xref: /freebsd/sys/opencrypto/crypto.c (revision ad30f8e79bd1007cc2476e491bd21b4f5e389e0a)
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  */
24 
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27 
28 /*
29  * Cryptographic Subsystem.
30  *
31  * This code is derived from the Openbsd Cryptographic Framework (OCF)
32  * that has the copyright shown below.  Very little of the original
33  * code remains.
34  */
35 
36 /*-
37  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
38  *
39  * This code was written by Angelos D. Keromytis in Athens, Greece, in
40  * February 2000. Network Security Technologies Inc. (NSTI) kindly
41  * supported the development of this code.
42  *
43  * Copyright (c) 2000, 2001 Angelos D. Keromytis
44  *
45  * Permission to use, copy, and modify this software with or without fee
46  * is hereby granted, provided that this entire notice is included in
47  * all source code copies of any software which is or includes a copy or
48  * modification of this software.
49  *
50  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
51  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
52  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
53  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
54  * PURPOSE.
55  */
56 
57 #define	CRYPTO_TIMING				/* enable timing support */
58 
59 #include "opt_ddb.h"
60 #include "opt_kdtrace.h"
61 
62 #include <sys/param.h>
63 #include <sys/systm.h>
64 #include <sys/eventhandler.h>
65 #include <sys/kernel.h>
66 #include <sys/kthread.h>
67 #include <sys/lock.h>
68 #include <sys/module.h>
69 #include <sys/mutex.h>
70 #include <sys/malloc.h>
71 #include <sys/proc.h>
72 #include <sys/sdt.h>
73 #include <sys/sysctl.h>
74 
75 #include <ddb/ddb.h>
76 
77 #include <vm/uma.h>
78 #include <opencrypto/cryptodev.h>
79 #include <opencrypto/xform.h>			/* XXX for M_XDATA */
80 
81 #include <sys/kobj.h>
82 #include <sys/bus.h>
83 #include "cryptodev_if.h"
84 
85 #if defined(__i386__) || defined(__amd64__)
86 #include <machine/pcb.h>
87 #endif
88 
89 SDT_PROVIDER_DEFINE(opencrypto);
90 
91 /*
92  * Crypto drivers register themselves by allocating a slot in the
93  * crypto_drivers table with crypto_get_driverid() and then registering
94  * each algorithm they support with crypto_register() and crypto_kregister().
95  */
96 static	struct mtx crypto_drivers_mtx;		/* lock on driver table */
97 #define	CRYPTO_DRIVER_LOCK()	mtx_lock(&crypto_drivers_mtx)
98 #define	CRYPTO_DRIVER_UNLOCK()	mtx_unlock(&crypto_drivers_mtx)
99 #define	CRYPTO_DRIVER_ASSERT()	mtx_assert(&crypto_drivers_mtx, MA_OWNED)
100 
101 /*
102  * Crypto device/driver capabilities structure.
103  *
104  * Synchronization:
105  * (d) - protected by CRYPTO_DRIVER_LOCK()
106  * (q) - protected by CRYPTO_Q_LOCK()
107  * Not tagged fields are read-only.
108  */
109 struct cryptocap {
110 	device_t	cc_dev;			/* (d) device/driver */
111 	u_int32_t	cc_sessions;		/* (d) # of sessions */
112 	u_int32_t	cc_koperations;		/* (d) # os asym operations */
113 	/*
114 	 * Largest possible operator length (in bits) for each type of
115 	 * encryption algorithm. XXX not used
116 	 */
117 	u_int16_t	cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
118 	u_int8_t	cc_alg[CRYPTO_ALGORITHM_MAX + 1];
119 	u_int8_t	cc_kalg[CRK_ALGORITHM_MAX + 1];
120 
121 	int		cc_flags;		/* (d) flags */
122 #define CRYPTOCAP_F_CLEANUP	0x80000000	/* needs resource cleanup */
123 	int		cc_qblocked;		/* (q) symmetric q blocked */
124 	int		cc_kqblocked;		/* (q) asymmetric q blocked */
125 };
126 static	struct cryptocap *crypto_drivers = NULL;
127 static	int crypto_drivers_num = 0;
128 
129 /*
130  * There are two queues for crypto requests; one for symmetric (e.g.
131  * cipher) operations and one for asymmetric (e.g. MOD)operations.
132  * A single mutex is used to lock access to both queues.  We could
133  * have one per-queue but having one simplifies handling of block/unblock
134  * operations.
135  */
136 static	int crp_sleep = 0;
137 static	TAILQ_HEAD(,cryptop) crp_q;		/* request queues */
138 static	TAILQ_HEAD(,cryptkop) crp_kq;
139 static	struct mtx crypto_q_mtx;
140 #define	CRYPTO_Q_LOCK()		mtx_lock(&crypto_q_mtx)
141 #define	CRYPTO_Q_UNLOCK()	mtx_unlock(&crypto_q_mtx)
142 
143 /*
144  * There are two queues for processing completed crypto requests; one
145  * for the symmetric and one for the asymmetric ops.  We only need one
146  * but have two to avoid type futzing (cryptop vs. cryptkop).  A single
147  * mutex is used to lock access to both queues.  Note that this lock
148  * must be separate from the lock on request queues to insure driver
149  * callbacks don't generate lock order reversals.
150  */
151 static	TAILQ_HEAD(,cryptop) crp_ret_q;		/* callback queues */
152 static	TAILQ_HEAD(,cryptkop) crp_ret_kq;
153 static	struct mtx crypto_ret_q_mtx;
154 #define	CRYPTO_RETQ_LOCK()	mtx_lock(&crypto_ret_q_mtx)
155 #define	CRYPTO_RETQ_UNLOCK()	mtx_unlock(&crypto_ret_q_mtx)
156 #define	CRYPTO_RETQ_EMPTY()	(TAILQ_EMPTY(&crp_ret_q) && TAILQ_EMPTY(&crp_ret_kq))
157 
158 static	uma_zone_t cryptop_zone;
159 static	uma_zone_t cryptodesc_zone;
160 
161 int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
162 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
163 	   &crypto_userasymcrypto, 0,
164 	   "Enable/disable user-mode access to asymmetric crypto support");
165 int	crypto_devallowsoft = 0;	/* only use hardware crypto for asym */
166 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
167 	   &crypto_devallowsoft, 0,
168 	   "Enable/disable use of software asym crypto support");
169 
170 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
171 
172 static	void crypto_proc(void);
173 static	struct proc *cryptoproc;
174 static	void crypto_ret_proc(void);
175 static	struct proc *cryptoretproc;
176 static	void crypto_destroy(void);
177 static	int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
178 static	int crypto_kinvoke(struct cryptkop *krp, int flags);
179 
180 static	struct cryptostats cryptostats;
181 SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
182 	    cryptostats, "Crypto system statistics");
183 
184 #ifdef CRYPTO_TIMING
185 static	int crypto_timing = 0;
186 SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
187 	   &crypto_timing, 0, "Enable/disable crypto timing support");
188 #endif
189 
190 static int
191 crypto_init(void)
192 {
193 	int error;
194 
195 	mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
196 		MTX_DEF|MTX_QUIET);
197 
198 	TAILQ_INIT(&crp_q);
199 	TAILQ_INIT(&crp_kq);
200 	mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
201 
202 	TAILQ_INIT(&crp_ret_q);
203 	TAILQ_INIT(&crp_ret_kq);
204 	mtx_init(&crypto_ret_q_mtx, "crypto", "crypto return queues", MTX_DEF);
205 
206 	cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop),
207 				    0, 0, 0, 0,
208 				    UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
209 	cryptodesc_zone = uma_zcreate("cryptodesc", sizeof (struct cryptodesc),
210 				    0, 0, 0, 0,
211 				    UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
212 	if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
213 		printf("crypto_init: cannot setup crypto zones\n");
214 		error = ENOMEM;
215 		goto bad;
216 	}
217 
218 	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
219 	crypto_drivers = malloc(crypto_drivers_num *
220 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
221 	if (crypto_drivers == NULL) {
222 		printf("crypto_init: cannot setup crypto drivers\n");
223 		error = ENOMEM;
224 		goto bad;
225 	}
226 
227 	error = kproc_create((void (*)(void *)) crypto_proc, NULL,
228 		    &cryptoproc, 0, 0, "crypto");
229 	if (error) {
230 		printf("crypto_init: cannot start crypto thread; error %d",
231 			error);
232 		goto bad;
233 	}
234 
235 	error = kproc_create((void (*)(void *)) crypto_ret_proc, NULL,
236 		    &cryptoretproc, 0, 0, "crypto returns");
237 	if (error) {
238 		printf("crypto_init: cannot start cryptoret thread; error %d",
239 			error);
240 		goto bad;
241 	}
242 	return 0;
243 bad:
244 	crypto_destroy();
245 	return error;
246 }
247 
248 /*
249  * Signal a crypto thread to terminate.  We use the driver
250  * table lock to synchronize the sleep/wakeups so that we
251  * are sure the threads have terminated before we release
252  * the data structures they use.  See crypto_finis below
253  * for the other half of this song-and-dance.
254  */
255 static void
256 crypto_terminate(struct proc **pp, void *q)
257 {
258 	struct proc *p;
259 
260 	mtx_assert(&crypto_drivers_mtx, MA_OWNED);
261 	p = *pp;
262 	*pp = NULL;
263 	if (p) {
264 		wakeup_one(q);
265 		PROC_LOCK(p);		/* NB: insure we don't miss wakeup */
266 		CRYPTO_DRIVER_UNLOCK();	/* let crypto_finis progress */
267 		msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
268 		PROC_UNLOCK(p);
269 		CRYPTO_DRIVER_LOCK();
270 	}
271 }
272 
273 static void
274 crypto_destroy(void)
275 {
276 	/*
277 	 * Terminate any crypto threads.
278 	 */
279 	CRYPTO_DRIVER_LOCK();
280 	crypto_terminate(&cryptoproc, &crp_q);
281 	crypto_terminate(&cryptoretproc, &crp_ret_q);
282 	CRYPTO_DRIVER_UNLOCK();
283 
284 	/* XXX flush queues??? */
285 
286 	/*
287 	 * Reclaim dynamically allocated resources.
288 	 */
289 	if (crypto_drivers != NULL)
290 		free(crypto_drivers, M_CRYPTO_DATA);
291 
292 	if (cryptodesc_zone != NULL)
293 		uma_zdestroy(cryptodesc_zone);
294 	if (cryptop_zone != NULL)
295 		uma_zdestroy(cryptop_zone);
296 	mtx_destroy(&crypto_q_mtx);
297 	mtx_destroy(&crypto_ret_q_mtx);
298 	mtx_destroy(&crypto_drivers_mtx);
299 }
300 
301 static struct cryptocap *
302 crypto_checkdriver(u_int32_t hid)
303 {
304 	if (crypto_drivers == NULL)
305 		return NULL;
306 	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
307 }
308 
309 /*
310  * Compare a driver's list of supported algorithms against another
311  * list; return non-zero if all algorithms are supported.
312  */
313 static int
314 driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
315 {
316 	const struct cryptoini *cr;
317 
318 	/* See if all the algorithms are supported. */
319 	for (cr = cri; cr; cr = cr->cri_next)
320 		if (cap->cc_alg[cr->cri_alg] == 0)
321 			return 0;
322 	return 1;
323 }
324 
325 /*
326  * Select a driver for a new session that supports the specified
327  * algorithms and, optionally, is constrained according to the flags.
328  * The algorithm we use here is pretty stupid; just use the
329  * first driver that supports all the algorithms we need. If there
330  * are multiple drivers we choose the driver with the fewest active
331  * sessions.  We prefer hardware-backed drivers to software ones.
332  *
333  * XXX We need more smarts here (in real life too, but that's
334  * XXX another story altogether).
335  */
336 static struct cryptocap *
337 crypto_select_driver(const struct cryptoini *cri, int flags)
338 {
339 	struct cryptocap *cap, *best;
340 	int match, hid;
341 
342 	CRYPTO_DRIVER_ASSERT();
343 
344 	/*
345 	 * Look first for hardware crypto devices if permitted.
346 	 */
347 	if (flags & CRYPTOCAP_F_HARDWARE)
348 		match = CRYPTOCAP_F_HARDWARE;
349 	else
350 		match = CRYPTOCAP_F_SOFTWARE;
351 	best = NULL;
352 again:
353 	for (hid = 0; hid < crypto_drivers_num; hid++) {
354 		cap = &crypto_drivers[hid];
355 		/*
356 		 * If it's not initialized, is in the process of
357 		 * going away, or is not appropriate (hardware
358 		 * or software based on match), then skip.
359 		 */
360 		if (cap->cc_dev == NULL ||
361 		    (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
362 		    (cap->cc_flags & match) == 0)
363 			continue;
364 
365 		/* verify all the algorithms are supported. */
366 		if (driver_suitable(cap, cri)) {
367 			if (best == NULL ||
368 			    cap->cc_sessions < best->cc_sessions)
369 				best = cap;
370 		}
371 	}
372 	if (best != NULL)
373 		return best;
374 	if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
375 		/* sort of an Algol 68-style for loop */
376 		match = CRYPTOCAP_F_SOFTWARE;
377 		goto again;
378 	}
379 	return best;
380 }
381 
382 /*
383  * Create a new session.  The crid argument specifies a crypto
384  * driver to use or constraints on a driver to select (hardware
385  * only, software only, either).  Whatever driver is selected
386  * must be capable of the requested crypto algorithms.
387  */
388 int
389 crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
390 {
391 	struct cryptocap *cap;
392 	u_int32_t hid, lid;
393 	int err;
394 
395 	CRYPTO_DRIVER_LOCK();
396 	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
397 		/*
398 		 * Use specified driver; verify it is capable.
399 		 */
400 		cap = crypto_checkdriver(crid);
401 		if (cap != NULL && !driver_suitable(cap, cri))
402 			cap = NULL;
403 	} else {
404 		/*
405 		 * No requested driver; select based on crid flags.
406 		 */
407 		cap = crypto_select_driver(cri, crid);
408 		/*
409 		 * if NULL then can't do everything in one session.
410 		 * XXX Fix this. We need to inject a "virtual" session
411 		 * XXX layer right about here.
412 		 */
413 	}
414 	if (cap != NULL) {
415 		/* Call the driver initialization routine. */
416 		hid = cap - crypto_drivers;
417 		lid = hid;		/* Pass the driver ID. */
418 		err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
419 		if (err == 0) {
420 			(*sid) = (cap->cc_flags & 0xff000000)
421 			       | (hid & 0x00ffffff);
422 			(*sid) <<= 32;
423 			(*sid) |= (lid & 0xffffffff);
424 			cap->cc_sessions++;
425 		}
426 	} else
427 		err = EINVAL;
428 	CRYPTO_DRIVER_UNLOCK();
429 	return err;
430 }
431 
432 static void
433 crypto_remove(struct cryptocap *cap)
434 {
435 
436 	mtx_assert(&crypto_drivers_mtx, MA_OWNED);
437 	if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
438 		bzero(cap, sizeof(*cap));
439 }
440 
441 /*
442  * Delete an existing session (or a reserved session on an unregistered
443  * driver).
444  */
445 int
446 crypto_freesession(u_int64_t sid)
447 {
448 	struct cryptocap *cap;
449 	u_int32_t hid;
450 	int err;
451 
452 	CRYPTO_DRIVER_LOCK();
453 
454 	if (crypto_drivers == NULL) {
455 		err = EINVAL;
456 		goto done;
457 	}
458 
459 	/* Determine two IDs. */
460 	hid = CRYPTO_SESID2HID(sid);
461 
462 	if (hid >= crypto_drivers_num) {
463 		err = ENOENT;
464 		goto done;
465 	}
466 	cap = &crypto_drivers[hid];
467 
468 	if (cap->cc_sessions)
469 		cap->cc_sessions--;
470 
471 	/* Call the driver cleanup routine, if available. */
472 	err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
473 
474 	if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
475 		crypto_remove(cap);
476 
477 done:
478 	CRYPTO_DRIVER_UNLOCK();
479 	return err;
480 }
481 
482 /*
483  * Return an unused driver id.  Used by drivers prior to registering
484  * support for the algorithms they handle.
485  */
486 int32_t
487 crypto_get_driverid(device_t dev, int flags)
488 {
489 	struct cryptocap *newdrv;
490 	int i;
491 
492 	if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
493 		printf("%s: no flags specified when registering driver\n",
494 		    device_get_nameunit(dev));
495 		return -1;
496 	}
497 
498 	CRYPTO_DRIVER_LOCK();
499 
500 	for (i = 0; i < crypto_drivers_num; i++) {
501 		if (crypto_drivers[i].cc_dev == NULL &&
502 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
503 			break;
504 		}
505 	}
506 
507 	/* Out of entries, allocate some more. */
508 	if (i == crypto_drivers_num) {
509 		/* Be careful about wrap-around. */
510 		if (2 * crypto_drivers_num <= crypto_drivers_num) {
511 			CRYPTO_DRIVER_UNLOCK();
512 			printf("crypto: driver count wraparound!\n");
513 			return -1;
514 		}
515 
516 		newdrv = malloc(2 * crypto_drivers_num *
517 		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
518 		if (newdrv == NULL) {
519 			CRYPTO_DRIVER_UNLOCK();
520 			printf("crypto: no space to expand driver table!\n");
521 			return -1;
522 		}
523 
524 		bcopy(crypto_drivers, newdrv,
525 		    crypto_drivers_num * sizeof(struct cryptocap));
526 
527 		crypto_drivers_num *= 2;
528 
529 		free(crypto_drivers, M_CRYPTO_DATA);
530 		crypto_drivers = newdrv;
531 	}
532 
533 	/* NB: state is zero'd on free */
534 	crypto_drivers[i].cc_sessions = 1;	/* Mark */
535 	crypto_drivers[i].cc_dev = dev;
536 	crypto_drivers[i].cc_flags = flags;
537 	if (bootverbose)
538 		printf("crypto: assign %s driver id %u, flags %u\n",
539 		    device_get_nameunit(dev), i, flags);
540 
541 	CRYPTO_DRIVER_UNLOCK();
542 
543 	return i;
544 }
545 
546 /*
547  * Lookup a driver by name.  We match against the full device
548  * name and unit, and against just the name.  The latter gives
549  * us a simple widlcarding by device name.  On success return the
550  * driver/hardware identifier; otherwise return -1.
551  */
552 int
553 crypto_find_driver(const char *match)
554 {
555 	int i, len = strlen(match);
556 
557 	CRYPTO_DRIVER_LOCK();
558 	for (i = 0; i < crypto_drivers_num; i++) {
559 		device_t dev = crypto_drivers[i].cc_dev;
560 		if (dev == NULL ||
561 		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
562 			continue;
563 		if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
564 		    strncmp(match, device_get_name(dev), len) == 0)
565 			break;
566 	}
567 	CRYPTO_DRIVER_UNLOCK();
568 	return i < crypto_drivers_num ? i : -1;
569 }
570 
571 /*
572  * Return the device_t for the specified driver or NULL
573  * if the driver identifier is invalid.
574  */
575 device_t
576 crypto_find_device_byhid(int hid)
577 {
578 	struct cryptocap *cap = crypto_checkdriver(hid);
579 	return cap != NULL ? cap->cc_dev : NULL;
580 }
581 
582 /*
583  * Return the device/driver capabilities.
584  */
585 int
586 crypto_getcaps(int hid)
587 {
588 	struct cryptocap *cap = crypto_checkdriver(hid);
589 	return cap != NULL ? cap->cc_flags : 0;
590 }
591 
592 /*
593  * Register support for a key-related algorithm.  This routine
594  * is called once for each algorithm supported a driver.
595  */
596 int
597 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
598 {
599 	struct cryptocap *cap;
600 	int err;
601 
602 	CRYPTO_DRIVER_LOCK();
603 
604 	cap = crypto_checkdriver(driverid);
605 	if (cap != NULL &&
606 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
607 		/*
608 		 * XXX Do some performance testing to determine placing.
609 		 * XXX We probably need an auxiliary data structure that
610 		 * XXX describes relative performances.
611 		 */
612 
613 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
614 		if (bootverbose)
615 			printf("crypto: %s registers key alg %u flags %u\n"
616 				, device_get_nameunit(cap->cc_dev)
617 				, kalg
618 				, flags
619 			);
620 		err = 0;
621 	} else
622 		err = EINVAL;
623 
624 	CRYPTO_DRIVER_UNLOCK();
625 	return err;
626 }
627 
628 /*
629  * Register support for a non-key-related algorithm.  This routine
630  * is called once for each such algorithm supported by a driver.
631  */
632 int
633 crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
634     u_int32_t flags)
635 {
636 	struct cryptocap *cap;
637 	int err;
638 
639 	CRYPTO_DRIVER_LOCK();
640 
641 	cap = crypto_checkdriver(driverid);
642 	/* NB: algorithms are in the range [1..max] */
643 	if (cap != NULL &&
644 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
645 		/*
646 		 * XXX Do some performance testing to determine placing.
647 		 * XXX We probably need an auxiliary data structure that
648 		 * XXX describes relative performances.
649 		 */
650 
651 		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
652 		cap->cc_max_op_len[alg] = maxoplen;
653 		if (bootverbose)
654 			printf("crypto: %s registers alg %u flags %u maxoplen %u\n"
655 				, device_get_nameunit(cap->cc_dev)
656 				, alg
657 				, flags
658 				, maxoplen
659 			);
660 		cap->cc_sessions = 0;		/* Unmark */
661 		err = 0;
662 	} else
663 		err = EINVAL;
664 
665 	CRYPTO_DRIVER_UNLOCK();
666 	return err;
667 }
668 
669 static void
670 driver_finis(struct cryptocap *cap)
671 {
672 	u_int32_t ses, kops;
673 
674 	CRYPTO_DRIVER_ASSERT();
675 
676 	ses = cap->cc_sessions;
677 	kops = cap->cc_koperations;
678 	bzero(cap, sizeof(*cap));
679 	if (ses != 0 || kops != 0) {
680 		/*
681 		 * If there are pending sessions,
682 		 * just mark as invalid.
683 		 */
684 		cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
685 		cap->cc_sessions = ses;
686 		cap->cc_koperations = kops;
687 	}
688 }
689 
690 /*
691  * Unregister a crypto driver. If there are pending sessions using it,
692  * leave enough information around so that subsequent calls using those
693  * sessions will correctly detect the driver has been unregistered and
694  * reroute requests.
695  */
696 int
697 crypto_unregister(u_int32_t driverid, int alg)
698 {
699 	struct cryptocap *cap;
700 	int i, err;
701 
702 	CRYPTO_DRIVER_LOCK();
703 	cap = crypto_checkdriver(driverid);
704 	if (cap != NULL &&
705 	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
706 	    cap->cc_alg[alg] != 0) {
707 		cap->cc_alg[alg] = 0;
708 		cap->cc_max_op_len[alg] = 0;
709 
710 		/* Was this the last algorithm ? */
711 		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
712 			if (cap->cc_alg[i] != 0)
713 				break;
714 
715 		if (i == CRYPTO_ALGORITHM_MAX + 1)
716 			driver_finis(cap);
717 		err = 0;
718 	} else
719 		err = EINVAL;
720 	CRYPTO_DRIVER_UNLOCK();
721 
722 	return err;
723 }
724 
725 /*
726  * Unregister all algorithms associated with a crypto driver.
727  * If there are pending sessions using it, leave enough information
728  * around so that subsequent calls using those sessions will
729  * correctly detect the driver has been unregistered and reroute
730  * requests.
731  */
732 int
733 crypto_unregister_all(u_int32_t driverid)
734 {
735 	struct cryptocap *cap;
736 	int err;
737 
738 	CRYPTO_DRIVER_LOCK();
739 	cap = crypto_checkdriver(driverid);
740 	if (cap != NULL) {
741 		driver_finis(cap);
742 		err = 0;
743 	} else
744 		err = EINVAL;
745 	CRYPTO_DRIVER_UNLOCK();
746 
747 	return err;
748 }
749 
750 /*
751  * Clear blockage on a driver.  The what parameter indicates whether
752  * the driver is now ready for cryptop's and/or cryptokop's.
753  */
754 int
755 crypto_unblock(u_int32_t driverid, int what)
756 {
757 	struct cryptocap *cap;
758 	int err;
759 
760 	CRYPTO_Q_LOCK();
761 	cap = crypto_checkdriver(driverid);
762 	if (cap != NULL) {
763 		if (what & CRYPTO_SYMQ)
764 			cap->cc_qblocked = 0;
765 		if (what & CRYPTO_ASYMQ)
766 			cap->cc_kqblocked = 0;
767 		if (crp_sleep)
768 			wakeup_one(&crp_q);
769 		err = 0;
770 	} else
771 		err = EINVAL;
772 	CRYPTO_Q_UNLOCK();
773 
774 	return err;
775 }
776 
777 /*
778  * Add a crypto request to a queue, to be processed by the kernel thread.
779  */
780 int
781 crypto_dispatch(struct cryptop *crp)
782 {
783 	struct cryptocap *cap;
784 	u_int32_t hid;
785 	int result;
786 
787 	cryptostats.cs_ops++;
788 
789 #ifdef CRYPTO_TIMING
790 	if (crypto_timing)
791 		binuptime(&crp->crp_tstamp);
792 #endif
793 
794 	hid = CRYPTO_SESID2HID(crp->crp_sid);
795 
796 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
797 		/*
798 		 * Caller marked the request to be processed
799 		 * immediately; dispatch it directly to the
800 		 * driver unless the driver is currently blocked.
801 		 */
802 		cap = crypto_checkdriver(hid);
803 		/* Driver cannot disappeared when there is an active session. */
804 		KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
805 		if (!cap->cc_qblocked) {
806 			result = crypto_invoke(cap, crp, 0);
807 			if (result != ERESTART)
808 				return (result);
809 			/*
810 			 * The driver ran out of resources, put the request on
811 			 * the queue.
812 			 */
813 		}
814 	}
815 	CRYPTO_Q_LOCK();
816 	TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
817 	if (crp_sleep)
818 		wakeup_one(&crp_q);
819 	CRYPTO_Q_UNLOCK();
820 	return 0;
821 }
822 
823 /*
824  * Add an asymetric crypto request to a queue,
825  * to be processed by the kernel thread.
826  */
827 int
828 crypto_kdispatch(struct cryptkop *krp)
829 {
830 	int error;
831 
832 	cryptostats.cs_kops++;
833 
834 	error = crypto_kinvoke(krp, krp->krp_crid);
835 	if (error == ERESTART) {
836 		CRYPTO_Q_LOCK();
837 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
838 		if (crp_sleep)
839 			wakeup_one(&crp_q);
840 		CRYPTO_Q_UNLOCK();
841 		error = 0;
842 	}
843 	return error;
844 }
845 
846 /*
847  * Verify a driver is suitable for the specified operation.
848  */
849 static __inline int
850 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
851 {
852 	return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
853 }
854 
855 /*
856  * Select a driver for an asym operation.  The driver must
857  * support the necessary algorithm.  The caller can constrain
858  * which device is selected with the flags parameter.  The
859  * algorithm we use here is pretty stupid; just use the first
860  * driver that supports the algorithms we need. If there are
861  * multiple suitable drivers we choose the driver with the
862  * fewest active operations.  We prefer hardware-backed
863  * drivers to software ones when either may be used.
864  */
865 static struct cryptocap *
866 crypto_select_kdriver(const struct cryptkop *krp, int flags)
867 {
868 	struct cryptocap *cap, *best, *blocked;
869 	int match, hid;
870 
871 	CRYPTO_DRIVER_ASSERT();
872 
873 	/*
874 	 * Look first for hardware crypto devices if permitted.
875 	 */
876 	if (flags & CRYPTOCAP_F_HARDWARE)
877 		match = CRYPTOCAP_F_HARDWARE;
878 	else
879 		match = CRYPTOCAP_F_SOFTWARE;
880 	best = NULL;
881 	blocked = NULL;
882 again:
883 	for (hid = 0; hid < crypto_drivers_num; hid++) {
884 		cap = &crypto_drivers[hid];
885 		/*
886 		 * If it's not initialized, is in the process of
887 		 * going away, or is not appropriate (hardware
888 		 * or software based on match), then skip.
889 		 */
890 		if (cap->cc_dev == NULL ||
891 		    (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
892 		    (cap->cc_flags & match) == 0)
893 			continue;
894 
895 		/* verify all the algorithms are supported. */
896 		if (kdriver_suitable(cap, krp)) {
897 			if (best == NULL ||
898 			    cap->cc_koperations < best->cc_koperations)
899 				best = cap;
900 		}
901 	}
902 	if (best != NULL)
903 		return best;
904 	if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
905 		/* sort of an Algol 68-style for loop */
906 		match = CRYPTOCAP_F_SOFTWARE;
907 		goto again;
908 	}
909 	return best;
910 }
911 
912 /*
913  * Dispatch an assymetric crypto request.
914  */
915 static int
916 crypto_kinvoke(struct cryptkop *krp, int crid)
917 {
918 	struct cryptocap *cap = NULL;
919 	int error;
920 
921 	KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
922 	KASSERT(krp->krp_callback != NULL,
923 	    ("%s: krp->crp_callback == NULL", __func__));
924 
925 	CRYPTO_DRIVER_LOCK();
926 	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
927 		cap = crypto_checkdriver(crid);
928 		if (cap != NULL) {
929 			/*
930 			 * Driver present, it must support the necessary
931 			 * algorithm and, if s/w drivers are excluded,
932 			 * it must be registered as hardware-backed.
933 			 */
934 			if (!kdriver_suitable(cap, krp) ||
935 			    (!crypto_devallowsoft &&
936 			     (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
937 				cap = NULL;
938 		}
939 	} else {
940 		/*
941 		 * No requested driver; select based on crid flags.
942 		 */
943 		if (!crypto_devallowsoft)	/* NB: disallow s/w drivers */
944 			crid &= ~CRYPTOCAP_F_SOFTWARE;
945 		cap = crypto_select_kdriver(krp, crid);
946 	}
947 	if (cap != NULL && !cap->cc_kqblocked) {
948 		krp->krp_hid = cap - crypto_drivers;
949 		cap->cc_koperations++;
950 		CRYPTO_DRIVER_UNLOCK();
951 		error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
952 		CRYPTO_DRIVER_LOCK();
953 		if (error == ERESTART) {
954 			cap->cc_koperations--;
955 			CRYPTO_DRIVER_UNLOCK();
956 			return (error);
957 		}
958 	} else {
959 		/*
960 		 * NB: cap is !NULL if device is blocked; in
961 		 *     that case return ERESTART so the operation
962 		 *     is resubmitted if possible.
963 		 */
964 		error = (cap == NULL) ? ENODEV : ERESTART;
965 	}
966 	CRYPTO_DRIVER_UNLOCK();
967 
968 	if (error) {
969 		krp->krp_status = error;
970 		crypto_kdone(krp);
971 	}
972 	return 0;
973 }
974 
975 #ifdef CRYPTO_TIMING
976 static void
977 crypto_tstat(struct cryptotstat *ts, struct bintime *bt)
978 {
979 	struct bintime now, delta;
980 	struct timespec t;
981 	uint64_t u;
982 
983 	binuptime(&now);
984 	u = now.frac;
985 	delta.frac = now.frac - bt->frac;
986 	delta.sec = now.sec - bt->sec;
987 	if (u < delta.frac)
988 		delta.sec--;
989 	bintime2timespec(&delta, &t);
990 	timespecadd(&ts->acc, &t);
991 	if (timespeccmp(&t, &ts->min, <))
992 		ts->min = t;
993 	if (timespeccmp(&t, &ts->max, >))
994 		ts->max = t;
995 	ts->count++;
996 
997 	*bt = now;
998 }
999 #endif
1000 
1001 /*
1002  * Dispatch a crypto request to the appropriate crypto devices.
1003  */
1004 static int
1005 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1006 {
1007 
1008 	KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1009 	KASSERT(crp->crp_callback != NULL,
1010 	    ("%s: crp->crp_callback == NULL", __func__));
1011 	KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
1012 
1013 #ifdef CRYPTO_TIMING
1014 	if (crypto_timing)
1015 		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1016 #endif
1017 	if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1018 		struct cryptodesc *crd;
1019 		u_int64_t nid;
1020 
1021 		/*
1022 		 * Driver has unregistered; migrate the session and return
1023 		 * an error to the caller so they'll resubmit the op.
1024 		 *
1025 		 * XXX: What if there are more already queued requests for this
1026 		 *      session?
1027 		 */
1028 		crypto_freesession(crp->crp_sid);
1029 
1030 		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1031 			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1032 
1033 		/* XXX propagate flags from initial session? */
1034 		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
1035 		    CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1036 			crp->crp_sid = nid;
1037 
1038 		crp->crp_etype = EAGAIN;
1039 		crypto_done(crp);
1040 		return 0;
1041 	} else {
1042 		/*
1043 		 * Invoke the driver to process the request.
1044 		 */
1045 		return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1046 	}
1047 }
1048 
1049 /*
1050  * Release a set of crypto descriptors.
1051  */
1052 void
1053 crypto_freereq(struct cryptop *crp)
1054 {
1055 	struct cryptodesc *crd;
1056 
1057 	if (crp == NULL)
1058 		return;
1059 
1060 #ifdef DIAGNOSTIC
1061 	{
1062 		struct cryptop *crp2;
1063 
1064 		CRYPTO_Q_LOCK();
1065 		TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1066 			KASSERT(crp2 != crp,
1067 			    ("Freeing cryptop from the crypto queue (%p).",
1068 			    crp));
1069 		}
1070 		CRYPTO_Q_UNLOCK();
1071 		CRYPTO_RETQ_LOCK();
1072 		TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
1073 			KASSERT(crp2 != crp,
1074 			    ("Freeing cryptop from the return queue (%p).",
1075 			    crp));
1076 		}
1077 		CRYPTO_RETQ_UNLOCK();
1078 	}
1079 #endif
1080 
1081 	while ((crd = crp->crp_desc) != NULL) {
1082 		crp->crp_desc = crd->crd_next;
1083 		uma_zfree(cryptodesc_zone, crd);
1084 	}
1085 	uma_zfree(cryptop_zone, crp);
1086 }
1087 
1088 /*
1089  * Acquire a set of crypto descriptors.
1090  */
1091 struct cryptop *
1092 crypto_getreq(int num)
1093 {
1094 	struct cryptodesc *crd;
1095 	struct cryptop *crp;
1096 
1097 	crp = uma_zalloc(cryptop_zone, M_NOWAIT|M_ZERO);
1098 	if (crp != NULL) {
1099 		while (num--) {
1100 			crd = uma_zalloc(cryptodesc_zone, M_NOWAIT|M_ZERO);
1101 			if (crd == NULL) {
1102 				crypto_freereq(crp);
1103 				return NULL;
1104 			}
1105 
1106 			crd->crd_next = crp->crp_desc;
1107 			crp->crp_desc = crd;
1108 		}
1109 	}
1110 	return crp;
1111 }
1112 
1113 /*
1114  * Invoke the callback on behalf of the driver.
1115  */
1116 void
1117 crypto_done(struct cryptop *crp)
1118 {
1119 	KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1120 		("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1121 	crp->crp_flags |= CRYPTO_F_DONE;
1122 	if (crp->crp_etype != 0)
1123 		cryptostats.cs_errs++;
1124 #ifdef CRYPTO_TIMING
1125 	if (crypto_timing)
1126 		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1127 #endif
1128 	/*
1129 	 * CBIMM means unconditionally do the callback immediately;
1130 	 * CBIFSYNC means do the callback immediately only if the
1131 	 * operation was done synchronously.  Both are used to avoid
1132 	 * doing extraneous context switches; the latter is mostly
1133 	 * used with the software crypto driver.
1134 	 */
1135 	if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1136 	    ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1137 	     (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
1138 		/*
1139 		 * Do the callback directly.  This is ok when the
1140 		 * callback routine does very little (e.g. the
1141 		 * /dev/crypto callback method just does a wakeup).
1142 		 */
1143 #ifdef CRYPTO_TIMING
1144 		if (crypto_timing) {
1145 			/*
1146 			 * NB: We must copy the timestamp before
1147 			 * doing the callback as the cryptop is
1148 			 * likely to be reclaimed.
1149 			 */
1150 			struct bintime t = crp->crp_tstamp;
1151 			crypto_tstat(&cryptostats.cs_cb, &t);
1152 			crp->crp_callback(crp);
1153 			crypto_tstat(&cryptostats.cs_finis, &t);
1154 		} else
1155 #endif
1156 			crp->crp_callback(crp);
1157 	} else {
1158 		/*
1159 		 * Normal case; queue the callback for the thread.
1160 		 */
1161 		CRYPTO_RETQ_LOCK();
1162 		if (CRYPTO_RETQ_EMPTY())
1163 			wakeup_one(&crp_ret_q);	/* shared wait channel */
1164 		TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1165 		CRYPTO_RETQ_UNLOCK();
1166 	}
1167 }
1168 
1169 /*
1170  * Invoke the callback on behalf of the driver.
1171  */
1172 void
1173 crypto_kdone(struct cryptkop *krp)
1174 {
1175 	struct cryptocap *cap;
1176 
1177 	if (krp->krp_status != 0)
1178 		cryptostats.cs_kerrs++;
1179 	CRYPTO_DRIVER_LOCK();
1180 	/* XXX: What if driver is loaded in the meantime? */
1181 	if (krp->krp_hid < crypto_drivers_num) {
1182 		cap = &crypto_drivers[krp->krp_hid];
1183 		cap->cc_koperations--;
1184 		KASSERT(cap->cc_koperations >= 0, ("cc_koperations < 0"));
1185 		if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1186 			crypto_remove(cap);
1187 	}
1188 	CRYPTO_DRIVER_UNLOCK();
1189 	CRYPTO_RETQ_LOCK();
1190 	if (CRYPTO_RETQ_EMPTY())
1191 		wakeup_one(&crp_ret_q);		/* shared wait channel */
1192 	TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1193 	CRYPTO_RETQ_UNLOCK();
1194 }
1195 
1196 int
1197 crypto_getfeat(int *featp)
1198 {
1199 	int hid, kalg, feat = 0;
1200 
1201 	CRYPTO_DRIVER_LOCK();
1202 	for (hid = 0; hid < crypto_drivers_num; hid++) {
1203 		const struct cryptocap *cap = &crypto_drivers[hid];
1204 
1205 		if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1206 		    !crypto_devallowsoft) {
1207 			continue;
1208 		}
1209 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1210 			if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1211 				feat |=  1 << kalg;
1212 	}
1213 	CRYPTO_DRIVER_UNLOCK();
1214 	*featp = feat;
1215 	return (0);
1216 }
1217 
1218 /*
1219  * Terminate a thread at module unload.  The process that
1220  * initiated this is waiting for us to signal that we're gone;
1221  * wake it up and exit.  We use the driver table lock to insure
1222  * we don't do the wakeup before they're waiting.  There is no
1223  * race here because the waiter sleeps on the proc lock for the
1224  * thread so it gets notified at the right time because of an
1225  * extra wakeup that's done in exit1().
1226  */
1227 static void
1228 crypto_finis(void *chan)
1229 {
1230 	CRYPTO_DRIVER_LOCK();
1231 	wakeup_one(chan);
1232 	CRYPTO_DRIVER_UNLOCK();
1233 	kproc_exit(0);
1234 }
1235 
1236 /*
1237  * Crypto thread, dispatches crypto requests.
1238  */
1239 static void
1240 crypto_proc(void)
1241 {
1242 	struct cryptop *crp, *submit;
1243 	struct cryptkop *krp;
1244 	struct cryptocap *cap;
1245 	u_int32_t hid;
1246 	int result, hint;
1247 
1248 #if defined(__i386__) || defined(__amd64__)
1249 	fpu_kern_thread(FPU_KERN_NORMAL);
1250 #endif
1251 
1252 	CRYPTO_Q_LOCK();
1253 	for (;;) {
1254 		/*
1255 		 * Find the first element in the queue that can be
1256 		 * processed and look-ahead to see if multiple ops
1257 		 * are ready for the same driver.
1258 		 */
1259 		submit = NULL;
1260 		hint = 0;
1261 		TAILQ_FOREACH(crp, &crp_q, crp_next) {
1262 			hid = CRYPTO_SESID2HID(crp->crp_sid);
1263 			cap = crypto_checkdriver(hid);
1264 			/*
1265 			 * Driver cannot disappeared when there is an active
1266 			 * session.
1267 			 */
1268 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1269 			    __func__, __LINE__));
1270 			if (cap == NULL || cap->cc_dev == NULL) {
1271 				/* Op needs to be migrated, process it. */
1272 				if (submit == NULL)
1273 					submit = crp;
1274 				break;
1275 			}
1276 			if (!cap->cc_qblocked) {
1277 				if (submit != NULL) {
1278 					/*
1279 					 * We stop on finding another op,
1280 					 * regardless whether its for the same
1281 					 * driver or not.  We could keep
1282 					 * searching the queue but it might be
1283 					 * better to just use a per-driver
1284 					 * queue instead.
1285 					 */
1286 					if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
1287 						hint = CRYPTO_HINT_MORE;
1288 					break;
1289 				} else {
1290 					submit = crp;
1291 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1292 						break;
1293 					/* keep scanning for more are q'd */
1294 				}
1295 			}
1296 		}
1297 		if (submit != NULL) {
1298 			TAILQ_REMOVE(&crp_q, submit, crp_next);
1299 			hid = CRYPTO_SESID2HID(submit->crp_sid);
1300 			cap = crypto_checkdriver(hid);
1301 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1302 			    __func__, __LINE__));
1303 			result = crypto_invoke(cap, submit, hint);
1304 			if (result == ERESTART) {
1305 				/*
1306 				 * The driver ran out of resources, mark the
1307 				 * driver ``blocked'' for cryptop's and put
1308 				 * the request back in the queue.  It would
1309 				 * best to put the request back where we got
1310 				 * it but that's hard so for now we put it
1311 				 * at the front.  This should be ok; putting
1312 				 * it at the end does not work.
1313 				 */
1314 				/* XXX validate sid again? */
1315 				crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1316 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1317 				cryptostats.cs_blocks++;
1318 			}
1319 		}
1320 
1321 		/* As above, but for key ops */
1322 		TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1323 			cap = crypto_checkdriver(krp->krp_hid);
1324 			if (cap == NULL || cap->cc_dev == NULL) {
1325 				/*
1326 				 * Operation needs to be migrated, invalidate
1327 				 * the assigned device so it will reselect a
1328 				 * new one below.  Propagate the original
1329 				 * crid selection flags if supplied.
1330 				 */
1331 				krp->krp_hid = krp->krp_crid &
1332 				    (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
1333 				if (krp->krp_hid == 0)
1334 					krp->krp_hid =
1335 				    CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
1336 				break;
1337 			}
1338 			if (!cap->cc_kqblocked)
1339 				break;
1340 		}
1341 		if (krp != NULL) {
1342 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
1343 			result = crypto_kinvoke(krp, krp->krp_hid);
1344 			if (result == ERESTART) {
1345 				/*
1346 				 * The driver ran out of resources, mark the
1347 				 * driver ``blocked'' for cryptkop's and put
1348 				 * the request back in the queue.  It would
1349 				 * best to put the request back where we got
1350 				 * it but that's hard so for now we put it
1351 				 * at the front.  This should be ok; putting
1352 				 * it at the end does not work.
1353 				 */
1354 				/* XXX validate sid again? */
1355 				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1356 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1357 				cryptostats.cs_kblocks++;
1358 			}
1359 		}
1360 
1361 		if (submit == NULL && krp == NULL) {
1362 			/*
1363 			 * Nothing more to be processed.  Sleep until we're
1364 			 * woken because there are more ops to process.
1365 			 * This happens either by submission or by a driver
1366 			 * becoming unblocked and notifying us through
1367 			 * crypto_unblock.  Note that when we wakeup we
1368 			 * start processing each queue again from the
1369 			 * front. It's not clear that it's important to
1370 			 * preserve this ordering since ops may finish
1371 			 * out of order if dispatched to different devices
1372 			 * and some become blocked while others do not.
1373 			 */
1374 			crp_sleep = 1;
1375 			msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
1376 			crp_sleep = 0;
1377 			if (cryptoproc == NULL)
1378 				break;
1379 			cryptostats.cs_intrs++;
1380 		}
1381 	}
1382 	CRYPTO_Q_UNLOCK();
1383 
1384 	crypto_finis(&crp_q);
1385 }
1386 
1387 /*
1388  * Crypto returns thread, does callbacks for processed crypto requests.
1389  * Callbacks are done here, rather than in the crypto drivers, because
1390  * callbacks typically are expensive and would slow interrupt handling.
1391  */
1392 static void
1393 crypto_ret_proc(void)
1394 {
1395 	struct cryptop *crpt;
1396 	struct cryptkop *krpt;
1397 
1398 	CRYPTO_RETQ_LOCK();
1399 	for (;;) {
1400 		/* Harvest return q's for completed ops */
1401 		crpt = TAILQ_FIRST(&crp_ret_q);
1402 		if (crpt != NULL)
1403 			TAILQ_REMOVE(&crp_ret_q, crpt, crp_next);
1404 
1405 		krpt = TAILQ_FIRST(&crp_ret_kq);
1406 		if (krpt != NULL)
1407 			TAILQ_REMOVE(&crp_ret_kq, krpt, krp_next);
1408 
1409 		if (crpt != NULL || krpt != NULL) {
1410 			CRYPTO_RETQ_UNLOCK();
1411 			/*
1412 			 * Run callbacks unlocked.
1413 			 */
1414 			if (crpt != NULL) {
1415 #ifdef CRYPTO_TIMING
1416 				if (crypto_timing) {
1417 					/*
1418 					 * NB: We must copy the timestamp before
1419 					 * doing the callback as the cryptop is
1420 					 * likely to be reclaimed.
1421 					 */
1422 					struct bintime t = crpt->crp_tstamp;
1423 					crypto_tstat(&cryptostats.cs_cb, &t);
1424 					crpt->crp_callback(crpt);
1425 					crypto_tstat(&cryptostats.cs_finis, &t);
1426 				} else
1427 #endif
1428 					crpt->crp_callback(crpt);
1429 			}
1430 			if (krpt != NULL)
1431 				krpt->krp_callback(krpt);
1432 			CRYPTO_RETQ_LOCK();
1433 		} else {
1434 			/*
1435 			 * Nothing more to be processed.  Sleep until we're
1436 			 * woken because there are more returns to process.
1437 			 */
1438 			msleep(&crp_ret_q, &crypto_ret_q_mtx, PWAIT,
1439 				"crypto_ret_wait", 0);
1440 			if (cryptoretproc == NULL)
1441 				break;
1442 			cryptostats.cs_rets++;
1443 		}
1444 	}
1445 	CRYPTO_RETQ_UNLOCK();
1446 
1447 	crypto_finis(&crp_ret_q);
1448 }
1449 
1450 #ifdef DDB
1451 static void
1452 db_show_drivers(void)
1453 {
1454 	int hid;
1455 
1456 	db_printf("%12s %4s %4s %8s %2s %2s\n"
1457 		, "Device"
1458 		, "Ses"
1459 		, "Kops"
1460 		, "Flags"
1461 		, "QB"
1462 		, "KB"
1463 	);
1464 	for (hid = 0; hid < crypto_drivers_num; hid++) {
1465 		const struct cryptocap *cap = &crypto_drivers[hid];
1466 		if (cap->cc_dev == NULL)
1467 			continue;
1468 		db_printf("%-12s %4u %4u %08x %2u %2u\n"
1469 		    , device_get_nameunit(cap->cc_dev)
1470 		    , cap->cc_sessions
1471 		    , cap->cc_koperations
1472 		    , cap->cc_flags
1473 		    , cap->cc_qblocked
1474 		    , cap->cc_kqblocked
1475 		);
1476 	}
1477 }
1478 
1479 DB_SHOW_COMMAND(crypto, db_show_crypto)
1480 {
1481 	struct cryptop *crp;
1482 
1483 	db_show_drivers();
1484 	db_printf("\n");
1485 
1486 	db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1487 	    "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1488 	    "Desc", "Callback");
1489 	TAILQ_FOREACH(crp, &crp_q, crp_next) {
1490 		db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
1491 		    , (int) CRYPTO_SESID2HID(crp->crp_sid)
1492 		    , (int) CRYPTO_SESID2CAPS(crp->crp_sid)
1493 		    , crp->crp_ilen, crp->crp_olen
1494 		    , crp->crp_etype
1495 		    , crp->crp_flags
1496 		    , crp->crp_desc
1497 		    , crp->crp_callback
1498 		);
1499 	}
1500 	if (!TAILQ_EMPTY(&crp_ret_q)) {
1501 		db_printf("\n%4s %4s %4s %8s\n",
1502 		    "HID", "Etype", "Flags", "Callback");
1503 		TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
1504 			db_printf("%4u %4u %04x %8p\n"
1505 			    , (int) CRYPTO_SESID2HID(crp->crp_sid)
1506 			    , crp->crp_etype
1507 			    , crp->crp_flags
1508 			    , crp->crp_callback
1509 			);
1510 		}
1511 	}
1512 }
1513 
1514 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
1515 {
1516 	struct cryptkop *krp;
1517 
1518 	db_show_drivers();
1519 	db_printf("\n");
1520 
1521 	db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
1522 	    "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
1523 	TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1524 		db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
1525 		    , krp->krp_op
1526 		    , krp->krp_status
1527 		    , krp->krp_iparams, krp->krp_oparams
1528 		    , krp->krp_crid, krp->krp_hid
1529 		    , krp->krp_callback
1530 		);
1531 	}
1532 	if (!TAILQ_EMPTY(&crp_ret_q)) {
1533 		db_printf("%4s %5s %8s %4s %8s\n",
1534 		    "Op", "Status", "CRID", "HID", "Callback");
1535 		TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
1536 			db_printf("%4u %5u %08x %4u %8p\n"
1537 			    , krp->krp_op
1538 			    , krp->krp_status
1539 			    , krp->krp_crid, krp->krp_hid
1540 			    , krp->krp_callback
1541 			);
1542 		}
1543 	}
1544 }
1545 #endif
1546 
1547 int crypto_modevent(module_t mod, int type, void *unused);
1548 
1549 /*
1550  * Initialization code, both for static and dynamic loading.
1551  * Note this is not invoked with the usual MODULE_DECLARE
1552  * mechanism but instead is listed as a dependency by the
1553  * cryptosoft driver.  This guarantees proper ordering of
1554  * calls on module load/unload.
1555  */
1556 int
1557 crypto_modevent(module_t mod, int type, void *unused)
1558 {
1559 	int error = EINVAL;
1560 
1561 	switch (type) {
1562 	case MOD_LOAD:
1563 		error = crypto_init();
1564 		if (error == 0 && bootverbose)
1565 			printf("crypto: <crypto core>\n");
1566 		break;
1567 	case MOD_UNLOAD:
1568 		/*XXX disallow if active sessions */
1569 		error = 0;
1570 		crypto_destroy();
1571 		return 0;
1572 	}
1573 	return error;
1574 }
1575 MODULE_VERSION(crypto, 1);
1576 MODULE_DEPEND(crypto, zlib, 1, 1, 1);
1577