xref: /freebsd/sys/opencrypto/crypto.c (revision 8ecd87a3e7f5503951d37eab034cb330a1c6ec86)
1 /*-
2  * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  */
24 
25 #include <sys/cdefs.h>
26 __FBSDID("$FreeBSD$");
27 
28 /*
29  * Cryptographic Subsystem.
30  *
31  * This code is derived from the Openbsd Cryptographic Framework (OCF)
32  * that has the copyright shown below.  Very little of the original
33  * code remains.
34  */
35 
36 /*-
37  * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
38  *
39  * This code was written by Angelos D. Keromytis in Athens, Greece, in
40  * February 2000. Network Security Technologies Inc. (NSTI) kindly
41  * supported the development of this code.
42  *
43  * Copyright (c) 2000, 2001 Angelos D. Keromytis
44  *
45  * Permission to use, copy, and modify this software with or without fee
46  * is hereby granted, provided that this entire notice is included in
47  * all source code copies of any software which is or includes a copy or
48  * modification of this software.
49  *
50  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
51  * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
52  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
53  * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
54  * PURPOSE.
55  */
56 
57 #include "opt_compat.h"
58 #include "opt_ddb.h"
59 
60 #include <sys/param.h>
61 #include <sys/systm.h>
62 #include <sys/counter.h>
63 #include <sys/kernel.h>
64 #include <sys/kthread.h>
65 #include <sys/linker.h>
66 #include <sys/lock.h>
67 #include <sys/module.h>
68 #include <sys/mutex.h>
69 #include <sys/malloc.h>
70 #include <sys/mbuf.h>
71 #include <sys/proc.h>
72 #include <sys/refcount.h>
73 #include <sys/sdt.h>
74 #include <sys/smp.h>
75 #include <sys/sysctl.h>
76 #include <sys/taskqueue.h>
77 #include <sys/uio.h>
78 
79 #include <ddb/ddb.h>
80 
81 #include <machine/vmparam.h>
82 #include <vm/uma.h>
83 
84 #include <crypto/intake.h>
85 #include <opencrypto/cryptodev.h>
86 #include <opencrypto/xform_auth.h>
87 #include <opencrypto/xform_enc.h>
88 
89 #include <sys/kobj.h>
90 #include <sys/bus.h>
91 #include "cryptodev_if.h"
92 
93 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
94 #include <machine/pcb.h>
95 #endif
96 
97 SDT_PROVIDER_DEFINE(opencrypto);
98 
99 /*
100  * Crypto drivers register themselves by allocating a slot in the
101  * crypto_drivers table with crypto_get_driverid() and then registering
102  * each asym algorithm they support with crypto_kregister().
103  */
104 static	struct mtx crypto_drivers_mtx;		/* lock on driver table */
105 #define	CRYPTO_DRIVER_LOCK()	mtx_lock(&crypto_drivers_mtx)
106 #define	CRYPTO_DRIVER_UNLOCK()	mtx_unlock(&crypto_drivers_mtx)
107 #define	CRYPTO_DRIVER_ASSERT()	mtx_assert(&crypto_drivers_mtx, MA_OWNED)
108 
109 /*
110  * Crypto device/driver capabilities structure.
111  *
112  * Synchronization:
113  * (d) - protected by CRYPTO_DRIVER_LOCK()
114  * (q) - protected by CRYPTO_Q_LOCK()
115  * Not tagged fields are read-only.
116  */
117 struct cryptocap {
118 	device_t	cc_dev;
119 	uint32_t	cc_hid;
120 	u_int32_t	cc_sessions;		/* (d) # of sessions */
121 	u_int32_t	cc_koperations;		/* (d) # os asym operations */
122 	u_int8_t	cc_kalg[CRK_ALGORITHM_MAX + 1];
123 
124 	int		cc_flags;		/* (d) flags */
125 #define CRYPTOCAP_F_CLEANUP	0x80000000	/* needs resource cleanup */
126 	int		cc_qblocked;		/* (q) symmetric q blocked */
127 	int		cc_kqblocked;		/* (q) asymmetric q blocked */
128 	size_t		cc_session_size;
129 	volatile int	cc_refs;
130 };
131 
132 static	struct cryptocap **crypto_drivers = NULL;
133 static	int crypto_drivers_size = 0;
134 
135 struct crypto_session {
136 	struct cryptocap *cap;
137 	void *softc;
138 	struct crypto_session_params csp;
139 };
140 
141 /*
142  * There are two queues for crypto requests; one for symmetric (e.g.
143  * cipher) operations and one for asymmetric (e.g. MOD)operations.
144  * A single mutex is used to lock access to both queues.  We could
145  * have one per-queue but having one simplifies handling of block/unblock
146  * operations.
147  */
148 static	int crp_sleep = 0;
149 static	TAILQ_HEAD(cryptop_q ,cryptop) crp_q;		/* request queues */
150 static	TAILQ_HEAD(,cryptkop) crp_kq;
151 static	struct mtx crypto_q_mtx;
152 #define	CRYPTO_Q_LOCK()		mtx_lock(&crypto_q_mtx)
153 #define	CRYPTO_Q_UNLOCK()	mtx_unlock(&crypto_q_mtx)
154 
155 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0,
156     "In-kernel cryptography");
157 
158 /*
159  * Taskqueue used to dispatch the crypto requests
160  * that have the CRYPTO_F_ASYNC flag
161  */
162 static struct taskqueue *crypto_tq;
163 
164 /*
165  * Crypto seq numbers are operated on with modular arithmetic
166  */
167 #define	CRYPTO_SEQ_GT(a,b)	((int)((a)-(b)) > 0)
168 
169 struct crypto_ret_worker {
170 	struct mtx crypto_ret_mtx;
171 
172 	TAILQ_HEAD(,cryptop) crp_ordered_ret_q;	/* ordered callback queue for symetric jobs */
173 	TAILQ_HEAD(,cryptop) crp_ret_q;		/* callback queue for symetric jobs */
174 	TAILQ_HEAD(,cryptkop) crp_ret_kq;	/* callback queue for asym jobs */
175 
176 	u_int32_t reorder_ops;		/* total ordered sym jobs received */
177 	u_int32_t reorder_cur_seq;	/* current sym job dispatched */
178 
179 	struct proc *cryptoretproc;
180 };
181 static struct crypto_ret_worker *crypto_ret_workers = NULL;
182 
183 #define CRYPTO_RETW(i)		(&crypto_ret_workers[i])
184 #define CRYPTO_RETW_ID(w)	((w) - crypto_ret_workers)
185 #define FOREACH_CRYPTO_RETW(w) \
186 	for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w)
187 
188 #define	CRYPTO_RETW_LOCK(w)	mtx_lock(&w->crypto_ret_mtx)
189 #define	CRYPTO_RETW_UNLOCK(w)	mtx_unlock(&w->crypto_ret_mtx)
190 #define	CRYPTO_RETW_EMPTY(w) \
191 	(TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q))
192 
193 static int crypto_workers_num = 0;
194 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN,
195 	   &crypto_workers_num, 0,
196 	   "Number of crypto workers used to dispatch crypto jobs");
197 #ifdef COMPAT_FREEBSD12
198 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN,
199 	   &crypto_workers_num, 0,
200 	   "Number of crypto workers used to dispatch crypto jobs");
201 #endif
202 
203 static	uma_zone_t cryptop_zone;
204 static	uma_zone_t cryptoses_zone;
205 
206 int	crypto_userasymcrypto = 1;
207 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW,
208 	   &crypto_userasymcrypto, 0,
209 	   "Enable user-mode access to asymmetric crypto support");
210 #ifdef COMPAT_FREEBSD12
211 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
212 	   &crypto_userasymcrypto, 0,
213 	   "Enable/disable user-mode access to asymmetric crypto support");
214 #endif
215 
216 int	crypto_devallowsoft = 0;
217 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW,
218 	   &crypto_devallowsoft, 0,
219 	   "Enable use of software crypto by /dev/crypto");
220 #ifdef COMPAT_FREEBSD12
221 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
222 	   &crypto_devallowsoft, 0,
223 	   "Enable/disable use of software crypto by /dev/crypto");
224 #endif
225 
226 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
227 
228 static	void crypto_proc(void);
229 static	struct proc *cryptoproc;
230 static	void crypto_ret_proc(struct crypto_ret_worker *ret_worker);
231 static	void crypto_destroy(void);
232 static	int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
233 static	int crypto_kinvoke(struct cryptkop *krp);
234 static	void crypto_task_invoke(void *ctx, int pending);
235 static void crypto_batch_enqueue(struct cryptop *crp);
236 
237 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)];
238 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW,
239     cryptostats, nitems(cryptostats),
240     "Crypto system statistics");
241 
242 #define	CRYPTOSTAT_INC(stat) do {					\
243 	counter_u64_add(						\
244 	    cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\
245 	    1);								\
246 } while (0)
247 
248 static void
249 cryptostats_init(void *arg __unused)
250 {
251 	COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK);
252 }
253 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL);
254 
255 static void
256 cryptostats_fini(void *arg __unused)
257 {
258 	COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats));
259 }
260 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini,
261     NULL);
262 
263 /* Try to avoid directly exposing the key buffer as a symbol */
264 static struct keybuf *keybuf;
265 
266 static struct keybuf empty_keybuf = {
267         .kb_nents = 0
268 };
269 
270 /* Obtain the key buffer from boot metadata */
271 static void
272 keybuf_init(void)
273 {
274 	caddr_t kmdp;
275 
276 	kmdp = preload_search_by_type("elf kernel");
277 
278 	if (kmdp == NULL)
279 		kmdp = preload_search_by_type("elf64 kernel");
280 
281 	keybuf = (struct keybuf *)preload_search_info(kmdp,
282 	    MODINFO_METADATA | MODINFOMD_KEYBUF);
283 
284         if (keybuf == NULL)
285                 keybuf = &empty_keybuf;
286 }
287 
288 /* It'd be nice if we could store these in some kind of secure memory... */
289 struct keybuf * get_keybuf(void) {
290 
291         return (keybuf);
292 }
293 
294 static struct cryptocap *
295 cap_ref(struct cryptocap *cap)
296 {
297 
298 	refcount_acquire(&cap->cc_refs);
299 	return (cap);
300 }
301 
302 static void
303 cap_rele(struct cryptocap *cap)
304 {
305 
306 	if (refcount_release(&cap->cc_refs) == 0)
307 		return;
308 
309 	KASSERT(cap->cc_sessions == 0,
310 	    ("freeing crypto driver with active sessions"));
311 	KASSERT(cap->cc_koperations == 0,
312 	    ("freeing crypto driver with active key operations"));
313 
314 	free(cap, M_CRYPTO_DATA);
315 }
316 
317 static int
318 crypto_init(void)
319 {
320 	struct crypto_ret_worker *ret_worker;
321 	int error;
322 
323 	mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
324 		MTX_DEF|MTX_QUIET);
325 
326 	TAILQ_INIT(&crp_q);
327 	TAILQ_INIT(&crp_kq);
328 	mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
329 
330 	cryptop_zone = uma_zcreate("cryptop",
331 	    sizeof(struct cryptop), NULL, NULL, NULL, NULL,
332 	    UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
333 	cryptoses_zone = uma_zcreate("crypto_session",
334 	    sizeof(struct crypto_session), NULL, NULL, NULL, NULL,
335 	    UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
336 
337 	crypto_drivers_size = CRYPTO_DRIVERS_INITIAL;
338 	crypto_drivers = malloc(crypto_drivers_size *
339 	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
340 
341 	if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus)
342 		crypto_workers_num = mp_ncpus;
343 
344 	crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO,
345 	    taskqueue_thread_enqueue, &crypto_tq);
346 
347 	taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN,
348 	    "crypto");
349 
350 	error = kproc_create((void (*)(void *)) crypto_proc, NULL,
351 		    &cryptoproc, 0, 0, "crypto");
352 	if (error) {
353 		printf("crypto_init: cannot start crypto thread; error %d",
354 			error);
355 		goto bad;
356 	}
357 
358 	crypto_ret_workers = mallocarray(crypto_workers_num,
359 	    sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
360 
361 	FOREACH_CRYPTO_RETW(ret_worker) {
362 		TAILQ_INIT(&ret_worker->crp_ordered_ret_q);
363 		TAILQ_INIT(&ret_worker->crp_ret_q);
364 		TAILQ_INIT(&ret_worker->crp_ret_kq);
365 
366 		ret_worker->reorder_ops = 0;
367 		ret_worker->reorder_cur_seq = 0;
368 
369 		mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF);
370 
371 		error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker,
372 				&ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker));
373 		if (error) {
374 			printf("crypto_init: cannot start cryptoret thread; error %d",
375 				error);
376 			goto bad;
377 		}
378 	}
379 
380 	keybuf_init();
381 
382 	return 0;
383 bad:
384 	crypto_destroy();
385 	return error;
386 }
387 
388 /*
389  * Signal a crypto thread to terminate.  We use the driver
390  * table lock to synchronize the sleep/wakeups so that we
391  * are sure the threads have terminated before we release
392  * the data structures they use.  See crypto_finis below
393  * for the other half of this song-and-dance.
394  */
395 static void
396 crypto_terminate(struct proc **pp, void *q)
397 {
398 	struct proc *p;
399 
400 	mtx_assert(&crypto_drivers_mtx, MA_OWNED);
401 	p = *pp;
402 	*pp = NULL;
403 	if (p) {
404 		wakeup_one(q);
405 		PROC_LOCK(p);		/* NB: insure we don't miss wakeup */
406 		CRYPTO_DRIVER_UNLOCK();	/* let crypto_finis progress */
407 		msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
408 		PROC_UNLOCK(p);
409 		CRYPTO_DRIVER_LOCK();
410 	}
411 }
412 
413 static void
414 hmac_init_pad(struct auth_hash *axf, const char *key, int klen, void *auth_ctx,
415     uint8_t padval)
416 {
417 	uint8_t hmac_key[HMAC_MAX_BLOCK_LEN];
418 	u_int i;
419 
420 	KASSERT(axf->blocksize <= sizeof(hmac_key),
421 	    ("Invalid HMAC block size %d", axf->blocksize));
422 
423 	/*
424 	 * If the key is larger than the block size, use the digest of
425 	 * the key as the key instead.
426 	 */
427 	memset(hmac_key, 0, sizeof(hmac_key));
428 	if (klen > axf->blocksize) {
429 		axf->Init(auth_ctx);
430 		axf->Update(auth_ctx, key, klen);
431 		axf->Final(hmac_key, auth_ctx);
432 		klen = axf->hashsize;
433 	} else
434 		memcpy(hmac_key, key, klen);
435 
436 	for (i = 0; i < axf->blocksize; i++)
437 		hmac_key[i] ^= padval;
438 
439 	axf->Init(auth_ctx);
440 	axf->Update(auth_ctx, hmac_key, axf->blocksize);
441 	explicit_bzero(hmac_key, sizeof(hmac_key));
442 }
443 
444 void
445 hmac_init_ipad(struct auth_hash *axf, const char *key, int klen,
446     void *auth_ctx)
447 {
448 
449 	hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL);
450 }
451 
452 void
453 hmac_init_opad(struct auth_hash *axf, const char *key, int klen,
454     void *auth_ctx)
455 {
456 
457 	hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL);
458 }
459 
460 static void
461 crypto_destroy(void)
462 {
463 	struct crypto_ret_worker *ret_worker;
464 	int i;
465 
466 	/*
467 	 * Terminate any crypto threads.
468 	 */
469 	if (crypto_tq != NULL)
470 		taskqueue_drain_all(crypto_tq);
471 	CRYPTO_DRIVER_LOCK();
472 	crypto_terminate(&cryptoproc, &crp_q);
473 	FOREACH_CRYPTO_RETW(ret_worker)
474 		crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q);
475 	CRYPTO_DRIVER_UNLOCK();
476 
477 	/* XXX flush queues??? */
478 
479 	/*
480 	 * Reclaim dynamically allocated resources.
481 	 */
482 	for (i = 0; i < crypto_drivers_size; i++) {
483 		if (crypto_drivers[i] != NULL)
484 			cap_rele(crypto_drivers[i]);
485 	}
486 	free(crypto_drivers, M_CRYPTO_DATA);
487 
488 	if (cryptoses_zone != NULL)
489 		uma_zdestroy(cryptoses_zone);
490 	if (cryptop_zone != NULL)
491 		uma_zdestroy(cryptop_zone);
492 	mtx_destroy(&crypto_q_mtx);
493 	FOREACH_CRYPTO_RETW(ret_worker)
494 		mtx_destroy(&ret_worker->crypto_ret_mtx);
495 	free(crypto_ret_workers, M_CRYPTO_DATA);
496 	if (crypto_tq != NULL)
497 		taskqueue_free(crypto_tq);
498 	mtx_destroy(&crypto_drivers_mtx);
499 }
500 
501 uint32_t
502 crypto_ses2hid(crypto_session_t crypto_session)
503 {
504 	return (crypto_session->cap->cc_hid);
505 }
506 
507 uint32_t
508 crypto_ses2caps(crypto_session_t crypto_session)
509 {
510 	return (crypto_session->cap->cc_flags & 0xff000000);
511 }
512 
513 void *
514 crypto_get_driver_session(crypto_session_t crypto_session)
515 {
516 	return (crypto_session->softc);
517 }
518 
519 const struct crypto_session_params *
520 crypto_get_params(crypto_session_t crypto_session)
521 {
522 	return (&crypto_session->csp);
523 }
524 
525 struct auth_hash *
526 crypto_auth_hash(const struct crypto_session_params *csp)
527 {
528 
529 	switch (csp->csp_auth_alg) {
530 	case CRYPTO_SHA1_HMAC:
531 		return (&auth_hash_hmac_sha1);
532 	case CRYPTO_SHA2_224_HMAC:
533 		return (&auth_hash_hmac_sha2_224);
534 	case CRYPTO_SHA2_256_HMAC:
535 		return (&auth_hash_hmac_sha2_256);
536 	case CRYPTO_SHA2_384_HMAC:
537 		return (&auth_hash_hmac_sha2_384);
538 	case CRYPTO_SHA2_512_HMAC:
539 		return (&auth_hash_hmac_sha2_512);
540 	case CRYPTO_NULL_HMAC:
541 		return (&auth_hash_null);
542 	case CRYPTO_RIPEMD160_HMAC:
543 		return (&auth_hash_hmac_ripemd_160);
544 	case CRYPTO_SHA1:
545 		return (&auth_hash_sha1);
546 	case CRYPTO_SHA2_224:
547 		return (&auth_hash_sha2_224);
548 	case CRYPTO_SHA2_256:
549 		return (&auth_hash_sha2_256);
550 	case CRYPTO_SHA2_384:
551 		return (&auth_hash_sha2_384);
552 	case CRYPTO_SHA2_512:
553 		return (&auth_hash_sha2_512);
554 	case CRYPTO_AES_NIST_GMAC:
555 		switch (csp->csp_auth_klen) {
556 		case 128 / 8:
557 			return (&auth_hash_nist_gmac_aes_128);
558 		case 192 / 8:
559 			return (&auth_hash_nist_gmac_aes_192);
560 		case 256 / 8:
561 			return (&auth_hash_nist_gmac_aes_256);
562 		default:
563 			return (NULL);
564 		}
565 	case CRYPTO_BLAKE2B:
566 		return (&auth_hash_blake2b);
567 	case CRYPTO_BLAKE2S:
568 		return (&auth_hash_blake2s);
569 	case CRYPTO_POLY1305:
570 		return (&auth_hash_poly1305);
571 	case CRYPTO_AES_CCM_CBC_MAC:
572 		switch (csp->csp_auth_klen) {
573 		case 128 / 8:
574 			return (&auth_hash_ccm_cbc_mac_128);
575 		case 192 / 8:
576 			return (&auth_hash_ccm_cbc_mac_192);
577 		case 256 / 8:
578 			return (&auth_hash_ccm_cbc_mac_256);
579 		default:
580 			return (NULL);
581 		}
582 	default:
583 		return (NULL);
584 	}
585 }
586 
587 struct enc_xform *
588 crypto_cipher(const struct crypto_session_params *csp)
589 {
590 
591 	switch (csp->csp_cipher_alg) {
592 	case CRYPTO_RIJNDAEL128_CBC:
593 		return (&enc_xform_rijndael128);
594 	case CRYPTO_AES_XTS:
595 		return (&enc_xform_aes_xts);
596 	case CRYPTO_AES_ICM:
597 		return (&enc_xform_aes_icm);
598 	case CRYPTO_AES_NIST_GCM_16:
599 		return (&enc_xform_aes_nist_gcm);
600 	case CRYPTO_CAMELLIA_CBC:
601 		return (&enc_xform_camellia);
602 	case CRYPTO_NULL_CBC:
603 		return (&enc_xform_null);
604 	case CRYPTO_CHACHA20:
605 		return (&enc_xform_chacha20);
606 	case CRYPTO_AES_CCM_16:
607 		return (&enc_xform_ccm);
608 	default:
609 		return (NULL);
610 	}
611 }
612 
613 static struct cryptocap *
614 crypto_checkdriver(u_int32_t hid)
615 {
616 
617 	return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]);
618 }
619 
620 /*
621  * Select a driver for a new session that supports the specified
622  * algorithms and, optionally, is constrained according to the flags.
623  */
624 static struct cryptocap *
625 crypto_select_driver(const struct crypto_session_params *csp, int flags)
626 {
627 	struct cryptocap *cap, *best;
628 	int best_match, error, hid;
629 
630 	CRYPTO_DRIVER_ASSERT();
631 
632 	best = NULL;
633 	for (hid = 0; hid < crypto_drivers_size; hid++) {
634 		/*
635 		 * If there is no driver for this slot, or the driver
636 		 * is not appropriate (hardware or software based on
637 		 * match), then skip.
638 		 */
639 		cap = crypto_drivers[hid];
640 		if (cap == NULL ||
641 		    (cap->cc_flags & flags) == 0)
642 			continue;
643 
644 		error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp);
645 		if (error >= 0)
646 			continue;
647 
648 		/*
649 		 * Use the driver with the highest probe value.
650 		 * Hardware drivers use a higher probe value than
651 		 * software.  In case of a tie, prefer the driver with
652 		 * the fewest active sessions.
653 		 */
654 		if (best == NULL || error > best_match ||
655 		    (error == best_match &&
656 		    cap->cc_sessions < best->cc_sessions)) {
657 			best = cap;
658 			best_match = error;
659 		}
660 	}
661 	return best;
662 }
663 
664 static enum alg_type {
665 	ALG_NONE = 0,
666 	ALG_CIPHER,
667 	ALG_DIGEST,
668 	ALG_KEYED_DIGEST,
669 	ALG_COMPRESSION,
670 	ALG_AEAD
671 } alg_types[] = {
672 	[CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST,
673 	[CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST,
674 	[CRYPTO_AES_CBC] = ALG_CIPHER,
675 	[CRYPTO_SHA1] = ALG_DIGEST,
676 	[CRYPTO_NULL_HMAC] = ALG_DIGEST,
677 	[CRYPTO_NULL_CBC] = ALG_CIPHER,
678 	[CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION,
679 	[CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST,
680 	[CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST,
681 	[CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST,
682 	[CRYPTO_CAMELLIA_CBC] = ALG_CIPHER,
683 	[CRYPTO_AES_XTS] = ALG_CIPHER,
684 	[CRYPTO_AES_ICM] = ALG_CIPHER,
685 	[CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST,
686 	[CRYPTO_AES_NIST_GCM_16] = ALG_AEAD,
687 	[CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST,
688 	[CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST,
689 	[CRYPTO_CHACHA20] = ALG_CIPHER,
690 	[CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST,
691 	[CRYPTO_RIPEMD160] = ALG_DIGEST,
692 	[CRYPTO_SHA2_224] = ALG_DIGEST,
693 	[CRYPTO_SHA2_256] = ALG_DIGEST,
694 	[CRYPTO_SHA2_384] = ALG_DIGEST,
695 	[CRYPTO_SHA2_512] = ALG_DIGEST,
696 	[CRYPTO_POLY1305] = ALG_KEYED_DIGEST,
697 	[CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST,
698 	[CRYPTO_AES_CCM_16] = ALG_AEAD,
699 };
700 
701 static enum alg_type
702 alg_type(int alg)
703 {
704 
705 	if (alg < nitems(alg_types))
706 		return (alg_types[alg]);
707 	return (ALG_NONE);
708 }
709 
710 static bool
711 alg_is_compression(int alg)
712 {
713 
714 	return (alg_type(alg) == ALG_COMPRESSION);
715 }
716 
717 static bool
718 alg_is_cipher(int alg)
719 {
720 
721 	return (alg_type(alg) == ALG_CIPHER);
722 }
723 
724 static bool
725 alg_is_digest(int alg)
726 {
727 
728 	return (alg_type(alg) == ALG_DIGEST ||
729 	    alg_type(alg) == ALG_KEYED_DIGEST);
730 }
731 
732 static bool
733 alg_is_keyed_digest(int alg)
734 {
735 
736 	return (alg_type(alg) == ALG_KEYED_DIGEST);
737 }
738 
739 static bool
740 alg_is_aead(int alg)
741 {
742 
743 	return (alg_type(alg) == ALG_AEAD);
744 }
745 
746 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN)
747 
748 /* Various sanity checks on crypto session parameters. */
749 static bool
750 check_csp(const struct crypto_session_params *csp)
751 {
752 	struct auth_hash *axf;
753 
754 	/* Mode-independent checks. */
755 	if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0)
756 		return (false);
757 	if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 ||
758 	    csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0)
759 		return (false);
760 	if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0)
761 		return (false);
762 	if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0)
763 		return (false);
764 
765 	switch (csp->csp_mode) {
766 	case CSP_MODE_COMPRESS:
767 		if (!alg_is_compression(csp->csp_cipher_alg))
768 			return (false);
769 		if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT)
770 			return (false);
771 		if (csp->csp_flags & CSP_F_SEPARATE_AAD)
772 			return (false);
773 		if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 ||
774 		    csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
775 		    csp->csp_auth_mlen != 0)
776 			return (false);
777 		break;
778 	case CSP_MODE_CIPHER:
779 		if (!alg_is_cipher(csp->csp_cipher_alg))
780 			return (false);
781 		if (csp->csp_flags & CSP_F_SEPARATE_AAD)
782 			return (false);
783 		if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
784 			if (csp->csp_cipher_klen == 0)
785 				return (false);
786 			if (csp->csp_ivlen == 0)
787 				return (false);
788 		}
789 		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
790 			return (false);
791 		if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 ||
792 		    csp->csp_auth_mlen != 0)
793 			return (false);
794 		break;
795 	case CSP_MODE_DIGEST:
796 		if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0)
797 			return (false);
798 
799 		if (csp->csp_flags & CSP_F_SEPARATE_AAD)
800 			return (false);
801 
802 		/* IV is optional for digests (e.g. GMAC). */
803 		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
804 			return (false);
805 		if (!alg_is_digest(csp->csp_auth_alg))
806 			return (false);
807 
808 		/* Key is optional for BLAKE2 digests. */
809 		if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
810 		    csp->csp_auth_alg == CRYPTO_BLAKE2S)
811 			;
812 		else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
813 			if (csp->csp_auth_klen == 0)
814 				return (false);
815 		} else {
816 			if (csp->csp_auth_klen != 0)
817 				return (false);
818 		}
819 		if (csp->csp_auth_mlen != 0) {
820 			axf = crypto_auth_hash(csp);
821 			if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
822 				return (false);
823 		}
824 		break;
825 	case CSP_MODE_AEAD:
826 		if (!alg_is_aead(csp->csp_cipher_alg))
827 			return (false);
828 		if (csp->csp_cipher_klen == 0)
829 			return (false);
830 		if (csp->csp_ivlen == 0 ||
831 		    csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
832 			return (false);
833 		if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0)
834 			return (false);
835 
836 		/*
837 		 * XXX: Would be nice to have a better way to get this
838 		 * value.
839 		 */
840 		switch (csp->csp_cipher_alg) {
841 		case CRYPTO_AES_NIST_GCM_16:
842 		case CRYPTO_AES_CCM_16:
843 			if (csp->csp_auth_mlen > 16)
844 				return (false);
845 			break;
846 		}
847 		break;
848 	case CSP_MODE_ETA:
849 		if (!alg_is_cipher(csp->csp_cipher_alg))
850 			return (false);
851 		if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) {
852 			if (csp->csp_cipher_klen == 0)
853 				return (false);
854 			if (csp->csp_ivlen == 0)
855 				return (false);
856 		}
857 		if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN)
858 			return (false);
859 		if (!alg_is_digest(csp->csp_auth_alg))
860 			return (false);
861 
862 		/* Key is optional for BLAKE2 digests. */
863 		if (csp->csp_auth_alg == CRYPTO_BLAKE2B ||
864 		    csp->csp_auth_alg == CRYPTO_BLAKE2S)
865 			;
866 		else if (alg_is_keyed_digest(csp->csp_auth_alg)) {
867 			if (csp->csp_auth_klen == 0)
868 				return (false);
869 		} else {
870 			if (csp->csp_auth_klen != 0)
871 				return (false);
872 		}
873 		if (csp->csp_auth_mlen != 0) {
874 			axf = crypto_auth_hash(csp);
875 			if (axf == NULL || csp->csp_auth_mlen > axf->hashsize)
876 				return (false);
877 		}
878 		break;
879 	default:
880 		return (false);
881 	}
882 
883 	return (true);
884 }
885 
886 /*
887  * Delete a session after it has been detached from its driver.
888  */
889 static void
890 crypto_deletesession(crypto_session_t cses)
891 {
892 	struct cryptocap *cap;
893 
894 	cap = cses->cap;
895 
896 	zfree(cses->softc, M_CRYPTO_DATA);
897 	uma_zfree(cryptoses_zone, cses);
898 
899 	CRYPTO_DRIVER_LOCK();
900 	cap->cc_sessions--;
901 	if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP)
902 		wakeup(cap);
903 	CRYPTO_DRIVER_UNLOCK();
904 	cap_rele(cap);
905 }
906 
907 /*
908  * Create a new session.  The crid argument specifies a crypto
909  * driver to use or constraints on a driver to select (hardware
910  * only, software only, either).  Whatever driver is selected
911  * must be capable of the requested crypto algorithms.
912  */
913 int
914 crypto_newsession(crypto_session_t *cses,
915     const struct crypto_session_params *csp, int crid)
916 {
917 	crypto_session_t res;
918 	struct cryptocap *cap;
919 	int err;
920 
921 	if (!check_csp(csp))
922 		return (EINVAL);
923 
924 	res = NULL;
925 
926 	CRYPTO_DRIVER_LOCK();
927 	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
928 		/*
929 		 * Use specified driver; verify it is capable.
930 		 */
931 		cap = crypto_checkdriver(crid);
932 		if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0)
933 			cap = NULL;
934 	} else {
935 		/*
936 		 * No requested driver; select based on crid flags.
937 		 */
938 		cap = crypto_select_driver(csp, crid);
939 	}
940 	if (cap == NULL) {
941 		CRYPTO_DRIVER_UNLOCK();
942 		CRYPTDEB("no driver");
943 		return (EOPNOTSUPP);
944 	}
945 	cap_ref(cap);
946 	cap->cc_sessions++;
947 	CRYPTO_DRIVER_UNLOCK();
948 
949 	res = uma_zalloc(cryptoses_zone, M_WAITOK | M_ZERO);
950 	res->cap = cap;
951 	res->softc = malloc(cap->cc_session_size, M_CRYPTO_DATA, M_WAITOK |
952 	    M_ZERO);
953 	res->csp = *csp;
954 
955 	/* Call the driver initialization routine. */
956 	err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp);
957 	if (err != 0) {
958 		CRYPTDEB("dev newsession failed: %d", err);
959 		crypto_deletesession(res);
960 		return (err);
961 	}
962 
963 	*cses = res;
964 	return (0);
965 }
966 
967 /*
968  * Delete an existing session (or a reserved session on an unregistered
969  * driver).
970  */
971 void
972 crypto_freesession(crypto_session_t cses)
973 {
974 	struct cryptocap *cap;
975 
976 	if (cses == NULL)
977 		return;
978 
979 	cap = cses->cap;
980 
981 	/* Call the driver cleanup routine, if available. */
982 	CRYPTODEV_FREESESSION(cap->cc_dev, cses);
983 
984 	crypto_deletesession(cses);
985 }
986 
987 /*
988  * Return a new driver id.  Registers a driver with the system so that
989  * it can be probed by subsequent sessions.
990  */
991 int32_t
992 crypto_get_driverid(device_t dev, size_t sessionsize, int flags)
993 {
994 	struct cryptocap *cap, **newdrv;
995 	int i;
996 
997 	if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
998 		device_printf(dev,
999 		    "no flags specified when registering driver\n");
1000 		return -1;
1001 	}
1002 
1003 	cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1004 	cap->cc_dev = dev;
1005 	cap->cc_session_size = sessionsize;
1006 	cap->cc_flags = flags;
1007 	refcount_init(&cap->cc_refs, 1);
1008 
1009 	CRYPTO_DRIVER_LOCK();
1010 	for (;;) {
1011 		for (i = 0; i < crypto_drivers_size; i++) {
1012 			if (crypto_drivers[i] == NULL)
1013 				break;
1014 		}
1015 
1016 		if (i < crypto_drivers_size)
1017 			break;
1018 
1019 		/* Out of entries, allocate some more. */
1020 
1021 		if (2 * crypto_drivers_size <= crypto_drivers_size) {
1022 			CRYPTO_DRIVER_UNLOCK();
1023 			printf("crypto: driver count wraparound!\n");
1024 			cap_rele(cap);
1025 			return (-1);
1026 		}
1027 		CRYPTO_DRIVER_UNLOCK();
1028 
1029 		newdrv = malloc(2 * crypto_drivers_size *
1030 		    sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO);
1031 
1032 		CRYPTO_DRIVER_LOCK();
1033 		memcpy(newdrv, crypto_drivers,
1034 		    crypto_drivers_size * sizeof(*crypto_drivers));
1035 
1036 		crypto_drivers_size *= 2;
1037 
1038 		free(crypto_drivers, M_CRYPTO_DATA);
1039 		crypto_drivers = newdrv;
1040 	}
1041 
1042 	cap->cc_hid = i;
1043 	crypto_drivers[i] = cap;
1044 	CRYPTO_DRIVER_UNLOCK();
1045 
1046 	if (bootverbose)
1047 		printf("crypto: assign %s driver id %u, flags 0x%x\n",
1048 		    device_get_nameunit(dev), i, flags);
1049 
1050 	return i;
1051 }
1052 
1053 /*
1054  * Lookup a driver by name.  We match against the full device
1055  * name and unit, and against just the name.  The latter gives
1056  * us a simple widlcarding by device name.  On success return the
1057  * driver/hardware identifier; otherwise return -1.
1058  */
1059 int
1060 crypto_find_driver(const char *match)
1061 {
1062 	struct cryptocap *cap;
1063 	int i, len = strlen(match);
1064 
1065 	CRYPTO_DRIVER_LOCK();
1066 	for (i = 0; i < crypto_drivers_size; i++) {
1067 		if (crypto_drivers[i] == NULL)
1068 			continue;
1069 		cap = crypto_drivers[i];
1070 		if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 ||
1071 		    strncmp(match, device_get_name(cap->cc_dev), len) == 0) {
1072 			CRYPTO_DRIVER_UNLOCK();
1073 			return (i);
1074 		}
1075 	}
1076 	CRYPTO_DRIVER_UNLOCK();
1077 	return (-1);
1078 }
1079 
1080 /*
1081  * Return the device_t for the specified driver or NULL
1082  * if the driver identifier is invalid.
1083  */
1084 device_t
1085 crypto_find_device_byhid(int hid)
1086 {
1087 	struct cryptocap *cap;
1088 	device_t dev;
1089 
1090 	dev = NULL;
1091 	CRYPTO_DRIVER_LOCK();
1092 	cap = crypto_checkdriver(hid);
1093 	if (cap != NULL)
1094 		dev = cap->cc_dev;
1095 	CRYPTO_DRIVER_UNLOCK();
1096 	return (dev);
1097 }
1098 
1099 /*
1100  * Return the device/driver capabilities.
1101  */
1102 int
1103 crypto_getcaps(int hid)
1104 {
1105 	struct cryptocap *cap;
1106 	int flags;
1107 
1108 	flags = 0;
1109 	CRYPTO_DRIVER_LOCK();
1110 	cap = crypto_checkdriver(hid);
1111 	if (cap != NULL)
1112 		flags = cap->cc_flags;
1113 	CRYPTO_DRIVER_UNLOCK();
1114 	return (flags);
1115 }
1116 
1117 /*
1118  * Register support for a key-related algorithm.  This routine
1119  * is called once for each algorithm supported a driver.
1120  */
1121 int
1122 crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
1123 {
1124 	struct cryptocap *cap;
1125 	int err;
1126 
1127 	CRYPTO_DRIVER_LOCK();
1128 
1129 	cap = crypto_checkdriver(driverid);
1130 	if (cap != NULL &&
1131 	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
1132 		/*
1133 		 * XXX Do some performance testing to determine placing.
1134 		 * XXX We probably need an auxiliary data structure that
1135 		 * XXX describes relative performances.
1136 		 */
1137 
1138 		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
1139 		if (bootverbose)
1140 			printf("crypto: %s registers key alg %u flags %u\n"
1141 				, device_get_nameunit(cap->cc_dev)
1142 				, kalg
1143 				, flags
1144 			);
1145 		gone_in_dev(cap->cc_dev, 14, "asymmetric crypto");
1146 		err = 0;
1147 	} else
1148 		err = EINVAL;
1149 
1150 	CRYPTO_DRIVER_UNLOCK();
1151 	return err;
1152 }
1153 
1154 /*
1155  * Unregister all algorithms associated with a crypto driver.
1156  * If there are pending sessions using it, leave enough information
1157  * around so that subsequent calls using those sessions will
1158  * correctly detect the driver has been unregistered and reroute
1159  * requests.
1160  */
1161 int
1162 crypto_unregister_all(u_int32_t driverid)
1163 {
1164 	struct cryptocap *cap;
1165 
1166 	CRYPTO_DRIVER_LOCK();
1167 	cap = crypto_checkdriver(driverid);
1168 	if (cap == NULL) {
1169 		CRYPTO_DRIVER_UNLOCK();
1170 		return (EINVAL);
1171 	}
1172 
1173 	cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
1174 	crypto_drivers[driverid] = NULL;
1175 
1176 	/*
1177 	 * XXX: This doesn't do anything to kick sessions that
1178 	 * have no pending operations.
1179 	 */
1180 	while (cap->cc_sessions != 0 || cap->cc_koperations != 0)
1181 		mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0);
1182 	CRYPTO_DRIVER_UNLOCK();
1183 	cap_rele(cap);
1184 
1185 	return (0);
1186 }
1187 
1188 /*
1189  * Clear blockage on a driver.  The what parameter indicates whether
1190  * the driver is now ready for cryptop's and/or cryptokop's.
1191  */
1192 int
1193 crypto_unblock(u_int32_t driverid, int what)
1194 {
1195 	struct cryptocap *cap;
1196 	int err;
1197 
1198 	CRYPTO_Q_LOCK();
1199 	cap = crypto_checkdriver(driverid);
1200 	if (cap != NULL) {
1201 		if (what & CRYPTO_SYMQ)
1202 			cap->cc_qblocked = 0;
1203 		if (what & CRYPTO_ASYMQ)
1204 			cap->cc_kqblocked = 0;
1205 		if (crp_sleep)
1206 			wakeup_one(&crp_q);
1207 		err = 0;
1208 	} else
1209 		err = EINVAL;
1210 	CRYPTO_Q_UNLOCK();
1211 
1212 	return err;
1213 }
1214 
1215 size_t
1216 crypto_buffer_len(struct crypto_buffer *cb)
1217 {
1218 	switch (cb->cb_type) {
1219 	case CRYPTO_BUF_CONTIG:
1220 		return (cb->cb_buf_len);
1221 	case CRYPTO_BUF_MBUF:
1222 		if (cb->cb_mbuf->m_flags & M_PKTHDR)
1223 			return (cb->cb_mbuf->m_pkthdr.len);
1224 		return (m_length(cb->cb_mbuf, NULL));
1225 	case CRYPTO_BUF_VMPAGE:
1226 		return (cb->cb_vm_page_len);
1227 	case CRYPTO_BUF_UIO:
1228 		return (cb->cb_uio->uio_resid);
1229 	default:
1230 		return (0);
1231 	}
1232 }
1233 
1234 #ifdef INVARIANTS
1235 /* Various sanity checks on crypto requests. */
1236 static void
1237 cb_sanity(struct crypto_buffer *cb, const char *name)
1238 {
1239 	KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST,
1240 	    ("incoming crp with invalid %s buffer type", name));
1241 	switch (cb->cb_type) {
1242 	case CRYPTO_BUF_CONTIG:
1243 		KASSERT(cb->cb_buf_len >= 0,
1244 		    ("incoming crp with -ve %s buffer length", name));
1245 		break;
1246 	case CRYPTO_BUF_VMPAGE:
1247 		KASSERT(CRYPTO_HAS_VMPAGE,
1248 		    ("incoming crp uses dmap on supported arch"));
1249 		KASSERT(cb->cb_vm_page_len >= 0,
1250 		    ("incoming crp with -ve %s buffer length", name));
1251 		KASSERT(cb->cb_vm_page_offset >= 0,
1252 		    ("incoming crp with -ve %s buffer offset", name));
1253 		KASSERT(cb->cb_vm_page_offset < PAGE_SIZE,
1254 		    ("incoming crp with %s buffer offset greater than page size"
1255 		     , name));
1256 		break;
1257 	default:
1258 		break;
1259 	}
1260 }
1261 
1262 static void
1263 crp_sanity(struct cryptop *crp)
1264 {
1265 	struct crypto_session_params *csp;
1266 	struct crypto_buffer *out;
1267 	size_t ilen, len, olen;
1268 
1269 	KASSERT(crp->crp_session != NULL, ("incoming crp without a session"));
1270 	KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE &&
1271 	    crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST,
1272 	    ("incoming crp with invalid output buffer type"));
1273 	KASSERT(crp->crp_etype == 0, ("incoming crp with error"));
1274 	KASSERT(!(crp->crp_flags & CRYPTO_F_DONE),
1275 	    ("incoming crp already done"));
1276 
1277 	csp = &crp->crp_session->csp;
1278 	cb_sanity(&crp->crp_buf, "input");
1279 	ilen = crypto_buffer_len(&crp->crp_buf);
1280 	olen = ilen;
1281 	out = NULL;
1282 	if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) {
1283 		if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) {
1284 			cb_sanity(&crp->crp_obuf, "output");
1285 			out = &crp->crp_obuf;
1286 			olen = crypto_buffer_len(out);
1287 		}
1288 	} else
1289 		KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE,
1290 		    ("incoming crp with separate output buffer "
1291 		    "but no session support"));
1292 
1293 	switch (csp->csp_mode) {
1294 	case CSP_MODE_COMPRESS:
1295 		KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS ||
1296 		    crp->crp_op == CRYPTO_OP_DECOMPRESS,
1297 		    ("invalid compression op %x", crp->crp_op));
1298 		break;
1299 	case CSP_MODE_CIPHER:
1300 		KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT ||
1301 		    crp->crp_op == CRYPTO_OP_DECRYPT,
1302 		    ("invalid cipher op %x", crp->crp_op));
1303 		break;
1304 	case CSP_MODE_DIGEST:
1305 		KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST ||
1306 		    crp->crp_op == CRYPTO_OP_VERIFY_DIGEST,
1307 		    ("invalid digest op %x", crp->crp_op));
1308 		break;
1309 	case CSP_MODE_AEAD:
1310 		KASSERT(crp->crp_op ==
1311 		    (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1312 		    crp->crp_op ==
1313 		    (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1314 		    ("invalid AEAD op %x", crp->crp_op));
1315 		if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16)
1316 			KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1317 			    ("GCM without a separate IV"));
1318 		if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16)
1319 			KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE,
1320 			    ("CCM without a separate IV"));
1321 		break;
1322 	case CSP_MODE_ETA:
1323 		KASSERT(crp->crp_op ==
1324 		    (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) ||
1325 		    crp->crp_op ==
1326 		    (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST),
1327 		    ("invalid ETA op %x", crp->crp_op));
1328 		break;
1329 	}
1330 	if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1331 		if (crp->crp_aad == NULL) {
1332 			KASSERT(crp->crp_aad_start == 0 ||
1333 			    crp->crp_aad_start < ilen,
1334 			    ("invalid AAD start"));
1335 			KASSERT(crp->crp_aad_length != 0 ||
1336 			    crp->crp_aad_start == 0,
1337 			    ("AAD with zero length and non-zero start"));
1338 			KASSERT(crp->crp_aad_length == 0 ||
1339 			    crp->crp_aad_start + crp->crp_aad_length <= ilen,
1340 			    ("AAD outside input length"));
1341 		} else {
1342 			KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD,
1343 			    ("session doesn't support separate AAD buffer"));
1344 			KASSERT(crp->crp_aad_start == 0,
1345 			    ("separate AAD buffer with non-zero AAD start"));
1346 			KASSERT(crp->crp_aad_length != 0,
1347 			    ("separate AAD buffer with zero length"));
1348 		}
1349 	} else {
1350 		KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 &&
1351 		    crp->crp_aad_length == 0,
1352 		    ("AAD region in request not supporting AAD"));
1353 	}
1354 	if (csp->csp_ivlen == 0) {
1355 		KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0,
1356 		    ("IV_SEPARATE set when IV isn't used"));
1357 		KASSERT(crp->crp_iv_start == 0,
1358 		    ("crp_iv_start set when IV isn't used"));
1359 	} else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) {
1360 		KASSERT(crp->crp_iv_start == 0,
1361 		    ("IV_SEPARATE used with non-zero IV start"));
1362 	} else {
1363 		KASSERT(crp->crp_iv_start < ilen,
1364 		    ("invalid IV start"));
1365 		KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen,
1366 		    ("IV outside buffer length"));
1367 	}
1368 	/* XXX: payload_start of 0 should always be < ilen? */
1369 	KASSERT(crp->crp_payload_start == 0 ||
1370 	    crp->crp_payload_start < ilen,
1371 	    ("invalid payload start"));
1372 	KASSERT(crp->crp_payload_start + crp->crp_payload_length <=
1373 	    ilen, ("payload outside input buffer"));
1374 	if (out == NULL) {
1375 		KASSERT(crp->crp_payload_output_start == 0,
1376 		    ("payload output start non-zero without output buffer"));
1377 	} else {
1378 		KASSERT(crp->crp_payload_output_start < olen,
1379 		    ("invalid payload output start"));
1380 		KASSERT(crp->crp_payload_output_start +
1381 		    crp->crp_payload_length <= olen,
1382 		    ("payload outside output buffer"));
1383 	}
1384 	if (csp->csp_mode == CSP_MODE_DIGEST ||
1385 	    csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) {
1386 		if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST)
1387 			len = ilen;
1388 		else
1389 			len = olen;
1390 		KASSERT(crp->crp_digest_start == 0 ||
1391 		    crp->crp_digest_start < len,
1392 		    ("invalid digest start"));
1393 		/* XXX: For the mlen == 0 case this check isn't perfect. */
1394 		KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len,
1395 		    ("digest outside buffer"));
1396 	} else {
1397 		KASSERT(crp->crp_digest_start == 0,
1398 		    ("non-zero digest start for request without a digest"));
1399 	}
1400 	if (csp->csp_cipher_klen != 0)
1401 		KASSERT(csp->csp_cipher_key != NULL ||
1402 		    crp->crp_cipher_key != NULL,
1403 		    ("cipher request without a key"));
1404 	if (csp->csp_auth_klen != 0)
1405 		KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL,
1406 		    ("auth request without a key"));
1407 	KASSERT(crp->crp_callback != NULL, ("incoming crp without callback"));
1408 }
1409 #endif
1410 
1411 /*
1412  * Add a crypto request to a queue, to be processed by the kernel thread.
1413  */
1414 int
1415 crypto_dispatch(struct cryptop *crp)
1416 {
1417 	struct cryptocap *cap;
1418 	int result;
1419 
1420 #ifdef INVARIANTS
1421 	crp_sanity(crp);
1422 #endif
1423 
1424 	CRYPTOSTAT_INC(cs_ops);
1425 
1426 	crp->crp_retw_id = ((uintptr_t)crp->crp_session) % crypto_workers_num;
1427 
1428 	if (CRYPTOP_ASYNC(crp)) {
1429 		if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) {
1430 			struct crypto_ret_worker *ret_worker;
1431 
1432 			ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1433 
1434 			CRYPTO_RETW_LOCK(ret_worker);
1435 			crp->crp_seq = ret_worker->reorder_ops++;
1436 			CRYPTO_RETW_UNLOCK(ret_worker);
1437 		}
1438 
1439 		TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp);
1440 		taskqueue_enqueue(crypto_tq, &crp->crp_task);
1441 		return (0);
1442 	}
1443 
1444 	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
1445 		/*
1446 		 * Caller marked the request to be processed
1447 		 * immediately; dispatch it directly to the
1448 		 * driver unless the driver is currently blocked.
1449 		 */
1450 		cap = crp->crp_session->cap;
1451 		if (!cap->cc_qblocked) {
1452 			result = crypto_invoke(cap, crp, 0);
1453 			if (result != ERESTART)
1454 				return (result);
1455 			/*
1456 			 * The driver ran out of resources, put the request on
1457 			 * the queue.
1458 			 */
1459 		}
1460 	}
1461 	crypto_batch_enqueue(crp);
1462 	return 0;
1463 }
1464 
1465 void
1466 crypto_batch_enqueue(struct cryptop *crp)
1467 {
1468 
1469 	CRYPTO_Q_LOCK();
1470 	TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
1471 	if (crp_sleep)
1472 		wakeup_one(&crp_q);
1473 	CRYPTO_Q_UNLOCK();
1474 }
1475 
1476 /*
1477  * Add an asymetric crypto request to a queue,
1478  * to be processed by the kernel thread.
1479  */
1480 int
1481 crypto_kdispatch(struct cryptkop *krp)
1482 {
1483 	int error;
1484 
1485 	CRYPTOSTAT_INC(cs_kops);
1486 
1487 	krp->krp_cap = NULL;
1488 	error = crypto_kinvoke(krp);
1489 	if (error == ERESTART) {
1490 		CRYPTO_Q_LOCK();
1491 		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
1492 		if (crp_sleep)
1493 			wakeup_one(&crp_q);
1494 		CRYPTO_Q_UNLOCK();
1495 		error = 0;
1496 	}
1497 	return error;
1498 }
1499 
1500 /*
1501  * Verify a driver is suitable for the specified operation.
1502  */
1503 static __inline int
1504 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
1505 {
1506 	return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
1507 }
1508 
1509 /*
1510  * Select a driver for an asym operation.  The driver must
1511  * support the necessary algorithm.  The caller can constrain
1512  * which device is selected with the flags parameter.  The
1513  * algorithm we use here is pretty stupid; just use the first
1514  * driver that supports the algorithms we need. If there are
1515  * multiple suitable drivers we choose the driver with the
1516  * fewest active operations.  We prefer hardware-backed
1517  * drivers to software ones when either may be used.
1518  */
1519 static struct cryptocap *
1520 crypto_select_kdriver(const struct cryptkop *krp, int flags)
1521 {
1522 	struct cryptocap *cap, *best;
1523 	int match, hid;
1524 
1525 	CRYPTO_DRIVER_ASSERT();
1526 
1527 	/*
1528 	 * Look first for hardware crypto devices if permitted.
1529 	 */
1530 	if (flags & CRYPTOCAP_F_HARDWARE)
1531 		match = CRYPTOCAP_F_HARDWARE;
1532 	else
1533 		match = CRYPTOCAP_F_SOFTWARE;
1534 	best = NULL;
1535 again:
1536 	for (hid = 0; hid < crypto_drivers_size; hid++) {
1537 		/*
1538 		 * If there is no driver for this slot, or the driver
1539 		 * is not appropriate (hardware or software based on
1540 		 * match), then skip.
1541 		 */
1542 		cap = crypto_drivers[hid];
1543 		if (cap == NULL ||
1544 		    (cap->cc_flags & match) == 0)
1545 			continue;
1546 
1547 		/* verify all the algorithms are supported. */
1548 		if (kdriver_suitable(cap, krp)) {
1549 			if (best == NULL ||
1550 			    cap->cc_koperations < best->cc_koperations)
1551 				best = cap;
1552 		}
1553 	}
1554 	if (best != NULL)
1555 		return best;
1556 	if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
1557 		/* sort of an Algol 68-style for loop */
1558 		match = CRYPTOCAP_F_SOFTWARE;
1559 		goto again;
1560 	}
1561 	return best;
1562 }
1563 
1564 /*
1565  * Choose a driver for an asymmetric crypto request.
1566  */
1567 static struct cryptocap *
1568 crypto_lookup_kdriver(struct cryptkop *krp)
1569 {
1570 	struct cryptocap *cap;
1571 	uint32_t crid;
1572 
1573 	/* If this request is requeued, it might already have a driver. */
1574 	cap = krp->krp_cap;
1575 	if (cap != NULL)
1576 		return (cap);
1577 
1578 	/* Use krp_crid to choose a driver. */
1579 	crid = krp->krp_crid;
1580 	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
1581 		cap = crypto_checkdriver(crid);
1582 		if (cap != NULL) {
1583 			/*
1584 			 * Driver present, it must support the
1585 			 * necessary algorithm and, if s/w drivers are
1586 			 * excluded, it must be registered as
1587 			 * hardware-backed.
1588 			 */
1589 			if (!kdriver_suitable(cap, krp) ||
1590 			    (!crypto_devallowsoft &&
1591 			    (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
1592 				cap = NULL;
1593 		}
1594 	} else {
1595 		/*
1596 		 * No requested driver; select based on crid flags.
1597 		 */
1598 		if (!crypto_devallowsoft)	/* NB: disallow s/w drivers */
1599 			crid &= ~CRYPTOCAP_F_SOFTWARE;
1600 		cap = crypto_select_kdriver(krp, crid);
1601 	}
1602 
1603 	if (cap != NULL) {
1604 		krp->krp_cap = cap_ref(cap);
1605 		krp->krp_hid = cap->cc_hid;
1606 	}
1607 	return (cap);
1608 }
1609 
1610 /*
1611  * Dispatch an asymmetric crypto request.
1612  */
1613 static int
1614 crypto_kinvoke(struct cryptkop *krp)
1615 {
1616 	struct cryptocap *cap = NULL;
1617 	int error;
1618 
1619 	KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
1620 	KASSERT(krp->krp_callback != NULL,
1621 	    ("%s: krp->crp_callback == NULL", __func__));
1622 
1623 	CRYPTO_DRIVER_LOCK();
1624 	cap = crypto_lookup_kdriver(krp);
1625 	if (cap == NULL) {
1626 		CRYPTO_DRIVER_UNLOCK();
1627 		krp->krp_status = ENODEV;
1628 		crypto_kdone(krp);
1629 		return (0);
1630 	}
1631 
1632 	/*
1633 	 * If the device is blocked, return ERESTART to requeue it.
1634 	 */
1635 	if (cap->cc_kqblocked) {
1636 		/*
1637 		 * XXX: Previously this set krp_status to ERESTART and
1638 		 * invoked crypto_kdone but the caller would still
1639 		 * requeue it.
1640 		 */
1641 		CRYPTO_DRIVER_UNLOCK();
1642 		return (ERESTART);
1643 	}
1644 
1645 	cap->cc_koperations++;
1646 	CRYPTO_DRIVER_UNLOCK();
1647 	error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
1648 	if (error == ERESTART) {
1649 		CRYPTO_DRIVER_LOCK();
1650 		cap->cc_koperations--;
1651 		CRYPTO_DRIVER_UNLOCK();
1652 		return (error);
1653 	}
1654 
1655 	KASSERT(error == 0, ("error %d returned from crypto_kprocess", error));
1656 	return (0);
1657 }
1658 
1659 static void
1660 crypto_task_invoke(void *ctx, int pending)
1661 {
1662 	struct cryptocap *cap;
1663 	struct cryptop *crp;
1664 	int result;
1665 
1666 	crp = (struct cryptop *)ctx;
1667 	cap = crp->crp_session->cap;
1668 	result = crypto_invoke(cap, crp, 0);
1669 	if (result == ERESTART)
1670 		crypto_batch_enqueue(crp);
1671 }
1672 
1673 /*
1674  * Dispatch a crypto request to the appropriate crypto devices.
1675  */
1676 static int
1677 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1678 {
1679 
1680 	KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1681 	KASSERT(crp->crp_callback != NULL,
1682 	    ("%s: crp->crp_callback == NULL", __func__));
1683 	KASSERT(crp->crp_session != NULL,
1684 	    ("%s: crp->crp_session == NULL", __func__));
1685 
1686 	if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1687 		struct crypto_session_params csp;
1688 		crypto_session_t nses;
1689 
1690 		/*
1691 		 * Driver has unregistered; migrate the session and return
1692 		 * an error to the caller so they'll resubmit the op.
1693 		 *
1694 		 * XXX: What if there are more already queued requests for this
1695 		 *      session?
1696 		 *
1697 		 * XXX: Real solution is to make sessions refcounted
1698 		 * and force callers to hold a reference when
1699 		 * assigning to crp_session.  Could maybe change
1700 		 * crypto_getreq to accept a session pointer to make
1701 		 * that work.  Alternatively, we could abandon the
1702 		 * notion of rewriting crp_session in requests forcing
1703 		 * the caller to deal with allocating a new session.
1704 		 * Perhaps provide a method to allow a crp's session to
1705 		 * be swapped that callers could use.
1706 		 */
1707 		csp = crp->crp_session->csp;
1708 		crypto_freesession(crp->crp_session);
1709 
1710 		/*
1711 		 * XXX: Key pointers may no longer be valid.  If we
1712 		 * really want to support this we need to define the
1713 		 * KPI such that 'csp' is required to be valid for the
1714 		 * duration of a session by the caller perhaps.
1715 		 *
1716 		 * XXX: If the keys have been changed this will reuse
1717 		 * the old keys.  This probably suggests making
1718 		 * rekeying more explicit and updating the key
1719 		 * pointers in 'csp' when the keys change.
1720 		 */
1721 		if (crypto_newsession(&nses, &csp,
1722 		    CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1723 			crp->crp_session = nses;
1724 
1725 		crp->crp_etype = EAGAIN;
1726 		crypto_done(crp);
1727 		return 0;
1728 	} else {
1729 		/*
1730 		 * Invoke the driver to process the request.
1731 		 */
1732 		return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1733 	}
1734 }
1735 
1736 void
1737 crypto_destroyreq(struct cryptop *crp)
1738 {
1739 #ifdef DIAGNOSTIC
1740 	{
1741 		struct cryptop *crp2;
1742 		struct crypto_ret_worker *ret_worker;
1743 
1744 		CRYPTO_Q_LOCK();
1745 		TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1746 			KASSERT(crp2 != crp,
1747 			    ("Freeing cryptop from the crypto queue (%p).",
1748 			    crp));
1749 		}
1750 		CRYPTO_Q_UNLOCK();
1751 
1752 		FOREACH_CRYPTO_RETW(ret_worker) {
1753 			CRYPTO_RETW_LOCK(ret_worker);
1754 			TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) {
1755 				KASSERT(crp2 != crp,
1756 				    ("Freeing cryptop from the return queue (%p).",
1757 				    crp));
1758 			}
1759 			CRYPTO_RETW_UNLOCK(ret_worker);
1760 		}
1761 	}
1762 #endif
1763 }
1764 
1765 void
1766 crypto_freereq(struct cryptop *crp)
1767 {
1768 	if (crp == NULL)
1769 		return;
1770 
1771 	crypto_destroyreq(crp);
1772 	uma_zfree(cryptop_zone, crp);
1773 }
1774 
1775 static void
1776 _crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1777 {
1778 	crp->crp_session = cses;
1779 }
1780 
1781 void
1782 crypto_initreq(struct cryptop *crp, crypto_session_t cses)
1783 {
1784 	memset(crp, 0, sizeof(*crp));
1785 	_crypto_initreq(crp, cses);
1786 }
1787 
1788 struct cryptop *
1789 crypto_getreq(crypto_session_t cses, int how)
1790 {
1791 	struct cryptop *crp;
1792 
1793 	MPASS(how == M_WAITOK || how == M_NOWAIT);
1794 	crp = uma_zalloc(cryptop_zone, how | M_ZERO);
1795 	if (crp != NULL)
1796 		_crypto_initreq(crp, cses);
1797 	return (crp);
1798 }
1799 
1800 /*
1801  * Invoke the callback on behalf of the driver.
1802  */
1803 void
1804 crypto_done(struct cryptop *crp)
1805 {
1806 	KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1807 		("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1808 	crp->crp_flags |= CRYPTO_F_DONE;
1809 	if (crp->crp_etype != 0)
1810 		CRYPTOSTAT_INC(cs_errs);
1811 
1812 	/*
1813 	 * CBIMM means unconditionally do the callback immediately;
1814 	 * CBIFSYNC means do the callback immediately only if the
1815 	 * operation was done synchronously.  Both are used to avoid
1816 	 * doing extraneous context switches; the latter is mostly
1817 	 * used with the software crypto driver.
1818 	 */
1819 	if (!CRYPTOP_ASYNC_KEEPORDER(crp) &&
1820 	    ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1821 	    ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1822 	     (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) {
1823 		/*
1824 		 * Do the callback directly.  This is ok when the
1825 		 * callback routine does very little (e.g. the
1826 		 * /dev/crypto callback method just does a wakeup).
1827 		 */
1828 		crp->crp_callback(crp);
1829 	} else {
1830 		struct crypto_ret_worker *ret_worker;
1831 		bool wake;
1832 
1833 		ret_worker = CRYPTO_RETW(crp->crp_retw_id);
1834 		wake = false;
1835 
1836 		/*
1837 		 * Normal case; queue the callback for the thread.
1838 		 */
1839 		CRYPTO_RETW_LOCK(ret_worker);
1840 		if (CRYPTOP_ASYNC_KEEPORDER(crp)) {
1841 			struct cryptop *tmp;
1842 
1843 			TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q,
1844 					cryptop_q, crp_next) {
1845 				if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) {
1846 					TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q,
1847 							tmp, crp, crp_next);
1848 					break;
1849 				}
1850 			}
1851 			if (tmp == NULL) {
1852 				TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q,
1853 						crp, crp_next);
1854 			}
1855 
1856 			if (crp->crp_seq == ret_worker->reorder_cur_seq)
1857 				wake = true;
1858 		}
1859 		else {
1860 			if (CRYPTO_RETW_EMPTY(ret_worker))
1861 				wake = true;
1862 
1863 			TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next);
1864 		}
1865 
1866 		if (wake)
1867 			wakeup_one(&ret_worker->crp_ret_q);	/* shared wait channel */
1868 		CRYPTO_RETW_UNLOCK(ret_worker);
1869 	}
1870 }
1871 
1872 /*
1873  * Invoke the callback on behalf of the driver.
1874  */
1875 void
1876 crypto_kdone(struct cryptkop *krp)
1877 {
1878 	struct crypto_ret_worker *ret_worker;
1879 	struct cryptocap *cap;
1880 
1881 	if (krp->krp_status != 0)
1882 		CRYPTOSTAT_INC(cs_kerrs);
1883 	cap = krp->krp_cap;
1884 	if (cap != NULL) {
1885 		CRYPTO_DRIVER_LOCK();
1886 		KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0"));
1887 		cap->cc_koperations--;
1888 		if (cap->cc_koperations == 0 &&
1889 		    cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1890 			wakeup(cap);
1891 		CRYPTO_DRIVER_UNLOCK();
1892 		krp->krp_cap = NULL;
1893 		cap_rele(cap);
1894 	}
1895 
1896 	ret_worker = CRYPTO_RETW(0);
1897 
1898 	CRYPTO_RETW_LOCK(ret_worker);
1899 	if (CRYPTO_RETW_EMPTY(ret_worker))
1900 		wakeup_one(&ret_worker->crp_ret_q);		/* shared wait channel */
1901 	TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next);
1902 	CRYPTO_RETW_UNLOCK(ret_worker);
1903 }
1904 
1905 int
1906 crypto_getfeat(int *featp)
1907 {
1908 	int hid, kalg, feat = 0;
1909 
1910 	CRYPTO_DRIVER_LOCK();
1911 	for (hid = 0; hid < crypto_drivers_size; hid++) {
1912 		const struct cryptocap *cap = crypto_drivers[hid];
1913 
1914 		if (cap == NULL ||
1915 		    ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1916 		    !crypto_devallowsoft)) {
1917 			continue;
1918 		}
1919 		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1920 			if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1921 				feat |=  1 << kalg;
1922 	}
1923 	CRYPTO_DRIVER_UNLOCK();
1924 	*featp = feat;
1925 	return (0);
1926 }
1927 
1928 /*
1929  * Terminate a thread at module unload.  The process that
1930  * initiated this is waiting for us to signal that we're gone;
1931  * wake it up and exit.  We use the driver table lock to insure
1932  * we don't do the wakeup before they're waiting.  There is no
1933  * race here because the waiter sleeps on the proc lock for the
1934  * thread so it gets notified at the right time because of an
1935  * extra wakeup that's done in exit1().
1936  */
1937 static void
1938 crypto_finis(void *chan)
1939 {
1940 	CRYPTO_DRIVER_LOCK();
1941 	wakeup_one(chan);
1942 	CRYPTO_DRIVER_UNLOCK();
1943 	kproc_exit(0);
1944 }
1945 
1946 /*
1947  * Crypto thread, dispatches crypto requests.
1948  */
1949 static void
1950 crypto_proc(void)
1951 {
1952 	struct cryptop *crp, *submit;
1953 	struct cryptkop *krp;
1954 	struct cryptocap *cap;
1955 	int result, hint;
1956 
1957 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1958 	fpu_kern_thread(FPU_KERN_NORMAL);
1959 #endif
1960 
1961 	CRYPTO_Q_LOCK();
1962 	for (;;) {
1963 		/*
1964 		 * Find the first element in the queue that can be
1965 		 * processed and look-ahead to see if multiple ops
1966 		 * are ready for the same driver.
1967 		 */
1968 		submit = NULL;
1969 		hint = 0;
1970 		TAILQ_FOREACH(crp, &crp_q, crp_next) {
1971 			cap = crp->crp_session->cap;
1972 			/*
1973 			 * Driver cannot disappeared when there is an active
1974 			 * session.
1975 			 */
1976 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1977 			    __func__, __LINE__));
1978 			if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1979 				/* Op needs to be migrated, process it. */
1980 				if (submit == NULL)
1981 					submit = crp;
1982 				break;
1983 			}
1984 			if (!cap->cc_qblocked) {
1985 				if (submit != NULL) {
1986 					/*
1987 					 * We stop on finding another op,
1988 					 * regardless whether its for the same
1989 					 * driver or not.  We could keep
1990 					 * searching the queue but it might be
1991 					 * better to just use a per-driver
1992 					 * queue instead.
1993 					 */
1994 					if (submit->crp_session->cap == cap)
1995 						hint = CRYPTO_HINT_MORE;
1996 					break;
1997 				} else {
1998 					submit = crp;
1999 					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
2000 						break;
2001 					/* keep scanning for more are q'd */
2002 				}
2003 			}
2004 		}
2005 		if (submit != NULL) {
2006 			TAILQ_REMOVE(&crp_q, submit, crp_next);
2007 			cap = submit->crp_session->cap;
2008 			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
2009 			    __func__, __LINE__));
2010 			CRYPTO_Q_UNLOCK();
2011 			result = crypto_invoke(cap, submit, hint);
2012 			CRYPTO_Q_LOCK();
2013 			if (result == ERESTART) {
2014 				/*
2015 				 * The driver ran out of resources, mark the
2016 				 * driver ``blocked'' for cryptop's and put
2017 				 * the request back in the queue.  It would
2018 				 * best to put the request back where we got
2019 				 * it but that's hard so for now we put it
2020 				 * at the front.  This should be ok; putting
2021 				 * it at the end does not work.
2022 				 */
2023 				cap->cc_qblocked = 1;
2024 				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
2025 				CRYPTOSTAT_INC(cs_blocks);
2026 			}
2027 		}
2028 
2029 		/* As above, but for key ops */
2030 		TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2031 			cap = krp->krp_cap;
2032 			if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
2033 				/*
2034 				 * Operation needs to be migrated,
2035 				 * clear krp_cap so a new driver is
2036 				 * selected.
2037 				 */
2038 				krp->krp_cap = NULL;
2039 				cap_rele(cap);
2040 				break;
2041 			}
2042 			if (!cap->cc_kqblocked)
2043 				break;
2044 		}
2045 		if (krp != NULL) {
2046 			TAILQ_REMOVE(&crp_kq, krp, krp_next);
2047 			CRYPTO_Q_UNLOCK();
2048 			result = crypto_kinvoke(krp);
2049 			CRYPTO_Q_LOCK();
2050 			if (result == ERESTART) {
2051 				/*
2052 				 * The driver ran out of resources, mark the
2053 				 * driver ``blocked'' for cryptkop's and put
2054 				 * the request back in the queue.  It would
2055 				 * best to put the request back where we got
2056 				 * it but that's hard so for now we put it
2057 				 * at the front.  This should be ok; putting
2058 				 * it at the end does not work.
2059 				 */
2060 				krp->krp_cap->cc_kqblocked = 1;
2061 				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
2062 				CRYPTOSTAT_INC(cs_kblocks);
2063 			}
2064 		}
2065 
2066 		if (submit == NULL && krp == NULL) {
2067 			/*
2068 			 * Nothing more to be processed.  Sleep until we're
2069 			 * woken because there are more ops to process.
2070 			 * This happens either by submission or by a driver
2071 			 * becoming unblocked and notifying us through
2072 			 * crypto_unblock.  Note that when we wakeup we
2073 			 * start processing each queue again from the
2074 			 * front. It's not clear that it's important to
2075 			 * preserve this ordering since ops may finish
2076 			 * out of order if dispatched to different devices
2077 			 * and some become blocked while others do not.
2078 			 */
2079 			crp_sleep = 1;
2080 			msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
2081 			crp_sleep = 0;
2082 			if (cryptoproc == NULL)
2083 				break;
2084 			CRYPTOSTAT_INC(cs_intrs);
2085 		}
2086 	}
2087 	CRYPTO_Q_UNLOCK();
2088 
2089 	crypto_finis(&crp_q);
2090 }
2091 
2092 /*
2093  * Crypto returns thread, does callbacks for processed crypto requests.
2094  * Callbacks are done here, rather than in the crypto drivers, because
2095  * callbacks typically are expensive and would slow interrupt handling.
2096  */
2097 static void
2098 crypto_ret_proc(struct crypto_ret_worker *ret_worker)
2099 {
2100 	struct cryptop *crpt;
2101 	struct cryptkop *krpt;
2102 
2103 	CRYPTO_RETW_LOCK(ret_worker);
2104 	for (;;) {
2105 		/* Harvest return q's for completed ops */
2106 		crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q);
2107 		if (crpt != NULL) {
2108 			if (crpt->crp_seq == ret_worker->reorder_cur_seq) {
2109 				TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next);
2110 				ret_worker->reorder_cur_seq++;
2111 			} else {
2112 				crpt = NULL;
2113 			}
2114 		}
2115 
2116 		if (crpt == NULL) {
2117 			crpt = TAILQ_FIRST(&ret_worker->crp_ret_q);
2118 			if (crpt != NULL)
2119 				TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next);
2120 		}
2121 
2122 		krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq);
2123 		if (krpt != NULL)
2124 			TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next);
2125 
2126 		if (crpt != NULL || krpt != NULL) {
2127 			CRYPTO_RETW_UNLOCK(ret_worker);
2128 			/*
2129 			 * Run callbacks unlocked.
2130 			 */
2131 			if (crpt != NULL)
2132 				crpt->crp_callback(crpt);
2133 			if (krpt != NULL)
2134 				krpt->krp_callback(krpt);
2135 			CRYPTO_RETW_LOCK(ret_worker);
2136 		} else {
2137 			/*
2138 			 * Nothing more to be processed.  Sleep until we're
2139 			 * woken because there are more returns to process.
2140 			 */
2141 			msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT,
2142 				"crypto_ret_wait", 0);
2143 			if (ret_worker->cryptoretproc == NULL)
2144 				break;
2145 			CRYPTOSTAT_INC(cs_rets);
2146 		}
2147 	}
2148 	CRYPTO_RETW_UNLOCK(ret_worker);
2149 
2150 	crypto_finis(&ret_worker->crp_ret_q);
2151 }
2152 
2153 #ifdef DDB
2154 static void
2155 db_show_drivers(void)
2156 {
2157 	int hid;
2158 
2159 	db_printf("%12s %4s %4s %8s %2s %2s\n"
2160 		, "Device"
2161 		, "Ses"
2162 		, "Kops"
2163 		, "Flags"
2164 		, "QB"
2165 		, "KB"
2166 	);
2167 	for (hid = 0; hid < crypto_drivers_size; hid++) {
2168 		const struct cryptocap *cap = crypto_drivers[hid];
2169 		if (cap == NULL)
2170 			continue;
2171 		db_printf("%-12s %4u %4u %08x %2u %2u\n"
2172 		    , device_get_nameunit(cap->cc_dev)
2173 		    , cap->cc_sessions
2174 		    , cap->cc_koperations
2175 		    , cap->cc_flags
2176 		    , cap->cc_qblocked
2177 		    , cap->cc_kqblocked
2178 		);
2179 	}
2180 }
2181 
2182 DB_SHOW_COMMAND(crypto, db_show_crypto)
2183 {
2184 	struct cryptop *crp;
2185 	struct crypto_ret_worker *ret_worker;
2186 
2187 	db_show_drivers();
2188 	db_printf("\n");
2189 
2190 	db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
2191 	    "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
2192 	    "Device", "Callback");
2193 	TAILQ_FOREACH(crp, &crp_q, crp_next) {
2194 		db_printf("%4u %08x %4u %4u %04x %8p %8p\n"
2195 		    , crp->crp_session->cap->cc_hid
2196 		    , (int) crypto_ses2caps(crp->crp_session)
2197 		    , crp->crp_olen
2198 		    , crp->crp_etype
2199 		    , crp->crp_flags
2200 		    , device_get_nameunit(crp->crp_session->cap->cc_dev)
2201 		    , crp->crp_callback
2202 		);
2203 	}
2204 	FOREACH_CRYPTO_RETW(ret_worker) {
2205 		db_printf("\n%8s %4s %4s %4s %8s\n",
2206 		    "ret_worker", "HID", "Etype", "Flags", "Callback");
2207 		if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2208 			TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) {
2209 				db_printf("%8td %4u %4u %04x %8p\n"
2210 				    , CRYPTO_RETW_ID(ret_worker)
2211 				    , crp->crp_session->cap->cc_hid
2212 				    , crp->crp_etype
2213 				    , crp->crp_flags
2214 				    , crp->crp_callback
2215 				);
2216 			}
2217 		}
2218 	}
2219 }
2220 
2221 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
2222 {
2223 	struct cryptkop *krp;
2224 	struct crypto_ret_worker *ret_worker;
2225 
2226 	db_show_drivers();
2227 	db_printf("\n");
2228 
2229 	db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
2230 	    "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
2231 	TAILQ_FOREACH(krp, &crp_kq, krp_next) {
2232 		db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
2233 		    , krp->krp_op
2234 		    , krp->krp_status
2235 		    , krp->krp_iparams, krp->krp_oparams
2236 		    , krp->krp_crid, krp->krp_hid
2237 		    , krp->krp_callback
2238 		);
2239 	}
2240 
2241 	ret_worker = CRYPTO_RETW(0);
2242 	if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) {
2243 		db_printf("%4s %5s %8s %4s %8s\n",
2244 		    "Op", "Status", "CRID", "HID", "Callback");
2245 		TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) {
2246 			db_printf("%4u %5u %08x %4u %8p\n"
2247 			    , krp->krp_op
2248 			    , krp->krp_status
2249 			    , krp->krp_crid, krp->krp_hid
2250 			    , krp->krp_callback
2251 			);
2252 		}
2253 	}
2254 }
2255 #endif
2256 
2257 int crypto_modevent(module_t mod, int type, void *unused);
2258 
2259 /*
2260  * Initialization code, both for static and dynamic loading.
2261  * Note this is not invoked with the usual MODULE_DECLARE
2262  * mechanism but instead is listed as a dependency by the
2263  * cryptosoft driver.  This guarantees proper ordering of
2264  * calls on module load/unload.
2265  */
2266 int
2267 crypto_modevent(module_t mod, int type, void *unused)
2268 {
2269 	int error = EINVAL;
2270 
2271 	switch (type) {
2272 	case MOD_LOAD:
2273 		error = crypto_init();
2274 		if (error == 0 && bootverbose)
2275 			printf("crypto: <crypto core>\n");
2276 		break;
2277 	case MOD_UNLOAD:
2278 		/*XXX disallow if active sessions */
2279 		error = 0;
2280 		crypto_destroy();
2281 		return 0;
2282 	}
2283 	return error;
2284 }
2285 MODULE_VERSION(crypto, 1);
2286 MODULE_DEPEND(crypto, zlib, 1, 1, 1);
2287