xref: /freebsd/sys/opencrypto/crypto.c (revision b13788e396c2b24f88697e7d4a74bab429ef4d0c)
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  */
24 
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27 
28 /*
29  * Cryptographic Subsystem.
30  *
31  * This code is derived from the Openbsd Cryptographic Framework (OCF)
32  * that has the copyright shown below.  Very little of the original
33  * code remains.
34  */
35 
36 /*-
37  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
38  *
39  * This code was written by Angelos D. Keromytis in Athens, Greece, in
40  * February 2000. Network Security Technologies Inc. (NSTI) kindly
41  * supported the development of this code.
42  *
43  * Copyright (c) 2000, 2001 Angelos D. Keromytis
44  *
45  * Permission to use, copy, and modify this software with or without fee
46  * is hereby granted, provided that this entire notice is included in
47  * all source code copies of any software which is or includes a copy or
48  * modification of this software.
49  *
50  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
51  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
52  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
53  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
54  * PURPOSE.
55  */
56 
57 #define	CRYPTO_TIMING				/* enable timing support */
58 
59 #include "opt_compat.h"
60 #include "opt_ddb.h"
61 
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/eventhandler.h>
65 #include <sys/kernel.h>
66 #include <sys/kthread.h>
67 #include <sys/linker.h>
68 #include <sys/lock.h>
69 #include <sys/module.h>
70 #include <sys/mutex.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/refcount.h>
74 #include <sys/sdt.h>
75 #include <sys/smp.h>
76 #include <sys/sysctl.h>
77 #include <sys/taskqueue.h>
78 
79 #include <ddb/ddb.h>
80 
81 #include <vm/uma.h>
82 #include <crypto/intake.h>
83 #include <opencrypto/cryptodev.h>
84 #include <opencrypto/xform_auth.h>
85 #include <opencrypto/xform_enc.h>
86 
87 #include <sys/kobj.h>
88 #include <sys/bus.h>
89 #include "cryptodev_if.h"
90 
91 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
92 #include <machine/pcb.h>
93 #endif
94 
95 SDT_PROVIDER_DEFINE(opencrypto);
96 
97 /*
98  * Crypto drivers register themselves by allocating a slot in the
99  * crypto_drivers table with crypto_get_driverid() and then registering
100  * each asym algorithm they support with crypto_kregister().
101  */
102 static	struct mtx crypto_drivers_mtx;		/* lock on driver table */
103 #define	CRYPTO_DRIVER_LOCK()	mtx_lock(&crypto_drivers_mtx)
104 #define	CRYPTO_DRIVER_UNLOCK()	mtx_unlock(&crypto_drivers_mtx)
105 #define	CRYPTO_DRIVER_ASSERT()	mtx_assert(&crypto_drivers_mtx, MA_OWNED)
106 
107 /*
108  * Crypto device/driver capabilities structure.
109  *
110  * Synchronization:
111  * (d) - protected by CRYPTO_DRIVER_LOCK()
112  * (q) - protected by CRYPTO_Q_LOCK()
113  * Not tagged fields are read-only.
114  */
115 struct cryptocap {
116 	device_t	cc_dev;
117 	uint32_t	cc_hid;
118 	u_int32_t	cc_sessions;		/* (d) # of sessions */
119 	u_int32_t	cc_koperations;		/* (d) # os asym operations */
120 	u_int8_t	cc_kalg[CRK_ALGORITHM_MAX + 1];
121 
122 	int		cc_flags;		/* (d) flags */
123 #define CRYPTOCAP_F_CLEANUP	0x80000000	/* needs resource cleanup */
124 	int		cc_qblocked;		/* (q) symmetric q blocked */
125 	int		cc_kqblocked;		/* (q) asymmetric q blocked */
126 	size_t		cc_session_size;
127 	volatile int	cc_refs;
128 };
129 
130 static	struct cryptocap **crypto_drivers = NULL;
131 static	int crypto_drivers_size = 0;
132 
133 struct crypto_session {
134 	struct cryptocap *cap;
135 	void *softc;
136 	struct crypto_session_params csp;
137 };
138 
139 /*
140  * There are two queues for crypto requests; one for symmetric (e.g.
141  * cipher) operations and one for asymmetric (e.g. MOD)operations.
142  * A single mutex is used to lock access to both queues.  We could
143  * have one per-queue but having one simplifies handling of block/unblock
144  * operations.
145  */
146 static	int crp_sleep = 0;
147 static	TAILQ_HEAD(cryptop_q ,cryptop) crp_q;		/* request queues */
148 static	TAILQ_HEAD(,cryptkop) crp_kq;
149 static	struct mtx crypto_q_mtx;
150 #define	CRYPTO_Q_LOCK()		mtx_lock(&crypto_q_mtx)
151 #define	CRYPTO_Q_UNLOCK()	mtx_unlock(&crypto_q_mtx)
152 
153 static SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
154     "In-kernel cryptography");
155 
156 /*
157  * Taskqueue used to dispatch the crypto requests
158  * that have the CRYPTO_F_ASYNC flag
159  */
160 static struct taskqueue *crypto_tq;
161 
162 /*
163  * Crypto seq numbers are operated on with modular arithmetic
164  */
165 #define	CRYPTO_SEQ_GT(a,b)	((int)((a)-(b)) > 0)
166 
167 struct crypto_ret_worker {
168 	struct mtx crypto_ret_mtx;
169 
170 	TAILQ_HEAD(,cryptop) crp_ordered_ret_q;	/* ordered callback queue for symetric jobs */
171 	TAILQ_HEAD(,cryptop) crp_ret_q;		/* callback queue for symetric jobs */
172 	TAILQ_HEAD(,cryptkop) crp_ret_kq;	/* callback queue for asym jobs */
173 
174 	u_int32_t reorder_ops;		/* total ordered sym jobs received */
175 	u_int32_t reorder_cur_seq;	/* current sym job dispatched */
176 
177 	struct proc *cryptoretproc;
178 };
179 static struct crypto_ret_worker *crypto_ret_workers = NULL;
180 
181 #define CRYPTO_RETW(i)		(&crypto_ret_workers[i])
182 #define CRYPTO_RETW_ID(w)	((w) - crypto_ret_workers)
183 #define FOREACH_CRYPTO_RETW(w) \
184 	for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
185 
186 #define	CRYPTO_RETW_LOCK(w)	mtx_lock(&w->crypto_ret_mtx)
187 #define	CRYPTO_RETW_UNLOCK(w)	mtx_unlock(&w->crypto_ret_mtx)
188 #define	CRYPTO_RETW_EMPTY(w) \
189 	(TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q))
190 
191 static int crypto_workers_num = 0;
192 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
193 	   &crypto_workers_num, 0,
194 	   "Number of crypto workers used to dispatch crypto jobs");
195 #ifdef COMPAT_FREEBSD12
196 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
197 	   &crypto_workers_num, 0,
198 	   "Number of crypto workers used to dispatch crypto jobs");
199 #endif
200 
201 static	uma_zone_t cryptop_zone;
202 static	uma_zone_t cryptoses_zone;
203 
204 int	crypto_userasymcrypto = 1;
205 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW,
206 	   &crypto_userasymcrypto, 0,
207 	   "Enable user-mode access to asymmetric crypto support");
208 #ifdef COMPAT_FREEBSD12
209 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
210 	   &crypto_userasymcrypto, 0,
211 	   "Enable/disable user-mode access to asymmetric crypto support");
212 #endif
213 
214 int	crypto_devallowsoft = 0;
215 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW,
216 	   &crypto_devallowsoft, 0,
217 	   "Enable use of software crypto by /dev/crypto");
218 #ifdef COMPAT_FREEBSD12
219 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
220 	   &crypto_devallowsoft, 0,
221 	   "Enable/disable use of software crypto by /dev/crypto");
222 #endif
223 
224 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
225 
226 static	void crypto_proc(void);
227 static	struct proc *cryptoproc;
228 static	void crypto_ret_proc(struct crypto_ret_worker *ret_worker);
229 static	void crypto_destroy(void);
230 static	int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
231 static	int crypto_kinvoke(struct cryptkop *krp);
232 static	void crypto_task_invoke(void *ctx, int pending);
233 static void crypto_batch_enqueue(struct cryptop *crp);
234 
235 static	struct cryptostats cryptostats;
236 SYSCTL_STRUCT(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW, &cryptostats,
237 	    cryptostats, "Crypto system statistics");
238 
239 #ifdef CRYPTO_TIMING
240 static	int crypto_timing = 0;
241 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
242 	   &crypto_timing, 0, "Enable/disable crypto timing support");
243 #endif
244 
245 /* Try to avoid directly exposing the key buffer as a symbol */
246 static struct keybuf *keybuf;
247 
248 static struct keybuf empty_keybuf = {
249         .kb_nents = 0
250 };
251 
252 /* Obtain the key buffer from boot metadata */
253 static void
254 keybuf_init(void)
255 {
256 	caddr_t kmdp;
257 
258 	kmdp = preload_search_by_type("elf kernel");
259 
260 	if (kmdp == NULL)
261 		kmdp = preload_search_by_type("elf64 kernel");
262 
263 	keybuf = (struct keybuf *)preload_search_info(kmdp,
264 	    MODINFO_METADATA | MODINFOMD_KEYBUF);
265 
266         if (keybuf == NULL)
267                 keybuf = &empty_keybuf;
268 }
269 
270 /* It'd be nice if we could store these in some kind of secure memory... */
271 struct keybuf * get_keybuf(void) {
272 
273         return (keybuf);
274 }
275 
276 static struct cryptocap *
277 cap_ref(struct cryptocap *cap)
278 {
279 
280 	refcount_acquire(&cap->cc_refs);
281 	return (cap);
282 }
283 
284 static void
285 cap_rele(struct cryptocap *cap)
286 {
287 
288 	if (refcount_release(&cap->cc_refs) == 0)
289 		return;
290 
291 	KASSERT(cap->cc_sessions == 0,
292 	    ("freeing crypto driver with active sessions"));
293 	KASSERT(cap->cc_koperations == 0,
294 	    ("freeing crypto driver with active key operations"));
295 
296 	free(cap, M_CRYPTO_DATA);
297 }
298 
299 static int
300 crypto_init(void)
301 {
302 	struct crypto_ret_worker *ret_worker;
303 	int error;
304 
305 	mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
306 		MTX_DEF|MTX_QUIET);
307 
308 	TAILQ_INIT(&crp_q);
309 	TAILQ_INIT(&crp_kq);
310 	mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
311 
312 	cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop),
313 				    0, 0, 0, 0,
314 				    UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
315 	cryptoses_zone = uma_zcreate("crypto_session",
316 	    sizeof(struct crypto_session), NULL, NULL, NULL, NULL,
317 	    UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
318 
319 	if (cryptop_zone == NULL || cryptoses_zone == NULL) {
320 		printf("crypto_init: cannot setup crypto zones\n");
321 		error = ENOMEM;
322 		goto bad;
323 	}
324 
325 	crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
326 	crypto_drivers = malloc(crypto_drivers_size *
327 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
328 	if (crypto_drivers == NULL) {
329 		printf("crypto_init: cannot setup crypto drivers\n");
330 		error = ENOMEM;
331 		goto bad;
332 	}
333 
334 	if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
335 		crypto_workers_num = mp_ncpus;
336 
337 	crypto_tq = taskqueue_create("crypto", M_WAITOK|M_ZERO,
338 				taskqueue_thread_enqueue, &crypto_tq);
339 	if (crypto_tq == NULL) {
340 		printf("crypto init: cannot setup crypto taskqueue\n");
341 		error = ENOMEM;
342 		goto bad;
343 	}
344 
345 	taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
346 		"crypto");
347 
348 	error = kproc_create((void (*)(void *)) crypto_proc, NULL,
349 		    &cryptoproc, 0, 0, "crypto");
350 	if (error) {
351 		printf("crypto_init: cannot start crypto thread; error %d",
352 			error);
353 		goto bad;
354 	}
355 
356 	crypto_ret_workers = malloc(crypto_workers_num * sizeof(struct crypto_ret_worker),
357 			M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
358 	if (crypto_ret_workers == NULL) {
359 		error = ENOMEM;
360 		printf("crypto_init: cannot allocate ret workers\n");
361 		goto bad;
362 	}
363 
364 
365 	FOREACH_CRYPTO_RETW(ret_worker) {
366 		TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
367 		TAILQ_INIT(&ret_worker->crp_ret_q);
368 		TAILQ_INIT(&ret_worker->crp_ret_kq);
369 
370 		ret_worker->reorder_ops = 0;
371 		ret_worker->reorder_cur_seq = 0;
372 
373 		mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF);
374 
375 		error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker,
376 				&ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker));
377 		if (error) {
378 			printf("crypto_init: cannot start cryptoret thread; error %d",
379 				error);
380 			goto bad;
381 		}
382 	}
383 
384 	keybuf_init();
385 
386 	return 0;
387 bad:
388 	crypto_destroy();
389 	return error;
390 }
391 
392 /*
393  * Signal a crypto thread to terminate.  We use the driver
394  * table lock to synchronize the sleep/wakeups so that we
395  * are sure the threads have terminated before we release
396  * the data structures they use.  See crypto_finis below
397  * for the other half of this song-and-dance.
398  */
399 static void
400 crypto_terminate(struct proc **pp, void *q)
401 {
402 	struct proc *p;
403 
404 	mtx_assert(&crypto_drivers_mtx, MA_OWNED);
405 	p = *pp;
406 	*pp = NULL;
407 	if (p) {
408 		wakeup_one(q);
409 		PROC_LOCK(p);		/* NB: insure we don't miss wakeup */
410 		CRYPTO_DRIVER_UNLOCK();	/* let crypto_finis progress */
411 		msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
412 		PROC_UNLOCK(p);
413 		CRYPTO_DRIVER_LOCK();
414 	}
415 }
416 
417 static void
418 hmac_init_pad(struct auth_hash *axf, const char *key, int klen, void *auth_ctx,
419     uint8_t padval)
420 {
421 	uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
422 	u_int i;
423 
424 	KASSERT(axf->blocksize <= sizeof(hmac_key),
425 	    ("Invalid HMAC block size %d", axf->blocksize));
426 
427 	/*
428 	 * If the key is larger than the block size, use the digest of
429 	 * the key as the key instead.
430 	 */
431 	memset(hmac_key, 0, sizeof(hmac_key));
432 	if (klen > axf->blocksize) {
433 		axf->Init(auth_ctx);
434 		axf->Update(auth_ctx, key, klen);
435 		axf->Final(hmac_key, auth_ctx);
436 		klen = axf->hashsize;
437 	} else
438 		memcpy(hmac_key, key, klen);
439 
440 	for (i = 0; i < axf->blocksize; i++)
441 		hmac_key[i] ^= padval;
442 
443 	axf->Init(auth_ctx);
444 	axf->Update(auth_ctx, hmac_key, axf->blocksize);
445 }
446 
447 void
448 hmac_init_ipad(struct auth_hash *axf, const char *key, int klen,
449     void *auth_ctx)
450 {
451 
452 	hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
453 }
454 
455 void
456 hmac_init_opad(struct auth_hash *axf, const char *key, int klen,
457     void *auth_ctx)
458 {
459 
460 	hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
461 }
462 
463 static void
464 crypto_destroy(void)
465 {
466 	struct crypto_ret_worker *ret_worker;
467 	int i;
468 
469 	/*
470 	 * Terminate any crypto threads.
471 	 */
472 	if (crypto_tq != NULL)
473 		taskqueue_drain_all(crypto_tq);
474 	CRYPTO_DRIVER_LOCK();
475 	crypto_terminate(&cryptoproc, &crp_q);
476 	FOREACH_CRYPTO_RETW(ret_worker)
477 		crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q);
478 	CRYPTO_DRIVER_UNLOCK();
479 
480 	/* XXX flush queues??? */
481 
482 	/*
483 	 * Reclaim dynamically allocated resources.
484 	 */
485 	for (i = 0; i < crypto_drivers_size; i++) {
486 		if (crypto_drivers[i] != NULL)
487 			cap_rele(crypto_drivers[i]);
488 	}
489 	free(crypto_drivers, M_CRYPTO_DATA);
490 
491 	if (cryptoses_zone != NULL)
492 		uma_zdestroy(cryptoses_zone);
493 	if (cryptop_zone != NULL)
494 		uma_zdestroy(cryptop_zone);
495 	mtx_destroy(&crypto_q_mtx);
496 	FOREACH_CRYPTO_RETW(ret_worker)
497 		mtx_destroy(&ret_worker->crypto_ret_mtx);
498 	free(crypto_ret_workers, M_CRYPTO_DATA);
499 	if (crypto_tq != NULL)
500 		taskqueue_free(crypto_tq);
501 	mtx_destroy(&crypto_drivers_mtx);
502 }
503 
504 uint32_t
505 crypto_ses2hid(crypto_session_t crypto_session)
506 {
507 	return (crypto_session->cap->cc_hid);
508 }
509 
510 uint32_t
511 crypto_ses2caps(crypto_session_t crypto_session)
512 {
513 	return (crypto_session->cap->cc_flags & 0xff000000);
514 }
515 
516 void *
517 crypto_get_driver_session(crypto_session_t crypto_session)
518 {
519 	return (crypto_session->softc);
520 }
521 
522 const struct crypto_session_params *
523 crypto_get_params(crypto_session_t crypto_session)
524 {
525 	return (&crypto_session->csp);
526 }
527 
528 struct auth_hash *
529 crypto_auth_hash(const struct crypto_session_params *csp)
530 {
531 
532 	switch (csp->csp_auth_alg) {
533 	case CRYPTO_SHA1_HMAC:
534 		return (&auth_hash_hmac_sha1);
535 	case CRYPTO_SHA2_224_HMAC:
536 		return (&auth_hash_hmac_sha2_224);
537 	case CRYPTO_SHA2_256_HMAC:
538 		return (&auth_hash_hmac_sha2_256);
539 	case CRYPTO_SHA2_384_HMAC:
540 		return (&auth_hash_hmac_sha2_384);
541 	case CRYPTO_SHA2_512_HMAC:
542 		return (&auth_hash_hmac_sha2_512);
543 	case CRYPTO_NULL_HMAC:
544 		return (&auth_hash_null);
545 	case CRYPTO_RIPEMD160_HMAC:
546 		return (&auth_hash_hmac_ripemd_160);
547 	case CRYPTO_SHA1:
548 		return (&auth_hash_sha1);
549 	case CRYPTO_SHA2_224:
550 		return (&auth_hash_sha2_224);
551 	case CRYPTO_SHA2_256:
552 		return (&auth_hash_sha2_256);
553 	case CRYPTO_SHA2_384:
554 		return (&auth_hash_sha2_384);
555 	case CRYPTO_SHA2_512:
556 		return (&auth_hash_sha2_512);
557 	case CRYPTO_AES_NIST_GMAC:
558 		switch (csp->csp_auth_klen) {
559 		case 128 / 8:
560 			return (&auth_hash_nist_gmac_aes_128);
561 		case 192 / 8:
562 			return (&auth_hash_nist_gmac_aes_192);
563 		case 256 / 8:
564 			return (&auth_hash_nist_gmac_aes_256);
565 		default:
566 			return (NULL);
567 		}
568 	case CRYPTO_BLAKE2B:
569 		return (&auth_hash_blake2b);
570 	case CRYPTO_BLAKE2S:
571 		return (&auth_hash_blake2s);
572 	case CRYPTO_POLY1305:
573 		return (&auth_hash_poly1305);
574 	case CRYPTO_AES_CCM_CBC_MAC:
575 		switch (csp->csp_auth_klen) {
576 		case 128 / 8:
577 			return (&auth_hash_ccm_cbc_mac_128);
578 		case 192 / 8:
579 			return (&auth_hash_ccm_cbc_mac_192);
580 		case 256 / 8:
581 			return (&auth_hash_ccm_cbc_mac_256);
582 		default:
583 			return (NULL);
584 		}
585 	default:
586 		return (NULL);
587 	}
588 }
589 
590 struct enc_xform *
591 crypto_cipher(const struct crypto_session_params *csp)
592 {
593 
594 	switch (csp->csp_cipher_alg) {
595 	case CRYPTO_RIJNDAEL128_CBC:
596 		return (&enc_xform_rijndael128);
597 	case CRYPTO_AES_XTS:
598 		return (&enc_xform_aes_xts);
599 	case CRYPTO_AES_ICM:
600 		return (&enc_xform_aes_icm);
601 	case CRYPTO_AES_NIST_GCM_16:
602 		return (&enc_xform_aes_nist_gcm);
603 	case CRYPTO_CAMELLIA_CBC:
604 		return (&enc_xform_camellia);
605 	case CRYPTO_NULL_CBC:
606 		return (&enc_xform_null);
607 	case CRYPTO_CHACHA20:
608 		return (&enc_xform_chacha20);
609 	case CRYPTO_AES_CCM_16:
610 		return (&enc_xform_ccm);
611 	default:
612 		return (NULL);
613 	}
614 }
615 
616 static struct cryptocap *
617 crypto_checkdriver(u_int32_t hid)
618 {
619 
620 	return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
621 }
622 
623 /*
624  * Select a driver for a new session that supports the specified
625  * algorithms and, optionally, is constrained according to the flags.
626  */
627 static struct cryptocap *
628 crypto_select_driver(const struct crypto_session_params *csp, int flags)
629 {
630 	struct cryptocap *cap, *best;
631 	int best_match, error, hid;
632 
633 	CRYPTO_DRIVER_ASSERT();
634 
635 	best = NULL;
636 	for (hid = 0; hid < crypto_drivers_size; hid++) {
637 		/*
638 		 * If there is no driver for this slot, or the driver
639 		 * is not appropriate (hardware or software based on
640 		 * match), then skip.
641 		 */
642 		cap = crypto_drivers[hid];
643 		if (cap == NULL ||
644 		    (cap->cc_flags & flags) == 0)
645 			continue;
646 
647 		error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
648 		if (error >= 0)
649 			continue;
650 
651 		/*
652 		 * Use the driver with the highest probe value.
653 		 * Hardware drivers use a higher probe value than
654 		 * software.  In case of a tie, prefer the driver with
655 		 * the fewest active sessions.
656 		 */
657 		if (best == NULL || error > best_match ||
658 		    (error == best_match &&
659 		    cap->cc_sessions < best->cc_sessions)) {
660 			best = cap;
661 			best_match = error;
662 		}
663 	}
664 	return best;
665 }
666 
667 static enum alg_type {
668 	ALG_NONE = 0,
669 	ALG_CIPHER,
670 	ALG_DIGEST,
671 	ALG_KEYED_DIGEST,
672 	ALG_COMPRESSION,
673 	ALG_AEAD
674 } alg_types[] = {
675 	[CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
676 	[CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
677 	[CRYPTO_AES_CBC] = ALG_CIPHER,
678 	[CRYPTO_SHA1] = ALG_DIGEST,
679 	[CRYPTO_NULL_HMAC] = ALG_DIGEST,
680 	[CRYPTO_NULL_CBC] = ALG_CIPHER,
681 	[CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
682 	[CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
683 	[CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
684 	[CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
685 	[CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
686 	[CRYPTO_AES_XTS] = ALG_CIPHER,
687 	[CRYPTO_AES_ICM] = ALG_CIPHER,
688 	[CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
689 	[CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
690 	[CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
691 	[CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
692 	[CRYPTO_CHACHA20] = ALG_CIPHER,
693 	[CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
694 	[CRYPTO_RIPEMD160] = ALG_DIGEST,
695 	[CRYPTO_SHA2_224] = ALG_DIGEST,
696 	[CRYPTO_SHA2_256] = ALG_DIGEST,
697 	[CRYPTO_SHA2_384] = ALG_DIGEST,
698 	[CRYPTO_SHA2_512] = ALG_DIGEST,
699 	[CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
700 	[CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
701 	[CRYPTO_AES_CCM_16] = ALG_AEAD,
702 };
703 
704 static enum alg_type
705 alg_type(int alg)
706 {
707 
708 	if (alg < nitems(alg_types))
709 		return (alg_types[alg]);
710 	return (ALG_NONE);
711 }
712 
713 static bool
714 alg_is_compression(int alg)
715 {
716 
717 	return (alg_type(alg) == ALG_COMPRESSION);
718 }
719 
720 static bool
721 alg_is_cipher(int alg)
722 {
723 
724 	return (alg_type(alg) == ALG_CIPHER);
725 }
726 
727 static bool
728 alg_is_digest(int alg)
729 {
730 
731 	return (alg_type(alg) == ALG_DIGEST ||
732 	    alg_type(alg) == ALG_KEYED_DIGEST);
733 }
734 
735 static bool
736 alg_is_keyed_digest(int alg)
737 {
738 
739 	return (alg_type(alg) == ALG_KEYED_DIGEST);
740 }
741 
742 static bool
743 alg_is_aead(int alg)
744 {
745 
746 	return (alg_type(alg) == ALG_AEAD);
747 }
748 
749 /* Various sanity checks on crypto session parameters. */
750 static bool
751 check_csp(const struct crypto_session_params *csp)
752 {
753 	struct auth_hash *axf;
754 
755 	/* Mode-independent checks. */
756 	if (csp->csp_flags != 0)
757 		return (false);
758 	if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
759 	    csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
760 		return (false);
761 	if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
762 		return (false);
763 	if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
764 		return (false);
765 
766 	switch (csp->csp_mode) {
767 	case CSP_MODE_COMPRESS:
768 		if (!alg_is_compression(csp->csp_cipher_alg))
769 			return (false);
770 		if (csp->csp_flags != 0)
771 			return (false);
772 		if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
773 		    csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
774 		    csp->csp_auth_mlen != 0)
775 			return (false);
776 		break;
777 	case CSP_MODE_CIPHER:
778 		if (!alg_is_cipher(csp->csp_cipher_alg))
779 			return (false);
780 		if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
781 			if (csp->csp_cipher_klen == 0)
782 				return (false);
783 			if (csp->csp_ivlen == 0)
784 				return (false);
785 		}
786 		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
787 			return (false);
788 		if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
789 		    csp->csp_auth_mlen != 0)
790 			return (false);
791 		break;
792 	case CSP_MODE_DIGEST:
793 		if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
794 			return (false);
795 
796 		/* IV is optional for digests (e.g. GMAC). */
797 		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
798 			return (false);
799 		if (!alg_is_digest(csp->csp_auth_alg))
800 			return (false);
801 
802 		/* Key is optional for BLAKE2 digests. */
803 		if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
804 		    csp->csp_auth_alg == CRYPTO_BLAKE2S)
805 			;
806 		else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
807 			if (csp->csp_auth_klen == 0)
808 				return (false);
809 		} else {
810 			if (csp->csp_auth_klen != 0)
811 				return (false);
812 		}
813 		if (csp->csp_auth_mlen != 0) {
814 			axf = crypto_auth_hash(csp);
815 			if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
816 				return (false);
817 		}
818 		break;
819 	case CSP_MODE_AEAD:
820 		if (!alg_is_aead(csp->csp_cipher_alg))
821 			return (false);
822 		if (csp->csp_cipher_klen == 0)
823 			return (false);
824 		if (csp->csp_ivlen == 0 ||
825 		    csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
826 			return (false);
827 		if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
828 			return (false);
829 
830 		/*
831 		 * XXX: Would be nice to have a better way to get this
832 		 * value.
833 		 */
834 		switch (csp->csp_cipher_alg) {
835 		case CRYPTO_AES_NIST_GCM_16:
836 		case CRYPTO_AES_CCM_16:
837 			if (csp->csp_auth_mlen > 16)
838 				return (false);
839 			break;
840 		}
841 		break;
842 	case CSP_MODE_ETA:
843 		if (!alg_is_cipher(csp->csp_cipher_alg))
844 			return (false);
845 		if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
846 			if (csp->csp_cipher_klen == 0)
847 				return (false);
848 			if (csp->csp_ivlen == 0)
849 				return (false);
850 		}
851 		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
852 			return (false);
853 		if (!alg_is_digest(csp->csp_auth_alg))
854 			return (false);
855 
856 		/* Key is optional for BLAKE2 digests. */
857 		if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
858 		    csp->csp_auth_alg == CRYPTO_BLAKE2S)
859 			;
860 		else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
861 			if (csp->csp_auth_klen == 0)
862 				return (false);
863 		} else {
864 			if (csp->csp_auth_klen != 0)
865 				return (false);
866 		}
867 		if (csp->csp_auth_mlen != 0) {
868 			axf = crypto_auth_hash(csp);
869 			if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
870 				return (false);
871 		}
872 		break;
873 	default:
874 		return (false);
875 	}
876 
877 	return (true);
878 }
879 
880 /*
881  * Delete a session after it has been detached from its driver.
882  */
883 static void
884 crypto_deletesession(crypto_session_t cses)
885 {
886 	struct cryptocap *cap;
887 
888 	cap = cses->cap;
889 
890 	explicit_bzero(cses->softc, cap->cc_session_size);
891 	free(cses->softc, M_CRYPTO_DATA);
892 	uma_zfree(cryptoses_zone, cses);
893 
894 	CRYPTO_DRIVER_LOCK();
895 	cap->cc_sessions--;
896 	if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
897 		wakeup(cap);
898 	CRYPTO_DRIVER_UNLOCK();
899 	cap_rele(cap);
900 }
901 
902 /*
903  * Create a new session.  The crid argument specifies a crypto
904  * driver to use or constraints on a driver to select (hardware
905  * only, software only, either).  Whatever driver is selected
906  * must be capable of the requested crypto algorithms.
907  */
908 int
909 crypto_newsession(crypto_session_t *cses,
910     const struct crypto_session_params *csp, int crid)
911 {
912 	crypto_session_t res;
913 	struct cryptocap *cap;
914 	int err;
915 
916 	if (!check_csp(csp))
917 		return (EINVAL);
918 
919 	res = NULL;
920 
921 	CRYPTO_DRIVER_LOCK();
922 	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
923 		/*
924 		 * Use specified driver; verify it is capable.
925 		 */
926 		cap = crypto_checkdriver(crid);
927 		if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
928 			cap = NULL;
929 	} else {
930 		/*
931 		 * No requested driver; select based on crid flags.
932 		 */
933 		cap = crypto_select_driver(csp, crid);
934 	}
935 	if (cap == NULL) {
936 		CRYPTO_DRIVER_UNLOCK();
937 		CRYPTDEB("no driver");
938 		return (EOPNOTSUPP);
939 	}
940 	cap_ref(cap);
941 	cap->cc_sessions++;
942 	CRYPTO_DRIVER_UNLOCK();
943 
944 	res = uma_zalloc(cryptoses_zone, M_WAITOK | M_ZERO);
945 	res->cap = cap;
946 	res->softc = malloc(cap->cc_session_size, M_CRYPTO_DATA, M_WAITOK |
947 	    M_ZERO);
948 	res->csp = *csp;
949 
950 	/* Call the driver initialization routine. */
951 	err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
952 	if (err != 0) {
953 		CRYPTDEB("dev newsession failed: %d", err);
954 		crypto_deletesession(res);
955 		return (err);
956 	}
957 
958 	*cses = res;
959 	return (0);
960 }
961 
962 /*
963  * Delete an existing session (or a reserved session on an unregistered
964  * driver).
965  */
966 void
967 crypto_freesession(crypto_session_t cses)
968 {
969 	struct cryptocap *cap;
970 
971 	if (cses == NULL)
972 		return;
973 
974 	cap = cses->cap;
975 
976 	/* Call the driver cleanup routine, if available. */
977 	CRYPTODEV_FREESESSION(cap->cc_dev, cses);
978 
979 	crypto_deletesession(cses);
980 }
981 
982 /*
983  * Return a new driver id.  Registers a driver with the system so that
984  * it can be probed by subsequent sessions.
985  */
986 int32_t
987 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
988 {
989 	struct cryptocap *cap, **newdrv;
990 	int i;
991 
992 	if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
993 		device_printf(dev,
994 		    "no flags specified when registering driver\n");
995 		return -1;
996 	}
997 
998 	cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
999 	cap->cc_dev = dev;
1000 	cap->cc_session_size = sessionsize;
1001 	cap->cc_flags = flags;
1002 	refcount_init(&cap->cc_refs, 1);
1003 
1004 	CRYPTO_DRIVER_LOCK();
1005 	for (;;) {
1006 		for (i = 0; i < crypto_drivers_size; i++) {
1007 			if (crypto_drivers[i] == NULL)
1008 				break;
1009 		}
1010 
1011 		if (i < crypto_drivers_size)
1012 			break;
1013 
1014 		/* Out of entries, allocate some more. */
1015 
1016 		if (2 * crypto_drivers_size <= crypto_drivers_size) {
1017 			CRYPTO_DRIVER_UNLOCK();
1018 			printf("crypto: driver count wraparound!\n");
1019 			cap_rele(cap);
1020 			return (-1);
1021 		}
1022 		CRYPTO_DRIVER_UNLOCK();
1023 
1024 		newdrv = malloc(2 * crypto_drivers_size *
1025 		    sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1026 
1027 		CRYPTO_DRIVER_LOCK();
1028 		memcpy(newdrv, crypto_drivers,
1029 		    crypto_drivers_size * sizeof(*crypto_drivers));
1030 
1031 		crypto_drivers_size *= 2;
1032 
1033 		free(crypto_drivers, M_CRYPTO_DATA);
1034 		crypto_drivers = newdrv;
1035 	}
1036 
1037 	cap->cc_hid = i;
1038 	crypto_drivers[i] = cap;
1039 	CRYPTO_DRIVER_UNLOCK();
1040 
1041 	if (bootverbose)
1042 		printf("crypto: assign %s driver id %u, flags 0x%x\n",
1043 		    device_get_nameunit(dev), i, flags);
1044 
1045 	return i;
1046 }
1047 
1048 /*
1049  * Lookup a driver by name.  We match against the full device
1050  * name and unit, and against just the name.  The latter gives
1051  * us a simple widlcarding by device name.  On success return the
1052  * driver/hardware identifier; otherwise return -1.
1053  */
1054 int
1055 crypto_find_driver(const char *match)
1056 {
1057 	struct cryptocap *cap;
1058 	int i, len = strlen(match);
1059 
1060 	CRYPTO_DRIVER_LOCK();
1061 	for (i = 0; i < crypto_drivers_size; i++) {
1062 		if (crypto_drivers[i] == NULL)
1063 			continue;
1064 		cap = crypto_drivers[i];
1065 		if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1066 		    strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1067 			CRYPTO_DRIVER_UNLOCK();
1068 			return (i);
1069 		}
1070 	}
1071 	CRYPTO_DRIVER_UNLOCK();
1072 	return (-1);
1073 }
1074 
1075 /*
1076  * Return the device_t for the specified driver or NULL
1077  * if the driver identifier is invalid.
1078  */
1079 device_t
1080 crypto_find_device_byhid(int hid)
1081 {
1082 	struct cryptocap *cap;
1083 	device_t dev;
1084 
1085 	dev = NULL;
1086 	CRYPTO_DRIVER_LOCK();
1087 	cap = crypto_checkdriver(hid);
1088 	if (cap != NULL)
1089 		dev = cap->cc_dev;
1090 	CRYPTO_DRIVER_UNLOCK();
1091 	return (dev);
1092 }
1093 
1094 /*
1095  * Return the device/driver capabilities.
1096  */
1097 int
1098 crypto_getcaps(int hid)
1099 {
1100 	struct cryptocap *cap;
1101 	int flags;
1102 
1103 	flags = 0;
1104 	CRYPTO_DRIVER_LOCK();
1105 	cap = crypto_checkdriver(hid);
1106 	if (cap != NULL)
1107 		flags = cap->cc_flags;
1108 	CRYPTO_DRIVER_UNLOCK();
1109 	return (flags);
1110 }
1111 
1112 /*
1113  * Register support for a key-related algorithm.  This routine
1114  * is called once for each algorithm supported a driver.
1115  */
1116 int
1117 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
1118 {
1119 	struct cryptocap *cap;
1120 	int err;
1121 
1122 	CRYPTO_DRIVER_LOCK();
1123 
1124 	cap = crypto_checkdriver(driverid);
1125 	if (cap != NULL &&
1126 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
1127 		/*
1128 		 * XXX Do some performance testing to determine placing.
1129 		 * XXX We probably need an auxiliary data structure that
1130 		 * XXX describes relative performances.
1131 		 */
1132 
1133 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1134 		if (bootverbose)
1135 			printf("crypto: %s registers key alg %u flags %u\n"
1136 				, device_get_nameunit(cap->cc_dev)
1137 				, kalg
1138 				, flags
1139 			);
1140 		err = 0;
1141 	} else
1142 		err = EINVAL;
1143 
1144 	CRYPTO_DRIVER_UNLOCK();
1145 	return err;
1146 }
1147 
1148 /*
1149  * Unregister all algorithms associated with a crypto driver.
1150  * If there are pending sessions using it, leave enough information
1151  * around so that subsequent calls using those sessions will
1152  * correctly detect the driver has been unregistered and reroute
1153  * requests.
1154  */
1155 int
1156 crypto_unregister_all(u_int32_t driverid)
1157 {
1158 	struct cryptocap *cap;
1159 
1160 	CRYPTO_DRIVER_LOCK();
1161 	cap = crypto_checkdriver(driverid);
1162 	if (cap == NULL) {
1163 		CRYPTO_DRIVER_UNLOCK();
1164 		return (EINVAL);
1165 	}
1166 
1167 	cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1168 	crypto_drivers[driverid] = NULL;
1169 
1170 	/*
1171 	 * XXX: This doesn't do anything to kick sessions that
1172 	 * have no pending operations.
1173 	 */
1174 	while (cap->cc_sessions != 0 || cap->cc_koperations != 0)
1175 		mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1176 	CRYPTO_DRIVER_UNLOCK();
1177 	cap_rele(cap);
1178 
1179 	return (0);
1180 }
1181 
1182 /*
1183  * Clear blockage on a driver.  The what parameter indicates whether
1184  * the driver is now ready for cryptop's and/or cryptokop's.
1185  */
1186 int
1187 crypto_unblock(u_int32_t driverid, int what)
1188 {
1189 	struct cryptocap *cap;
1190 	int err;
1191 
1192 	CRYPTO_Q_LOCK();
1193 	cap = crypto_checkdriver(driverid);
1194 	if (cap != NULL) {
1195 		if (what & CRYPTO_SYMQ)
1196 			cap->cc_qblocked = 0;
1197 		if (what & CRYPTO_ASYMQ)
1198 			cap->cc_kqblocked = 0;
1199 		if (crp_sleep)
1200 			wakeup_one(&crp_q);
1201 		err = 0;
1202 	} else
1203 		err = EINVAL;
1204 	CRYPTO_Q_UNLOCK();
1205 
1206 	return err;
1207 }
1208 
1209 #ifdef INVARIANTS
1210 /* Various sanity checks on crypto requests. */
1211 static void
1212 crp_sanity(struct cryptop *crp)
1213 {
1214 	struct crypto_session_params *csp;
1215 
1216 	KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1217 	KASSERT(crp->crp_ilen >= 0, ("incoming crp with -ve input length"));
1218 	KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1219 	KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1220 	    ("incoming crp already done"));
1221 
1222 	csp = &crp->crp_session->csp;
1223 	switch (csp->csp_mode) {
1224 	case CSP_MODE_COMPRESS:
1225 		KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1226 		    crp->crp_op == CRYPTO_OP_DECOMPRESS,
1227 		    ("invalid compression op %x", crp->crp_op));
1228 		break;
1229 	case CSP_MODE_CIPHER:
1230 		KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1231 		    crp->crp_op == CRYPTO_OP_DECRYPT,
1232 		    ("invalid cipher op %x", crp->crp_op));
1233 		break;
1234 	case CSP_MODE_DIGEST:
1235 		KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1236 		    crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1237 		    ("invalid digest op %x", crp->crp_op));
1238 		break;
1239 	case CSP_MODE_AEAD:
1240 		KASSERT(crp->crp_op ==
1241 		    (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1242 		    crp->crp_op ==
1243 		    (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1244 		    ("invalid AEAD op %x", crp->crp_op));
1245 		if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16)
1246 			KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1247 			    ("GCM without a separate IV"));
1248 		if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16)
1249 			KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1250 			    ("CCM without a separate IV"));
1251 		break;
1252 	case CSP_MODE_ETA:
1253 		KASSERT(crp->crp_op ==
1254 		    (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1255 		    crp->crp_op ==
1256 		    (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1257 		    ("invalid ETA op %x", crp->crp_op));
1258 		break;
1259 	}
1260 	KASSERT(crp->crp_buf_type >= CRYPTO_BUF_CONTIG &&
1261 	    crp->crp_buf_type <= CRYPTO_BUF_MBUF,
1262 	    ("invalid crp buffer type %d", crp->crp_buf_type));
1263 	if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1264 		KASSERT(crp->crp_aad_start == 0 ||
1265 		    crp->crp_aad_start < crp->crp_ilen,
1266 		    ("invalid AAD start"));
1267 		KASSERT(crp->crp_aad_length != 0 || crp->crp_aad_start == 0,
1268 		    ("AAD with zero length and non-zero start"));
1269 		KASSERT(crp->crp_aad_length == 0 ||
1270 		    crp->crp_aad_start + crp->crp_aad_length <= crp->crp_ilen,
1271 		    ("AAD outside input length"));
1272 	} else {
1273 		KASSERT(crp->crp_aad_start == 0 && crp->crp_aad_length == 0,
1274 		    ("AAD region in request not supporting AAD"));
1275 	}
1276 	if (csp->csp_ivlen == 0) {
1277 		KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1278 		    ("IV_SEPARATE set when IV isn't used"));
1279 		KASSERT(crp->crp_iv_start == 0,
1280 		    ("crp_iv_start set when IV isn't used"));
1281 	} else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1282 		KASSERT(crp->crp_iv_start == 0,
1283 		    ("IV_SEPARATE used with non-zero IV start"));
1284 	} else {
1285 		KASSERT(crp->crp_iv_start < crp->crp_ilen,
1286 		    ("invalid IV start"));
1287 		KASSERT(crp->crp_iv_start + csp->csp_ivlen <= crp->crp_ilen,
1288 		    ("IV outside input length"));
1289 	}
1290 	KASSERT(crp->crp_payload_start == 0 ||
1291 	    crp->crp_payload_start < crp->crp_ilen,
1292 	    ("invalid payload start"));
1293 	KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1294 	    crp->crp_ilen, ("payload outside input length"));
1295 	if (csp->csp_mode == CSP_MODE_DIGEST ||
1296 	    csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1297 		KASSERT(crp->crp_digest_start == 0 ||
1298 		    crp->crp_digest_start < crp->crp_ilen,
1299 		    ("invalid digest start"));
1300 		/* XXX: For the mlen == 0 case this check isn't perfect. */
1301 		KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <=
1302 		    crp->crp_ilen,
1303 		    ("digest outside input length"));
1304 	} else {
1305 		KASSERT(crp->crp_digest_start == 0,
1306 		    ("non-zero digest start for request without a digest"));
1307 	}
1308 	if (csp->csp_cipher_klen != 0)
1309 		KASSERT(csp->csp_cipher_key != NULL ||
1310 		    crp->crp_cipher_key != NULL,
1311 		    ("cipher request without a key"));
1312 	if (csp->csp_auth_klen != 0)
1313 		KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1314 		    ("auth request without a key"));
1315 	KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1316 }
1317 #endif
1318 
1319 /*
1320  * Add a crypto request to a queue, to be processed by the kernel thread.
1321  */
1322 int
1323 crypto_dispatch(struct cryptop *crp)
1324 {
1325 	struct cryptocap *cap;
1326 	int result;
1327 
1328 #ifdef INVARIANTS
1329 	crp_sanity(crp);
1330 #endif
1331 
1332 	cryptostats.cs_ops++;
1333 
1334 #ifdef CRYPTO_TIMING
1335 	if (crypto_timing)
1336 		binuptime(&crp->crp_tstamp);
1337 #endif
1338 
1339 	crp->crp_retw_id = ((uintptr_t)crp->crp_session) % crypto_workers_num;
1340 
1341 	if (CRYPTOP_ASYNC(crp)) {
1342 		if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) {
1343 			struct crypto_ret_worker *ret_worker;
1344 
1345 			ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1346 
1347 			CRYPTO_RETW_LOCK(ret_worker);
1348 			crp->crp_seq = ret_worker->reorder_ops++;
1349 			CRYPTO_RETW_UNLOCK(ret_worker);
1350 		}
1351 
1352 		TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1353 		taskqueue_enqueue(crypto_tq, &crp->crp_task);
1354 		return (0);
1355 	}
1356 
1357 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
1358 		/*
1359 		 * Caller marked the request to be processed
1360 		 * immediately; dispatch it directly to the
1361 		 * driver unless the driver is currently blocked.
1362 		 */
1363 		cap = crp->crp_session->cap;
1364 		if (!cap->cc_qblocked) {
1365 			result = crypto_invoke(cap, crp, 0);
1366 			if (result != ERESTART)
1367 				return (result);
1368 			/*
1369 			 * The driver ran out of resources, put the request on
1370 			 * the queue.
1371 			 */
1372 		}
1373 	}
1374 	crypto_batch_enqueue(crp);
1375 	return 0;
1376 }
1377 
1378 void
1379 crypto_batch_enqueue(struct cryptop *crp)
1380 {
1381 
1382 	CRYPTO_Q_LOCK();
1383 	TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1384 	if (crp_sleep)
1385 		wakeup_one(&crp_q);
1386 	CRYPTO_Q_UNLOCK();
1387 }
1388 
1389 /*
1390  * Add an asymetric crypto request to a queue,
1391  * to be processed by the kernel thread.
1392  */
1393 int
1394 crypto_kdispatch(struct cryptkop *krp)
1395 {
1396 	int error;
1397 
1398 	cryptostats.cs_kops++;
1399 
1400 	krp->krp_cap = NULL;
1401 	error = crypto_kinvoke(krp);
1402 	if (error == ERESTART) {
1403 		CRYPTO_Q_LOCK();
1404 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1405 		if (crp_sleep)
1406 			wakeup_one(&crp_q);
1407 		CRYPTO_Q_UNLOCK();
1408 		error = 0;
1409 	}
1410 	return error;
1411 }
1412 
1413 /*
1414  * Verify a driver is suitable for the specified operation.
1415  */
1416 static __inline int
1417 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
1418 {
1419 	return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
1420 }
1421 
1422 /*
1423  * Select a driver for an asym operation.  The driver must
1424  * support the necessary algorithm.  The caller can constrain
1425  * which device is selected with the flags parameter.  The
1426  * algorithm we use here is pretty stupid; just use the first
1427  * driver that supports the algorithms we need. If there are
1428  * multiple suitable drivers we choose the driver with the
1429  * fewest active operations.  We prefer hardware-backed
1430  * drivers to software ones when either may be used.
1431  */
1432 static struct cryptocap *
1433 crypto_select_kdriver(const struct cryptkop *krp, int flags)
1434 {
1435 	struct cryptocap *cap, *best;
1436 	int match, hid;
1437 
1438 	CRYPTO_DRIVER_ASSERT();
1439 
1440 	/*
1441 	 * Look first for hardware crypto devices if permitted.
1442 	 */
1443 	if (flags & CRYPTOCAP_F_HARDWARE)
1444 		match = CRYPTOCAP_F_HARDWARE;
1445 	else
1446 		match = CRYPTOCAP_F_SOFTWARE;
1447 	best = NULL;
1448 again:
1449 	for (hid = 0; hid < crypto_drivers_size; hid++) {
1450 		/*
1451 		 * If there is no driver for this slot, or the driver
1452 		 * is not appropriate (hardware or software based on
1453 		 * match), then skip.
1454 		 */
1455 		cap = crypto_drivers[hid];
1456 		if (cap->cc_dev == NULL ||
1457 		    (cap->cc_flags & match) == 0)
1458 			continue;
1459 
1460 		/* verify all the algorithms are supported. */
1461 		if (kdriver_suitable(cap, krp)) {
1462 			if (best == NULL ||
1463 			    cap->cc_koperations < best->cc_koperations)
1464 				best = cap;
1465 		}
1466 	}
1467 	if (best != NULL)
1468 		return best;
1469 	if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
1470 		/* sort of an Algol 68-style for loop */
1471 		match = CRYPTOCAP_F_SOFTWARE;
1472 		goto again;
1473 	}
1474 	return best;
1475 }
1476 
1477 /*
1478  * Choose a driver for an asymmetric crypto request.
1479  */
1480 static struct cryptocap *
1481 crypto_lookup_kdriver(struct cryptkop *krp)
1482 {
1483 	struct cryptocap *cap;
1484 	uint32_t crid;
1485 
1486 	/* If this request is requeued, it might already have a driver. */
1487 	cap = krp->krp_cap;
1488 	if (cap != NULL)
1489 		return (cap);
1490 
1491 	/* Use krp_crid to choose a driver. */
1492 	crid = krp->krp_crid;
1493 	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1494 		cap = crypto_checkdriver(crid);
1495 		if (cap != NULL) {
1496 			/*
1497 			 * Driver present, it must support the
1498 			 * necessary algorithm and, if s/w drivers are
1499 			 * excluded, it must be registered as
1500 			 * hardware-backed.
1501 			 */
1502 			if (!kdriver_suitable(cap, krp) ||
1503 			    (!crypto_devallowsoft &&
1504 			    (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
1505 				cap = NULL;
1506 		}
1507 	} else {
1508 		/*
1509 		 * No requested driver; select based on crid flags.
1510 		 */
1511 		if (!crypto_devallowsoft)	/* NB: disallow s/w drivers */
1512 			crid &= ~CRYPTOCAP_F_SOFTWARE;
1513 		cap = crypto_select_kdriver(krp, crid);
1514 	}
1515 
1516 	if (cap != NULL) {
1517 		krp->krp_cap = cap_ref(cap);
1518 		krp->krp_hid = cap->cc_hid;
1519 	}
1520 	return (cap);
1521 }
1522 
1523 /*
1524  * Dispatch an asymmetric crypto request.
1525  */
1526 static int
1527 crypto_kinvoke(struct cryptkop *krp)
1528 {
1529 	struct cryptocap *cap = NULL;
1530 	int error;
1531 
1532 	KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
1533 	KASSERT(krp->krp_callback != NULL,
1534 	    ("%s: krp->crp_callback == NULL", __func__));
1535 
1536 	CRYPTO_DRIVER_LOCK();
1537 	cap = crypto_lookup_kdriver(krp);
1538 	if (cap == NULL) {
1539 		CRYPTO_DRIVER_UNLOCK();
1540 		krp->krp_status = ENODEV;
1541 		crypto_kdone(krp);
1542 		return (0);
1543 	}
1544 
1545 	/*
1546 	 * If the device is blocked, return ERESTART to requeue it.
1547 	 */
1548 	if (cap->cc_kqblocked) {
1549 		/*
1550 		 * XXX: Previously this set krp_status to ERESTART and
1551 		 * invoked crypto_kdone but the caller would still
1552 		 * requeue it.
1553 		 */
1554 		CRYPTO_DRIVER_UNLOCK();
1555 		return (ERESTART);
1556 	}
1557 
1558 	cap->cc_koperations++;
1559 	CRYPTO_DRIVER_UNLOCK();
1560 	error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
1561 	if (error == ERESTART) {
1562 		CRYPTO_DRIVER_LOCK();
1563 		cap->cc_koperations--;
1564 		CRYPTO_DRIVER_UNLOCK();
1565 		return (error);
1566 	}
1567 
1568 	KASSERT(error == 0, ("error %d returned from crypto_kprocess", error));
1569 	return (0);
1570 }
1571 
1572 #ifdef CRYPTO_TIMING
1573 static void
1574 crypto_tstat(struct cryptotstat *ts, struct bintime *bt)
1575 {
1576 	struct bintime now, delta;
1577 	struct timespec t;
1578 	uint64_t u;
1579 
1580 	binuptime(&now);
1581 	u = now.frac;
1582 	delta.frac = now.frac - bt->frac;
1583 	delta.sec = now.sec - bt->sec;
1584 	if (u < delta.frac)
1585 		delta.sec--;
1586 	bintime2timespec(&delta, &t);
1587 	timespecadd(&ts->acc, &t, &ts->acc);
1588 	if (timespeccmp(&t, &ts->min, <))
1589 		ts->min = t;
1590 	if (timespeccmp(&t, &ts->max, >))
1591 		ts->max = t;
1592 	ts->count++;
1593 
1594 	*bt = now;
1595 }
1596 #endif
1597 
1598 static void
1599 crypto_task_invoke(void *ctx, int pending)
1600 {
1601 	struct cryptocap *cap;
1602 	struct cryptop *crp;
1603 	int result;
1604 
1605 	crp = (struct cryptop *)ctx;
1606 	cap = crp->crp_session->cap;
1607 	result = crypto_invoke(cap, crp, 0);
1608 	if (result == ERESTART)
1609 		crypto_batch_enqueue(crp);
1610 }
1611 
1612 /*
1613  * Dispatch a crypto request to the appropriate crypto devices.
1614  */
1615 static int
1616 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1617 {
1618 
1619 	KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1620 	KASSERT(crp->crp_callback != NULL,
1621 	    ("%s: crp->crp_callback == NULL", __func__));
1622 	KASSERT(crp->crp_session != NULL,
1623 	    ("%s: crp->crp_session == NULL", __func__));
1624 
1625 #ifdef CRYPTO_TIMING
1626 	if (crypto_timing)
1627 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1628 #endif
1629 	if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1630 		struct crypto_session_params csp;
1631 		crypto_session_t nses;
1632 
1633 		/*
1634 		 * Driver has unregistered; migrate the session and return
1635 		 * an error to the caller so they'll resubmit the op.
1636 		 *
1637 		 * XXX: What if there are more already queued requests for this
1638 		 *      session?
1639 		 *
1640 		 * XXX: Real solution is to make sessions refcounted
1641 		 * and force callers to hold a reference when
1642 		 * assigning to crp_session.  Could maybe change
1643 		 * crypto_getreq to accept a session pointer to make
1644 		 * that work.  Alternatively, we could abandon the
1645 		 * notion of rewriting crp_session in requests forcing
1646 		 * the caller to deal with allocating a new session.
1647 		 * Perhaps provide a method to allow a crp's session to
1648 		 * be swapped that callers could use.
1649 		 */
1650 		csp = crp->crp_session->csp;
1651 		crypto_freesession(crp->crp_session);
1652 
1653 		/*
1654 		 * XXX: Key pointers may no longer be valid.  If we
1655 		 * really want to support this we need to define the
1656 		 * KPI such that 'csp' is required to be valid for the
1657 		 * duration of a session by the caller perhaps.
1658 		 *
1659 		 * XXX: If the keys have been changed this will reuse
1660 		 * the old keys.  This probably suggests making
1661 		 * rekeying more explicit and updating the key
1662 		 * pointers in 'csp' when the keys change.
1663 		 */
1664 		if (crypto_newsession(&nses, &csp,
1665 		    CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1666 			crp->crp_session = nses;
1667 
1668 		crp->crp_etype = EAGAIN;
1669 		crypto_done(crp);
1670 		return 0;
1671 	} else {
1672 		/*
1673 		 * Invoke the driver to process the request.
1674 		 */
1675 		return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1676 	}
1677 }
1678 
1679 void
1680 crypto_freereq(struct cryptop *crp)
1681 {
1682 
1683 	if (crp == NULL)
1684 		return;
1685 
1686 #ifdef DIAGNOSTIC
1687 	{
1688 		struct cryptop *crp2;
1689 		struct crypto_ret_worker *ret_worker;
1690 
1691 		CRYPTO_Q_LOCK();
1692 		TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1693 			KASSERT(crp2 != crp,
1694 			    ("Freeing cryptop from the crypto queue (%p).",
1695 			    crp));
1696 		}
1697 		CRYPTO_Q_UNLOCK();
1698 
1699 		FOREACH_CRYPTO_RETW(ret_worker) {
1700 			CRYPTO_RETW_LOCK(ret_worker);
1701 			TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1702 				KASSERT(crp2 != crp,
1703 				    ("Freeing cryptop from the return queue (%p).",
1704 				    crp));
1705 			}
1706 			CRYPTO_RETW_UNLOCK(ret_worker);
1707 		}
1708 	}
1709 #endif
1710 
1711 	uma_zfree(cryptop_zone, crp);
1712 }
1713 
1714 struct cryptop *
1715 crypto_getreq(crypto_session_t cses, int how)
1716 {
1717 	struct cryptop *crp;
1718 
1719 	MPASS(how == M_WAITOK || how == M_NOWAIT);
1720 	crp = uma_zalloc(cryptop_zone, how | M_ZERO);
1721 	crp->crp_session = cses;
1722 	return (crp);
1723 }
1724 
1725 /*
1726  * Invoke the callback on behalf of the driver.
1727  */
1728 void
1729 crypto_done(struct cryptop *crp)
1730 {
1731 	KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1732 		("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1733 	crp->crp_flags |= CRYPTO_F_DONE;
1734 	if (crp->crp_etype != 0)
1735 		cryptostats.cs_errs++;
1736 #ifdef CRYPTO_TIMING
1737 	if (crypto_timing)
1738 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1739 #endif
1740 	/*
1741 	 * CBIMM means unconditionally do the callback immediately;
1742 	 * CBIFSYNC means do the callback immediately only if the
1743 	 * operation was done synchronously.  Both are used to avoid
1744 	 * doing extraneous context switches; the latter is mostly
1745 	 * used with the software crypto driver.
1746 	 */
1747 	if (!CRYPTOP_ASYNC_KEEPORDER(crp) &&
1748 	    ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1749 	    ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1750 	     (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) {
1751 		/*
1752 		 * Do the callback directly.  This is ok when the
1753 		 * callback routine does very little (e.g. the
1754 		 * /dev/crypto callback method just does a wakeup).
1755 		 */
1756 #ifdef CRYPTO_TIMING
1757 		if (crypto_timing) {
1758 			/*
1759 			 * NB: We must copy the timestamp before
1760 			 * doing the callback as the cryptop is
1761 			 * likely to be reclaimed.
1762 			 */
1763 			struct bintime t = crp->crp_tstamp;
1764 			crypto_tstat(&cryptostats.cs_cb, &t);
1765 			crp->crp_callback(crp);
1766 			crypto_tstat(&cryptostats.cs_finis, &t);
1767 		} else
1768 #endif
1769 			crp->crp_callback(crp);
1770 	} else {
1771 		struct crypto_ret_worker *ret_worker;
1772 		bool wake;
1773 
1774 		ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1775 		wake = false;
1776 
1777 		/*
1778 		 * Normal case; queue the callback for the thread.
1779 		 */
1780 		CRYPTO_RETW_LOCK(ret_worker);
1781 		if (CRYPTOP_ASYNC_KEEPORDER(crp)) {
1782 			struct cryptop *tmp;
1783 
1784 			TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q,
1785 					cryptop_q, crp_next) {
1786 				if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1787 					TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q,
1788 							tmp, crp, crp_next);
1789 					break;
1790 				}
1791 			}
1792 			if (tmp == NULL) {
1793 				TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q,
1794 						crp, crp_next);
1795 			}
1796 
1797 			if (crp->crp_seq == ret_worker->reorder_cur_seq)
1798 				wake = true;
1799 		}
1800 		else {
1801 			if (CRYPTO_RETW_EMPTY(ret_worker))
1802 				wake = true;
1803 
1804 			TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next);
1805 		}
1806 
1807 		if (wake)
1808 			wakeup_one(&ret_worker->crp_ret_q);	/* shared wait channel */
1809 		CRYPTO_RETW_UNLOCK(ret_worker);
1810 	}
1811 }
1812 
1813 /*
1814  * Invoke the callback on behalf of the driver.
1815  */
1816 void
1817 crypto_kdone(struct cryptkop *krp)
1818 {
1819 	struct crypto_ret_worker *ret_worker;
1820 	struct cryptocap *cap;
1821 
1822 	if (krp->krp_status != 0)
1823 		cryptostats.cs_kerrs++;
1824 	CRYPTO_DRIVER_LOCK();
1825 	cap = krp->krp_cap;
1826 	KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0"));
1827 	cap->cc_koperations--;
1828 	if (cap->cc_koperations == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1829 		wakeup(cap);
1830 	CRYPTO_DRIVER_UNLOCK();
1831 	krp->krp_cap = NULL;
1832 	cap_rele(cap);
1833 
1834 	ret_worker = CRYPTO_RETW(0);
1835 
1836 	CRYPTO_RETW_LOCK(ret_worker);
1837 	if (CRYPTO_RETW_EMPTY(ret_worker))
1838 		wakeup_one(&ret_worker->crp_ret_q);		/* shared wait channel */
1839 	TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next);
1840 	CRYPTO_RETW_UNLOCK(ret_worker);
1841 }
1842 
1843 int
1844 crypto_getfeat(int *featp)
1845 {
1846 	int hid, kalg, feat = 0;
1847 
1848 	CRYPTO_DRIVER_LOCK();
1849 	for (hid = 0; hid < crypto_drivers_size; hid++) {
1850 		const struct cryptocap *cap = crypto_drivers[hid];
1851 
1852 		if (cap == NULL ||
1853 		    ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1854 		    !crypto_devallowsoft)) {
1855 			continue;
1856 		}
1857 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1858 			if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1859 				feat |=  1 << kalg;
1860 	}
1861 	CRYPTO_DRIVER_UNLOCK();
1862 	*featp = feat;
1863 	return (0);
1864 }
1865 
1866 /*
1867  * Terminate a thread at module unload.  The process that
1868  * initiated this is waiting for us to signal that we're gone;
1869  * wake it up and exit.  We use the driver table lock to insure
1870  * we don't do the wakeup before they're waiting.  There is no
1871  * race here because the waiter sleeps on the proc lock for the
1872  * thread so it gets notified at the right time because of an
1873  * extra wakeup that's done in exit1().
1874  */
1875 static void
1876 crypto_finis(void *chan)
1877 {
1878 	CRYPTO_DRIVER_LOCK();
1879 	wakeup_one(chan);
1880 	CRYPTO_DRIVER_UNLOCK();
1881 	kproc_exit(0);
1882 }
1883 
1884 /*
1885  * Crypto thread, dispatches crypto requests.
1886  */
1887 static void
1888 crypto_proc(void)
1889 {
1890 	struct cryptop *crp, *submit;
1891 	struct cryptkop *krp;
1892 	struct cryptocap *cap;
1893 	int result, hint;
1894 
1895 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1896 	fpu_kern_thread(FPU_KERN_NORMAL);
1897 #endif
1898 
1899 	CRYPTO_Q_LOCK();
1900 	for (;;) {
1901 		/*
1902 		 * Find the first element in the queue that can be
1903 		 * processed and look-ahead to see if multiple ops
1904 		 * are ready for the same driver.
1905 		 */
1906 		submit = NULL;
1907 		hint = 0;
1908 		TAILQ_FOREACH(crp, &crp_q, crp_next) {
1909 			cap = crp->crp_session->cap;
1910 			/*
1911 			 * Driver cannot disappeared when there is an active
1912 			 * session.
1913 			 */
1914 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1915 			    __func__, __LINE__));
1916 			if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1917 				/* Op needs to be migrated, process it. */
1918 				if (submit == NULL)
1919 					submit = crp;
1920 				break;
1921 			}
1922 			if (!cap->cc_qblocked) {
1923 				if (submit != NULL) {
1924 					/*
1925 					 * We stop on finding another op,
1926 					 * regardless whether its for the same
1927 					 * driver or not.  We could keep
1928 					 * searching the queue but it might be
1929 					 * better to just use a per-driver
1930 					 * queue instead.
1931 					 */
1932 					if (submit->crp_session->cap == cap)
1933 						hint = CRYPTO_HINT_MORE;
1934 					break;
1935 				} else {
1936 					submit = crp;
1937 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1938 						break;
1939 					/* keep scanning for more are q'd */
1940 				}
1941 			}
1942 		}
1943 		if (submit != NULL) {
1944 			TAILQ_REMOVE(&crp_q, submit, crp_next);
1945 			cap = submit->crp_session->cap;
1946 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1947 			    __func__, __LINE__));
1948 			CRYPTO_Q_UNLOCK();
1949 			result = crypto_invoke(cap, submit, hint);
1950 			CRYPTO_Q_LOCK();
1951 			if (result == ERESTART) {
1952 				/*
1953 				 * The driver ran out of resources, mark the
1954 				 * driver ``blocked'' for cryptop's and put
1955 				 * the request back in the queue.  It would
1956 				 * best to put the request back where we got
1957 				 * it but that's hard so for now we put it
1958 				 * at the front.  This should be ok; putting
1959 				 * it at the end does not work.
1960 				 */
1961 				cap->cc_qblocked = 1;
1962 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1963 				cryptostats.cs_blocks++;
1964 			}
1965 		}
1966 
1967 		/* As above, but for key ops */
1968 		TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1969 			cap = krp->krp_cap;
1970 			if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1971 				/*
1972 				 * Operation needs to be migrated,
1973 				 * clear krp_cap so a new driver is
1974 				 * selected.
1975 				 */
1976 				krp->krp_cap = NULL;
1977 				cap_rele(cap);
1978 				break;
1979 			}
1980 			if (!cap->cc_kqblocked)
1981 				break;
1982 		}
1983 		if (krp != NULL) {
1984 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
1985 			CRYPTO_Q_UNLOCK();
1986 			result = crypto_kinvoke(krp);
1987 			CRYPTO_Q_LOCK();
1988 			if (result == ERESTART) {
1989 				/*
1990 				 * The driver ran out of resources, mark the
1991 				 * driver ``blocked'' for cryptkop's and put
1992 				 * the request back in the queue.  It would
1993 				 * best to put the request back where we got
1994 				 * it but that's hard so for now we put it
1995 				 * at the front.  This should be ok; putting
1996 				 * it at the end does not work.
1997 				 */
1998 				krp->krp_cap->cc_kqblocked = 1;
1999 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
2000 				cryptostats.cs_kblocks++;
2001 			}
2002 		}
2003 
2004 		if (submit == NULL && krp == NULL) {
2005 			/*
2006 			 * Nothing more to be processed.  Sleep until we're
2007 			 * woken because there are more ops to process.
2008 			 * This happens either by submission or by a driver
2009 			 * becoming unblocked and notifying us through
2010 			 * crypto_unblock.  Note that when we wakeup we
2011 			 * start processing each queue again from the
2012 			 * front. It's not clear that it's important to
2013 			 * preserve this ordering since ops may finish
2014 			 * out of order if dispatched to different devices
2015 			 * and some become blocked while others do not.
2016 			 */
2017 			crp_sleep = 1;
2018 			msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
2019 			crp_sleep = 0;
2020 			if (cryptoproc == NULL)
2021 				break;
2022 			cryptostats.cs_intrs++;
2023 		}
2024 	}
2025 	CRYPTO_Q_UNLOCK();
2026 
2027 	crypto_finis(&crp_q);
2028 }
2029 
2030 /*
2031  * Crypto returns thread, does callbacks for processed crypto requests.
2032  * Callbacks are done here, rather than in the crypto drivers, because
2033  * callbacks typically are expensive and would slow interrupt handling.
2034  */
2035 static void
2036 crypto_ret_proc(struct crypto_ret_worker *ret_worker)
2037 {
2038 	struct cryptop *crpt;
2039 	struct cryptkop *krpt;
2040 
2041 	CRYPTO_RETW_LOCK(ret_worker);
2042 	for (;;) {
2043 		/* Harvest return q's for completed ops */
2044 		crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
2045 		if (crpt != NULL) {
2046 			if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
2047 				TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
2048 				ret_worker->reorder_cur_seq++;
2049 			} else {
2050 				crpt = NULL;
2051 			}
2052 		}
2053 
2054 		if (crpt == NULL) {
2055 			crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
2056 			if (crpt != NULL)
2057 				TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
2058 		}
2059 
2060 		krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq);
2061 		if (krpt != NULL)
2062 			TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next);
2063 
2064 		if (crpt != NULL || krpt != NULL) {
2065 			CRYPTO_RETW_UNLOCK(ret_worker);
2066 			/*
2067 			 * Run callbacks unlocked.
2068 			 */
2069 			if (crpt != NULL) {
2070 #ifdef CRYPTO_TIMING
2071 				if (crypto_timing) {
2072 					/*
2073 					 * NB: We must copy the timestamp before
2074 					 * doing the callback as the cryptop is
2075 					 * likely to be reclaimed.
2076 					 */
2077 					struct bintime t = crpt->crp_tstamp;
2078 					crypto_tstat(&cryptostats.cs_cb, &t);
2079 					crpt->crp_callback(crpt);
2080 					crypto_tstat(&cryptostats.cs_finis, &t);
2081 				} else
2082 #endif
2083 					crpt->crp_callback(crpt);
2084 			}
2085 			if (krpt != NULL)
2086 				krpt->krp_callback(krpt);
2087 			CRYPTO_RETW_LOCK(ret_worker);
2088 		} else {
2089 			/*
2090 			 * Nothing more to be processed.  Sleep until we're
2091 			 * woken because there are more returns to process.
2092 			 */
2093 			msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
2094 				"crypto_ret_wait", 0);
2095 			if (ret_worker->cryptoretproc == NULL)
2096 				break;
2097 			cryptostats.cs_rets++;
2098 		}
2099 	}
2100 	CRYPTO_RETW_UNLOCK(ret_worker);
2101 
2102 	crypto_finis(&ret_worker->crp_ret_q);
2103 }
2104 
2105 #ifdef DDB
2106 static void
2107 db_show_drivers(void)
2108 {
2109 	int hid;
2110 
2111 	db_printf("%12s %4s %4s %8s %2s %2s\n"
2112 		, "Device"
2113 		, "Ses"
2114 		, "Kops"
2115 		, "Flags"
2116 		, "QB"
2117 		, "KB"
2118 	);
2119 	for (hid = 0; hid < crypto_drivers_size; hid++) {
2120 		const struct cryptocap *cap = crypto_drivers[hid];
2121 		if (cap == NULL)
2122 			continue;
2123 		db_printf("%-12s %4u %4u %08x %2u %2u\n"
2124 		    , device_get_nameunit(cap->cc_dev)
2125 		    , cap->cc_sessions
2126 		    , cap->cc_koperations
2127 		    , cap->cc_flags
2128 		    , cap->cc_qblocked
2129 		    , cap->cc_kqblocked
2130 		);
2131 	}
2132 }
2133 
2134 DB_SHOW_COMMAND(crypto, db_show_crypto)
2135 {
2136 	struct cryptop *crp;
2137 	struct crypto_ret_worker *ret_worker;
2138 
2139 	db_show_drivers();
2140 	db_printf("\n");
2141 
2142 	db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
2143 	    "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
2144 	    "Device", "Callback");
2145 	TAILQ_FOREACH(crp, &crp_q, crp_next) {
2146 		db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
2147 		    , crp->crp_session->cap->cc_hid
2148 		    , (int) crypto_ses2caps(crp->crp_session)
2149 		    , crp->crp_ilen, crp->crp_olen
2150 		    , crp->crp_etype
2151 		    , crp->crp_flags
2152 		    , device_get_nameunit(crp->crp_session->cap->cc_dev)
2153 		    , crp->crp_callback
2154 		);
2155 	}
2156 	FOREACH_CRYPTO_RETW(ret_worker) {
2157 		db_printf("\n%8s %4s %4s %4s %8s\n",
2158 		    "ret_worker", "HID", "Etype", "Flags", "Callback");
2159 		if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2160 			TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
2161 				db_printf("%8td %4u %4u %04x %8p\n"
2162 				    , CRYPTO_RETW_ID(ret_worker)
2163 				    , crp->crp_session->cap->cc_hid
2164 				    , crp->crp_etype
2165 				    , crp->crp_flags
2166 				    , crp->crp_callback
2167 				);
2168 			}
2169 		}
2170 	}
2171 }
2172 
2173 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
2174 {
2175 	struct cryptkop *krp;
2176 	struct crypto_ret_worker *ret_worker;
2177 
2178 	db_show_drivers();
2179 	db_printf("\n");
2180 
2181 	db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
2182 	    "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
2183 	TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2184 		db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
2185 		    , krp->krp_op
2186 		    , krp->krp_status
2187 		    , krp->krp_iparams, krp->krp_oparams
2188 		    , krp->krp_crid, krp->krp_hid
2189 		    , krp->krp_callback
2190 		);
2191 	}
2192 
2193 	ret_worker = CRYPTO_RETW(0);
2194 	if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2195 		db_printf("%4s %5s %8s %4s %8s\n",
2196 		    "Op", "Status", "CRID", "HID", "Callback");
2197 		TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) {
2198 			db_printf("%4u %5u %08x %4u %8p\n"
2199 			    , krp->krp_op
2200 			    , krp->krp_status
2201 			    , krp->krp_crid, krp->krp_hid
2202 			    , krp->krp_callback
2203 			);
2204 		}
2205 	}
2206 }
2207 #endif
2208 
2209 int crypto_modevent(module_t mod, int type, void *unused);
2210 
2211 /*
2212  * Initialization code, both for static and dynamic loading.
2213  * Note this is not invoked with the usual MODULE_DECLARE
2214  * mechanism but instead is listed as a dependency by the
2215  * cryptosoft driver.  This guarantees proper ordering of
2216  * calls on module load/unload.
2217  */
2218 int
2219 crypto_modevent(module_t mod, int type, void *unused)
2220 {
2221 	int error = EINVAL;
2222 
2223 	switch (type) {
2224 	case MOD_LOAD:
2225 		error = crypto_init();
2226 		if (error == 0 && bootverbose)
2227 			printf("crypto: <crypto core>\n");
2228 		break;
2229 	case MOD_UNLOAD:
2230 		/*XXX disallow if active sessions */
2231 		error = 0;
2232 		crypto_destroy();
2233 		return 0;
2234 	}
2235 	return error;
2236 }
2237 MODULE_VERSION(crypto, 1);
2238 MODULE_DEPEND(crypto, zlib, 1, 1, 1);
2239