1887 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, 1888 crp_next); 1889 } 1890 1891 if (wake) 1892 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1893 CRYPTO_RETW_UNLOCK(ret_worker); 1894 } 1895 } 1896 1897 /* 1898 * Invoke the callback on behalf of the driver. 1899 */ 1900 void 1901 crypto_kdone(struct cryptkop *krp) 1902 { 1903 struct crypto_ret_worker *ret_worker; 1904 struct cryptocap *cap; 1905 1906 if (krp->krp_status != 0) 1907 CRYPTOSTAT_INC(cs_kerrs); 1908 cap = krp->krp_cap; 1909 if (cap != NULL) { 1910 CRYPTO_DRIVER_LOCK(); 1911 KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0")); 1912 cap->cc_koperations--; 1913 if (cap->cc_koperations == 0 && 1914 cap->cc_flags & CRYPTOCAP_F_CLEANUP) 1915 wakeup(cap); 1916 CRYPTO_DRIVER_UNLOCK(); 1917 krp->krp_cap = NULL; 1918 cap_rele(cap); 1919 } 1920 1921 ret_worker = CRYPTO_RETW(0); 1922 1923 CRYPTO_RETW_LOCK(ret_worker); 1924 if (TAILQ_EMPTY(&ret_worker->crp_ret_kq)) 1925 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1926 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next); 1927 CRYPTO_RETW_UNLOCK(ret_worker); 1928 } 1929 1930 int 1931 crypto_getfeat(int *featp) 1932 { 1933 int hid, kalg, feat = 0; 1934 1935 CRYPTO_DRIVER_LOCK(); 1936 for (hid = 0; hid < crypto_drivers_size; hid++) { 1937 const struct cryptocap *cap = crypto_drivers[hid]; 1938 1939 if (cap == NULL || 1940 ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) && 1941 !crypto_devallowsoft)) { 1942 continue; 1943 } 1944 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) 1945 if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED) 1946 feat |= 1 << kalg; 1947 } 1948 CRYPTO_DRIVER_UNLOCK(); 1949 *featp = feat; 1950 return (0); 1951 } 1952 1953 /* 1954 * Terminate a thread at module unload. The process that 1955 * initiated this is waiting for us to signal that we're gone; 1956 * wake it up and exit. We use the driver table lock to insure 1957 * we don't do the wakeup before they're waiting. There is no 1958 * race here because the waiter sleeps on the proc lock for the 1959 * thread so it gets notified at the right time because of an 1960 * extra wakeup that's done in exit1(). 1961 */ 1962 static void 1963 crypto_finis(void *chan) 1964 { 1965 CRYPTO_DRIVER_LOCK(); 1966 wakeup_one(chan); 1967 CRYPTO_DRIVER_UNLOCK(); 1968 kproc_exit(0); 1969 } 1970 1971 /* 1972 * Crypto thread, dispatches crypto requests. 1973 */ 1974 static void 1975 crypto_proc(void) 1976 { 1977 struct cryptop *crp, *submit; 1978 struct cryptkop *krp; 1979 struct cryptocap *cap; 1980 int result, hint; 1981 1982 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1983 fpu_kern_thread(FPU_KERN_NORMAL); 1984 #endif 1985 1986 CRYPTO_Q_LOCK(); 1987 for (;;) { 1988 /* 1989 * Find the first element in the queue that can be 1990 * processed and look-ahead to see if multiple ops 1991 * are ready for the same driver. 1992 */ 1993 submit = NULL; 1994 hint = 0; 1995 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1996 cap = crp->crp_session->cap; 1997 /* 1998 * Driver cannot disappeared when there is an active 1999 * session. 2000 */ 2001 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 2002 __func__, __LINE__)); 2003 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 2004 /* Op needs to be migrated, process it. */ 2005 if (submit == NULL) 2006 submit = crp; 2007 break; 2008 } 2009 if (!cap->cc_qblocked) { 2010 if (submit != NULL) { 2011 /* 2012 * We stop on finding another op, 2013 * regardless whether its for the same 2014 * driver or not. We could keep 2015 * searching the queue but it might be 2016 * better to just use a per-driver 2017 * queue instead. 2018 */ 2019 if (submit->crp_session->cap == cap) 2020 hint = CRYPTO_HINT_MORE; 2021 } else { 2022 submit = crp; 2023 } 2024 break; 2025 } 2026 } 2027 if (submit != NULL) { 2028 TAILQ_REMOVE(&crp_q, submit, crp_next); 2029 cap = submit->crp_session->cap; 2030 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 2031 __func__, __LINE__)); 2032 CRYPTO_Q_UNLOCK(); 2033 result = crypto_invoke(cap, submit, hint); 2034 CRYPTO_Q_LOCK(); 2035 if (result == ERESTART) { 2036 /* 2037 * The driver ran out of resources, mark the 2038 * driver ``blocked'' for cryptop's and put 2039 * the request back in the queue. It would 2040 * best to put the request back where we got 2041 * it but that's hard so for now we put it 2042 * at the front. This should be ok; putting 2043 * it at the end does not work. 2044 */ 2045 cap->cc_qblocked = 1; 2046 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 2047 CRYPTOSTAT_INC(cs_blocks); 2048 } 2049 } 2050 2051 /* As above, but for key ops */ 2052 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 2053 cap = krp->krp_cap; 2054 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 2055 /* 2056 * Operation needs to be migrated, 2057 * clear krp_cap so a new driver is 2058 * selected. 2059 */ 2060 krp->krp_cap = NULL; 2061 cap_rele(cap); 2062 break; 2063 } 2064 if (!cap->cc_kqblocked) 2065 break; 2066 } 2067 if (krp != NULL) { 2068 TAILQ_REMOVE(&crp_kq, krp, krp_next); 2069 CRYPTO_Q_UNLOCK(); 2070 result = crypto_kinvoke(krp); 2071 CRYPTO_Q_LOCK(); 2072 if (result == ERESTART) { 2073 /* 2074 * The driver ran out of resources, mark the 2075 * driver ``blocked'' for cryptkop's and put 2076 * the request back in the queue. It would 2077 * best to put the request back where we got 2078 * it but that's hard so for now we put it 2079 * at the front. This should be ok; putting 2080 * it at the end does not work. 2081 */ 2082 krp->krp_cap->cc_kqblocked = 1; 2083 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 2084 CRYPTOSTAT_INC(cs_kblocks); 2085 } 2086 } 2087 2088 if (submit == NULL && krp == NULL) { 2089 /* 2090 * Nothing more to be processed. Sleep until we're 2091 * woken because there are more ops to process. 2092 * This happens either by submission or by a driver 2093 * becoming unblocked and notifying us through 2094 * crypto_unblock. Note that when we wakeup we 2095 * start processing each queue again from the 2096 * front. It's not clear that it's important to 2097 * preserve this ordering since ops may finish 2098 * out of order if dispatched to different devices 2099 * and some become blocked while others do not. 2100 */ 2101 crp_sleep = 1; 2102 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0); 2103 crp_sleep = 0; 2104 if (cryptoproc == NULL) 2105 break; 2106 CRYPTOSTAT_INC(cs_intrs); 2107 } 2108 } 2109 CRYPTO_Q_UNLOCK(); 2110 2111 crypto_finis(&crp_q); 2112 } 2113 2114 /* 2115 * Crypto returns thread, does callbacks for processed crypto requests. 2116 * Callbacks are done here, rather than in the crypto drivers, because 2117 * callbacks typically are expensive and would slow interrupt handling. 2118 */ 2119 static void 2120 crypto_ret_proc(struct crypto_ret_worker *ret_worker) 2121 { 2122 struct cryptop *crpt; 2123 struct cryptkop *krpt; 2124 2125 CRYPTO_RETW_LOCK(ret_worker); 2126 for (;;) { 2127 /* Harvest return q's for completed ops */ 2128 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q); 2129 if (crpt != NULL) { 2130 if (crpt->crp_seq == ret_worker->reorder_cur_seq) { 2131 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next); 2132 ret_worker->reorder_cur_seq++; 2133 } else { 2134 crpt = NULL; 2135 } 2136 } 2137 2138 if (crpt == NULL) { 2139 crpt = TAILQ_FIRST(&ret_worker->crp_ret_q); 2140 if (crpt != NULL) 2141 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next); 2142 } 2143 2144 krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq); 2145 if (krpt != NULL) 2146 TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next); 2147 2148 if (crpt != NULL || krpt != NULL) { 2149 CRYPTO_RETW_UNLOCK(ret_worker); 2150 /* 2151 * Run callbacks unlocked. 2152 */ 2153 if (crpt != NULL) 2154 crpt->crp_callback(crpt); 2155 if (krpt != NULL) 2156 krpt->krp_callback(krpt); 2157 CRYPTO_RETW_LOCK(ret_worker); 2158 } else { 2159 /* 2160 * Nothing more to be processed. Sleep until we're 2161 * woken because there are more returns to process. 2162 */ 2163 msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT, 2164 "crypto_ret_wait", 0); 2165 if (ret_worker->cryptoretproc == NULL) 2166 break; 2167 CRYPTOSTAT_INC(cs_rets); 2168 } 2169 } 2170 CRYPTO_RETW_UNLOCK(ret_worker); 2171 2172 crypto_finis(&ret_worker->crp_ret_q); 2173 } 2174 2175 #ifdef DDB 2176 static void 2177 db_show_drivers(void) 2178 { 2179 int hid; 2180 2181 db_printf("%12s %4s %4s %8s %2s %2s\n" 2182 , "Device" 2183 , "Ses" 2184 , "Kops" 2185 , "Flags" 2186 , "QB" 2187 , "KB" 2188 ); 2189 for (hid = 0; hid < crypto_drivers_size; hid++) { 2190 const struct cryptocap *cap = crypto_drivers[hid]; 2191 if (cap == NULL) 2192 continue; 2193 db_printf("%-12s %4u %4u %08x %2u %2u\n" 2194 , device_get_nameunit(cap->cc_dev) 2195 , cap->cc_sessions 2196 , cap->cc_koperations 2197 , cap->cc_flags 2198 , cap->cc_qblocked 2199 , cap->cc_kqblocked 2200 ); 2201 } 2202 } 2203 2204 DB_SHOW_COMMAND(crypto, db_show_crypto) 2205 { 2206 struct cryptop *crp; 2207 struct crypto_ret_worker *ret_worker; 2208 2209 db_show_drivers(); 2210 db_printf("\n"); 2211 2212 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", 2213 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", 2214 "Device", "Callback"); 2215 TAILQ_FOREACH(crp, &crp_q, crp_next) { 2216 db_printf("%4u %08x %4u %4u %04x %8p %8p\n" 2217 , crp->crp_session->cap->cc_hid 2218 , (int) crypto_ses2caps(crp->crp_session) 2219 , crp->crp_olen 2220 , crp->crp_etype 2221 , crp->crp_flags 2222 , device_get_nameunit(crp->crp_session->cap->cc_dev) 2223 , crp->crp_callback 2224 ); 2225 } 2226 FOREACH_CRYPTO_RETW(ret_worker) { 2227 db_printf("\n%8s %4s %4s %4s %8s\n", 2228 "ret_worker", "HID", "Etype", "Flags", "Callback"); 2229 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 2230 TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) { 2231 db_printf("%8td %4u %4u %04x %8p\n" 2232 , CRYPTO_RETW_ID(ret_worker) 2233 , crp->crp_session->cap->cc_hid 2234 , crp->crp_etype 2235 , crp->crp_flags 2236 , crp->crp_callback 2237 ); 2238 } 2239 } 2240 } 2241 } 2242 2243 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto) 2244 { 2245 struct cryptkop *krp; 2246 struct crypto_ret_worker *ret_worker; 2247 2248 db_show_drivers(); 2249 db_printf("\n"); 2250 2251 db_printf("%4s %5s %4s %4s %8s %4s %8s\n", 2252 "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback"); 2253 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 2254 db_printf("%4u %5u %4u %4u %08x %4u %8p\n" 2255 , krp->krp_op 2256 , krp->krp_status 2257 , krp->krp_iparams, krp->krp_oparams 2258 , krp->krp_crid, krp->krp_hid 2259 , krp->krp_callback 2260 ); 2261 } 2262 2263 ret_worker = CRYPTO_RETW(0); 2264 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 2265 db_printf("%4s %5s %8s %4s %8s\n", 2266 "Op", "Status", "CRID", "HID", "Callback"); 2267 TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) { 2268 db_printf("%4u %5u %08x %4u %8p\n" 2269 , krp->krp_op 2270 , krp->krp_status 2271 , krp->krp_crid, krp->krp_hid 2272 , krp->krp_callback 2273 ); 2274 } 2275 } 2276 } 2277 #endif 2278 2279 int crypto_modevent(module_t mod, int type, void *unused); 2280 2281 /* 2282 * Initialization code, both for static and dynamic loading. 2283 * Note this is not invoked with the usual MODULE_DECLARE 2284 * mechanism but instead is listed as a dependency by the 2285 * cryptosoft driver. This guarantees proper ordering of 2286 * calls on module load/unload. 2287 */ 2288 int 2289 crypto_modevent(module_t mod, int type, void *unused) 2290 { 2291 int error = EINVAL; 2292 2293 switch (type) { 2294 case MOD_LOAD: 2295 error = crypto_init(); 2296 if (error == 0 && bootverbose) 2297 printf("crypto: <crypto core>\n"); 2298 break; 2299 case MOD_UNLOAD: 2300 /*XXX disallow if active sessions */ 2301 error = 0; 2302 crypto_destroy(); 2303 return 0; 2304 } 2305 return error; 2306 } 2307 MODULE_VERSION(crypto, 1); 2308 MODULE_DEPEND(crypto, zlib, 1, 1, 1); 2309