1 /*- 2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 23 */ 24 25 #include <sys/cdefs.h> 26 __FBSDID("$FreeBSD$"); 27 28 /* 29 * Cryptographic Subsystem. 30 * 31 * This code is derived from the Openbsd Cryptographic Framework (OCF) 32 * that has the copyright shown below. Very little of the original 33 * code remains. 34 */ 35 36 /*- 37 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 38 * 39 * This code was written by Angelos D. Keromytis in Athens, Greece, in 40 * February 2000. Network Security Technologies Inc. (NSTI) kindly 41 * supported the development of this code. 42 * 43 * Copyright (c) 2000, 2001 Angelos D. Keromytis 44 * 45 * Permission to use, copy, and modify this software with or without fee 46 * is hereby granted, provided that this entire notice is included in 47 * all source code copies of any software which is or includes a copy or 48 * modification of this software. 49 * 50 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 51 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 52 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 53 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 54 * PURPOSE. 55 */ 56 57 #include "opt_compat.h" 58 #include "opt_ddb.h" 59 60 #include <sys/param.h> 61 #include <sys/systm.h> 62 #include <sys/counter.h> 63 #include <sys/kernel.h> 64 #include <sys/kthread.h> 65 #include <sys/linker.h> 66 #include <sys/lock.h> 67 #include <sys/module.h> 68 #include <sys/mutex.h> 69 #include <sys/malloc.h> 70 #include <sys/mbuf.h> 71 #include <sys/proc.h> 72 #include <sys/refcount.h> 73 #include <sys/sdt.h> 74 #include <sys/smp.h> 75 #include <sys/sysctl.h> 76 #include <sys/taskqueue.h> 77 #include <sys/uio.h> 78 79 #include <ddb/ddb.h> 80 81 #include <vm/uma.h> 82 #include <crypto/intake.h> 83 #include <opencrypto/cryptodev.h> 84 #include <opencrypto/xform_auth.h> 85 #include <opencrypto/xform_enc.h> 86 87 #include <sys/kobj.h> 88 #include <sys/bus.h> 89 #include "cryptodev_if.h" 90 91 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 92 #include <machine/pcb.h> 93 #endif 94 95 SDT_PROVIDER_DEFINE(opencrypto); 96 97 /* 98 * Crypto drivers register themselves by allocating a slot in the 99 * crypto_drivers table with crypto_get_driverid() and then registering 100 * each asym algorithm they support with crypto_kregister(). 101 */ 102 static struct mtx crypto_drivers_mtx; /* lock on driver table */ 103 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx) 104 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx) 105 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED) 106 107 /* 108 * Crypto device/driver capabilities structure. 109 * 110 * Synchronization: 111 * (d) - protected by CRYPTO_DRIVER_LOCK() 112 * (q) - protected by CRYPTO_Q_LOCK() 113 * Not tagged fields are read-only. 114 */ 115 struct cryptocap { 116 device_t cc_dev; 117 uint32_t cc_hid; 118 u_int32_t cc_sessions; /* (d) # of sessions */ 119 u_int32_t cc_koperations; /* (d) # os asym operations */ 120 u_int8_t cc_kalg[CRK_ALGORITHM_MAX + 1]; 121 122 int cc_flags; /* (d) flags */ 123 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ 124 int cc_qblocked; /* (q) symmetric q blocked */ 125 int cc_kqblocked; /* (q) asymmetric q blocked */ 126 size_t cc_session_size; 127 volatile int cc_refs; 128 }; 129 130 static struct cryptocap **crypto_drivers = NULL; 131 static int crypto_drivers_size = 0; 132 133 struct crypto_session { 134 struct cryptocap *cap; 135 void *softc; 136 struct crypto_session_params csp; 137 }; 138 139 /* 140 * There are two queues for crypto requests; one for symmetric (e.g. 141 * cipher) operations and one for asymmetric (e.g. MOD)operations. 142 * A single mutex is used to lock access to both queues. We could 143 * have one per-queue but having one simplifies handling of block/unblock 144 * operations. 145 */ 146 static int crp_sleep = 0; 147 static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */ 148 static TAILQ_HEAD(,cryptkop) crp_kq; 149 static struct mtx crypto_q_mtx; 150 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx) 151 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx) 152 153 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0, 154 "In-kernel cryptography"); 155 156 /* 157 * Taskqueue used to dispatch the crypto requests 158 * that have the CRYPTO_F_ASYNC flag 159 */ 160 static struct taskqueue *crypto_tq; 161 162 /* 163 * Crypto seq numbers are operated on with modular arithmetic 164 */ 165 #define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0) 166 167 struct crypto_ret_worker { 168 struct mtx crypto_ret_mtx; 169 170 TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */ 171 TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */ 172 TAILQ_HEAD(,cryptkop) crp_ret_kq; /* callback queue for asym jobs */ 173 174 u_int32_t reorder_ops; /* total ordered sym jobs received */ 175 u_int32_t reorder_cur_seq; /* current sym job dispatched */ 176 177 struct proc *cryptoretproc; 178 }; 179 static struct crypto_ret_worker *crypto_ret_workers = NULL; 180 181 #define CRYPTO_RETW(i) (&crypto_ret_workers[i]) 182 #define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers) 183 #define FOREACH_CRYPTO_RETW(w) \ 184 for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w) 185 186 #define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx) 187 #define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx) 188 #define CRYPTO_RETW_EMPTY(w) \ 189 (TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q)) 190 191 static int crypto_workers_num = 0; 192 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN, 193 &crypto_workers_num, 0, 194 "Number of crypto workers used to dispatch crypto jobs"); 195 #ifdef COMPAT_FREEBSD12 196 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN, 197 &crypto_workers_num, 0, 198 "Number of crypto workers used to dispatch crypto jobs"); 199 #endif 200 201 static uma_zone_t cryptop_zone; 202 static uma_zone_t cryptoses_zone; 203 204 int crypto_userasymcrypto = 1; 205 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW, 206 &crypto_userasymcrypto, 0, 207 "Enable user-mode access to asymmetric crypto support"); 208 #ifdef COMPAT_FREEBSD12 209 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW, 210 &crypto_userasymcrypto, 0, 211 "Enable/disable user-mode access to asymmetric crypto support"); 212 #endif 213 214 int crypto_devallowsoft = 0; 215 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW, 216 &crypto_devallowsoft, 0, 217 "Enable use of software crypto by /dev/crypto"); 218 #ifdef COMPAT_FREEBSD12 219 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW, 220 &crypto_devallowsoft, 0, 221 "Enable/disable use of software crypto by /dev/crypto"); 222 #endif 223 224 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 225 226 static void crypto_proc(void); 227 static struct proc *cryptoproc; 228 static void crypto_ret_proc(struct crypto_ret_worker *ret_worker); 229 static void crypto_destroy(void); 230 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); 231 static int crypto_kinvoke(struct cryptkop *krp); 232 static void crypto_task_invoke(void *ctx, int pending); 233 static void crypto_batch_enqueue(struct cryptop *crp); 234 235 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)]; 236 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW, 237 cryptostats, nitems(cryptostats), 238 "Crypto system statistics"); 239 240 #define CRYPTOSTAT_INC(stat) do { \ 241 counter_u64_add( \ 242 cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\ 243 1); \ 244 } while (0) 245 246 static void 247 cryptostats_init(void *arg __unused) 248 { 249 COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK); 250 } 251 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL); 252 253 static void 254 cryptostats_fini(void *arg __unused) 255 { 256 COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats)); 257 } 258 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini, 259 NULL); 260 261 /* Try to avoid directly exposing the key buffer as a symbol */ 262 static struct keybuf *keybuf; 263 264 static struct keybuf empty_keybuf = { 265 .kb_nents = 0 266 }; 267 268 /* Obtain the key buffer from boot metadata */ 269 static void 270 keybuf_init(void) 271 { 272 caddr_t kmdp; 273 274 kmdp = preload_search_by_type("elf kernel"); 275 276 if (kmdp == NULL) 277 kmdp = preload_search_by_type("elf64 kernel"); 278 279 keybuf = (struct keybuf *)preload_search_info(kmdp, 280 MODINFO_METADATA | MODINFOMD_KEYBUF); 281 282 if (keybuf == NULL) 283 keybuf = &empty_keybuf; 284 } 285 286 /* It'd be nice if we could store these in some kind of secure memory... */ 287 struct keybuf * get_keybuf(void) { 288 289 return (keybuf); 290 } 291 292 static struct cryptocap * 293 cap_ref(struct cryptocap *cap) 294 { 295 296 refcount_acquire(&cap->cc_refs); 297 return (cap); 298 } 299 300 static void 301 cap_rele(struct cryptocap *cap) 302 { 303 304 if (refcount_release(&cap->cc_refs) == 0) 305 return; 306 307 KASSERT(cap->cc_sessions == 0, 308 ("freeing crypto driver with active sessions")); 309 KASSERT(cap->cc_koperations == 0, 310 ("freeing crypto driver with active key operations")); 311 312 free(cap, M_CRYPTO_DATA); 313 } 314 315 static int 316 crypto_init(void) 317 { 318 struct crypto_ret_worker *ret_worker; 319 int error; 320 321 mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table", 322 MTX_DEF|MTX_QUIET); 323 324 TAILQ_INIT(&crp_q); 325 TAILQ_INIT(&crp_kq); 326 mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF); 327 328 cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop), 329 0, 0, 0, 0, 330 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 331 cryptoses_zone = uma_zcreate("crypto_session", 332 sizeof(struct crypto_session), NULL, NULL, NULL, NULL, 333 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 334 335 if (cryptop_zone == NULL || cryptoses_zone == NULL) { 336 printf("crypto_init: cannot setup crypto zones\n"); 337 error = ENOMEM; 338 goto bad; 339 } 340 341 crypto_drivers_size = CRYPTO_DRIVERS_INITIAL; 342 crypto_drivers = malloc(crypto_drivers_size * 343 sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO); 344 if (crypto_drivers == NULL) { 345 printf("crypto_init: cannot setup crypto drivers\n"); 346 error = ENOMEM; 347 goto bad; 348 } 349 350 if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus) 351 crypto_workers_num = mp_ncpus; 352 353 crypto_tq = taskqueue_create("crypto", M_WAITOK|M_ZERO, 354 taskqueue_thread_enqueue, &crypto_tq); 355 if (crypto_tq == NULL) { 356 printf("crypto init: cannot setup crypto taskqueue\n"); 357 error = ENOMEM; 358 goto bad; 359 } 360 361 taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN, 362 "crypto"); 363 364 error = kproc_create((void (*)(void *)) crypto_proc, NULL, 365 &cryptoproc, 0, 0, "crypto"); 366 if (error) { 367 printf("crypto_init: cannot start crypto thread; error %d", 368 error); 369 goto bad; 370 } 371 372 crypto_ret_workers = malloc(crypto_workers_num * sizeof(struct crypto_ret_worker), 373 M_CRYPTO_DATA, M_NOWAIT|M_ZERO); 374 if (crypto_ret_workers == NULL) { 375 error = ENOMEM; 376 printf("crypto_init: cannot allocate ret workers\n"); 377 goto bad; 378 } 379 380 381 FOREACH_CRYPTO_RETW(ret_worker) { 382 TAILQ_INIT(&ret_worker->crp_ordered_ret_q); 383 TAILQ_INIT(&ret_worker->crp_ret_q); 384 TAILQ_INIT(&ret_worker->crp_ret_kq); 385 386 ret_worker->reorder_ops = 0; 387 ret_worker->reorder_cur_seq = 0; 388 389 mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF); 390 391 error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker, 392 &ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker)); 393 if (error) { 394 printf("crypto_init: cannot start cryptoret thread; error %d", 395 error); 396 goto bad; 397 } 398 } 399 400 keybuf_init(); 401 402 return 0; 403 bad: 404 crypto_destroy(); 405 return error; 406 } 407 408 /* 409 * Signal a crypto thread to terminate. We use the driver 410 * table lock to synchronize the sleep/wakeups so that we 411 * are sure the threads have terminated before we release 412 * the data structures they use. See crypto_finis below 413 * for the other half of this song-and-dance. 414 */ 415 static void 416 crypto_terminate(struct proc **pp, void *q) 417 { 418 struct proc *p; 419 420 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 421 p = *pp; 422 *pp = NULL; 423 if (p) { 424 wakeup_one(q); 425 PROC_LOCK(p); /* NB: insure we don't miss wakeup */ 426 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */ 427 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0); 428 PROC_UNLOCK(p); 429 CRYPTO_DRIVER_LOCK(); 430 } 431 } 432 433 static void 434 hmac_init_pad(struct auth_hash *axf, const char *key, int klen, void *auth_ctx, 435 uint8_t padval) 436 { 437 uint8_t hmac_key[HMAC_MAX_BLOCK_LEN]; 438 u_int i; 439 440 KASSERT(axf->blocksize <= sizeof(hmac_key), 441 ("Invalid HMAC block size %d", axf->blocksize)); 442 443 /* 444 * If the key is larger than the block size, use the digest of 445 * the key as the key instead. 446 */ 447 memset(hmac_key, 0, sizeof(hmac_key)); 448 if (klen > axf->blocksize) { 449 axf->Init(auth_ctx); 450 axf->Update(auth_ctx, key, klen); 451 axf->Final(hmac_key, auth_ctx); 452 klen = axf->hashsize; 453 } else 454 memcpy(hmac_key, key, klen); 455 456 for (i = 0; i < axf->blocksize; i++) 457 hmac_key[i] ^= padval; 458 459 axf->Init(auth_ctx); 460 axf->Update(auth_ctx, hmac_key, axf->blocksize); 461 explicit_bzero(hmac_key, sizeof(hmac_key)); 462 } 463 464 void 465 hmac_init_ipad(struct auth_hash *axf, const char *key, int klen, 466 void *auth_ctx) 467 { 468 469 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL); 470 } 471 472 void 473 hmac_init_opad(struct auth_hash *axf, const char *key, int klen, 474 void *auth_ctx) 475 { 476 477 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL); 478 } 479 480 static void 481 crypto_destroy(void) 482 { 483 struct crypto_ret_worker *ret_worker; 484 int i; 485 486 /* 487 * Terminate any crypto threads. 488 */ 489 if (crypto_tq != NULL) 490 taskqueue_drain_all(crypto_tq); 491 CRYPTO_DRIVER_LOCK(); 492 crypto_terminate(&cryptoproc, &crp_q); 493 FOREACH_CRYPTO_RETW(ret_worker) 494 crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q); 495 CRYPTO_DRIVER_UNLOCK(); 496 497 /* XXX flush queues??? */ 498 499 /* 500 * Reclaim dynamically allocated resources. 501 */ 502 for (i = 0; i < crypto_drivers_size; i++) { 503 if (crypto_drivers[i] != NULL) 504 cap_rele(crypto_drivers[i]); 505 } 506 free(crypto_drivers, M_CRYPTO_DATA); 507 508 if (cryptoses_zone != NULL) 509 uma_zdestroy(cryptoses_zone); 510 if (cryptop_zone != NULL) 511 uma_zdestroy(cryptop_zone); 512 mtx_destroy(&crypto_q_mtx); 513 FOREACH_CRYPTO_RETW(ret_worker) 514 mtx_destroy(&ret_worker->crypto_ret_mtx); 515 free(crypto_ret_workers, M_CRYPTO_DATA); 516 if (crypto_tq != NULL) 517 taskqueue_free(crypto_tq); 518 mtx_destroy(&crypto_drivers_mtx); 519 } 520 521 uint32_t 522 crypto_ses2hid(crypto_session_t crypto_session) 523 { 524 return (crypto_session->cap->cc_hid); 525 } 526 527 uint32_t 528 crypto_ses2caps(crypto_session_t crypto_session) 529 { 530 return (crypto_session->cap->cc_flags & 0xff000000); 531 } 532 533 void * 534 crypto_get_driver_session(crypto_session_t crypto_session) 535 { 536 return (crypto_session->softc); 537 } 538 539 const struct crypto_session_params * 540 crypto_get_params(crypto_session_t crypto_session) 541 { 542 return (&crypto_session->csp); 543 } 544 545 struct auth_hash * 546 crypto_auth_hash(const struct crypto_session_params *csp) 547 { 548 549 switch (csp->csp_auth_alg) { 550 case CRYPTO_SHA1_HMAC: 551 return (&auth_hash_hmac_sha1); 552 case CRYPTO_SHA2_224_HMAC: 553 return (&auth_hash_hmac_sha2_224); 554 case CRYPTO_SHA2_256_HMAC: 555 return (&auth_hash_hmac_sha2_256); 556 case CRYPTO_SHA2_384_HMAC: 557 return (&auth_hash_hmac_sha2_384); 558 case CRYPTO_SHA2_512_HMAC: 559 return (&auth_hash_hmac_sha2_512); 560 case CRYPTO_NULL_HMAC: 561 return (&auth_hash_null); 562 case CRYPTO_RIPEMD160_HMAC: 563 return (&auth_hash_hmac_ripemd_160); 564 case CRYPTO_SHA1: 565 return (&auth_hash_sha1); 566 case CRYPTO_SHA2_224: 567 return (&auth_hash_sha2_224); 568 case CRYPTO_SHA2_256: 569 return (&auth_hash_sha2_256); 570 case CRYPTO_SHA2_384: 571 return (&auth_hash_sha2_384); 572 case CRYPTO_SHA2_512: 573 return (&auth_hash_sha2_512); 574 case CRYPTO_AES_NIST_GMAC: 575 switch (csp->csp_auth_klen) { 576 case 128 / 8: 577 return (&auth_hash_nist_gmac_aes_128); 578 case 192 / 8: 579 return (&auth_hash_nist_gmac_aes_192); 580 case 256 / 8: 581 return (&auth_hash_nist_gmac_aes_256); 582 default: 583 return (NULL); 584 } 585 case CRYPTO_BLAKE2B: 586 return (&auth_hash_blake2b); 587 case CRYPTO_BLAKE2S: 588 return (&auth_hash_blake2s); 589 case CRYPTO_POLY1305: 590 return (&auth_hash_poly1305); 591 case CRYPTO_AES_CCM_CBC_MAC: 592 switch (csp->csp_auth_klen) { 593 case 128 / 8: 594 return (&auth_hash_ccm_cbc_mac_128); 595 case 192 / 8: 596 return (&auth_hash_ccm_cbc_mac_192); 597 case 256 / 8: 598 return (&auth_hash_ccm_cbc_mac_256); 599 default: 600 return (NULL); 601 } 602 default: 603 return (NULL); 604 } 605 } 606 607 struct enc_xform * 608 crypto_cipher(const struct crypto_session_params *csp) 609 { 610 611 switch (csp->csp_cipher_alg) { 612 case CRYPTO_RIJNDAEL128_CBC: 613 return (&enc_xform_rijndael128); 614 case CRYPTO_AES_XTS: 615 return (&enc_xform_aes_xts); 616 case CRYPTO_AES_ICM: 617 return (&enc_xform_aes_icm); 618 case CRYPTO_AES_NIST_GCM_16: 619 return (&enc_xform_aes_nist_gcm); 620 case CRYPTO_CAMELLIA_CBC: 621 return (&enc_xform_camellia); 622 case CRYPTO_NULL_CBC: 623 return (&enc_xform_null); 624 case CRYPTO_CHACHA20: 625 return (&enc_xform_chacha20); 626 case CRYPTO_AES_CCM_16: 627 return (&enc_xform_ccm); 628 default: 629 return (NULL); 630 } 631 } 632 633 static struct cryptocap * 634 crypto_checkdriver(u_int32_t hid) 635 { 636 637 return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]); 638 } 639 640 /* 641 * Select a driver for a new session that supports the specified 642 * algorithms and, optionally, is constrained according to the flags. 643 */ 644 static struct cryptocap * 645 crypto_select_driver(const struct crypto_session_params *csp, int flags) 646 { 647 struct cryptocap *cap, *best; 648 int best_match, error, hid; 649 650 CRYPTO_DRIVER_ASSERT(); 651 652 best = NULL; 653 for (hid = 0; hid < crypto_drivers_size; hid++) { 654 /* 655 * If there is no driver for this slot, or the driver 656 * is not appropriate (hardware or software based on 657 * match), then skip. 658 */ 659 cap = crypto_drivers[hid]; 660 if (cap == NULL || 661 (cap->cc_flags & flags) == 0) 662 continue; 663 664 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp); 665 if (error >= 0) 666 continue; 667 668 /* 669 * Use the driver with the highest probe value. 670 * Hardware drivers use a higher probe value than 671 * software. In case of a tie, prefer the driver with 672 * the fewest active sessions. 673 */ 674 if (best == NULL || error > best_match || 675 (error == best_match && 676 cap->cc_sessions < best->cc_sessions)) { 677 best = cap; 678 best_match = error; 679 } 680 } 681 return best; 682 } 683 684 static enum alg_type { 685 ALG_NONE = 0, 686 ALG_CIPHER, 687 ALG_DIGEST, 688 ALG_KEYED_DIGEST, 689 ALG_COMPRESSION, 690 ALG_AEAD 691 } alg_types[] = { 692 [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST, 693 [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST, 694 [CRYPTO_AES_CBC] = ALG_CIPHER, 695 [CRYPTO_SHA1] = ALG_DIGEST, 696 [CRYPTO_NULL_HMAC] = ALG_DIGEST, 697 [CRYPTO_NULL_CBC] = ALG_CIPHER, 698 [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION, 699 [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST, 700 [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST, 701 [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST, 702 [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER, 703 [CRYPTO_AES_XTS] = ALG_CIPHER, 704 [CRYPTO_AES_ICM] = ALG_CIPHER, 705 [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST, 706 [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD, 707 [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST, 708 [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST, 709 [CRYPTO_CHACHA20] = ALG_CIPHER, 710 [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST, 711 [CRYPTO_RIPEMD160] = ALG_DIGEST, 712 [CRYPTO_SHA2_224] = ALG_DIGEST, 713 [CRYPTO_SHA2_256] = ALG_DIGEST, 714 [CRYPTO_SHA2_384] = ALG_DIGEST, 715 [CRYPTO_SHA2_512] = ALG_DIGEST, 716 [CRYPTO_POLY1305] = ALG_KEYED_DIGEST, 717 [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST, 718 [CRYPTO_AES_CCM_16] = ALG_AEAD, 719 }; 720 721 static enum alg_type 722 alg_type(int alg) 723 { 724 725 if (alg < nitems(alg_types)) 726 return (alg_types[alg]); 727 return (ALG_NONE); 728 } 729 730 static bool 731 alg_is_compression(int alg) 732 { 733 734 return (alg_type(alg) == ALG_COMPRESSION); 735 } 736 737 static bool 738 alg_is_cipher(int alg) 739 { 740 741 return (alg_type(alg) == ALG_CIPHER); 742 } 743 744 static bool 745 alg_is_digest(int alg) 746 { 747 748 return (alg_type(alg) == ALG_DIGEST || 749 alg_type(alg) == ALG_KEYED_DIGEST); 750 } 751 752 static bool 753 alg_is_keyed_digest(int alg) 754 { 755 756 return (alg_type(alg) == ALG_KEYED_DIGEST); 757 } 758 759 static bool 760 alg_is_aead(int alg) 761 { 762 763 return (alg_type(alg) == ALG_AEAD); 764 } 765 766 /* Various sanity checks on crypto session parameters. */ 767 static bool 768 check_csp(const struct crypto_session_params *csp) 769 { 770 struct auth_hash *axf; 771 772 /* Mode-independent checks. */ 773 if ((csp->csp_flags & ~(CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD)) != 774 0) 775 return (false); 776 if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 || 777 csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0) 778 return (false); 779 if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0) 780 return (false); 781 if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0) 782 return (false); 783 784 switch (csp->csp_mode) { 785 case CSP_MODE_COMPRESS: 786 if (!alg_is_compression(csp->csp_cipher_alg)) 787 return (false); 788 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) 789 return (false); 790 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 791 return (false); 792 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 || 793 csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 794 csp->csp_auth_mlen != 0) 795 return (false); 796 break; 797 case CSP_MODE_CIPHER: 798 if (!alg_is_cipher(csp->csp_cipher_alg)) 799 return (false); 800 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 801 return (false); 802 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 803 if (csp->csp_cipher_klen == 0) 804 return (false); 805 if (csp->csp_ivlen == 0) 806 return (false); 807 } 808 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 809 return (false); 810 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 811 csp->csp_auth_mlen != 0) 812 return (false); 813 break; 814 case CSP_MODE_DIGEST: 815 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0) 816 return (false); 817 818 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 819 return (false); 820 821 /* IV is optional for digests (e.g. GMAC). */ 822 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 823 return (false); 824 if (!alg_is_digest(csp->csp_auth_alg)) 825 return (false); 826 827 /* Key is optional for BLAKE2 digests. */ 828 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 829 csp->csp_auth_alg == CRYPTO_BLAKE2S) 830 ; 831 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 832 if (csp->csp_auth_klen == 0) 833 return (false); 834 } else { 835 if (csp->csp_auth_klen != 0) 836 return (false); 837 } 838 if (csp->csp_auth_mlen != 0) { 839 axf = crypto_auth_hash(csp); 840 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 841 return (false); 842 } 843 break; 844 case CSP_MODE_AEAD: 845 if (!alg_is_aead(csp->csp_cipher_alg)) 846 return (false); 847 if (csp->csp_cipher_klen == 0) 848 return (false); 849 if (csp->csp_ivlen == 0 || 850 csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 851 return (false); 852 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0) 853 return (false); 854 855 /* 856 * XXX: Would be nice to have a better way to get this 857 * value. 858 */ 859 switch (csp->csp_cipher_alg) { 860 case CRYPTO_AES_NIST_GCM_16: 861 case CRYPTO_AES_CCM_16: 862 if (csp->csp_auth_mlen > 16) 863 return (false); 864 break; 865 } 866 break; 867 case CSP_MODE_ETA: 868 if (!alg_is_cipher(csp->csp_cipher_alg)) 869 return (false); 870 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 871 if (csp->csp_cipher_klen == 0) 872 return (false); 873 if (csp->csp_ivlen == 0) 874 return (false); 875 } 876 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 877 return (false); 878 if (!alg_is_digest(csp->csp_auth_alg)) 879 return (false); 880 881 /* Key is optional for BLAKE2 digests. */ 882 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 883 csp->csp_auth_alg == CRYPTO_BLAKE2S) 884 ; 885 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 886 if (csp->csp_auth_klen == 0) 887 return (false); 888 } else { 889 if (csp->csp_auth_klen != 0) 890 return (false); 891 } 892 if (csp->csp_auth_mlen != 0) { 893 axf = crypto_auth_hash(csp); 894 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 895 return (false); 896 } 897 break; 898 default: 899 return (false); 900 } 901 902 return (true); 903 } 904 905 /* 906 * Delete a session after it has been detached from its driver. 907 */ 908 static void 909 crypto_deletesession(crypto_session_t cses) 910 { 911 struct cryptocap *cap; 912 913 cap = cses->cap; 914 915 zfree(cses->softc, M_CRYPTO_DATA); 916 uma_zfree(cryptoses_zone, cses); 917 918 CRYPTO_DRIVER_LOCK(); 919 cap->cc_sessions--; 920 if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 921 wakeup(cap); 922 CRYPTO_DRIVER_UNLOCK(); 923 cap_rele(cap); 924 } 925 926 /* 927 * Create a new session. The crid argument specifies a crypto 928 * driver to use or constraints on a driver to select (hardware 929 * only, software only, either). Whatever driver is selected 930 * must be capable of the requested crypto algorithms. 931 */ 932 int 933 crypto_newsession(crypto_session_t *cses, 934 const struct crypto_session_params *csp, int crid) 935 { 936 crypto_session_t res; 937 struct cryptocap *cap; 938 int err; 939 940 if (!check_csp(csp)) 941 return (EINVAL); 942 943 res = NULL; 944 945 CRYPTO_DRIVER_LOCK(); 946 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 947 /* 948 * Use specified driver; verify it is capable. 949 */ 950 cap = crypto_checkdriver(crid); 951 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0) 952 cap = NULL; 953 } else { 954 /* 955 * No requested driver; select based on crid flags. 956 */ 957 cap = crypto_select_driver(csp, crid); 958 } 959 if (cap == NULL) { 960 CRYPTO_DRIVER_UNLOCK(); 961 CRYPTDEB("no driver"); 962 return (EOPNOTSUPP); 963 } 964 cap_ref(cap); 965 cap->cc_sessions++; 966 CRYPTO_DRIVER_UNLOCK(); 967 968 res = uma_zalloc(cryptoses_zone, M_WAITOK | M_ZERO); 969 res->cap = cap; 970 res->softc = malloc(cap->cc_session_size, M_CRYPTO_DATA, M_WAITOK | 971 M_ZERO); 972 res->csp = *csp; 973 974 /* Call the driver initialization routine. */ 975 err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp); 976 if (err != 0) { 977 CRYPTDEB("dev newsession failed: %d", err); 978 crypto_deletesession(res); 979 return (err); 980 } 981 982 *cses = res; 983 return (0); 984 } 985 986 /* 987 * Delete an existing session (or a reserved session on an unregistered 988 * driver). 989 */ 990 void 991 crypto_freesession(crypto_session_t cses) 992 { 993 struct cryptocap *cap; 994 995 if (cses == NULL) 996 return; 997 998 cap = cses->cap; 999 1000 /* Call the driver cleanup routine, if available. */ 1001 CRYPTODEV_FREESESSION(cap->cc_dev, cses); 1002 1003 crypto_deletesession(cses); 1004 } 1005 1006 /* 1007 * Return a new driver id. Registers a driver with the system so that 1008 * it can be probed by subsequent sessions. 1009 */ 1010 int32_t 1011 crypto_get_driverid(device_t dev, size_t sessionsize, int flags) 1012 { 1013 struct cryptocap *cap, **newdrv; 1014 int i; 1015 1016 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 1017 device_printf(dev, 1018 "no flags specified when registering driver\n"); 1019 return -1; 1020 } 1021 1022 cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1023 cap->cc_dev = dev; 1024 cap->cc_session_size = sessionsize; 1025 cap->cc_flags = flags; 1026 refcount_init(&cap->cc_refs, 1); 1027 1028 CRYPTO_DRIVER_LOCK(); 1029 for (;;) { 1030 for (i = 0; i < crypto_drivers_size; i++) { 1031 if (crypto_drivers[i] == NULL) 1032 break; 1033 } 1034 1035 if (i < crypto_drivers_size) 1036 break; 1037 1038 /* Out of entries, allocate some more. */ 1039 1040 if (2 * crypto_drivers_size <= crypto_drivers_size) { 1041 CRYPTO_DRIVER_UNLOCK(); 1042 printf("crypto: driver count wraparound!\n"); 1043 cap_rele(cap); 1044 return (-1); 1045 } 1046 CRYPTO_DRIVER_UNLOCK(); 1047 1048 newdrv = malloc(2 * crypto_drivers_size * 1049 sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1050 1051 CRYPTO_DRIVER_LOCK(); 1052 memcpy(newdrv, crypto_drivers, 1053 crypto_drivers_size * sizeof(*crypto_drivers)); 1054 1055 crypto_drivers_size *= 2; 1056 1057 free(crypto_drivers, M_CRYPTO_DATA); 1058 crypto_drivers = newdrv; 1059 } 1060 1061 cap->cc_hid = i; 1062 crypto_drivers[i] = cap; 1063 CRYPTO_DRIVER_UNLOCK(); 1064 1065 if (bootverbose) 1066 printf("crypto: assign %s driver id %u, flags 0x%x\n", 1067 device_get_nameunit(dev), i, flags); 1068 1069 return i; 1070 } 1071 1072 /* 1073 * Lookup a driver by name. We match against the full device 1074 * name and unit, and against just the name. The latter gives 1075 * us a simple widlcarding by device name. On success return the 1076 * driver/hardware identifier; otherwise return -1. 1077 */ 1078 int 1079 crypto_find_driver(const char *match) 1080 { 1081 struct cryptocap *cap; 1082 int i, len = strlen(match); 1083 1084 CRYPTO_DRIVER_LOCK(); 1085 for (i = 0; i < crypto_drivers_size; i++) { 1086 if (crypto_drivers[i] == NULL) 1087 continue; 1088 cap = crypto_drivers[i]; 1089 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 || 1090 strncmp(match, device_get_name(cap->cc_dev), len) == 0) { 1091 CRYPTO_DRIVER_UNLOCK(); 1092 return (i); 1093 } 1094 } 1095 CRYPTO_DRIVER_UNLOCK(); 1096 return (-1); 1097 } 1098 1099 /* 1100 * Return the device_t for the specified driver or NULL 1101 * if the driver identifier is invalid. 1102 */ 1103 device_t 1104 crypto_find_device_byhid(int hid) 1105 { 1106 struct cryptocap *cap; 1107 device_t dev; 1108 1109 dev = NULL; 1110 CRYPTO_DRIVER_LOCK(); 1111 cap = crypto_checkdriver(hid); 1112 if (cap != NULL) 1113 dev = cap->cc_dev; 1114 CRYPTO_DRIVER_UNLOCK(); 1115 return (dev); 1116 } 1117 1118 /* 1119 * Return the device/driver capabilities. 1120 */ 1121 int 1122 crypto_getcaps(int hid) 1123 { 1124 struct cryptocap *cap; 1125 int flags; 1126 1127 flags = 0; 1128 CRYPTO_DRIVER_LOCK(); 1129 cap = crypto_checkdriver(hid); 1130 if (cap != NULL) 1131 flags = cap->cc_flags; 1132 CRYPTO_DRIVER_UNLOCK(); 1133 return (flags); 1134 } 1135 1136 /* 1137 * Register support for a key-related algorithm. This routine 1138 * is called once for each algorithm supported a driver. 1139 */ 1140 int 1141 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags) 1142 { 1143 struct cryptocap *cap; 1144 int err; 1145 1146 CRYPTO_DRIVER_LOCK(); 1147 1148 cap = crypto_checkdriver(driverid); 1149 if (cap != NULL && 1150 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { 1151 /* 1152 * XXX Do some performance testing to determine placing. 1153 * XXX We probably need an auxiliary data structure that 1154 * XXX describes relative performances. 1155 */ 1156 1157 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 1158 if (bootverbose) 1159 printf("crypto: %s registers key alg %u flags %u\n" 1160 , device_get_nameunit(cap->cc_dev) 1161 , kalg 1162 , flags 1163 ); 1164 err = 0; 1165 } else 1166 err = EINVAL; 1167 1168 CRYPTO_DRIVER_UNLOCK(); 1169 return err; 1170 } 1171 1172 /* 1173 * Unregister all algorithms associated with a crypto driver. 1174 * If there are pending sessions using it, leave enough information 1175 * around so that subsequent calls using those sessions will 1176 * correctly detect the driver has been unregistered and reroute 1177 * requests. 1178 */ 1179 int 1180 crypto_unregister_all(u_int32_t driverid) 1181 { 1182 struct cryptocap *cap; 1183 1184 CRYPTO_DRIVER_LOCK(); 1185 cap = crypto_checkdriver(driverid); 1186 if (cap == NULL) { 1187 CRYPTO_DRIVER_UNLOCK(); 1188 return (EINVAL); 1189 } 1190 1191 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 1192 crypto_drivers[driverid] = NULL; 1193 1194 /* 1195 * XXX: This doesn't do anything to kick sessions that 1196 * have no pending operations. 1197 */ 1198 while (cap->cc_sessions != 0 || cap->cc_koperations != 0) 1199 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0); 1200 CRYPTO_DRIVER_UNLOCK(); 1201 cap_rele(cap); 1202 1203 return (0); 1204 } 1205 1206 /* 1207 * Clear blockage on a driver. The what parameter indicates whether 1208 * the driver is now ready for cryptop's and/or cryptokop's. 1209 */ 1210 int 1211 crypto_unblock(u_int32_t driverid, int what) 1212 { 1213 struct cryptocap *cap; 1214 int err; 1215 1216 CRYPTO_Q_LOCK(); 1217 cap = crypto_checkdriver(driverid); 1218 if (cap != NULL) { 1219 if (what & CRYPTO_SYMQ) 1220 cap->cc_qblocked = 0; 1221 if (what & CRYPTO_ASYMQ) 1222 cap->cc_kqblocked = 0; 1223 if (crp_sleep) 1224 wakeup_one(&crp_q); 1225 err = 0; 1226 } else 1227 err = EINVAL; 1228 CRYPTO_Q_UNLOCK(); 1229 1230 return err; 1231 } 1232 1233 size_t 1234 crypto_buffer_len(struct crypto_buffer *cb) 1235 { 1236 switch (cb->cb_type) { 1237 case CRYPTO_BUF_CONTIG: 1238 return (cb->cb_buf_len); 1239 case CRYPTO_BUF_MBUF: 1240 if (cb->cb_mbuf->m_flags & M_PKTHDR) 1241 return (cb->cb_mbuf->m_pkthdr.len); 1242 return (m_length(cb->cb_mbuf, NULL)); 1243 case CRYPTO_BUF_UIO: 1244 return (cb->cb_uio->uio_resid); 1245 default: 1246 return (0); 1247 } 1248 } 1249 1250 #ifdef INVARIANTS 1251 /* Various sanity checks on crypto requests. */ 1252 static void 1253 cb_sanity(struct crypto_buffer *cb, const char *name) 1254 { 1255 KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST, 1256 ("incoming crp with invalid %s buffer type", name)); 1257 if (cb->cb_type == CRYPTO_BUF_CONTIG) 1258 KASSERT(cb->cb_buf_len >= 0, 1259 ("incoming crp with -ve %s buffer length", name)); 1260 } 1261 1262 static void 1263 crp_sanity(struct cryptop *crp) 1264 { 1265 struct crypto_session_params *csp; 1266 struct crypto_buffer *out; 1267 size_t ilen, len, olen; 1268 1269 KASSERT(crp->crp_session != NULL, ("incoming crp without a session")); 1270 KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE && 1271 crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST, 1272 ("incoming crp with invalid output buffer type")); 1273 KASSERT(crp->crp_etype == 0, ("incoming crp with error")); 1274 KASSERT(!(crp->crp_flags & CRYPTO_F_DONE), 1275 ("incoming crp already done")); 1276 1277 csp = &crp->crp_session->csp; 1278 cb_sanity(&crp->crp_buf, "input"); 1279 ilen = crypto_buffer_len(&crp->crp_buf); 1280 olen = ilen; 1281 out = NULL; 1282 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) { 1283 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) { 1284 cb_sanity(&crp->crp_obuf, "output"); 1285 out = &crp->crp_obuf; 1286 olen = crypto_buffer_len(out); 1287 } 1288 } else 1289 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE, 1290 ("incoming crp with separate output buffer " 1291 "but no session support")); 1292 1293 switch (csp->csp_mode) { 1294 case CSP_MODE_COMPRESS: 1295 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS || 1296 crp->crp_op == CRYPTO_OP_DECOMPRESS, 1297 ("invalid compression op %x", crp->crp_op)); 1298 break; 1299 case CSP_MODE_CIPHER: 1300 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT || 1301 crp->crp_op == CRYPTO_OP_DECRYPT, 1302 ("invalid cipher op %x", crp->crp_op)); 1303 break; 1304 case CSP_MODE_DIGEST: 1305 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST || 1306 crp->crp_op == CRYPTO_OP_VERIFY_DIGEST, 1307 ("invalid digest op %x", crp->crp_op)); 1308 break; 1309 case CSP_MODE_AEAD: 1310 KASSERT(crp->crp_op == 1311 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1312 crp->crp_op == 1313 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1314 ("invalid AEAD op %x", crp->crp_op)); 1315 if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16) 1316 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1317 ("GCM without a separate IV")); 1318 if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16) 1319 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1320 ("CCM without a separate IV")); 1321 break; 1322 case CSP_MODE_ETA: 1323 KASSERT(crp->crp_op == 1324 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1325 crp->crp_op == 1326 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1327 ("invalid ETA op %x", crp->crp_op)); 1328 break; 1329 } 1330 if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1331 if (crp->crp_aad == NULL) { 1332 KASSERT(crp->crp_aad_start == 0 || 1333 crp->crp_aad_start < ilen, 1334 ("invalid AAD start")); 1335 KASSERT(crp->crp_aad_length != 0 || 1336 crp->crp_aad_start == 0, 1337 ("AAD with zero length and non-zero start")); 1338 KASSERT(crp->crp_aad_length == 0 || 1339 crp->crp_aad_start + crp->crp_aad_length <= ilen, 1340 ("AAD outside input length")); 1341 } else { 1342 KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD, 1343 ("session doesn't support separate AAD buffer")); 1344 KASSERT(crp->crp_aad_start == 0, 1345 ("separate AAD buffer with non-zero AAD start")); 1346 KASSERT(crp->crp_aad_length != 0, 1347 ("separate AAD buffer with zero length")); 1348 } 1349 } else { 1350 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 && 1351 crp->crp_aad_length == 0, 1352 ("AAD region in request not supporting AAD")); 1353 } 1354 if (csp->csp_ivlen == 0) { 1355 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0, 1356 ("IV_SEPARATE set when IV isn't used")); 1357 KASSERT(crp->crp_iv_start == 0, 1358 ("crp_iv_start set when IV isn't used")); 1359 } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) { 1360 KASSERT(crp->crp_iv_start == 0, 1361 ("IV_SEPARATE used with non-zero IV start")); 1362 } else { 1363 KASSERT(crp->crp_iv_start < ilen, 1364 ("invalid IV start")); 1365 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen, 1366 ("IV outside buffer length")); 1367 } 1368 /* XXX: payload_start of 0 should always be < ilen? */ 1369 KASSERT(crp->crp_payload_start == 0 || 1370 crp->crp_payload_start < ilen, 1371 ("invalid payload start")); 1372 KASSERT(crp->crp_payload_start + crp->crp_payload_length <= 1373 ilen, ("payload outside input buffer")); 1374 if (out == NULL) { 1375 KASSERT(crp->crp_payload_output_start == 0, 1376 ("payload output start non-zero without output buffer")); 1377 } else { 1378 KASSERT(crp->crp_payload_output_start < olen, 1379 ("invalid payload output start")); 1380 KASSERT(crp->crp_payload_output_start + 1381 crp->crp_payload_length <= olen, 1382 ("payload outside output buffer")); 1383 } 1384 if (csp->csp_mode == CSP_MODE_DIGEST || 1385 csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1386 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) 1387 len = ilen; 1388 else 1389 len = olen; 1390 KASSERT(crp->crp_digest_start == 0 || 1391 crp->crp_digest_start < len, 1392 ("invalid digest start")); 1393 /* XXX: For the mlen == 0 case this check isn't perfect. */ 1394 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len, 1395 ("digest outside buffer")); 1396 } else { 1397 KASSERT(crp->crp_digest_start == 0, 1398 ("non-zero digest start for request without a digest")); 1399 } 1400 if (csp->csp_cipher_klen != 0) 1401 KASSERT(csp->csp_cipher_key != NULL || 1402 crp->crp_cipher_key != NULL, 1403 ("cipher request without a key")); 1404 if (csp->csp_auth_klen != 0) 1405 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL, 1406 ("auth request without a key")); 1407 KASSERT(crp->crp_callback != NULL, ("incoming crp without callback")); 1408 } 1409 #endif 1410 1411 /* 1412 * Add a crypto request to a queue, to be processed by the kernel thread. 1413 */ 1414 int 1415 crypto_dispatch(struct cryptop *crp) 1416 { 1417 struct cryptocap *cap; 1418 int result; 1419 1420 #ifdef INVARIANTS 1421 crp_sanity(crp); 1422 #endif 1423 1424 CRYPTOSTAT_INC(cs_ops); 1425 1426 crp->crp_retw_id = ((uintptr_t)crp->crp_session) % crypto_workers_num; 1427 1428 if (CRYPTOP_ASYNC(crp)) { 1429 if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) { 1430 struct crypto_ret_worker *ret_worker; 1431 1432 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1433 1434 CRYPTO_RETW_LOCK(ret_worker); 1435 crp->crp_seq = ret_worker->reorder_ops++; 1436 CRYPTO_RETW_UNLOCK(ret_worker); 1437 } 1438 1439 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp); 1440 taskqueue_enqueue(crypto_tq, &crp->crp_task); 1441 return (0); 1442 } 1443 1444 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { 1445 /* 1446 * Caller marked the request to be processed 1447 * immediately; dispatch it directly to the 1448 * driver unless the driver is currently blocked. 1449 */ 1450 cap = crp->crp_session->cap; 1451 if (!cap->cc_qblocked) { 1452 result = crypto_invoke(cap, crp, 0); 1453 if (result != ERESTART) 1454 return (result); 1455 /* 1456 * The driver ran out of resources, put the request on 1457 * the queue. 1458 */ 1459 } 1460 } 1461 crypto_batch_enqueue(crp); 1462 return 0; 1463 } 1464 1465 void 1466 crypto_batch_enqueue(struct cryptop *crp) 1467 { 1468 1469 CRYPTO_Q_LOCK(); 1470 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 1471 if (crp_sleep) 1472 wakeup_one(&crp_q); 1473 CRYPTO_Q_UNLOCK(); 1474 } 1475 1476 /* 1477 * Add an asymetric crypto request to a queue, 1478 * to be processed by the kernel thread. 1479 */ 1480 int 1481 crypto_kdispatch(struct cryptkop *krp) 1482 { 1483 int error; 1484 1485 CRYPTOSTAT_INC(cs_kops); 1486 1487 krp->krp_cap = NULL; 1488 error = crypto_kinvoke(krp); 1489 if (error == ERESTART) { 1490 CRYPTO_Q_LOCK(); 1491 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); 1492 if (crp_sleep) 1493 wakeup_one(&crp_q); 1494 CRYPTO_Q_UNLOCK(); 1495 error = 0; 1496 } 1497 return error; 1498 } 1499 1500 /* 1501 * Verify a driver is suitable for the specified operation. 1502 */ 1503 static __inline int 1504 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp) 1505 { 1506 return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0; 1507 } 1508 1509 /* 1510 * Select a driver for an asym operation. The driver must 1511 * support the necessary algorithm. The caller can constrain 1512 * which device is selected with the flags parameter. The 1513 * algorithm we use here is pretty stupid; just use the first 1514 * driver that supports the algorithms we need. If there are 1515 * multiple suitable drivers we choose the driver with the 1516 * fewest active operations. We prefer hardware-backed 1517 * drivers to software ones when either may be used. 1518 */ 1519 static struct cryptocap * 1520 crypto_select_kdriver(const struct cryptkop *krp, int flags) 1521 { 1522 struct cryptocap *cap, *best; 1523 int match, hid; 1524 1525 CRYPTO_DRIVER_ASSERT(); 1526 1527 /* 1528 * Look first for hardware crypto devices if permitted. 1529 */ 1530 if (flags & CRYPTOCAP_F_HARDWARE) 1531 match = CRYPTOCAP_F_HARDWARE; 1532 else 1533 match = CRYPTOCAP_F_SOFTWARE; 1534 best = NULL; 1535 again: 1536 for (hid = 0; hid < crypto_drivers_size; hid++) { 1537 /* 1538 * If there is no driver for this slot, or the driver 1539 * is not appropriate (hardware or software based on 1540 * match), then skip. 1541 */ 1542 cap = crypto_drivers[hid]; 1543 if (cap->cc_dev == NULL || 1544 (cap->cc_flags & match) == 0) 1545 continue; 1546 1547 /* verify all the algorithms are supported. */ 1548 if (kdriver_suitable(cap, krp)) { 1549 if (best == NULL || 1550 cap->cc_koperations < best->cc_koperations) 1551 best = cap; 1552 } 1553 } 1554 if (best != NULL) 1555 return best; 1556 if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { 1557 /* sort of an Algol 68-style for loop */ 1558 match = CRYPTOCAP_F_SOFTWARE; 1559 goto again; 1560 } 1561 return best; 1562 } 1563 1564 /* 1565 * Choose a driver for an asymmetric crypto request. 1566 */ 1567 static struct cryptocap * 1568 crypto_lookup_kdriver(struct cryptkop *krp) 1569 { 1570 struct cryptocap *cap; 1571 uint32_t crid; 1572 1573 /* If this request is requeued, it might already have a driver. */ 1574 cap = krp->krp_cap; 1575 if (cap != NULL) 1576 return (cap); 1577 1578 /* Use krp_crid to choose a driver. */ 1579 crid = krp->krp_crid; 1580 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 1581 cap = crypto_checkdriver(crid); 1582 if (cap != NULL) { 1583 /* 1584 * Driver present, it must support the 1585 * necessary algorithm and, if s/w drivers are 1586 * excluded, it must be registered as 1587 * hardware-backed. 1588 */ 1589 if (!kdriver_suitable(cap, krp) || 1590 (!crypto_devallowsoft && 1591 (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0)) 1592 cap = NULL; 1593 } 1594 } else { 1595 /* 1596 * No requested driver; select based on crid flags. 1597 */ 1598 if (!crypto_devallowsoft) /* NB: disallow s/w drivers */ 1599 crid &= ~CRYPTOCAP_F_SOFTWARE; 1600 cap = crypto_select_kdriver(krp, crid); 1601 } 1602 1603 if (cap != NULL) { 1604 krp->krp_cap = cap_ref(cap); 1605 krp->krp_hid = cap->cc_hid; 1606 } 1607 return (cap); 1608 } 1609 1610 /* 1611 * Dispatch an asymmetric crypto request. 1612 */ 1613 static int 1614 crypto_kinvoke(struct cryptkop *krp) 1615 { 1616 struct cryptocap *cap = NULL; 1617 int error; 1618 1619 KASSERT(krp != NULL, ("%s: krp == NULL", __func__)); 1620 KASSERT(krp->krp_callback != NULL, 1621 ("%s: krp->crp_callback == NULL", __func__)); 1622 1623 CRYPTO_DRIVER_LOCK(); 1624 cap = crypto_lookup_kdriver(krp); 1625 if (cap == NULL) { 1626 CRYPTO_DRIVER_UNLOCK(); 1627 krp->krp_status = ENODEV; 1628 crypto_kdone(krp); 1629 return (0); 1630 } 1631 1632 /* 1633 * If the device is blocked, return ERESTART to requeue it. 1634 */ 1635 if (cap->cc_kqblocked) { 1636 /* 1637 * XXX: Previously this set krp_status to ERESTART and 1638 * invoked crypto_kdone but the caller would still 1639 * requeue it. 1640 */ 1641 CRYPTO_DRIVER_UNLOCK(); 1642 return (ERESTART); 1643 } 1644 1645 cap->cc_koperations++; 1646 CRYPTO_DRIVER_UNLOCK(); 1647 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0); 1648 if (error == ERESTART) { 1649 CRYPTO_DRIVER_LOCK(); 1650 cap->cc_koperations--; 1651 CRYPTO_DRIVER_UNLOCK(); 1652 return (error); 1653 } 1654 1655 KASSERT(error == 0, ("error %d returned from crypto_kprocess", error)); 1656 return (0); 1657 } 1658 1659 static void 1660 crypto_task_invoke(void *ctx, int pending) 1661 { 1662 struct cryptocap *cap; 1663 struct cryptop *crp; 1664 int result; 1665 1666 crp = (struct cryptop *)ctx; 1667 cap = crp->crp_session->cap; 1668 result = crypto_invoke(cap, crp, 0); 1669 if (result == ERESTART) 1670 crypto_batch_enqueue(crp); 1671 } 1672 1673 /* 1674 * Dispatch a crypto request to the appropriate crypto devices. 1675 */ 1676 static int 1677 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) 1678 { 1679 1680 KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); 1681 KASSERT(crp->crp_callback != NULL, 1682 ("%s: crp->crp_callback == NULL", __func__)); 1683 KASSERT(crp->crp_session != NULL, 1684 ("%s: crp->crp_session == NULL", __func__)); 1685 1686 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1687 struct crypto_session_params csp; 1688 crypto_session_t nses; 1689 1690 /* 1691 * Driver has unregistered; migrate the session and return 1692 * an error to the caller so they'll resubmit the op. 1693 * 1694 * XXX: What if there are more already queued requests for this 1695 * session? 1696 * 1697 * XXX: Real solution is to make sessions refcounted 1698 * and force callers to hold a reference when 1699 * assigning to crp_session. Could maybe change 1700 * crypto_getreq to accept a session pointer to make 1701 * that work. Alternatively, we could abandon the 1702 * notion of rewriting crp_session in requests forcing 1703 * the caller to deal with allocating a new session. 1704 * Perhaps provide a method to allow a crp's session to 1705 * be swapped that callers could use. 1706 */ 1707 csp = crp->crp_session->csp; 1708 crypto_freesession(crp->crp_session); 1709 1710 /* 1711 * XXX: Key pointers may no longer be valid. If we 1712 * really want to support this we need to define the 1713 * KPI such that 'csp' is required to be valid for the 1714 * duration of a session by the caller perhaps. 1715 * 1716 * XXX: If the keys have been changed this will reuse 1717 * the old keys. This probably suggests making 1718 * rekeying more explicit and updating the key 1719 * pointers in 'csp' when the keys change. 1720 */ 1721 if (crypto_newsession(&nses, &csp, 1722 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) 1723 crp->crp_session = nses; 1724 1725 crp->crp_etype = EAGAIN; 1726 crypto_done(crp); 1727 return 0; 1728 } else { 1729 /* 1730 * Invoke the driver to process the request. 1731 */ 1732 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); 1733 } 1734 } 1735 1736 void 1737 crypto_freereq(struct cryptop *crp) 1738 { 1739 1740 if (crp == NULL) 1741 return; 1742 1743 #ifdef DIAGNOSTIC 1744 { 1745 struct cryptop *crp2; 1746 struct crypto_ret_worker *ret_worker; 1747 1748 CRYPTO_Q_LOCK(); 1749 TAILQ_FOREACH(crp2, &crp_q, crp_next) { 1750 KASSERT(crp2 != crp, 1751 ("Freeing cryptop from the crypto queue (%p).", 1752 crp)); 1753 } 1754 CRYPTO_Q_UNLOCK(); 1755 1756 FOREACH_CRYPTO_RETW(ret_worker) { 1757 CRYPTO_RETW_LOCK(ret_worker); 1758 TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) { 1759 KASSERT(crp2 != crp, 1760 ("Freeing cryptop from the return queue (%p).", 1761 crp)); 1762 } 1763 CRYPTO_RETW_UNLOCK(ret_worker); 1764 } 1765 } 1766 #endif 1767 1768 uma_zfree(cryptop_zone, crp); 1769 } 1770 1771 struct cryptop * 1772 crypto_getreq(crypto_session_t cses, int how) 1773 { 1774 struct cryptop *crp; 1775 1776 MPASS(how == M_WAITOK || how == M_NOWAIT); 1777 crp = uma_zalloc(cryptop_zone, how | M_ZERO); 1778 crp->crp_session = cses; 1779 return (crp); 1780 } 1781 1782 /* 1783 * Invoke the callback on behalf of the driver. 1784 */ 1785 void 1786 crypto_done(struct cryptop *crp) 1787 { 1788 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0, 1789 ("crypto_done: op already done, flags 0x%x", crp->crp_flags)); 1790 crp->crp_flags |= CRYPTO_F_DONE; 1791 if (crp->crp_etype != 0) 1792 CRYPTOSTAT_INC(cs_errs); 1793 1794 /* 1795 * CBIMM means unconditionally do the callback immediately; 1796 * CBIFSYNC means do the callback immediately only if the 1797 * operation was done synchronously. Both are used to avoid 1798 * doing extraneous context switches; the latter is mostly 1799 * used with the software crypto driver. 1800 */ 1801 if (!CRYPTOP_ASYNC_KEEPORDER(crp) && 1802 ((crp->crp_flags & CRYPTO_F_CBIMM) || 1803 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) && 1804 (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) { 1805 /* 1806 * Do the callback directly. This is ok when the 1807 * callback routine does very little (e.g. the 1808 * /dev/crypto callback method just does a wakeup). 1809 */ 1810 crp->crp_callback(crp); 1811 } else { 1812 struct crypto_ret_worker *ret_worker; 1813 bool wake; 1814 1815 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1816 wake = false; 1817 1818 /* 1819 * Normal case; queue the callback for the thread. 1820 */ 1821 CRYPTO_RETW_LOCK(ret_worker); 1822 if (CRYPTOP_ASYNC_KEEPORDER(crp)) { 1823 struct cryptop *tmp; 1824 1825 TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q, 1826 cryptop_q, crp_next) { 1827 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) { 1828 TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q, 1829 tmp, crp, crp_next); 1830 break; 1831 } 1832 } 1833 if (tmp == NULL) { 1834 TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q, 1835 crp, crp_next); 1836 } 1837 1838 if (crp->crp_seq == ret_worker->reorder_cur_seq) 1839 wake = true; 1840 } 1841 else { 1842 if (CRYPTO_RETW_EMPTY(ret_worker)) 1843 wake = true; 1844 1845 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next); 1846 } 1847 1848 if (wake) 1849 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1850 CRYPTO_RETW_UNLOCK(ret_worker); 1851 } 1852 } 1853 1854 /* 1855 * Invoke the callback on behalf of the driver. 1856 */ 1857 void 1858 crypto_kdone(struct cryptkop *krp) 1859 { 1860 struct crypto_ret_worker *ret_worker; 1861 struct cryptocap *cap; 1862 1863 if (krp->krp_status != 0) 1864 CRYPTOSTAT_INC(cs_kerrs); 1865 CRYPTO_DRIVER_LOCK(); 1866 cap = krp->krp_cap; 1867 KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0")); 1868 cap->cc_koperations--; 1869 if (cap->cc_koperations == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 1870 wakeup(cap); 1871 CRYPTO_DRIVER_UNLOCK(); 1872 krp->krp_cap = NULL; 1873 cap_rele(cap); 1874 1875 ret_worker = CRYPTO_RETW(0); 1876 1877 CRYPTO_RETW_LOCK(ret_worker); 1878 if (CRYPTO_RETW_EMPTY(ret_worker)) 1879 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1880 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next); 1881 CRYPTO_RETW_UNLOCK(ret_worker); 1882 } 1883 1884 int 1885 crypto_getfeat(int *featp) 1886 { 1887 int hid, kalg, feat = 0; 1888 1889 CRYPTO_DRIVER_LOCK(); 1890 for (hid = 0; hid < crypto_drivers_size; hid++) { 1891 const struct cryptocap *cap = crypto_drivers[hid]; 1892 1893 if (cap == NULL || 1894 ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) && 1895 !crypto_devallowsoft)) { 1896 continue; 1897 } 1898 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) 1899 if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED) 1900 feat |= 1 << kalg; 1901 } 1902 CRYPTO_DRIVER_UNLOCK(); 1903 *featp = feat; 1904 return (0); 1905 } 1906 1907 /* 1908 * Terminate a thread at module unload. The process that 1909 * initiated this is waiting for us to signal that we're gone; 1910 * wake it up and exit. We use the driver table lock to insure 1911 * we don't do the wakeup before they're waiting. There is no 1912 * race here because the waiter sleeps on the proc lock for the 1913 * thread so it gets notified at the right time because of an 1914 * extra wakeup that's done in exit1(). 1915 */ 1916 static void 1917 crypto_finis(void *chan) 1918 { 1919 CRYPTO_DRIVER_LOCK(); 1920 wakeup_one(chan); 1921 CRYPTO_DRIVER_UNLOCK(); 1922 kproc_exit(0); 1923 } 1924 1925 /* 1926 * Crypto thread, dispatches crypto requests. 1927 */ 1928 static void 1929 crypto_proc(void) 1930 { 1931 struct cryptop *crp, *submit; 1932 struct cryptkop *krp; 1933 struct cryptocap *cap; 1934 int result, hint; 1935 1936 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1937 fpu_kern_thread(FPU_KERN_NORMAL); 1938 #endif 1939 1940 CRYPTO_Q_LOCK(); 1941 for (;;) { 1942 /* 1943 * Find the first element in the queue that can be 1944 * processed and look-ahead to see if multiple ops 1945 * are ready for the same driver. 1946 */ 1947 submit = NULL; 1948 hint = 0; 1949 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1950 cap = crp->crp_session->cap; 1951 /* 1952 * Driver cannot disappeared when there is an active 1953 * session. 1954 */ 1955 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1956 __func__, __LINE__)); 1957 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1958 /* Op needs to be migrated, process it. */ 1959 if (submit == NULL) 1960 submit = crp; 1961 break; 1962 } 1963 if (!cap->cc_qblocked) { 1964 if (submit != NULL) { 1965 /* 1966 * We stop on finding another op, 1967 * regardless whether its for the same 1968 * driver or not. We could keep 1969 * searching the queue but it might be 1970 * better to just use a per-driver 1971 * queue instead. 1972 */ 1973 if (submit->crp_session->cap == cap) 1974 hint = CRYPTO_HINT_MORE; 1975 break; 1976 } else { 1977 submit = crp; 1978 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) 1979 break; 1980 /* keep scanning for more are q'd */ 1981 } 1982 } 1983 } 1984 if (submit != NULL) { 1985 TAILQ_REMOVE(&crp_q, submit, crp_next); 1986 cap = submit->crp_session->cap; 1987 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1988 __func__, __LINE__)); 1989 CRYPTO_Q_UNLOCK(); 1990 result = crypto_invoke(cap, submit, hint); 1991 CRYPTO_Q_LOCK(); 1992 if (result == ERESTART) { 1993 /* 1994 * The driver ran out of resources, mark the 1995 * driver ``blocked'' for cryptop's and put 1996 * the request back in the queue. It would 1997 * best to put the request back where we got 1998 * it but that's hard so for now we put it 1999 * at the front. This should be ok; putting 2000 * it at the end does not work. 2001 */ 2002 cap->cc_qblocked = 1; 2003 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 2004 CRYPTOSTAT_INC(cs_blocks); 2005 } 2006 } 2007 2008 /* As above, but for key ops */ 2009 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 2010 cap = krp->krp_cap; 2011 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 2012 /* 2013 * Operation needs to be migrated, 2014 * clear krp_cap so a new driver is 2015 * selected. 2016 */ 2017 krp->krp_cap = NULL; 2018 cap_rele(cap); 2019 break; 2020 } 2021 if (!cap->cc_kqblocked) 2022 break; 2023 } 2024 if (krp != NULL) { 2025 TAILQ_REMOVE(&crp_kq, krp, krp_next); 2026 CRYPTO_Q_UNLOCK(); 2027 result = crypto_kinvoke(krp); 2028 CRYPTO_Q_LOCK(); 2029 if (result == ERESTART) { 2030 /* 2031 * The driver ran out of resources, mark the 2032 * driver ``blocked'' for cryptkop's and put 2033 * the request back in the queue. It would 2034 * best to put the request back where we got 2035 * it but that's hard so for now we put it 2036 * at the front. This should be ok; putting 2037 * it at the end does not work. 2038 */ 2039 krp->krp_cap->cc_kqblocked = 1; 2040 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 2041 CRYPTOSTAT_INC(cs_kblocks); 2042 } 2043 } 2044 2045 if (submit == NULL && krp == NULL) { 2046 /* 2047 * Nothing more to be processed. Sleep until we're 2048 * woken because there are more ops to process. 2049 * This happens either by submission or by a driver 2050 * becoming unblocked and notifying us through 2051 * crypto_unblock. Note that when we wakeup we 2052 * start processing each queue again from the 2053 * front. It's not clear that it's important to 2054 * preserve this ordering since ops may finish 2055 * out of order if dispatched to different devices 2056 * and some become blocked while others do not. 2057 */ 2058 crp_sleep = 1; 2059 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0); 2060 crp_sleep = 0; 2061 if (cryptoproc == NULL) 2062 break; 2063 CRYPTOSTAT_INC(cs_intrs); 2064 } 2065 } 2066 CRYPTO_Q_UNLOCK(); 2067 2068 crypto_finis(&crp_q); 2069 } 2070 2071 /* 2072 * Crypto returns thread, does callbacks for processed crypto requests. 2073 * Callbacks are done here, rather than in the crypto drivers, because 2074 * callbacks typically are expensive and would slow interrupt handling. 2075 */ 2076 static void 2077 crypto_ret_proc(struct crypto_ret_worker *ret_worker) 2078 { 2079 struct cryptop *crpt; 2080 struct cryptkop *krpt; 2081 2082 CRYPTO_RETW_LOCK(ret_worker); 2083 for (;;) { 2084 /* Harvest return q's for completed ops */ 2085 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q); 2086 if (crpt != NULL) { 2087 if (crpt->crp_seq == ret_worker->reorder_cur_seq) { 2088 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next); 2089 ret_worker->reorder_cur_seq++; 2090 } else { 2091 crpt = NULL; 2092 } 2093 } 2094 2095 if (crpt == NULL) { 2096 crpt = TAILQ_FIRST(&ret_worker->crp_ret_q); 2097 if (crpt != NULL) 2098 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next); 2099 } 2100 2101 krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq); 2102 if (krpt != NULL) 2103 TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next); 2104 2105 if (crpt != NULL || krpt != NULL) { 2106 CRYPTO_RETW_UNLOCK(ret_worker); 2107 /* 2108 * Run callbacks unlocked. 2109 */ 2110 if (crpt != NULL) 2111 crpt->crp_callback(crpt); 2112 if (krpt != NULL) 2113 krpt->krp_callback(krpt); 2114 CRYPTO_RETW_LOCK(ret_worker); 2115 } else { 2116 /* 2117 * Nothing more to be processed. Sleep until we're 2118 * woken because there are more returns to process. 2119 */ 2120 msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT, 2121 "crypto_ret_wait", 0); 2122 if (ret_worker->cryptoretproc == NULL) 2123 break; 2124 CRYPTOSTAT_INC(cs_rets); 2125 } 2126 } 2127 CRYPTO_RETW_UNLOCK(ret_worker); 2128 2129 crypto_finis(&ret_worker->crp_ret_q); 2130 } 2131 2132 #ifdef DDB 2133 static void 2134 db_show_drivers(void) 2135 { 2136 int hid; 2137 2138 db_printf("%12s %4s %4s %8s %2s %2s\n" 2139 , "Device" 2140 , "Ses" 2141 , "Kops" 2142 , "Flags" 2143 , "QB" 2144 , "KB" 2145 ); 2146 for (hid = 0; hid < crypto_drivers_size; hid++) { 2147 const struct cryptocap *cap = crypto_drivers[hid]; 2148 if (cap == NULL) 2149 continue; 2150 db_printf("%-12s %4u %4u %08x %2u %2u\n" 2151 , device_get_nameunit(cap->cc_dev) 2152 , cap->cc_sessions 2153 , cap->cc_koperations 2154 , cap->cc_flags 2155 , cap->cc_qblocked 2156 , cap->cc_kqblocked 2157 ); 2158 } 2159 } 2160 2161 DB_SHOW_COMMAND(crypto, db_show_crypto) 2162 { 2163 struct cryptop *crp; 2164 struct crypto_ret_worker *ret_worker; 2165 2166 db_show_drivers(); 2167 db_printf("\n"); 2168 2169 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", 2170 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", 2171 "Device", "Callback"); 2172 TAILQ_FOREACH(crp, &crp_q, crp_next) { 2173 db_printf("%4u %08x %4u %4u %04x %8p %8p\n" 2174 , crp->crp_session->cap->cc_hid 2175 , (int) crypto_ses2caps(crp->crp_session) 2176 , crp->crp_olen 2177 , crp->crp_etype 2178 , crp->crp_flags 2179 , device_get_nameunit(crp->crp_session->cap->cc_dev) 2180 , crp->crp_callback 2181 ); 2182 } 2183 FOREACH_CRYPTO_RETW(ret_worker) { 2184 db_printf("\n%8s %4s %4s %4s %8s\n", 2185 "ret_worker", "HID", "Etype", "Flags", "Callback"); 2186 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 2187 TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) { 2188 db_printf("%8td %4u %4u %04x %8p\n" 2189 , CRYPTO_RETW_ID(ret_worker) 2190 , crp->crp_session->cap->cc_hid 2191 , crp->crp_etype 2192 , crp->crp_flags 2193 , crp->crp_callback 2194 ); 2195 } 2196 } 2197 } 2198 } 2199 2200 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto) 2201 { 2202 struct cryptkop *krp; 2203 struct crypto_ret_worker *ret_worker; 2204 2205 db_show_drivers(); 2206 db_printf("\n"); 2207 2208 db_printf("%4s %5s %4s %4s %8s %4s %8s\n", 2209 "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback"); 2210 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 2211 db_printf("%4u %5u %4u %4u %08x %4u %8p\n" 2212 , krp->krp_op 2213 , krp->krp_status 2214 , krp->krp_iparams, krp->krp_oparams 2215 , krp->krp_crid, krp->krp_hid 2216 , krp->krp_callback 2217 ); 2218 } 2219 2220 ret_worker = CRYPTO_RETW(0); 2221 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 2222 db_printf("%4s %5s %8s %4s %8s\n", 2223 "Op", "Status", "CRID", "HID", "Callback"); 2224 TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) { 2225 db_printf("%4u %5u %08x %4u %8p\n" 2226 , krp->krp_op 2227 , krp->krp_status 2228 , krp->krp_crid, krp->krp_hid 2229 , krp->krp_callback 2230 ); 2231 } 2232 } 2233 } 2234 #endif 2235 2236 int crypto_modevent(module_t mod, int type, void *unused); 2237 2238 /* 2239 * Initialization code, both for static and dynamic loading. 2240 * Note this is not invoked with the usual MODULE_DECLARE 2241 * mechanism but instead is listed as a dependency by the 2242 * cryptosoft driver. This guarantees proper ordering of 2243 * calls on module load/unload. 2244 */ 2245 int 2246 crypto_modevent(module_t mod, int type, void *unused) 2247 { 2248 int error = EINVAL; 2249 2250 switch (type) { 2251 case MOD_LOAD: 2252 error = crypto_init(); 2253 if (error == 0 && bootverbose) 2254 printf("crypto: <crypto core>\n"); 2255 break; 2256 case MOD_UNLOAD: 2257 /*XXX disallow if active sessions */ 2258 error = 0; 2259 crypto_destroy(); 2260 return 0; 2261 } 2262 return error; 2263 } 2264 MODULE_VERSION(crypto, 1); 2265 MODULE_DEPEND(crypto, zlib, 1, 1, 1); 2266