1 /*- 2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 23 */ 24 25 #include <sys/cdefs.h> 26 __FBSDID("$FreeBSD$"); 27 28 /* 29 * Cryptographic Subsystem. 30 * 31 * This code is derived from the Openbsd Cryptographic Framework (OCF) 32 * that has the copyright shown below. Very little of the original 33 * code remains. 34 */ 35 36 /*- 37 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 38 * 39 * This code was written by Angelos D. Keromytis in Athens, Greece, in 40 * February 2000. Network Security Technologies Inc. (NSTI) kindly 41 * supported the development of this code. 42 * 43 * Copyright (c) 2000, 2001 Angelos D. Keromytis 44 * 45 * Permission to use, copy, and modify this software with or without fee 46 * is hereby granted, provided that this entire notice is included in 47 * all source code copies of any software which is or includes a copy or 48 * modification of this software. 49 * 50 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 51 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 52 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 53 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 54 * PURPOSE. 55 */ 56 57 #define CRYPTO_TIMING /* enable timing support */ 58 59 #include "opt_compat.h" 60 #include "opt_ddb.h" 61 62 #include <sys/param.h> 63 #include <sys/systm.h> 64 #include <sys/eventhandler.h> 65 #include <sys/kernel.h> 66 #include <sys/kthread.h> 67 #include <sys/linker.h> 68 #include <sys/lock.h> 69 #include <sys/module.h> 70 #include <sys/mutex.h> 71 #include <sys/malloc.h> 72 #include <sys/proc.h> 73 #include <sys/refcount.h> 74 #include <sys/sdt.h> 75 #include <sys/smp.h> 76 #include <sys/sysctl.h> 77 #include <sys/taskqueue.h> 78 79 #include <ddb/ddb.h> 80 81 #include <vm/uma.h> 82 #include <crypto/intake.h> 83 #include <opencrypto/cryptodev.h> 84 #include <opencrypto/xform_auth.h> 85 #include <opencrypto/xform_enc.h> 86 87 #include <sys/kobj.h> 88 #include <sys/bus.h> 89 #include "cryptodev_if.h" 90 91 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 92 #include <machine/pcb.h> 93 #endif 94 95 SDT_PROVIDER_DEFINE(opencrypto); 96 97 /* 98 * Crypto drivers register themselves by allocating a slot in the 99 * crypto_drivers table with crypto_get_driverid() and then registering 100 * each asym algorithm they support with crypto_kregister(). 101 */ 102 static struct mtx crypto_drivers_mtx; /* lock on driver table */ 103 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx) 104 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx) 105 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED) 106 107 /* 108 * Crypto device/driver capabilities structure. 109 * 110 * Synchronization: 111 * (d) - protected by CRYPTO_DRIVER_LOCK() 112 * (q) - protected by CRYPTO_Q_LOCK() 113 * Not tagged fields are read-only. 114 */ 115 struct cryptocap { 116 device_t cc_dev; 117 uint32_t cc_hid; 118 u_int32_t cc_sessions; /* (d) # of sessions */ 119 u_int32_t cc_koperations; /* (d) # os asym operations */ 120 u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1]; 121 122 int cc_flags; /* (d) flags */ 123 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ 124 int cc_qblocked; /* (q) symmetric q blocked */ 125 int cc_kqblocked; /* (q) asymmetric q blocked */ 126 size_t cc_session_size; 127 volatile int cc_refs; 128 }; 129 130 static struct cryptocap **crypto_drivers = NULL; 131 static int crypto_drivers_size = 0; 132 133 struct crypto_session { 134 struct cryptocap *cap; 135 void *softc; 136 struct crypto_session_params csp; 137 }; 138 139 /* 140 * There are two queues for crypto requests; one for symmetric (e.g. 141 * cipher) operations and one for asymmetric (e.g. MOD)operations. 142 * A single mutex is used to lock access to both queues. We could 143 * have one per-queue but having one simplifies handling of block/unblock 144 * operations. 145 */ 146 static int crp_sleep = 0; 147 static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */ 148 static TAILQ_HEAD(,cryptkop) crp_kq; 149 static struct mtx crypto_q_mtx; 150 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx) 151 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx) 152 153 static SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0, 154 "In-kernel cryptography"); 155 156 /* 157 * Taskqueue used to dispatch the crypto requests 158 * that have the CRYPTO_F_ASYNC flag 159 */ 160 static struct taskqueue *crypto_tq; 161 162 /* 163 * Crypto seq numbers are operated on with modular arithmetic 164 */ 165 #define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0) 166 167 struct crypto_ret_worker { 168 struct mtx crypto_ret_mtx; 169 170 TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */ 171 TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */ 172 TAILQ_HEAD(,cryptkop) crp_ret_kq; /* callback queue for asym jobs */ 173 174 u_int32_t reorder_ops; /* total ordered sym jobs received */ 175 u_int32_t reorder_cur_seq; /* current sym job dispatched */ 176 177 struct proc *cryptoretproc; 178 }; 179 static struct crypto_ret_worker *crypto_ret_workers = NULL; 180 181 #define CRYPTO_RETW(i) (&crypto_ret_workers[i]) 182 #define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers) 183 #define FOREACH_CRYPTO_RETW(w) \ 184 for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w) 185 186 #define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx) 187 #define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx) 188 #define CRYPTO_RETW_EMPTY(w) \ 189 (TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q)) 190 191 static int crypto_workers_num = 0; 192 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN, 193 &crypto_workers_num, 0, 194 "Number of crypto workers used to dispatch crypto jobs"); 195 #ifdef COMPAT_FREEBSD12 196 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN, 197 &crypto_workers_num, 0, 198 "Number of crypto workers used to dispatch crypto jobs"); 199 #endif 200 201 static uma_zone_t cryptop_zone; 202 static uma_zone_t cryptoses_zone; 203 204 int crypto_userasymcrypto = 1; 205 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW, 206 &crypto_userasymcrypto, 0, 207 "Enable user-mode access to asymmetric crypto support"); 208 #ifdef COMPAT_FREEBSD12 209 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW, 210 &crypto_userasymcrypto, 0, 211 "Enable/disable user-mode access to asymmetric crypto support"); 212 #endif 213 214 int crypto_devallowsoft = 0; 215 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW, 216 &crypto_devallowsoft, 0, 217 "Enable use of software crypto by /dev/crypto"); 218 #ifdef COMPAT_FREEBSD12 219 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW, 220 &crypto_devallowsoft, 0, 221 "Enable/disable use of software crypto by /dev/crypto"); 222 #endif 223 224 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 225 226 static void crypto_proc(void); 227 static struct proc *cryptoproc; 228 static void crypto_ret_proc(struct crypto_ret_worker *ret_worker); 229 static void crypto_destroy(void); 230 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); 231 static int crypto_kinvoke(struct cryptkop *krp); 232 static void crypto_task_invoke(void *ctx, int pending); 233 static void crypto_batch_enqueue(struct cryptop *crp); 234 235 static struct cryptostats cryptostats; 236 SYSCTL_STRUCT(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW, &cryptostats, 237 cryptostats, "Crypto system statistics"); 238 239 #ifdef CRYPTO_TIMING 240 static int crypto_timing = 0; 241 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW, 242 &crypto_timing, 0, "Enable/disable crypto timing support"); 243 #endif 244 245 /* Try to avoid directly exposing the key buffer as a symbol */ 246 static struct keybuf *keybuf; 247 248 static struct keybuf empty_keybuf = { 249 .kb_nents = 0 250 }; 251 252 /* Obtain the key buffer from boot metadata */ 253 static void 254 keybuf_init(void) 255 { 256 caddr_t kmdp; 257 258 kmdp = preload_search_by_type("elf kernel"); 259 260 if (kmdp == NULL) 261 kmdp = preload_search_by_type("elf64 kernel"); 262 263 keybuf = (struct keybuf *)preload_search_info(kmdp, 264 MODINFO_METADATA | MODINFOMD_KEYBUF); 265 266 if (keybuf == NULL) 267 keybuf = &empty_keybuf; 268 } 269 270 /* It'd be nice if we could store these in some kind of secure memory... */ 271 struct keybuf * get_keybuf(void) { 272 273 return (keybuf); 274 } 275 276 static struct cryptocap * 277 cap_ref(struct cryptocap *cap) 278 { 279 280 refcount_acquire(&cap->cc_refs); 281 return (cap); 282 } 283 284 static void 285 cap_rele(struct cryptocap *cap) 286 { 287 288 if (refcount_release(&cap->cc_refs) == 0) 289 return; 290 291 KASSERT(cap->cc_sessions == 0, 292 ("freeing crypto driver with active sessions")); 293 KASSERT(cap->cc_koperations == 0, 294 ("freeing crypto driver with active key operations")); 295 296 free(cap, M_CRYPTO_DATA); 297 } 298 299 static int 300 crypto_init(void) 301 { 302 struct crypto_ret_worker *ret_worker; 303 int error; 304 305 mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table", 306 MTX_DEF|MTX_QUIET); 307 308 TAILQ_INIT(&crp_q); 309 TAILQ_INIT(&crp_kq); 310 mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF); 311 312 cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop), 313 0, 0, 0, 0, 314 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 315 cryptoses_zone = uma_zcreate("crypto_session", 316 sizeof(struct crypto_session), NULL, NULL, NULL, NULL, 317 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 318 319 if (cryptop_zone == NULL || cryptoses_zone == NULL) { 320 printf("crypto_init: cannot setup crypto zones\n"); 321 error = ENOMEM; 322 goto bad; 323 } 324 325 crypto_drivers_size = CRYPTO_DRIVERS_INITIAL; 326 crypto_drivers = malloc(crypto_drivers_size * 327 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 328 if (crypto_drivers == NULL) { 329 printf("crypto_init: cannot setup crypto drivers\n"); 330 error = ENOMEM; 331 goto bad; 332 } 333 334 if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus) 335 crypto_workers_num = mp_ncpus; 336 337 crypto_tq = taskqueue_create("crypto", M_WAITOK|M_ZERO, 338 taskqueue_thread_enqueue, &crypto_tq); 339 if (crypto_tq == NULL) { 340 printf("crypto init: cannot setup crypto taskqueue\n"); 341 error = ENOMEM; 342 goto bad; 343 } 344 345 taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN, 346 "crypto"); 347 348 error = kproc_create((void (*)(void *)) crypto_proc, NULL, 349 &cryptoproc, 0, 0, "crypto"); 350 if (error) { 351 printf("crypto_init: cannot start crypto thread; error %d", 352 error); 353 goto bad; 354 } 355 356 crypto_ret_workers = malloc(crypto_workers_num * sizeof(struct crypto_ret_worker), 357 M_CRYPTO_DATA, M_NOWAIT|M_ZERO); 358 if (crypto_ret_workers == NULL) { 359 error = ENOMEM; 360 printf("crypto_init: cannot allocate ret workers\n"); 361 goto bad; 362 } 363 364 365 FOREACH_CRYPTO_RETW(ret_worker) { 366 TAILQ_INIT(&ret_worker->crp_ordered_ret_q); 367 TAILQ_INIT(&ret_worker->crp_ret_q); 368 TAILQ_INIT(&ret_worker->crp_ret_kq); 369 370 ret_worker->reorder_ops = 0; 371 ret_worker->reorder_cur_seq = 0; 372 373 mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF); 374 375 error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker, 376 &ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker)); 377 if (error) { 378 printf("crypto_init: cannot start cryptoret thread; error %d", 379 error); 380 goto bad; 381 } 382 } 383 384 keybuf_init(); 385 386 return 0; 387 bad: 388 crypto_destroy(); 389 return error; 390 } 391 392 /* 393 * Signal a crypto thread to terminate. We use the driver 394 * table lock to synchronize the sleep/wakeups so that we 395 * are sure the threads have terminated before we release 396 * the data structures they use. See crypto_finis below 397 * for the other half of this song-and-dance. 398 */ 399 static void 400 crypto_terminate(struct proc **pp, void *q) 401 { 402 struct proc *p; 403 404 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 405 p = *pp; 406 *pp = NULL; 407 if (p) { 408 wakeup_one(q); 409 PROC_LOCK(p); /* NB: insure we don't miss wakeup */ 410 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */ 411 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0); 412 PROC_UNLOCK(p); 413 CRYPTO_DRIVER_LOCK(); 414 } 415 } 416 417 static void 418 hmac_init_pad(struct auth_hash *axf, const char *key, int klen, void *auth_ctx, 419 uint8_t padval) 420 { 421 uint8_t hmac_key[HMAC_MAX_BLOCK_LEN]; 422 u_int i; 423 424 KASSERT(axf->blocksize <= sizeof(hmac_key), 425 ("Invalid HMAC block size %d", axf->blocksize)); 426 427 /* 428 * If the key is larger than the block size, use the digest of 429 * the key as the key instead. 430 */ 431 memset(hmac_key, 0, sizeof(hmac_key)); 432 if (klen > axf->blocksize) { 433 axf->Init(auth_ctx); 434 axf->Update(auth_ctx, key, klen); 435 axf->Final(hmac_key, auth_ctx); 436 klen = axf->hashsize; 437 } else 438 memcpy(hmac_key, key, klen); 439 440 for (i = 0; i < axf->blocksize; i++) 441 hmac_key[i] ^= padval; 442 443 axf->Init(auth_ctx); 444 axf->Update(auth_ctx, hmac_key, axf->blocksize); 445 } 446 447 void 448 hmac_init_ipad(struct auth_hash *axf, const char *key, int klen, 449 void *auth_ctx) 450 { 451 452 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL); 453 } 454 455 void 456 hmac_init_opad(struct auth_hash *axf, const char *key, int klen, 457 void *auth_ctx) 458 { 459 460 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL); 461 } 462 463 static void 464 crypto_destroy(void) 465 { 466 struct crypto_ret_worker *ret_worker; 467 int i; 468 469 /* 470 * Terminate any crypto threads. 471 */ 472 if (crypto_tq != NULL) 473 taskqueue_drain_all(crypto_tq); 474 CRYPTO_DRIVER_LOCK(); 475 crypto_terminate(&cryptoproc, &crp_q); 476 FOREACH_CRYPTO_RETW(ret_worker) 477 crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q); 478 CRYPTO_DRIVER_UNLOCK(); 479 480 /* XXX flush queues??? */ 481 482 /* 483 * Reclaim dynamically allocated resources. 484 */ 485 for (i = 0; i < crypto_drivers_size; i++) { 486 if (crypto_drivers[i] != NULL) 487 cap_rele(crypto_drivers[i]); 488 } 489 free(crypto_drivers, M_CRYPTO_DATA); 490 491 if (cryptoses_zone != NULL) 492 uma_zdestroy(cryptoses_zone); 493 if (cryptop_zone != NULL) 494 uma_zdestroy(cryptop_zone); 495 mtx_destroy(&crypto_q_mtx); 496 FOREACH_CRYPTO_RETW(ret_worker) 497 mtx_destroy(&ret_worker->crypto_ret_mtx); 498 free(crypto_ret_workers, M_CRYPTO_DATA); 499 if (crypto_tq != NULL) 500 taskqueue_free(crypto_tq); 501 mtx_destroy(&crypto_drivers_mtx); 502 } 503 504 uint32_t 505 crypto_ses2hid(crypto_session_t crypto_session) 506 { 507 return (crypto_session->cap->cc_hid); 508 } 509 510 uint32_t 511 crypto_ses2caps(crypto_session_t crypto_session) 512 { 513 return (crypto_session->cap->cc_flags & 0xff000000); 514 } 515 516 void * 517 crypto_get_driver_session(crypto_session_t crypto_session) 518 { 519 return (crypto_session->softc); 520 } 521 522 const struct crypto_session_params * 523 crypto_get_params(crypto_session_t crypto_session) 524 { 525 return (&crypto_session->csp); 526 } 527 528 struct auth_hash * 529 crypto_auth_hash(const struct crypto_session_params *csp) 530 { 531 532 switch (csp->csp_auth_alg) { 533 case CRYPTO_SHA1_HMAC: 534 return (&auth_hash_hmac_sha1); 535 case CRYPTO_SHA2_224_HMAC: 536 return (&auth_hash_hmac_sha2_224); 537 case CRYPTO_SHA2_256_HMAC: 538 return (&auth_hash_hmac_sha2_256); 539 case CRYPTO_SHA2_384_HMAC: 540 return (&auth_hash_hmac_sha2_384); 541 case CRYPTO_SHA2_512_HMAC: 542 return (&auth_hash_hmac_sha2_512); 543 case CRYPTO_NULL_HMAC: 544 return (&auth_hash_null); 545 case CRYPTO_RIPEMD160_HMAC: 546 return (&auth_hash_hmac_ripemd_160); 547 case CRYPTO_SHA1: 548 return (&auth_hash_sha1); 549 case CRYPTO_SHA2_224: 550 return (&auth_hash_sha2_224); 551 case CRYPTO_SHA2_256: 552 return (&auth_hash_sha2_256); 553 case CRYPTO_SHA2_384: 554 return (&auth_hash_sha2_384); 555 case CRYPTO_SHA2_512: 556 return (&auth_hash_sha2_512); 557 case CRYPTO_AES_NIST_GMAC: 558 switch (csp->csp_auth_klen) { 559 case 128 / 8: 560 return (&auth_hash_nist_gmac_aes_128); 561 case 192 / 8: 562 return (&auth_hash_nist_gmac_aes_192); 563 case 256 / 8: 564 return (&auth_hash_nist_gmac_aes_256); 565 default: 566 return (NULL); 567 } 568 case CRYPTO_BLAKE2B: 569 return (&auth_hash_blake2b); 570 case CRYPTO_BLAKE2S: 571 return (&auth_hash_blake2s); 572 case CRYPTO_POLY1305: 573 return (&auth_hash_poly1305); 574 case CRYPTO_AES_CCM_CBC_MAC: 575 switch (csp->csp_auth_klen) { 576 case 128 / 8: 577 return (&auth_hash_ccm_cbc_mac_128); 578 case 192 / 8: 579 return (&auth_hash_ccm_cbc_mac_192); 580 case 256 / 8: 581 return (&auth_hash_ccm_cbc_mac_256); 582 default: 583 return (NULL); 584 } 585 default: 586 return (NULL); 587 } 588 } 589 590 struct enc_xform * 591 crypto_cipher(const struct crypto_session_params *csp) 592 { 593 594 switch (csp->csp_cipher_alg) { 595 case CRYPTO_RIJNDAEL128_CBC: 596 return (&enc_xform_rijndael128); 597 case CRYPTO_AES_XTS: 598 return (&enc_xform_aes_xts); 599 case CRYPTO_AES_ICM: 600 return (&enc_xform_aes_icm); 601 case CRYPTO_AES_NIST_GCM_16: 602 return (&enc_xform_aes_nist_gcm); 603 case CRYPTO_CAMELLIA_CBC: 604 return (&enc_xform_camellia); 605 case CRYPTO_NULL_CBC: 606 return (&enc_xform_null); 607 case CRYPTO_CHACHA20: 608 return (&enc_xform_chacha20); 609 case CRYPTO_AES_CCM_16: 610 return (&enc_xform_ccm); 611 default: 612 return (NULL); 613 } 614 } 615 616 static struct cryptocap * 617 crypto_checkdriver(u_int32_t hid) 618 { 619 620 return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]); 621 } 622 623 /* 624 * Select a driver for a new session that supports the specified 625 * algorithms and, optionally, is constrained according to the flags. 626 */ 627 static struct cryptocap * 628 crypto_select_driver(const struct crypto_session_params *csp, int flags) 629 { 630 struct cryptocap *cap, *best; 631 int best_match, error, hid; 632 633 CRYPTO_DRIVER_ASSERT(); 634 635 best = NULL; 636 for (hid = 0; hid < crypto_drivers_size; hid++) { 637 /* 638 * If there is no driver for this slot, or the driver 639 * is not appropriate (hardware or software based on 640 * match), then skip. 641 */ 642 cap = crypto_drivers[hid]; 643 if (cap == NULL || 644 (cap->cc_flags & flags) == 0) 645 continue; 646 647 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp); 648 if (error >= 0) 649 continue; 650 651 /* 652 * Use the driver with the highest probe value. 653 * Hardware drivers use a higher probe value than 654 * software. In case of a tie, prefer the driver with 655 * the fewest active sessions. 656 */ 657 if (best == NULL || error > best_match || 658 (error == best_match && 659 cap->cc_sessions < best->cc_sessions)) { 660 best = cap; 661 best_match = error; 662 } 663 } 664 return best; 665 } 666 667 static enum alg_type { 668 ALG_NONE = 0, 669 ALG_CIPHER, 670 ALG_DIGEST, 671 ALG_KEYED_DIGEST, 672 ALG_COMPRESSION, 673 ALG_AEAD 674 } alg_types[] = { 675 [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST, 676 [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST, 677 [CRYPTO_AES_CBC] = ALG_CIPHER, 678 [CRYPTO_SHA1] = ALG_DIGEST, 679 [CRYPTO_NULL_HMAC] = ALG_DIGEST, 680 [CRYPTO_NULL_CBC] = ALG_CIPHER, 681 [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION, 682 [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST, 683 [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST, 684 [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST, 685 [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER, 686 [CRYPTO_AES_XTS] = ALG_CIPHER, 687 [CRYPTO_AES_ICM] = ALG_CIPHER, 688 [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST, 689 [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD, 690 [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST, 691 [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST, 692 [CRYPTO_CHACHA20] = ALG_CIPHER, 693 [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST, 694 [CRYPTO_RIPEMD160] = ALG_DIGEST, 695 [CRYPTO_SHA2_224] = ALG_DIGEST, 696 [CRYPTO_SHA2_256] = ALG_DIGEST, 697 [CRYPTO_SHA2_384] = ALG_DIGEST, 698 [CRYPTO_SHA2_512] = ALG_DIGEST, 699 [CRYPTO_POLY1305] = ALG_KEYED_DIGEST, 700 [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST, 701 [CRYPTO_AES_CCM_16] = ALG_AEAD, 702 }; 703 704 static enum alg_type 705 alg_type(int alg) 706 { 707 708 if (alg < nitems(alg_types)) 709 return (alg_types[alg]); 710 return (ALG_NONE); 711 } 712 713 static bool 714 alg_is_compression(int alg) 715 { 716 717 return (alg_type(alg) == ALG_COMPRESSION); 718 } 719 720 static bool 721 alg_is_cipher(int alg) 722 { 723 724 return (alg_type(alg) == ALG_CIPHER); 725 } 726 727 static bool 728 alg_is_digest(int alg) 729 { 730 731 return (alg_type(alg) == ALG_DIGEST || 732 alg_type(alg) == ALG_KEYED_DIGEST); 733 } 734 735 static bool 736 alg_is_keyed_digest(int alg) 737 { 738 739 return (alg_type(alg) == ALG_KEYED_DIGEST); 740 } 741 742 static bool 743 alg_is_aead(int alg) 744 { 745 746 return (alg_type(alg) == ALG_AEAD); 747 } 748 749 /* Various sanity checks on crypto session parameters. */ 750 static bool 751 check_csp(const struct crypto_session_params *csp) 752 { 753 struct auth_hash *axf; 754 755 /* Mode-independent checks. */ 756 if (csp->csp_flags != 0) 757 return (false); 758 if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 || 759 csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0) 760 return (false); 761 if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0) 762 return (false); 763 if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0) 764 return (false); 765 766 switch (csp->csp_mode) { 767 case CSP_MODE_COMPRESS: 768 if (!alg_is_compression(csp->csp_cipher_alg)) 769 return (false); 770 if (csp->csp_flags != 0) 771 return (false); 772 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 || 773 csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 774 csp->csp_auth_mlen != 0) 775 return (false); 776 break; 777 case CSP_MODE_CIPHER: 778 if (!alg_is_cipher(csp->csp_cipher_alg)) 779 return (false); 780 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 781 if (csp->csp_cipher_klen == 0) 782 return (false); 783 if (csp->csp_ivlen == 0) 784 return (false); 785 } 786 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 787 return (false); 788 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 789 csp->csp_auth_mlen != 0) 790 return (false); 791 break; 792 case CSP_MODE_DIGEST: 793 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0) 794 return (false); 795 796 /* IV is optional for digests (e.g. GMAC). */ 797 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 798 return (false); 799 if (!alg_is_digest(csp->csp_auth_alg)) 800 return (false); 801 802 /* Key is optional for BLAKE2 digests. */ 803 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 804 csp->csp_auth_alg == CRYPTO_BLAKE2S) 805 ; 806 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 807 if (csp->csp_auth_klen == 0) 808 return (false); 809 } else { 810 if (csp->csp_auth_klen != 0) 811 return (false); 812 } 813 if (csp->csp_auth_mlen != 0) { 814 axf = crypto_auth_hash(csp); 815 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 816 return (false); 817 } 818 break; 819 case CSP_MODE_AEAD: 820 if (!alg_is_aead(csp->csp_cipher_alg)) 821 return (false); 822 if (csp->csp_cipher_klen == 0) 823 return (false); 824 if (csp->csp_ivlen == 0 || 825 csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 826 return (false); 827 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0) 828 return (false); 829 830 /* 831 * XXX: Would be nice to have a better way to get this 832 * value. 833 */ 834 switch (csp->csp_cipher_alg) { 835 case CRYPTO_AES_NIST_GCM_16: 836 case CRYPTO_AES_CCM_16: 837 if (csp->csp_auth_mlen > 16) 838 return (false); 839 break; 840 } 841 break; 842 case CSP_MODE_ETA: 843 if (!alg_is_cipher(csp->csp_cipher_alg)) 844 return (false); 845 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 846 if (csp->csp_cipher_klen == 0) 847 return (false); 848 if (csp->csp_ivlen == 0) 849 return (false); 850 } 851 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 852 return (false); 853 if (!alg_is_digest(csp->csp_auth_alg)) 854 return (false); 855 856 /* Key is optional for BLAKE2 digests. */ 857 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 858 csp->csp_auth_alg == CRYPTO_BLAKE2S) 859 ; 860 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 861 if (csp->csp_auth_klen == 0) 862 return (false); 863 } else { 864 if (csp->csp_auth_klen != 0) 865 return (false); 866 } 867 if (csp->csp_auth_mlen != 0) { 868 axf = crypto_auth_hash(csp); 869 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 870 return (false); 871 } 872 break; 873 default: 874 return (false); 875 } 876 877 return (true); 878 } 879 880 /* 881 * Delete a session after it has been detached from its driver. 882 */ 883 static void 884 crypto_deletesession(crypto_session_t cses) 885 { 886 struct cryptocap *cap; 887 888 cap = cses->cap; 889 890 explicit_bzero(cses->softc, cap->cc_session_size); 891 free(cses->softc, M_CRYPTO_DATA); 892 uma_zfree(cryptoses_zone, cses); 893 894 CRYPTO_DRIVER_LOCK(); 895 cap->cc_sessions--; 896 if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 897 wakeup(cap); 898 CRYPTO_DRIVER_UNLOCK(); 899 cap_rele(cap); 900 } 901 902 /* 903 * Create a new session. The crid argument specifies a crypto 904 * driver to use or constraints on a driver to select (hardware 905 * only, software only, either). Whatever driver is selected 906 * must be capable of the requested crypto algorithms. 907 */ 908 int 909 crypto_newsession(crypto_session_t *cses, 910 const struct crypto_session_params *csp, int crid) 911 { 912 crypto_session_t res; 913 struct cryptocap *cap; 914 int err; 915 916 if (!check_csp(csp)) 917 return (EINVAL); 918 919 res = NULL; 920 921 CRYPTO_DRIVER_LOCK(); 922 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 923 /* 924 * Use specified driver; verify it is capable. 925 */ 926 cap = crypto_checkdriver(crid); 927 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0) 928 cap = NULL; 929 } else { 930 /* 931 * No requested driver; select based on crid flags. 932 */ 933 cap = crypto_select_driver(csp, crid); 934 } 935 if (cap == NULL) { 936 CRYPTO_DRIVER_UNLOCK(); 937 CRYPTDEB("no driver"); 938 return (EOPNOTSUPP); 939 } 940 cap_ref(cap); 941 cap->cc_sessions++; 942 CRYPTO_DRIVER_UNLOCK(); 943 944 res = uma_zalloc(cryptoses_zone, M_WAITOK | M_ZERO); 945 res->cap = cap; 946 res->softc = malloc(cap->cc_session_size, M_CRYPTO_DATA, M_WAITOK | 947 M_ZERO); 948 res->csp = *csp; 949 950 /* Call the driver initialization routine. */ 951 err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp); 952 if (err != 0) { 953 CRYPTDEB("dev newsession failed: %d", err); 954 crypto_deletesession(res); 955 return (err); 956 } 957 958 *cses = res; 959 return (0); 960 } 961 962 /* 963 * Delete an existing session (or a reserved session on an unregistered 964 * driver). 965 */ 966 void 967 crypto_freesession(crypto_session_t cses) 968 { 969 struct cryptocap *cap; 970 971 if (cses == NULL) 972 return; 973 974 cap = cses->cap; 975 976 /* Call the driver cleanup routine, if available. */ 977 CRYPTODEV_FREESESSION(cap->cc_dev, cses); 978 979 crypto_deletesession(cses); 980 } 981 982 /* 983 * Return a new driver id. Registers a driver with the system so that 984 * it can be probed by subsequent sessions. 985 */ 986 int32_t 987 crypto_get_driverid(device_t dev, size_t sessionsize, int flags) 988 { 989 struct cryptocap *cap, **newdrv; 990 int i; 991 992 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 993 device_printf(dev, 994 "no flags specified when registering driver\n"); 995 return -1; 996 } 997 998 cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 999 cap->cc_dev = dev; 1000 cap->cc_session_size = sessionsize; 1001 cap->cc_flags = flags; 1002 refcount_init(&cap->cc_refs, 1); 1003 1004 CRYPTO_DRIVER_LOCK(); 1005 for (;;) { 1006 for (i = 0; i < crypto_drivers_size; i++) { 1007 if (crypto_drivers[i] == NULL) 1008 break; 1009 } 1010 1011 if (i < crypto_drivers_size) 1012 break; 1013 1014 /* Out of entries, allocate some more. */ 1015 1016 if (2 * crypto_drivers_size <= crypto_drivers_size) { 1017 CRYPTO_DRIVER_UNLOCK(); 1018 printf("crypto: driver count wraparound!\n"); 1019 cap_rele(cap); 1020 return (-1); 1021 } 1022 CRYPTO_DRIVER_UNLOCK(); 1023 1024 newdrv = malloc(2 * crypto_drivers_size * 1025 sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1026 1027 CRYPTO_DRIVER_LOCK(); 1028 memcpy(newdrv, crypto_drivers, 1029 crypto_drivers_size * sizeof(*crypto_drivers)); 1030 1031 crypto_drivers_size *= 2; 1032 1033 free(crypto_drivers, M_CRYPTO_DATA); 1034 crypto_drivers = newdrv; 1035 } 1036 1037 cap->cc_hid = i; 1038 crypto_drivers[i] = cap; 1039 CRYPTO_DRIVER_UNLOCK(); 1040 1041 if (bootverbose) 1042 printf("crypto: assign %s driver id %u, flags 0x%x\n", 1043 device_get_nameunit(dev), i, flags); 1044 1045 return i; 1046 } 1047 1048 /* 1049 * Lookup a driver by name. We match against the full device 1050 * name and unit, and against just the name. The latter gives 1051 * us a simple widlcarding by device name. On success return the 1052 * driver/hardware identifier; otherwise return -1. 1053 */ 1054 int 1055 crypto_find_driver(const char *match) 1056 { 1057 struct cryptocap *cap; 1058 int i, len = strlen(match); 1059 1060 CRYPTO_DRIVER_LOCK(); 1061 for (i = 0; i < crypto_drivers_size; i++) { 1062 if (crypto_drivers[i] == NULL) 1063 continue; 1064 cap = crypto_drivers[i]; 1065 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 || 1066 strncmp(match, device_get_name(cap->cc_dev), len) == 0) { 1067 CRYPTO_DRIVER_UNLOCK(); 1068 return (i); 1069 } 1070 } 1071 CRYPTO_DRIVER_UNLOCK(); 1072 return (-1); 1073 } 1074 1075 /* 1076 * Return the device_t for the specified driver or NULL 1077 * if the driver identifier is invalid. 1078 */ 1079 device_t 1080 crypto_find_device_byhid(int hid) 1081 { 1082 struct cryptocap *cap; 1083 device_t dev; 1084 1085 dev = NULL; 1086 CRYPTO_DRIVER_LOCK(); 1087 cap = crypto_checkdriver(hid); 1088 if (cap != NULL) 1089 dev = cap->cc_dev; 1090 CRYPTO_DRIVER_UNLOCK(); 1091 return (dev); 1092 } 1093 1094 /* 1095 * Return the device/driver capabilities. 1096 */ 1097 int 1098 crypto_getcaps(int hid) 1099 { 1100 struct cryptocap *cap; 1101 int flags; 1102 1103 flags = 0; 1104 CRYPTO_DRIVER_LOCK(); 1105 cap = crypto_checkdriver(hid); 1106 if (cap != NULL) 1107 flags = cap->cc_flags; 1108 CRYPTO_DRIVER_UNLOCK(); 1109 return (flags); 1110 } 1111 1112 /* 1113 * Register support for a key-related algorithm. This routine 1114 * is called once for each algorithm supported a driver. 1115 */ 1116 int 1117 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags) 1118 { 1119 struct cryptocap *cap; 1120 int err; 1121 1122 CRYPTO_DRIVER_LOCK(); 1123 1124 cap = crypto_checkdriver(driverid); 1125 if (cap != NULL && 1126 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { 1127 /* 1128 * XXX Do some performance testing to determine placing. 1129 * XXX We probably need an auxiliary data structure that 1130 * XXX describes relative performances. 1131 */ 1132 1133 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 1134 if (bootverbose) 1135 printf("crypto: %s registers key alg %u flags %u\n" 1136 , device_get_nameunit(cap->cc_dev) 1137 , kalg 1138 , flags 1139 ); 1140 err = 0; 1141 } else 1142 err = EINVAL; 1143 1144 CRYPTO_DRIVER_UNLOCK(); 1145 return err; 1146 } 1147 1148 /* 1149 * Unregister all algorithms associated with a crypto driver. 1150 * If there are pending sessions using it, leave enough information 1151 * around so that subsequent calls using those sessions will 1152 * correctly detect the driver has been unregistered and reroute 1153 * requests. 1154 */ 1155 int 1156 crypto_unregister_all(u_int32_t driverid) 1157 { 1158 struct cryptocap *cap; 1159 1160 CRYPTO_DRIVER_LOCK(); 1161 cap = crypto_checkdriver(driverid); 1162 if (cap == NULL) { 1163 CRYPTO_DRIVER_UNLOCK(); 1164 return (EINVAL); 1165 } 1166 1167 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 1168 crypto_drivers[driverid] = NULL; 1169 1170 /* 1171 * XXX: This doesn't do anything to kick sessions that 1172 * have no pending operations. 1173 */ 1174 while (cap->cc_sessions != 0 || cap->cc_koperations != 0) 1175 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0); 1176 CRYPTO_DRIVER_UNLOCK(); 1177 cap_rele(cap); 1178 1179 return (0); 1180 } 1181 1182 /* 1183 * Clear blockage on a driver. The what parameter indicates whether 1184 * the driver is now ready for cryptop's and/or cryptokop's. 1185 */ 1186 int 1187 crypto_unblock(u_int32_t driverid, int what) 1188 { 1189 struct cryptocap *cap; 1190 int err; 1191 1192 CRYPTO_Q_LOCK(); 1193 cap = crypto_checkdriver(driverid); 1194 if (cap != NULL) { 1195 if (what & CRYPTO_SYMQ) 1196 cap->cc_qblocked = 0; 1197 if (what & CRYPTO_ASYMQ) 1198 cap->cc_kqblocked = 0; 1199 if (crp_sleep) 1200 wakeup_one(&crp_q); 1201 err = 0; 1202 } else 1203 err = EINVAL; 1204 CRYPTO_Q_UNLOCK(); 1205 1206 return err; 1207 } 1208 1209 #ifdef INVARIANTS 1210 /* Various sanity checks on crypto requests. */ 1211 static void 1212 crp_sanity(struct cryptop *crp) 1213 { 1214 struct crypto_session_params *csp; 1215 1216 KASSERT(crp->crp_session != NULL, ("incoming crp without a session")); 1217 KASSERT(crp->crp_ilen >= 0, ("incoming crp with -ve input length")); 1218 KASSERT(crp->crp_etype == 0, ("incoming crp with error")); 1219 KASSERT(!(crp->crp_flags & CRYPTO_F_DONE), 1220 ("incoming crp already done")); 1221 1222 csp = &crp->crp_session->csp; 1223 switch (csp->csp_mode) { 1224 case CSP_MODE_COMPRESS: 1225 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS || 1226 crp->crp_op == CRYPTO_OP_DECOMPRESS, 1227 ("invalid compression op %x", crp->crp_op)); 1228 break; 1229 case CSP_MODE_CIPHER: 1230 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT || 1231 crp->crp_op == CRYPTO_OP_DECRYPT, 1232 ("invalid cipher op %x", crp->crp_op)); 1233 break; 1234 case CSP_MODE_DIGEST: 1235 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST || 1236 crp->crp_op == CRYPTO_OP_VERIFY_DIGEST, 1237 ("invalid digest op %x", crp->crp_op)); 1238 break; 1239 case CSP_MODE_AEAD: 1240 KASSERT(crp->crp_op == 1241 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1242 crp->crp_op == 1243 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1244 ("invalid AEAD op %x", crp->crp_op)); 1245 if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16) 1246 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1247 ("GCM without a separate IV")); 1248 if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16) 1249 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1250 ("CCM without a separate IV")); 1251 break; 1252 case CSP_MODE_ETA: 1253 KASSERT(crp->crp_op == 1254 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1255 crp->crp_op == 1256 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1257 ("invalid ETA op %x", crp->crp_op)); 1258 break; 1259 } 1260 KASSERT(crp->crp_buf_type >= CRYPTO_BUF_CONTIG && 1261 crp->crp_buf_type <= CRYPTO_BUF_MBUF, 1262 ("invalid crp buffer type %d", crp->crp_buf_type)); 1263 if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1264 KASSERT(crp->crp_aad_start == 0 || 1265 crp->crp_aad_start < crp->crp_ilen, 1266 ("invalid AAD start")); 1267 KASSERT(crp->crp_aad_length != 0 || crp->crp_aad_start == 0, 1268 ("AAD with zero length and non-zero start")); 1269 KASSERT(crp->crp_aad_length == 0 || 1270 crp->crp_aad_start + crp->crp_aad_length <= crp->crp_ilen, 1271 ("AAD outside input length")); 1272 } else { 1273 KASSERT(crp->crp_aad_start == 0 && crp->crp_aad_length == 0, 1274 ("AAD region in request not supporting AAD")); 1275 } 1276 if (csp->csp_ivlen == 0) { 1277 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0, 1278 ("IV_SEPARATE set when IV isn't used")); 1279 KASSERT(crp->crp_iv_start == 0, 1280 ("crp_iv_start set when IV isn't used")); 1281 } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) { 1282 KASSERT(crp->crp_iv_start == 0, 1283 ("IV_SEPARATE used with non-zero IV start")); 1284 } else { 1285 KASSERT(crp->crp_iv_start < crp->crp_ilen, 1286 ("invalid IV start")); 1287 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= crp->crp_ilen, 1288 ("IV outside input length")); 1289 } 1290 KASSERT(crp->crp_payload_start == 0 || 1291 crp->crp_payload_start < crp->crp_ilen, 1292 ("invalid payload start")); 1293 KASSERT(crp->crp_payload_start + crp->crp_payload_length <= 1294 crp->crp_ilen, ("payload outside input length")); 1295 if (csp->csp_mode == CSP_MODE_DIGEST || 1296 csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1297 KASSERT(crp->crp_digest_start == 0 || 1298 crp->crp_digest_start < crp->crp_ilen, 1299 ("invalid digest start")); 1300 /* XXX: For the mlen == 0 case this check isn't perfect. */ 1301 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= 1302 crp->crp_ilen, 1303 ("digest outside input length")); 1304 } else { 1305 KASSERT(crp->crp_digest_start == 0, 1306 ("non-zero digest start for request without a digest")); 1307 } 1308 if (csp->csp_cipher_klen != 0) 1309 KASSERT(csp->csp_cipher_key != NULL || 1310 crp->crp_cipher_key != NULL, 1311 ("cipher request without a key")); 1312 if (csp->csp_auth_klen != 0) 1313 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL, 1314 ("auth request without a key")); 1315 KASSERT(crp->crp_callback != NULL, ("incoming crp without callback")); 1316 } 1317 #endif 1318 1319 /* 1320 * Add a crypto request to a queue, to be processed by the kernel thread. 1321 */ 1322 int 1323 crypto_dispatch(struct cryptop *crp) 1324 { 1325 struct cryptocap *cap; 1326 int result; 1327 1328 #ifdef INVARIANTS 1329 crp_sanity(crp); 1330 #endif 1331 1332 cryptostats.cs_ops++; 1333 1334 #ifdef CRYPTO_TIMING 1335 if (crypto_timing) 1336 binuptime(&crp->crp_tstamp); 1337 #endif 1338 1339 crp->crp_retw_id = ((uintptr_t)crp->crp_session) % crypto_workers_num; 1340 1341 if (CRYPTOP_ASYNC(crp)) { 1342 if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) { 1343 struct crypto_ret_worker *ret_worker; 1344 1345 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1346 1347 CRYPTO_RETW_LOCK(ret_worker); 1348 crp->crp_seq = ret_worker->reorder_ops++; 1349 CRYPTO_RETW_UNLOCK(ret_worker); 1350 } 1351 1352 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp); 1353 taskqueue_enqueue(crypto_tq, &crp->crp_task); 1354 return (0); 1355 } 1356 1357 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { 1358 /* 1359 * Caller marked the request to be processed 1360 * immediately; dispatch it directly to the 1361 * driver unless the driver is currently blocked. 1362 */ 1363 cap = crp->crp_session->cap; 1364 if (!cap->cc_qblocked) { 1365 result = crypto_invoke(cap, crp, 0); 1366 if (result != ERESTART) 1367 return (result); 1368 /* 1369 * The driver ran out of resources, put the request on 1370 * the queue. 1371 */ 1372 } 1373 } 1374 crypto_batch_enqueue(crp); 1375 return 0; 1376 } 1377 1378 void 1379 crypto_batch_enqueue(struct cryptop *crp) 1380 { 1381 1382 CRYPTO_Q_LOCK(); 1383 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 1384 if (crp_sleep) 1385 wakeup_one(&crp_q); 1386 CRYPTO_Q_UNLOCK(); 1387 } 1388 1389 /* 1390 * Add an asymetric crypto request to a queue, 1391 * to be processed by the kernel thread. 1392 */ 1393 int 1394 crypto_kdispatch(struct cryptkop *krp) 1395 { 1396 int error; 1397 1398 cryptostats.cs_kops++; 1399 1400 krp->krp_cap = NULL; 1401 error = crypto_kinvoke(krp); 1402 if (error == ERESTART) { 1403 CRYPTO_Q_LOCK(); 1404 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); 1405 if (crp_sleep) 1406 wakeup_one(&crp_q); 1407 CRYPTO_Q_UNLOCK(); 1408 error = 0; 1409 } 1410 return error; 1411 } 1412 1413 /* 1414 * Verify a driver is suitable for the specified operation. 1415 */ 1416 static __inline int 1417 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp) 1418 { 1419 return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0; 1420 } 1421 1422 /* 1423 * Select a driver for an asym operation. The driver must 1424 * support the necessary algorithm. The caller can constrain 1425 * which device is selected with the flags parameter. The 1426 * algorithm we use here is pretty stupid; just use the first 1427 * driver that supports the algorithms we need. If there are 1428 * multiple suitable drivers we choose the driver with the 1429 * fewest active operations. We prefer hardware-backed 1430 * drivers to software ones when either may be used. 1431 */ 1432 static struct cryptocap * 1433 crypto_select_kdriver(const struct cryptkop *krp, int flags) 1434 { 1435 struct cryptocap *cap, *best; 1436 int match, hid; 1437 1438 CRYPTO_DRIVER_ASSERT(); 1439 1440 /* 1441 * Look first for hardware crypto devices if permitted. 1442 */ 1443 if (flags & CRYPTOCAP_F_HARDWARE) 1444 match = CRYPTOCAP_F_HARDWARE; 1445 else 1446 match = CRYPTOCAP_F_SOFTWARE; 1447 best = NULL; 1448 again: 1449 for (hid = 0; hid < crypto_drivers_size; hid++) { 1450 /* 1451 * If there is no driver for this slot, or the driver 1452 * is not appropriate (hardware or software based on 1453 * match), then skip. 1454 */ 1455 cap = crypto_drivers[hid]; 1456 if (cap->cc_dev == NULL || 1457 (cap->cc_flags & match) == 0) 1458 continue; 1459 1460 /* verify all the algorithms are supported. */ 1461 if (kdriver_suitable(cap, krp)) { 1462 if (best == NULL || 1463 cap->cc_koperations < best->cc_koperations) 1464 best = cap; 1465 } 1466 } 1467 if (best != NULL) 1468 return best; 1469 if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { 1470 /* sort of an Algol 68-style for loop */ 1471 match = CRYPTOCAP_F_SOFTWARE; 1472 goto again; 1473 } 1474 return best; 1475 } 1476 1477 /* 1478 * Choose a driver for an asymmetric crypto request. 1479 */ 1480 static struct cryptocap * 1481 crypto_lookup_kdriver(struct cryptkop *krp) 1482 { 1483 struct cryptocap *cap; 1484 uint32_t crid; 1485 1486 /* If this request is requeued, it might already have a driver. */ 1487 cap = krp->krp_cap; 1488 if (cap != NULL) 1489 return (cap); 1490 1491 /* Use krp_crid to choose a driver. */ 1492 crid = krp->krp_crid; 1493 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 1494 cap = crypto_checkdriver(crid); 1495 if (cap != NULL) { 1496 /* 1497 * Driver present, it must support the 1498 * necessary algorithm and, if s/w drivers are 1499 * excluded, it must be registered as 1500 * hardware-backed. 1501 */ 1502 if (!kdriver_suitable(cap, krp) || 1503 (!crypto_devallowsoft && 1504 (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0)) 1505 cap = NULL; 1506 } 1507 } else { 1508 /* 1509 * No requested driver; select based on crid flags. 1510 */ 1511 if (!crypto_devallowsoft) /* NB: disallow s/w drivers */ 1512 crid &= ~CRYPTOCAP_F_SOFTWARE; 1513 cap = crypto_select_kdriver(krp, crid); 1514 } 1515 1516 if (cap != NULL) { 1517 krp->krp_cap = cap_ref(cap); 1518 krp->krp_hid = cap->cc_hid; 1519 } 1520 return (cap); 1521 } 1522 1523 /* 1524 * Dispatch an asymmetric crypto request. 1525 */ 1526 static int 1527 crypto_kinvoke(struct cryptkop *krp) 1528 { 1529 struct cryptocap *cap = NULL; 1530 int error; 1531 1532 KASSERT(krp != NULL, ("%s: krp == NULL", __func__)); 1533 KASSERT(krp->krp_callback != NULL, 1534 ("%s: krp->crp_callback == NULL", __func__)); 1535 1536 CRYPTO_DRIVER_LOCK(); 1537 cap = crypto_lookup_kdriver(krp); 1538 if (cap == NULL) { 1539 CRYPTO_DRIVER_UNLOCK(); 1540 krp->krp_status = ENODEV; 1541 crypto_kdone(krp); 1542 return (0); 1543 } 1544 1545 /* 1546 * If the device is blocked, return ERESTART to requeue it. 1547 */ 1548 if (cap->cc_kqblocked) { 1549 /* 1550 * XXX: Previously this set krp_status to ERESTART and 1551 * invoked crypto_kdone but the caller would still 1552 * requeue it. 1553 */ 1554 CRYPTO_DRIVER_UNLOCK(); 1555 return (ERESTART); 1556 } 1557 1558 cap->cc_koperations++; 1559 CRYPTO_DRIVER_UNLOCK(); 1560 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0); 1561 if (error == ERESTART) { 1562 CRYPTO_DRIVER_LOCK(); 1563 cap->cc_koperations--; 1564 CRYPTO_DRIVER_UNLOCK(); 1565 return (error); 1566 } 1567 1568 KASSERT(error == 0, ("error %d returned from crypto_kprocess", error)); 1569 return (0); 1570 } 1571 1572 #ifdef CRYPTO_TIMING 1573 static void 1574 crypto_tstat(struct cryptotstat *ts, struct bintime *bt) 1575 { 1576 struct bintime now, delta; 1577 struct timespec t; 1578 uint64_t u; 1579 1580 binuptime(&now); 1581 u = now.frac; 1582 delta.frac = now.frac - bt->frac; 1583 delta.sec = now.sec - bt->sec; 1584 if (u < delta.frac) 1585 delta.sec--; 1586 bintime2timespec(&delta, &t); 1587 timespecadd(&ts->acc, &t, &ts->acc); 1588 if (timespeccmp(&t, &ts->min, <)) 1589 ts->min = t; 1590 if (timespeccmp(&t, &ts->max, >)) 1591 ts->max = t; 1592 ts->count++; 1593 1594 *bt = now; 1595 } 1596 #endif 1597 1598 static void 1599 crypto_task_invoke(void *ctx, int pending) 1600 { 1601 struct cryptocap *cap; 1602 struct cryptop *crp; 1603 int result; 1604 1605 crp = (struct cryptop *)ctx; 1606 cap = crp->crp_session->cap; 1607 result = crypto_invoke(cap, crp, 0); 1608 if (result == ERESTART) 1609 crypto_batch_enqueue(crp); 1610 } 1611 1612 /* 1613 * Dispatch a crypto request to the appropriate crypto devices. 1614 */ 1615 static int 1616 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) 1617 { 1618 1619 KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); 1620 KASSERT(crp->crp_callback != NULL, 1621 ("%s: crp->crp_callback == NULL", __func__)); 1622 KASSERT(crp->crp_session != NULL, 1623 ("%s: crp->crp_session == NULL", __func__)); 1624 1625 #ifdef CRYPTO_TIMING 1626 if (crypto_timing) 1627 crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp); 1628 #endif 1629 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1630 struct crypto_session_params csp; 1631 crypto_session_t nses; 1632 1633 /* 1634 * Driver has unregistered; migrate the session and return 1635 * an error to the caller so they'll resubmit the op. 1636 * 1637 * XXX: What if there are more already queued requests for this 1638 * session? 1639 * 1640 * XXX: Real solution is to make sessions refcounted 1641 * and force callers to hold a reference when 1642 * assigning to crp_session. Could maybe change 1643 * crypto_getreq to accept a session pointer to make 1644 * that work. Alternatively, we could abandon the 1645 * notion of rewriting crp_session in requests forcing 1646 * the caller to deal with allocating a new session. 1647 * Perhaps provide a method to allow a crp's session to 1648 * be swapped that callers could use. 1649 */ 1650 csp = crp->crp_session->csp; 1651 crypto_freesession(crp->crp_session); 1652 1653 /* 1654 * XXX: Key pointers may no longer be valid. If we 1655 * really want to support this we need to define the 1656 * KPI such that 'csp' is required to be valid for the 1657 * duration of a session by the caller perhaps. 1658 * 1659 * XXX: If the keys have been changed this will reuse 1660 * the old keys. This probably suggests making 1661 * rekeying more explicit and updating the key 1662 * pointers in 'csp' when the keys change. 1663 */ 1664 if (crypto_newsession(&nses, &csp, 1665 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) 1666 crp->crp_session = nses; 1667 1668 crp->crp_etype = EAGAIN; 1669 crypto_done(crp); 1670 return 0; 1671 } else { 1672 /* 1673 * Invoke the driver to process the request. 1674 */ 1675 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); 1676 } 1677 } 1678 1679 void 1680 crypto_freereq(struct cryptop *crp) 1681 { 1682 1683 if (crp == NULL) 1684 return; 1685 1686 #ifdef DIAGNOSTIC 1687 { 1688 struct cryptop *crp2; 1689 struct crypto_ret_worker *ret_worker; 1690 1691 CRYPTO_Q_LOCK(); 1692 TAILQ_FOREACH(crp2, &crp_q, crp_next) { 1693 KASSERT(crp2 != crp, 1694 ("Freeing cryptop from the crypto queue (%p).", 1695 crp)); 1696 } 1697 CRYPTO_Q_UNLOCK(); 1698 1699 FOREACH_CRYPTO_RETW(ret_worker) { 1700 CRYPTO_RETW_LOCK(ret_worker); 1701 TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) { 1702 KASSERT(crp2 != crp, 1703 ("Freeing cryptop from the return queue (%p).", 1704 crp)); 1705 } 1706 CRYPTO_RETW_UNLOCK(ret_worker); 1707 } 1708 } 1709 #endif 1710 1711 uma_zfree(cryptop_zone, crp); 1712 } 1713 1714 struct cryptop * 1715 crypto_getreq(crypto_session_t cses, int how) 1716 { 1717 struct cryptop *crp; 1718 1719 MPASS(how == M_WAITOK || how == M_NOWAIT); 1720 crp = uma_zalloc(cryptop_zone, how | M_ZERO); 1721 crp->crp_session = cses; 1722 return (crp); 1723 } 1724 1725 /* 1726 * Invoke the callback on behalf of the driver. 1727 */ 1728 void 1729 crypto_done(struct cryptop *crp) 1730 { 1731 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0, 1732 ("crypto_done: op already done, flags 0x%x", crp->crp_flags)); 1733 crp->crp_flags |= CRYPTO_F_DONE; 1734 if (crp->crp_etype != 0) 1735 cryptostats.cs_errs++; 1736 #ifdef CRYPTO_TIMING 1737 if (crypto_timing) 1738 crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp); 1739 #endif 1740 /* 1741 * CBIMM means unconditionally do the callback immediately; 1742 * CBIFSYNC means do the callback immediately only if the 1743 * operation was done synchronously. Both are used to avoid 1744 * doing extraneous context switches; the latter is mostly 1745 * used with the software crypto driver. 1746 */ 1747 if (!CRYPTOP_ASYNC_KEEPORDER(crp) && 1748 ((crp->crp_flags & CRYPTO_F_CBIMM) || 1749 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) && 1750 (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) { 1751 /* 1752 * Do the callback directly. This is ok when the 1753 * callback routine does very little (e.g. the 1754 * /dev/crypto callback method just does a wakeup). 1755 */ 1756 #ifdef CRYPTO_TIMING 1757 if (crypto_timing) { 1758 /* 1759 * NB: We must copy the timestamp before 1760 * doing the callback as the cryptop is 1761 * likely to be reclaimed. 1762 */ 1763 struct bintime t = crp->crp_tstamp; 1764 crypto_tstat(&cryptostats.cs_cb, &t); 1765 crp->crp_callback(crp); 1766 crypto_tstat(&cryptostats.cs_finis, &t); 1767 } else 1768 #endif 1769 crp->crp_callback(crp); 1770 } else { 1771 struct crypto_ret_worker *ret_worker; 1772 bool wake; 1773 1774 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1775 wake = false; 1776 1777 /* 1778 * Normal case; queue the callback for the thread. 1779 */ 1780 CRYPTO_RETW_LOCK(ret_worker); 1781 if (CRYPTOP_ASYNC_KEEPORDER(crp)) { 1782 struct cryptop *tmp; 1783 1784 TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q, 1785 cryptop_q, crp_next) { 1786 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) { 1787 TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q, 1788 tmp, crp, crp_next); 1789 break; 1790 } 1791 } 1792 if (tmp == NULL) { 1793 TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q, 1794 crp, crp_next); 1795 } 1796 1797 if (crp->crp_seq == ret_worker->reorder_cur_seq) 1798 wake = true; 1799 } 1800 else { 1801 if (CRYPTO_RETW_EMPTY(ret_worker)) 1802 wake = true; 1803 1804 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next); 1805 } 1806 1807 if (wake) 1808 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1809 CRYPTO_RETW_UNLOCK(ret_worker); 1810 } 1811 } 1812 1813 /* 1814 * Invoke the callback on behalf of the driver. 1815 */ 1816 void 1817 crypto_kdone(struct cryptkop *krp) 1818 { 1819 struct crypto_ret_worker *ret_worker; 1820 struct cryptocap *cap; 1821 1822 if (krp->krp_status != 0) 1823 cryptostats.cs_kerrs++; 1824 CRYPTO_DRIVER_LOCK(); 1825 cap = krp->krp_cap; 1826 KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0")); 1827 cap->cc_koperations--; 1828 if (cap->cc_koperations == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 1829 wakeup(cap); 1830 CRYPTO_DRIVER_UNLOCK(); 1831 krp->krp_cap = NULL; 1832 cap_rele(cap); 1833 1834 ret_worker = CRYPTO_RETW(0); 1835 1836 CRYPTO_RETW_LOCK(ret_worker); 1837 if (CRYPTO_RETW_EMPTY(ret_worker)) 1838 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1839 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next); 1840 CRYPTO_RETW_UNLOCK(ret_worker); 1841 } 1842 1843 int 1844 crypto_getfeat(int *featp) 1845 { 1846 int hid, kalg, feat = 0; 1847 1848 CRYPTO_DRIVER_LOCK(); 1849 for (hid = 0; hid < crypto_drivers_size; hid++) { 1850 const struct cryptocap *cap = crypto_drivers[hid]; 1851 1852 if (cap == NULL || 1853 ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) && 1854 !crypto_devallowsoft)) { 1855 continue; 1856 } 1857 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) 1858 if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED) 1859 feat |= 1 << kalg; 1860 } 1861 CRYPTO_DRIVER_UNLOCK(); 1862 *featp = feat; 1863 return (0); 1864 } 1865 1866 /* 1867 * Terminate a thread at module unload. The process that 1868 * initiated this is waiting for us to signal that we're gone; 1869 * wake it up and exit. We use the driver table lock to insure 1870 * we don't do the wakeup before they're waiting. There is no 1871 * race here because the waiter sleeps on the proc lock for the 1872 * thread so it gets notified at the right time because of an 1873 * extra wakeup that's done in exit1(). 1874 */ 1875 static void 1876 crypto_finis(void *chan) 1877 { 1878 CRYPTO_DRIVER_LOCK(); 1879 wakeup_one(chan); 1880 CRYPTO_DRIVER_UNLOCK(); 1881 kproc_exit(0); 1882 } 1883 1884 /* 1885 * Crypto thread, dispatches crypto requests. 1886 */ 1887 static void 1888 crypto_proc(void) 1889 { 1890 struct cryptop *crp, *submit; 1891 struct cryptkop *krp; 1892 struct cryptocap *cap; 1893 int result, hint; 1894 1895 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1896 fpu_kern_thread(FPU_KERN_NORMAL); 1897 #endif 1898 1899 CRYPTO_Q_LOCK(); 1900 for (;;) { 1901 /* 1902 * Find the first element in the queue that can be 1903 * processed and look-ahead to see if multiple ops 1904 * are ready for the same driver. 1905 */ 1906 submit = NULL; 1907 hint = 0; 1908 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1909 cap = crp->crp_session->cap; 1910 /* 1911 * Driver cannot disappeared when there is an active 1912 * session. 1913 */ 1914 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1915 __func__, __LINE__)); 1916 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1917 /* Op needs to be migrated, process it. */ 1918 if (submit == NULL) 1919 submit = crp; 1920 break; 1921 } 1922 if (!cap->cc_qblocked) { 1923 if (submit != NULL) { 1924 /* 1925 * We stop on finding another op, 1926 * regardless whether its for the same 1927 * driver or not. We could keep 1928 * searching the queue but it might be 1929 * better to just use a per-driver 1930 * queue instead. 1931 */ 1932 if (submit->crp_session->cap == cap) 1933 hint = CRYPTO_HINT_MORE; 1934 break; 1935 } else { 1936 submit = crp; 1937 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) 1938 break; 1939 /* keep scanning for more are q'd */ 1940 } 1941 } 1942 } 1943 if (submit != NULL) { 1944 TAILQ_REMOVE(&crp_q, submit, crp_next); 1945 cap = submit->crp_session->cap; 1946 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1947 __func__, __LINE__)); 1948 CRYPTO_Q_UNLOCK(); 1949 result = crypto_invoke(cap, submit, hint); 1950 CRYPTO_Q_LOCK(); 1951 if (result == ERESTART) { 1952 /* 1953 * The driver ran out of resources, mark the 1954 * driver ``blocked'' for cryptop's and put 1955 * the request back in the queue. It would 1956 * best to put the request back where we got 1957 * it but that's hard so for now we put it 1958 * at the front. This should be ok; putting 1959 * it at the end does not work. 1960 */ 1961 cap->cc_qblocked = 1; 1962 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 1963 cryptostats.cs_blocks++; 1964 } 1965 } 1966 1967 /* As above, but for key ops */ 1968 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 1969 cap = krp->krp_cap; 1970 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1971 /* 1972 * Operation needs to be migrated, 1973 * clear krp_cap so a new driver is 1974 * selected. 1975 */ 1976 krp->krp_cap = NULL; 1977 cap_rele(cap); 1978 break; 1979 } 1980 if (!cap->cc_kqblocked) 1981 break; 1982 } 1983 if (krp != NULL) { 1984 TAILQ_REMOVE(&crp_kq, krp, krp_next); 1985 CRYPTO_Q_UNLOCK(); 1986 result = crypto_kinvoke(krp); 1987 CRYPTO_Q_LOCK(); 1988 if (result == ERESTART) { 1989 /* 1990 * The driver ran out of resources, mark the 1991 * driver ``blocked'' for cryptkop's and put 1992 * the request back in the queue. It would 1993 * best to put the request back where we got 1994 * it but that's hard so for now we put it 1995 * at the front. This should be ok; putting 1996 * it at the end does not work. 1997 */ 1998 krp->krp_cap->cc_kqblocked = 1; 1999 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 2000 cryptostats.cs_kblocks++; 2001 } 2002 } 2003 2004 if (submit == NULL && krp == NULL) { 2005 /* 2006 * Nothing more to be processed. Sleep until we're 2007 * woken because there are more ops to process. 2008 * This happens either by submission or by a driver 2009 * becoming unblocked and notifying us through 2010 * crypto_unblock. Note that when we wakeup we 2011 * start processing each queue again from the 2012 * front. It's not clear that it's important to 2013 * preserve this ordering since ops may finish 2014 * out of order if dispatched to different devices 2015 * and some become blocked while others do not. 2016 */ 2017 crp_sleep = 1; 2018 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0); 2019 crp_sleep = 0; 2020 if (cryptoproc == NULL) 2021 break; 2022 cryptostats.cs_intrs++; 2023 } 2024 } 2025 CRYPTO_Q_UNLOCK(); 2026 2027 crypto_finis(&crp_q); 2028 } 2029 2030 /* 2031 * Crypto returns thread, does callbacks for processed crypto requests. 2032 * Callbacks are done here, rather than in the crypto drivers, because 2033 * callbacks typically are expensive and would slow interrupt handling. 2034 */ 2035 static void 2036 crypto_ret_proc(struct crypto_ret_worker *ret_worker) 2037 { 2038 struct cryptop *crpt; 2039 struct cryptkop *krpt; 2040 2041 CRYPTO_RETW_LOCK(ret_worker); 2042 for (;;) { 2043 /* Harvest return q's for completed ops */ 2044 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q); 2045 if (crpt != NULL) { 2046 if (crpt->crp_seq == ret_worker->reorder_cur_seq) { 2047 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next); 2048 ret_worker->reorder_cur_seq++; 2049 } else { 2050 crpt = NULL; 2051 } 2052 } 2053 2054 if (crpt == NULL) { 2055 crpt = TAILQ_FIRST(&ret_worker->crp_ret_q); 2056 if (crpt != NULL) 2057 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next); 2058 } 2059 2060 krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq); 2061 if (krpt != NULL) 2062 TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next); 2063 2064 if (crpt != NULL || krpt != NULL) { 2065 CRYPTO_RETW_UNLOCK(ret_worker); 2066 /* 2067 * Run callbacks unlocked. 2068 */ 2069 if (crpt != NULL) { 2070 #ifdef CRYPTO_TIMING 2071 if (crypto_timing) { 2072 /* 2073 * NB: We must copy the timestamp before 2074 * doing the callback as the cryptop is 2075 * likely to be reclaimed. 2076 */ 2077 struct bintime t = crpt->crp_tstamp; 2078 crypto_tstat(&cryptostats.cs_cb, &t); 2079 crpt->crp_callback(crpt); 2080 crypto_tstat(&cryptostats.cs_finis, &t); 2081 } else 2082 #endif 2083 crpt->crp_callback(crpt); 2084 } 2085 if (krpt != NULL) 2086 krpt->krp_callback(krpt); 2087 CRYPTO_RETW_LOCK(ret_worker); 2088 } else { 2089 /* 2090 * Nothing more to be processed. Sleep until we're 2091 * woken because there are more returns to process. 2092 */ 2093 msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT, 2094 "crypto_ret_wait", 0); 2095 if (ret_worker->cryptoretproc == NULL) 2096 break; 2097 cryptostats.cs_rets++; 2098 } 2099 } 2100 CRYPTO_RETW_UNLOCK(ret_worker); 2101 2102 crypto_finis(&ret_worker->crp_ret_q); 2103 } 2104 2105 #ifdef DDB 2106 static void 2107 db_show_drivers(void) 2108 { 2109 int hid; 2110 2111 db_printf("%12s %4s %4s %8s %2s %2s\n" 2112 , "Device" 2113 , "Ses" 2114 , "Kops" 2115 , "Flags" 2116 , "QB" 2117 , "KB" 2118 ); 2119 for (hid = 0; hid < crypto_drivers_size; hid++) { 2120 const struct cryptocap *cap = crypto_drivers[hid]; 2121 if (cap == NULL) 2122 continue; 2123 db_printf("%-12s %4u %4u %08x %2u %2u\n" 2124 , device_get_nameunit(cap->cc_dev) 2125 , cap->cc_sessions 2126 , cap->cc_koperations 2127 , cap->cc_flags 2128 , cap->cc_qblocked 2129 , cap->cc_kqblocked 2130 ); 2131 } 2132 } 2133 2134 DB_SHOW_COMMAND(crypto, db_show_crypto) 2135 { 2136 struct cryptop *crp; 2137 struct crypto_ret_worker *ret_worker; 2138 2139 db_show_drivers(); 2140 db_printf("\n"); 2141 2142 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", 2143 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", 2144 "Device", "Callback"); 2145 TAILQ_FOREACH(crp, &crp_q, crp_next) { 2146 db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n" 2147 , crp->crp_session->cap->cc_hid 2148 , (int) crypto_ses2caps(crp->crp_session) 2149 , crp->crp_ilen, crp->crp_olen 2150 , crp->crp_etype 2151 , crp->crp_flags 2152 , device_get_nameunit(crp->crp_session->cap->cc_dev) 2153 , crp->crp_callback 2154 ); 2155 } 2156 FOREACH_CRYPTO_RETW(ret_worker) { 2157 db_printf("\n%8s %4s %4s %4s %8s\n", 2158 "ret_worker", "HID", "Etype", "Flags", "Callback"); 2159 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 2160 TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) { 2161 db_printf("%8td %4u %4u %04x %8p\n" 2162 , CRYPTO_RETW_ID(ret_worker) 2163 , crp->crp_session->cap->cc_hid 2164 , crp->crp_etype 2165 , crp->crp_flags 2166 , crp->crp_callback 2167 ); 2168 } 2169 } 2170 } 2171 } 2172 2173 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto) 2174 { 2175 struct cryptkop *krp; 2176 struct crypto_ret_worker *ret_worker; 2177 2178 db_show_drivers(); 2179 db_printf("\n"); 2180 2181 db_printf("%4s %5s %4s %4s %8s %4s %8s\n", 2182 "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback"); 2183 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 2184 db_printf("%4u %5u %4u %4u %08x %4u %8p\n" 2185 , krp->krp_op 2186 , krp->krp_status 2187 , krp->krp_iparams, krp->krp_oparams 2188 , krp->krp_crid, krp->krp_hid 2189 , krp->krp_callback 2190 ); 2191 } 2192 2193 ret_worker = CRYPTO_RETW(0); 2194 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 2195 db_printf("%4s %5s %8s %4s %8s\n", 2196 "Op", "Status", "CRID", "HID", "Callback"); 2197 TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) { 2198 db_printf("%4u %5u %08x %4u %8p\n" 2199 , krp->krp_op 2200 , krp->krp_status 2201 , krp->krp_crid, krp->krp_hid 2202 , krp->krp_callback 2203 ); 2204 } 2205 } 2206 } 2207 #endif 2208 2209 int crypto_modevent(module_t mod, int type, void *unused); 2210 2211 /* 2212 * Initialization code, both for static and dynamic loading. 2213 * Note this is not invoked with the usual MODULE_DECLARE 2214 * mechanism but instead is listed as a dependency by the 2215 * cryptosoft driver. This guarantees proper ordering of 2216 * calls on module load/unload. 2217 */ 2218 int 2219 crypto_modevent(module_t mod, int type, void *unused) 2220 { 2221 int error = EINVAL; 2222 2223 switch (type) { 2224 case MOD_LOAD: 2225 error = crypto_init(); 2226 if (error == 0 && bootverbose) 2227 printf("crypto: <crypto core>\n"); 2228 break; 2229 case MOD_UNLOAD: 2230 /*XXX disallow if active sessions */ 2231 error = 0; 2232 crypto_destroy(); 2233 return 0; 2234 } 2235 return error; 2236 } 2237 MODULE_VERSION(crypto, 1); 2238 MODULE_DEPEND(crypto, zlib, 1, 1, 1); 2239