1 /*- 2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 23 */ 24 25 #include <sys/cdefs.h> 26 __FBSDID("$FreeBSD$"); 27 28 /* 29 * Cryptographic Subsystem. 30 * 31 * This code is derived from the Openbsd Cryptographic Framework (OCF) 32 * that has the copyright shown below. Very little of the original 33 * code remains. 34 */ 35 36 /*- 37 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 38 * 39 * This code was written by Angelos D. Keromytis in Athens, Greece, in 40 * February 2000. Network Security Technologies Inc. (NSTI) kindly 41 * supported the development of this code. 42 * 43 * Copyright (c) 2000, 2001 Angelos D. Keromytis 44 * 45 * Permission to use, copy, and modify this software with or without fee 46 * is hereby granted, provided that this entire notice is included in 47 * all source code copies of any software which is or includes a copy or 48 * modification of this software. 49 * 50 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 51 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 52 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 53 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 54 * PURPOSE. 55 */ 56 57 #define CRYPTO_TIMING /* enable timing support */ 58 59 #include "opt_compat.h" 60 #include "opt_ddb.h" 61 62 #include <sys/param.h> 63 #include <sys/systm.h> 64 #include <sys/eventhandler.h> 65 #include <sys/kernel.h> 66 #include <sys/kthread.h> 67 #include <sys/linker.h> 68 #include <sys/lock.h> 69 #include <sys/module.h> 70 #include <sys/mutex.h> 71 #include <sys/malloc.h> 72 #include <sys/proc.h> 73 #include <sys/refcount.h> 74 #include <sys/sdt.h> 75 #include <sys/smp.h> 76 #include <sys/sysctl.h> 77 #include <sys/taskqueue.h> 78 79 #include <ddb/ddb.h> 80 81 #include <vm/uma.h> 82 #include <crypto/intake.h> 83 #include <opencrypto/cryptodev.h> 84 #include <opencrypto/xform_auth.h> 85 #include <opencrypto/xform_enc.h> 86 87 #include <sys/kobj.h> 88 #include <sys/bus.h> 89 #include "cryptodev_if.h" 90 91 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 92 #include <machine/pcb.h> 93 #endif 94 95 SDT_PROVIDER_DEFINE(opencrypto); 96 97 /* 98 * Crypto drivers register themselves by allocating a slot in the 99 * crypto_drivers table with crypto_get_driverid() and then registering 100 * each asym algorithm they support with crypto_kregister(). 101 */ 102 static struct mtx crypto_drivers_mtx; /* lock on driver table */ 103 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx) 104 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx) 105 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED) 106 107 /* 108 * Crypto device/driver capabilities structure. 109 * 110 * Synchronization: 111 * (d) - protected by CRYPTO_DRIVER_LOCK() 112 * (q) - protected by CRYPTO_Q_LOCK() 113 * Not tagged fields are read-only. 114 */ 115 struct cryptocap { 116 device_t cc_dev; 117 uint32_t cc_hid; 118 u_int32_t cc_sessions; /* (d) # of sessions */ 119 u_int32_t cc_koperations; /* (d) # os asym operations */ 120 u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1]; 121 122 int cc_flags; /* (d) flags */ 123 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ 124 int cc_qblocked; /* (q) symmetric q blocked */ 125 int cc_kqblocked; /* (q) asymmetric q blocked */ 126 size_t cc_session_size; 127 volatile int cc_refs; 128 }; 129 130 static struct cryptocap **crypto_drivers = NULL; 131 static int crypto_drivers_size = 0; 132 133 struct crypto_session { 134 struct cryptocap *cap; 135 void *softc; 136 struct crypto_session_params csp; 137 }; 138 139 /* 140 * There are two queues for crypto requests; one for symmetric (e.g. 141 * cipher) operations and one for asymmetric (e.g. MOD)operations. 142 * A single mutex is used to lock access to both queues. We could 143 * have one per-queue but having one simplifies handling of block/unblock 144 * operations. 145 */ 146 static int crp_sleep = 0; 147 static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */ 148 static TAILQ_HEAD(,cryptkop) crp_kq; 149 static struct mtx crypto_q_mtx; 150 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx) 151 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx) 152 153 static SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0, 154 "In-kernel cryptography"); 155 156 /* 157 * Taskqueue used to dispatch the crypto requests 158 * that have the CRYPTO_F_ASYNC flag 159 */ 160 static struct taskqueue *crypto_tq; 161 162 /* 163 * Crypto seq numbers are operated on with modular arithmetic 164 */ 165 #define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0) 166 167 struct crypto_ret_worker { 168 struct mtx crypto_ret_mtx; 169 170 TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */ 171 TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */ 172 TAILQ_HEAD(,cryptkop) crp_ret_kq; /* callback queue for asym jobs */ 173 174 u_int32_t reorder_ops; /* total ordered sym jobs received */ 175 u_int32_t reorder_cur_seq; /* current sym job dispatched */ 176 177 struct proc *cryptoretproc; 178 }; 179 static struct crypto_ret_worker *crypto_ret_workers = NULL; 180 181 #define CRYPTO_RETW(i) (&crypto_ret_workers[i]) 182 #define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers) 183 #define FOREACH_CRYPTO_RETW(w) \ 184 for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w) 185 186 #define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx) 187 #define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx) 188 #define CRYPTO_RETW_EMPTY(w) \ 189 (TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q)) 190 191 static int crypto_workers_num = 0; 192 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN, 193 &crypto_workers_num, 0, 194 "Number of crypto workers used to dispatch crypto jobs"); 195 #ifdef COMPAT_FREEBSD12 196 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN, 197 &crypto_workers_num, 0, 198 "Number of crypto workers used to dispatch crypto jobs"); 199 #endif 200 201 static uma_zone_t cryptop_zone; 202 static uma_zone_t cryptoses_zone; 203 204 int crypto_userasymcrypto = 1; 205 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW, 206 &crypto_userasymcrypto, 0, 207 "Enable user-mode access to asymmetric crypto support"); 208 #ifdef COMPAT_FREEBSD12 209 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW, 210 &crypto_userasymcrypto, 0, 211 "Enable/disable user-mode access to asymmetric crypto support"); 212 #endif 213 214 int crypto_devallowsoft = 0; 215 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW, 216 &crypto_devallowsoft, 0, 217 "Enable use of software crypto by /dev/crypto"); 218 #ifdef COMPAT_FREEBSD12 219 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW, 220 &crypto_devallowsoft, 0, 221 "Enable/disable use of software crypto by /dev/crypto"); 222 #endif 223 224 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 225 226 static void crypto_proc(void); 227 static struct proc *cryptoproc; 228 static void crypto_ret_proc(struct crypto_ret_worker *ret_worker); 229 static void crypto_destroy(void); 230 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); 231 static int crypto_kinvoke(struct cryptkop *krp); 232 static void crypto_task_invoke(void *ctx, int pending); 233 static void crypto_batch_enqueue(struct cryptop *crp); 234 235 static struct cryptostats cryptostats; 236 SYSCTL_STRUCT(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW, &cryptostats, 237 cryptostats, "Crypto system statistics"); 238 239 #ifdef CRYPTO_TIMING 240 static int crypto_timing = 0; 241 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW, 242 &crypto_timing, 0, "Enable/disable crypto timing support"); 243 #endif 244 245 /* Try to avoid directly exposing the key buffer as a symbol */ 246 static struct keybuf *keybuf; 247 248 static struct keybuf empty_keybuf = { 249 .kb_nents = 0 250 }; 251 252 /* Obtain the key buffer from boot metadata */ 253 static void 254 keybuf_init(void) 255 { 256 caddr_t kmdp; 257 258 kmdp = preload_search_by_type("elf kernel"); 259 260 if (kmdp == NULL) 261 kmdp = preload_search_by_type("elf64 kernel"); 262 263 keybuf = (struct keybuf *)preload_search_info(kmdp, 264 MODINFO_METADATA | MODINFOMD_KEYBUF); 265 266 if (keybuf == NULL) 267 keybuf = &empty_keybuf; 268 } 269 270 /* It'd be nice if we could store these in some kind of secure memory... */ 271 struct keybuf * get_keybuf(void) { 272 273 return (keybuf); 274 } 275 276 static struct cryptocap * 277 cap_ref(struct cryptocap *cap) 278 { 279 280 refcount_acquire(&cap->cc_refs); 281 return (cap); 282 } 283 284 static void 285 cap_rele(struct cryptocap *cap) 286 { 287 288 if (refcount_release(&cap->cc_refs) == 0) 289 return; 290 291 KASSERT(cap->cc_sessions == 0, 292 ("freeing crypto driver with active sessions")); 293 KASSERT(cap->cc_koperations == 0, 294 ("freeing crypto driver with active key operations")); 295 296 free(cap, M_CRYPTO_DATA); 297 } 298 299 static int 300 crypto_init(void) 301 { 302 struct crypto_ret_worker *ret_worker; 303 int error; 304 305 mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table", 306 MTX_DEF|MTX_QUIET); 307 308 TAILQ_INIT(&crp_q); 309 TAILQ_INIT(&crp_kq); 310 mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF); 311 312 cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop), 313 0, 0, 0, 0, 314 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 315 cryptoses_zone = uma_zcreate("crypto_session", 316 sizeof(struct crypto_session), NULL, NULL, NULL, NULL, 317 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 318 319 if (cryptop_zone == NULL || cryptoses_zone == NULL) { 320 printf("crypto_init: cannot setup crypto zones\n"); 321 error = ENOMEM; 322 goto bad; 323 } 324 325 crypto_drivers_size = CRYPTO_DRIVERS_INITIAL; 326 crypto_drivers = malloc(crypto_drivers_size * 327 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 328 if (crypto_drivers == NULL) { 329 printf("crypto_init: cannot setup crypto drivers\n"); 330 error = ENOMEM; 331 goto bad; 332 } 333 334 if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus) 335 crypto_workers_num = mp_ncpus; 336 337 crypto_tq = taskqueue_create("crypto", M_WAITOK|M_ZERO, 338 taskqueue_thread_enqueue, &crypto_tq); 339 if (crypto_tq == NULL) { 340 printf("crypto init: cannot setup crypto taskqueue\n"); 341 error = ENOMEM; 342 goto bad; 343 } 344 345 taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN, 346 "crypto"); 347 348 error = kproc_create((void (*)(void *)) crypto_proc, NULL, 349 &cryptoproc, 0, 0, "crypto"); 350 if (error) { 351 printf("crypto_init: cannot start crypto thread; error %d", 352 error); 353 goto bad; 354 } 355 356 crypto_ret_workers = malloc(crypto_workers_num * sizeof(struct crypto_ret_worker), 357 M_CRYPTO_DATA, M_NOWAIT|M_ZERO); 358 if (crypto_ret_workers == NULL) { 359 error = ENOMEM; 360 printf("crypto_init: cannot allocate ret workers\n"); 361 goto bad; 362 } 363 364 365 FOREACH_CRYPTO_RETW(ret_worker) { 366 TAILQ_INIT(&ret_worker->crp_ordered_ret_q); 367 TAILQ_INIT(&ret_worker->crp_ret_q); 368 TAILQ_INIT(&ret_worker->crp_ret_kq); 369 370 ret_worker->reorder_ops = 0; 371 ret_worker->reorder_cur_seq = 0; 372 373 mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF); 374 375 error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker, 376 &ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker)); 377 if (error) { 378 printf("crypto_init: cannot start cryptoret thread; error %d", 379 error); 380 goto bad; 381 } 382 } 383 384 keybuf_init(); 385 386 return 0; 387 bad: 388 crypto_destroy(); 389 return error; 390 } 391 392 /* 393 * Signal a crypto thread to terminate. We use the driver 394 * table lock to synchronize the sleep/wakeups so that we 395 * are sure the threads have terminated before we release 396 * the data structures they use. See crypto_finis below 397 * for the other half of this song-and-dance. 398 */ 399 static void 400 crypto_terminate(struct proc **pp, void *q) 401 { 402 struct proc *p; 403 404 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 405 p = *pp; 406 *pp = NULL; 407 if (p) { 408 wakeup_one(q); 409 PROC_LOCK(p); /* NB: insure we don't miss wakeup */ 410 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */ 411 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0); 412 PROC_UNLOCK(p); 413 CRYPTO_DRIVER_LOCK(); 414 } 415 } 416 417 static void 418 hmac_init_pad(struct auth_hash *axf, const char *key, int klen, void *auth_ctx, 419 uint8_t padval) 420 { 421 uint8_t hmac_key[HMAC_MAX_BLOCK_LEN]; 422 u_int i; 423 424 KASSERT(axf->blocksize <= sizeof(hmac_key), 425 ("Invalid HMAC block size %d", axf->blocksize)); 426 427 /* 428 * If the key is larger than the block size, use the digest of 429 * the key as the key instead. 430 */ 431 memset(hmac_key, 0, sizeof(hmac_key)); 432 if (klen > axf->blocksize) { 433 axf->Init(auth_ctx); 434 axf->Update(auth_ctx, key, klen); 435 axf->Final(hmac_key, auth_ctx); 436 klen = axf->hashsize; 437 } else 438 memcpy(hmac_key, key, klen); 439 440 for (i = 0; i < axf->blocksize; i++) 441 hmac_key[i] ^= padval; 442 443 axf->Init(auth_ctx); 444 axf->Update(auth_ctx, hmac_key, axf->blocksize); 445 } 446 447 void 448 hmac_init_ipad(struct auth_hash *axf, const char *key, int klen, 449 void *auth_ctx) 450 { 451 452 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL); 453 } 454 455 void 456 hmac_init_opad(struct auth_hash *axf, const char *key, int klen, 457 void *auth_ctx) 458 { 459 460 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL); 461 } 462 463 static void 464 crypto_destroy(void) 465 { 466 struct crypto_ret_worker *ret_worker; 467 int i; 468 469 /* 470 * Terminate any crypto threads. 471 */ 472 if (crypto_tq != NULL) 473 taskqueue_drain_all(crypto_tq); 474 CRYPTO_DRIVER_LOCK(); 475 crypto_terminate(&cryptoproc, &crp_q); 476 FOREACH_CRYPTO_RETW(ret_worker) 477 crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q); 478 CRYPTO_DRIVER_UNLOCK(); 479 480 /* XXX flush queues??? */ 481 482 /* 483 * Reclaim dynamically allocated resources. 484 */ 485 for (i = 0; i < crypto_drivers_size; i++) { 486 if (crypto_drivers[i] != NULL) 487 cap_rele(crypto_drivers[i]); 488 } 489 free(crypto_drivers, M_CRYPTO_DATA); 490 491 if (cryptoses_zone != NULL) 492 uma_zdestroy(cryptoses_zone); 493 if (cryptop_zone != NULL) 494 uma_zdestroy(cryptop_zone); 495 mtx_destroy(&crypto_q_mtx); 496 FOREACH_CRYPTO_RETW(ret_worker) 497 mtx_destroy(&ret_worker->crypto_ret_mtx); 498 free(crypto_ret_workers, M_CRYPTO_DATA); 499 if (crypto_tq != NULL) 500 taskqueue_free(crypto_tq); 501 mtx_destroy(&crypto_drivers_mtx); 502 } 503 504 uint32_t 505 crypto_ses2hid(crypto_session_t crypto_session) 506 { 507 return (crypto_session->cap->cc_hid); 508 } 509 510 uint32_t 511 crypto_ses2caps(crypto_session_t crypto_session) 512 { 513 return (crypto_session->cap->cc_flags & 0xff000000); 514 } 515 516 void * 517 crypto_get_driver_session(crypto_session_t crypto_session) 518 { 519 return (crypto_session->softc); 520 } 521 522 const struct crypto_session_params * 523 crypto_get_params(crypto_session_t crypto_session) 524 { 525 return (&crypto_session->csp); 526 } 527 528 struct auth_hash * 529 crypto_auth_hash(const struct crypto_session_params *csp) 530 { 531 532 switch (csp->csp_auth_alg) { 533 case CRYPTO_MD5_HMAC: 534 return (&auth_hash_hmac_md5); 535 case CRYPTO_SHA1_HMAC: 536 return (&auth_hash_hmac_sha1); 537 case CRYPTO_SHA2_224_HMAC: 538 return (&auth_hash_hmac_sha2_224); 539 case CRYPTO_SHA2_256_HMAC: 540 return (&auth_hash_hmac_sha2_256); 541 case CRYPTO_SHA2_384_HMAC: 542 return (&auth_hash_hmac_sha2_384); 543 case CRYPTO_SHA2_512_HMAC: 544 return (&auth_hash_hmac_sha2_512); 545 case CRYPTO_NULL_HMAC: 546 return (&auth_hash_null); 547 case CRYPTO_RIPEMD160_HMAC: 548 return (&auth_hash_hmac_ripemd_160); 549 case CRYPTO_MD5_KPDK: 550 return (&auth_hash_key_md5); 551 case CRYPTO_SHA1_KPDK: 552 return (&auth_hash_key_sha1); 553 #ifdef notyet 554 case CRYPTO_MD5: 555 return (&auth_hash_md5); 556 #endif 557 case CRYPTO_SHA1: 558 return (&auth_hash_sha1); 559 case CRYPTO_SHA2_224: 560 return (&auth_hash_sha2_224); 561 case CRYPTO_SHA2_256: 562 return (&auth_hash_sha2_256); 563 case CRYPTO_SHA2_384: 564 return (&auth_hash_sha2_384); 565 case CRYPTO_SHA2_512: 566 return (&auth_hash_sha2_512); 567 case CRYPTO_AES_NIST_GMAC: 568 switch (csp->csp_auth_klen) { 569 case 128 / 8: 570 return (&auth_hash_nist_gmac_aes_128); 571 case 192 / 8: 572 return (&auth_hash_nist_gmac_aes_192); 573 case 256 / 8: 574 return (&auth_hash_nist_gmac_aes_256); 575 default: 576 return (NULL); 577 } 578 case CRYPTO_BLAKE2B: 579 return (&auth_hash_blake2b); 580 case CRYPTO_BLAKE2S: 581 return (&auth_hash_blake2s); 582 case CRYPTO_POLY1305: 583 return (&auth_hash_poly1305); 584 case CRYPTO_AES_CCM_CBC_MAC: 585 switch (csp->csp_auth_klen) { 586 case 128 / 8: 587 return (&auth_hash_ccm_cbc_mac_128); 588 case 192 / 8: 589 return (&auth_hash_ccm_cbc_mac_192); 590 case 256 / 8: 591 return (&auth_hash_ccm_cbc_mac_256); 592 default: 593 return (NULL); 594 } 595 default: 596 return (NULL); 597 } 598 } 599 600 struct enc_xform * 601 crypto_cipher(const struct crypto_session_params *csp) 602 { 603 604 switch (csp->csp_cipher_alg) { 605 case CRYPTO_DES_CBC: 606 return (&enc_xform_des); 607 case CRYPTO_3DES_CBC: 608 return (&enc_xform_3des); 609 case CRYPTO_BLF_CBC: 610 return (&enc_xform_blf); 611 case CRYPTO_CAST_CBC: 612 return (&enc_xform_cast5); 613 case CRYPTO_SKIPJACK_CBC: 614 return (&enc_xform_skipjack); 615 case CRYPTO_RIJNDAEL128_CBC: 616 return (&enc_xform_rijndael128); 617 case CRYPTO_AES_XTS: 618 return (&enc_xform_aes_xts); 619 case CRYPTO_AES_ICM: 620 return (&enc_xform_aes_icm); 621 case CRYPTO_AES_NIST_GCM_16: 622 return (&enc_xform_aes_nist_gcm); 623 case CRYPTO_CAMELLIA_CBC: 624 return (&enc_xform_camellia); 625 case CRYPTO_NULL_CBC: 626 return (&enc_xform_null); 627 case CRYPTO_CHACHA20: 628 return (&enc_xform_chacha20); 629 case CRYPTO_AES_CCM_16: 630 return (&enc_xform_ccm); 631 default: 632 return (NULL); 633 } 634 } 635 636 static struct cryptocap * 637 crypto_checkdriver(u_int32_t hid) 638 { 639 640 return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]); 641 } 642 643 /* 644 * Select a driver for a new session that supports the specified 645 * algorithms and, optionally, is constrained according to the flags. 646 */ 647 static struct cryptocap * 648 crypto_select_driver(const struct crypto_session_params *csp, int flags) 649 { 650 struct cryptocap *cap, *best; 651 int best_match, error, hid; 652 653 CRYPTO_DRIVER_ASSERT(); 654 655 best = NULL; 656 for (hid = 0; hid < crypto_drivers_size; hid++) { 657 /* 658 * If there is no driver for this slot, or the driver 659 * is not appropriate (hardware or software based on 660 * match), then skip. 661 */ 662 cap = crypto_drivers[hid]; 663 if (cap == NULL || 664 (cap->cc_flags & flags) == 0) 665 continue; 666 667 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp); 668 if (error >= 0) 669 continue; 670 671 /* 672 * Use the driver with the highest probe value. 673 * Hardware drivers use a higher probe value than 674 * software. In case of a tie, prefer the driver with 675 * the fewest active sessions. 676 */ 677 if (best == NULL || error > best_match || 678 (error == best_match && 679 cap->cc_sessions < best->cc_sessions)) { 680 best = cap; 681 best_match = error; 682 } 683 } 684 return best; 685 } 686 687 static bool 688 alg_is_compression(int alg) 689 { 690 691 if (alg == CRYPTO_DEFLATE_COMP) 692 return (true); 693 return (false); 694 } 695 696 static bool 697 alg_is_cipher(int alg) 698 { 699 700 if (alg >= CRYPTO_DES_CBC && alg <= CRYPTO_SKIPJACK_CBC) 701 return (true); 702 if (alg >= CRYPTO_AES_CBC && alg <= CRYPTO_ARC4) 703 return (true); 704 if (alg == CRYPTO_NULL_CBC) 705 return (true); 706 if (alg >= CRYPTO_CAMELLIA_CBC && alg <= CRYPTO_AES_ICM) 707 return (true); 708 if (alg == CRYPTO_CHACHA20) 709 return (true); 710 return (false); 711 } 712 713 static bool 714 alg_is_digest(int alg) 715 { 716 717 if (alg >= CRYPTO_MD5_HMAC && alg <= CRYPTO_SHA1_KPDK) 718 return (true); 719 if (alg >= CRYPTO_MD5 && alg <= CRYPTO_SHA1) 720 return (true); 721 if (alg == CRYPTO_NULL_HMAC) 722 return (true); 723 if (alg >= CRYPTO_SHA2_256_HMAC && alg <= CRYPTO_SHA2_512_HMAC) 724 return (true); 725 if (alg >= CRYPTO_SHA2_256_HMAC && alg <= CRYPTO_SHA2_512_HMAC) 726 return (true); 727 if (alg == CRYPTO_AES_NIST_GMAC) 728 return (true); 729 if (alg >= CRYPTO_BLAKE2B && alg <= CRYPTO_BLAKE2S) 730 return (true); 731 if (alg >= CRYPTO_SHA2_224_HMAC && alg <= CRYPTO_POLY1305) 732 return (true); 733 if (alg == CRYPTO_AES_CCM_CBC_MAC) 734 return (true); 735 return (false); 736 } 737 738 static bool 739 alg_is_keyed_digest(int alg) 740 { 741 742 if (alg >= CRYPTO_MD5_HMAC && alg <= CRYPTO_SHA1_KPDK) 743 return (true); 744 if (alg >= CRYPTO_SHA2_256_HMAC && alg <= CRYPTO_SHA2_512_HMAC) 745 return (true); 746 if (alg == CRYPTO_AES_NIST_GMAC) 747 return (true); 748 if (alg >= CRYPTO_BLAKE2B && alg <= CRYPTO_BLAKE2S) 749 return (true); 750 if (alg == CRYPTO_SHA2_224_HMAC) 751 return (true); 752 if (alg == CRYPTO_POLY1305) 753 return (true); 754 if (alg == CRYPTO_AES_CCM_CBC_MAC) 755 return (true); 756 return (false); 757 } 758 759 static bool 760 alg_is_aead(int alg) 761 { 762 763 if (alg == CRYPTO_AES_NIST_GCM_16) 764 return (true); 765 if (alg == CRYPTO_AES_CCM_16) 766 return (true); 767 return (false); 768 } 769 770 /* Various sanity checks on crypto session parameters. */ 771 static bool 772 check_csp(const struct crypto_session_params *csp) 773 { 774 struct auth_hash *axf; 775 776 /* Mode-independent checks. */ 777 if (csp->csp_flags != 0) 778 return (false); 779 if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 || 780 csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0) 781 return (false); 782 if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0) 783 return (false); 784 if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0) 785 return (false); 786 787 switch (csp->csp_mode) { 788 case CSP_MODE_COMPRESS: 789 if (!alg_is_compression(csp->csp_cipher_alg)) 790 return (false); 791 if (csp->csp_flags != 0) 792 return (false); 793 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 || 794 csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 795 csp->csp_auth_mlen != 0) 796 return (false); 797 break; 798 case CSP_MODE_CIPHER: 799 if (!alg_is_cipher(csp->csp_cipher_alg)) 800 return (false); 801 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 802 if (csp->csp_cipher_klen == 0) 803 return (false); 804 if (csp->csp_cipher_alg != CRYPTO_ARC4) { 805 if (csp->csp_ivlen == 0) 806 return (false); 807 } 808 } 809 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 810 return (false); 811 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 812 csp->csp_auth_mlen != 0) 813 return (false); 814 break; 815 case CSP_MODE_DIGEST: 816 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0) 817 return (false); 818 819 /* IV is optional for digests (e.g. GMAC). */ 820 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 821 return (false); 822 if (!alg_is_digest(csp->csp_auth_alg)) 823 return (false); 824 825 /* Key is optional for BLAKE2 digests. */ 826 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 827 csp->csp_auth_alg == CRYPTO_BLAKE2S) 828 ; 829 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 830 if (csp->csp_auth_klen == 0) 831 return (false); 832 } else { 833 if (csp->csp_auth_klen != 0) 834 return (false); 835 } 836 if (csp->csp_auth_mlen != 0) { 837 axf = crypto_auth_hash(csp); 838 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 839 return (false); 840 } 841 break; 842 case CSP_MODE_AEAD: 843 if (!alg_is_aead(csp->csp_cipher_alg)) 844 return (false); 845 if (csp->csp_cipher_klen == 0) 846 return (false); 847 if (csp->csp_ivlen == 0 || 848 csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 849 return (false); 850 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0) 851 return (false); 852 853 /* 854 * XXX: Would be nice to have a better way to get this 855 * value. 856 */ 857 switch (csp->csp_cipher_alg) { 858 case CRYPTO_AES_NIST_GCM_16: 859 case CRYPTO_AES_CCM_16: 860 if (csp->csp_auth_mlen > 16) 861 return (false); 862 break; 863 } 864 break; 865 case CSP_MODE_ETA: 866 if (!alg_is_cipher(csp->csp_cipher_alg)) 867 return (false); 868 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 869 if (csp->csp_cipher_klen == 0) 870 return (false); 871 if (csp->csp_cipher_alg != CRYPTO_ARC4) { 872 if (csp->csp_ivlen == 0) 873 return (false); 874 } 875 } 876 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 877 return (false); 878 if (!alg_is_digest(csp->csp_auth_alg)) 879 return (false); 880 881 /* Key is optional for BLAKE2 digests. */ 882 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 883 csp->csp_auth_alg == CRYPTO_BLAKE2S) 884 ; 885 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 886 if (csp->csp_auth_klen == 0) 887 return (false); 888 } else { 889 if (csp->csp_auth_klen != 0) 890 return (false); 891 } 892 if (csp->csp_auth_mlen != 0) { 893 axf = crypto_auth_hash(csp); 894 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 895 return (false); 896 } 897 break; 898 default: 899 return (false); 900 } 901 902 return (true); 903 } 904 905 /* 906 * Delete a session after it has been detached from its driver. 907 */ 908 static void 909 crypto_deletesession(crypto_session_t cses) 910 { 911 struct cryptocap *cap; 912 913 cap = cses->cap; 914 915 explicit_bzero(cses->softc, cap->cc_session_size); 916 free(cses->softc, M_CRYPTO_DATA); 917 uma_zfree(cryptoses_zone, cses); 918 919 CRYPTO_DRIVER_LOCK(); 920 cap->cc_sessions--; 921 if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 922 wakeup(cap); 923 CRYPTO_DRIVER_UNLOCK(); 924 cap_rele(cap); 925 } 926 927 /* 928 * Create a new session. The crid argument specifies a crypto 929 * driver to use or constraints on a driver to select (hardware 930 * only, software only, either). Whatever driver is selected 931 * must be capable of the requested crypto algorithms. 932 */ 933 int 934 crypto_newsession(crypto_session_t *cses, 935 const struct crypto_session_params *csp, int crid) 936 { 937 crypto_session_t res; 938 struct cryptocap *cap; 939 int err; 940 941 if (!check_csp(csp)) 942 return (EINVAL); 943 944 res = NULL; 945 946 CRYPTO_DRIVER_LOCK(); 947 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 948 /* 949 * Use specified driver; verify it is capable. 950 */ 951 cap = crypto_checkdriver(crid); 952 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0) 953 cap = NULL; 954 } else { 955 /* 956 * No requested driver; select based on crid flags. 957 */ 958 cap = crypto_select_driver(csp, crid); 959 } 960 if (cap == NULL) { 961 CRYPTO_DRIVER_UNLOCK(); 962 CRYPTDEB("no driver"); 963 return (EOPNOTSUPP); 964 } 965 cap_ref(cap); 966 cap->cc_sessions++; 967 CRYPTO_DRIVER_UNLOCK(); 968 969 res = uma_zalloc(cryptoses_zone, M_WAITOK | M_ZERO); 970 res->cap = cap; 971 res->softc = malloc(cap->cc_session_size, M_CRYPTO_DATA, M_WAITOK | 972 M_ZERO); 973 res->csp = *csp; 974 975 /* Call the driver initialization routine. */ 976 err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp); 977 if (err != 0) { 978 CRYPTDEB("dev newsession failed: %d", err); 979 crypto_deletesession(res); 980 return (err); 981 } 982 983 *cses = res; 984 return (0); 985 } 986 987 /* 988 * Delete an existing session (or a reserved session on an unregistered 989 * driver). 990 */ 991 void 992 crypto_freesession(crypto_session_t cses) 993 { 994 struct cryptocap *cap; 995 996 if (cses == NULL) 997 return; 998 999 cap = cses->cap; 1000 1001 /* Call the driver cleanup routine, if available. */ 1002 CRYPTODEV_FREESESSION(cap->cc_dev, cses); 1003 1004 crypto_deletesession(cses); 1005 } 1006 1007 /* 1008 * Return a new driver id. Registers a driver with the system so that 1009 * it can be probed by subsequent sessions. 1010 */ 1011 int32_t 1012 crypto_get_driverid(device_t dev, size_t sessionsize, int flags) 1013 { 1014 struct cryptocap *cap, **newdrv; 1015 int i; 1016 1017 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 1018 device_printf(dev, 1019 "no flags specified when registering driver\n"); 1020 return -1; 1021 } 1022 1023 cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1024 cap->cc_dev = dev; 1025 cap->cc_session_size = sessionsize; 1026 cap->cc_flags = flags; 1027 refcount_init(&cap->cc_refs, 1); 1028 1029 CRYPTO_DRIVER_LOCK(); 1030 for (;;) { 1031 for (i = 0; i < crypto_drivers_size; i++) { 1032 if (crypto_drivers[i] == NULL) 1033 break; 1034 } 1035 1036 if (i < crypto_drivers_size) 1037 break; 1038 1039 /* Out of entries, allocate some more. */ 1040 1041 if (2 * crypto_drivers_size <= crypto_drivers_size) { 1042 CRYPTO_DRIVER_UNLOCK(); 1043 printf("crypto: driver count wraparound!\n"); 1044 cap_rele(cap); 1045 return (-1); 1046 } 1047 CRYPTO_DRIVER_UNLOCK(); 1048 1049 newdrv = malloc(2 * crypto_drivers_size * 1050 sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1051 1052 CRYPTO_DRIVER_LOCK(); 1053 memcpy(newdrv, crypto_drivers, 1054 crypto_drivers_size * sizeof(*crypto_drivers)); 1055 1056 crypto_drivers_size *= 2; 1057 1058 free(crypto_drivers, M_CRYPTO_DATA); 1059 crypto_drivers = newdrv; 1060 } 1061 1062 cap->cc_hid = i; 1063 crypto_drivers[i] = cap; 1064 CRYPTO_DRIVER_UNLOCK(); 1065 1066 if (bootverbose) 1067 printf("crypto: assign %s driver id %u, flags 0x%x\n", 1068 device_get_nameunit(dev), i, flags); 1069 1070 return i; 1071 } 1072 1073 /* 1074 * Lookup a driver by name. We match against the full device 1075 * name and unit, and against just the name. The latter gives 1076 * us a simple widlcarding by device name. On success return the 1077 * driver/hardware identifier; otherwise return -1. 1078 */ 1079 int 1080 crypto_find_driver(const char *match) 1081 { 1082 struct cryptocap *cap; 1083 int i, len = strlen(match); 1084 1085 CRYPTO_DRIVER_LOCK(); 1086 for (i = 0; i < crypto_drivers_size; i++) { 1087 if (crypto_drivers[i] == NULL) 1088 continue; 1089 cap = crypto_drivers[i]; 1090 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 || 1091 strncmp(match, device_get_name(cap->cc_dev), len) == 0) { 1092 CRYPTO_DRIVER_UNLOCK(); 1093 return (i); 1094 } 1095 } 1096 CRYPTO_DRIVER_UNLOCK(); 1097 return (-1); 1098 } 1099 1100 /* 1101 * Return the device_t for the specified driver or NULL 1102 * if the driver identifier is invalid. 1103 */ 1104 device_t 1105 crypto_find_device_byhid(int hid) 1106 { 1107 struct cryptocap *cap; 1108 device_t dev; 1109 1110 dev = NULL; 1111 CRYPTO_DRIVER_LOCK(); 1112 cap = crypto_checkdriver(hid); 1113 if (cap != NULL) 1114 dev = cap->cc_dev; 1115 CRYPTO_DRIVER_UNLOCK(); 1116 return (dev); 1117 } 1118 1119 /* 1120 * Return the device/driver capabilities. 1121 */ 1122 int 1123 crypto_getcaps(int hid) 1124 { 1125 struct cryptocap *cap; 1126 int flags; 1127 1128 flags = 0; 1129 CRYPTO_DRIVER_LOCK(); 1130 cap = crypto_checkdriver(hid); 1131 if (cap != NULL) 1132 flags = cap->cc_flags; 1133 CRYPTO_DRIVER_UNLOCK(); 1134 return (flags); 1135 } 1136 1137 /* 1138 * Register support for a key-related algorithm. This routine 1139 * is called once for each algorithm supported a driver. 1140 */ 1141 int 1142 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags) 1143 { 1144 struct cryptocap *cap; 1145 int err; 1146 1147 CRYPTO_DRIVER_LOCK(); 1148 1149 cap = crypto_checkdriver(driverid); 1150 if (cap != NULL && 1151 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { 1152 /* 1153 * XXX Do some performance testing to determine placing. 1154 * XXX We probably need an auxiliary data structure that 1155 * XXX describes relative performances. 1156 */ 1157 1158 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 1159 if (bootverbose) 1160 printf("crypto: %s registers key alg %u flags %u\n" 1161 , device_get_nameunit(cap->cc_dev) 1162 , kalg 1163 , flags 1164 ); 1165 err = 0; 1166 } else 1167 err = EINVAL; 1168 1169 CRYPTO_DRIVER_UNLOCK(); 1170 return err; 1171 } 1172 1173 /* 1174 * Unregister all algorithms associated with a crypto driver. 1175 * If there are pending sessions using it, leave enough information 1176 * around so that subsequent calls using those sessions will 1177 * correctly detect the driver has been unregistered and reroute 1178 * requests. 1179 */ 1180 int 1181 crypto_unregister_all(u_int32_t driverid) 1182 { 1183 struct cryptocap *cap; 1184 1185 CRYPTO_DRIVER_LOCK(); 1186 cap = crypto_checkdriver(driverid); 1187 if (cap == NULL) { 1188 CRYPTO_DRIVER_UNLOCK(); 1189 return (EINVAL); 1190 } 1191 1192 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 1193 crypto_drivers[driverid] = NULL; 1194 1195 /* 1196 * XXX: This doesn't do anything to kick sessions that 1197 * have no pending operations. 1198 */ 1199 while (cap->cc_sessions != 0 || cap->cc_koperations != 0) 1200 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0); 1201 CRYPTO_DRIVER_UNLOCK(); 1202 cap_rele(cap); 1203 1204 return (0); 1205 } 1206 1207 /* 1208 * Clear blockage on a driver. The what parameter indicates whether 1209 * the driver is now ready for cryptop's and/or cryptokop's. 1210 */ 1211 int 1212 crypto_unblock(u_int32_t driverid, int what) 1213 { 1214 struct cryptocap *cap; 1215 int err; 1216 1217 CRYPTO_Q_LOCK(); 1218 cap = crypto_checkdriver(driverid); 1219 if (cap != NULL) { 1220 if (what & CRYPTO_SYMQ) 1221 cap->cc_qblocked = 0; 1222 if (what & CRYPTO_ASYMQ) 1223 cap->cc_kqblocked = 0; 1224 if (crp_sleep) 1225 wakeup_one(&crp_q); 1226 err = 0; 1227 } else 1228 err = EINVAL; 1229 CRYPTO_Q_UNLOCK(); 1230 1231 return err; 1232 } 1233 1234 #ifdef INVARIANTS 1235 /* Various sanity checks on crypto requests. */ 1236 static void 1237 crp_sanity(struct cryptop *crp) 1238 { 1239 struct crypto_session_params *csp; 1240 1241 KASSERT(crp->crp_session != NULL, ("incoming crp without a session")); 1242 KASSERT(crp->crp_ilen >= 0, ("incoming crp with -ve input length")); 1243 KASSERT(crp->crp_etype == 0, ("incoming crp with error")); 1244 KASSERT(!(crp->crp_flags & CRYPTO_F_DONE), 1245 ("incoming crp already done")); 1246 1247 csp = &crp->crp_session->csp; 1248 switch (csp->csp_mode) { 1249 case CSP_MODE_COMPRESS: 1250 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS || 1251 crp->crp_op == CRYPTO_OP_DECOMPRESS, 1252 ("invalid compression op %x", crp->crp_op)); 1253 break; 1254 case CSP_MODE_CIPHER: 1255 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT || 1256 crp->crp_op == CRYPTO_OP_DECRYPT, 1257 ("invalid cipher op %x", crp->crp_op)); 1258 break; 1259 case CSP_MODE_DIGEST: 1260 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST || 1261 crp->crp_op == CRYPTO_OP_VERIFY_DIGEST, 1262 ("invalid digest op %x", crp->crp_op)); 1263 break; 1264 case CSP_MODE_AEAD: 1265 KASSERT(crp->crp_op == 1266 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1267 crp->crp_op == 1268 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1269 ("invalid AEAD op %x", crp->crp_op)); 1270 if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16) 1271 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1272 ("GCM without a separate IV")); 1273 if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16) 1274 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1275 ("CCM without a separate IV")); 1276 break; 1277 case CSP_MODE_ETA: 1278 KASSERT(crp->crp_op == 1279 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1280 crp->crp_op == 1281 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1282 ("invalid ETA op %x", crp->crp_op)); 1283 break; 1284 } 1285 KASSERT((crp->crp_flags & CRYPTO_F_IV_GENERATE) == 0 || 1286 crp->crp_op == CRYPTO_OP_ENCRYPT || 1287 crp->crp_op == (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST), 1288 ("IV_GENERATE set for non-encryption operation %x", crp->crp_op)); 1289 KASSERT((crp->crp_flags & 1290 (CRYPTO_F_IV_SEPARATE | CRYPTO_F_IV_GENERATE)) != 1291 (CRYPTO_F_IV_SEPARATE | CRYPTO_F_IV_GENERATE), 1292 ("crp with both IV_SEPARATE and IV_GENERATE set")); 1293 KASSERT(crp->crp_buf_type >= CRYPTO_BUF_CONTIG && 1294 crp->crp_buf_type <= CRYPTO_BUF_MBUF, 1295 ("invalid crp buffer type %d", crp->crp_buf_type)); 1296 if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1297 KASSERT(crp->crp_aad_start == 0 || 1298 crp->crp_aad_start < crp->crp_ilen, 1299 ("invalid AAD start")); 1300 KASSERT(crp->crp_aad_length != 0 || crp->crp_aad_start == 0, 1301 ("AAD with zero length and non-zero start")); 1302 KASSERT(crp->crp_aad_length == 0 || 1303 crp->crp_aad_start + crp->crp_aad_length <= crp->crp_ilen, 1304 ("AAD outside input length")); 1305 } else { 1306 KASSERT(crp->crp_aad_start == 0 && crp->crp_aad_length == 0, 1307 ("AAD region in request not supporting AAD")); 1308 } 1309 if (csp->csp_ivlen == 0) { 1310 KASSERT((crp->crp_flags & 1311 (CRYPTO_F_IV_SEPARATE | CRYPTO_F_IV_GENERATE)) == 0, 1312 ("IV_GENERATE or IV_SEPARATE set when IV isn't used")); 1313 KASSERT(crp->crp_iv_start == 0, 1314 ("crp_iv_start set when IV isn't used")); 1315 } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) { 1316 KASSERT(crp->crp_iv_start == 0, 1317 ("IV_SEPARATE used with non-zero IV start")); 1318 } else { 1319 KASSERT(crp->crp_iv_start < crp->crp_ilen, 1320 ("invalid IV start")); 1321 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= crp->crp_ilen, 1322 ("IV outside input length")); 1323 } 1324 KASSERT(crp->crp_payload_start == 0 || 1325 crp->crp_payload_start < crp->crp_ilen, 1326 ("invalid payload start")); 1327 KASSERT(crp->crp_payload_start + crp->crp_payload_length <= 1328 crp->crp_ilen, ("payload outside input length")); 1329 if (csp->csp_mode == CSP_MODE_DIGEST || 1330 csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1331 KASSERT(crp->crp_digest_start == 0 || 1332 crp->crp_digest_start < crp->crp_ilen, 1333 ("invalid digest start")); 1334 /* XXX: For the mlen == 0 case this check isn't perfect. */ 1335 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= 1336 crp->crp_ilen, 1337 ("digest outside input length")); 1338 } else { 1339 KASSERT(crp->crp_digest_start == 0, 1340 ("non-zero digest start for request without a digest")); 1341 } 1342 if (csp->csp_cipher_klen != 0) 1343 KASSERT(csp->csp_cipher_key != NULL || 1344 crp->crp_cipher_key != NULL, 1345 ("cipher request without a key")); 1346 if (csp->csp_auth_klen != 0) 1347 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL, 1348 ("auth request without a key")); 1349 KASSERT(crp->crp_callback != NULL, ("incoming crp without callback")); 1350 } 1351 #endif 1352 1353 /* 1354 * Add a crypto request to a queue, to be processed by the kernel thread. 1355 */ 1356 int 1357 crypto_dispatch(struct cryptop *crp) 1358 { 1359 struct cryptocap *cap; 1360 int result; 1361 1362 #ifdef INVARIANTS 1363 crp_sanity(crp); 1364 #endif 1365 1366 /* TODO: Handle CRYPTO_F_IV_GENERATE so drivers don't have to. */ 1367 1368 cryptostats.cs_ops++; 1369 1370 #ifdef CRYPTO_TIMING 1371 if (crypto_timing) 1372 binuptime(&crp->crp_tstamp); 1373 #endif 1374 1375 crp->crp_retw_id = ((uintptr_t)crp->crp_session) % crypto_workers_num; 1376 1377 if (CRYPTOP_ASYNC(crp)) { 1378 if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) { 1379 struct crypto_ret_worker *ret_worker; 1380 1381 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1382 1383 CRYPTO_RETW_LOCK(ret_worker); 1384 crp->crp_seq = ret_worker->reorder_ops++; 1385 CRYPTO_RETW_UNLOCK(ret_worker); 1386 } 1387 1388 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp); 1389 taskqueue_enqueue(crypto_tq, &crp->crp_task); 1390 return (0); 1391 } 1392 1393 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { 1394 /* 1395 * Caller marked the request to be processed 1396 * immediately; dispatch it directly to the 1397 * driver unless the driver is currently blocked. 1398 */ 1399 cap = crp->crp_session->cap; 1400 if (!cap->cc_qblocked) { 1401 result = crypto_invoke(cap, crp, 0); 1402 if (result != ERESTART) 1403 return (result); 1404 /* 1405 * The driver ran out of resources, put the request on 1406 * the queue. 1407 */ 1408 } 1409 } 1410 crypto_batch_enqueue(crp); 1411 return 0; 1412 } 1413 1414 void 1415 crypto_batch_enqueue(struct cryptop *crp) 1416 { 1417 1418 CRYPTO_Q_LOCK(); 1419 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 1420 if (crp_sleep) 1421 wakeup_one(&crp_q); 1422 CRYPTO_Q_UNLOCK(); 1423 } 1424 1425 /* 1426 * Add an asymetric crypto request to a queue, 1427 * to be processed by the kernel thread. 1428 */ 1429 int 1430 crypto_kdispatch(struct cryptkop *krp) 1431 { 1432 int error; 1433 1434 cryptostats.cs_kops++; 1435 1436 krp->krp_cap = NULL; 1437 error = crypto_kinvoke(krp); 1438 if (error == ERESTART) { 1439 CRYPTO_Q_LOCK(); 1440 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); 1441 if (crp_sleep) 1442 wakeup_one(&crp_q); 1443 CRYPTO_Q_UNLOCK(); 1444 error = 0; 1445 } 1446 return error; 1447 } 1448 1449 /* 1450 * Verify a driver is suitable for the specified operation. 1451 */ 1452 static __inline int 1453 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp) 1454 { 1455 return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0; 1456 } 1457 1458 /* 1459 * Select a driver for an asym operation. The driver must 1460 * support the necessary algorithm. The caller can constrain 1461 * which device is selected with the flags parameter. The 1462 * algorithm we use here is pretty stupid; just use the first 1463 * driver that supports the algorithms we need. If there are 1464 * multiple suitable drivers we choose the driver with the 1465 * fewest active operations. We prefer hardware-backed 1466 * drivers to software ones when either may be used. 1467 */ 1468 static struct cryptocap * 1469 crypto_select_kdriver(const struct cryptkop *krp, int flags) 1470 { 1471 struct cryptocap *cap, *best; 1472 int match, hid; 1473 1474 CRYPTO_DRIVER_ASSERT(); 1475 1476 /* 1477 * Look first for hardware crypto devices if permitted. 1478 */ 1479 if (flags & CRYPTOCAP_F_HARDWARE) 1480 match = CRYPTOCAP_F_HARDWARE; 1481 else 1482 match = CRYPTOCAP_F_SOFTWARE; 1483 best = NULL; 1484 again: 1485 for (hid = 0; hid < crypto_drivers_size; hid++) { 1486 /* 1487 * If there is no driver for this slot, or the driver 1488 * is not appropriate (hardware or software based on 1489 * match), then skip. 1490 */ 1491 cap = crypto_drivers[hid]; 1492 if (cap->cc_dev == NULL || 1493 (cap->cc_flags & match) == 0) 1494 continue; 1495 1496 /* verify all the algorithms are supported. */ 1497 if (kdriver_suitable(cap, krp)) { 1498 if (best == NULL || 1499 cap->cc_koperations < best->cc_koperations) 1500 best = cap; 1501 } 1502 } 1503 if (best != NULL) 1504 return best; 1505 if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { 1506 /* sort of an Algol 68-style for loop */ 1507 match = CRYPTOCAP_F_SOFTWARE; 1508 goto again; 1509 } 1510 return best; 1511 } 1512 1513 /* 1514 * Choose a driver for an asymmetric crypto request. 1515 */ 1516 static struct cryptocap * 1517 crypto_lookup_kdriver(struct cryptkop *krp) 1518 { 1519 struct cryptocap *cap; 1520 uint32_t crid; 1521 1522 /* If this request is requeued, it might already have a driver. */ 1523 cap = krp->krp_cap; 1524 if (cap != NULL) 1525 return (cap); 1526 1527 /* Use krp_crid to choose a driver. */ 1528 crid = krp->krp_crid; 1529 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 1530 cap = crypto_checkdriver(crid); 1531 if (cap != NULL) { 1532 /* 1533 * Driver present, it must support the 1534 * necessary algorithm and, if s/w drivers are 1535 * excluded, it must be registered as 1536 * hardware-backed. 1537 */ 1538 if (!kdriver_suitable(cap, krp) || 1539 (!crypto_devallowsoft && 1540 (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0)) 1541 cap = NULL; 1542 } 1543 } else { 1544 /* 1545 * No requested driver; select based on crid flags. 1546 */ 1547 if (!crypto_devallowsoft) /* NB: disallow s/w drivers */ 1548 crid &= ~CRYPTOCAP_F_SOFTWARE; 1549 cap = crypto_select_kdriver(krp, crid); 1550 } 1551 1552 if (cap != NULL) { 1553 krp->krp_cap = cap_ref(cap); 1554 krp->krp_hid = cap->cc_hid; 1555 } 1556 return (cap); 1557 } 1558 1559 /* 1560 * Dispatch an asymmetric crypto request. 1561 */ 1562 static int 1563 crypto_kinvoke(struct cryptkop *krp) 1564 { 1565 struct cryptocap *cap = NULL; 1566 int error; 1567 1568 KASSERT(krp != NULL, ("%s: krp == NULL", __func__)); 1569 KASSERT(krp->krp_callback != NULL, 1570 ("%s: krp->crp_callback == NULL", __func__)); 1571 1572 CRYPTO_DRIVER_LOCK(); 1573 cap = crypto_lookup_kdriver(krp); 1574 if (cap == NULL) { 1575 CRYPTO_DRIVER_UNLOCK(); 1576 krp->krp_status = ENODEV; 1577 crypto_kdone(krp); 1578 return (0); 1579 } 1580 1581 /* 1582 * If the device is blocked, return ERESTART to requeue it. 1583 */ 1584 if (cap->cc_kqblocked) { 1585 /* 1586 * XXX: Previously this set krp_status to ERESTART and 1587 * invoked crypto_kdone but the caller would still 1588 * requeue it. 1589 */ 1590 CRYPTO_DRIVER_UNLOCK(); 1591 return (ERESTART); 1592 } 1593 1594 cap->cc_koperations++; 1595 CRYPTO_DRIVER_UNLOCK(); 1596 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0); 1597 if (error == ERESTART) { 1598 CRYPTO_DRIVER_LOCK(); 1599 cap->cc_koperations--; 1600 CRYPTO_DRIVER_UNLOCK(); 1601 return (error); 1602 } 1603 1604 KASSERT(error == 0, ("error %d returned from crypto_kprocess", error)); 1605 return (0); 1606 } 1607 1608 #ifdef CRYPTO_TIMING 1609 static void 1610 crypto_tstat(struct cryptotstat *ts, struct bintime *bt) 1611 { 1612 struct bintime now, delta; 1613 struct timespec t; 1614 uint64_t u; 1615 1616 binuptime(&now); 1617 u = now.frac; 1618 delta.frac = now.frac - bt->frac; 1619 delta.sec = now.sec - bt->sec; 1620 if (u < delta.frac) 1621 delta.sec--; 1622 bintime2timespec(&delta, &t); 1623 timespecadd(&ts->acc, &t, &ts->acc); 1624 if (timespeccmp(&t, &ts->min, <)) 1625 ts->min = t; 1626 if (timespeccmp(&t, &ts->max, >)) 1627 ts->max = t; 1628 ts->count++; 1629 1630 *bt = now; 1631 } 1632 #endif 1633 1634 static void 1635 crypto_task_invoke(void *ctx, int pending) 1636 { 1637 struct cryptocap *cap; 1638 struct cryptop *crp; 1639 int result; 1640 1641 crp = (struct cryptop *)ctx; 1642 cap = crp->crp_session->cap; 1643 result = crypto_invoke(cap, crp, 0); 1644 if (result == ERESTART) 1645 crypto_batch_enqueue(crp); 1646 } 1647 1648 /* 1649 * Dispatch a crypto request to the appropriate crypto devices. 1650 */ 1651 static int 1652 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) 1653 { 1654 1655 KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); 1656 KASSERT(crp->crp_callback != NULL, 1657 ("%s: crp->crp_callback == NULL", __func__)); 1658 KASSERT(crp->crp_session != NULL, 1659 ("%s: crp->crp_session == NULL", __func__)); 1660 1661 #ifdef CRYPTO_TIMING 1662 if (crypto_timing) 1663 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp); 1664 #endif 1665 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1666 struct crypto_session_params csp; 1667 crypto_session_t nses; 1668 1669 /* 1670 * Driver has unregistered; migrate the session and return 1671 * an error to the caller so they'll resubmit the op. 1672 * 1673 * XXX: What if there are more already queued requests for this 1674 * session? 1675 * 1676 * XXX: Real solution is to make sessions refcounted 1677 * and force callers to hold a reference when 1678 * assigning to crp_session. Could maybe change 1679 * crypto_getreq to accept a session pointer to make 1680 * that work. Alternatively, we could abandon the 1681 * notion of rewriting crp_session in requests forcing 1682 * the caller to deal with allocating a new session. 1683 * Perhaps provide a method to allow a crp's session to 1684 * be swapped that callers could use. 1685 */ 1686 csp = crp->crp_session->csp; 1687 crypto_freesession(crp->crp_session); 1688 1689 /* 1690 * XXX: Key pointers may no longer be valid. If we 1691 * really want to support this we need to define the 1692 * KPI such that 'csp' is required to be valid for the 1693 * duration of a session by the caller perhaps. 1694 * 1695 * XXX: If the keys have been changed this will reuse 1696 * the old keys. This probably suggests making 1697 * rekeying more explicit and updating the key 1698 * pointers in 'csp' when the keys change. 1699 */ 1700 if (crypto_newsession(&nses, &csp, 1701 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) 1702 crp->crp_session = nses; 1703 1704 crp->crp_etype = EAGAIN; 1705 crypto_done(crp); 1706 return 0; 1707 } else { 1708 /* 1709 * Invoke the driver to process the request. 1710 */ 1711 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); 1712 } 1713 } 1714 1715 void 1716 crypto_freereq(struct cryptop *crp) 1717 { 1718 1719 if (crp == NULL) 1720 return; 1721 1722 #ifdef DIAGNOSTIC 1723 { 1724 struct cryptop *crp2; 1725 struct crypto_ret_worker *ret_worker; 1726 1727 CRYPTO_Q_LOCK(); 1728 TAILQ_FOREACH(crp2, &crp_q, crp_next) { 1729 KASSERT(crp2 != crp, 1730 ("Freeing cryptop from the crypto queue (%p).", 1731 crp)); 1732 } 1733 CRYPTO_Q_UNLOCK(); 1734 1735 FOREACH_CRYPTO_RETW(ret_worker) { 1736 CRYPTO_RETW_LOCK(ret_worker); 1737 TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) { 1738 KASSERT(crp2 != crp, 1739 ("Freeing cryptop from the return queue (%p).", 1740 crp)); 1741 } 1742 CRYPTO_RETW_UNLOCK(ret_worker); 1743 } 1744 } 1745 #endif 1746 1747 uma_zfree(cryptop_zone, crp); 1748 } 1749 1750 struct cryptop * 1751 crypto_getreq(crypto_session_t cses, int how) 1752 { 1753 struct cryptop *crp; 1754 1755 MPASS(how == M_WAITOK || how == M_NOWAIT); 1756 crp = uma_zalloc(cryptop_zone, how | M_ZERO); 1757 crp->crp_session = cses; 1758 return (crp); 1759 } 1760 1761 /* 1762 * Invoke the callback on behalf of the driver. 1763 */ 1764 void 1765 crypto_done(struct cryptop *crp) 1766 { 1767 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0, 1768 ("crypto_done: op already done, flags 0x%x", crp->crp_flags)); 1769 crp->crp_flags |= CRYPTO_F_DONE; 1770 if (crp->crp_etype != 0) 1771 cryptostats.cs_errs++; 1772 #ifdef CRYPTO_TIMING 1773 if (crypto_timing) 1774 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp); 1775 #endif 1776 /* 1777 * CBIMM means unconditionally do the callback immediately; 1778 * CBIFSYNC means do the callback immediately only if the 1779 * operation was done synchronously. Both are used to avoid 1780 * doing extraneous context switches; the latter is mostly 1781 * used with the software crypto driver. 1782 */ 1783 if (!CRYPTOP_ASYNC_KEEPORDER(crp) && 1784 ((crp->crp_flags & CRYPTO_F_CBIMM) || 1785 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) && 1786 (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) { 1787 /* 1788 * Do the callback directly. This is ok when the 1789 * callback routine does very little (e.g. the 1790 * /dev/crypto callback method just does a wakeup). 1791 */ 1792 #ifdef CRYPTO_TIMING 1793 if (crypto_timing) { 1794 /* 1795 * NB: We must copy the timestamp before 1796 * doing the callback as the cryptop is 1797 * likely to be reclaimed. 1798 */ 1799 struct bintime t = crp->crp_tstamp; 1800 crypto_tstat(&cryptostats.cs_cb, &t); 1801 crp->crp_callback(crp); 1802 crypto_tstat(&cryptostats.cs_finis, &t); 1803 } else 1804 #endif 1805 crp->crp_callback(crp); 1806 } else { 1807 struct crypto_ret_worker *ret_worker; 1808 bool wake; 1809 1810 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1811 wake = false; 1812 1813 /* 1814 * Normal case; queue the callback for the thread. 1815 */ 1816 CRYPTO_RETW_LOCK(ret_worker); 1817 if (CRYPTOP_ASYNC_KEEPORDER(crp)) { 1818 struct cryptop *tmp; 1819 1820 TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q, 1821 cryptop_q, crp_next) { 1822 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) { 1823 TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q, 1824 tmp, crp, crp_next); 1825 break; 1826 } 1827 } 1828 if (tmp == NULL) { 1829 TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q, 1830 crp, crp_next); 1831 } 1832 1833 if (crp->crp_seq == ret_worker->reorder_cur_seq) 1834 wake = true; 1835 } 1836 else { 1837 if (CRYPTO_RETW_EMPTY(ret_worker)) 1838 wake = true; 1839 1840 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next); 1841 } 1842 1843 if (wake) 1844 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1845 CRYPTO_RETW_UNLOCK(ret_worker); 1846 } 1847 } 1848 1849 /* 1850 * Invoke the callback on behalf of the driver. 1851 */ 1852 void 1853 crypto_kdone(struct cryptkop *krp) 1854 { 1855 struct crypto_ret_worker *ret_worker; 1856 struct cryptocap *cap; 1857 1858 if (krp->krp_status != 0) 1859 cryptostats.cs_kerrs++; 1860 CRYPTO_DRIVER_LOCK(); 1861 cap = krp->krp_cap; 1862 KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0")); 1863 cap->cc_koperations--; 1864 if (cap->cc_koperations == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 1865 wakeup(cap); 1866 CRYPTO_DRIVER_UNLOCK(); 1867 krp->krp_cap = NULL; 1868 cap_rele(cap); 1869 1870 ret_worker = CRYPTO_RETW(0); 1871 1872 CRYPTO_RETW_LOCK(ret_worker); 1873 if (CRYPTO_RETW_EMPTY(ret_worker)) 1874 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1875 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next); 1876 CRYPTO_RETW_UNLOCK(ret_worker); 1877 } 1878 1879 int 1880 crypto_getfeat(int *featp) 1881 { 1882 int hid, kalg, feat = 0; 1883 1884 CRYPTO_DRIVER_LOCK(); 1885 for (hid = 0; hid < crypto_drivers_size; hid++) { 1886 const struct cryptocap *cap = crypto_drivers[hid]; 1887 1888 if (cap == NULL || 1889 ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) && 1890 !crypto_devallowsoft)) { 1891 continue; 1892 } 1893 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) 1894 if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED) 1895 feat |= 1 << kalg; 1896 } 1897 CRYPTO_DRIVER_UNLOCK(); 1898 *featp = feat; 1899 return (0); 1900 } 1901 1902 /* 1903 * Terminate a thread at module unload. The process that 1904 * initiated this is waiting for us to signal that we're gone; 1905 * wake it up and exit. We use the driver table lock to insure 1906 * we don't do the wakeup before they're waiting. There is no 1907 * race here because the waiter sleeps on the proc lock for the 1908 * thread so it gets notified at the right time because of an 1909 * extra wakeup that's done in exit1(). 1910 */ 1911 static void 1912 crypto_finis(void *chan) 1913 { 1914 CRYPTO_DRIVER_LOCK(); 1915 wakeup_one(chan); 1916 CRYPTO_DRIVER_UNLOCK(); 1917 kproc_exit(0); 1918 } 1919 1920 /* 1921 * Crypto thread, dispatches crypto requests. 1922 */ 1923 static void 1924 crypto_proc(void) 1925 { 1926 struct cryptop *crp, *submit; 1927 struct cryptkop *krp; 1928 struct cryptocap *cap; 1929 int result, hint; 1930 1931 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1932 fpu_kern_thread(FPU_KERN_NORMAL); 1933 #endif 1934 1935 CRYPTO_Q_LOCK(); 1936 for (;;) { 1937 /* 1938 * Find the first element in the queue that can be 1939 * processed and look-ahead to see if multiple ops 1940 * are ready for the same driver. 1941 */ 1942 submit = NULL; 1943 hint = 0; 1944 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1945 cap = crp->crp_session->cap; 1946 /* 1947 * Driver cannot disappeared when there is an active 1948 * session. 1949 */ 1950 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1951 __func__, __LINE__)); 1952 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1953 /* Op needs to be migrated, process it. */ 1954 if (submit == NULL) 1955 submit = crp; 1956 break; 1957 } 1958 if (!cap->cc_qblocked) { 1959 if (submit != NULL) { 1960 /* 1961 * We stop on finding another op, 1962 * regardless whether its for the same 1963 * driver or not. We could keep 1964 * searching the queue but it might be 1965 * better to just use a per-driver 1966 * queue instead. 1967 */ 1968 if (submit->crp_session->cap == cap) 1969 hint = CRYPTO_HINT_MORE; 1970 break; 1971 } else { 1972 submit = crp; 1973 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) 1974 break; 1975 /* keep scanning for more are q'd */ 1976 } 1977 } 1978 } 1979 if (submit != NULL) { 1980 TAILQ_REMOVE(&crp_q, submit, crp_next); 1981 cap = submit->crp_session->cap; 1982 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1983 __func__, __LINE__)); 1984 CRYPTO_Q_UNLOCK(); 1985 result = crypto_invoke(cap, submit, hint); 1986 CRYPTO_Q_LOCK(); 1987 if (result == ERESTART) { 1988 /* 1989 * The driver ran out of resources, mark the 1990 * driver ``blocked'' for cryptop's and put 1991 * the request back in the queue. It would 1992 * best to put the request back where we got 1993 * it but that's hard so for now we put it 1994 * at the front. This should be ok; putting 1995 * it at the end does not work. 1996 */ 1997 cap->cc_qblocked = 1; 1998 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 1999 cryptostats.cs_blocks++; 2000 } 2001 } 2002 2003 /* As above, but for key ops */ 2004 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 2005 cap = krp->krp_cap; 2006 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 2007 /* 2008 * Operation needs to be migrated, 2009 * clear krp_cap so a new driver is 2010 * selected. 2011 */ 2012 krp->krp_cap = NULL; 2013 cap_rele(cap); 2014 break; 2015 } 2016 if (!cap->cc_kqblocked) 2017 break; 2018 } 2019 if (krp != NULL) { 2020 TAILQ_REMOVE(&crp_kq, krp, krp_next); 2021 CRYPTO_Q_UNLOCK(); 2022 result = crypto_kinvoke(krp); 2023 CRYPTO_Q_LOCK(); 2024 if (result == ERESTART) { 2025 /* 2026 * The driver ran out of resources, mark the 2027 * driver ``blocked'' for cryptkop's and put 2028 * the request back in the queue. It would 2029 * best to put the request back where we got 2030 * it but that's hard so for now we put it 2031 * at the front. This should be ok; putting 2032 * it at the end does not work. 2033 */ 2034 krp->krp_cap->cc_kqblocked = 1; 2035 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 2036 cryptostats.cs_kblocks++; 2037 } 2038 } 2039 2040 if (submit == NULL && krp == NULL) { 2041 /* 2042 * Nothing more to be processed. Sleep until we're 2043 * woken because there are more ops to process. 2044 * This happens either by submission or by a driver 2045 * becoming unblocked and notifying us through 2046 * crypto_unblock. Note that when we wakeup we 2047 * start processing each queue again from the 2048 * front. It's not clear that it's important to 2049 * preserve this ordering since ops may finish 2050 * out of order if dispatched to different devices 2051 * and some become blocked while others do not. 2052 */ 2053 crp_sleep = 1; 2054 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0); 2055 crp_sleep = 0; 2056 if (cryptoproc == NULL) 2057 break; 2058 cryptostats.cs_intrs++; 2059 } 2060 } 2061 CRYPTO_Q_UNLOCK(); 2062 2063 crypto_finis(&crp_q); 2064 } 2065 2066 /* 2067 * Crypto returns thread, does callbacks for processed crypto requests. 2068 * Callbacks are done here, rather than in the crypto drivers, because 2069 * callbacks typically are expensive and would slow interrupt handling. 2070 */ 2071 static void 2072 crypto_ret_proc(struct crypto_ret_worker *ret_worker) 2073 { 2074 struct cryptop *crpt; 2075 struct cryptkop *krpt; 2076 2077 CRYPTO_RETW_LOCK(ret_worker); 2078 for (;;) { 2079 /* Harvest return q's for completed ops */ 2080 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q); 2081 if (crpt != NULL) { 2082 if (crpt->crp_seq == ret_worker->reorder_cur_seq) { 2083 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next); 2084 ret_worker->reorder_cur_seq++; 2085 } else { 2086 crpt = NULL; 2087 } 2088 } 2089 2090 if (crpt == NULL) { 2091 crpt = TAILQ_FIRST(&ret_worker->crp_ret_q); 2092 if (crpt != NULL) 2093 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next); 2094 } 2095 2096 krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq); 2097 if (krpt != NULL) 2098 TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next); 2099 2100 if (crpt != NULL || krpt != NULL) { 2101 CRYPTO_RETW_UNLOCK(ret_worker); 2102 /* 2103 * Run callbacks unlocked. 2104 */ 2105 if (crpt != NULL) { 2106 #ifdef CRYPTO_TIMING 2107 if (crypto_timing) { 2108 /* 2109 * NB: We must copy the timestamp before 2110 * doing the callback as the cryptop is 2111 * likely to be reclaimed. 2112 */ 2113 struct bintime t = crpt->crp_tstamp; 2114 crypto_tstat(&cryptostats.cs_cb, &t); 2115 crpt->crp_callback(crpt); 2116 crypto_tstat(&cryptostats.cs_finis, &t); 2117 } else 2118 #endif 2119 crpt->crp_callback(crpt); 2120 } 2121 if (krpt != NULL) 2122 krpt->krp_callback(krpt); 2123 CRYPTO_RETW_LOCK(ret_worker); 2124 } else { 2125 /* 2126 * Nothing more to be processed. Sleep until we're 2127 * woken because there are more returns to process. 2128 */ 2129 msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT, 2130 "crypto_ret_wait", 0); 2131 if (ret_worker->cryptoretproc == NULL) 2132 break; 2133 cryptostats.cs_rets++; 2134 } 2135 } 2136 CRYPTO_RETW_UNLOCK(ret_worker); 2137 2138 crypto_finis(&ret_worker->crp_ret_q); 2139 } 2140 2141 #ifdef DDB 2142 static void 2143 db_show_drivers(void) 2144 { 2145 int hid; 2146 2147 db_printf("%12s %4s %4s %8s %2s %2s\n" 2148 , "Device" 2149 , "Ses" 2150 , "Kops" 2151 , "Flags" 2152 , "QB" 2153 , "KB" 2154 ); 2155 for (hid = 0; hid < crypto_drivers_size; hid++) { 2156 const struct cryptocap *cap = crypto_drivers[hid]; 2157 if (cap == NULL) 2158 continue; 2159 db_printf("%-12s %4u %4u %08x %2u %2u\n" 2160 , device_get_nameunit(cap->cc_dev) 2161 , cap->cc_sessions 2162 , cap->cc_koperations 2163 , cap->cc_flags 2164 , cap->cc_qblocked 2165 , cap->cc_kqblocked 2166 ); 2167 } 2168 } 2169 2170 DB_SHOW_COMMAND(crypto, db_show_crypto) 2171 { 2172 struct cryptop *crp; 2173 struct crypto_ret_worker *ret_worker; 2174 2175 db_show_drivers(); 2176 db_printf("\n"); 2177 2178 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", 2179 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", 2180 "Device", "Callback"); 2181 TAILQ_FOREACH(crp, &crp_q, crp_next) { 2182 db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n" 2183 , crp->crp_session->cap->cc_hid 2184 , (int) crypto_ses2caps(crp->crp_session) 2185 , crp->crp_ilen, crp->crp_olen 2186 , crp->crp_etype 2187 , crp->crp_flags 2188 , device_get_nameunit(crp->crp_session->cap->cc_dev) 2189 , crp->crp_callback 2190 ); 2191 } 2192 FOREACH_CRYPTO_RETW(ret_worker) { 2193 db_printf("\n%8s %4s %4s %4s %8s\n", 2194 "ret_worker", "HID", "Etype", "Flags", "Callback"); 2195 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 2196 TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) { 2197 db_printf("%8td %4u %4u %04x %8p\n" 2198 , CRYPTO_RETW_ID(ret_worker) 2199 , crp->crp_session->cap->cc_hid 2200 , crp->crp_etype 2201 , crp->crp_flags 2202 , crp->crp_callback 2203 ); 2204 } 2205 } 2206 } 2207 } 2208 2209 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto) 2210 { 2211 struct cryptkop *krp; 2212 struct crypto_ret_worker *ret_worker; 2213 2214 db_show_drivers(); 2215 db_printf("\n"); 2216 2217 db_printf("%4s %5s %4s %4s %8s %4s %8s\n", 2218 "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback"); 2219 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 2220 db_printf("%4u %5u %4u %4u %08x %4u %8p\n" 2221 , krp->krp_op 2222 , krp->krp_status 2223 , krp->krp_iparams, krp->krp_oparams 2224 , krp->krp_crid, krp->krp_hid 2225 , krp->krp_callback 2226 ); 2227 } 2228 2229 ret_worker = CRYPTO_RETW(0); 2230 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 2231 db_printf("%4s %5s %8s %4s %8s\n", 2232 "Op", "Status", "CRID", "HID", "Callback"); 2233 TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) { 2234 db_printf("%4u %5u %08x %4u %8p\n" 2235 , krp->krp_op 2236 , krp->krp_status 2237 , krp->krp_crid, krp->krp_hid 2238 , krp->krp_callback 2239 ); 2240 } 2241 } 2242 } 2243 #endif 2244 2245 int crypto_modevent(module_t mod, int type, void *unused); 2246 2247 /* 2248 * Initialization code, both for static and dynamic loading. 2249 * Note this is not invoked with the usual MODULE_DECLARE 2250 * mechanism but instead is listed as a dependency by the 2251 * cryptosoft driver. This guarantees proper ordering of 2252 * calls on module load/unload. 2253 */ 2254 int 2255 crypto_modevent(module_t mod, int type, void *unused) 2256 { 2257 int error = EINVAL; 2258 2259 switch (type) { 2260 case MOD_LOAD: 2261 error = crypto_init(); 2262 if (error == 0 && bootverbose) 2263 printf("crypto: <crypto core>\n"); 2264 break; 2265 case MOD_UNLOAD: 2266 /*XXX disallow if active sessions */ 2267 error = 0; 2268 crypto_destroy(); 2269 return 0; 2270 } 2271 return error; 2272 } 2273 MODULE_VERSION(crypto, 1); 2274 MODULE_DEPEND(crypto, zlib, 1, 1, 1); 2275