1 /*- 2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 23 */ 24 25 #include <sys/cdefs.h> 26 __FBSDID("$FreeBSD$"); 27 28 /* 29 * Cryptographic Subsystem. 30 * 31 * This code is derived from the Openbsd Cryptographic Framework (OCF) 32 * that has the copyright shown below. Very little of the original 33 * code remains. 34 */ 35 36 /*- 37 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 38 * 39 * This code was written by Angelos D. Keromytis in Athens, Greece, in 40 * February 2000. Network Security Technologies Inc. (NSTI) kindly 41 * supported the development of this code. 42 * 43 * Copyright (c) 2000, 2001 Angelos D. Keromytis 44 * 45 * Permission to use, copy, and modify this software with or without fee 46 * is hereby granted, provided that this entire notice is included in 47 * all source code copies of any software which is or includes a copy or 48 * modification of this software. 49 * 50 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 51 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 52 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 53 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 54 * PURPOSE. 55 */ 56 57 #include "opt_compat.h" 58 #include "opt_ddb.h" 59 60 #include <sys/param.h> 61 #include <sys/systm.h> 62 #include <sys/counter.h> 63 #include <sys/kernel.h> 64 #include <sys/kthread.h> 65 #include <sys/linker.h> 66 #include <sys/lock.h> 67 #include <sys/module.h> 68 #include <sys/mutex.h> 69 #include <sys/malloc.h> 70 #include <sys/mbuf.h> 71 #include <sys/proc.h> 72 #include <sys/refcount.h> 73 #include <sys/sdt.h> 74 #include <sys/smp.h> 75 #include <sys/sysctl.h> 76 #include <sys/taskqueue.h> 77 #include <sys/uio.h> 78 79 #include <ddb/ddb.h> 80 81 #include <machine/vmparam.h> 82 #include <vm/uma.h> 83 84 #include <crypto/intake.h> 85 #include <opencrypto/cryptodev.h> 86 #include <opencrypto/xform_auth.h> 87 #include <opencrypto/xform_enc.h> 88 89 #include <sys/kobj.h> 90 #include <sys/bus.h> 91 #include "cryptodev_if.h" 92 93 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 94 #include <machine/pcb.h> 95 #endif 96 97 SDT_PROVIDER_DEFINE(opencrypto); 98 99 /* 100 * Crypto drivers register themselves by allocating a slot in the 101 * crypto_drivers table with crypto_get_driverid() and then registering 102 * each asym algorithm they support with crypto_kregister(). 103 */ 104 static struct mtx crypto_drivers_mtx; /* lock on driver table */ 105 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx) 106 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx) 107 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED) 108 109 /* 110 * Crypto device/driver capabilities structure. 111 * 112 * Synchronization: 113 * (d) - protected by CRYPTO_DRIVER_LOCK() 114 * (q) - protected by CRYPTO_Q_LOCK() 115 * Not tagged fields are read-only. 116 */ 117 struct cryptocap { 118 device_t cc_dev; 119 uint32_t cc_hid; 120 uint32_t cc_sessions; /* (d) # of sessions */ 121 uint32_t cc_koperations; /* (d) # os asym operations */ 122 uint8_t cc_kalg[CRK_ALGORITHM_MAX + 1]; 123 124 int cc_flags; /* (d) flags */ 125 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ 126 int cc_qblocked; /* (q) symmetric q blocked */ 127 int cc_kqblocked; /* (q) asymmetric q blocked */ 128 size_t cc_session_size; 129 volatile int cc_refs; 130 }; 131 132 static struct cryptocap **crypto_drivers = NULL; 133 static int crypto_drivers_size = 0; 134 135 struct crypto_session { 136 struct cryptocap *cap; 137 void *softc; 138 struct crypto_session_params csp; 139 }; 140 141 /* 142 * There are two queues for crypto requests; one for symmetric (e.g. 143 * cipher) operations and one for asymmetric (e.g. MOD)operations. 144 * A single mutex is used to lock access to both queues. We could 145 * have one per-queue but having one simplifies handling of block/unblock 146 * operations. 147 */ 148 static int crp_sleep = 0; 149 static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */ 150 static TAILQ_HEAD(,cryptkop) crp_kq; 151 static struct mtx crypto_q_mtx; 152 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx) 153 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx) 154 155 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0, 156 "In-kernel cryptography"); 157 158 /* 159 * Taskqueue used to dispatch the crypto requests 160 * that have the CRYPTO_F_ASYNC flag 161 */ 162 static struct taskqueue *crypto_tq; 163 164 /* 165 * Crypto seq numbers are operated on with modular arithmetic 166 */ 167 #define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0) 168 169 struct crypto_ret_worker { 170 struct mtx crypto_ret_mtx; 171 172 TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */ 173 TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */ 174 TAILQ_HEAD(,cryptkop) crp_ret_kq; /* callback queue for asym jobs */ 175 176 uint32_t reorder_ops; /* total ordered sym jobs received */ 177 uint32_t reorder_cur_seq; /* current sym job dispatched */ 178 179 struct proc *cryptoretproc; 180 }; 181 static struct crypto_ret_worker *crypto_ret_workers = NULL; 182 183 #define CRYPTO_RETW(i) (&crypto_ret_workers[i]) 184 #define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers) 185 #define FOREACH_CRYPTO_RETW(w) \ 186 for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w) 187 188 #define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx) 189 #define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx) 190 #define CRYPTO_RETW_EMPTY(w) \ 191 (TAILQ_EMPTY(&w->crp_ret_q) && TAILQ_EMPTY(&w->crp_ret_kq) && TAILQ_EMPTY(&w->crp_ordered_ret_q)) 192 193 static int crypto_workers_num = 0; 194 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN, 195 &crypto_workers_num, 0, 196 "Number of crypto workers used to dispatch crypto jobs"); 197 #ifdef COMPAT_FREEBSD12 198 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN, 199 &crypto_workers_num, 0, 200 "Number of crypto workers used to dispatch crypto jobs"); 201 #endif 202 203 static uma_zone_t cryptop_zone; 204 static uma_zone_t cryptoses_zone; 205 206 int crypto_userasymcrypto = 1; 207 SYSCTL_INT(_kern_crypto, OID_AUTO, asym_enable, CTLFLAG_RW, 208 &crypto_userasymcrypto, 0, 209 "Enable user-mode access to asymmetric crypto support"); 210 #ifdef COMPAT_FREEBSD12 211 SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW, 212 &crypto_userasymcrypto, 0, 213 "Enable/disable user-mode access to asymmetric crypto support"); 214 #endif 215 216 int crypto_devallowsoft = 0; 217 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RW, 218 &crypto_devallowsoft, 0, 219 "Enable use of software crypto by /dev/crypto"); 220 #ifdef COMPAT_FREEBSD12 221 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW, 222 &crypto_devallowsoft, 0, 223 "Enable/disable use of software crypto by /dev/crypto"); 224 #endif 225 226 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 227 228 static void crypto_proc(void); 229 static struct proc *cryptoproc; 230 static void crypto_ret_proc(struct crypto_ret_worker *ret_worker); 231 static void crypto_destroy(void); 232 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); 233 static int crypto_kinvoke(struct cryptkop *krp); 234 static void crypto_task_invoke(void *ctx, int pending); 235 static void crypto_batch_enqueue(struct cryptop *crp); 236 237 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)]; 238 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW, 239 cryptostats, nitems(cryptostats), 240 "Crypto system statistics"); 241 242 #define CRYPTOSTAT_INC(stat) do { \ 243 counter_u64_add( \ 244 cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\ 245 1); \ 246 } while (0) 247 248 static void 249 cryptostats_init(void *arg __unused) 250 { 251 COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK); 252 } 253 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL); 254 255 static void 256 cryptostats_fini(void *arg __unused) 257 { 258 COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats)); 259 } 260 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini, 261 NULL); 262 263 /* Try to avoid directly exposing the key buffer as a symbol */ 264 static struct keybuf *keybuf; 265 266 static struct keybuf empty_keybuf = { 267 .kb_nents = 0 268 }; 269 270 /* Obtain the key buffer from boot metadata */ 271 static void 272 keybuf_init(void) 273 { 274 caddr_t kmdp; 275 276 kmdp = preload_search_by_type("elf kernel"); 277 278 if (kmdp == NULL) 279 kmdp = preload_search_by_type("elf64 kernel"); 280 281 keybuf = (struct keybuf *)preload_search_info(kmdp, 282 MODINFO_METADATA | MODINFOMD_KEYBUF); 283 284 if (keybuf == NULL) 285 keybuf = &empty_keybuf; 286 } 287 288 /* It'd be nice if we could store these in some kind of secure memory... */ 289 struct keybuf * get_keybuf(void) { 290 291 return (keybuf); 292 } 293 294 static struct cryptocap * 295 cap_ref(struct cryptocap *cap) 296 { 297 298 refcount_acquire(&cap->cc_refs); 299 return (cap); 300 } 301 302 static void 303 cap_rele(struct cryptocap *cap) 304 { 305 306 if (refcount_release(&cap->cc_refs) == 0) 307 return; 308 309 KASSERT(cap->cc_sessions == 0, 310 ("freeing crypto driver with active sessions")); 311 KASSERT(cap->cc_koperations == 0, 312 ("freeing crypto driver with active key operations")); 313 314 free(cap, M_CRYPTO_DATA); 315 } 316 317 static int 318 crypto_init(void) 319 { 320 struct crypto_ret_worker *ret_worker; 321 int error; 322 323 mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table", 324 MTX_DEF|MTX_QUIET); 325 326 TAILQ_INIT(&crp_q); 327 TAILQ_INIT(&crp_kq); 328 mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF); 329 330 cryptop_zone = uma_zcreate("cryptop", 331 sizeof(struct cryptop), NULL, NULL, NULL, NULL, 332 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 333 cryptoses_zone = uma_zcreate("crypto_session", 334 sizeof(struct crypto_session), NULL, NULL, NULL, NULL, 335 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 336 337 crypto_drivers_size = CRYPTO_DRIVERS_INITIAL; 338 crypto_drivers = malloc(crypto_drivers_size * 339 sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 340 341 if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus) 342 crypto_workers_num = mp_ncpus; 343 344 crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO, 345 taskqueue_thread_enqueue, &crypto_tq); 346 347 taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN, 348 "crypto"); 349 350 error = kproc_create((void (*)(void *)) crypto_proc, NULL, 351 &cryptoproc, 0, 0, "crypto"); 352 if (error) { 353 printf("crypto_init: cannot start crypto thread; error %d", 354 error); 355 goto bad; 356 } 357 358 crypto_ret_workers = mallocarray(crypto_workers_num, 359 sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 360 361 FOREACH_CRYPTO_RETW(ret_worker) { 362 TAILQ_INIT(&ret_worker->crp_ordered_ret_q); 363 TAILQ_INIT(&ret_worker->crp_ret_q); 364 TAILQ_INIT(&ret_worker->crp_ret_kq); 365 366 ret_worker->reorder_ops = 0; 367 ret_worker->reorder_cur_seq = 0; 368 369 mtx_init(&ret_worker->crypto_ret_mtx, "crypto", "crypto return queues", MTX_DEF); 370 371 error = kproc_create((void (*)(void *)) crypto_ret_proc, ret_worker, 372 &ret_worker->cryptoretproc, 0, 0, "crypto returns %td", CRYPTO_RETW_ID(ret_worker)); 373 if (error) { 374 printf("crypto_init: cannot start cryptoret thread; error %d", 375 error); 376 goto bad; 377 } 378 } 379 380 keybuf_init(); 381 382 return 0; 383 bad: 384 crypto_destroy(); 385 return error; 386 } 387 388 /* 389 * Signal a crypto thread to terminate. We use the driver 390 * table lock to synchronize the sleep/wakeups so that we 391 * are sure the threads have terminated before we release 392 * the data structures they use. See crypto_finis below 393 * for the other half of this song-and-dance. 394 */ 395 static void 396 crypto_terminate(struct proc **pp, void *q) 397 { 398 struct proc *p; 399 400 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 401 p = *pp; 402 *pp = NULL; 403 if (p) { 404 wakeup_one(q); 405 PROC_LOCK(p); /* NB: insure we don't miss wakeup */ 406 CRYPTO_DRIVER_UNLOCK(); /* let crypto_finis progress */ 407 msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0); 408 PROC_UNLOCK(p); 409 CRYPTO_DRIVER_LOCK(); 410 } 411 } 412 413 static void 414 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen, 415 void *auth_ctx, uint8_t padval) 416 { 417 uint8_t hmac_key[HMAC_MAX_BLOCK_LEN]; 418 u_int i; 419 420 KASSERT(axf->blocksize <= sizeof(hmac_key), 421 ("Invalid HMAC block size %d", axf->blocksize)); 422 423 /* 424 * If the key is larger than the block size, use the digest of 425 * the key as the key instead. 426 */ 427 memset(hmac_key, 0, sizeof(hmac_key)); 428 if (klen > axf->blocksize) { 429 axf->Init(auth_ctx); 430 axf->Update(auth_ctx, key, klen); 431 axf->Final(hmac_key, auth_ctx); 432 klen = axf->hashsize; 433 } else 434 memcpy(hmac_key, key, klen); 435 436 for (i = 0; i < axf->blocksize; i++) 437 hmac_key[i] ^= padval; 438 439 axf->Init(auth_ctx); 440 axf->Update(auth_ctx, hmac_key, axf->blocksize); 441 explicit_bzero(hmac_key, sizeof(hmac_key)); 442 } 443 444 void 445 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen, 446 void *auth_ctx) 447 { 448 449 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL); 450 } 451 452 void 453 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen, 454 void *auth_ctx) 455 { 456 457 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL); 458 } 459 460 static void 461 crypto_destroy(void) 462 { 463 struct crypto_ret_worker *ret_worker; 464 int i; 465 466 /* 467 * Terminate any crypto threads. 468 */ 469 if (crypto_tq != NULL) 470 taskqueue_drain_all(crypto_tq); 471 CRYPTO_DRIVER_LOCK(); 472 crypto_terminate(&cryptoproc, &crp_q); 473 FOREACH_CRYPTO_RETW(ret_worker) 474 crypto_terminate(&ret_worker->cryptoretproc, &ret_worker->crp_ret_q); 475 CRYPTO_DRIVER_UNLOCK(); 476 477 /* XXX flush queues??? */ 478 479 /* 480 * Reclaim dynamically allocated resources. 481 */ 482 for (i = 0; i < crypto_drivers_size; i++) { 483 if (crypto_drivers[i] != NULL) 484 cap_rele(crypto_drivers[i]); 485 } 486 free(crypto_drivers, M_CRYPTO_DATA); 487 488 if (cryptoses_zone != NULL) 489 uma_zdestroy(cryptoses_zone); 490 if (cryptop_zone != NULL) 491 uma_zdestroy(cryptop_zone); 492 mtx_destroy(&crypto_q_mtx); 493 FOREACH_CRYPTO_RETW(ret_worker) 494 mtx_destroy(&ret_worker->crypto_ret_mtx); 495 free(crypto_ret_workers, M_CRYPTO_DATA); 496 if (crypto_tq != NULL) 497 taskqueue_free(crypto_tq); 498 mtx_destroy(&crypto_drivers_mtx); 499 } 500 501 uint32_t 502 crypto_ses2hid(crypto_session_t crypto_session) 503 { 504 return (crypto_session->cap->cc_hid); 505 } 506 507 uint32_t 508 crypto_ses2caps(crypto_session_t crypto_session) 509 { 510 return (crypto_session->cap->cc_flags & 0xff000000); 511 } 512 513 void * 514 crypto_get_driver_session(crypto_session_t crypto_session) 515 { 516 return (crypto_session->softc); 517 } 518 519 const struct crypto_session_params * 520 crypto_get_params(crypto_session_t crypto_session) 521 { 522 return (&crypto_session->csp); 523 } 524 525 struct auth_hash * 526 crypto_auth_hash(const struct crypto_session_params *csp) 527 { 528 529 switch (csp->csp_auth_alg) { 530 case CRYPTO_SHA1_HMAC: 531 return (&auth_hash_hmac_sha1); 532 case CRYPTO_SHA2_224_HMAC: 533 return (&auth_hash_hmac_sha2_224); 534 case CRYPTO_SHA2_256_HMAC: 535 return (&auth_hash_hmac_sha2_256); 536 case CRYPTO_SHA2_384_HMAC: 537 return (&auth_hash_hmac_sha2_384); 538 case CRYPTO_SHA2_512_HMAC: 539 return (&auth_hash_hmac_sha2_512); 540 case CRYPTO_NULL_HMAC: 541 return (&auth_hash_null); 542 case CRYPTO_RIPEMD160_HMAC: 543 return (&auth_hash_hmac_ripemd_160); 544 case CRYPTO_SHA1: 545 return (&auth_hash_sha1); 546 case CRYPTO_SHA2_224: 547 return (&auth_hash_sha2_224); 548 case CRYPTO_SHA2_256: 549 return (&auth_hash_sha2_256); 550 case CRYPTO_SHA2_384: 551 return (&auth_hash_sha2_384); 552 case CRYPTO_SHA2_512: 553 return (&auth_hash_sha2_512); 554 case CRYPTO_AES_NIST_GMAC: 555 switch (csp->csp_auth_klen) { 556 case 128 / 8: 557 return (&auth_hash_nist_gmac_aes_128); 558 case 192 / 8: 559 return (&auth_hash_nist_gmac_aes_192); 560 case 256 / 8: 561 return (&auth_hash_nist_gmac_aes_256); 562 default: 563 return (NULL); 564 } 565 case CRYPTO_BLAKE2B: 566 return (&auth_hash_blake2b); 567 case CRYPTO_BLAKE2S: 568 return (&auth_hash_blake2s); 569 case CRYPTO_POLY1305: 570 return (&auth_hash_poly1305); 571 case CRYPTO_AES_CCM_CBC_MAC: 572 switch (csp->csp_auth_klen) { 573 case 128 / 8: 574 return (&auth_hash_ccm_cbc_mac_128); 575 case 192 / 8: 576 return (&auth_hash_ccm_cbc_mac_192); 577 case 256 / 8: 578 return (&auth_hash_ccm_cbc_mac_256); 579 default: 580 return (NULL); 581 } 582 default: 583 return (NULL); 584 } 585 } 586 587 struct enc_xform * 588 crypto_cipher(const struct crypto_session_params *csp) 589 { 590 591 switch (csp->csp_cipher_alg) { 592 case CRYPTO_RIJNDAEL128_CBC: 593 return (&enc_xform_rijndael128); 594 case CRYPTO_AES_XTS: 595 return (&enc_xform_aes_xts); 596 case CRYPTO_AES_ICM: 597 return (&enc_xform_aes_icm); 598 case CRYPTO_AES_NIST_GCM_16: 599 return (&enc_xform_aes_nist_gcm); 600 case CRYPTO_CAMELLIA_CBC: 601 return (&enc_xform_camellia); 602 case CRYPTO_NULL_CBC: 603 return (&enc_xform_null); 604 case CRYPTO_CHACHA20: 605 return (&enc_xform_chacha20); 606 case CRYPTO_AES_CCM_16: 607 return (&enc_xform_ccm); 608 default: 609 return (NULL); 610 } 611 } 612 613 static struct cryptocap * 614 crypto_checkdriver(uint32_t hid) 615 { 616 617 return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]); 618 } 619 620 /* 621 * Select a driver for a new session that supports the specified 622 * algorithms and, optionally, is constrained according to the flags. 623 */ 624 static struct cryptocap * 625 crypto_select_driver(const struct crypto_session_params *csp, int flags) 626 { 627 struct cryptocap *cap, *best; 628 int best_match, error, hid; 629 630 CRYPTO_DRIVER_ASSERT(); 631 632 best = NULL; 633 for (hid = 0; hid < crypto_drivers_size; hid++) { 634 /* 635 * If there is no driver for this slot, or the driver 636 * is not appropriate (hardware or software based on 637 * match), then skip. 638 */ 639 cap = crypto_drivers[hid]; 640 if (cap == NULL || 641 (cap->cc_flags & flags) == 0) 642 continue; 643 644 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp); 645 if (error >= 0) 646 continue; 647 648 /* 649 * Use the driver with the highest probe value. 650 * Hardware drivers use a higher probe value than 651 * software. In case of a tie, prefer the driver with 652 * the fewest active sessions. 653 */ 654 if (best == NULL || error > best_match || 655 (error == best_match && 656 cap->cc_sessions < best->cc_sessions)) { 657 best = cap; 658 best_match = error; 659 } 660 } 661 return best; 662 } 663 664 static enum alg_type { 665 ALG_NONE = 0, 666 ALG_CIPHER, 667 ALG_DIGEST, 668 ALG_KEYED_DIGEST, 669 ALG_COMPRESSION, 670 ALG_AEAD 671 } alg_types[] = { 672 [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST, 673 [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST, 674 [CRYPTO_AES_CBC] = ALG_CIPHER, 675 [CRYPTO_SHA1] = ALG_DIGEST, 676 [CRYPTO_NULL_HMAC] = ALG_DIGEST, 677 [CRYPTO_NULL_CBC] = ALG_CIPHER, 678 [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION, 679 [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST, 680 [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST, 681 [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST, 682 [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER, 683 [CRYPTO_AES_XTS] = ALG_CIPHER, 684 [CRYPTO_AES_ICM] = ALG_CIPHER, 685 [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST, 686 [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD, 687 [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST, 688 [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST, 689 [CRYPTO_CHACHA20] = ALG_CIPHER, 690 [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST, 691 [CRYPTO_RIPEMD160] = ALG_DIGEST, 692 [CRYPTO_SHA2_224] = ALG_DIGEST, 693 [CRYPTO_SHA2_256] = ALG_DIGEST, 694 [CRYPTO_SHA2_384] = ALG_DIGEST, 695 [CRYPTO_SHA2_512] = ALG_DIGEST, 696 [CRYPTO_POLY1305] = ALG_KEYED_DIGEST, 697 [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST, 698 [CRYPTO_AES_CCM_16] = ALG_AEAD, 699 }; 700 701 static enum alg_type 702 alg_type(int alg) 703 { 704 705 if (alg < nitems(alg_types)) 706 return (alg_types[alg]); 707 return (ALG_NONE); 708 } 709 710 static bool 711 alg_is_compression(int alg) 712 { 713 714 return (alg_type(alg) == ALG_COMPRESSION); 715 } 716 717 static bool 718 alg_is_cipher(int alg) 719 { 720 721 return (alg_type(alg) == ALG_CIPHER); 722 } 723 724 static bool 725 alg_is_digest(int alg) 726 { 727 728 return (alg_type(alg) == ALG_DIGEST || 729 alg_type(alg) == ALG_KEYED_DIGEST); 730 } 731 732 static bool 733 alg_is_keyed_digest(int alg) 734 { 735 736 return (alg_type(alg) == ALG_KEYED_DIGEST); 737 } 738 739 static bool 740 alg_is_aead(int alg) 741 { 742 743 return (alg_type(alg) == ALG_AEAD); 744 } 745 746 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN) 747 748 /* Various sanity checks on crypto session parameters. */ 749 static bool 750 check_csp(const struct crypto_session_params *csp) 751 { 752 struct auth_hash *axf; 753 754 /* Mode-independent checks. */ 755 if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0) 756 return (false); 757 if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 || 758 csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0) 759 return (false); 760 if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0) 761 return (false); 762 if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0) 763 return (false); 764 765 switch (csp->csp_mode) { 766 case CSP_MODE_COMPRESS: 767 if (!alg_is_compression(csp->csp_cipher_alg)) 768 return (false); 769 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) 770 return (false); 771 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 772 return (false); 773 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 || 774 csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 775 csp->csp_auth_mlen != 0) 776 return (false); 777 break; 778 case CSP_MODE_CIPHER: 779 if (!alg_is_cipher(csp->csp_cipher_alg)) 780 return (false); 781 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 782 return (false); 783 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 784 if (csp->csp_cipher_klen == 0) 785 return (false); 786 if (csp->csp_ivlen == 0) 787 return (false); 788 } 789 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 790 return (false); 791 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 792 csp->csp_auth_mlen != 0) 793 return (false); 794 break; 795 case CSP_MODE_DIGEST: 796 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0) 797 return (false); 798 799 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 800 return (false); 801 802 /* IV is optional for digests (e.g. GMAC). */ 803 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 804 return (false); 805 if (!alg_is_digest(csp->csp_auth_alg)) 806 return (false); 807 808 /* Key is optional for BLAKE2 digests. */ 809 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 810 csp->csp_auth_alg == CRYPTO_BLAKE2S) 811 ; 812 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 813 if (csp->csp_auth_klen == 0) 814 return (false); 815 } else { 816 if (csp->csp_auth_klen != 0) 817 return (false); 818 } 819 if (csp->csp_auth_mlen != 0) { 820 axf = crypto_auth_hash(csp); 821 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 822 return (false); 823 } 824 break; 825 case CSP_MODE_AEAD: 826 if (!alg_is_aead(csp->csp_cipher_alg)) 827 return (false); 828 if (csp->csp_cipher_klen == 0) 829 return (false); 830 if (csp->csp_ivlen == 0 || 831 csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 832 return (false); 833 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0) 834 return (false); 835 836 /* 837 * XXX: Would be nice to have a better way to get this 838 * value. 839 */ 840 switch (csp->csp_cipher_alg) { 841 case CRYPTO_AES_NIST_GCM_16: 842 case CRYPTO_AES_CCM_16: 843 if (csp->csp_auth_mlen > 16) 844 return (false); 845 break; 846 } 847 break; 848 case CSP_MODE_ETA: 849 if (!alg_is_cipher(csp->csp_cipher_alg)) 850 return (false); 851 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 852 if (csp->csp_cipher_klen == 0) 853 return (false); 854 if (csp->csp_ivlen == 0) 855 return (false); 856 } 857 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 858 return (false); 859 if (!alg_is_digest(csp->csp_auth_alg)) 860 return (false); 861 862 /* Key is optional for BLAKE2 digests. */ 863 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 864 csp->csp_auth_alg == CRYPTO_BLAKE2S) 865 ; 866 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 867 if (csp->csp_auth_klen == 0) 868 return (false); 869 } else { 870 if (csp->csp_auth_klen != 0) 871 return (false); 872 } 873 if (csp->csp_auth_mlen != 0) { 874 axf = crypto_auth_hash(csp); 875 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 876 return (false); 877 } 878 break; 879 default: 880 return (false); 881 } 882 883 return (true); 884 } 885 886 /* 887 * Delete a session after it has been detached from its driver. 888 */ 889 static void 890 crypto_deletesession(crypto_session_t cses) 891 { 892 struct cryptocap *cap; 893 894 cap = cses->cap; 895 896 zfree(cses->softc, M_CRYPTO_DATA); 897 uma_zfree(cryptoses_zone, cses); 898 899 CRYPTO_DRIVER_LOCK(); 900 cap->cc_sessions--; 901 if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 902 wakeup(cap); 903 CRYPTO_DRIVER_UNLOCK(); 904 cap_rele(cap); 905 } 906 907 /* 908 * Create a new session. The crid argument specifies a crypto 909 * driver to use or constraints on a driver to select (hardware 910 * only, software only, either). Whatever driver is selected 911 * must be capable of the requested crypto algorithms. 912 */ 913 int 914 crypto_newsession(crypto_session_t *cses, 915 const struct crypto_session_params *csp, int crid) 916 { 917 crypto_session_t res; 918 struct cryptocap *cap; 919 int err; 920 921 if (!check_csp(csp)) 922 return (EINVAL); 923 924 res = NULL; 925 926 CRYPTO_DRIVER_LOCK(); 927 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 928 /* 929 * Use specified driver; verify it is capable. 930 */ 931 cap = crypto_checkdriver(crid); 932 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0) 933 cap = NULL; 934 } else { 935 /* 936 * No requested driver; select based on crid flags. 937 */ 938 cap = crypto_select_driver(csp, crid); 939 } 940 if (cap == NULL) { 941 CRYPTO_DRIVER_UNLOCK(); 942 CRYPTDEB("no driver"); 943 return (EOPNOTSUPP); 944 } 945 cap_ref(cap); 946 cap->cc_sessions++; 947 CRYPTO_DRIVER_UNLOCK(); 948 949 res = uma_zalloc(cryptoses_zone, M_WAITOK | M_ZERO); 950 res->cap = cap; 951 res->softc = malloc(cap->cc_session_size, M_CRYPTO_DATA, M_WAITOK | 952 M_ZERO); 953 res->csp = *csp; 954 955 /* Call the driver initialization routine. */ 956 err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp); 957 if (err != 0) { 958 CRYPTDEB("dev newsession failed: %d", err); 959 crypto_deletesession(res); 960 return (err); 961 } 962 963 *cses = res; 964 return (0); 965 } 966 967 /* 968 * Delete an existing session (or a reserved session on an unregistered 969 * driver). 970 */ 971 void 972 crypto_freesession(crypto_session_t cses) 973 { 974 struct cryptocap *cap; 975 976 if (cses == NULL) 977 return; 978 979 cap = cses->cap; 980 981 /* Call the driver cleanup routine, if available. */ 982 CRYPTODEV_FREESESSION(cap->cc_dev, cses); 983 984 crypto_deletesession(cses); 985 } 986 987 /* 988 * Return a new driver id. Registers a driver with the system so that 989 * it can be probed by subsequent sessions. 990 */ 991 int32_t 992 crypto_get_driverid(device_t dev, size_t sessionsize, int flags) 993 { 994 struct cryptocap *cap, **newdrv; 995 int i; 996 997 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 998 device_printf(dev, 999 "no flags specified when registering driver\n"); 1000 return -1; 1001 } 1002 1003 cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1004 cap->cc_dev = dev; 1005 cap->cc_session_size = sessionsize; 1006 cap->cc_flags = flags; 1007 refcount_init(&cap->cc_refs, 1); 1008 1009 CRYPTO_DRIVER_LOCK(); 1010 for (;;) { 1011 for (i = 0; i < crypto_drivers_size; i++) { 1012 if (crypto_drivers[i] == NULL) 1013 break; 1014 } 1015 1016 if (i < crypto_drivers_size) 1017 break; 1018 1019 /* Out of entries, allocate some more. */ 1020 1021 if (2 * crypto_drivers_size <= crypto_drivers_size) { 1022 CRYPTO_DRIVER_UNLOCK(); 1023 printf("crypto: driver count wraparound!\n"); 1024 cap_rele(cap); 1025 return (-1); 1026 } 1027 CRYPTO_DRIVER_UNLOCK(); 1028 1029 newdrv = malloc(2 * crypto_drivers_size * 1030 sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1031 1032 CRYPTO_DRIVER_LOCK(); 1033 memcpy(newdrv, crypto_drivers, 1034 crypto_drivers_size * sizeof(*crypto_drivers)); 1035 1036 crypto_drivers_size *= 2; 1037 1038 free(crypto_drivers, M_CRYPTO_DATA); 1039 crypto_drivers = newdrv; 1040 } 1041 1042 cap->cc_hid = i; 1043 crypto_drivers[i] = cap; 1044 CRYPTO_DRIVER_UNLOCK(); 1045 1046 if (bootverbose) 1047 printf("crypto: assign %s driver id %u, flags 0x%x\n", 1048 device_get_nameunit(dev), i, flags); 1049 1050 return i; 1051 } 1052 1053 /* 1054 * Lookup a driver by name. We match against the full device 1055 * name and unit, and against just the name. The latter gives 1056 * us a simple widlcarding by device name. On success return the 1057 * driver/hardware identifier; otherwise return -1. 1058 */ 1059 int 1060 crypto_find_driver(const char *match) 1061 { 1062 struct cryptocap *cap; 1063 int i, len = strlen(match); 1064 1065 CRYPTO_DRIVER_LOCK(); 1066 for (i = 0; i < crypto_drivers_size; i++) { 1067 if (crypto_drivers[i] == NULL) 1068 continue; 1069 cap = crypto_drivers[i]; 1070 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 || 1071 strncmp(match, device_get_name(cap->cc_dev), len) == 0) { 1072 CRYPTO_DRIVER_UNLOCK(); 1073 return (i); 1074 } 1075 } 1076 CRYPTO_DRIVER_UNLOCK(); 1077 return (-1); 1078 } 1079 1080 /* 1081 * Return the device_t for the specified driver or NULL 1082 * if the driver identifier is invalid. 1083 */ 1084 device_t 1085 crypto_find_device_byhid(int hid) 1086 { 1087 struct cryptocap *cap; 1088 device_t dev; 1089 1090 dev = NULL; 1091 CRYPTO_DRIVER_LOCK(); 1092 cap = crypto_checkdriver(hid); 1093 if (cap != NULL) 1094 dev = cap->cc_dev; 1095 CRYPTO_DRIVER_UNLOCK(); 1096 return (dev); 1097 } 1098 1099 /* 1100 * Return the device/driver capabilities. 1101 */ 1102 int 1103 crypto_getcaps(int hid) 1104 { 1105 struct cryptocap *cap; 1106 int flags; 1107 1108 flags = 0; 1109 CRYPTO_DRIVER_LOCK(); 1110 cap = crypto_checkdriver(hid); 1111 if (cap != NULL) 1112 flags = cap->cc_flags; 1113 CRYPTO_DRIVER_UNLOCK(); 1114 return (flags); 1115 } 1116 1117 /* 1118 * Register support for a key-related algorithm. This routine 1119 * is called once for each algorithm supported a driver. 1120 */ 1121 int 1122 crypto_kregister(uint32_t driverid, int kalg, uint32_t flags) 1123 { 1124 struct cryptocap *cap; 1125 int err; 1126 1127 CRYPTO_DRIVER_LOCK(); 1128 1129 cap = crypto_checkdriver(driverid); 1130 if (cap != NULL && 1131 (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) { 1132 /* 1133 * XXX Do some performance testing to determine placing. 1134 * XXX We probably need an auxiliary data structure that 1135 * XXX describes relative performances. 1136 */ 1137 1138 cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED; 1139 if (bootverbose) 1140 printf("crypto: %s registers key alg %u flags %u\n" 1141 , device_get_nameunit(cap->cc_dev) 1142 , kalg 1143 , flags 1144 ); 1145 gone_in_dev(cap->cc_dev, 14, "asymmetric crypto"); 1146 err = 0; 1147 } else 1148 err = EINVAL; 1149 1150 CRYPTO_DRIVER_UNLOCK(); 1151 return err; 1152 } 1153 1154 /* 1155 * Unregister all algorithms associated with a crypto driver. 1156 * If there are pending sessions using it, leave enough information 1157 * around so that subsequent calls using those sessions will 1158 * correctly detect the driver has been unregistered and reroute 1159 * requests. 1160 */ 1161 int 1162 crypto_unregister_all(uint32_t driverid) 1163 { 1164 struct cryptocap *cap; 1165 1166 CRYPTO_DRIVER_LOCK(); 1167 cap = crypto_checkdriver(driverid); 1168 if (cap == NULL) { 1169 CRYPTO_DRIVER_UNLOCK(); 1170 return (EINVAL); 1171 } 1172 1173 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 1174 crypto_drivers[driverid] = NULL; 1175 1176 /* 1177 * XXX: This doesn't do anything to kick sessions that 1178 * have no pending operations. 1179 */ 1180 while (cap->cc_sessions != 0 || cap->cc_koperations != 0) 1181 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0); 1182 CRYPTO_DRIVER_UNLOCK(); 1183 cap_rele(cap); 1184 1185 return (0); 1186 } 1187 1188 /* 1189 * Clear blockage on a driver. The what parameter indicates whether 1190 * the driver is now ready for cryptop's and/or cryptokop's. 1191 */ 1192 int 1193 crypto_unblock(uint32_t driverid, int what) 1194 { 1195 struct cryptocap *cap; 1196 int err; 1197 1198 CRYPTO_Q_LOCK(); 1199 cap = crypto_checkdriver(driverid); 1200 if (cap != NULL) { 1201 if (what & CRYPTO_SYMQ) 1202 cap->cc_qblocked = 0; 1203 if (what & CRYPTO_ASYMQ) 1204 cap->cc_kqblocked = 0; 1205 if (crp_sleep) 1206 wakeup_one(&crp_q); 1207 err = 0; 1208 } else 1209 err = EINVAL; 1210 CRYPTO_Q_UNLOCK(); 1211 1212 return err; 1213 } 1214 1215 size_t 1216 crypto_buffer_len(struct crypto_buffer *cb) 1217 { 1218 switch (cb->cb_type) { 1219 case CRYPTO_BUF_CONTIG: 1220 return (cb->cb_buf_len); 1221 case CRYPTO_BUF_MBUF: 1222 if (cb->cb_mbuf->m_flags & M_PKTHDR) 1223 return (cb->cb_mbuf->m_pkthdr.len); 1224 return (m_length(cb->cb_mbuf, NULL)); 1225 case CRYPTO_BUF_VMPAGE: 1226 return (cb->cb_vm_page_len); 1227 case CRYPTO_BUF_UIO: 1228 return (cb->cb_uio->uio_resid); 1229 default: 1230 return (0); 1231 } 1232 } 1233 1234 #ifdef INVARIANTS 1235 /* Various sanity checks on crypto requests. */ 1236 static void 1237 cb_sanity(struct crypto_buffer *cb, const char *name) 1238 { 1239 KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST, 1240 ("incoming crp with invalid %s buffer type", name)); 1241 switch (cb->cb_type) { 1242 case CRYPTO_BUF_CONTIG: 1243 KASSERT(cb->cb_buf_len >= 0, 1244 ("incoming crp with -ve %s buffer length", name)); 1245 break; 1246 case CRYPTO_BUF_VMPAGE: 1247 KASSERT(CRYPTO_HAS_VMPAGE, 1248 ("incoming crp uses dmap on supported arch")); 1249 KASSERT(cb->cb_vm_page_len >= 0, 1250 ("incoming crp with -ve %s buffer length", name)); 1251 KASSERT(cb->cb_vm_page_offset >= 0, 1252 ("incoming crp with -ve %s buffer offset", name)); 1253 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE, 1254 ("incoming crp with %s buffer offset greater than page size" 1255 , name)); 1256 break; 1257 default: 1258 break; 1259 } 1260 } 1261 1262 static void 1263 crp_sanity(struct cryptop *crp) 1264 { 1265 struct crypto_session_params *csp; 1266 struct crypto_buffer *out; 1267 size_t ilen, len, olen; 1268 1269 KASSERT(crp->crp_session != NULL, ("incoming crp without a session")); 1270 KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE && 1271 crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST, 1272 ("incoming crp with invalid output buffer type")); 1273 KASSERT(crp->crp_etype == 0, ("incoming crp with error")); 1274 KASSERT(!(crp->crp_flags & CRYPTO_F_DONE), 1275 ("incoming crp already done")); 1276 1277 csp = &crp->crp_session->csp; 1278 cb_sanity(&crp->crp_buf, "input"); 1279 ilen = crypto_buffer_len(&crp->crp_buf); 1280 olen = ilen; 1281 out = NULL; 1282 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) { 1283 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) { 1284 cb_sanity(&crp->crp_obuf, "output"); 1285 out = &crp->crp_obuf; 1286 olen = crypto_buffer_len(out); 1287 } 1288 } else 1289 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE, 1290 ("incoming crp with separate output buffer " 1291 "but no session support")); 1292 1293 switch (csp->csp_mode) { 1294 case CSP_MODE_COMPRESS: 1295 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS || 1296 crp->crp_op == CRYPTO_OP_DECOMPRESS, 1297 ("invalid compression op %x", crp->crp_op)); 1298 break; 1299 case CSP_MODE_CIPHER: 1300 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT || 1301 crp->crp_op == CRYPTO_OP_DECRYPT, 1302 ("invalid cipher op %x", crp->crp_op)); 1303 break; 1304 case CSP_MODE_DIGEST: 1305 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST || 1306 crp->crp_op == CRYPTO_OP_VERIFY_DIGEST, 1307 ("invalid digest op %x", crp->crp_op)); 1308 break; 1309 case CSP_MODE_AEAD: 1310 KASSERT(crp->crp_op == 1311 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1312 crp->crp_op == 1313 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1314 ("invalid AEAD op %x", crp->crp_op)); 1315 if (csp->csp_cipher_alg == CRYPTO_AES_NIST_GCM_16) 1316 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1317 ("GCM without a separate IV")); 1318 if (csp->csp_cipher_alg == CRYPTO_AES_CCM_16) 1319 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1320 ("CCM without a separate IV")); 1321 break; 1322 case CSP_MODE_ETA: 1323 KASSERT(crp->crp_op == 1324 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1325 crp->crp_op == 1326 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1327 ("invalid ETA op %x", crp->crp_op)); 1328 break; 1329 } 1330 if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1331 if (crp->crp_aad == NULL) { 1332 KASSERT(crp->crp_aad_start == 0 || 1333 crp->crp_aad_start < ilen, 1334 ("invalid AAD start")); 1335 KASSERT(crp->crp_aad_length != 0 || 1336 crp->crp_aad_start == 0, 1337 ("AAD with zero length and non-zero start")); 1338 KASSERT(crp->crp_aad_length == 0 || 1339 crp->crp_aad_start + crp->crp_aad_length <= ilen, 1340 ("AAD outside input length")); 1341 } else { 1342 KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD, 1343 ("session doesn't support separate AAD buffer")); 1344 KASSERT(crp->crp_aad_start == 0, 1345 ("separate AAD buffer with non-zero AAD start")); 1346 KASSERT(crp->crp_aad_length != 0, 1347 ("separate AAD buffer with zero length")); 1348 } 1349 } else { 1350 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 && 1351 crp->crp_aad_length == 0, 1352 ("AAD region in request not supporting AAD")); 1353 } 1354 if (csp->csp_ivlen == 0) { 1355 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0, 1356 ("IV_SEPARATE set when IV isn't used")); 1357 KASSERT(crp->crp_iv_start == 0, 1358 ("crp_iv_start set when IV isn't used")); 1359 } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) { 1360 KASSERT(crp->crp_iv_start == 0, 1361 ("IV_SEPARATE used with non-zero IV start")); 1362 } else { 1363 KASSERT(crp->crp_iv_start < ilen, 1364 ("invalid IV start")); 1365 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen, 1366 ("IV outside buffer length")); 1367 } 1368 /* XXX: payload_start of 0 should always be < ilen? */ 1369 KASSERT(crp->crp_payload_start == 0 || 1370 crp->crp_payload_start < ilen, 1371 ("invalid payload start")); 1372 KASSERT(crp->crp_payload_start + crp->crp_payload_length <= 1373 ilen, ("payload outside input buffer")); 1374 if (out == NULL) { 1375 KASSERT(crp->crp_payload_output_start == 0, 1376 ("payload output start non-zero without output buffer")); 1377 } else { 1378 KASSERT(crp->crp_payload_output_start < olen, 1379 ("invalid payload output start")); 1380 KASSERT(crp->crp_payload_output_start + 1381 crp->crp_payload_length <= olen, 1382 ("payload outside output buffer")); 1383 } 1384 if (csp->csp_mode == CSP_MODE_DIGEST || 1385 csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1386 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) 1387 len = ilen; 1388 else 1389 len = olen; 1390 KASSERT(crp->crp_digest_start == 0 || 1391 crp->crp_digest_start < len, 1392 ("invalid digest start")); 1393 /* XXX: For the mlen == 0 case this check isn't perfect. */ 1394 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len, 1395 ("digest outside buffer")); 1396 } else { 1397 KASSERT(crp->crp_digest_start == 0, 1398 ("non-zero digest start for request without a digest")); 1399 } 1400 if (csp->csp_cipher_klen != 0) 1401 KASSERT(csp->csp_cipher_key != NULL || 1402 crp->crp_cipher_key != NULL, 1403 ("cipher request without a key")); 1404 if (csp->csp_auth_klen != 0) 1405 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL, 1406 ("auth request without a key")); 1407 KASSERT(crp->crp_callback != NULL, ("incoming crp without callback")); 1408 } 1409 #endif 1410 1411 /* 1412 * Add a crypto request to a queue, to be processed by the kernel thread. 1413 */ 1414 int 1415 crypto_dispatch(struct cryptop *crp) 1416 { 1417 struct cryptocap *cap; 1418 int result; 1419 1420 #ifdef INVARIANTS 1421 crp_sanity(crp); 1422 #endif 1423 1424 CRYPTOSTAT_INC(cs_ops); 1425 1426 crp->crp_retw_id = ((uintptr_t)crp->crp_session) % crypto_workers_num; 1427 1428 if (CRYPTOP_ASYNC(crp)) { 1429 if (crp->crp_flags & CRYPTO_F_ASYNC_KEEPORDER) { 1430 struct crypto_ret_worker *ret_worker; 1431 1432 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1433 1434 CRYPTO_RETW_LOCK(ret_worker); 1435 crp->crp_seq = ret_worker->reorder_ops++; 1436 CRYPTO_RETW_UNLOCK(ret_worker); 1437 } 1438 1439 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp); 1440 taskqueue_enqueue(crypto_tq, &crp->crp_task); 1441 return (0); 1442 } 1443 1444 if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) { 1445 /* 1446 * Caller marked the request to be processed 1447 * immediately; dispatch it directly to the 1448 * driver unless the driver is currently blocked. 1449 */ 1450 cap = crp->crp_session->cap; 1451 if (!cap->cc_qblocked) { 1452 result = crypto_invoke(cap, crp, 0); 1453 if (result != ERESTART) 1454 return (result); 1455 /* 1456 * The driver ran out of resources, put the request on 1457 * the queue. 1458 */ 1459 } 1460 } 1461 crypto_batch_enqueue(crp); 1462 return 0; 1463 } 1464 1465 void 1466 crypto_batch_enqueue(struct cryptop *crp) 1467 { 1468 1469 CRYPTO_Q_LOCK(); 1470 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 1471 if (crp_sleep) 1472 wakeup_one(&crp_q); 1473 CRYPTO_Q_UNLOCK(); 1474 } 1475 1476 /* 1477 * Add an asymetric crypto request to a queue, 1478 * to be processed by the kernel thread. 1479 */ 1480 int 1481 crypto_kdispatch(struct cryptkop *krp) 1482 { 1483 int error; 1484 1485 CRYPTOSTAT_INC(cs_kops); 1486 1487 krp->krp_cap = NULL; 1488 error = crypto_kinvoke(krp); 1489 if (error == ERESTART) { 1490 CRYPTO_Q_LOCK(); 1491 TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next); 1492 if (crp_sleep) 1493 wakeup_one(&crp_q); 1494 CRYPTO_Q_UNLOCK(); 1495 error = 0; 1496 } 1497 return error; 1498 } 1499 1500 /* 1501 * Verify a driver is suitable for the specified operation. 1502 */ 1503 static __inline int 1504 kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp) 1505 { 1506 return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0; 1507 } 1508 1509 /* 1510 * Select a driver for an asym operation. The driver must 1511 * support the necessary algorithm. The caller can constrain 1512 * which device is selected with the flags parameter. The 1513 * algorithm we use here is pretty stupid; just use the first 1514 * driver that supports the algorithms we need. If there are 1515 * multiple suitable drivers we choose the driver with the 1516 * fewest active operations. We prefer hardware-backed 1517 * drivers to software ones when either may be used. 1518 */ 1519 static struct cryptocap * 1520 crypto_select_kdriver(const struct cryptkop *krp, int flags) 1521 { 1522 struct cryptocap *cap, *best; 1523 int match, hid; 1524 1525 CRYPTO_DRIVER_ASSERT(); 1526 1527 /* 1528 * Look first for hardware crypto devices if permitted. 1529 */ 1530 if (flags & CRYPTOCAP_F_HARDWARE) 1531 match = CRYPTOCAP_F_HARDWARE; 1532 else 1533 match = CRYPTOCAP_F_SOFTWARE; 1534 best = NULL; 1535 again: 1536 for (hid = 0; hid < crypto_drivers_size; hid++) { 1537 /* 1538 * If there is no driver for this slot, or the driver 1539 * is not appropriate (hardware or software based on 1540 * match), then skip. 1541 */ 1542 cap = crypto_drivers[hid]; 1543 if (cap == NULL || 1544 (cap->cc_flags & match) == 0) 1545 continue; 1546 1547 /* verify all the algorithms are supported. */ 1548 if (kdriver_suitable(cap, krp)) { 1549 if (best == NULL || 1550 cap->cc_koperations < best->cc_koperations) 1551 best = cap; 1552 } 1553 } 1554 if (best != NULL) 1555 return best; 1556 if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) { 1557 /* sort of an Algol 68-style for loop */ 1558 match = CRYPTOCAP_F_SOFTWARE; 1559 goto again; 1560 } 1561 return best; 1562 } 1563 1564 /* 1565 * Choose a driver for an asymmetric crypto request. 1566 */ 1567 static struct cryptocap * 1568 crypto_lookup_kdriver(struct cryptkop *krp) 1569 { 1570 struct cryptocap *cap; 1571 uint32_t crid; 1572 1573 /* If this request is requeued, it might already have a driver. */ 1574 cap = krp->krp_cap; 1575 if (cap != NULL) 1576 return (cap); 1577 1578 /* Use krp_crid to choose a driver. */ 1579 crid = krp->krp_crid; 1580 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 1581 cap = crypto_checkdriver(crid); 1582 if (cap != NULL) { 1583 /* 1584 * Driver present, it must support the 1585 * necessary algorithm and, if s/w drivers are 1586 * excluded, it must be registered as 1587 * hardware-backed. 1588 */ 1589 if (!kdriver_suitable(cap, krp) || 1590 (!crypto_devallowsoft && 1591 (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0)) 1592 cap = NULL; 1593 } 1594 } else { 1595 /* 1596 * No requested driver; select based on crid flags. 1597 */ 1598 if (!crypto_devallowsoft) /* NB: disallow s/w drivers */ 1599 crid &= ~CRYPTOCAP_F_SOFTWARE; 1600 cap = crypto_select_kdriver(krp, crid); 1601 } 1602 1603 if (cap != NULL) { 1604 krp->krp_cap = cap_ref(cap); 1605 krp->krp_hid = cap->cc_hid; 1606 } 1607 return (cap); 1608 } 1609 1610 /* 1611 * Dispatch an asymmetric crypto request. 1612 */ 1613 static int 1614 crypto_kinvoke(struct cryptkop *krp) 1615 { 1616 struct cryptocap *cap = NULL; 1617 int error; 1618 1619 KASSERT(krp != NULL, ("%s: krp == NULL", __func__)); 1620 KASSERT(krp->krp_callback != NULL, 1621 ("%s: krp->crp_callback == NULL", __func__)); 1622 1623 CRYPTO_DRIVER_LOCK(); 1624 cap = crypto_lookup_kdriver(krp); 1625 if (cap == NULL) { 1626 CRYPTO_DRIVER_UNLOCK(); 1627 krp->krp_status = ENODEV; 1628 crypto_kdone(krp); 1629 return (0); 1630 } 1631 1632 /* 1633 * If the device is blocked, return ERESTART to requeue it. 1634 */ 1635 if (cap->cc_kqblocked) { 1636 /* 1637 * XXX: Previously this set krp_status to ERESTART and 1638 * invoked crypto_kdone but the caller would still 1639 * requeue it. 1640 */ 1641 CRYPTO_DRIVER_UNLOCK(); 1642 return (ERESTART); 1643 } 1644 1645 cap->cc_koperations++; 1646 CRYPTO_DRIVER_UNLOCK(); 1647 error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0); 1648 if (error == ERESTART) { 1649 CRYPTO_DRIVER_LOCK(); 1650 cap->cc_koperations--; 1651 CRYPTO_DRIVER_UNLOCK(); 1652 return (error); 1653 } 1654 1655 KASSERT(error == 0, ("error %d returned from crypto_kprocess", error)); 1656 return (0); 1657 } 1658 1659 static void 1660 crypto_task_invoke(void *ctx, int pending) 1661 { 1662 struct cryptocap *cap; 1663 struct cryptop *crp; 1664 int result; 1665 1666 crp = (struct cryptop *)ctx; 1667 cap = crp->crp_session->cap; 1668 result = crypto_invoke(cap, crp, 0); 1669 if (result == ERESTART) 1670 crypto_batch_enqueue(crp); 1671 } 1672 1673 /* 1674 * Dispatch a crypto request to the appropriate crypto devices. 1675 */ 1676 static int 1677 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) 1678 { 1679 1680 KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); 1681 KASSERT(crp->crp_callback != NULL, 1682 ("%s: crp->crp_callback == NULL", __func__)); 1683 KASSERT(crp->crp_session != NULL, 1684 ("%s: crp->crp_session == NULL", __func__)); 1685 1686 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1687 struct crypto_session_params csp; 1688 crypto_session_t nses; 1689 1690 /* 1691 * Driver has unregistered; migrate the session and return 1692 * an error to the caller so they'll resubmit the op. 1693 * 1694 * XXX: What if there are more already queued requests for this 1695 * session? 1696 * 1697 * XXX: Real solution is to make sessions refcounted 1698 * and force callers to hold a reference when 1699 * assigning to crp_session. Could maybe change 1700 * crypto_getreq to accept a session pointer to make 1701 * that work. Alternatively, we could abandon the 1702 * notion of rewriting crp_session in requests forcing 1703 * the caller to deal with allocating a new session. 1704 * Perhaps provide a method to allow a crp's session to 1705 * be swapped that callers could use. 1706 */ 1707 csp = crp->crp_session->csp; 1708 crypto_freesession(crp->crp_session); 1709 1710 /* 1711 * XXX: Key pointers may no longer be valid. If we 1712 * really want to support this we need to define the 1713 * KPI such that 'csp' is required to be valid for the 1714 * duration of a session by the caller perhaps. 1715 * 1716 * XXX: If the keys have been changed this will reuse 1717 * the old keys. This probably suggests making 1718 * rekeying more explicit and updating the key 1719 * pointers in 'csp' when the keys change. 1720 */ 1721 if (crypto_newsession(&nses, &csp, 1722 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) 1723 crp->crp_session = nses; 1724 1725 crp->crp_etype = EAGAIN; 1726 crypto_done(crp); 1727 return 0; 1728 } else { 1729 /* 1730 * Invoke the driver to process the request. 1731 */ 1732 return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); 1733 } 1734 } 1735 1736 void 1737 crypto_destroyreq(struct cryptop *crp) 1738 { 1739 #ifdef DIAGNOSTIC 1740 { 1741 struct cryptop *crp2; 1742 struct crypto_ret_worker *ret_worker; 1743 1744 CRYPTO_Q_LOCK(); 1745 TAILQ_FOREACH(crp2, &crp_q, crp_next) { 1746 KASSERT(crp2 != crp, 1747 ("Freeing cryptop from the crypto queue (%p).", 1748 crp)); 1749 } 1750 CRYPTO_Q_UNLOCK(); 1751 1752 FOREACH_CRYPTO_RETW(ret_worker) { 1753 CRYPTO_RETW_LOCK(ret_worker); 1754 TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) { 1755 KASSERT(crp2 != crp, 1756 ("Freeing cryptop from the return queue (%p).", 1757 crp)); 1758 } 1759 CRYPTO_RETW_UNLOCK(ret_worker); 1760 } 1761 } 1762 #endif 1763 } 1764 1765 void 1766 crypto_freereq(struct cryptop *crp) 1767 { 1768 if (crp == NULL) 1769 return; 1770 1771 crypto_destroyreq(crp); 1772 uma_zfree(cryptop_zone, crp); 1773 } 1774 1775 static void 1776 _crypto_initreq(struct cryptop *crp, crypto_session_t cses) 1777 { 1778 crp->crp_session = cses; 1779 } 1780 1781 void 1782 crypto_initreq(struct cryptop *crp, crypto_session_t cses) 1783 { 1784 memset(crp, 0, sizeof(*crp)); 1785 _crypto_initreq(crp, cses); 1786 } 1787 1788 struct cryptop * 1789 crypto_getreq(crypto_session_t cses, int how) 1790 { 1791 struct cryptop *crp; 1792 1793 MPASS(how == M_WAITOK || how == M_NOWAIT); 1794 crp = uma_zalloc(cryptop_zone, how | M_ZERO); 1795 if (crp != NULL) 1796 _crypto_initreq(crp, cses); 1797 return (crp); 1798 } 1799 1800 /* 1801 * Invoke the callback on behalf of the driver. 1802 */ 1803 void 1804 crypto_done(struct cryptop *crp) 1805 { 1806 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0, 1807 ("crypto_done: op already done, flags 0x%x", crp->crp_flags)); 1808 crp->crp_flags |= CRYPTO_F_DONE; 1809 if (crp->crp_etype != 0) 1810 CRYPTOSTAT_INC(cs_errs); 1811 1812 /* 1813 * CBIMM means unconditionally do the callback immediately; 1814 * CBIFSYNC means do the callback immediately only if the 1815 * operation was done synchronously. Both are used to avoid 1816 * doing extraneous context switches; the latter is mostly 1817 * used with the software crypto driver. 1818 */ 1819 if (!CRYPTOP_ASYNC_KEEPORDER(crp) && 1820 ((crp->crp_flags & CRYPTO_F_CBIMM) || 1821 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) && 1822 (crypto_ses2caps(crp->crp_session) & CRYPTOCAP_F_SYNC)))) { 1823 /* 1824 * Do the callback directly. This is ok when the 1825 * callback routine does very little (e.g. the 1826 * /dev/crypto callback method just does a wakeup). 1827 */ 1828 crp->crp_callback(crp); 1829 } else { 1830 struct crypto_ret_worker *ret_worker; 1831 bool wake; 1832 1833 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1834 wake = false; 1835 1836 /* 1837 * Normal case; queue the callback for the thread. 1838 */ 1839 CRYPTO_RETW_LOCK(ret_worker); 1840 if (CRYPTOP_ASYNC_KEEPORDER(crp)) { 1841 struct cryptop *tmp; 1842 1843 TAILQ_FOREACH_REVERSE(tmp, &ret_worker->crp_ordered_ret_q, 1844 cryptop_q, crp_next) { 1845 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) { 1846 TAILQ_INSERT_AFTER(&ret_worker->crp_ordered_ret_q, 1847 tmp, crp, crp_next); 1848 break; 1849 } 1850 } 1851 if (tmp == NULL) { 1852 TAILQ_INSERT_HEAD(&ret_worker->crp_ordered_ret_q, 1853 crp, crp_next); 1854 } 1855 1856 if (crp->crp_seq == ret_worker->reorder_cur_seq) 1857 wake = true; 1858 } 1859 else { 1860 if (CRYPTO_RETW_EMPTY(ret_worker)) 1861 wake = true; 1862 1863 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, crp_next); 1864 } 1865 1866 if (wake) 1867 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1868 CRYPTO_RETW_UNLOCK(ret_worker); 1869 } 1870 } 1871 1872 /* 1873 * Invoke the callback on behalf of the driver. 1874 */ 1875 void 1876 crypto_kdone(struct cryptkop *krp) 1877 { 1878 struct crypto_ret_worker *ret_worker; 1879 struct cryptocap *cap; 1880 1881 if (krp->krp_status != 0) 1882 CRYPTOSTAT_INC(cs_kerrs); 1883 cap = krp->krp_cap; 1884 if (cap != NULL) { 1885 CRYPTO_DRIVER_LOCK(); 1886 KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0")); 1887 cap->cc_koperations--; 1888 if (cap->cc_koperations == 0 && 1889 cap->cc_flags & CRYPTOCAP_F_CLEANUP) 1890 wakeup(cap); 1891 CRYPTO_DRIVER_UNLOCK(); 1892 krp->krp_cap = NULL; 1893 cap_rele(cap); 1894 } 1895 1896 ret_worker = CRYPTO_RETW(0); 1897 1898 CRYPTO_RETW_LOCK(ret_worker); 1899 if (CRYPTO_RETW_EMPTY(ret_worker)) 1900 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1901 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_kq, krp, krp_next); 1902 CRYPTO_RETW_UNLOCK(ret_worker); 1903 } 1904 1905 int 1906 crypto_getfeat(int *featp) 1907 { 1908 int hid, kalg, feat = 0; 1909 1910 CRYPTO_DRIVER_LOCK(); 1911 for (hid = 0; hid < crypto_drivers_size; hid++) { 1912 const struct cryptocap *cap = crypto_drivers[hid]; 1913 1914 if (cap == NULL || 1915 ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) && 1916 !crypto_devallowsoft)) { 1917 continue; 1918 } 1919 for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++) 1920 if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED) 1921 feat |= 1 << kalg; 1922 } 1923 CRYPTO_DRIVER_UNLOCK(); 1924 *featp = feat; 1925 return (0); 1926 } 1927 1928 /* 1929 * Terminate a thread at module unload. The process that 1930 * initiated this is waiting for us to signal that we're gone; 1931 * wake it up and exit. We use the driver table lock to insure 1932 * we don't do the wakeup before they're waiting. There is no 1933 * race here because the waiter sleeps on the proc lock for the 1934 * thread so it gets notified at the right time because of an 1935 * extra wakeup that's done in exit1(). 1936 */ 1937 static void 1938 crypto_finis(void *chan) 1939 { 1940 CRYPTO_DRIVER_LOCK(); 1941 wakeup_one(chan); 1942 CRYPTO_DRIVER_UNLOCK(); 1943 kproc_exit(0); 1944 } 1945 1946 /* 1947 * Crypto thread, dispatches crypto requests. 1948 */ 1949 static void 1950 crypto_proc(void) 1951 { 1952 struct cryptop *crp, *submit; 1953 struct cryptkop *krp; 1954 struct cryptocap *cap; 1955 int result, hint; 1956 1957 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1958 fpu_kern_thread(FPU_KERN_NORMAL); 1959 #endif 1960 1961 CRYPTO_Q_LOCK(); 1962 for (;;) { 1963 /* 1964 * Find the first element in the queue that can be 1965 * processed and look-ahead to see if multiple ops 1966 * are ready for the same driver. 1967 */ 1968 submit = NULL; 1969 hint = 0; 1970 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1971 cap = crp->crp_session->cap; 1972 /* 1973 * Driver cannot disappeared when there is an active 1974 * session. 1975 */ 1976 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1977 __func__, __LINE__)); 1978 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1979 /* Op needs to be migrated, process it. */ 1980 if (submit == NULL) 1981 submit = crp; 1982 break; 1983 } 1984 if (!cap->cc_qblocked) { 1985 if (submit != NULL) { 1986 /* 1987 * We stop on finding another op, 1988 * regardless whether its for the same 1989 * driver or not. We could keep 1990 * searching the queue but it might be 1991 * better to just use a per-driver 1992 * queue instead. 1993 */ 1994 if (submit->crp_session->cap == cap) 1995 hint = CRYPTO_HINT_MORE; 1996 break; 1997 } else { 1998 submit = crp; 1999 if ((submit->crp_flags & CRYPTO_F_BATCH) == 0) 2000 break; 2001 /* keep scanning for more are q'd */ 2002 } 2003 } 2004 } 2005 if (submit != NULL) { 2006 TAILQ_REMOVE(&crp_q, submit, crp_next); 2007 cap = submit->crp_session->cap; 2008 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 2009 __func__, __LINE__)); 2010 CRYPTO_Q_UNLOCK(); 2011 result = crypto_invoke(cap, submit, hint); 2012 CRYPTO_Q_LOCK(); 2013 if (result == ERESTART) { 2014 /* 2015 * The driver ran out of resources, mark the 2016 * driver ``blocked'' for cryptop's and put 2017 * the request back in the queue. It would 2018 * best to put the request back where we got 2019 * it but that's hard so for now we put it 2020 * at the front. This should be ok; putting 2021 * it at the end does not work. 2022 */ 2023 cap->cc_qblocked = 1; 2024 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 2025 CRYPTOSTAT_INC(cs_blocks); 2026 } 2027 } 2028 2029 /* As above, but for key ops */ 2030 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 2031 cap = krp->krp_cap; 2032 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 2033 /* 2034 * Operation needs to be migrated, 2035 * clear krp_cap so a new driver is 2036 * selected. 2037 */ 2038 krp->krp_cap = NULL; 2039 cap_rele(cap); 2040 break; 2041 } 2042 if (!cap->cc_kqblocked) 2043 break; 2044 } 2045 if (krp != NULL) { 2046 TAILQ_REMOVE(&crp_kq, krp, krp_next); 2047 CRYPTO_Q_UNLOCK(); 2048 result = crypto_kinvoke(krp); 2049 CRYPTO_Q_LOCK(); 2050 if (result == ERESTART) { 2051 /* 2052 * The driver ran out of resources, mark the 2053 * driver ``blocked'' for cryptkop's and put 2054 * the request back in the queue. It would 2055 * best to put the request back where we got 2056 * it but that's hard so for now we put it 2057 * at the front. This should be ok; putting 2058 * it at the end does not work. 2059 */ 2060 krp->krp_cap->cc_kqblocked = 1; 2061 TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next); 2062 CRYPTOSTAT_INC(cs_kblocks); 2063 } 2064 } 2065 2066 if (submit == NULL && krp == NULL) { 2067 /* 2068 * Nothing more to be processed. Sleep until we're 2069 * woken because there are more ops to process. 2070 * This happens either by submission or by a driver 2071 * becoming unblocked and notifying us through 2072 * crypto_unblock. Note that when we wakeup we 2073 * start processing each queue again from the 2074 * front. It's not clear that it's important to 2075 * preserve this ordering since ops may finish 2076 * out of order if dispatched to different devices 2077 * and some become blocked while others do not. 2078 */ 2079 crp_sleep = 1; 2080 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0); 2081 crp_sleep = 0; 2082 if (cryptoproc == NULL) 2083 break; 2084 CRYPTOSTAT_INC(cs_intrs); 2085 } 2086 } 2087 CRYPTO_Q_UNLOCK(); 2088 2089 crypto_finis(&crp_q); 2090 } 2091 2092 /* 2093 * Crypto returns thread, does callbacks for processed crypto requests. 2094 * Callbacks are done here, rather than in the crypto drivers, because 2095 * callbacks typically are expensive and would slow interrupt handling. 2096 */ 2097 static void 2098 crypto_ret_proc(struct crypto_ret_worker *ret_worker) 2099 { 2100 struct cryptop *crpt; 2101 struct cryptkop *krpt; 2102 2103 CRYPTO_RETW_LOCK(ret_worker); 2104 for (;;) { 2105 /* Harvest return q's for completed ops */ 2106 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q); 2107 if (crpt != NULL) { 2108 if (crpt->crp_seq == ret_worker->reorder_cur_seq) { 2109 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next); 2110 ret_worker->reorder_cur_seq++; 2111 } else { 2112 crpt = NULL; 2113 } 2114 } 2115 2116 if (crpt == NULL) { 2117 crpt = TAILQ_FIRST(&ret_worker->crp_ret_q); 2118 if (crpt != NULL) 2119 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next); 2120 } 2121 2122 krpt = TAILQ_FIRST(&ret_worker->crp_ret_kq); 2123 if (krpt != NULL) 2124 TAILQ_REMOVE(&ret_worker->crp_ret_kq, krpt, krp_next); 2125 2126 if (crpt != NULL || krpt != NULL) { 2127 CRYPTO_RETW_UNLOCK(ret_worker); 2128 /* 2129 * Run callbacks unlocked. 2130 */ 2131 if (crpt != NULL) 2132 crpt->crp_callback(crpt); 2133 if (krpt != NULL) 2134 krpt->krp_callback(krpt); 2135 CRYPTO_RETW_LOCK(ret_worker); 2136 } else { 2137 /* 2138 * Nothing more to be processed. Sleep until we're 2139 * woken because there are more returns to process. 2140 */ 2141 msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT, 2142 "crypto_ret_wait", 0); 2143 if (ret_worker->cryptoretproc == NULL) 2144 break; 2145 CRYPTOSTAT_INC(cs_rets); 2146 } 2147 } 2148 CRYPTO_RETW_UNLOCK(ret_worker); 2149 2150 crypto_finis(&ret_worker->crp_ret_q); 2151 } 2152 2153 #ifdef DDB 2154 static void 2155 db_show_drivers(void) 2156 { 2157 int hid; 2158 2159 db_printf("%12s %4s %4s %8s %2s %2s\n" 2160 , "Device" 2161 , "Ses" 2162 , "Kops" 2163 , "Flags" 2164 , "QB" 2165 , "KB" 2166 ); 2167 for (hid = 0; hid < crypto_drivers_size; hid++) { 2168 const struct cryptocap *cap = crypto_drivers[hid]; 2169 if (cap == NULL) 2170 continue; 2171 db_printf("%-12s %4u %4u %08x %2u %2u\n" 2172 , device_get_nameunit(cap->cc_dev) 2173 , cap->cc_sessions 2174 , cap->cc_koperations 2175 , cap->cc_flags 2176 , cap->cc_qblocked 2177 , cap->cc_kqblocked 2178 ); 2179 } 2180 } 2181 2182 DB_SHOW_COMMAND(crypto, db_show_crypto) 2183 { 2184 struct cryptop *crp; 2185 struct crypto_ret_worker *ret_worker; 2186 2187 db_show_drivers(); 2188 db_printf("\n"); 2189 2190 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", 2191 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", 2192 "Device", "Callback"); 2193 TAILQ_FOREACH(crp, &crp_q, crp_next) { 2194 db_printf("%4u %08x %4u %4u %04x %8p %8p\n" 2195 , crp->crp_session->cap->cc_hid 2196 , (int) crypto_ses2caps(crp->crp_session) 2197 , crp->crp_olen 2198 , crp->crp_etype 2199 , crp->crp_flags 2200 , device_get_nameunit(crp->crp_session->cap->cc_dev) 2201 , crp->crp_callback 2202 ); 2203 } 2204 FOREACH_CRYPTO_RETW(ret_worker) { 2205 db_printf("\n%8s %4s %4s %4s %8s\n", 2206 "ret_worker", "HID", "Etype", "Flags", "Callback"); 2207 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 2208 TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) { 2209 db_printf("%8td %4u %4u %04x %8p\n" 2210 , CRYPTO_RETW_ID(ret_worker) 2211 , crp->crp_session->cap->cc_hid 2212 , crp->crp_etype 2213 , crp->crp_flags 2214 , crp->crp_callback 2215 ); 2216 } 2217 } 2218 } 2219 } 2220 2221 DB_SHOW_COMMAND(kcrypto, db_show_kcrypto) 2222 { 2223 struct cryptkop *krp; 2224 struct crypto_ret_worker *ret_worker; 2225 2226 db_show_drivers(); 2227 db_printf("\n"); 2228 2229 db_printf("%4s %5s %4s %4s %8s %4s %8s\n", 2230 "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback"); 2231 TAILQ_FOREACH(krp, &crp_kq, krp_next) { 2232 db_printf("%4u %5u %4u %4u %08x %4u %8p\n" 2233 , krp->krp_op 2234 , krp->krp_status 2235 , krp->krp_iparams, krp->krp_oparams 2236 , krp->krp_crid, krp->krp_hid 2237 , krp->krp_callback 2238 ); 2239 } 2240 2241 ret_worker = CRYPTO_RETW(0); 2242 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 2243 db_printf("%4s %5s %8s %4s %8s\n", 2244 "Op", "Status", "CRID", "HID", "Callback"); 2245 TAILQ_FOREACH(krp, &ret_worker->crp_ret_kq, krp_next) { 2246 db_printf("%4u %5u %08x %4u %8p\n" 2247 , krp->krp_op 2248 , krp->krp_status 2249 , krp->krp_crid, krp->krp_hid 2250 , krp->krp_callback 2251 ); 2252 } 2253 } 2254 } 2255 #endif 2256 2257 int crypto_modevent(module_t mod, int type, void *unused); 2258 2259 /* 2260 * Initialization code, both for static and dynamic loading. 2261 * Note this is not invoked with the usual MODULE_DECLARE 2262 * mechanism but instead is listed as a dependency by the 2263 * cryptosoft driver. This guarantees proper ordering of 2264 * calls on module load/unload. 2265 */ 2266 int 2267 crypto_modevent(module_t mod, int type, void *unused) 2268 { 2269 int error = EINVAL; 2270 2271 switch (type) { 2272 case MOD_LOAD: 2273 error = crypto_init(); 2274 if (error == 0 && bootverbose) 2275 printf("crypto: <crypto core>\n"); 2276 break; 2277 case MOD_UNLOAD: 2278 /*XXX disallow if active sessions */ 2279 error = 0; 2280 crypto_destroy(); 2281 return 0; 2282 } 2283 return error; 2284 } 2285 MODULE_VERSION(crypto, 1); 2286 MODULE_DEPEND(crypto, zlib, 1, 1, 1); 2287