1 /*- 2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. 3 * Copyright (c) 2021 The FreeBSD Foundation 4 * 5 * Portions of this software were developed by Ararat River 6 * Consulting, LLC under sponsorship of the FreeBSD Foundation. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 /* 33 * Cryptographic Subsystem. 34 * 35 * This code is derived from the Openbsd Cryptographic Framework (OCF) 36 * that has the copyright shown below. Very little of the original 37 * code remains. 38 */ 39 40 /*- 41 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 42 * 43 * This code was written by Angelos D. Keromytis in Athens, Greece, in 44 * February 2000. Network Security Technologies Inc. (NSTI) kindly 45 * supported the development of this code. 46 * 47 * Copyright (c) 2000, 2001 Angelos D. Keromytis 48 * 49 * Permission to use, copy, and modify this software with or without fee 50 * is hereby granted, provided that this entire notice is included in 51 * all source code copies of any software which is or includes a copy or 52 * modification of this software. 53 * 54 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 55 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 56 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 57 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 58 * PURPOSE. 59 */ 60 61 #include "opt_compat.h" 62 #include "opt_ddb.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/counter.h> 67 #include <sys/kernel.h> 68 #include <sys/kthread.h> 69 #include <sys/linker.h> 70 #include <sys/lock.h> 71 #include <sys/module.h> 72 #include <sys/mutex.h> 73 #include <sys/malloc.h> 74 #include <sys/mbuf.h> 75 #include <sys/proc.h> 76 #include <sys/refcount.h> 77 #include <sys/sdt.h> 78 #include <sys/smp.h> 79 #include <sys/sysctl.h> 80 #include <sys/taskqueue.h> 81 #include <sys/uio.h> 82 83 #include <ddb/ddb.h> 84 85 #include <machine/vmparam.h> 86 #include <vm/uma.h> 87 88 #include <crypto/intake.h> 89 #include <opencrypto/cryptodev.h> 90 #include <opencrypto/xform_auth.h> 91 #include <opencrypto/xform_enc.h> 92 93 #include <sys/kobj.h> 94 #include <sys/bus.h> 95 #include "cryptodev_if.h" 96 97 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 98 #include <machine/pcb.h> 99 #endif 100 101 SDT_PROVIDER_DEFINE(opencrypto); 102 103 /* 104 * Crypto drivers register themselves by allocating a slot in the 105 * crypto_drivers table with crypto_get_driverid(). 106 */ 107 static struct mtx crypto_drivers_mtx; /* lock on driver table */ 108 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx) 109 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx) 110 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED) 111 112 /* 113 * Crypto device/driver capabilities structure. 114 * 115 * Synchronization: 116 * (d) - protected by CRYPTO_DRIVER_LOCK() 117 * (q) - protected by CRYPTO_Q_LOCK() 118 * Not tagged fields are read-only. 119 */ 120 struct cryptocap { 121 device_t cc_dev; 122 uint32_t cc_hid; 123 uint32_t cc_sessions; /* (d) # of sessions */ 124 125 int cc_flags; /* (d) flags */ 126 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ 127 int cc_qblocked; /* (q) symmetric q blocked */ 128 size_t cc_session_size; 129 volatile int cc_refs; 130 }; 131 132 static struct cryptocap **crypto_drivers = NULL; 133 static int crypto_drivers_size = 0; 134 135 struct crypto_session { 136 struct cryptocap *cap; 137 struct crypto_session_params csp; 138 uint64_t id; 139 /* Driver softc follows. */ 140 }; 141 142 static int crp_sleep = 0; 143 static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */ 144 static struct mtx crypto_q_mtx; 145 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx) 146 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx) 147 148 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0, 149 "In-kernel cryptography"); 150 151 /* 152 * Taskqueue used to dispatch the crypto requests 153 * that have the CRYPTO_F_ASYNC flag 154 */ 155 static struct taskqueue *crypto_tq; 156 157 /* 158 * Crypto seq numbers are operated on with modular arithmetic 159 */ 160 #define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0) 161 162 struct crypto_ret_worker { 163 struct mtx crypto_ret_mtx; 164 165 TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */ 166 TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */ 167 168 uint32_t reorder_ops; /* total ordered sym jobs received */ 169 uint32_t reorder_cur_seq; /* current sym job dispatched */ 170 171 struct proc *cryptoretproc; 172 }; 173 static struct crypto_ret_worker *crypto_ret_workers = NULL; 174 175 #define CRYPTO_RETW(i) (&crypto_ret_workers[i]) 176 #define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers) 177 #define FOREACH_CRYPTO_RETW(w) \ 178 for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w) 179 180 #define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx) 181 #define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx) 182 183 static int crypto_workers_num = 0; 184 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN, 185 &crypto_workers_num, 0, 186 "Number of crypto workers used to dispatch crypto jobs"); 187 #ifdef COMPAT_FREEBSD12 188 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN, 189 &crypto_workers_num, 0, 190 "Number of crypto workers used to dispatch crypto jobs"); 191 #endif 192 193 static uma_zone_t cryptop_zone; 194 195 int crypto_devallowsoft = 0; 196 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RWTUN, 197 &crypto_devallowsoft, 0, 198 "Enable use of software crypto by /dev/crypto"); 199 #ifdef COMPAT_FREEBSD12 200 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RWTUN, 201 &crypto_devallowsoft, 0, 202 "Enable/disable use of software crypto by /dev/crypto"); 203 #endif 204 205 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 206 207 static void crypto_proc(void); 208 static struct proc *cryptoproc; 209 static void crypto_ret_proc(struct crypto_ret_worker *ret_worker); 210 static void crypto_destroy(void); 211 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); 212 static void crypto_task_invoke(void *ctx, int pending); 213 static void crypto_batch_enqueue(struct cryptop *crp); 214 215 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)]; 216 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW, 217 cryptostats, nitems(cryptostats), 218 "Crypto system statistics"); 219 220 #define CRYPTOSTAT_INC(stat) do { \ 221 counter_u64_add( \ 222 cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\ 223 1); \ 224 } while (0) 225 226 static void 227 cryptostats_init(void *arg __unused) 228 { 229 COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK); 230 } 231 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL); 232 233 static void 234 cryptostats_fini(void *arg __unused) 235 { 236 COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats)); 237 } 238 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini, 239 NULL); 240 241 /* Try to avoid directly exposing the key buffer as a symbol */ 242 static struct keybuf *keybuf; 243 244 static struct keybuf empty_keybuf = { 245 .kb_nents = 0 246 }; 247 248 /* Obtain the key buffer from boot metadata */ 249 static void 250 keybuf_init(void) 251 { 252 caddr_t kmdp; 253 254 kmdp = preload_search_by_type("elf kernel"); 255 256 if (kmdp == NULL) 257 kmdp = preload_search_by_type("elf64 kernel"); 258 259 keybuf = (struct keybuf *)preload_search_info(kmdp, 260 MODINFO_METADATA | MODINFOMD_KEYBUF); 261 262 if (keybuf == NULL) 263 keybuf = &empty_keybuf; 264 } 265 266 /* It'd be nice if we could store these in some kind of secure memory... */ 267 struct keybuf * 268 get_keybuf(void) 269 { 270 271 return (keybuf); 272 } 273 274 static struct cryptocap * 275 cap_ref(struct cryptocap *cap) 276 { 277 278 refcount_acquire(&cap->cc_refs); 279 return (cap); 280 } 281 282 static void 283 cap_rele(struct cryptocap *cap) 284 { 285 286 if (refcount_release(&cap->cc_refs) == 0) 287 return; 288 289 KASSERT(cap->cc_sessions == 0, 290 ("freeing crypto driver with active sessions")); 291 292 free(cap, M_CRYPTO_DATA); 293 } 294 295 static int 296 crypto_init(void) 297 { 298 struct crypto_ret_worker *ret_worker; 299 int error; 300 301 mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table", 302 MTX_DEF|MTX_QUIET); 303 304 TAILQ_INIT(&crp_q); 305 mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF); 306 307 cryptop_zone = uma_zcreate("cryptop", 308 sizeof(struct cryptop), NULL, NULL, NULL, NULL, 309 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 310 311 crypto_drivers_size = CRYPTO_DRIVERS_INITIAL; 312 crypto_drivers = malloc(crypto_drivers_size * 313 sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 314 315 if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus) 316 crypto_workers_num = mp_ncpus; 317 318 crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO, 319 taskqueue_thread_enqueue, &crypto_tq); 320 321 taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN, 322 "crypto"); 323 324 error = kproc_create((void (*)(void *)) crypto_proc, NULL, 325 &cryptoproc, 0, 0, "crypto"); 326 if (error) { 327 printf("crypto_init: cannot start crypto thread; error %d", 328 error); 329 goto bad; 330 } 331 332 crypto_ret_workers = mallocarray(crypto_workers_num, 333 sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 334 335 FOREACH_CRYPTO_RETW(ret_worker) { 336 TAILQ_INIT(&ret_worker->crp_ordered_ret_q); 337 TAILQ_INIT(&ret_worker->crp_ret_q); 338 339 ret_worker->reorder_ops = 0; 340 ret_worker->reorder_cur_seq = 0; 341 342 mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF); 343 344 error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker, 345 &ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker)); 346 if (error) { 347 printf("crypto_init: cannot start cryptoret thread; error %d", 348 error); 349 goto bad; 350 } 351 } 352 353 keybuf_init(); 354 355 return 0; 356 bad: 357 crypto_destroy(); 358 return error; 359 } 360 361 /* 362 * Signal a crypto thread to terminate. We use the driver 363 * table lock to synchronize the sleep/wakeups so that we 364 * are sure the threads have terminated before we release 365 * the data structures they use. See crypto_finis below 366 * for the other half of this song-and-dance. 367 */ 368 static void 369 crypto_terminate(struct proc **pp, void *q) 370 { 371 struct proc *p; 372 373 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 374 p = *pp; 375 *pp = NULL; 376 if (p) { 377 wakeup_one(q); 378 PROC_LOCK(p); /* NB: insure we don't miss wakeup */ 379 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */ 380 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0); 381 PROC_UNLOCK(p); 382 CRYPTO_DRIVER_LOCK(); 383 } 384 } 385 386 static void 387 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen, 388 void *auth_ctx, uint8_t padval) 389 { 390 uint8_t hmac_key[HMAC_MAX_BLOCK_LEN]; 391 u_int i; 392 393 KASSERT(axf->blocksize <= sizeof(hmac_key), 394 ("Invalid HMAC block size %d", axf->blocksize)); 395 396 /* 397 * If the key is larger than the block size, use the digest of 398 * the key as the key instead. 399 */ 400 memset(hmac_key, 0, sizeof(hmac_key)); 401 if (klen > axf->blocksize) { 402 axf->Init(auth_ctx); 403 axf->Update(auth_ctx, key, klen); 404 axf->Final(hmac_key, auth_ctx); 405 klen = axf->hashsize; 406 } else 407 memcpy(hmac_key, key, klen); 408 409 for (i = 0; i < axf->blocksize; i++) 410 hmac_key[i] ^= padval; 411 412 axf->Init(auth_ctx); 413 axf->Update(auth_ctx, hmac_key, axf->blocksize); 414 explicit_bzero(hmac_key, sizeof(hmac_key)); 415 } 416 417 void 418 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen, 419 void *auth_ctx) 420 { 421 422 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL); 423 } 424 425 void 426 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen, 427 void *auth_ctx) 428 { 429 430 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL); 431 } 432 433 static void 434 crypto_destroy(void) 435 { 436 struct crypto_ret_worker *ret_worker; 437 int i; 438 439 /* 440 * Terminate any crypto threads. 441 */ 442 if (crypto_tq != NULL) 443 taskqueue_drain_all(crypto_tq); 444 CRYPTO_DRIVER_LOCK(); 445 crypto_terminate(&cryptoproc, &crp_q); 446 FOREACH_CRYPTO_RETW(ret_worker) 447 crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q); 448 CRYPTO_DRIVER_UNLOCK(); 449 450 /* XXX flush queues??? */ 451 452 /* 453 * Reclaim dynamically allocated resources. 454 */ 455 for (i = 0; i < crypto_drivers_size; i++) { 456 if (crypto_drivers[i] != NULL) 457 cap_rele(crypto_drivers[i]); 458 } 459 free(crypto_drivers, M_CRYPTO_DATA); 460 461 if (cryptop_zone != NULL) 462 uma_zdestroy(cryptop_zone); 463 mtx_destroy(&crypto_q_mtx); 464 FOREACH_CRYPTO_RETW(ret_worker) 465 mtx_destroy(&ret_worker->crypto_ret_mtx); 466 free(crypto_ret_workers, M_CRYPTO_DATA); 467 if (crypto_tq != NULL) 468 taskqueue_free(crypto_tq); 469 mtx_destroy(&crypto_drivers_mtx); 470 } 471 472 uint32_t 473 crypto_ses2hid(crypto_session_t crypto_session) 474 { 475 return (crypto_session->cap->cc_hid); 476 } 477 478 uint32_t 479 crypto_ses2caps(crypto_session_t crypto_session) 480 { 481 return (crypto_session->cap->cc_flags & 0xff000000); 482 } 483 484 void * 485 crypto_get_driver_session(crypto_session_t crypto_session) 486 { 487 return (crypto_session + 1); 488 } 489 490 const struct crypto_session_params * 491 crypto_get_params(crypto_session_t crypto_session) 492 { 493 return (&crypto_session->csp); 494 } 495 496 const struct auth_hash * 497 crypto_auth_hash(const struct crypto_session_params *csp) 498 { 499 500 switch (csp->csp_auth_alg) { 501 case CRYPTO_SHA1_HMAC: 502 return (&auth_hash_hmac_sha1); 503 case CRYPTO_SHA2_224_HMAC: 504 return (&auth_hash_hmac_sha2_224); 505 case CRYPTO_SHA2_256_HMAC: 506 return (&auth_hash_hmac_sha2_256); 507 case CRYPTO_SHA2_384_HMAC: 508 return (&auth_hash_hmac_sha2_384); 509 case CRYPTO_SHA2_512_HMAC: 510 return (&auth_hash_hmac_sha2_512); 511 case CRYPTO_NULL_HMAC: 512 return (&auth_hash_null); 513 case CRYPTO_RIPEMD160_HMAC: 514 return (&auth_hash_hmac_ripemd_160); 515 case CRYPTO_SHA1: 516 return (&auth_hash_sha1); 517 case CRYPTO_SHA2_224: 518 return (&auth_hash_sha2_224); 519 case CRYPTO_SHA2_256: 520 return (&auth_hash_sha2_256); 521 case CRYPTO_SHA2_384: 522 return (&auth_hash_sha2_384); 523 case CRYPTO_SHA2_512: 524 return (&auth_hash_sha2_512); 525 case CRYPTO_AES_NIST_GMAC: 526 switch (csp->csp_auth_klen) { 527 case 128 / 8: 528 return (&auth_hash_nist_gmac_aes_128); 529 case 192 / 8: 530 return (&auth_hash_nist_gmac_aes_192); 531 case 256 / 8: 532 return (&auth_hash_nist_gmac_aes_256); 533 default: 534 return (NULL); 535 } 536 case CRYPTO_BLAKE2B: 537 return (&auth_hash_blake2b); 538 case CRYPTO_BLAKE2S: 539 return (&auth_hash_blake2s); 540 case CRYPTO_POLY1305: 541 return (&auth_hash_poly1305); 542 case CRYPTO_AES_CCM_CBC_MAC: 543 switch (csp->csp_auth_klen) { 544 case 128 / 8: 545 return (&auth_hash_ccm_cbc_mac_128); 546 case 192 / 8: 547 return (&auth_hash_ccm_cbc_mac_192); 548 case 256 / 8: 549 return (&auth_hash_ccm_cbc_mac_256); 550 default: 551 return (NULL); 552 } 553 default: 554 return (NULL); 555 } 556 } 557 558 const struct enc_xform * 559 crypto_cipher(const struct crypto_session_params *csp) 560 { 561 562 switch (csp->csp_cipher_alg) { 563 case CRYPTO_RIJNDAEL128_CBC: 564 return (&enc_xform_rijndael128); 565 case CRYPTO_AES_XTS: 566 return (&enc_xform_aes_xts); 567 case CRYPTO_AES_ICM: 568 return (&enc_xform_aes_icm); 569 case CRYPTO_AES_NIST_GCM_16: 570 return (&enc_xform_aes_nist_gcm); 571 case CRYPTO_CAMELLIA_CBC: 572 return (&enc_xform_camellia); 573 case CRYPTO_NULL_CBC: 574 return (&enc_xform_null); 575 case CRYPTO_CHACHA20: 576 return (&enc_xform_chacha20); 577 case CRYPTO_AES_CCM_16: 578 return (&enc_xform_ccm); 579 case CRYPTO_CHACHA20_POLY1305: 580 return (&enc_xform_chacha20_poly1305); 581 default: 582 return (NULL); 583 } 584 } 585 586 static struct cryptocap * 587 crypto_checkdriver(uint32_t hid) 588 { 589 590 return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]); 591 } 592 593 /* 594 * Select a driver for a new session that supports the specified 595 * algorithms and, optionally, is constrained according to the flags. 596 */ 597 static struct cryptocap * 598 crypto_select_driver(const struct crypto_session_params *csp, int flags) 599 { 600 struct cryptocap *cap, *best; 601 int best_match, error, hid; 602 603 CRYPTO_DRIVER_ASSERT(); 604 605 best = NULL; 606 for (hid = 0; hid < crypto_drivers_size; hid++) { 607 /* 608 * If there is no driver for this slot, or the driver 609 * is not appropriate (hardware or software based on 610 * match), then skip. 611 */ 612 cap = crypto_drivers[hid]; 613 if (cap == NULL || 614 (cap->cc_flags & flags) == 0) 615 continue; 616 617 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp); 618 if (error >= 0) 619 continue; 620 621 /* 622 * Use the driver with the highest probe value. 623 * Hardware drivers use a higher probe value than 624 * software. In case of a tie, prefer the driver with 625 * the fewest active sessions. 626 */ 627 if (best == NULL || error > best_match || 628 (error == best_match && 629 cap->cc_sessions < best->cc_sessions)) { 630 best = cap; 631 best_match = error; 632 } 633 } 634 return best; 635 } 636 637 static enum alg_type { 638 ALG_NONE = 0, 639 ALG_CIPHER, 640 ALG_DIGEST, 641 ALG_KEYED_DIGEST, 642 ALG_COMPRESSION, 643 ALG_AEAD 644 } alg_types[] = { 645 [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST, 646 [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST, 647 [CRYPTO_AES_CBC] = ALG_CIPHER, 648 [CRYPTO_SHA1] = ALG_DIGEST, 649 [CRYPTO_NULL_HMAC] = ALG_DIGEST, 650 [CRYPTO_NULL_CBC] = ALG_CIPHER, 651 [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION, 652 [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST, 653 [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST, 654 [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST, 655 [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER, 656 [CRYPTO_AES_XTS] = ALG_CIPHER, 657 [CRYPTO_AES_ICM] = ALG_CIPHER, 658 [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST, 659 [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD, 660 [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST, 661 [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST, 662 [CRYPTO_CHACHA20] = ALG_CIPHER, 663 [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST, 664 [CRYPTO_RIPEMD160] = ALG_DIGEST, 665 [CRYPTO_SHA2_224] = ALG_DIGEST, 666 [CRYPTO_SHA2_256] = ALG_DIGEST, 667 [CRYPTO_SHA2_384] = ALG_DIGEST, 668 [CRYPTO_SHA2_512] = ALG_DIGEST, 669 [CRYPTO_POLY1305] = ALG_KEYED_DIGEST, 670 [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST, 671 [CRYPTO_AES_CCM_16] = ALG_AEAD, 672 [CRYPTO_CHACHA20_POLY1305] = ALG_AEAD, 673 }; 674 675 static enum alg_type 676 alg_type(int alg) 677 { 678 679 if (alg < nitems(alg_types)) 680 return (alg_types[alg]); 681 return (ALG_NONE); 682 } 683 684 static bool 685 alg_is_compression(int alg) 686 { 687 688 return (alg_type(alg) == ALG_COMPRESSION); 689 } 690 691 static bool 692 alg_is_cipher(int alg) 693 { 694 695 return (alg_type(alg) == ALG_CIPHER); 696 } 697 698 static bool 699 alg_is_digest(int alg) 700 { 701 702 return (alg_type(alg) == ALG_DIGEST || 703 alg_type(alg) == ALG_KEYED_DIGEST); 704 } 705 706 static bool 707 alg_is_keyed_digest(int alg) 708 { 709 710 return (alg_type(alg) == ALG_KEYED_DIGEST); 711 } 712 713 static bool 714 alg_is_aead(int alg) 715 { 716 717 return (alg_type(alg) == ALG_AEAD); 718 } 719 720 static bool 721 ccm_tag_length_valid(int len) 722 { 723 /* RFC 3610 */ 724 switch (len) { 725 case 4: 726 case 6: 727 case 8: 728 case 10: 729 case 12: 730 case 14: 731 case 16: 732 return (true); 733 default: 734 return (false); 735 } 736 } 737 738 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN) 739 740 /* Various sanity checks on crypto session parameters. */ 741 static bool 742 check_csp(const struct crypto_session_params *csp) 743 { 744 const struct auth_hash *axf; 745 746 /* Mode-independent checks. */ 747 if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0) 748 return (false); 749 if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 || 750 csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0) 751 return (false); 752 if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0) 753 return (false); 754 if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0) 755 return (false); 756 757 switch (csp->csp_mode) { 758 case CSP_MODE_COMPRESS: 759 if (!alg_is_compression(csp->csp_cipher_alg)) 760 return (false); 761 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) 762 return (false); 763 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 764 return (false); 765 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 || 766 csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 767 csp->csp_auth_mlen != 0) 768 return (false); 769 break; 770 case CSP_MODE_CIPHER: 771 if (!alg_is_cipher(csp->csp_cipher_alg)) 772 return (false); 773 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 774 return (false); 775 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 776 if (csp->csp_cipher_klen == 0) 777 return (false); 778 if (csp->csp_ivlen == 0) 779 return (false); 780 } 781 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 782 return (false); 783 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 784 csp->csp_auth_mlen != 0) 785 return (false); 786 break; 787 case CSP_MODE_DIGEST: 788 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0) 789 return (false); 790 791 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 792 return (false); 793 794 /* IV is optional for digests (e.g. GMAC). */ 795 switch (csp->csp_auth_alg) { 796 case CRYPTO_AES_CCM_CBC_MAC: 797 if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13) 798 return (false); 799 break; 800 case CRYPTO_AES_NIST_GMAC: 801 if (csp->csp_ivlen != AES_GCM_IV_LEN) 802 return (false); 803 break; 804 default: 805 if (csp->csp_ivlen != 0) 806 return (false); 807 break; 808 } 809 810 if (!alg_is_digest(csp->csp_auth_alg)) 811 return (false); 812 813 /* Key is optional for BLAKE2 digests. */ 814 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 815 csp->csp_auth_alg == CRYPTO_BLAKE2S) 816 ; 817 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 818 if (csp->csp_auth_klen == 0) 819 return (false); 820 } else { 821 if (csp->csp_auth_klen != 0) 822 return (false); 823 } 824 if (csp->csp_auth_mlen != 0) { 825 axf = crypto_auth_hash(csp); 826 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 827 return (false); 828 829 if (csp->csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC && 830 !ccm_tag_length_valid(csp->csp_auth_mlen)) 831 return (false); 832 } 833 break; 834 case CSP_MODE_AEAD: 835 if (!alg_is_aead(csp->csp_cipher_alg)) 836 return (false); 837 if (csp->csp_cipher_klen == 0) 838 return (false); 839 if (csp->csp_ivlen == 0 || 840 csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 841 return (false); 842 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0) 843 return (false); 844 845 switch (csp->csp_cipher_alg) { 846 case CRYPTO_AES_CCM_16: 847 if (csp->csp_auth_mlen != 0 && 848 !ccm_tag_length_valid(csp->csp_auth_mlen)) 849 return (false); 850 851 if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13) 852 return (false); 853 break; 854 case CRYPTO_AES_NIST_GCM_16: 855 if (csp->csp_auth_mlen > 16) 856 return (false); 857 break; 858 case CRYPTO_CHACHA20_POLY1305: 859 if (csp->csp_ivlen != 8 && csp->csp_ivlen != 12) 860 return (false); 861 if (csp->csp_auth_mlen > POLY1305_HASH_LEN) 862 return (false); 863 break; 864 } 865 break; 866 case CSP_MODE_ETA: 867 if (!alg_is_cipher(csp->csp_cipher_alg)) 868 return (false); 869 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 870 if (csp->csp_cipher_klen == 0) 871 return (false); 872 if (csp->csp_ivlen == 0) 873 return (false); 874 } 875 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 876 return (false); 877 if (!alg_is_digest(csp->csp_auth_alg)) 878 return (false); 879 880 /* Key is optional for BLAKE2 digests. */ 881 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 882 csp->csp_auth_alg == CRYPTO_BLAKE2S) 883 ; 884 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 885 if (csp->csp_auth_klen == 0) 886 return (false); 887 } else { 888 if (csp->csp_auth_klen != 0) 889 return (false); 890 } 891 if (csp->csp_auth_mlen != 0) { 892 axf = crypto_auth_hash(csp); 893 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 894 return (false); 895 } 896 break; 897 default: 898 return (false); 899 } 900 901 return (true); 902 } 903 904 /* 905 * Delete a session after it has been detached from its driver. 906 */ 907 static void 908 crypto_deletesession(crypto_session_t cses) 909 { 910 struct cryptocap *cap; 911 912 cap = cses->cap; 913 914 zfree(cses, M_CRYPTO_DATA); 915 916 CRYPTO_DRIVER_LOCK(); 917 cap->cc_sessions--; 918 if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 919 wakeup(cap); 920 CRYPTO_DRIVER_UNLOCK(); 921 cap_rele(cap); 922 } 923 924 /* 925 * Create a new session. The crid argument specifies a crypto 926 * driver to use or constraints on a driver to select (hardware 927 * only, software only, either). Whatever driver is selected 928 * must be capable of the requested crypto algorithms. 929 */ 930 int 931 crypto_newsession(crypto_session_t *cses, 932 const struct crypto_session_params *csp, int crid) 933 { 934 static uint64_t sessid = 0; 935 crypto_session_t res; 936 struct cryptocap *cap; 937 int err; 938 939 if (!check_csp(csp)) 940 return (EINVAL); 941 942 res = NULL; 943 944 CRYPTO_DRIVER_LOCK(); 945 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 946 /* 947 * Use specified driver; verify it is capable. 948 */ 949 cap = crypto_checkdriver(crid); 950 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0) 951 cap = NULL; 952 } else { 953 /* 954 * No requested driver; select based on crid flags. 955 */ 956 cap = crypto_select_driver(csp, crid); 957 } 958 if (cap == NULL) { 959 CRYPTO_DRIVER_UNLOCK(); 960 CRYPTDEB("no driver"); 961 return (EOPNOTSUPP); 962 } 963 cap_ref(cap); 964 cap->cc_sessions++; 965 CRYPTO_DRIVER_UNLOCK(); 966 967 /* Allocate a single block for the generic session and driver softc. */ 968 res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA, 969 M_WAITOK | M_ZERO); 970 res->cap = cap; 971 res->csp = *csp; 972 res->id = atomic_fetchadd_64(&sessid, 1); 973 974 /* Call the driver initialization routine. */ 975 err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp); 976 if (err != 0) { 977 CRYPTDEB("dev newsession failed: %d", err); 978 crypto_deletesession(res); 979 return (err); 980 } 981 982 *cses = res; 983 return (0); 984 } 985 986 /* 987 * Delete an existing session (or a reserved session on an unregistered 988 * driver). 989 */ 990 void 991 crypto_freesession(crypto_session_t cses) 992 { 993 struct cryptocap *cap; 994 995 if (cses == NULL) 996 return; 997 998 cap = cses->cap; 999 1000 /* Call the driver cleanup routine, if available. */ 1001 CRYPTODEV_FREESESSION(cap->cc_dev, cses); 1002 1003 crypto_deletesession(cses); 1004 } 1005 1006 /* 1007 * Return a new driver id. Registers a driver with the system so that 1008 * it can be probed by subsequent sessions. 1009 */ 1010 int32_t 1011 crypto_get_driverid(device_t dev, size_t sessionsize, int flags) 1012 { 1013 struct cryptocap *cap, **newdrv; 1014 int i; 1015 1016 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 1017 device_printf(dev, 1018 "no flags specified when registering driver\n"); 1019 return -1; 1020 } 1021 1022 cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1023 cap->cc_dev = dev; 1024 cap->cc_session_size = sessionsize; 1025 cap->cc_flags = flags; 1026 refcount_init(&cap->cc_refs, 1); 1027 1028 CRYPTO_DRIVER_LOCK(); 1029 for (;;) { 1030 for (i = 0; i < crypto_drivers_size; i++) { 1031 if (crypto_drivers[i] == NULL) 1032 break; 1033 } 1034 1035 if (i < crypto_drivers_size) 1036 break; 1037 1038 /* Out of entries, allocate some more. */ 1039 1040 if (2 * crypto_drivers_size <= crypto_drivers_size) { 1041 CRYPTO_DRIVER_UNLOCK(); 1042 printf("crypto: driver count wraparound!\n"); 1043 cap_rele(cap); 1044 return (-1); 1045 } 1046 CRYPTO_DRIVER_UNLOCK(); 1047 1048 newdrv = malloc(2 * crypto_drivers_size * 1049 sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1050 1051 CRYPTO_DRIVER_LOCK(); 1052 memcpy(newdrv, crypto_drivers, 1053 crypto_drivers_size * sizeof(*crypto_drivers)); 1054 1055 crypto_drivers_size *= 2; 1056 1057 free(crypto_drivers, M_CRYPTO_DATA); 1058 crypto_drivers = newdrv; 1059 } 1060 1061 cap->cc_hid = i; 1062 crypto_drivers[i] = cap; 1063 CRYPTO_DRIVER_UNLOCK(); 1064 1065 if (bootverbose) 1066 printf("crypto: assign %s driver id %u, flags 0x%x\n", 1067 device_get_nameunit(dev), i, flags); 1068 1069 return i; 1070 } 1071 1072 /* 1073 * Lookup a driver by name. We match against the full device 1074 * name and unit, and against just the name. The latter gives 1075 * us a simple widlcarding by device name. On success return the 1076 * driver/hardware identifier; otherwise return -1. 1077 */ 1078 int 1079 crypto_find_driver(const char *match) 1080 { 1081 struct cryptocap *cap; 1082 int i, len = strlen(match); 1083 1084 CRYPTO_DRIVER_LOCK(); 1085 for (i = 0; i < crypto_drivers_size; i++) { 1086 if (crypto_drivers[i] == NULL) 1087 continue; 1088 cap = crypto_drivers[i]; 1089 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 || 1090 strncmp(match, device_get_name(cap->cc_dev), len) == 0) { 1091 CRYPTO_DRIVER_UNLOCK(); 1092 return (i); 1093 } 1094 } 1095 CRYPTO_DRIVER_UNLOCK(); 1096 return (-1); 1097 } 1098 1099 /* 1100 * Return the device_t for the specified driver or NULL 1101 * if the driver identifier is invalid. 1102 */ 1103 device_t 1104 crypto_find_device_byhid(int hid) 1105 { 1106 struct cryptocap *cap; 1107 device_t dev; 1108 1109 dev = NULL; 1110 CRYPTO_DRIVER_LOCK(); 1111 cap = crypto_checkdriver(hid); 1112 if (cap != NULL) 1113 dev = cap->cc_dev; 1114 CRYPTO_DRIVER_UNLOCK(); 1115 return (dev); 1116 } 1117 1118 /* 1119 * Return the device/driver capabilities. 1120 */ 1121 int 1122 crypto_getcaps(int hid) 1123 { 1124 struct cryptocap *cap; 1125 int flags; 1126 1127 flags = 0; 1128 CRYPTO_DRIVER_LOCK(); 1129 cap = crypto_checkdriver(hid); 1130 if (cap != NULL) 1131 flags = cap->cc_flags; 1132 CRYPTO_DRIVER_UNLOCK(); 1133 return (flags); 1134 } 1135 1136 /* 1137 * Unregister all algorithms associated with a crypto driver. 1138 * If there are pending sessions using it, leave enough information 1139 * around so that subsequent calls using those sessions will 1140 * correctly detect the driver has been unregistered and reroute 1141 * requests. 1142 */ 1143 int 1144 crypto_unregister_all(uint32_t driverid) 1145 { 1146 struct cryptocap *cap; 1147 1148 CRYPTO_DRIVER_LOCK(); 1149 cap = crypto_checkdriver(driverid); 1150 if (cap == NULL) { 1151 CRYPTO_DRIVER_UNLOCK(); 1152 return (EINVAL); 1153 } 1154 1155 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 1156 crypto_drivers[driverid] = NULL; 1157 1158 /* 1159 * XXX: This doesn't do anything to kick sessions that 1160 * have no pending operations. 1161 */ 1162 while (cap->cc_sessions != 0) 1163 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0); 1164 CRYPTO_DRIVER_UNLOCK(); 1165 cap_rele(cap); 1166 1167 return (0); 1168 } 1169 1170 /* 1171 * Clear blockage on a driver. The what parameter indicates whether 1172 * the driver is now ready for cryptop's and/or cryptokop's. 1173 */ 1174 int 1175 crypto_unblock(uint32_t driverid, int what) 1176 { 1177 struct cryptocap *cap; 1178 int err; 1179 1180 CRYPTO_Q_LOCK(); 1181 cap = crypto_checkdriver(driverid); 1182 if (cap != NULL) { 1183 if (what & CRYPTO_SYMQ) 1184 cap->cc_qblocked = 0; 1185 if (crp_sleep) 1186 wakeup_one(&crp_q); 1187 err = 0; 1188 } else 1189 err = EINVAL; 1190 CRYPTO_Q_UNLOCK(); 1191 1192 return err; 1193 } 1194 1195 size_t 1196 crypto_buffer_len(struct crypto_buffer *cb) 1197 { 1198 switch (cb->cb_type) { 1199 case CRYPTO_BUF_CONTIG: 1200 return (cb->cb_buf_len); 1201 case CRYPTO_BUF_MBUF: 1202 if (cb->cb_mbuf->m_flags & M_PKTHDR) 1203 return (cb->cb_mbuf->m_pkthdr.len); 1204 return (m_length(cb->cb_mbuf, NULL)); 1205 case CRYPTO_BUF_SINGLE_MBUF: 1206 return (cb->cb_mbuf->m_len); 1207 case CRYPTO_BUF_VMPAGE: 1208 return (cb->cb_vm_page_len); 1209 case CRYPTO_BUF_UIO: 1210 return (cb->cb_uio->uio_resid); 1211 default: 1212 return (0); 1213 } 1214 } 1215 1216 #ifdef INVARIANTS 1217 /* Various sanity checks on crypto requests. */ 1218 static void 1219 cb_sanity(struct crypto_buffer *cb, const char *name) 1220 { 1221 KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST, 1222 ("incoming crp with invalid %s buffer type", name)); 1223 switch (cb->cb_type) { 1224 case CRYPTO_BUF_CONTIG: 1225 KASSERT(cb->cb_buf_len >= 0, 1226 ("incoming crp with -ve %s buffer length", name)); 1227 break; 1228 case CRYPTO_BUF_VMPAGE: 1229 KASSERT(CRYPTO_HAS_VMPAGE, 1230 ("incoming crp uses dmap on supported arch")); 1231 KASSERT(cb->cb_vm_page_len >= 0, 1232 ("incoming crp with -ve %s buffer length", name)); 1233 KASSERT(cb->cb_vm_page_offset >= 0, 1234 ("incoming crp with -ve %s buffer offset", name)); 1235 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE, 1236 ("incoming crp with %s buffer offset greater than page size" 1237 , name)); 1238 break; 1239 default: 1240 break; 1241 } 1242 } 1243 1244 static void 1245 crp_sanity(struct cryptop *crp) 1246 { 1247 struct crypto_session_params *csp; 1248 struct crypto_buffer *out; 1249 size_t ilen, len, olen; 1250 1251 KASSERT(crp->crp_session != NULL, ("incoming crp without a session")); 1252 KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE && 1253 crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST, 1254 ("incoming crp with invalid output buffer type")); 1255 KASSERT(crp->crp_etype == 0, ("incoming crp with error")); 1256 KASSERT(!(crp->crp_flags & CRYPTO_F_DONE), 1257 ("incoming crp already done")); 1258 1259 csp = &crp->crp_session->csp; 1260 cb_sanity(&crp->crp_buf, "input"); 1261 ilen = crypto_buffer_len(&crp->crp_buf); 1262 olen = ilen; 1263 out = NULL; 1264 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) { 1265 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) { 1266 cb_sanity(&crp->crp_obuf, "output"); 1267 out = &crp->crp_obuf; 1268 olen = crypto_buffer_len(out); 1269 } 1270 } else 1271 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE, 1272 ("incoming crp with separate output buffer " 1273 "but no session support")); 1274 1275 switch (csp->csp_mode) { 1276 case CSP_MODE_COMPRESS: 1277 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS || 1278 crp->crp_op == CRYPTO_OP_DECOMPRESS, 1279 ("invalid compression op %x", crp->crp_op)); 1280 break; 1281 case CSP_MODE_CIPHER: 1282 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT || 1283 crp->crp_op == CRYPTO_OP_DECRYPT, 1284 ("invalid cipher op %x", crp->crp_op)); 1285 break; 1286 case CSP_MODE_DIGEST: 1287 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST || 1288 crp->crp_op == CRYPTO_OP_VERIFY_DIGEST, 1289 ("invalid digest op %x", crp->crp_op)); 1290 break; 1291 case CSP_MODE_AEAD: 1292 KASSERT(crp->crp_op == 1293 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1294 crp->crp_op == 1295 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1296 ("invalid AEAD op %x", crp->crp_op)); 1297 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1298 ("AEAD without a separate IV")); 1299 break; 1300 case CSP_MODE_ETA: 1301 KASSERT(crp->crp_op == 1302 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1303 crp->crp_op == 1304 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1305 ("invalid ETA op %x", crp->crp_op)); 1306 break; 1307 } 1308 if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1309 if (crp->crp_aad == NULL) { 1310 KASSERT(crp->crp_aad_start == 0 || 1311 crp->crp_aad_start < ilen, 1312 ("invalid AAD start")); 1313 KASSERT(crp->crp_aad_length != 0 || 1314 crp->crp_aad_start == 0, 1315 ("AAD with zero length and non-zero start")); 1316 KASSERT(crp->crp_aad_length == 0 || 1317 crp->crp_aad_start + crp->crp_aad_length <= ilen, 1318 ("AAD outside input length")); 1319 } else { 1320 KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD, 1321 ("session doesn't support separate AAD buffer")); 1322 KASSERT(crp->crp_aad_start == 0, 1323 ("separate AAD buffer with non-zero AAD start")); 1324 KASSERT(crp->crp_aad_length != 0, 1325 ("separate AAD buffer with zero length")); 1326 } 1327 } else { 1328 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 && 1329 crp->crp_aad_length == 0, 1330 ("AAD region in request not supporting AAD")); 1331 } 1332 if (csp->csp_ivlen == 0) { 1333 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0, 1334 ("IV_SEPARATE set when IV isn't used")); 1335 KASSERT(crp->crp_iv_start == 0, 1336 ("crp_iv_start set when IV isn't used")); 1337 } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) { 1338 KASSERT(crp->crp_iv_start == 0, 1339 ("IV_SEPARATE used with non-zero IV start")); 1340 } else { 1341 KASSERT(crp->crp_iv_start < ilen, 1342 ("invalid IV start")); 1343 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen, 1344 ("IV outside buffer length")); 1345 } 1346 /* XXX: payload_start of 0 should always be < ilen? */ 1347 KASSERT(crp->crp_payload_start == 0 || 1348 crp->crp_payload_start < ilen, 1349 ("invalid payload start")); 1350 KASSERT(crp->crp_payload_start + crp->crp_payload_length <= 1351 ilen, ("payload outside input buffer")); 1352 if (out == NULL) { 1353 KASSERT(crp->crp_payload_output_start == 0, 1354 ("payload output start non-zero without output buffer")); 1355 } else { 1356 KASSERT(crp->crp_payload_output_start < olen, 1357 ("invalid payload output start")); 1358 KASSERT(crp->crp_payload_output_start + 1359 crp->crp_payload_length <= olen, 1360 ("payload outside output buffer")); 1361 } 1362 if (csp->csp_mode == CSP_MODE_DIGEST || 1363 csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1364 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) 1365 len = ilen; 1366 else 1367 len = olen; 1368 KASSERT(crp->crp_digest_start == 0 || 1369 crp->crp_digest_start < len, 1370 ("invalid digest start")); 1371 /* XXX: For the mlen == 0 case this check isn't perfect. */ 1372 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len, 1373 ("digest outside buffer")); 1374 } else { 1375 KASSERT(crp->crp_digest_start == 0, 1376 ("non-zero digest start for request without a digest")); 1377 } 1378 if (csp->csp_cipher_klen != 0) 1379 KASSERT(csp->csp_cipher_key != NULL || 1380 crp->crp_cipher_key != NULL, 1381 ("cipher request without a key")); 1382 if (csp->csp_auth_klen != 0) 1383 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL, 1384 ("auth request without a key")); 1385 KASSERT(crp->crp_callback != NULL, ("incoming crp without callback")); 1386 } 1387 #endif 1388 1389 static int 1390 crypto_dispatch_one(struct cryptop *crp, int hint) 1391 { 1392 struct cryptocap *cap; 1393 int result; 1394 1395 #ifdef INVARIANTS 1396 crp_sanity(crp); 1397 #endif 1398 CRYPTOSTAT_INC(cs_ops); 1399 1400 crp->crp_retw_id = crp->crp_session->id % crypto_workers_num; 1401 1402 /* 1403 * Caller marked the request to be processed immediately; dispatch it 1404 * directly to the driver unless the driver is currently blocked, in 1405 * which case it is queued for deferred dispatch. 1406 */ 1407 cap = crp->crp_session->cap; 1408 if (!atomic_load_int(&cap->cc_qblocked)) { 1409 result = crypto_invoke(cap, crp, hint); 1410 if (result != ERESTART) 1411 return (result); 1412 1413 /* 1414 * The driver ran out of resources, put the request on the 1415 * queue. 1416 */ 1417 } 1418 crypto_batch_enqueue(crp); 1419 return (0); 1420 } 1421 1422 int 1423 crypto_dispatch(struct cryptop *crp) 1424 { 1425 return (crypto_dispatch_one(crp, 0)); 1426 } 1427 1428 int 1429 crypto_dispatch_async(struct cryptop *crp, int flags) 1430 { 1431 struct crypto_ret_worker *ret_worker; 1432 1433 if (!CRYPTO_SESS_SYNC(crp->crp_session)) { 1434 /* 1435 * The driver issues completions asynchonously, don't bother 1436 * deferring dispatch to a worker thread. 1437 */ 1438 return (crypto_dispatch(crp)); 1439 } 1440 1441 #ifdef INVARIANTS 1442 crp_sanity(crp); 1443 #endif 1444 CRYPTOSTAT_INC(cs_ops); 1445 1446 crp->crp_retw_id = crp->crp_session->id % crypto_workers_num; 1447 if ((flags & CRYPTO_ASYNC_ORDERED) != 0) { 1448 crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED; 1449 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1450 CRYPTO_RETW_LOCK(ret_worker); 1451 crp->crp_seq = ret_worker->reorder_ops++; 1452 CRYPTO_RETW_UNLOCK(ret_worker); 1453 } 1454 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp); 1455 taskqueue_enqueue(crypto_tq, &crp->crp_task); 1456 return (0); 1457 } 1458 1459 void 1460 crypto_dispatch_batch(struct cryptopq *crpq, int flags) 1461 { 1462 struct cryptop *crp; 1463 int hint; 1464 1465 while ((crp = TAILQ_FIRST(crpq)) != NULL) { 1466 hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0; 1467 TAILQ_REMOVE(crpq, crp, crp_next); 1468 if (crypto_dispatch_one(crp, hint) != 0) 1469 crypto_batch_enqueue(crp); 1470 } 1471 } 1472 1473 static void 1474 crypto_batch_enqueue(struct cryptop *crp) 1475 { 1476 1477 CRYPTO_Q_LOCK(); 1478 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 1479 if (crp_sleep) 1480 wakeup_one(&crp_q); 1481 CRYPTO_Q_UNLOCK(); 1482 } 1483 1484 static void 1485 crypto_task_invoke(void *ctx, int pending) 1486 { 1487 struct cryptocap *cap; 1488 struct cryptop *crp; 1489 int result; 1490 1491 crp = (struct cryptop *)ctx; 1492 cap = crp->crp_session->cap; 1493 result = crypto_invoke(cap, crp, 0); 1494 if (result == ERESTART) 1495 crypto_batch_enqueue(crp); 1496 } 1497 1498 /* 1499 * Dispatch a crypto request to the appropriate crypto devices. 1500 */ 1501 static int 1502 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) 1503 { 1504 1505 KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); 1506 KASSERT(crp->crp_callback != NULL, 1507 ("%s: crp->crp_callback == NULL", __func__)); 1508 KASSERT(crp->crp_session != NULL, 1509 ("%s: crp->crp_session == NULL", __func__)); 1510 1511 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1512 struct crypto_session_params csp; 1513 crypto_session_t nses; 1514 1515 /* 1516 * Driver has unregistered; migrate the session and return 1517 * an error to the caller so they'll resubmit the op. 1518 * 1519 * XXX: What if there are more already queued requests for this 1520 * session? 1521 * 1522 * XXX: Real solution is to make sessions refcounted 1523 * and force callers to hold a reference when 1524 * assigning to crp_session. Could maybe change 1525 * crypto_getreq to accept a session pointer to make 1526 * that work. Alternatively, we could abandon the 1527 * notion of rewriting crp_session in requests forcing 1528 * the caller to deal with allocating a new session. 1529 * Perhaps provide a method to allow a crp's session to 1530 * be swapped that callers could use. 1531 */ 1532 csp = crp->crp_session->csp; 1533 crypto_freesession(crp->crp_session); 1534 1535 /* 1536 * XXX: Key pointers may no longer be valid. If we 1537 * really want to support this we need to define the 1538 * KPI such that 'csp' is required to be valid for the 1539 * duration of a session by the caller perhaps. 1540 * 1541 * XXX: If the keys have been changed this will reuse 1542 * the old keys. This probably suggests making 1543 * rekeying more explicit and updating the key 1544 * pointers in 'csp' when the keys change. 1545 */ 1546 if (crypto_newsession(&nses, &csp, 1547 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) 1548 crp->crp_session = nses; 1549 1550 crp->crp_etype = EAGAIN; 1551 crypto_done(crp); 1552 return 0; 1553 } else { 1554 /* 1555 * Invoke the driver to process the request. 1556 */ 1557 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); 1558 } 1559 } 1560 1561 void 1562 crypto_destroyreq(struct cryptop *crp) 1563 { 1564 #ifdef DIAGNOSTIC 1565 { 1566 struct cryptop *crp2; 1567 struct crypto_ret_worker *ret_worker; 1568 1569 CRYPTO_Q_LOCK(); 1570 TAILQ_FOREACH(crp2, &crp_q, crp_next) { 1571 KASSERT(crp2 != crp, 1572 ("Freeing cryptop from the crypto queue (%p).", 1573 crp)); 1574 } 1575 CRYPTO_Q_UNLOCK(); 1576 1577 FOREACH_CRYPTO_RETW(ret_worker) { 1578 CRYPTO_RETW_LOCK(ret_worker); 1579 TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) { 1580 KASSERT(crp2 != crp, 1581 ("Freeing cryptop from the return queue (%p).", 1582 crp)); 1583 } 1584 CRYPTO_RETW_UNLOCK(ret_worker); 1585 } 1586 } 1587 #endif 1588 } 1589 1590 void 1591 crypto_freereq(struct cryptop *crp) 1592 { 1593 if (crp == NULL) 1594 return; 1595 1596 crypto_destroyreq(crp); 1597 uma_zfree(cryptop_zone, crp); 1598 } 1599 1600 static void 1601 _crypto_initreq(struct cryptop *crp, crypto_session_t cses) 1602 { 1603 crp->crp_session = cses; 1604 } 1605 1606 void 1607 crypto_initreq(struct cryptop *crp, crypto_session_t cses) 1608 { 1609 memset(crp, 0, sizeof(*crp)); 1610 _crypto_initreq(crp, cses); 1611 } 1612 1613 struct cryptop * 1614 crypto_getreq(crypto_session_t cses, int how) 1615 { 1616 struct cryptop *crp; 1617 1618 MPASS(how == M_WAITOK || how == M_NOWAIT); 1619 crp = uma_zalloc(cryptop_zone, how | M_ZERO); 1620 if (crp != NULL) 1621 _crypto_initreq(crp, cses); 1622 return (crp); 1623 } 1624 1625 /* 1626 * Invoke the callback on behalf of the driver. 1627 */ 1628 void 1629 crypto_done(struct cryptop *crp) 1630 { 1631 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0, 1632 ("crypto_done: op already done, flags 0x%x", crp->crp_flags)); 1633 crp->crp_flags |= CRYPTO_F_DONE; 1634 if (crp->crp_etype != 0) 1635 CRYPTOSTAT_INC(cs_errs); 1636 1637 /* 1638 * CBIMM means unconditionally do the callback immediately; 1639 * CBIFSYNC means do the callback immediately only if the 1640 * operation was done synchronously. Both are used to avoid 1641 * doing extraneous context switches; the latter is mostly 1642 * used with the software crypto driver. 1643 */ 1644 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 && 1645 ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 || 1646 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 && 1647 CRYPTO_SESS_SYNC(crp->crp_session)))) { 1648 /* 1649 * Do the callback directly. This is ok when the 1650 * callback routine does very little (e.g. the 1651 * /dev/crypto callback method just does a wakeup). 1652 */ 1653 crp->crp_callback(crp); 1654 } else { 1655 struct crypto_ret_worker *ret_worker; 1656 bool wake; 1657 1658 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1659 1660 /* 1661 * Normal case; queue the callback for the thread. 1662 */ 1663 CRYPTO_RETW_LOCK(ret_worker); 1664 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) { 1665 struct cryptop *tmp; 1666 1667 TAILQ_FOREACH_REVERSE(tmp, 1668 &ret_worker->crp_ordered_ret_q, cryptop_q, 1669 crp_next) { 1670 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) { 1671 TAILQ_INSERT_AFTER( 1672 &ret_worker->crp_ordered_ret_q, tmp, 1673 crp, crp_next); 1674 break; 1675 } 1676 } 1677 if (tmp == NULL) { 1678 TAILQ_INSERT_HEAD( 1679 &ret_worker->crp_ordered_ret_q, crp, 1680 crp_next); 1681 } 1682 1683 wake = crp->crp_seq == ret_worker->reorder_cur_seq; 1684 } else { 1685 wake = TAILQ_EMPTY(&ret_worker->crp_ret_q); 1686 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, 1687 crp_next); 1688 } 1689 1690 if (wake) 1691 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1692 CRYPTO_RETW_UNLOCK(ret_worker); 1693 } 1694 } 1695 1696 /* 1697 * Terminate a thread at module unload. The process that 1698 * initiated this is waiting for us to signal that we're gone; 1699 * wake it up and exit. We use the driver table lock to insure 1700 * we don't do the wakeup before they're waiting. There is no 1701 * race here because the waiter sleeps on the proc lock for the 1702 * thread so it gets notified at the right time because of an 1703 * extra wakeup that's done in exit1(). 1704 */ 1705 static void 1706 crypto_finis(void *chan) 1707 { 1708 CRYPTO_DRIVER_LOCK(); 1709 wakeup_one(chan); 1710 CRYPTO_DRIVER_UNLOCK(); 1711 kproc_exit(0); 1712 } 1713 1714 /* 1715 * Crypto thread, dispatches crypto requests. 1716 */ 1717 static void 1718 crypto_proc(void) 1719 { 1720 struct cryptop *crp, *submit; 1721 struct cryptocap *cap; 1722 int result, hint; 1723 1724 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1725 fpu_kern_thread(FPU_KERN_NORMAL); 1726 #endif 1727 1728 CRYPTO_Q_LOCK(); 1729 for (;;) { 1730 /* 1731 * Find the first element in the queue that can be 1732 * processed and look-ahead to see if multiple ops 1733 * are ready for the same driver. 1734 */ 1735 submit = NULL; 1736 hint = 0; 1737 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1738 cap = crp->crp_session->cap; 1739 /* 1740 * Driver cannot disappeared when there is an active 1741 * session. 1742 */ 1743 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1744 __func__, __LINE__)); 1745 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1746 /* Op needs to be migrated, process it. */ 1747 if (submit == NULL) 1748 submit = crp; 1749 break; 1750 } 1751 if (!cap->cc_qblocked) { 1752 if (submit != NULL) { 1753 /* 1754 * We stop on finding another op, 1755 * regardless whether its for the same 1756 * driver or not. We could keep 1757 * searching the queue but it might be 1758 * better to just use a per-driver 1759 * queue instead. 1760 */ 1761 if (submit->crp_session->cap == cap) 1762 hint = CRYPTO_HINT_MORE; 1763 } else { 1764 submit = crp; 1765 } 1766 break; 1767 } 1768 } 1769 if (submit != NULL) { 1770 TAILQ_REMOVE(&crp_q, submit, crp_next); 1771 cap = submit->crp_session->cap; 1772 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1773 __func__, __LINE__)); 1774 CRYPTO_Q_UNLOCK(); 1775 result = crypto_invoke(cap, submit, hint); 1776 CRYPTO_Q_LOCK(); 1777 if (result == ERESTART) { 1778 /* 1779 * The driver ran out of resources, mark the 1780 * driver ``blocked'' for cryptop's and put 1781 * the request back in the queue. It would 1782 * best to put the request back where we got 1783 * it but that's hard so for now we put it 1784 * at the front. This should be ok; putting 1785 * it at the end does not work. 1786 */ 1787 cap->cc_qblocked = 1; 1788 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 1789 CRYPTOSTAT_INC(cs_blocks); 1790 } 1791 } else { 1792 /* 1793 * Nothing more to be processed. Sleep until we're 1794 * woken because there are more ops to process. 1795 * This happens either by submission or by a driver 1796 * becoming unblocked and notifying us through 1797 * crypto_unblock. Note that when we wakeup we 1798 * start processing each queue again from the 1799 * front. It's not clear that it's important to 1800 * preserve this ordering since ops may finish 1801 * out of order if dispatched to different devices 1802 * and some become blocked while others do not. 1803 */ 1804 crp_sleep = 1; 1805 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0); 1806 crp_sleep = 0; 1807 if (cryptoproc == NULL) 1808 break; 1809 CRYPTOSTAT_INC(cs_intrs); 1810 } 1811 } 1812 CRYPTO_Q_UNLOCK(); 1813 1814 crypto_finis(&crp_q); 1815 } 1816 1817 /* 1818 * Crypto returns thread, does callbacks for processed crypto requests. 1819 * Callbacks are done here, rather than in the crypto drivers, because 1820 * callbacks typically are expensive and would slow interrupt handling. 1821 */ 1822 static void 1823 crypto_ret_proc(struct crypto_ret_worker *ret_worker) 1824 { 1825 struct cryptop *crpt; 1826 1827 CRYPTO_RETW_LOCK(ret_worker); 1828 for (;;) { 1829 /* Harvest return q's for completed ops */ 1830 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q); 1831 if (crpt != NULL) { 1832 if (crpt->crp_seq == ret_worker->reorder_cur_seq) { 1833 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next); 1834 ret_worker->reorder_cur_seq++; 1835 } else { 1836 crpt = NULL; 1837 } 1838 } 1839 1840 if (crpt == NULL) { 1841 crpt = TAILQ_FIRST(&ret_worker->crp_ret_q); 1842 if (crpt != NULL) 1843 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next); 1844 } 1845 1846 if (crpt != NULL) { 1847 CRYPTO_RETW_UNLOCK(ret_worker); 1848 /* 1849 * Run callbacks unlocked. 1850 */ 1851 if (crpt != NULL) 1852 crpt->crp_callback(crpt); 1853 CRYPTO_RETW_LOCK(ret_worker); 1854 } else { 1855 /* 1856 * Nothing more to be processed. Sleep until we're 1857 * woken because there are more returns to process. 1858 */ 1859 msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT, 1860 "crypto_ret_wait", 0); 1861 if (ret_worker->cryptoretproc == NULL) 1862 break; 1863 CRYPTOSTAT_INC(cs_rets); 1864 } 1865 } 1866 CRYPTO_RETW_UNLOCK(ret_worker); 1867 1868 crypto_finis(&ret_worker->crp_ret_q); 1869 } 1870 1871 #ifdef DDB 1872 static void 1873 db_show_drivers(void) 1874 { 1875 int hid; 1876 1877 db_printf("%12s %4s %8s %2s\n" 1878 , "Device" 1879 , "Ses" 1880 , "Flags" 1881 , "QB" 1882 ); 1883 for (hid = 0; hid < crypto_drivers_size; hid++) { 1884 const struct cryptocap *cap = crypto_drivers[hid]; 1885 if (cap == NULL) 1886 continue; 1887 db_printf("%-12s %4u %08x %2u\n" 1888 , device_get_nameunit(cap->cc_dev) 1889 , cap->cc_sessions 1890 , cap->cc_flags 1891 , cap->cc_qblocked 1892 ); 1893 } 1894 } 1895 1896 DB_SHOW_COMMAND(crypto, db_show_crypto) 1897 { 1898 struct cryptop *crp; 1899 struct crypto_ret_worker *ret_worker; 1900 1901 db_show_drivers(); 1902 db_printf("\n"); 1903 1904 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", 1905 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", 1906 "Device", "Callback"); 1907 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1908 db_printf("%4u %08x %4u %4u %04x %8p %8p\n" 1909 , crp->crp_session->cap->cc_hid 1910 , (int) crypto_ses2caps(crp->crp_session) 1911 , crp->crp_olen 1912 , crp->crp_etype 1913 , crp->crp_flags 1914 , device_get_nameunit(crp->crp_session->cap->cc_dev) 1915 , crp->crp_callback 1916 ); 1917 } 1918 FOREACH_CRYPTO_RETW(ret_worker) { 1919 db_printf("\n%8s %4s %4s %4s %8s\n", 1920 "ret_worker", "HID", "Etype", "Flags", "Callback"); 1921 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 1922 TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) { 1923 db_printf("%8td %4u %4u %04x %8p\n" 1924 , CRYPTO_RETW_ID(ret_worker) 1925 , crp->crp_session->cap->cc_hid 1926 , crp->crp_etype 1927 , crp->crp_flags 1928 , crp->crp_callback 1929 ); 1930 } 1931 } 1932 } 1933 } 1934 #endif 1935 1936 int crypto_modevent(module_t mod, int type, void *unused); 1937 1938 /* 1939 * Initialization code, both for static and dynamic loading. 1940 * Note this is not invoked with the usual MODULE_DECLARE 1941 * mechanism but instead is listed as a dependency by the 1942 * cryptosoft driver. This guarantees proper ordering of 1943 * calls on module load/unload. 1944 */ 1945 int 1946 crypto_modevent(module_t mod, int type, void *unused) 1947 { 1948 int error = EINVAL; 1949 1950 switch (type) { 1951 case MOD_LOAD: 1952 error = crypto_init(); 1953 if (error == 0 && bootverbose) 1954 printf("crypto: <crypto core>\n"); 1955 break; 1956 case MOD_UNLOAD: 1957 /*XXX disallow if active sessions */ 1958 error = 0; 1959 crypto_destroy(); 1960 return 0; 1961 } 1962 return error; 1963 } 1964 MODULE_VERSION(crypto, 1); 1965 MODULE_DEPEND(crypto, zlib, 1, 1, 1); 1966